WO2010089898A1 - リチウム二次電池 - Google Patents

リチウム二次電池 Download PDF

Info

Publication number
WO2010089898A1
WO2010089898A1 PCT/JP2009/052179 JP2009052179W WO2010089898A1 WO 2010089898 A1 WO2010089898 A1 WO 2010089898A1 JP 2009052179 W JP2009052179 W JP 2009052179W WO 2010089898 A1 WO2010089898 A1 WO 2010089898A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
active material
insulating particle
binder
negative electrode
Prior art date
Application number
PCT/JP2009/052179
Other languages
English (en)
French (fr)
Inventor
博昭 池田
仁 酒井
龍太 森島
宏之 秋田
秀仁 松尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/052179 priority Critical patent/WO2010089898A1/ja
Priority to JP2010549334A priority patent/JP5316905B2/ja
Priority to US13/146,034 priority patent/US20110281161A1/en
Publication of WO2010089898A1 publication Critical patent/WO2010089898A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Lithium secondary batteries and other non-aqueous secondary batteries are increasingly important as power sources mounted on vehicles that use electricity as a drive source, or power sources mounted on personal computers, mobile devices, and other electrical products. It is growing.
  • a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.
  • Patent document 1 is mentioned as a technical document regarding a non-aqueous secondary battery.
  • lithium secondary battery refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
  • the insulating particle-containing layer in the technique disclosed herein contains, in addition to the insulating particles, a binder that binds the insulating particles.
  • binders include acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-isoprene copolymer rubber (NIR), and acrylonitrile-butadiene-isoprene copolymer rubber (NBIR).
  • Acrylic polymers containing acrylic monomers as the main copolymerization component such as acrylic acid, methacrylic acid, acrylic esters and methacrylic esters (eg alkyl esters); polyvinyl acetate, ethylene-vinyl acetate copolymer (EVA) ) And the like; and the like.
  • acrylic acid, methacrylic acid, acrylic esters and methacrylic esters eg alkyl esters
  • EVA ethylene-vinyl acetate copolymer
  • the insulating particle-containing layer contains an acrylic binder.
  • An insulating particle-containing layer having a composition containing substantially only an acrylic binder as the binder may be used.
  • C IN / C OUT is suitably in the range of about 1.005 to 5 to make the binder content C IN of the innermost layer higher than the binder content C OUT of the outermost layer. If C IN / C OUT is larger than the above range, the binder content in the inner part becomes too high and the internal resistance value increases, or the binder content in the outer part becomes too low and the durability decreases. Can be. If C IN / C OUT is too smaller than the above range (closer to 1), the effect of different binder contents on the outside and inside may not be sufficiently exhibited.
  • the binder content of each sub-layer can be, for example, in the range of about 0.5 to 20% by mass, and is usually 1 to 15% by mass (more preferably 2 to 10% by mass, for example 3 to 5% by mass). It is preferable to set it as the range. If there is a layer having a binder content that is higher than the above range, the movement of Li ions may be inhibited in the layer, and the internal resistance value may easily increase. In addition, if there is a layer having a binder content that is lower than the above range, the durability of the insulating particle-containing layer (which may affect battery characteristics such as capacity retention rate) tends to be insufficient.
  • aprotic polar organic solvent examples include cyclic or chain-like compounds such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), and N, N-dimethylacetamide (DMAc). Amides are mentioned.
  • a slurry corresponding to the composition of each sub-layer to the surface of the active material layer (or the surface of the inner sub-layer) and drying it under appropriate conditions.
  • An insulating particle-containing layer can be formed. In order to accelerate the drying, heating may be performed at an appropriate temperature as necessary.
  • the solid content ratio of the slurry (the ratio of the insulating particle-containing layer forming component in the slurry; hereinafter sometimes referred to as “NV”) is, for example, about 30 to 80% by mass. Can be about.
  • the mass ratio of the insulating particles to the entire mass of the insulating particle-containing layer is 85% by mass or more.
  • the insulating particle content is more preferably 90% by mass or more (for example, 95% by mass or more).
  • the content of insulating particles in each sub-layer is 80% by mass or more (more preferably 85% by mass or more, for example, 90% by mass or more). According to the insulating particle-containing layer having such a configuration, a battery with higher reliability (for example, excellent performance for preventing internal resistance) can be realized.
  • the insulating particle-containing layer does not substantially contain a material that absorbs and releases Li (that is, a component that functions as an active material). Since the insulating particle-containing layer having such a configuration does not include a component that fluctuates due to charge / discharge, it is suitable for constructing a battery having excellent durability against charge / discharge cycles.
  • each sublayer constituting the insulating particle-containing layer has a thickness of about 0.5 ⁇ m or more (more preferably about 1 ⁇ m or more).
  • both the innermost layer and the outermost layer have a thickness of about 1 ⁇ m or more (for example, about 1 ⁇ m to 5 ⁇ m).
  • the thickness ratio of these layers can be, for example, about 1: 0.25 to 1: 4.
  • the thickness ratio is about 1: 0.5 to 1: 2 (preferably 1: 0.7 to 1: 1.3).
  • the current collector constituting the electrode disclosed herein for example, a member mainly composed of a metal having good conductivity such as copper, nickel, aluminum, titanium, stainless steel or the like can be used.
  • Current collector made of copper or an alloy mainly composed of copper (copper alloy) as a constituent element of the negative electrode, and current collector made of aluminum or an alloy mainly composed of aluminum (aluminum alloy) as a constituent element of the positive electrode A body or the like can be preferably employed.
  • the shape of the current collector can be different depending on the shape of the electrode and the battery, and is not particularly limited, and may be various forms such as a rod shape, a plate shape, a sheet shape, a foil shape, and a mesh shape.
  • the technique disclosed here can be preferably applied to, for example, an electrode using a sheet-like current collector.
  • a battery constructed using such an electrode electrode sheet
  • a battery comprising an electrode body (rolled electrode body) formed by winding a sheet-like positive electrode and a negative electrode together with a sheet-like separator typically.
  • the outer shape of the battery is not particularly limited, and may be, for example, a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.
  • the thickness and size of the sheet current collector are not particularly limited, and can be appropriately selected according to the shape of the target lithium ion battery.
  • a sheet-like current collector having a thickness of about 5 ⁇ m to 30 ⁇ m can be preferably used.
  • the current collector can have a width of, for example, about 2 cm to 15 cm, and a length of, for example, about 5 cm to 1000 cm.
  • the property (outer shape) of the negative electrode active material is preferably particulate.
  • a particulate active material for example, carbon particles
  • carbon particles having an average particle diameter of about 5 ⁇ m to 15 ⁇ m for example, about 8 ⁇ m to 12 ⁇ m
  • carbon particles having a relatively small particle size have a large surface area per unit volume, and thus can be an active material suitable for more rapid charge / discharge (for example, high power discharge). Therefore, a lithium ion battery including such an active material can be suitably used as, for example, a lithium ion battery mounted on a vehicle.
  • the carbon particles having a relatively small particle size have a smaller volume variation of the individual carbon particles accompanying charging / discharging than when larger particles are used. Can buffer (absorb) better. This is because, in a battery including a negative electrode having an insulating particle-containing layer on the negative electrode active material, the adhesion between the active material layer and the insulating particle-containing layer is improved to increase the capacity retention rate of the battery. It is advantageous.
  • the negative electrode active material layer can contain one or two or more materials that can be blended in the negative electrode active material layer of a general lithium ion battery, if necessary, in addition to the negative electrode active material.
  • materials include various polymer materials that can function as a binder.
  • the binder is dissolved in water as the binder.
  • a dispersing polymer material can be preferably employed.
  • water-soluble (water-soluble) polymer material examples include cellulose such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), and hydroxypropylmethylcellulose phthalate (HPMCP).
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxyprop
  • Fluorine resins such as coalescence (FEP) and ethylene-tetrafluoroethylene copolymer (ETFE); vinyl acetate copolymer; styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), gum arabic, etc. Rubbers; are exemplified.
  • the negative electrode active material layer for example, applies a liquid composition (typically a paste or slurry-like composition for forming a negative electrode active material layer) in which active material particles are dispersed in an appropriate solvent to a current collector, It can preferably be made by drying the composition.
  • a liquid composition typically a paste or slurry-like composition for forming a negative electrode active material layer
  • the solvent any of water, an organic solvent and a mixed solvent thereof can be used.
  • a negative electrode active material composition in which the solvent is an aqueous solvent (water or a mixed solvent mainly containing water) can be preferably employed.
  • the composition is one or more materials that can be blended in a liquid composition used for forming a negative electrode active material layer in the production of a general negative electrode for a lithium ion battery. Can be contained as required.
  • a negative electrode active material layer forming composition containing the polymer material (binder) as described above can be preferably used.
  • the NV of the composition can be, for example, about 30% to 60% (typically 30% to 50%).
  • the mass ratio of the negative electrode active material to the solid content (negative electrode active material layer forming component) can be, for example, about 85% or more (typically about 85% to 99.9%), and about 90% to 99%. %, Preferably about 95% to 99%.
  • a technique similar to a conventionally known method can be appropriately employed.
  • a predetermined amount of the composition may be applied to the surface of the current collector using an appropriate application device (such as a gravure coater, a slit coater, a die coater, or a comma coater).
  • the coating amount of the composition for forming a negative electrode active material layer is not particularly limited, and may be appropriately changed according to the shape and target performance of the negative electrode sheet and the battery.
  • the composition may be applied to both surfaces of a sheet-like current collector so that the coating amount in terms of NV (that is, the mass after drying) is approximately 4 to 20 mg / cm 2 in total.
  • the coated material is dried by an appropriate drying means, and pressed as necessary, whereby a negative electrode active material layer can be formed on the surface of the negative electrode current collector.
  • the density of the negative electrode active material layer may be about 1.1 to 1.5 g / cm 3, for example.
  • the density of the negative electrode active material layer may be about 1.1 to 1.3 g / cm 3 .
  • the press conditions may be set so that a negative electrode active material layer having such a density is formed.
  • a lithium ion battery 10 includes a container 11 made of metal (a resin or a laminate film is also suitable).
  • a wound electrode body 30 configured by laminating a positive electrode sheet 32, a negative electrode sheet 34, and two separators 35 in this container 11 and then winding (in this embodiment, winding in a flat shape) Contained.
  • the positive electrode sheet 32 includes a long sheet positive electrode current collector 322 and a positive electrode active material layer 324 formed on the surfaces of both sides thereof.
  • a sheet material made of a metal such as aluminum, nickel, or titanium typically, a metal foil having a thickness of about 5 to 30 ⁇ m, such as an aluminum foil
  • the positive electrode active material layer 324 is mainly composed of a positive electrode active material capable of inserting and extracting Li ions.
  • an oxide-based positive electrode active material having a layered structure used for a general lithium ion battery, an oxide-based positive electrode active material having a spinel structure, or the like can be preferably used.
  • a positive electrode active material mainly composed of lithium nickel composite oxide, lithium cobalt composite oxide, lithium manganese composite oxide, or the like can be used.
  • the “lithium nickel oxide” means an oxide (typically LiNiO 2 ) having only Li and Ni as constituent metal elements, and one or more metals other than Li and Ni. It is meant to include composite oxides containing elements in a proportion lower than Ni (in terms of atomic number. When two or more metal elements other than Li and Ni are contained, both of them are less than Ni). .
  • the metal element is selected from the group consisting of, for example, Co, Al, Mn, Cr, Fe, V, Mg, Ti, Zr, Nb, Mo, W, copper, Zn, Ga, In, Sn, La, and Ce. Or one or more elements.
  • lithium cobalt-based oxide refers to an oxide (typically LiCoO 2 ) having only Li and Co as constituent metal elements, and one or more other types in addition to Li and Co. It is meant to include a complex oxide containing a metal element in a proportion smaller than Co, and “lithium manganese oxide” means an oxide containing Li and Mn alone (typically LiMn 2 In addition to O 4 ), it is meant to include composite oxides containing, in addition to Li and Mn, one or more other metal elements in a smaller proportion than Mn.
  • the positive electrode active material layer 324 can contain a binder and a conductive material in addition to the positive electrode active material.
  • a binder the thing similar to the binder for negative electrode active material compositions mentioned above etc. can be used.
  • the conductive material various carbon blacks (acetylene black, furnace black, ketjen black, etc.), carbon powder such as graphite powder, metal powder such as nickel powder, and the like can be used.
  • the amount of the conductive material used with respect to 100 parts by mass of the positive electrode active material can be, for example, in the range of 1 to 20 parts by mass (preferably 5 to 15 parts by mass).
  • the amount of the binder used with respect to 100 parts by mass of the positive electrode active material can be, for example, in the range of 0.5 to 10 parts by mass.
  • the negative electrode sheet (electrode with insulating particle-containing layer) 34 is composed mainly of a long sheet-like negative electrode current collector 342 and a negative electrode active material layer 344 (for example, graphite particles as a negative electrode active material) formed on the surface. And an insulating particle-containing layer 346 formed on the negative electrode active material layer.
  • the negative electrode active material layer 344 is coated with a suitable negative electrode active material composition as described above on the surfaces of both sides of the negative electrode current collector 342 and dried at an appropriate temperature. It is obtained by performing a density adjustment process (for example, a roll press process).
  • the insulating particle-containing layer 346 has a two-layer structure including an inner layer (innermost layer) 346A constituting a portion on the negative electrode active material layer side and an outer layer (outermost layer) 346B constituting a portion on the outer surface side. Both the inner layer 346A and the outer layer 346B contain 90% by mass or more of insulating particles, and the total of the insulating particles and the binder occupies 95% by mass or more.
  • the binder content C IN of the inner layer 346A is higher than the binder content C OUT of the outer layer 346B, and preferably C IN / C OUT is 1.02 to 1.25 (more preferably 1.1 to 1.25). It is.
  • the insulating particle-containing layer 346 having such a configuration is obtained by applying a slurry having a composition corresponding to the inner layer 346A to the surface of the negative electrode active material layer 344 and drying the slurry, and then applying a slurry having a composition corresponding to the outer layer 346B from above the inner layer 346A. And can be suitably formed by drying.
  • porous sheets that are known to be usable as separators for lithium ion batteries can be used.
  • a porous resin sheet (film) made of a polyolefin resin such as polyethylene or polypropylene can be preferably used.
  • the preferable porous sheet (typically a porous resin sheet) has an average pore diameter of about 0.0005 ⁇ m to 30 ⁇ m (more preferably 0.001 ⁇ m to 15 ⁇ m) and a thickness of Examples thereof include a porous resin sheet having a size of about 5 ⁇ m to 100 ⁇ m (more preferably 10 ⁇ m to 30 ⁇ m).
  • the porosity of the porous sheet can be, for example, about 20 to 90% by volume (preferably 30 to 80% by volume).
  • a portion where the positive electrode active material layer 324 is not formed is provided at one end portion along the longitudinal direction of the positive electrode sheet 32.
  • a portion where the negative electrode active material layer 344 and the insulating particle-containing layer 346 are not formed is provided at one end portion along the longitudinal direction of the negative electrode sheet 34.
  • the electrode sheets 32 and 34 are slightly shifted and overlapped so that the portion 342A is separately disposed at one end and the other end along the longitudinal direction. In this state, a total of four sheets 32, 35, 34, 35 are wound, and then the obtained wound body is crushed from the side surface direction and crushed to obtain a flat wound electrode body 30.
  • a nonaqueous electrolytic solution containing (supporting salt) at a concentration of about 0.1 mol / L to 5 mol / L (for example, about 0.8 mol / L to 1.5 mol / L) can be preferably used.
  • the filling state of the active material particles 42 in the active material layer 344 changes from the initial state as shown in the right side of FIG.
  • the filling of the active material particles 42 is loosened), and conduction between some of the active material particles 42A and the main portion of the active material layer 344 (and thus the current collector 342) may tend to be interrupted.
  • an insulating particle-containing layer 346 including insulating particles 44 and a binder 46 is provided on the active material layer 344 as shown in the left drawing of FIG.
  • a change in the filling state of the active material particles 42 looseening of filling
  • an appropriate filling state of the active material particles 42 is maintained (for example, filling of the active material particles 42 as shown in the diagram on the right side of FIG. 4).
  • the structure in which the active material layer 344 is covered with the insulating particle-containing layer 346 can be useful for improving the reliability of the battery.
  • the binder content C IN of the inner layer 346A constituting the active material layer side portion of the insulating particle-containing layer 346 is constituted, and the outer portion is constituted. Higher than the binder content C OUT of the outer layer 346B.
  • the insulating particle-containing layer 346 as a whole can exhibit a good reliability improvement effect, and the adhesiveness between the inner layer 346A and the active material layer 344 can be increased, so that the capacity retention rate can be effectively improved.
  • it is considered that the increase in internal resistance is suppressed because the inhibition of movement of Li ions in the outer layer 346B is reduced.
  • an insulating material including an insulating particle and a binder for binding the particle on an active material layer having a surface roughness Ra of about 2.5 ⁇ m to 42 ⁇ m (for example, 5 ⁇ m to 30 ⁇ m).
  • a conductive particle-containing layer is provided.
  • surface roughness Ra refers to the arithmetic average roughness Ra specified in JIS B 0601 (2001).
  • the reason why the capacity retention ratio is improved by setting the surface roughness Ra of the active material layer in the above range is considered as follows, for example. That is, if the surface roughness Ra is too smaller than the above range, the surface shape of the active material layer is too smooth, and the adhesion (bonding strength) between the active material layer and the insulating particle-containing layer tends to be insufficient. It becomes. For this reason, as shown in the diagram on the left side of FIG. 8, even if the insulating particle-containing layer 346 is appropriately provided on the active material layer 344 in the initial state, by repeating charge and discharge, for example, on the right side of FIG.
  • a part of the insulating particle-containing layer 346 is peeled off from the active material layer 344 due to expansion / contraction of the active material particles 42 due to the charge / discharge (and expansion / contraction of the entire active material layer 344), A gap may occur in the conductive particle-containing layer 346.
  • the surface roughness Ra is too larger than the above range, the surface of the active material layer is uneven, making it difficult to form an insulating particle-containing layer by being in close contact with the unevenness. For this reason, for example, as shown in the diagram on the left side of FIG. 10, a fine gap is easily generated between the insulating particle-containing layer 346 and the active material layer 344.
  • the adhesion between the insulating particle-containing layer 346 and the active material layer 344 is insufficient, and the insulating particle-containing layer 346 is peeled off. It may occur, or a part of the insulating particle-containing layer 346 may fall into the gap on the back surface and a gap may be generated in the insulating particle-containing layer 346.
  • the effect of suppressing the change in the filling state of the active material particles 42 tends to be weak.
  • the surface roughness Ra of the active material layer is in the above-described preferable range, the anchor (throwing) effect is exhibited due to the presence of appropriate irregularities on the surface, and the insulating particle-containing layer 346 and the active material Adhesiveness with the layer 344 is increased, and inconveniences such as a drop of the insulating particle-containing layer 346 can be avoided. Therefore, as shown in the diagram on the right side of FIG.
  • the insulating particle-containing layer 346 can be kept in a good state even after the charge / discharge cycle, whereby the appropriate filling state of the active material particles 42 can be highly maintained.
  • the active material layer It is particularly significant to set the surface roughness Ra of the above range.
  • the method for adjusting the surface roughness Ra of the active material layer to the above range is not particularly limited.
  • properties (NV, viscosity, etc.) of the composition used to form the active material layer selection of the solvent constituting the composition, drying conditions of the composition, properties of the active material particles (average particle size, particle size)
  • the surface roughness Ra of the active material layer can be adjusted by appropriately setting one or more conditions such as distribution, etc.), binder selection, mass ratio between the active material particles and the binder.
  • NV very high NV
  • NV for example, NV of about 40% by mass or more
  • the surface roughness Ra can be reduced by drying at a lower temperature (slowly).
  • the effect by setting the surface roughness Ra of the active material layer in the above range is exhibited well in an aspect in combination with the insulating particle-containing layer in which the binder content of the inner part is higher than that of the outer part,
  • the present invention can also be suitably exhibited in combination with an insulating particle-containing layer having a configuration that does not have a bias in the binder content.
  • a slurry-like negative electrode active material composition was prepared. The above composition was applied to both sides of a long copper foil (negative electrode current collector) having a thickness of about 15 ⁇ m so that the total coating amount (converted to NV) on both sides was 8.6 mg / cm 2. And then pressed so that the density of the negative electrode active material layer was 1.3 g / cm 3 .
  • the application range of the negative electrode active material composition was a range in which one edge along the longitudinal direction of the current collector was left in a strip shape having a width of about 15 mm on both sides.
  • a negative electrode raw material having a negative electrode active material layer on the surface of the negative electrode current collector was obtained.
  • ⁇ -alumina particles (insulating particles) having an average particle diameter of 0.8 ⁇ m and an acrylic binder have a mass ratio of these materials of 96: 4 (that is, a binder content of 4% by mass) and NV is 50% by mass.
  • the slurry was mixed with N-methylpyrrolidone (NMP) so that a slurry-like coating agent (insulating particle-containing layer forming composition) A1 was prepared.
  • Coating agent A1 was apply
  • the coating amount of the coating agent A1 was adjusted so that the thickness in terms of NV (that is, the thickness of the insulating particle-containing layer formed after drying) was 4 ⁇ m.
  • the sheet-like negative electrode (negative electrode sheet) which has an insulating particle content layer on the surface of a negative electrode active material layer was obtained.
  • a lithium ion battery 10 having a schematic configuration shown in FIG. 1 was produced.
  • a substance composition was prepared. The composition was applied to the surfaces of both sides of a long aluminum foil (positive electrode current collector) having a thickness of 10 ⁇ m so that the total coating amount (in terms of NV) on both surfaces was 10 mg / cm 2 . The coated material was dried and then pressed to obtain a positive electrode sheet.
  • the application range of the positive electrode active material composition was set to a range in which one edge along the longitudinal direction of the positive electrode current collector was left in a strip shape having a width of about 17 mm on both sides.
  • the above-prepared negative electrode sheet and positive electrode sheet were superposed via two separators (here, a porous polypropylene sheet having a thickness of 30 ⁇ m was used). At this time, both electrodes are arranged such that the positive electrode active material layer non-formed part (the band-shaped part of the positive electrode sheet) and the negative electrode active material layer non-formed part (the band-shaped part of the negative electrode sheet) are arranged on the opposite sides in the width direction. The sheets were slightly shifted and overlapped. The laminated sheet was wound in the longitudinal direction, and the wound body was crushed from the side to form a flat electrode body.
  • the positive electrode terminal made of aluminum and the negative electrode terminal made of copper were welded to the positive electrode active material layer non-formed part and the negative electrode active material layer non-formed part protruding from the separator at both ends in the axial direction of the electrode body.
  • a non-aqueous electrolyte here, an electrolyte having a composition in which LiPF 6 was dissolved at a concentration of 1 mol / L in a 1: 1: 1 volume ratio of EC, DMC, and EMC
  • a lithium ion battery was constructed by storing in a flat rectangular container and sealing the opening of the container.
  • the mass of insulating particles and binder is 96: 4.04 (increased by 1% based on the coating agent A1 and the binder content is 4.04% by mass) as a coating agent used for forming the insulating particle-containing layer.
  • Two types were used: coating agent A2 contained in a ratio, and coating agent B2 containing them in a mass ratio of 96: 3.96 (1% reduction relative to A1. Binder content 3.96% by mass).
  • the coating agent A2 was applied to the surface of the negative electrode active material layer of the negative electrode raw material produced in the same manner as in Example 1 so that the thickness in terms of NV was 2 ⁇ m and dried.
  • the coating agent B2 was applied thereon and dried so that the thickness in terms of NV was 2 ⁇ m.
  • an insulating particle-containing layer comprising two layers of the sub layer (inner layer) formed from the coating agent A2 and the sub layer (outer layer) formed from the coating agent B2 Formed.
  • C IN / C OUT of this insulating particle-containing layer is 1.02.
  • a negative electrode sheet was prepared in the same manner as in Example 1, and a lithium ion battery was constructed in the same manner as in Example 1 by using the negative electrode sheet.
  • the insulating particles and the binder are 96: 4.8 (20% increase with respect to the coating agent A1.
  • the binder content is 4.76% by mass).
  • a negative electrode sheet was produced in the same manner as in Example 2 to construct a lithium ion battery.
  • C IN / C OUT is in the range of 1.1 to 1.2, particularly good results were obtained.
  • Examples 7 to 11 A negative electrode raw material was prepared in the same manner as in Example 1 except that the drying temperature of the negative electrode active material composition was changed to the temperature shown in Table 2.
  • the surface roughness Ra of the negative electrode active material layer surface of the negative electrode raw material according to Examples 7 to 11 and the negative electrode raw material according to Example 1 was measured using a laser microscope manufactured by Keyence Corporation, model “VK-8500”. . The obtained results are shown in Table 2.
  • Example 2 The same coating agent A1 as in Example 1 was applied to the surface of the negative electrode active material layer of the negative electrode raw material according to Examples 7 to 11 so that the thickness in terms of NV was 4 ⁇ m and dried to form an insulating particle-containing layer. .
  • the negative electrode sheet which concerns on each example was obtained.
  • a lithium ion battery was constructed in the same manner as in Example 1 using these negative electrode sheets.
  • the surface roughness Ra of the active material layer is in the range of 2.5 to 42 ⁇ m
  • the surface roughness Ra is smaller than the above range
  • Example 1 is smaller than the above range.
  • the capacity retention rate after 2000 cycles could be further improved.
  • Particularly good results were obtained according to Examples 8 and 9 in which the surface roughness Ra of the active material layer was in the range of 5 to 30 ⁇ m.
  • the effect of setting the surface roughness Ra of the negative electrode active material layer in a suitable range can be further increased by combining with a configuration in which the binder content of the inner part of the insulating particle-containing layer is higher than that of the outer part. It is possible to realize a lithium ion battery exhibiting a level capacity retention ratio (particularly, a capacity retention ratio at a high rate cycle of 2C or higher).
  • the technology disclosed herein is a positive electrode (positive electrode with an insulating particle-containing layer) in which any of the above-described insulating particle-containing layers is provided on the positive electrode active material layer as described above.
  • the present invention can also be applied to production, a lithium secondary battery (typically a lithium ion battery) constructed using the positive electrode, and production thereof.
  • a negative electrode having a structure having no insulating particle-containing layer on the negative electrode active material layer may be used, and any of the above-described insulating particle-containing layers is provided in the negative electrode active material layer.
  • Negative electrode negative electrode with an insulating particle-containing layer may be used.
  • An electrode preferably a negative electrode used as a component of a lithium secondary battery (typically a lithium ion battery)
  • An active material layer mainly composed of an active material is held by a current collector, and an insulating particle-containing layer including insulating particles and a binder for binding the particles is provided on the active material layer.
  • the electrode on the active material layer side of the insulating particle-containing layer includes the binder at a higher mass content than the portion on the outer surface side of the insulating particle-containing layer.
  • the insulating particles containing layer comprises sub-layers of the mass content of different two or more of the binder, the binder content of the binder content C IN of the innermost layer of the outermost layer of those sub-layer C OUT
  • the innermost binder content CIN is the highest, and the outermost binder content COUT is the lowest. electrode.
  • An electrode (preferably a negative electrode) used as a component of a lithium secondary battery (typically a lithium ion battery),
  • An active material layer mainly composed of an active material is held by a current collector, and an insulating particle-containing layer including insulating particles and a binder for binding the particles is provided on the active material layer.
  • An electrode in which the surface roughness Ra of the active material layer is in the range of 2.5 ⁇ m to 42 ⁇ m (for example, 5 ⁇ m to 30 ⁇ m).
  • composition having the highest binder content is applied first, and a composition having the lowest binder content is applied last.
  • the binder content of the first applied composition is 1.02 to 1.25 times (preferably 1.1 to 1.25 times) the binder content of the last applied composition.
  • Preparing the electrode raw material includes forming an active material layer having a surface roughness Ra in the range of 2.5 ⁇ m to 42 ⁇ m (for example, 5 ⁇ m to 30 ⁇ m). ) Any one of the methods.
  • a lithium secondary battery (typically a lithium ion battery) provided by the technology disclosed herein is highly reliable because it can prevent micro short-circuits as described above, and has high input / output performance and durability. Therefore, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, as schematically shown in FIG. 11, the present invention can be in the form of any of the lithium ion batteries 10 disclosed herein (an assembled battery formed by connecting a plurality of such batteries 10 in series. )
  • a power source typically, an automobile, in particular, an automobile including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle 1 is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明により提供されるリチウム二次電池は、集電体(342)に活物質層(344)が保持され、絶縁性粒子(44)およびバインダ(46)を含む絶縁性粒子含有層(346)が活物質層(344)上に設けられた構成の絶縁性粒子含有層付電極(34)を備える。絶縁性粒子含有層(346)のうち活物質層側の部分(346A)は、外表面側の部分(346B)よりも高い質量含有率でバインダ(46)を含む。

Description

リチウム二次電池
 本発明は、活物質層上に絶縁性粒子含有層を有する構成の電極を備えたリチウム二次電池に関する。
 リチウム二次電池その他の非水二次電池は、電気を駆動源として利用する車両に搭載される電源、あるいはパソコンや携帯端末その他の電気製品等に搭載される電源として、その重要性がますます高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものと期待されている。非水二次電池に関する技術文献として特許文献1が挙げられる。
 リチウムイオン電池に具備される典型的な電極は、リチウム(Li)を可逆的に吸蔵および放出し得る材料(活物質)を主成分とする層(活物質層)が導電性部材(集電体)に保持された構成を有する。かかる活物質層を形成する好適な方法として、粉末状の活物質(活物質粒子)を適当な溶媒に分散または溶解させてペーストまたはスラリー状に調製した組成物を集電体に付与して乾燥させ、必要に応じてプレスする方法が挙げられる。
 このような活物質層の表面に、絶縁性粒子を含有する層(絶縁性粒子含有層)を設けた構成の電極が提案されている。上記絶縁性粒子含有層は、典型的には、絶縁性粒子を相互に結着させるとともに該粒子(ひいては絶縁性粒子含有層)を活物質層上に保持する機能を有するバインダ(結着剤)をさらに含む。例えば特許文献1には、集電体上に塗布された三層以上の層のうち外側の二層を絶縁性の固体微粒子を含有する層とし、かつ最外層の固体微粒子含有率を隣接層(すなわち、上記最外層の内側に配置された層)よりも5%以上低くすることが記載されている。
日本国特許出願公開平10-97874号公報
 活物質層の表面に絶縁性粒子含有層を設けることは、リチウム二次電池の信頼性(内部短絡の防止等)を向上させる有効な手段となり得るほか、電池の耐久性向上(例えば、充放電の繰り返しに対する容量維持性を高めること)にも寄与し得る。かかる絶縁性粒子含有層の機能をより適切に発揮させる技術が提供されれば有益である。
 そこで本発明は、活物質層上に絶縁性粒子含有層を有する電極を備えたリチウム二次電池であって、より高性能なリチウム二次電池を提供することを目的とする。
 本発明により提供されるリチウム二次電池は、正極と負極と非水電解質とを備える。前記正極および前記負極のうち一方は、活物質を主成分とする活物質層が集電体に保持され、絶縁性粒子および該粒子を結着させるバインダを含む絶縁性粒子含有層が前記活物質層上に設けられた構成を有する絶縁性粒子含有層付電極である。そして、絶縁性粒子含有層のうち前記活物質層側の部分は、該絶縁性粒子含有層のうち外表面側の部分よりも高い質量含有率で前記バインダを含む。
 活物質層上に絶縁性粒子含有層を設けることによって電池の耐久性(例えば、容量維持率等のサイクル特性)の向上を図る場合、絶縁性粒子含有層と活物質層との密着性の観点からは、該絶縁性粒子含有層における上記バインダの質量含有率(バインダ含有率)を高くするほうが有利である。しかし、絶縁性粒子含有層のバインダ含有率を高くすると、該バインダによってLiイオンの移動が阻害され、電池の内部抵抗が上昇する傾向にある。すなわち、内部抵抗低減の観点からは、バインダ含有率を低くすることが望ましい。このため、単純に絶縁性粒子含有層全体のバインダ含有率を増減することによっては、耐久性の向上と内部抵抗値の上昇抑制とを高度なレベルで両立させることは困難であった。
 ここに開示される技術では、上記絶縁性粒子含有層のうち活物質層に接する内側部分(活物質層側部分)のバインダ含有率を相対的に高くすることで活物質層と絶縁性粒子含有層との間の密着性(接合強度)を高める一方、上記絶縁性粒子含有層のうち外表面側の部分ではバインダ含有率を相対的に低くすることによりLiイオンの移動阻害を軽減することができる。したがって、かかる構成の絶縁性粒子含有層を有する絶縁性粒子含有層付電極(例えば負極)によると、容量維持率が高く且つ内部抵抗値の低い、高性能なリチウム二次電池が実現され得る。
 なお、本明細書において「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 ここに開示される技術の好ましい一態様では、前記絶縁性粒子含有層が、前記バインダの質量含有率(バインダ含有率)が異なる二以上のサブ層を含んで構成されている。そして、上記サブ層のバインダ含有率は、最内層のバインダ含有率CINが最外層のバインダ含有率COUTよりも高くなるように設定されている。かかる構成によると、内側部分のバインダ含有率が外側部分よりも高い構成の絶縁性粒子含有層を容易に実現することができる。また、絶縁性粒子含有層の内側部分および外側部分のバインダ含有率を容易かつ正確に制御しやすいので、品質管理の面からも好ましい。
 ここに開示される技術は、前記絶縁性粒子含有層を構成するサブ層のうち、前記最内層のバインダ含有率CINが最も高く、前記最外層のバインダ含有率COUTが最も低い態様で好ましく実施され得る。すなわち、上記絶縁性粒子含有層が三以上のサブ層を含む場合、最外層と最内層との間に位置するサブ層のバインダ含有率は、いずれもCOUTとCINとの間にあることが好ましい。
 好ましい一態様では、最内層のバインダ含有率CINを、最外層のバインダ含有率COUTの凡そ1.02~1.25倍の範囲とする。CIN/COUTを上記範囲とすることにより、絶縁性粒子含有層の設置に伴う内部抵抗値の上昇を、より効果的に抑制することができる。
 好ましい他の一態様では、最内層のバインダ含有率CINを、最外層のバインダ含有率COUTの凡そ1.1~1.25倍とする。CIN/COUTを上記範囲とすることにより、内部抵抗の上昇を効果的に抑制しつつ、容量維持率をよりよく向上させることができる。
 ここに開示されるリチウム二次電池の好適な一形態として、前記絶縁性粒子含有層付電極を負極に用いて構築されたリチウムイオン電池が例示される。この形態における負極活物質として、少なくとも一部にグラファイト構造を有する炭素材料(例えば黒鉛粒子)を好ましく採用することができる。
 ここに開示されるリチウム二次電池(典型的にはリチウムイオン電池)は、上述のように高性能な(例えば、2C以上のハイレートでの充放電サイクルに対しても良好な耐久性を示し、且つ内部抵抗値が低いことから入出力性能に優れた)ものとなり得ることから、車両に搭載されるリチウム二次電池として好適である。例えば、上記リチウム二次電池の複数個を直列に接続した組電池の形態で、自動車等の車両のモータ(電動機)用の電源として好適に利用され得る。したがって本発明によると、ここに開示されるいずれかのリチウム二次電池を備えた車両が提供される。
図1は、一実施形態に係るリチウムイオン電池の構造を示す模式的断面図である。 図2は、一実施形態に係るリチウムイオン電池を構成する正負極シートおよびセパレータを示す模式的断面図である。 図3は、図2の一部を拡大して示す模式図である。 図4は、活物質上に絶縁性粒子含有層を有しない構成の電極に対して充放電サイクルが及ぼし得る影響を模式的に示す説明図である。 図5は、最外層と最内層のバインダ含有率の比(CIN/COUT)と内部抵抗値との関係を示すグラフである。 図6は、最外層と最内層のバインダ含有率の比(CIN/COUT)と500サイクル後の容量維持率との関係を示すグラフである。 図7は、活物質層の表面粗さRaと2000サイクル後の容量維持率との関係を示すグラフである。 図8は、表面粗さRaが小さな活物質層上に絶縁性粒子含有層が設けられた電極の、充放電サイクルの前後における状態を模式的に例示する説明図である。 図9は、適度な表面粗さRaを有する活物質層上に絶縁性粒子含有層が設けられた電極の、充放電サイクルの前後における状態を模式的に例示する説明図である。 図10は、表面粗さRaが大きな活物質層上に絶縁性粒子含有層が設けられた電極の、充放電サイクルの前後における状態を模式的に例示する説明図である。 図11は、リチウム二次電池を備えた車両(自動車)を模式的に示す側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される技術は、集電体に活物質層が保持され該活物質層上に絶縁性粒子含有層を有する構成の電極(絶縁性粒子含有層付電極)およびその製造、該電極を備えたリチウム二次電池およびその製造、ならびに該電池を搭載した車両に広く適用され得る。以下、主として本発明をリチウムイオン電池用電極(特に負極)および該電極を備えるリチウムイオン電池に適用する場合を例として説明するが、本発明の適用対象をかかる電極または電池に限定する意図ではない。
 ここに開示される技術により提供される電極は、絶縁性粒子とバインダとを含む絶縁性粒子含有層(典型的には多孔質層)が活物質層上に設けられた構成を有する。絶縁性粒子を主成分(50質量%以上を占める成分)とする組成の絶縁性粒子含有層が好ましい。絶縁性粒子を構成する材料(典型的には無機材料)は、金属元素または非金属元素の酸化物、炭化物、珪化物、窒化物等から選択される非導電性(絶縁性)材料であり得る。Liイオンを実質的に吸蔵および放出しない(換言すれば、活物質として実質的に機能しない)絶縁性粒子が好ましい。化学的安定性や原料コスト等の観点から、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、マグネシア(MgO)等の酸化物粒子を、ここに開示される技術における絶縁性粒子として好ましく採用することができる。また、炭化珪素(SiC)等の珪化物粒子、窒化アルミニウム(AlN)等の窒化物粒子も使用可能である。本発明にとり好ましい絶縁性粒子としてアルミナ粒子が挙げられる。なかでもα-アルミナ粒子の使用が好ましい。
 絶縁性粒子の平均粒径は、例えば凡そ0.1μm~15μm程度であり得る。この平均粒径の値としては、一般的な市販の粒度計(レーザ回折式粒度分布測定装置等)を用いて測定された体積基準の平均粒径(D50)を採用することができる。通常は、平均粒径が凡そ0.2μm~1.5μm(例えば0.5μm~1μm)程度の絶縁性粒子を用いることが好ましい。かかる平均粒径の絶縁性粒子含有層が活物質上に設けられた構成の電極(例えば負極)によると、より高性能なリチウム二次電池が実現され得る。
 ここに開示される技術における絶縁性粒子含有層は、絶縁性粒子の他に、該絶縁性粒子を結着させるバインダを含有する。かかるバインダとしては、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、アクリロニトリル-イソプレン共重合体ゴム(NIR)、アクリロニトリル-ブタジエン-イソプレン共重合体ゴム(NBIR)等の、共重合成分としてアクリロニトリルを含むゴム;アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル(例えばアルキルエステル)等の、アクリル系モノマーを主な共重合成分とするアクリル系ポリマー;ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体(EVA)等の、酢酸ビニル系樹脂;等を例示することができる。また、後述する説明において負極活物質層に使用し得るバインダとして例示したポリマーから適宜選択される一種または二種以上の材料を、上記絶縁性粒子含有層のバインダとして利用してもよい。ここに開示される絶縁性粒子含有層の好ましい一態様では、該絶縁性粒子含有層がアクリル系バインダを含む。バインダとして実質的にアクリル系バインダのみを含む組成の絶縁性粒子含有層であってもよい。
 上記絶縁性粒子含有層は、その活物質層側(内側)の部分が外表面側の部分よりも高い質量割合でバインダを含むことによって特徴づけられる。このように厚み方向に対してバインダ含有率を異ならせた(すなわち、活物質層側に偏ってバインダを含ませた)絶縁性粒子含有層は、例えば、バインダ含有率の異なる二以上のサブ層を積層することにより好適に形成され得る。すなわち、最も活物質層に配置されるサブ層(最内層)のバインダ含有率CINを、最も外側に配置されるサブ層(最外層)のバインダ含有率COUTよりも高くするとよい。各サブ層を形成する方法としては、対応するバインダ含有率を有する組成物(典型的には、絶縁性粒子とバインダと適当な溶媒とを含む液状組成物)を塗布して乾燥させる方法を好ましく採用し得る。バインダを内側に偏って含有させた絶縁性粒子含有層を作製する他の手法としては、活物質層表面に必要量のバインダを配置(粉末状、皮膜状、濃厚溶液状等の形態で配置され得る。)しておき、その上から絶縁性粒子含有層形成用組成物(典型的には、絶縁性粒子とバインダと適当な溶媒とを含む液状組成物)を塗布して乾燥させる手法を例示することができる。
 絶縁性粒子含有層を構成する形成するサブ層の数は、二であってもよく三以上であってもよい。三以上のサブ層を含む絶縁性粒子含有層において、最外層と最内層との間に位置するサブ層のバインダ含有率は、いずれもCOUTとCINとの間にあることが好ましい。かかる構成によると、容量維持率の向上と内部抵抗の低減とを、より高いレベルで両立させることができる。例えば、内側のサブ層から外側のサブ層に向かってバインダ含有率が順に低くなるような配置を好ましく採用し得る。
 サブ層に含まれる絶縁性粒子およびバインダの種類は、相互に異なってもよく同一でもよい。通常は、各サブ層を構成する材料を実質的に同一とし、それら材料の組成比(特にバインダ含有率)のみを異ならせることが好ましい。かかる構成の絶縁性粒子含有層は、サブ層同士の密着性を高める上で有利である。
 ここに開示される技術の好ましい一態様では、上記絶縁性粒子含有層を構成するサブ層の数が二である(すなわち、絶縁性粒子含有層が二層構造である)。かかる構成によると、最も少ない数のサブ層によって、バインダを内側に偏って含ませた絶縁性粒子含有層を実現することができる。このことは、内部抵抗を低減する上で有利であり、コストおよび生産性の観点からも好ましい。
 最内層のバインダ含有率CINを最外層のバインダ含有率COUTよりも高くする程度は、例えば、CIN/COUTが1.005~5程度の範囲とすることが適当である。CIN/COUTが上記範囲よりも大きすぎると、内側部分のバインダ含有率が高くなりすぎて内部抵抗値が上昇したり、外側部分のバインダ含有率が低くなりすぎて耐久性が低下したりすることがあり得る。CIN/COUTが上記範囲よりも小さすぎる(より1に近い)と、外側と内側とでバインダ含有率を異ならせることによる効果が十分に発揮され難くなる場合がある。
 通常は、CIN/COUTを1.3以下(例えば1.02~1.25)とすることが好ましい。かかる構成の絶縁性粒子含有層を有する電極によると、より内部抵抗値の低い電池が実現され得る。また、CIN/COUTを1.05以上(例えば1.05~2)とすることが好ましく、1.1以上(例えば1.1~1.5)とすることがより好ましい。かかる構成の絶縁性粒子含有層を有する電極によると、より容量維持率の高い電池が実現され得る。CIN/COUTを1.05~1.25(より好ましくは1.1~1.25)の範囲とすることにより、内部抵抗の上昇を効果的に抑制しつつ、容量維持率をよりよく向上させることができる。
 各サブ層のバインダ含有率は、例えば凡そ0.5~20質量%の範囲とすることができ、通常は1~15質量%(より好ましくは2~10質量%、例えば3~5質量%)の範囲とすることが好ましい。上記範囲よりもバインダ含有率が高すぎる層が存在すると、該層においてLiイオンの移動が阻害されて、内部抵抗値が上昇しやすくなることがある。また、上記範囲よりもバインダ含有率が低すぎる層が存在すると、絶縁性粒子含有層の耐久性(容量維持率等の電池特性に影響し得る。)が不足しがちとなることがある。
 なお、絶縁性粒子含有層の各部(例えば、各サブ層)におけるバインダ含有率は、当該部分からサンプルを採取して分析することにより把握することができる。通常は、絶縁性粒子含有層の各部を形成するために使用される組成物のバインダ含有率を、絶縁性粒子含有層の対応部分におけるバインダ含有率として採用することができる。
 ここに開示される技術の好ましい一態様では、絶縁性粒子とバインダと適当な溶媒とを含むスラリー状の組成物を用いてサブ層を形成する。上記溶媒としては、水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。バインダを溶解可能な(複数種類のバインダを含む組成では、それらのうち少なくとも一種類を溶解可能な)組成の溶媒を選択することが好ましい。例えば、非プロトン性の極性有機溶媒から選択されるいずれかの溶媒または二種以上の混合溶媒を好ましく使用することができる。非プロトン性の極性有機溶媒の好適例としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等の環状または鎖状のアミドが挙げられる。
 各サブ層の組成に対応するスラリーを活物質層の表面(または内側のサブ層の表面)に付与(典型的には塗布)して適当な条件で乾燥させる操作を繰り返すことにより、ここに開示される絶縁性粒子含有層を形成することができる。上記乾燥を促進するために、必要に応じて適当な温度で加熱してもよい。特に限定するものではないが、上記スラリーの固形分比(該スラリーに占める絶縁性粒子含有層形成成分の割合。以下「NV」と表記することもある。)は、例えば凡そ30~80質量%程度とすることができる。
 ここに開示される技術における絶縁性粒子含有層は、本発明の効果を大きく損なわない限りにおいて、絶縁性粒子およびバインダ以外の成分を含有し得る。かかる成分としては、上記スラリーの流動性調整剤(増粘剤等)、分散剤、防腐剤、耐電防止剤等の各種添加剤が挙げられる。これら添加剤の含有割合は、NV換算で5質量%以下とすることが好ましく、2質量%以下とすることがより好ましい。実質的に絶縁性粒子とバインダとからなる組成の絶縁性粒子含有層であってもよい。
 好ましい一態様では、上記絶縁性粒子含有層全体の質量に占める絶縁性粒子の質量割合(すなわち、絶縁性粒子含有層全体としての絶縁性粒子含有率)が85質量%以上である。この絶縁性粒子含有率が90質量%以上(例えば95質量%以上)であることがより好ましい。複数のサブ層を含む構成では、各サブ層の絶縁性粒子含有率がいずれも80質量%以上(より好ましくは85質量%以上、例えば90質量%以上)であることが好ましい。かかる構成の絶縁性粒子含有層によると、より信頼性の高い(例えば、内部抵抗を防止する性能に優れた)電池が実現され得る。
 上記絶縁性粒子含有層は、Liを吸蔵および放出する材料(すなわち、活物質として機能する成分)を実質的に含有しないことが好ましい。かかる構成の絶縁性粒子含有層は、充放電により体積変動する成分を含まないことから、充放電サイクルに対する耐久性に優れた電池を構築するのに適している。
 絶縁性粒子含有層の厚みは、例えば0.5μm~20μm程度とすることができ、通常は1μm~10μm(より好ましくは2μm~7μm)程度とすることが好ましい。絶縁性粒子含有層の厚みが上記範囲よりも大きすぎると、内部抵抗値が高くなりがちである。また、絶縁性粒子含有層の厚みが上記範囲よりも小さすぎると、電極の面方向(例えば、長尺シート状の電極における長手方向)に対して絶縁性粒子含有層の厚みが不均一となりやすくなる場合がある。同様の理由から、絶縁性粒子含有層を構成する各サブ層は凡そ0.5μm以上(より好ましくは凡そ1μm以上)の厚みを有することが好ましい。ここに開示される技術の適用効果をよりよく発揮させるためには、最内層および最外層がいずれも凡そ1μm以上(例えば凡そ1μm~5μm)の厚みを有することが好ましい。絶縁性粒子含有層が内層と外層の二層からなる場合、それらの層の厚み比(内層:外層)は、例えば1:0.25~1:4程度とすることができる。通常は、上記厚み比を1:0.5~1:2(好ましくは1:0.7~1:1.3)程度とすることが適当である。
 ここに開示される電極を構成する集電体としては、例えば、銅、ニッケル、アルミニウム、チタン、ステンレス鋼等のように導電性の良い金属を主体に構成された部材を使用することができる。負極の構成要素としては銅または銅を主成分とする合金(銅合金)製の集電体等を、正極の構成要素としてはアルミニウムまたはアルミニウムを主成分とする合金(アルミニウム合金)製の集電体等を、好ましく採用し得る。集電体の形状は、電極や電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここに開示される技術は、例えば、シート状の集電体を用いた電極に好ましく適用することができる。かかる電極(電極シート)を用いて構築される電池の好ましい一態様として、シート状の正極および負極を典型的にはシート状のセパレータとともに捲回してなる電極体(捲回電極体)を備える電池が挙げられる。該電池の外形は特に限定されず、例えば直方体状、扁平形状、円筒状等の外形であり得る。シート状集電体の厚みやサイズは特に限定されず、目的とするリチウムイオン電池の形状等に応じて適宜選択し得る。例えば、厚さみが凡そ5μm~30μm程度のシート状集電体を好ましく使用することができる。該集電体の幅は例えば2cm~15cm程度とすることができ、長さは例えば5cm~1000cm程度とすることができる。
 負極活物質としては、一般にリチウムイオン電池の負極活物質として機能し得ることが知られている種々の材料から適当なものを採用することができる。好適な活物質として、少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)が挙げられる。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもの、等のいずれも使用可能である。例えば、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等を好ましく用いることができる。
 負極活物質の性状(外形)としては粒子状が好ましい。例えば、平均粒径が凡そ5μm~50μmの粒子状活物質(例えばカーボン粒子)を好ましく使用することができる。なかでも、平均粒径が凡そ5μm~15μm(例えば凡そ8μm~12μm)のカーボン粒子が好ましい。このように比較的小粒径のカーボン粒子は、単位体積当たりの表面積が大きいことから、より急速充放電(例えば高出力放電)に適した活物質となり得る。したがって、かかる活物質を備えるリチウムイオン電池は、例えば、車両搭載用のリチウムイオン電池として好適に利用され得る。また、上記のように比較的小粒径のカーボン粒子は、より大きな粒子を用いる場合に比べて充放電に伴う個々のカーボン粒子の体積変動が小さいことから、活物質層全体として該体積変動をよりよく緩衝(吸収)し得る。このことは、負極活物質上に絶縁性粒子含有層を有する構成の負極を備えた電池において、活物質層と絶縁性粒子含有層との密着性を高めて電池の容量維持率を高める上で有利である。
 負極活物質層は、上記負極活物質の他に、一般的なリチウムイオン電池の負極活物質層に配合され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、バインダとして機能し得る各種のポリマー材料が挙げられる。例えば、水系の液状組成物(活物質の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて上記活物質層を形成する場合には、上記バインダとして水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類;が例示される。あるいは、溶剤系の液状組成物(活物質の分散媒が主として有機溶媒である組成物)を用いて活物質層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等のポリマー材料を用いることができる。なお、上記で例示したポリマー材料は、バインダとして用いられる他に、負極活物質層形成用組成物の増粘剤その他の添加剤として使用されることもあり得る。
 負極活物質層は、例えば、活物質粒子を適当な溶媒に分散させた液状組成物(典型的にはペーストまたはスラリー状の負極活物質層形成用組成物)を集電体に付与し、該組成物を乾燥させることにより好ましく作製され得る。上記溶媒としては、水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、上記溶媒が水系溶媒(水または水を主体とする混合溶媒)である負極活物質組成物を好ましく採用することができる。上記組成物は、負極活物質粒子および上記溶媒のほかに、一般的なリチウムイオン電池用負極の製造において負極活物質層の形成に用いられる液状組成物に配合され得る一種または二種以上の材料を必要に応じて含有することができる。例えば、上述のようなポリマー材料(バインダ)を含む負極活物質層形成用組成物を好ましく使用し得る。
 特に限定するものではないが、上記組成物のNVは、例えば凡そ30%~60%(典型的には30%~50%)程度とすることができる。固形分(負極活物質層形成成分)に占める負極活物質の質量割合は、例えば凡そ85%以上(典型的には凡そ85%~99.9%)とすることができ、凡そ90%~99%とすることが好ましく、凡そ95%~99%とすることがより好ましい。
 かかる組成物を負極集電体に付与するにあたっては、従来公知の方法と同様の技法を適宜採用することができる。例えば、適当な塗布装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター等)を使用して所定量の組成物を集電体表面に塗布するとよい。負極活物質層形成用組成物の塗布量は特に限定されず、負極シートおよび電池の形状や目標性能等に応じて適宜異なり得る。例えば、シート状集電体の両面に上記組成物を、NV換算の塗布量(すなわち、乾燥後の質量)が両面合わせて凡そ4~20mg/cm程度となるように塗布するとよい。
 塗布後、適当な乾燥手段で塗布物を乾燥し、必要に応じてプレスすることにより、負極集電体の表面に負極活物質層を形成することができる。特に限定するものではないが、上記負極活物質層の密度は例えば凡そ1.1~1.5g/cm程度であり得る。該負極活物質層の密度が凡そ1.1~1.3g/cm程度であってもよい。かかる密度を有する負極活物質層が形成されるように上記プレスの条件を設定するとよい。なお、プレス方法としては、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を適宜採用することができる。
 以下、図面を参照しつつ、ここに開示される構成のリチウム二次電池用電極を負極として備えるリチウムイオン電池の一実施形態を説明する。図1に示されるように、本実施形態に係るリチウムイオン電池10は、金属製(樹脂製またはラミネートフィルム製も好適である。)の容器11を備える。この容器11の中に、正極シート32、負極シート34および二枚のセパレータ35を積層し次いで捲回する(本実施形態では扁平形状に捲回する)ことにより構成された捲回電極体30が収容されている。
 図2に示すように、正極シート32は、長尺シート状の正極集電体322と、その両サイドの表面に形成された正極活物質層324とを備える。この正極集電体322としては、アルミニウム、ニッケル、チタン等の金属からなるシート材(典型的には、厚さ5μm~30μm程度の金属箔、例えばアルミニウム箔)を好ましく使用し得る。正極活物質層324は、Liイオンを吸蔵および放出可能な正極活物質を主成分とする。その正極活物質としては、一般的なリチウムイオン電池に用いられる層状構造の酸化物系正極活物質、スピネル構造の酸化物系正極活物質等を好ましく用いることができる。例えば、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物等を主成分とする正極活物質を用いることができる。
 ここで「リチウムニッケル系酸化物」とは、LiおよびNiのみを構成金属元素とする酸化物(典型的にはLiNiO)の他、LiおよびNiに加えて他の一種または二種以上の金属元素をNiよりも少ない割合(原子数換算。LiおよびNi以外の金属元素を二種以上含む場合にはそれらのいずれについてもNiよりも少ない割合)で含む複合酸化物をも包含する意味である。かかる金属元素は、例えば、Co,Al,Mn,Cr,Fe,V,Mg,Ti,Zr,Nb,Mo,W,銅,Zn,Ga,In,Sn,LaおよびCeからなる群から選択される一種または二種以上の元素であり得る。同様に、「リチウムコバルト系酸化物」とは、LiおよびCoのみを構成金属元素とする酸化物(典型的にはLiCoO)のほか、LiおよびCoに加えて他の一種または二種以上の金属元素をCoよりも少ない割合で含む複合酸化物をも包含する意味であり、「リチウムマンガン系酸化物」とは、LiおよびMnのみを構成金属元素とする酸化物(典型的にはLiMn)のほか、LiおよびMnに加えて他の一種または二種以上の金属元素をMnよりも少ない割合で含む複合酸化物をも包含する意味である。
 正極活物質層324は、正極活物質の他に、バインダおよび導電材を含むことができる。バインダとしては、上述した負極活物質組成物用のバインダと同様のもの等を用いることができる。導電材としては、種々のカーボンブラック(アセチレンブラック、ファーネスブラック、ケッチェンブラック、等)、グラファイト粉末のような炭素粉末、あるいはニッケル粉末等の金属粉末等を用いることができる。特に限定するものではないが、正極活物質100質量部に対する導電材の使用量は、例えば1~20質量部(好ましくは5~15質量部)の範囲とすることができる。また、正極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部の範囲とすることができる。
 正極活物質層324を形成するにあたり、典型的には、上述したような好適な正極活物質を適当な導電材およびバインダならびに水(例えばイオン交換水)と混合して調製した正極活物質層形成材料(ここでは水混練タイプのペースト状正極用合材)を正極集電体322の両サイドの表面に塗布し、活物質が変性しない程度の適当な温度域(典型的には70~150℃)で塗布物を乾燥させる。これにより、正極集電体322の両サイドの表面の所望する部位(正極活物質組成物の塗布範囲に対応する部位)に正極活物質層324を形成することができる。必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことにより、正極活物質層324の厚みや密度を適宜調整することができる。
 負極シート(絶縁性粒子含有層付電極)34は、長尺シート状の負極集電体342と、その表面に形成された負極活物質層344(例えば、負極活物質としての黒鉛粒子を主成分とする層)と、該負極活物質層上に形成された絶縁性粒子含有層346とを備える。負極活物質層344は、正極側と同様、上述したような好適な負極活物質組成物を負極集電体342の両サイドの表面に塗布して適当な温度で乾燥させ、必要に応じて適当な密度調整処理(例えばロールプレス処理)を施すことにより得られる。
 絶縁性粒子含有層346は、負極活物質層側の部分を構成する内層(最内層)346Aと、外表面側の部分を構成する外層(最外層)346Bとからなる二層構造である。内層346Aおよび外層346Bはいずれも絶縁性粒子を90質量%以上含み、且ついずれも絶縁性粒子およびバインダの合計が95質量%以上を占める。そして、内層346Aのバインダ含有率CINは外層346Bのバインダ含有率COUTよりも高く、好ましくはCIN/COUTが1.02~1.25(より好ましくは1.1~1.25)である。かかる構成の絶縁性粒子含有層346は、内層346Aに対応する組成のスラリーを負極活物質層344の表面に塗布して乾燥させ、次いで外層346Bに対応する組成のスラリーを内層346Aの上から塗布して乾燥させることにより好適に形成することができる。
 これら正極シート32および負極シート34と重ね合わせて使用されるセパレータ35としては、リチウムイオン電池のセパレータに利用し得ることが知られている各種の多孔質シートを用いることができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム)を好適に使用し得る。特に限定するものではないが、好ましい多孔質シート(典型的には多孔質樹脂シート)の性状として、平均孔径が0.0005μm~30μm(より好ましくは0.001μm~15μm)程度であり、厚みが5μm~100μm(より好ましくは10μm~30μm)程度である多孔質樹脂シートが例示される。該多孔質シートの気孔率は、例えば凡そ20~90体積%(好ましくは30~80体積%)程度であり得る。
 図1に示すように、正極シート32の長手方向に沿う一方の端部には、正極活物質層324が形成されない部分(活物質層非形成部分322A)が設けられている。また、負極シート34の長手方向に沿う一方の端部には、負極活物質層344および絶縁性粒子含有層346が形成されない部分(活物質層非形成部分342A)が設けられている。正負の電極シート32,34を二枚のセパレータ35とともに重ね合わせる際には、両活物質層324,344を重ね合わせるとともに正極シートの活物質層非形成部分322Aと負極シートの活物質層非形成部分342Aとが長手方向に沿う一方の端部と他方の端部に別々に配置されるように、電極シート32,34をややずらして重ね合わせる。この状態で計四枚のシート32,35,34,35を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体30が得られる。
 次いで、得られた捲回電極体30を外部接続用の正極端子14および負極端子16の各々と電気的に接続する。そして、端子14,16が接続された電極体30を容器11に収容し、その内部に適当な非水電解液を配置(注液)して容器11を封止する。このようにして、本実施形態に係るリチウムイオン電池10の構築(組み立て)が完成する。その後、適当なコンディショニング処理(例えば、1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理)を行ってリチウムイオン電池10を得ることができる。なお、非水電解液としては一般的なリチウムイオン電池と同様のものを使用することができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート類を適宜組み合わせた混合溶媒に、LiPF等のリチウム塩(支持塩)を凡そ0.1mol/L~5mol/L(例えば凡そ0.8mol/L~1.5mol/L)程度の濃度で含有させた非水電解液を好ましく採用することができる。
 ここに開示される発明を実施するにあたり、上記構成の絶縁性粒子含有層とすることにより高性能な電池が実現される理由を明らかにする必要はないが、例えば以下のように考えられる。すなわち、図4の左側の図に示す初期状態(電池を組み立てたときの状態)では、負極集電体342上に形成された負極活物質層344は、活物質層344を構成する活物質粒子42(例えば黒鉛粒子)が適度に充填された状態にある。しかし、この電池を充電および放電させると、Liの挿入および脱離に伴って活物質粒子42が膨張および収縮する。このため、充放電サイクル数が多くなると、図4の右側の図に示すように、活物質層344における活物質粒子42の充填状態が上記初期状態から変化し(典型的には、全体的な傾向として活物質粒子42の充填が緩み)、一部の活物質粒子42Aと活物質層344の主要部分(ひいては集電体342)との導通が途切れがちとなることがあり得る。このように一部の活物質粒子42Aが集電から外れる(電池容量に寄与しなくなる)ことは、容量維持率を低下させる要因となり得るので好ましくない。
 ここに開示される電極では、図9の左側の図に示すように、絶縁性粒子44およびバインダ46を含む絶縁性粒子含有層346が活物質層344上に設けられている。このように活物質層344を絶縁性粒子含有層346で覆うことにより、活物質粒子42の充填状態の変化(充填の緩み)を抑制することができる。したがって、図9の右側の図に示すように、充放電を繰り返しても活物質粒子42の適度な充填状態を維持し(例えば、図4の右側の図に示すように活物質粒子42の充填が緩んだり一部の活物質粒子42Aが集電から外れたりする事象を防止し)、これにより電池の容量維持率を向上させることができる。また、活物質層344が絶縁性粒子含有層346で覆われた構成とすることは電池の信頼性向上にも役立ち得る。
 ここに開示される電極の好ましい一態様では、図3に示すように、絶縁性粒子含有層346のうちの活物質層側部分を構成する内層346Aのバインダ含有率CINを、外側部分を構成する外層346Bのバインダ含有率COUTよりも高くする。このことによって、絶縁性粒子含有層346全体として良好な信頼性向上効果を発揮し得るとともに、内層346Aと活物質層344との密着性が高まるので容量維持率を効果的に向上させることができ、且つ、外層346BにおけるLiイオンの移動阻害が低減されるので内部抵抗の上昇が抑えられるものと考えられる。
 ここに開示される電極の好ましい一態様では、表面粗さRaが凡そ2.5μm~42μm(例えば5μm~30μm)の活物質層上に、絶縁性粒子および該粒子を結着させるバインダを含む絶縁性粒子含有層が設けられている。ここで「表面粗さRa」とは、JIS B 0601(2001)に規定する算術平均粗さRaを指す。かかる構成の電極(好ましくは負極)によると、より容量維持率に優れたリチウム二次電池(典型的にはリチウムイオン電池)が構築され得る。
 活物質層の表面粗さRaを上記範囲とすることにより容量維持率が向上する理由は、例えば以下のように考えられる。すなわち、表面粗さRaが上記範囲よりも小さすぎると、活物質層の表面形状が滑らかすぎて、該活物質層と絶縁性粒子含有層との間の密着性(接合強度)が不足しがちとなる。このため、図8の左側の図に示すように初期状態では活物質層344上に絶縁性粒子含有層346が適切に設けられていても、充放電を繰り返すことにより、例えば図8の右側の図に示すように、該充放電に伴う活物質粒子42の膨張収縮(ひいては活物質層344全体の膨張収縮)によって絶縁性粒子含有層346の一部が活物質層344から剥離したり、絶縁性粒子含有層346に隙間が生じたりすることがあり得る。
 一方、表面粗さRaが上記範囲よりも大きすぎると、活物質層表面の凹凸が大きいので、該凹凸によく密着させて絶縁性粒子含有層を形成することが困難となる。このため、例えば図10の左側の図に示すように、絶縁性粒子含有層346と活物質層344との間に微細な隙間が生じやすい。このような状態から充放電を繰り返すと、図10の右側の図に示すように、絶縁性粒子含有層346と活物質層344との密着性が不足して絶縁性粒子含有層346の剥離が生じたり、絶縁性粒子含有層346の一部がその背面の隙間に落ち込んで絶縁性粒子含有層346に隙間が生じたりすることがあり得る。
 絶縁性粒子含有層346に剥離や隙間が生じると、活物質粒子42の充填状態の変化を抑制する効果が弱くなりがちである。これに対して、活物質層の表面粗さRaを上述した好ましい範囲にあると、表面に適度な凹凸が存在することによりアンカー(投錨)効果が発揮されて絶縁性粒子含有層346と活物質層344との密着性が高まり、且つ絶縁性粒子含有層346の落ち込み等の不都合を回避することができる。したがって、図9の右側の図に示すように、充放電サイクル後にも絶縁性粒子含有層346が良好な状態を保ち、これにより活物質粒子42の適度な充填状態を高度に維持することができる。活物質としてのカーボン粒子(例えば黒鉛粒子)を主成分とする活物質層上に絶縁性粒子含有層が設けられた構成の電極(典型的にはリチウムイオン電池用負極)では、該活物質層の表面粗さRaを上記範囲とすることが特に有意義である。
 活物質層の表面粗さRaを上記範囲に調整する手法は特に限定されない。例えば、活物質層の形成に使用する組成物の性状(NV、粘度等)、該組成物を構成する溶媒の選択、該組成物の乾燥条件、活物質粒子の性状(平均粒径、粒径分布等)、バインダの選択、活物質粒子とバインダとの質量比等のうち一または二以上の条件を適宜設定することにより、活物質層の表面粗さRaを調整することができる。例えば、活物質形成用組成物として比較的NVの高い(例えばNV凡そ40質量%以上の)ものを使用し、該組成物をより高温で(急速に)乾燥させることにより表面粗さRaを大きくし、より低温で(ゆっくり)乾燥させることにより表面粗さRaを小さくすることができる。
 なお、活物質層の表面粗さRaを上記範囲とすることによる効果は、内側部分のバインダ含有率を外側部分よりも高くした絶縁性粒子含有層と組み合わせた態様において良好に発揮されるほか、かかるバインダ含有率の偏りを有しない構成の絶縁性粒子含有層との組み合わせにおいても好適に発揮され得る。
 以下、本発明に関する実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
  <例1>
 平均粒径10μmの天然黒鉛(負極活物質)とSBRとCMCとを、これら材料の質量比が98:1:1であり且つNVが45質量%となるようにイオン交換水と混合して、スラリー状の負極活物質組成物を調製した。厚み約15μmの長尺状銅箔(負極集電体)の両面に上記組成物を、両面の合計塗布量(NV換算)が8.6mg/cmとなるように塗布し、これを115℃で乾燥させ、次いで負極活物質層の密度が1.3g/cmとなるようにプレスした。負極活物質組成物の塗布範囲は、両面ともに、集電体の長手方向に沿う一方の縁を約15mm幅の帯状に残す範囲とした。このようにして、負極集電体の表面に負極活物質層を有する負極原材を得た。
 平均粒径0.8μmのα-アルミナ粒子(絶縁性粒子)とアクリル系バインダとを、これら材料の質量比が96:4(すなわち、バインダ含有率4質量%)であり且つNVが50質量%となるようにN-メチルピロリドン(NMP)と混合して、スラリー状のコート剤(絶縁性粒子含有層形成用組成物)A1を調製した。上記負極原材の両サイドに形成された負極活物質層の表面にコート剤A1を塗布し、乾燥させて絶縁性粒子含有層を形成した。コート剤A1の塗布量は、NV換算の厚み(すなわち、乾燥後に形成される絶縁性粒子含有層の厚み)が4μmとなるように調整した。このようにして、負極活物質層の表面に絶縁性粒子含有層を有するシート状負極(負極シート)を得た。この負極シート(絶縁性粒子含有層付電極)を用いて、図1に示す概略構成を有するリチウムイオン電池10を作製した。
 正極シートとしては以下のものを使用した。すなわち、ニッケル酸リチウム(LiNiO)粉末とアセチレンブラックとPTFEとCMCとを、これら材料の質量比が89:5:5:1となるようにイオン交換水と混合して、スラリー状の正極活物質組成物を調製した。厚み10μmの長尺状アルミニウム箔(正極集電体)の両サイドの表面に上記組成物を、それら両面の合計塗布量(NV換算)が10mg/cmとなるように塗布した。塗布物を乾燥させ、次いでプレスして正極シートを得た。正極活物質組成物の塗布範囲は、両面ともに、正極集電体の長手方向に沿う一方の縁を約17mm幅の帯状に残す範囲とした。
 上記で作製した負極シートと正極シートとを、2枚のセパレータ(ここでは、厚さ30μmの多孔質ポリプロピレンシートを用いた。)を介して重ね合わせた。このとき、正極活物質層非形成部(正極シートの上記帯状部分)と負極活物質層非形成部(負極シートの上記帯状部分)とが幅方向の反対側に配置されるように、両電極シートをややずらして重ね合わせた。この積層シートを長尺方向に捲回し、その捲回体を側方から押しつぶして扁平形状の電極体を形成した。
 この電極体の軸方向の両端においてセパレータからはみ出した正極活物質層非形成部および負極活物質層非形成部に、アルミニウム製の正極端子および銅製の負極端子をそれぞれ溶接した。これを非水電解液(ここでは、ECとDMCとEMCとの体積比1:1:1の混合溶媒に1mol/Lの濃度でLiPFを溶解させた組成の電解液を使用した。)とともに扁平な角型容器に収容し、該容器の開口部を封止してリチウムイオン電池を構築した。
  <例2>
 本例では、絶縁性粒子含有層の形成に用いるコート剤として絶縁性粒子とバインダとを96:4.04(コート剤A1を基準として1%増。バインダ含有率4.04質量%)の質量比で含むコート剤A2と、これらを96:3.96(A1に対して1%減。バインダ含有率3.96質量%)の質量比で含むコート剤B2と、の二種類を使用した。例1と同様にして作製した負極原材の負極活物質層表面に、まずコート剤A2を、NV換算の厚みが2μmとなるように塗布して乾燥させた。次いで、その上からコート剤B2を、NV換算の厚みが2μmとなるように塗布して乾燥させた。このようにして、活物質層の表面に、コート剤A2から形成されたサブ層(内層)と、コート剤B2から形成されたサブ層(外層)と、の二層からなる絶縁性粒子含有層を形成した。この絶縁性粒子含有層のCIN/COUTは1.02である。その他の点については例1と同様にして負極シートを作製し、該負極シートを用いて例1と同様にリチウムイオン電池を構築した。
  <例3>
 本例では、絶縁性粒子含有層の形成に用いるコート剤として、絶縁性粒子とバインダとを96:4.2(コート剤A1に対して5%増。バインダ含有率4.19質量%)の質量比で含むコート剤A3と、これらを96:3.8(同5%減。バインダ含有率3.81質量%)の質量比で含むコート剤B3と、の二種類を使用した(CIN/COUT=1.10)。その他の点については例2と同様にして負極シートを作製し、該負極シートを用いて例2と同様にリチウムイオン電池を構築した。
  <例4>
 本例では、絶縁性粒子含有層の形成に用いるコート剤として、絶縁性粒子とバインダとを96:4.32(コート剤A1に対して8%増。バインダ含有率4.31質量%)の質量比で含むコート剤A4と、これらを96:3.68(同8%減。バインダ含有率3.69質量%)の質量比で含むコート剤B4と、の二種類を使用した(CIN/COUT=1.17)。その他の点については例2と同様にして負極シートを作製し、リチウムイオン電池を構築した。
  <例5>
 本例では、絶縁性粒子含有層の形成に用いるコート剤として、絶縁性粒子とバインダとを96:4.48(コート剤A1に対して12%増。バインダ含有率4.46質量%)の質量比で含むコート剤A5と、これらを96:3.52(同12%減。バインダ含有率3.54質量%)の質量比で含むコート剤B5と、の二種類を使用した(CIN/COUT=1.26)。その他の点については例2と同様にして負極シートを作製し、リチウムイオン電池を構築した。
  <例6>
 本例では、絶縁性粒子含有層の形成に用いるコート剤として、絶縁性粒子とバインダとを96:4.8(コート剤A1に対して20%増。バインダ含有率4.76質量%)の質量比で含むコート剤A6と、これらを96:3.2(同20%減。バインダ含有率3.23質量%)の質量比で含むコート剤B6と、の二種類を使用した(CIN/COUT=1.47)。その他の点については例2と同様にして負極シートを作製し、リチウムイオン電池を構築した。
Figure JPOXMLDOC01-appb-T000001
  [内部抵抗値]
 各例に係るリチウムイオン電池を、25℃の温度条件下にて、端子間電圧が3.7Vとなるまで1C(ここでは5A)の定電流で充電し、次いで定電圧で充電して、60%の充電状態(SOC;State of Charge)に調整した。かかる定電流定電圧(CC-CV)充電後の電池に対し、8C、12Cおよび20Cの条件で10秒間の放電と充電を交互に行ってI-V特性グラフを作成した。このグラフの傾きから25℃における初期IV抵抗値(mΩ)を算出した。得られた結果を図5に示す。
  [容量維持率(500サイクル)]
 各例に係るリチウムイオン電池を、25℃の温度条件下にて、端子間電圧が4.1Vとなるまで1C(ここでは5A)の定電流で充電し、続いて合計充電時間が2時間となるまで定電圧で充電した。かかるCC-CV充電後の電池を25℃に24時間保持した後、25℃において、4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(初期容量)を測定した。次いで、60℃において、3.0Vから4.1Vまで2Cの定電流にて充電する操作と、4.1Vから3.0Vまで2Cの定電流にて放電させる操作とを交互に500サイクル繰り返した。かかる充放電サイクル後の電池を、25℃において4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(サイクル後容量)を測定した。そして、次式:{(サイクル後容量)/(初期容量)}×100;により、上記500回の充放電サイクルに対する容量維持率(%)を求めた。得られた結果を図6に示す。
 図5に示されるように、絶縁性粒子含有層の内側部分のバインダ含有率が外側部分の1.02~1.3倍(すなわち、CIN/COUT=1.02~1.3)である例2~5によると、絶縁性粒子含有層の内側部分と外側部分とでバインダ含有率に差を設けなかった例1(すなわち、CIN/COUT=1)に比べて内部抵抗値を低下させることができた。CIN/COUTが1.02~1.25の範囲にある例2~4によると、より良好な結果が得られた。CIN/COUTが1.1~1.2の範囲にある例2,3では特に良好な結果が得られた。また、図6に示されるように、CIN/COUTが1.05以上である例3~6では、CIN/COUTが1または1.05未満である例1,2に比べて、500サイクル後の容量維持率が大きく向上した。CIN/COUTが1.1以上である例4~6では特に良好な結果が得られた。これらの結果から、CIN/COUTを1.1~1.25(より好ましくは1.1~1.2)の範囲とすることにより、内部抵抗の上昇を効果的に抑制しつつ、容量維持率をよりよく向上させ得ることが確認された。
  <例7~11>
 負極活物質組成物の乾燥温度を表2に示す温度に変更した点以外は例1と同様にして負極原材を作成した。これら例7~11に係る負極原材および例1に係る負極原材につき、株式会社キーエンス製のレーザ顕微鏡、型式「VK-8500」を用いて負極活物質層表面の表面粗さRaを測定した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 例7~11に係る負極原材の負極活物質層表面に、例1と同じコート剤A1を、NV換算の厚みが4μmとなるように塗布し、乾燥させて絶縁性粒子含有層を形成した。このようにして各例に係る負極シートを得た。これらの負極シートを用いて例1と同様にリチウムイオン電池を構築した。
  [容量維持率(2000サイクル)]
 例1および例7~11に係るリチウムイオン電池を、25℃の温度条件下にて、端子間電圧が4.1Vとなるまで1C(ここでは5A)の定電流で充電し、続いて合計充電時間が2時間となるまで定電圧で充電した。かかるCC-CV充電後の電池を25℃に24時間保持した後、25℃において、4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(初期容量)を測定した。次いで、60℃において、3.0Vから4.1Vまで2Cの定電流にて充電する操作と、4.1Vから3.0Vまで2Cの定電流にて放電させる操作とを交互に2000サイクル繰り返した。かかる充放電サイクル後の電池を、25℃において4.1Vから3.0Vまで1Cの定電流で放電させ、続いて合計放電時間が2時間となるまで定電圧で放電させて、このときの放電容量(サイクル後容量)を測定した。そして、次式:{(サイクル後容量)/(初期容量)}×100;により、上記2000回の充放電サイクルに対する容量維持率(%)を求めた。得られた結果を、負極活物質層の表面粗さRaと容量維持率との関係として図7に示す。
 図7に示されるように、活物質層の表面粗さRaが2.5~42μmの範囲にある例7~10によると、上記範囲よりも表面粗さRaが小さい例1および上記範囲よりも表面粗さRaが大きい例11に比べて、2000サイクル後の容量維持率をさらに向上させることができた。活物質層の表面粗さRaが5~30μmの範囲にある例8,9によると特に良好な結果が得られた。このように負極活物質層の表面粗さRaを好適な範囲とすることによる効果は、絶縁性粒子含有層の内側部分のバインダ含有率を外側部分よりも高くする構成と組み合わせることで、さらに高レベルの容量維持率(特に、2C以上のハイレートサイクルでの容量維持率)を示すリチウムイオン電池を実現するものとなり得る。
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。例えば、ここに開示される技術は、上述したいずれかの絶縁性粒子含有層が上述のような正極活物質層上に設けられた構成の正極(絶縁性粒子含有層付正極)、かかる正極の製造、該正極を用いて構築されたリチウム二次電池(典型的にはリチウムイオン電池)およびその製造等にも適用され得る。この場合の負極としては、負極活物質層上に絶縁性粒子含有層を有しない構成の負極を用いてもよく、上述したいずれかの絶縁性粒子含有層が負極活物質層に設けられた構成の負極(絶縁性粒子含有層付負極)を用いてもよい。
 また、この明細書により開示される事項には以下のものが含まれる。
(1)リチウム二次電池(典型的にはリチウムイオン電池)の構成要素として用いられる電極(好ましくは負極)であって、
 活物質を主成分とする活物質層が集電体に保持され、絶縁性粒子および該粒子を結着させるバインダを含む絶縁性粒子含有層が前記活物質層上に設けられた構成を有し、
 前記絶縁性粒子含有層のうち前記活物質層側の部分は、該絶縁性粒子含有層のうち外表面側の部分よりも高い質量含有率で前記バインダを含む、電極。
(2)前記絶縁性粒子含有層は、前記バインダの質量含有率が異なる二以上のサブ層を含み、それらのサブ層のうち最内層のバインダ含有率CINが最外層のバインダ含有率COUTよりも高い、上記(1)に記載の電極。
(3)前記絶縁性粒子含有層を構成するサブ層のうち、前記最内層のバインダ含有率CINが最も高く、前記最外層のバインダ含有率COUTが最も低い、上記(2)に記載の電極。
(4)前記最内層のバインダ含有率CINが、前記最外層のバインダ含有率COUTの1.02~1.25倍(好ましくは1.1~1.25倍)である、上記(2)または(3)に記載の電極。
(5)上記活物質層の表面粗さRaが2.5μm~42μm(例えば5μm~30μm)の範囲にある、上記(1)~(4)のいずれかに記載の電極。
(6)リチウム二次電池(典型的にはリチウムイオン電池)の構成要素として用いられる電極(好ましくは負極)であって、
 活物質を主成分とする活物質層が集電体に保持され、絶縁性粒子および該粒子を結着させるバインダを含む絶縁性粒子含有層が前記活物質層上に設けられた構成を有し、
 前記活物質層の表面粗さRaが2.5μm~42μm(例えば5μm~30μm)の範囲にある、電極。
(7)リチウム二次電池(典型的にはリチウムイオン電池)の構成要素として用いられる電極(好ましくは負極)を製造する方法であって、
 活物質を主成分とする活物質層が集電体に保持された電極原材を用意すること;
 絶縁性粒子とバインダとを含む組成物であって該組成物の固形分(絶縁性粒子含有層形成成分)に占めるバインダの質量割合(バインダ含有率)が互いに異なる複数種類の組成物を用意すること;および、
 前記活物質層の表面に、前記複数種類の組成物を順次塗布および乾燥させて絶縁性粒子含有層を形成すること;
 を包含し、
 ここで、前記絶縁性粒子含有層の形成において最初に塗布される組成物(すなわち、絶縁性粒子含有層のうち最も活物質層側の部分を形成する組成物)として、最後に塗布される組成物(最も外側の部分を形成する組成物)よりもバインダ含有率の高い組成物を用いる、電極製造方法。
(8)上記絶縁性粒子含有層の形成に使用する複数種類の組成物のうち、バインダ含有率が最も高い組成物を最初に塗布し、バインダ含有率が最も低い組成物を最後に塗布する、上記(7)に記載の方法。
(9)上記最初に塗布される組成物のバインダ含有率が、上記最後に塗布される組成物のバインダ含有率の1.02~1.25倍(好ましくは1.1~1.25倍)である、上記(7)または(8)に記載の方法。
(10)上記電極原材を用意することは、表面粗さRaが2.5μm~42μm(例えば5μm~30μm)の範囲にある活物質層を形成することを含む、上記(7)~(9)のいずれかに記載の方法。
(11)リチウム二次電池(典型的にはリチウムイオン電池)の構成要素として用いられる電極(好ましくは負極)を製造する方法であって、
 活物質を主成分とする活物質層が集電体に保持された電極原材を用意すること、ここで、前記活物質層は、表面粗さRaが2.5μm~42μm(例えば5μm~30μm)となるように形成されている;および、
 絶縁性粒子とバインダとを含む組成物を前記活物質層上に付与して絶縁性粒子含有層を形成すること;
 を包含する、電極製造方法。
 ここに開示される技術により提供されるリチウム二次電池(典型的にはリチウムイオン電池)は、上記のとおり微小短絡を高度に防止し得るので信頼性が高く、且つ入出力性能およびその耐久性に優れたものとなり得ることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図11に模式的に示すように、ここに開示されるいずれかのリチウムイオン電池10(当該電池10を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。

Claims (7)

  1.  正極と負極と非水電解質とを備えたリチウム二次電池であって、
     前記正極および前記負極のうち少なくとも一方は、活物質を主成分とする活物質層が集電体に保持され、絶縁性粒子および該粒子を結着させるバインダを含む絶縁性粒子含有層が前記活物質層上に設けられた構成を有する絶縁性粒子含有層付電極であり、
     前記絶縁性粒子含有層のうち前記活物質層側の部分は、該絶縁性粒子含有層のうち外表面側の部分よりも高い質量含有率で前記バインダを含む、リチウム二次電池。
  2.  前記絶縁性粒子含有層は、前記バインダの質量含有率が異なる二以上のサブ層を含み、それらのサブ層のうち最内層のバインダ含有率CINが最外層のバインダ含有率COUTよりも高い、請求項1に記載の電池。
  3.  前記絶縁性粒子含有層を構成するサブ層のうち、前記最内層のバインダ含有率CINが最も高く、前記最外層のバインダ含有率COUTが最も低い、請求項2に記載の電池。
  4.  前記最内層のバインダ含有率CINが、前記最外層のバインダ含有率COUTの1.02~1.25倍である、請求項2または3に記載の電池。
  5.  前記最内層のバインダ含有率CINが、前記最外層のバインダ含有率COUTの1.1~1.25倍である、請求項2から4のいずれか一項に記載の電池。
  6.  前記絶縁性粒子含有層付電極を負極に用いたリチウムイオン電池として構築されている、請求項1から5のいずれか一項に記載の電池。
  7.  請求項1から6のいずれか一項に記載の電池を備える、車両。
PCT/JP2009/052179 2009-02-09 2009-02-09 リチウム二次電池 WO2010089898A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/052179 WO2010089898A1 (ja) 2009-02-09 2009-02-09 リチウム二次電池
JP2010549334A JP5316905B2 (ja) 2009-02-09 2009-02-09 リチウム二次電池
US13/146,034 US20110281161A1 (en) 2009-02-09 2009-02-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052179 WO2010089898A1 (ja) 2009-02-09 2009-02-09 リチウム二次電池

Publications (1)

Publication Number Publication Date
WO2010089898A1 true WO2010089898A1 (ja) 2010-08-12

Family

ID=42541818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052179 WO2010089898A1 (ja) 2009-02-09 2009-02-09 リチウム二次電池

Country Status (3)

Country Link
US (1) US20110281161A1 (ja)
JP (1) JP5316905B2 (ja)
WO (1) WO2010089898A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
WO2013118380A1 (ja) * 2012-02-09 2013-08-15 株式会社日立製作所 リチウムイオン二次電池及びその製造方法
WO2014068905A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
WO2014068904A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
CN103875096A (zh) * 2011-10-11 2014-06-18 丰田自动车株式会社 非水系二次电池
WO2014168019A1 (ja) * 2013-04-12 2014-10-16 株式会社村田製作所 リチウムイオン二次電池
JP2015037077A (ja) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用負極およびこれを含むリチウム二次電池
WO2015053177A1 (ja) * 2013-10-11 2015-04-16 株式会社村田製作所 非水電解質電池およびその製造方法
JPWO2016163115A1 (ja) * 2015-04-10 2017-11-02 株式会社豊田自動織機 非水電解質二次電池用負極及び非水電解質二次電池
WO2018062264A1 (ja) * 2016-09-29 2018-04-05 日本電気株式会社 電極および二次電池
JP2018060735A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 リチウムイオン二次電池
WO2018139493A1 (ja) * 2017-01-24 2018-08-02 株式会社 東芝 電極体、電極群、二次電池、電池モジュール及び車両
JPWO2017146237A1 (ja) * 2016-02-25 2018-08-30 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011074098A1 (ja) * 2009-12-17 2011-06-23 トヨタ自動車株式会社 リチウム二次電池
JP2013120736A (ja) * 2011-12-08 2013-06-17 Sony Corp 電極、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5935684B2 (ja) * 2012-12-25 2016-06-15 株式会社豊田自動織機 蓄電装置の製造方法
JP6252841B2 (ja) * 2013-11-25 2017-12-27 株式会社Gsユアサ 蓄電素子
JP6376171B2 (ja) 2016-05-25 2018-08-22 トヨタ自動車株式会社 電極体の製造方法および電池の製造方法
US11081731B2 (en) 2017-10-18 2021-08-03 International Business Machines Corporation High-capacity rechargeable batteries
CN112331820B (zh) * 2019-08-05 2022-03-04 辉能科技股份有限公司 活性材料球复合层
WO2021181603A1 (ja) * 2020-03-12 2021-09-16 本田技研工業株式会社 リチウムイオン二次電池用電極、リチウムイオン二次電池、およびリチウムイオン二次電池用電極の製造方法
WO2024036849A1 (en) * 2022-08-19 2024-02-22 Techtronic Cordless Gp Electrode with ceramic coating and lithium-ion battery comprising same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102730A (ja) * 1997-09-29 1999-04-13 Hitachi Ltd リチウム二次電池
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
WO2006093049A1 (ja) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池およびその製造法
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008226537A (ja) * 2007-03-09 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365299B1 (en) * 1995-06-28 2002-04-02 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2228095C (en) * 1997-01-28 2002-01-08 Canon Kabushiki Kaisha Electrode structural body, rechargeable battery provided with said electrode structural body, and process for the production of said electrode structural body and said rechargeable battery
JP3471244B2 (ja) * 1999-03-15 2003-12-02 株式会社東芝 非水電解液二次電池の製造方法
US8187748B2 (en) * 2004-12-24 2012-05-29 Panasonic Corporation Non-aqueous electrolyte secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11102730A (ja) * 1997-09-29 1999-04-13 Hitachi Ltd リチウム二次電池
WO2005078828A1 (ja) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. 二次電池
WO2006093049A1 (ja) * 2005-03-02 2006-09-08 Matsushita Electric Industrial Co., Ltd. リチウムイオン二次電池およびその製造法
JP2008226537A (ja) * 2007-03-09 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2008226605A (ja) * 2007-03-12 2008-09-25 Sanyo Electric Co Ltd 非水電解質二次電池

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192539A (ja) * 2010-03-15 2011-09-29 Panasonic Corp 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
CN103875096A (zh) * 2011-10-11 2014-06-18 丰田自动车株式会社 非水系二次电池
US20140272540A1 (en) * 2011-10-11 2014-09-18 Koji Takahata Nonaqueous secondary battery
US10014524B2 (en) * 2011-10-11 2018-07-03 Toyota Jidosha Kabushiki Kaisha Nonaqueous secondary battery
WO2013118380A1 (ja) * 2012-02-09 2013-08-15 株式会社日立製作所 リチウムイオン二次電池及びその製造方法
JP2013161771A (ja) * 2012-02-09 2013-08-19 Hitachi Ltd リチウムイオン二次電池及びその製造方法
US9312542B2 (en) 2012-10-30 2016-04-12 Sanyo Electric Co., Ltd. Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
WO2014068905A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
WO2014068904A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
US9620767B2 (en) 2012-10-30 2017-04-11 Sanyo Electric Co., Ltd. Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery including the same, and method for manufacturing the same
JPWO2014068904A1 (ja) * 2012-10-30 2016-09-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
JPWO2014068905A1 (ja) * 2012-10-30 2016-09-08 三洋電機株式会社 非水電解質二次電池用電極板及びこれを用いた非水電解質二次電池並びにその製造方法
JPWO2014168019A1 (ja) * 2013-04-12 2017-02-16 株式会社村田製作所 リチウムイオン二次電池
CN105103342A (zh) * 2013-04-12 2015-11-25 株式会社村田制作所 锂离子二次电池
WO2014168019A1 (ja) * 2013-04-12 2014-10-16 株式会社村田製作所 リチウムイオン二次電池
US10062889B2 (en) 2013-04-12 2018-08-28 Murata Manufacturing Co., Ltd. Lithium ion secondary battery
KR102258082B1 (ko) * 2013-08-14 2021-05-27 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR20150020022A (ko) * 2013-08-14 2015-02-25 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP2015037077A (ja) * 2013-08-14 2015-02-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. リチウム二次電池用負極およびこれを含むリチウム二次電池
US10381690B2 (en) 2013-08-14 2019-08-13 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JPWO2015053177A1 (ja) * 2013-10-11 2017-03-09 株式会社村田製作所 非水電解質電池およびその製造方法
WO2015053177A1 (ja) * 2013-10-11 2015-04-16 株式会社村田製作所 非水電解質電池およびその製造方法
JPWO2016163115A1 (ja) * 2015-04-10 2017-11-02 株式会社豊田自動織機 非水電解質二次電池用負極及び非水電解質二次電池
JPWO2017146237A1 (ja) * 2016-02-25 2018-08-30 旭化成株式会社 非水電解質電池用無機粒子及び非水電解質電池
US10680291B2 (en) 2016-02-25 2020-06-09 Asahi Kasei Kabushiki Kaisha Nonaqueous electrolyte battery inorganic particles and nonaqueous electrolyte battery
WO2018062264A1 (ja) * 2016-09-29 2018-04-05 日本電気株式会社 電極および二次電池
JPWO2018062264A1 (ja) * 2016-09-29 2019-07-11 日本電気株式会社 電極および二次電池
US11469408B2 (en) 2016-09-29 2022-10-11 Nec Corporation Electrode and secondary battery
JP7319008B2 (ja) 2016-09-29 2023-08-01 日本電気株式会社 電極および二次電池
JP2018060735A (ja) * 2016-10-07 2018-04-12 トヨタ自動車株式会社 リチウムイオン二次電池
WO2018139493A1 (ja) * 2017-01-24 2018-08-02 株式会社 東芝 電極体、電極群、二次電池、電池モジュール及び車両
JPWO2018139493A1 (ja) * 2017-01-24 2019-11-07 株式会社東芝 電極体、電極群、二次電池、電池モジュール及び車両

Also Published As

Publication number Publication date
JPWO2010089898A1 (ja) 2012-08-09
US20110281161A1 (en) 2011-11-17
JP5316905B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5316905B2 (ja) リチウム二次電池
JP4766348B2 (ja) リチウム二次電池およびその製造方法
JP5201426B2 (ja) リチウムイオン電池およびその利用
JP5648869B2 (ja) 電池用電極およびその利用
JP5365842B2 (ja) リチウムイオン電池
JP4487219B1 (ja) 非水二次電池用電極の製造方法
JP5652683B2 (ja) 非水電解質二次電池および車両
JP5158452B2 (ja) リチウム二次電池用正極とその利用
JP4900695B2 (ja) リチウム二次電池用負極およびリチウム二次電池
JPWO2013094004A1 (ja) リチウム二次電池
JP5736049B2 (ja) 非水電解液二次電池
JP2011222215A (ja) リチウムイオン二次電池
JP2010102868A (ja) リチウム二次電池
JP2012182084A (ja) 非水電解質二次電池
JP2010135272A (ja) リチウムイオン電池およびその製造方法
JP6740011B2 (ja) 非水電解質二次電池
JP2011028898A (ja) リチウム二次電池用の正極とその製造方法
JP5720952B2 (ja) リチウムイオン二次電池
JP6008188B2 (ja) 非水電解液二次電池
JP5168535B2 (ja) リチウム二次電池およびその製造方法
JP6249242B2 (ja) 非水電解質二次電池
JP5796743B2 (ja) リチウム二次電池
WO2010067410A1 (ja) リチウムイオン電池およびその製造方法
JP2013161762A (ja) 非水電解液二次電池
JP2013137944A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549334

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13146034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839675

Country of ref document: EP

Kind code of ref document: A1