WO2010084690A1 - 有機電界発光素子 - Google Patents

有機電界発光素子 Download PDF

Info

Publication number
WO2010084690A1
WO2010084690A1 PCT/JP2009/071557 JP2009071557W WO2010084690A1 WO 2010084690 A1 WO2010084690 A1 WO 2010084690A1 JP 2009071557 W JP2009071557 W JP 2009071557W WO 2010084690 A1 WO2010084690 A1 WO 2010084690A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
carbon atoms
unsubstituted
group
atom
Prior art date
Application number
PCT/JP2009/071557
Other languages
English (en)
French (fr)
Inventor
健介 益居
誠之 林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN200980155173.8A priority Critical patent/CN102292840B/zh
Priority to EP09838880.4A priority patent/EP2381501B1/en
Priority to KR1020117016226A priority patent/KR101659104B1/ko
Priority to US13/132,046 priority patent/US20110227058A1/en
Publication of WO2010084690A1 publication Critical patent/WO2010084690A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/069Aluminium compounds without C-aluminium linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to an organic electroluminescent element (hereinafter also referred to as “organic electroluminescent element” or “organic EL element”).
  • Organic EL devices have features such as self-emission and high-speed response, and are expected to be applied to flat panel displays.
  • organic thin films with hole transport properties (hole transport layers) and organic thin films with electron transport properties. Since the report of a two-layer type (laminated type) in which (electron transport layer) is laminated, it has attracted attention as a large-area light-emitting element that emits light at a low voltage of 10 V or less.
  • the laminated organic EL device has a basic structure of positive electrode / hole transport layer / light emitting layer / electron transport layer / negative electrode, and the light emitting layer is the hole transport layer or the like as in the case of the two-layer type.
  • the electron transport layer may serve as its function.
  • Patent Document 1 In such an organic EL element, various studies have been made in order to realize both low voltage and high luminous efficiency.
  • Patent Document 1 it is said that by using a specific nitrogen-containing heterocyclic derivative as a high electron-transporting material for the electron injection layer and the electron transport layer, low voltage and high efficiency can be achieved.
  • the driving voltage can be lowered by using the high electron transporting material of Patent Document 1, but there is a problem that the luminous efficiency is lowered when the phosphorescent light emitting material is used for the light emitting layer. This is because when a commonly used hole transporting material is used as a host, many phosphorescent light emitting materials are also hole transporting, and electron injection into the light emitting layer is too high using the electron transporting material.
  • Patent Document 1 discloses an example using a fluorescent light emitting element, but there is no example using a phosphorescent light emitting material, and there is a problem of a decrease in luminous efficiency when using a phosphorescent light emitting material. This is not pointed out, and there is no disclosure or suggestion of a technique required when a phosphorescent material is used.
  • An object of the present invention is to provide an organic electroluminescence device capable of lowering the driving voltage and maintaining high luminous efficiency.
  • the use of a phosphorescent material having a high electron transporting property and a high electron transporting material increases the flow of electrons in the light emitting layer.
  • the carrier balance between holes and electrons is improved, and it is possible to achieve both low voltage and high emission efficiency.
  • a phosphorescent material of a tetradentate platinum complex is used, high emission efficiency and It has been found that a low driving voltage can be realized.
  • the present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is, ⁇ 1> having at least one organic layer including a light emitting layer between an anode and a cathode; At least one layer in the organic layer contains at least one selected from nitrogen-containing heterocyclic derivatives represented by the following general formula (1), and at least one layer in the organic layer has the following general formula (2) It is an organic electroluminescent element characterized by containing the electron transportable phosphorescence-emitting material represented by this. However, in the general formula (1), A 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms.
  • Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • fluorenylene group is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5, and when n is 2 or more, a plurality of R may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
  • X ⁇ 1 >, X ⁇ 2 >, X ⁇ 3 > and X ⁇ 4 > represent a carbon atom or a nitrogen atom each independently. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent a carbon atom or a nitrogen atom.
  • X 11 and X 12 independently represents a carbon atom or a nitrogen atom
  • X 13, X 14 and X 15 represent each independently, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom
  • the number of nitrogen atoms contained in the 5-membered ring skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • fluorenylene group is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a
  • R ′ is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • a 1 and A 2 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms.
  • Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • fluorenylene group is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a
  • R ′ and R ′′ each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted An alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, and R ′ and R ′′ may be the same or different.
  • R ′ and R ′′ may be the same or different.
  • the organic electroluminescence device according to any one of ⁇ 1> to ⁇ 3>, wherein the organic electroluminescence device is selected from the following groups.
  • Ar 1 is any one of the following general formulas (5) to (14): It is an organic electroluminescent element in any one of said ⁇ 1> to ⁇ 4> which is group represented.
  • R 1 to R 92 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • L 3 represents a single bond or a substituent represented by the following structural formula.
  • ⁇ 6> The organic electroluminescence device according to any one of ⁇ 1> to ⁇ 5>, wherein the compound represented by the general formula (2) is a compound represented by the following general formula (15).
  • X ⁇ 1 >, X ⁇ 2 >, X ⁇ 3 > and X ⁇ 4 > represent a carbon atom or a nitrogen atom each independently. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 11 and X 12 independently represents a carbon atom or a nitrogen atom
  • X 13, X 14 and X 15 represent each independently, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom
  • X 11 , X 12 , X 13 , X 14 and X 15 the number of nitrogen atoms contained in the 5-membered ring skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 , X 54 and X 55 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 , X 54 and X 55 is 1 or 2 is there.
  • L represents a single bond or a divalent linking group.
  • the organic electroluminescence device wherein the compound represented by the general formula (15a-1) is a compound represented by the following general formula (15a-2).
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 and X 54 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 and X 54 is 1 or 2.
  • R 75 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 and X 54 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 and X 54 is 1 or 2.
  • R 75 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 61 represents a carbon atom or a nitrogen atom.
  • X 13 , X 14 and X 15 each independently represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and a 5-membered ring represented by X 61 , carbon atom, X 13 , X 14 and X 15
  • the number of nitrogen atoms contained in the skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X94 and X95 each independently represent a carbon atom or a nitrogen atom, and at least one of X94 and X95 represents a carbon atom.
  • R 93 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • X 1 , X 2 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X94 and X95 each independently represent a carbon atom or a nitrogen atom, and at least one of X94 and X95 represents a carbon atom.
  • R 93 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • a metal complex compound of a multidentate ligand having a partial structure represented by the general formula (2), and the general formulas (15), (15a-1), (15a-2), (15a-3) , (15b-1), (15b-2) and at least one of the tetradentate platinum complex compounds represented by (15b-3) is contained in the light emitting layer from the above ⁇ 1> to ⁇ 12>
  • the organic electroluminescent element according to any one of the above.
  • a metal complex compound of a polydentate ligand having a partial structure represented by the general formula (2), and the general formulas (15), (15a-1), (15a-2), (15a-3) , (15b-1), (15b-2), and (15b-3) at least one tetradentate platinum complex compound and at least one host material are contained in the light emitting layer.
  • ⁇ 16> The organic electroluminescent element according to any one of ⁇ 1> to ⁇ 15>, wherein the nitrogen-containing heterocyclic derivative is used as at least one of an electron injection material and an electron transport material.
  • ⁇ 17> The organic electroluminescence device according to any one of ⁇ 1> to ⁇ 16>, wherein the layer containing a nitrogen-containing heterocyclic derivative contains a reducing dopant.
  • the reducing dopant is alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal
  • an organic electroluminescence device that can solve the conventional problems, can reduce the driving voltage, and can maintain high luminous efficiency.
  • FIG. 1 is a schematic view showing an example of the layer structure of the organic electroluminescent element of the present invention.
  • the organic electroluminescent element of the present invention comprises at least one organic layer including a light emitting layer between an anode and a cathode, At least one layer in the organic layer contains at least one selected from a specific nitrogen-containing heterocyclic derivative, and at least one layer in the organic layer contains a specific electron-transporting phosphorescent material.
  • the nitrogen-containing heterocyclic derivative contains at least one selected from nitrogen-containing heterocyclic derivatives represented by the following general formula (1).
  • a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms.
  • Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • R represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5
  • a plurality of R may be the same or different and adjacent to each other
  • a plurality of R groups may be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring.
  • the nitrogen-containing heterocyclic derivative represented by the general formula (1) is preferably a nitrogen-containing heterocyclic derivative represented by the following general formula (3).
  • a 1 to A 3 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted carbon atom having 1 to 20 alkoxy groups.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • fluorenylene group is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a
  • R ′ is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • the nitrogen-containing heterocyclic derivative represented by the general formula (3) is preferably a nitrogen-containing heterocyclic derivative represented by the following general formula (4).
  • a 1 and A 2 are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms.
  • Ar 2 represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms. Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • Ar 1 and Ar 2 is a substituted or unsubstituted condensed ring group having 10 to 60 nuclear carbon atoms, or a substituted or unsubstituted monoheterocondensed ring group having 3 to 60 nuclear carbon atoms.
  • L 1 and L 2 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • fluorenylene group a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted group.
  • R ′ and R ′′ each independently represents a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, substituted or unsubstituted An alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, and R ′ and R ′′ may be the same or different.
  • At least one of the L 1 and L 2 is a group represented by the following structural formula Is preferably selected from.
  • Ar 1 is represented by any one of the following general formulas (5) to (14). Is preferably a group.
  • R 1 to R 92 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • L 3 represents a single bond or a substituent represented by the following structural formula.
  • the nitrogen-containing heterocyclic derivative is preferably used as at least one of an electron injection material and an electron transport material.
  • the nitrogen-containing heterocyclic derivative is contained in at least one layer in the organic layer, and at least one of an electron injection layer and an electron transport layer is preferable.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the layer (organic layer, electron injection layer, electron transport layer) containing the nitrogen-containing heterocyclic derivative preferably contains a reducing dopant.
  • the reducing dopant include alkali metal, alkaline earth metal, rare earth metal, alkali metal oxide, alkali metal halide, alkaline earth metal oxide, alkaline earth metal halide, rare earth metal oxidation. And at least one selected from a rare earth metal halide, an alkali metal organic complex, an alkaline earth metal organic complex, and a rare earth metal organic complex.
  • the amount of the reducing dopant used varies depending on the type of material, but is preferably 0.1% by mass to 99% by mass, and preferably 0.3% by mass to 80% by mass with respect to the electron transport layer material or the electron injection layer material. More preferably, it is more preferably 0.5% by mass to 50% by mass.
  • the electron transport layer and the electron injection layer can be formed according to a known method. For example, a vapor deposition method, a wet film forming method, an MBE (molecular beam epitaxy) method, a cluster ion beam method, a molecular stacking method, an LB method. It can be suitably formed by a printing method, a transfer method, or the like.
  • the thickness of the electron transport layer is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and even more preferably 1 nm to 50 nm.
  • the thickness of the electron injection layer is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and even more preferably 1 nm to 50 nm.
  • the electron-transporting phosphorescent material preferably contains an electron-transporting phosphorescent material represented by the following general formula (2).
  • X ⁇ 1 >, X ⁇ 2 >, X ⁇ 3 > and X ⁇ 4 > represent a carbon atom or a nitrogen atom each independently. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • X 5 , X 6 , X 7 , X 8 , X 9 and X 10 each independently represent a carbon atom or a nitrogen atom.
  • X 11 and X 12 independently represents a carbon atom or a nitrogen atom
  • X 13, X 14 and X 15 represent each independently, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom
  • the number of nitrogen atoms contained in the 5-membered ring skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (15).
  • X ⁇ 1 >, X ⁇ 2 >, X ⁇ 3 > and X ⁇ 4 > represent a carbon atom or a nitrogen atom each independently. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 11 and X 12 independently represents a carbon atom or a nitrogen atom
  • X 13, X 14 and X 15 represent each independently, a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom
  • the number of nitrogen atoms contained in the 5-membered ring skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15) is preferably a compound represented by the following general formula (15a-1).
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 , X 54 and X 55 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 , X 54 and X 55 is 1 or 2 is there.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15a-1) is preferably a compound represented by the following general formula (15a-2).
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 and X 54 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 and X 54 is 1 or 2.
  • R 75 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15a-2) is preferably a compound represented by the following general formula (15a-3).
  • X 1 , X 2 and X 4 each independently represent a carbon atom or a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 53 and X 54 each independently represent a carbon atom or a nitrogen atom, and the number of nitrogen atoms contained in the 5-membered ring skeleton containing X 53 and X 54 is 1 or 2.
  • R 75 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15) is preferably a compound represented by the following general formula (15b-1).
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X 61 represents a carbon atom or a nitrogen atom.
  • X 13 , X 14 and X 15 each independently represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and a 5-membered ring represented by X 61 , carbon atom, X 13 , X 14 and X 15
  • the number of nitrogen atoms contained in the skeleton is 2 or less.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15b-1) is preferably a compound represented by the following general formula (15b-2).
  • X 1 , X 2 , X 3 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 , X 3 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X94 and X95 each independently represent a carbon atom or a nitrogen atom, and at least one of X94 and X95 represents a carbon atom.
  • R 93 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • the compound represented by the general formula (15b-2) is preferably a compound represented by the following general formula (15b-3).
  • X 1 , X 2 and X 4 each independently represent a carbon atom or a nitrogen atom. Any one or more of X 1 , X 2 and X 4 represents a nitrogen atom.
  • R 41, R 42, R 43 , R 44, R 45 and R 46 each independently represent a hydrogen atom or a substituent.
  • X94 and X95 each independently represent a carbon atom or a nitrogen atom, and at least one of X94 and X95 represents a carbon atom.
  • R 93 represents a hydrogen atom or a substituent.
  • L represents a single bond or a divalent linking group.
  • electron-transporting phosphorescent light-emitting material that can be used in the present invention include, but are not limited to, the following compounds.
  • a metal complex compound of a multidentate ligand having a partial structure represented by the general formula (2), and the general formulas (15), (15a-1), (15a-2), (15a-3), ( At least one of the tetradentate platinum complex compounds represented by 15b-1), (15b-2), and (15b-3) is contained in at least one layer in the organic layer, but is contained in the light emitting layer. It is preferred that
  • the content of the electron transporting phosphorescent light emitting material as the light emitting dopant is generally 0.1% by mass to 90% by mass with respect to the total mass of the compound forming the light emitting layer in the light emitting layer. It is preferably 1% by mass to 50% by mass, more preferably 1% by mass to 25% by mass.
  • an electron transporting host or a hole transporting host can be preferably used, and an electron transporting host and a hole transporting host may be used in combination.
  • the electron transporting host material used in the present invention preferably has an electron affinity Ea of 2.5 eV or more and 3.5 eV or less, from the viewpoint of improving durability and lowering driving voltage, and 2.6 eV or more and 3.4 eV or less. It is more preferable that it is 2.8 eV or more and 3.3 eV or less. Further, from the viewpoint of improving durability and reducing driving voltage, the ionization potential Ip is preferably 5.7 eV or more and 7.5 eV or less, more preferably 5.8 eV or more and 7.0 eV or less, and 5.9 eV or more. More preferably, it is 6.5 eV or less.
  • a preferable lowest triplet excited level (hereinafter referred to as T1) is preferably 2.2 eV or more and 3.7 eV or less, more preferably 2.4 eV or more and 3.7 eV or less, and most preferably 2.4 eV or more and 3. 4 eV or less.
  • an electron transporting host include pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazol, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiol.
  • the electron transporting host include metal complexes, azole derivatives (benzimidazole derivatives, imidazopyridine derivatives, etc.), and azine derivatives (pyridine derivatives, pyrimidine derivatives, triazine derivatives, etc.).
  • metal complex compounds are preferred.
  • the metal complex compound is more preferably a metal complex having a ligand having at least one nitrogen atom, oxygen atom or sulfur atom coordinated to the metal.
  • the metal ion in the metal complex is not particularly limited, but is preferably beryllium ion, magnesium ion, aluminum ion, gallium ion, zinc ion, indium ion, tin ion, platinum ion, or palladium ion, more preferably beryllium ion, Aluminum ion, gallium ion, zinc ion, platinum ion, or palladium ion, and more preferably aluminum ion, zinc ion, platinum ion, or palladium ion.
  • the ligand is preferably a nitrogen-containing heterocyclic ligand (preferably having 1 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 3 to 15 carbon atoms). It may be a bidentate or higher ligand, preferably a bidentate or higher and a hexadentate or lower ligand, or a bidentate or higher and a hexadentate ligand and a monodentate mixed ligand. preferable.
  • the ligand examples include an azine ligand (for example, pyridine ligand, bipyridyl ligand, terpyridine ligand, etc.), a hydroxyphenylazole ligand (for example, hydroxyphenylbenzimidazole coordination). And a hydroxyphenylbenzoxazole ligand, a hydroxyphenylimidazole ligand, a hydroxyphenylimidazopyridine ligand, etc.), an alkoxy ligand (preferably having 1 to 30 carbon atoms, more preferably 1 carbon atom).
  • azine ligand for example, pyridine ligand, bipyridyl ligand, terpyridine ligand, etc.
  • a hydroxyphenylazole ligand for example, hydroxyphenylbenzimidazole coordination
  • alkoxy ligand preferably having 1 to 30 carbon atoms, more preferably 1 carbon atom.
  • aryloxy ligands preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, for example phenyl And xyl, 1-naphthyloxy, 2-naphthyloxy, 2,4,6-trimethylphenyloxy, 4-biphenyloxy, etc.
  • heteroaryloxy ligands preferably having 1 to 30 carbon atoms, more preferably Has 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc.
  • an alkylthio ligand preferably having 1 to 30 carbon atoms, more preferably 1-20 carbon atoms, particularly preferably 1-12 carbon atoms, such as
  • Thio ligands preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio, etc.
  • siloxy ligands preferably having 1 to 30 carbon atoms, more preferably 3 to 25 carbon atoms, particularly preferably 6 to 20 carbon atoms, such as triphenyl A siloxy group, a triethoxysiloxy group, a triisopropylsiloxy group, etc.
  • an aromatic hydrocarbon anion ligand preferably having a carbon number of 6 to 30, more preferably a carbon number of 6 to 25, and particularly preferably a carbon number).
  • a ligand preferably having 1 to 30 carbon atoms, more preferably 2 to 25 carbon atoms, particularly preferably 2 to 20 carbon atoms, such as pyrrole anion, pyrazole anion, pyrazole anion, triazole anion, oxazole anion, benzoxazole anion, Examples include a thiazole anion, a benzothiazole anion, a thiophene anion, and a benzothiophene anion.
  • An indolenine anion ligand, and the like preferably a nitrogen-containing heterocyclic ligand, an aryloxy ligand, a heteroaryloxy group, or a siloxy ligand, more preferably a nitrogen-containing heterocyclic ring.
  • metal complex electron transporting host material examples include, for example, JP-A No. 2002-235076, JP-A No. 2004-214179, JP-A No. 2004-221106, JP-A No. 2004-221665, JP-A No. 2004-221068. And the compounds described in JP 2004-327313 A and the like.
  • electron transporting host material examples include, but are not limited to, the following materials.
  • the hole transporting host material used in the light emitting layer of the present invention preferably has an ionization potential Ip of 5.1 eV or more and 6.4 eV or less from the viewpoint of improving durability and lowering driving voltage. It is more preferably 6.2 eV or less, and further preferably 5.6 eV or more and 6.0 eV or less. Further, from the viewpoint of improving durability and lowering driving voltage, the electron affinity Ea is preferably 1.2 eV or more and 3.1 eV or less, more preferably 1.4 eV or more and 3.0 eV or less, and 1.8 eV or more. More preferably, it is 2.8 eV or less.
  • a preferable lowest triplet excited level (hereinafter referred to as T1) is preferably 2.2 eV or more and 3.7 eV or less, more preferably 2.4 eV or more and 3.7 eV or less, and most preferably 2.4 eV or more and 3. 4 eV or less.
  • Examples of the hole transporting host material include pyrrole, indole, carbazole, azaindole, azacarbazole, pyrazole, imidazole, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, and fluorenone.
  • indole derivatives carbazole derivatives, azaindole derivatives, azacarbazole derivatives, aromatic tertiary amine compounds, and thiophene derivatives are preferable, and indole skeleton, carbazole skeleton, azaindole skeleton, azacarbazole skeleton in the molecule, or Those having a plurality of aromatic tertiary amine skeletons are preferred.
  • a host material in which part or all of hydrogen in the host material is substituted with deuterium can be used (Japanese Patent Application No. 2008-126130, Japanese Patent Application Publication No. 2004-515506).
  • hole transporting host material examples include, but are not limited to, the following compounds.
  • the light-emitting layer receives holes from an anode, a hole injection layer, or a hole transport layer when an electric field is applied, receives electrons from a cathode, an electron injection layer, or an electron transport layer, and recombines holes and electrons. It is a layer having a function of providing a field to emit light.
  • the light emitting layer is not particularly limited and can be formed according to a known method. For example, by a dry film forming method such as a vapor deposition method or a sputtering method, a wet coating method, a transfer method, a printing method, an ink jet method, or the like. It can form suitably.
  • the thickness of the light emitting layer is not particularly limited and may be appropriately selected depending on the purpose.
  • the thickness is preferably 2 nm to 500 nm, more preferably 3 nm to 200 nm, and even more preferably 10 nm to 200 nm from the viewpoint of external quantum efficiency.
  • the said light emitting layer may be 1 layer, or may be two or more layers, and each layer may light-emit with a different luminescent color.
  • the organic electroluminescent element of the present invention has an organic layer including a light emitting layer between an anode and a cathode, and may have other layers depending on the purpose.
  • the organic layer includes at least the light emitting layer, and includes an electron transport layer, an electron injection layer, and, if necessary, a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, and the like. It may be.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron transport layer includes a material such as the electron transport host material and the electron donating dopant.
  • the thickness of the electron transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm.
  • the thickness of the electron injection layer is preferably 0.1 nm to 200 nm, more preferably 0.2 nm to 100 nm, and still more preferably 0.5 nm to 50 nm.
  • the electron injection layer and the electron transport layer may have a single layer structure made of one or more materials, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer may have a single layer structure or a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the hole injection material or hole transport material used for these layers may be a low molecular compound or a high molecular compound.
  • the hole injection material or hole transport material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include pyrrole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives.
  • Polyarylalkane derivatives Polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styryl Examples include amine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, and carbon. These may be used individually by 1 type and may use 2 or more types together.
  • the hole injection layer and the hole transport layer may contain an electron accepting dopant.
  • an inorganic compound or an organic compound can be used as long as it has an electron-accepting property and oxidizes an organic compound.
  • the inorganic compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride and antimony pentachloride; vanadium pentoxide, And metal oxides such as molybdenum trioxide.
  • the organic compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent for example, a compound having a nitro group, a halogen, a cyano group, a trifluoromethyl group or the like as a substituent; a quinone compound, an acid anhydride Compounds, fullerenes, and the like.
  • These electron-accepting dopants may be used alone or in combination of two or more.
  • the amount of the electron-accepting dopant used varies depending on the type of material, but is preferably 0.01% by mass to 50% by mass with respect to the hole transport layer material or the hole injection material, and 0.05% by mass to 20% by mass. % Is more preferable, and 0.1% by mass to 10% by mass is even more preferable.
  • the hole injection layer and the hole transport layer can be formed according to a known method, for example, a vapor deposition method, a dry film forming method such as a sputtering method, a wet coating method, a transfer method, a printing method, an ink jet method, It can form suitably by.
  • the thickness of the hole injection layer and the hole transport layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, still more preferably 10 nm to 100 nm.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side.
  • Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like.
  • the compound constituting the electron blocking layer for example, those mentioned as the hole transporting material can be used.
  • the electron block layer and the hole block layer are not particularly limited and can be formed according to a known method, for example, a dry film forming method such as a vapor deposition method and a sputtering method, a wet coating method, a transfer method, and a printing method. It can be suitably formed by an inkjet method or the like.
  • the thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 200 nm, more preferably 1 nm to 50 nm, and even more preferably 3 nm to 10 nm.
  • the hole blocking layer and the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions. .
  • the organic electroluminescent element of the present invention includes a pair of electrodes, that is, an anode and a cathode.
  • a pair of electrodes that is, an anode and a cathode.
  • at least one of the anode and the cathode is preferably transparent.
  • the anode only needs to have a function as an electrode for supplying holes to the organic compound layer
  • the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer.
  • the shape, structure, size and the like of the electrode are not particularly limited, and can be appropriately selected from known electrode materials according to the use and purpose of the organic electroluminescence device. Suitable examples of the material constituting the electrode include metals, alloys, metal oxides, conductive compounds, and mixtures thereof.
  • the material constituting the anode examples include tin oxide doped with antimony and fluorine (ATO, FTO), tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Conductive metal oxides metals such as gold, silver, chromium and nickel; mixtures or laminates of these metals and conductive metal oxides; inorganic conductive materials such as copper iodide and copper sulfide; polyaniline, polythiophene, Examples thereof include organic conductive materials such as polypyrrole, and laminates of these with ITO.
  • a conductive metal oxide is preferable, and ITO is particularly preferable in terms of productivity, high conductivity, transparency, and the like.
  • the material constituting the cathode examples include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, Examples thereof include lithium-aluminum alloys, magnesium-silver alloys, rare earth metals such as indium and ytterbium. These may be used alone, but two or more can be suitably used in combination from the viewpoint of achieving both stability and electron injection. Among these, alkali metals and alkaline earth metals are preferable from the viewpoint of electron injecting property, and materials mainly composed of aluminum are preferable from the viewpoint of excellent storage stability.
  • alkali metals and alkaline earth metals are preferable from the viewpoint of electron injecting property
  • materials mainly composed of aluminum are preferable from the viewpoint of excellent storage stability.
  • the material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum). Alloy).
  • the method for forming the electrode is not particularly limited and can be performed according to a known method.
  • a wet method such as a printing method or a coating method
  • a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method
  • Chemical methods such as CVD and plasma CVD may be used.
  • it can be formed on the substrate according to a method selected appropriately in consideration of suitability with the material constituting the electrode.
  • ITO is selected as the anode material
  • it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like.
  • a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.
  • patterning when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.
  • the organic electroluminescent element of the present invention is preferably provided on a substrate, and may be provided in such a manner that the electrode and the substrate are in direct contact with each other, or may be provided with an intermediate layer interposed. .
  • the material for the substrate is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include inorganic materials such as yttria-stabilized zirconia (YSZ) and glass (such as alkali-free glass and soda lime glass); polyethylene terephthalate And polyesters such as polybutylene phthalate and polyethylene naphthalate; organic materials such as polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
  • YSZ yttria-stabilized zirconia
  • glass such as alkali-free glass and soda lime glass
  • polyethylene terephthalate And polyesters such as polybutylene phthalate and polyethylene naphthalate
  • organic materials such as polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
  • the shape, structure, size and the like of the substrate are not particularly limited, and can be appropriately selected according to the use, purpose, etc. of the light emitting element.
  • the shape of the substrate is preferably a plate shape.
  • the structure of the substrate may be a single layer structure, a laminated structure, may be formed of a single member, or may be formed of two or more members.
  • the substrate may be transparent or opaque, and if transparent, it may be colorless and transparent or colored and transparent.
  • the substrate may be provided with a moisture permeation preventing layer (gas barrier layer) on the front surface or the back surface.
  • a moisture permeation preventing layer gas barrier layer
  • examples of the material of the moisture permeation preventive layer (gas barrier layer) include inorganic substances such as silicon nitride and silicon oxide.
  • the moisture permeation preventing layer (gas barrier layer) can be formed by, for example, a high frequency sputtering method.
  • the entire organic electroluminescent element may be protected by a protective layer.
  • the material contained in the protective layer is not particularly limited as long as it has a function of suppressing the entry of elements that promote element deterioration such as moisture and oxygen into the element.
  • metals such as In, Sn, Pb, Au, Cu, Ag, Al, Ti, Ni; MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 Metal oxides such as O 3 , Y 2 O 3 and TiO 2 ; Metal nitrides such as SiNx and SiNxOy; Metal fluorides such as MgF 2 , LiF, AlF 3 and CaF 2 ; Polyethylene, polypropylene, polymethyl methacrylate, polyimide , Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene A copolymer of dichlorodifluoroethylene, a copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in
  • a vacuum evaporation method for example, a vacuum evaporation method, sputtering method, reactive sputtering method, MBE (molecular beam epitaxy) method, cluster ion beam method , Ion plating method, plasma polymerization method (high frequency excitation ion plating method), plasma CVD method, laser CVD method, thermal CVD method, gas source CVD method, coating method, printing method, transfer method and the like.
  • the whole element may be sealed using the sealing container.
  • a water absorbent or an inert liquid may be sealed in the space between the sealing container and the organic electroluminescent element.
  • the moisture absorbent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, chloride Calcium, magnesium chloride, copper chloride, cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, magnesium oxide, and the like can be given.
  • the inert liquid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include paraffins, liquid paraffins; fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether;
  • examples include solvents and silicone oils.
  • the organic electroluminescent element of the present invention is preferably suppressed by sealing the element performance deterioration due to oxygen and moisture from the atmosphere with a resin sealing layer.
  • the resin material for the resin sealing layer is not particularly limited and can be appropriately selected depending on the purpose.
  • an epoxy resin is particularly preferable from the viewpoint of moisture prevention function.
  • a thermosetting epoxy resin or a photocurable epoxy resin is preferable.
  • the sealing adhesive used in the present invention has a function of preventing intrusion of moisture and oxygen from the end portion.
  • the material of the sealing adhesive the same material as that used for the resin sealing layer can be used.
  • an epoxy adhesive is preferable from the viewpoint of moisture prevention, and a photocurable adhesive or a thermosetting adhesive is particularly preferable.
  • the filler for example SiO 2, SiO (silicon oxide), SiON (silicon oxynitride), an inorganic material such as SiN (silicon nitride) are preferred. Addition of the filler increases the viscosity of the sealing adhesive, improves processing suitability, and improves moisture resistance.
  • the sealing adhesive may contain a desiccant.
  • the desiccant include barium oxide, calcium oxide, and strontium oxide.
  • the addition amount of the desiccant is preferably 0.01% by mass to 20% by mass and more preferably 0.05% by mass to 15% by mass with respect to the sealing adhesive. When the addition amount is less than 0.01% by mass, the effect of adding the desiccant is diminished, and when it exceeds 20% by mass, it is difficult to uniformly disperse the desiccant in the sealing adhesive. Sometimes. In this invention, it can seal by apply
  • FIG. 1 is a schematic view showing an example of the layer structure of the organic electroluminescent element of the present invention.
  • the organic EL element 10 includes an anode 2 (for example, ITO electrode) formed on a glass substrate 1, a hole injection layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6, and an electron injection. It has a layer structure in which a layer 7 and a cathode 8 (for example, an Al—Li electrode) are laminated in this order.
  • the anode 2 (for example, ITO electrode) and the cathode 8 for example, Al—Li electrode) are connected to each other via a power source.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode.
  • a direct current which may include an alternating current component as necessary
  • the organic electroluminescent element of the present invention can be applied to an active matrix by a thin film transistor (TFT).
  • TFT thin film transistor
  • amorphous silicon, high temperature polysilicon, low temperature polysilicon, microcrystalline silicon, oxide semiconductor, organic semiconductor, carbon nanotube, or the like can be used.
  • the thin film transistors described in WO2005 / 088826, JP-A-2006-165529, US Patent Application Publication No. 2008 / 0237598A1, and the like can be applied to the organic electroluminescent device of the present invention.
  • Light extraction efficiency can be improved with various well-known devices. For example, by processing the substrate surface shape (for example, forming a fine uneven pattern), controlling the refractive index of the substrate, ITO layer, organic layer, controlling the film thickness of the substrate, ITO layer, organic layer, etc. It is possible to improve light extraction efficiency and external quantum efficiency.
  • the light extraction method from the organic electroluminescence device of the present invention may be a top emission method or a bottom emission method.
  • the organic electroluminescent element of the present invention may have a resonator structure.
  • a multilayer mirror made of a plurality of laminated films having different refractive indexes, a transparent or translucent electrode, a light emitting layer, and a metal electrode are superimposed on a transparent substrate.
  • the light generated in the light emitting layer resonates repeatedly with the multilayer mirror and the metal electrode as a reflection plate.
  • a transparent or translucent electrode and a metal electrode each function as a reflecting plate on a transparent substrate, and light generated in the light emitting layer repeats reflection and resonates between them.
  • the optical path length determined from the effective refractive index of the two reflectors and the refractive index and thickness of each layer between the reflectors is adjusted to the optimum value to obtain the desired resonant wavelength. Is done.
  • the calculation formula in the case of the first embodiment is described in JP-A-9-180883.
  • the calculation formula in the case of the second aspect is described in JP-A No. 2004-127795.
  • the organic electroluminescent element of the present invention is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the display element, display, backlight, electrophotography, illumination light source, recording light source, exposure light source, reading light source, label It can be suitably used for signboards, interiors, optical communications, and the like.
  • the organic EL display As a method for making the organic EL display a full color type, as described in, for example, “Monthly Display”, September 2000, pages 33-37, the three primary colors (blue (B), green (G), red light (R)), a three-color light emitting method in which organic EL elements that emit light corresponding to red (R) are arranged on a substrate, and white light emission by an organic electroluminescent element for white light emission is divided into three primary colors through a color filter.
  • a white method, a color conversion method for converting blue light emitted by an organic electroluminescent element for blue light emission into red (R) and green (G) through a fluorescent dye layer, and the like are known.
  • the planar light source of desired luminescent color can be obtained by using combining the organic electroluminescent element of the different luminescent color obtained by the said method.
  • a white light-emitting light source combining blue and yellow light-emitting elements a white light-emitting light source combining blue, green, and red light-emitting elements can be used.
  • ITO Indium Tin Oxide
  • 2-TNATA 4,4 ′, 4 ′′ -Tris (N- (2-naphthyl) -N-phenyl-amino) -triphenylamine
  • ⁇ -NPD Bis [N- (1-naphthyl) -N-pheny] benzidine
  • an amine compound 1 represented by the following structural formula was deposited as a second hole transport layer to a thickness of 3 nm.
  • H-4 [mCP; (N, N′-dicarbazolyl-3,5-benzene)] represented by the following structural formula, which is a hole transporting host material, and
  • a nitrogen-containing heterocyclic derivative 1 represented by the following structural formula, which is a highly electron-transporting material contained in the general formula (1) as an electron transporting layer, was deposited to a thickness of 40 nm on the light emitting layer.
  • LiF was deposited as an electron injection layer on the electron transport layer so as to have a thickness of 1 nm.
  • a mask patterned as a cathode (a mask having a light emitting area of 2 mm ⁇ 2 mm) was placed on the electron injection layer, and metal aluminum was deposited to a thickness of 100 nm.
  • the laminate produced as described above was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.). Thus, an organic electroluminescent element of Comparative Example 1 was produced.
  • Comparative Example 2 (Comparative Example 2) -Fabrication of organic electroluminescence device- In Comparative Example 1, except that BAlq [Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)], which is a low electron transport material, was used as the electron transport layer. In the same manner as in Comparative Example 1, an organic electroluminescent element was produced.
  • Comparative Example 3 (Comparative Example 3) -Fabrication of organic electroluminescence device-
  • an organic electric field was obtained in the same manner as in Comparative Example 2, except that D-1 represented by the following structural formula, which is an electron transporting phosphorescent light emitting material included in the general formula (2), was used as the light emitting material.
  • D-1 represented by the following structural formula, which is an electron transporting phosphorescent light emitting material included in the general formula (2), was used as the light emitting material.
  • a light emitting element was manufactured.
  • Example 1 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as Comparative Example 1 except that D-1 represented by the above structural formula was used as the light emitting material instead of Ferric.
  • Example 2 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic derivative 2 represented by the following structural formula was used as the electron transport layer.
  • Example 3 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic derivative 3 represented by the following structural formula was used as the electron transport layer.
  • Example 4 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 1 except that the nitrogen-containing heterocyclic derivative 4 represented by the following structural formula was used as the electron transport layer.
  • Example 5 (Example 5) -Fabrication of organic electroluminescence device- An organic electroluminescent element was produced in the same manner as in Example 1 except that D-2 represented by the following structural formula was used as the light emitting material in Example 1.
  • Example 6 (Example 6) -Fabrication of organic electroluminescence device-
  • H-24 represented by the following structural formula was used as the host material, and the nitrogen-containing heterocyclic derivative 2 represented by the above structural formula was used as the electron transporting layer.
  • an organic electroluminescent element was produced.
  • Example 7 -Fabrication of organic electroluminescence device-
  • H-27 represented by the following structural formula was used as the host material
  • the nitrogen-containing heterocyclic derivative 3 represented by the above structural formula was used as the electron transporting layer.
  • an organic electroluminescent element was produced.
  • Example 8 (Example 8) -Fabrication of organic electroluminescence device-
  • H-17 represented by the following structural formula was used as the host material
  • D-3 represented by the following structural formula was used as the light emitting material
  • the nitrogen-containing compound represented by the above structural formula was used as the electron transport layer.
  • An organic electroluminescent element was produced in the same manner as in Example 1 except that the heterocyclic derivative 4 was used.
  • Example 9 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 1 except that D-4 represented by the following structural formula was used as the luminescent material.
  • Example 10 (Example 10) -Fabrication of organic electroluminescence device-
  • H-24 represented by the above structural formula was used as the host material, and the nitrogen-containing heterocyclic derivative 2 represented by the above structural formula was used as the electron transporting layer.
  • an organic electroluminescent element was produced.
  • Example 11 Fabrication of organic electroluminescence device-
  • D-5 represented by the following structural formula was used as the luminescent material
  • a nitrogen-containing heterocyclic derivative 3 represented by the above structural formula was used as the electron transport layer.
  • an organic electroluminescent element was produced.
  • Example 12 Fabrication of organic electroluminescence device-
  • D-9 represented by the following structural formula was used as the light emitting material
  • the nitrogen-containing heterocyclic derivative 4 represented by the above structural formula was used as the electron transporting layer.
  • an organic electroluminescent element was produced.
  • Example 13 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 12 except that the nitrogen-containing heterocyclic derivative 1 represented by the above structural formula was used as the electron transport layer.
  • Example 14 Fabrication of organic electroluminescence device-
  • Example 2 an organic electroluminescent element was produced in the same manner as in Example 2 except that D-10 represented by the following structural formula was used as the light emitting material.
  • Example 15 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 14 except that the nitrogen-containing heterocyclic derivative 3 represented by the above structural formula was used as the electron transport layer.
  • Example 16 Fabrication of organic electroluminescence device-
  • Example 4 an organic electroluminescent device was produced in the same manner as in Example 4 except that D-14 represented by the following structural formula was used as the luminescent material.
  • Example 17 Fabrication of organic electroluminescence device- An organic electroluminescent element was produced in the same manner as in Example 1 except that D-15 represented by the following structural formula was used as the light emitting material in Example 1.
  • Example 18 Fabrication of organic electroluminescence device-
  • Example 2 an organic electroluminescent element was produced in the same manner as in Example 2 except that D-23 represented by the following structural formula was used as the light emitting material.
  • Example 19 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 3 except that D-24 represented by the following structural formula was used as the light emitting material.
  • Example 20 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 19 except that the nitrogen-containing heterocyclic derivative 4 represented by the above structural formula was used as the electron transport layer.
  • Example 21 Fabrication of organic electroluminescence device- An organic electroluminescent element was produced in the same manner as in Comparative Example 4 except that, in Comparative Example 4, Firepic was changed to D-1 represented by the following structural formula as the light emitting material.
  • Example 22 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 21 except that the nitrogen-containing heterocyclic derivative 2 represented by the following structural formula was used as the electron transport layer.
  • Example 23 Fabrication of organic electroluminescence device-
  • an organic electroluminescent element was produced in the same manner as in Example 21 except that the nitrogen-containing heterocyclic derivative 3 represented by the following structural formula was used as the electron transport layer.
  • the organic electroluminescence device of the present invention can reduce the driving voltage and maintain high luminous efficiency.
  • the display device, display, backlight, electrophotography, illumination light source, recording light source It is suitably used for an exposure light source, a reading light source, a sign, a signboard, interior, optical communication, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 陽極と陰極の間に、発光層を含む少なくとも一層の有機層を有してなり、前記有機層における少なくとも1層が、特定の含窒素複素環誘導体から選択される少なくとも1種を含有し、かつ前記有機層における少なくとも1層が、特定の電子輸送性燐光発光材料を含有する有機電界発光素子である。

Description

有機電界発光素子
 本発明は、有機電界発光素子(以下、「有機エレクトロルミネッセント素子」、「有機EL素子」と称することもある)に関する。
 有機EL素子は、自発光、高速応答などの特長を持ち、フラットパネルディスプレイへの適用が期待されており、特に、正孔輸送性の有機薄膜(正孔輸送層)と電子輸送性の有機薄膜(電子輸送層)とを積層した2層型(積層型)のものが報告されて以来、10V以下の低電圧で発光する大面積発光素子として関心を集めている。積層型の有機EL素子は、正極/正孔輸送層/発光層/電子輸送層/負極、を基本構成とし、このうち発光層は、前記2層型の場合のように前記正孔輸送層又は前記電子輸送層にその機能を兼ねさせてもよい。
 このような有機EL素子において、低電圧化と高い発光効率の両立を実現するため、種々の検討がなされている。例えば特許文献1では、電子注入層及び電子輸送層に高電子輸送性材料として特定の含窒素複素環誘導体を用いることにより、低電圧化と高効率化が可能になるとされている。確かに、特許文献1の高電子輸送性材料を用いると駆動電圧を下げることができるが、発光層に燐光発光材料を用いた場合には、発光効率低下を招いてしまう問題点があった。これは一般的に用いられる正孔輸送性材料をホストとした場合、燐光発光材料もその多くが正孔輸送性であり、電子輸送性材料を用いて発光層への電子の注入が高まりすぎると、発光層内で電子の流れが滞ってしまうため、電子と正孔のキャリアバランスが崩れ、その結果、発光効率の低下が起きてしまったと考えられる。
 このように特許文献1には、蛍光発光素子を用いた実施例は示されているが、燐光発光材料を用いた実施例はなく、燐光発光材料を用いた場合の発光効率低下の問題点などについても指摘されておらず、燐光発光材料を用いる場合に必要となる技術については開示も示唆もされていないのが現状である。
特開2004-217547号公報
 本発明は、駆動電圧の低電圧化を図れると共に、高い発光効率を維持することが可能となる有機電界発光素子を提供することを目的とする。
 前記課題を解決するため本発明者らが鋭意検討を重ねた結果、電子輸送性の高い燐光発光材料と、高電子輸送性材料とを組み合わせて用いることで、発光層での電子の流れが高められ、正孔と電子のキャリアバランスが改善され、低電圧化と高発光効率を両立させることが可能となり、特に、四座配位子白金錯体の燐光発光材料を用いた場合に、高い発光効率と低い駆動電圧を実現できることを知見した。
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
 <1> 陽極と陰極の間に、発光層を含む少なくとも一層の有機層を有してなり、
 前記有機層における少なくとも1層が、下記一般式(1)で表される含窒素複素環誘導体から選択される少なくとも1種を含有し、かつ前記有機層における少なくとも1層が、下記一般式(2)で表される電子輸送性燐光発光材料を含有することを特徴とする有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000009

 ただし、前記一般式(1)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。
Figure JPOXMLDOC01-appb-C000010

 ただし、前記一般式(2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。X、X、X、X、X及びX10は、それぞれ独立に炭素原子又は窒素原子を表す。X11及びX12は、それぞれ独立に、炭素原子又は窒素原子を表し、X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X11、X12、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 <2> 一般式(1)で表される含窒素複素環誘導体が、下記一般式(3)で表される含窒素複素環誘導体である前記<1>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000011

 ただし、前記一般式(3)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基であり、Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R’は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
 <3> 一般式(3)で表される含窒素複素環誘導体が、下記一般式(4)で表される含窒素複素環誘導体である前記<2>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000012

 ただし、前記一般式(4)中、A及びAは、それぞれ独立に、窒素原子又は炭素原子である。
 Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R’及びR”は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、R’及びR”は同一でも異なっていてもよい。
 <4> 一般式(1)、(3)、及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、前記L及びLの少なくともいずれかが、下記構造式で表される基から選択される前記<1>から<3>のいずれかに記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000013

 <5> 一般式(1)、(3)、及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、Arが、下記一般式(5)から(14)のいずれかで表される基である前記<1>から<4>のいずれかに記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000014

 ただし、前記式中、R~R92は、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の核炭素数6~40のアリールオキシ基、置換もしくは無置換の核炭素数12~80のジアリールアミノ基、置換もしくは無置換の核炭素数6~40のアリール基、置換もしくは無置換の核炭素数3~40のヘテロアリール基、又は置換もしくは無置換の核炭素数18~120のジアリールアミノアリール基を表す。Lは、単結合、又は下記構造式で表される置換基を表す。
Figure JPOXMLDOC01-appb-C000015

 <6> 一般式(2)で表される化合物が、下記一般式(15)で表される化合物である前記<1>から<5>のいずれかに記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000016

 ただし、前記一般式(15)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X11及びX12は、それぞれ独立に、炭素原子又は窒素原子を表し、X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X11、X12、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 <7> 一般式(15)で表される化合物が、下記一般式(15a-1)で表される化合物である前記<6>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000017

 ただし、前記一般式(15a-1)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53、X54及びX55は、それぞれ独立に、炭素原子又は窒素原子を表し、X53、X54及びX55を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。Lは、単結合又は2価の連結基を表す。
 <8> 一般式(15a-1)で表される化合物が、下記一般式(15a-2)で表される化合物である前記<7>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000018

 ただし、前記一般式(15a-2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53及びX54は、それぞれ独立に、炭素原子又は窒素原子を表し、X53及びX54を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。R75は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 <9> 一般式(15a-2)で表される化合物が、下記一般式(15a-3)で表される化合物である前記<8>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000019

 ただし、前記一般式(15a-3)中、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53及びX54は、それぞれ独立に、炭素原子又は窒素原子を表し、X53及びX54を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。R75は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 <10> 一般式(15)で表される化合物が、下記一般式(15b-1)で表される化合物である前記<6>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000020

 ただし、前記一般式(15b-1)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X61は、炭素原子又は窒素原子を表す。X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X61、炭素原子、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 <11> 一般式(15b-1)で表される化合物が、下記一般式(15b-2)で表される化合物である前記<10>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000021

 ただし、前記一般式(15b-2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X94及びX95は、それぞれ独立に、炭素原子又は窒素原子を表し、X94及びX95の少なくともいずれか一方は、炭素原子を表す。R93は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 <12> 一般式(15b-2)で表される化合物が、下記一般式(15b-3)で表される化合物である前記<11>に記載の有機電界発光素子である。
Figure JPOXMLDOC01-appb-C000022

 ただし、前記一般式(15b-3)中、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X94及びX95は、それぞれ独立に、炭素原子又は窒素原子を表し、X94及びX95の少なくともいずれか一方は、炭素原子を表す。R93は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 <13> 一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、並びに一般式(15)、(15a-1)、(15a-2)、(15a-3)、(15b-1)、(15b-2)、及び(15b-3)で表される四座配位子の白金錯体化合物の少なくとも一種が、発光層に含有される前記<1>から<12>のいずれかに記載の有機電界発光素子である。
 <14> 一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、並びに一般式(15)、(15a-1)、(15a-2)、(15a-3)、(15b-1)、(15b-2)、及び(15b-3)で表される四座配位子の白金錯体化合物の少なくとも一種と、少なくとも一種のホスト材料が、発光層に含有される前記<1>から<13>のいずれかに記載の有機電界発光素子である。
 <15> 少なくとも一種のホスト材料が正孔輸送性である前記<14>に記載の有機電界発光素子である。
 <16> 含窒素複素環誘導体が、電子注入材料及び電子輸送材料の少なくともいずれかとして用いられている前記<1>から<15>のいずれかに記載の有機電界発光素子である。
 <17> 含窒素複素環誘導体を含有する層が、還元性ドーパントを含有する前記<1>から<16>のいずれかに記載の有機電界発光素子である。
 <18> 還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、及び希土類金属の有機錯体から選ばれる少なくとも一種である前記<17>に記載の有機電界発光素子である。
 本発明によると、従来における問題を解決することができ、駆動電圧の低電圧化を図れると共に、高い発光効率を維持することが可能となる有機電界発光素子を提供することができる。
図1は、本発明の有機電界発光素子の層構成の一例を示す概略図である。
(有機電界発光素子)
 本発明の有機電界発光素子は、陽極と陰極の間に、発光層を含む少なくとも一層の有機層を有してなり、
 前記有機層における少なくとも1層が、特定の含窒素複素環誘導体から選択される少なくとも1種を含有し、かつ前記有機層における少なくとも1層が、特定の電子輸送性燐光発光材料を含有する。
<含窒素複素環誘導体>
 前記含窒素複素環誘導体としては、下記一般式(1)で表される含窒素複素環誘導体から選択される少なくとも1種を含有する。
Figure JPOXMLDOC01-appb-C000023

 ただし、前記一般式(1)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。
 前記一般式(1)で表される含窒素複素環誘導体としては、下記一般式(3)で表される含窒素複素環誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000024

 ただし、前記一般式(3)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基であり、Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R’は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
 前記一般式(3)で表される含窒素複素環誘導体としては、下記一般式(4)で表される含窒素複素環誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000025

 ただし、前記一般式(4)中、A及びAは、それぞれ独立に、窒素原子又は炭素原子である。
 Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
 L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
 R’及びR”は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、R’及びR”は同一でも異なっていてもよい。
 前記一般式(1)、(3)、及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、前記L及びLの少なくともいずれかが、下記構造式で表される基から選択されることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 前記一般式(1)、(3)、及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、Arが、下記一般式(5)から(14)のいずれかで表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000027

 ただし、前記式中、R~R92は、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の核炭素数6~40のアリールオキシ基、置換もしくは無置換の核炭素数12~80のジアリールアミノ基、置換もしくは無置換の核炭素数6~40のアリール基、置換もしくは無置換の核炭素数3~40のヘテロアリール基、又は置換もしくは無置換の核炭素数18~120のジアリールアミノアリール基を表す。Lは、単結合、又は下記構造式で表される置換基を表す。
Figure JPOXMLDOC01-appb-C000028
 本発明に用いることができる含窒素複素環誘導体の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000029
 前記含窒素複素環誘導体は、電子注入材料及び電子輸送材料の少なくともいずれかとして用いられることが好ましい。
 前記含窒素複素環誘導体は、有機層における少なくとも1層に含有されるが、電子注入層及び電子輸送層の少なくともいずれかが好ましい。
 前記電子注入層及び電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
 前記含窒素複素環誘導体を含有する層(有機層、電子注入層、電子輸送層)は、還元性ドーパントを含有することが好ましい。
 前記還元性ドーパントとしては、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、及び希土類金属の有機錯体から選ばれる少なくとも一種であることが好ましい。
 前記還元性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料又は電子注入層材料に対して0.1質量%~99質量%であることが好ましく、0.3質量%~80質量%であることがより好ましく、0.5質量%~50質量%であることが更に好ましい。
 前記電子輸送層及び電子注入層は、公知の方法に従って形成することができるが、例えば、蒸着法、湿式製膜法、MBE(分子線エピタキシー)法、クラスターイオンビーム法、分子積層法、LB法、印刷法、転写法、などにより好適に形成することができる。
 前記電子輸送層の厚みは、1nm~200nmであることが好ましく、1nm~100nmであることがより好ましいく、1nm~50nmであることが更に好ましい。
 前記電子注入層の厚みは、1nm~200nmが好ましく、1nm~100nmがより好ましいく、1nm~50nmであることが更に好ましい。
<電子輸送性燐光発光材料>
 前記電子輸送性燐光発光材料としては、下記一般式(2)で表される電子輸送性燐光発光材料を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000030

 ただし、前記一般式(2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。X、X、X、X、X及びX10は、それぞれ独立に炭素原子又は窒素原子を表す。X11及びX12は、それぞれ独立に、炭素原子又は窒素原子を表し、X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X11、X12、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 前記一般式(2)で表される化合物としては、下記一般式(15)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000031

 ただし、前記一般式(15)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X11及びX12は、それぞれ独立に、炭素原子又は窒素原子を表し、X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X11、X12、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 前記一般式(15)で表される化合物としては、下記一般式(15a-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000032

 ただし、前記一般式(15a-1)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53、X54及びX55は、それぞれ独立に、炭素原子又は窒素原子を表し、X53、X54及びX55を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。Lは、単結合又は2価の連結基を表す。
 前記一般式(15a-1)で表される化合物としては、下記一般式(15a-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000033

 ただし、前記一般式(15a-2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53及びX54は、それぞれ独立に、炭素原子又は窒素原子を表し、X53及びX54を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。R75は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 前記一般式(15a-2)で表される化合物としては、下記一般式(15a-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000034

 ただし、前記一般式(15a-3)中、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53及びX54は、それぞれ独立に、炭素原子又は窒素原子を表し、X53及びX54を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。R75は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 前記一般式(15)で表される化合物としては、下記一般式(15b-1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000035

 ただし、前記一般式(15b-1)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X61は、炭素原子又は窒素原子を表す。X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X61、炭素原子、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
 前記一般式(15b-1)で表される化合物としては、下記一般式(15b-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036

 ただし、前記一般式(15b-2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X94及びX95は、それぞれ独立に、炭素原子又は窒素原子を表し、X94及びX95の少なくともいずれか一方は、炭素原子を表す。R93は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 前記一般式(15b-2)で表される化合物としては、下記一般式(15b-3)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000037

 ただし、前記一般式(15b-3)中、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X94及びX95は、それぞれ独立に、炭素原子又は窒素原子を表し、X94及びX95の少なくともいずれか一方は、炭素原子を表す。R93は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
 本発明に用いることができる電子輸送性燐光発光材料の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 前記一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、並びに一般式(15)、(15a-1)、(15a-2)、(15a-3)、(15b-1)、(15b-2)、及び(15b-3)で表される四座配位子の白金錯体化合物の少なくとも一種は、有機層における少なくとも1層に含有されるが、発光層に含有されることが好ましい。
 前記一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、並びに一般式(15)、(15a-1)、(15a-2)、(15a-3)、(15b-1)、(15b-2)、及び(15b-3)で表される四座配位子の白金錯体化合物の少なくとも一種と、少なくとも一種のホスト材料が、発光層に含有されることが好ましく、アダマンタンなどの添加剤が含まれてもよい。
 この場合、前記発光性ドーパントとしての電子輸送性燐光発光材料の含有量は、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%~90質量%であることが好ましく、1質量%~50質量%がより好ましく、1質量%~25質量%が更に好ましい。
 前記ホスト材料としては、電子輸送性ホスト及び正孔輸送性ホストのいずれも好ましく用いることができ、電子輸送性ホストと正孔輸送性ホストを併用してもよい。
<電子輸送性ホスト材料>
 本発明に用いられる電子輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
 好ましい最低三重項励起準位(以下T1とする)は好ましくは2.2eV以上3.7eV以下であり、更に好ましくは2.4eV以上3.7eV以下であり、最も好ましくは2.4eV以上3.4eV以下である。
 このような電子輸送性ホストとしては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ-ル、オキサゾ-ル、オキサジアゾ-ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン、及びそれらの誘導体(他の環と縮合環を形成してもよい)、8-キノリノ-ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ-ルやベンゾチアゾ-ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
 電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物は金属に配位する少なくとも1つの窒素原子又は酸素原子又は硫黄原子を有する配位子をもつ金属錯体がより好ましい。
 金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、又はパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、又はパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、白金イオン、又はパラジウムイオンである。
 前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer-Verlag社、H.Yersin著、1987年発行、「有機金属化学-基礎と応用-」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
 前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1~30、より好ましくは炭素数2~20、特に好ましくは炭素数3~15であり、単座配位子であっても2座以上の配位子であってもよい。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
 配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシ、2,4,6-トリメチルフェニルオキシ、4-ビフェニルオキシなどが挙げられる。)、ヘテロアリールオキシ配位子(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1~30、より好ましくは炭素数3~25、特に好ましくは炭素数6~20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、トリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6~30、より好ましくは炭素数6~25、特に好ましくは炭素数6~20であり、例えばフェニルアニオン、ナフチルアニオン、アントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1~30、より好ましくは炭素数2~25、特に好ましくは炭素数2~20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、ベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、又はシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、又は芳香族ヘテロ環アニオン配位子である。
 金属錯体電子輸送性ホスト材料の例としては、例えば特開2002-235076号公報、特開2004-214179号公報、特開2004-221062号公報、特開2004-221065号公報、特開2004-221068号公報、特開2004-327313号公報等に記載の化合物が挙げられる。
 このような電子輸送性ホスト材料としては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000041

Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043
<正孔輸送性ホスト材料>
 本発明の発光層に用いられる正孔輸送性ホスト材料としては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
 好ましい最低三重項励起準位(以下T1とする)は好ましくは2.2eV以上3.7eV以下であり、更に好ましくは2.4eV以上3.7eV以下であり、最も好ましくは2.4eV以上3.4eV以下である。
 前記正孔輸送性ホスト材料としては、例えば、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N-ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、又はそれらの誘導体などが挙げられる。
 これらの中でも、インドール誘導体、カルバゾール誘導体、アザインドール誘導体、アザカルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にインドール骨格、カルバゾール骨格、アザインドール骨格、アザカルバゾール骨格、又は芳香族第三級アミン骨格を複数個有するものが好ましい。
 また、本発明においてはホスト材料の水素を一部又はすべて重水素に置換したホスト材料を用いることができる(特願2008-126130号明細書、特表2004-515506号公報)。
 このような正孔輸送性ホスト材料としての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045

 
Figure JPOXMLDOC01-appb-C000046

 
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
 前記発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
 前記発光層は、特に制限はなく、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
 前記発光層の厚さは、特に制限はなく、目的に応じて適宜選択することができ、2nm~500nmが好ましく、外部量子効率の観点から、3nm~200nmがより好ましく、10nm~200nmが更に好ましい。また、前記発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
 本発明の有機電界発光素子は、陽極及び陰極の間に、発光層を含む有機層を有してなり、目的に応じてその他の層を有していてもよい。
 前記有機層は、少なくとも前記発光層を有し、電子輸送層、電子注入層、更に必要に応じて、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、などを有していてもよい。
<電子注入層、電子輸送層>
 前記電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。
 前記電子輸送層としては、前記電子輸送性ホスト材料、前記電子供与性ドーパント等の材料を含み形成される。
 前記電子注入層、電子輸送層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
 前記電子輸送層の厚みとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。また、電子注入層の厚みとしては、0.1nm~200nmであるのが好ましく、0.2nm~100nmであるのがより好ましく、0.5nm~50nmであるのが更に好ましい。
 前記電子注入層、電子輸送層は、1種又は2種以上の材料からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<正孔注入層、正孔輸送層>
 前記正孔注入層及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。該正孔注入層及び正孔輸送層は、単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
 これらの層に用いられる正孔注入材料、又は正孔輸送材料としては、低分子化合物であっても高分子化合物であってもよい。
 前記正孔注入材料、又は正孔輸送材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記正孔注入層、及び正孔輸送層には、電子受容性ドーパントを含有させることができる。
 前記電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
 前記無機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば塩化第二鉄、塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモン等のハロゲン化金属;五酸化バナジウム、三酸化モリブデン等の金属酸化物、などが挙げられる。
 前記有機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基等を有する化合物;キノン系化合物、酸無水物系化合物、フラーレン、などが挙げられる。
 これらの電子受容性ドーパントは、1種単独で用いてもよいし、2種以上を用いてもよい。
 前記電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料又は正孔注入材料に対して0.01質量%~50質量%が好ましく、0.05質量%~20質量%がより好ましく、0.1質量%~10質量%が更に好ましい。
 前記正孔注入層及び正孔輸送層は、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
 前記正孔注入層及び正孔輸送層の厚さは、1nm~500nmが好ましく、5nm~200nmがより好ましく、10nm~100nmが更に好ましい。
<正孔ブロック層、電子ブロック層>
 前記正孔ブロック層は、陽極側から発光層に輸送された正孔が陰極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陰極側で隣接する有機化合物層として設けられる。
 前記電子ブロック層は、陰極側から発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陽極側で隣接する有機化合物層として設けられる。
 前記正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
 前記電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが利用できる。
 前記電子ブロック層及び正孔ブロック層は、特に制限はなく、公知の方法に従って形成することができるが、例えば、蒸着法、スパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式、などにより好適に形成することができる。
 前記正孔ブロック層及び電子ブロック層の厚さは、1nm~200nmであるのが好ましく、1nm~50nmであるのがより好ましく、3nm~10nmであるのが更に好ましい。また正孔ブロック層及び電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
<電極>
 本発明の有機電界発光素子は、一対の電極、即ち陽極と陰極とを含む。前記有機電界発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明であることが好ましい。通常、陽極は有機化合物層に正孔を供給する電極としての機能を有していればよく、陰極は有機化合物層に電子を注入する電極としての機能を有していればよい。
 前記電極としては、その形状、構造、大きさ等については特に制限はなく、有機電界発光素子の用途、目的に応じて公知の電極材料の中から適宜選択することができる。
 前記電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物等が好適に挙げられる。
-陽極-
 前記陽極を構成する材料としては、例えば、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、クロム、ニッケル等の金属;これらの金属と導電性金属酸化物との混合物又は積層物;ヨウ化銅、硫化銅等の無機導電性物質;ポリアニリン、ポリチオフェン、ポリピロール等の有機導電性材料、又はこれらとITOとの積層物、などが挙げられる。これらの中でも、導電性金属酸化物が好ましく、生産性、高導電性、透明性等の点からはITOが特に好ましい。
-陰極-
 前記陰極を構成する材料としては、例えば、アルカリ金属(例えばLi、Na、K、Cs等)、アルカリ土類金属(例えばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム-カリウム合金、リチウム-アルミニウム合金、マグネシウム-銀合金、インジウム、イッテルビウム等の希土類金属、などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
 これらの中でも、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
 前記アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%~10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム-アルミニウム合金、マグネシウム-アルミニウム合金など)をいう。
 前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができ、例えば印刷方式、コーティング方式等の湿式方式;真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式;CVD、プラズマCVD法等の化学的方式、などが挙げられる。これらの中でも、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。
 なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィー等による化学的エッチングによって行ってもよいし、レーザー等による物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
<基板>
 本発明の有機電界発光素子は、基板上に設けられていることが好ましく、電極と基板とが直接接する形で設けられていてもよいし、中間層を介在する形で設けられていてもよい。
 前記基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばイットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)等の無機材料;ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル;ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料、などが挙げられる。
 前記基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。基板は透明でも不透明でもよく、透明な場合は無色透明でも有色透明でもよい。
 前記基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
 前記透湿防止層(ガスバリア層)の材料としては、例えば窒化珪素、酸化珪素等の無機物などが挙げられる。
 前記透湿防止層(ガスバリア層)は、例えば高周波スパッタリング法などにより形成することができる。
-保護層-
 有機電界発光素子全体は、保護層によって保護されていてもよい。
 前記保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであれば特に制限はなく、目的に応じて適宜選択することができ、例えばIn、Sn、Pb、Au、Cu、Ag、Al、Ti、Ni等の金属;MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物;SiNx、SiNxOy等の金属窒化物;MgF、LiF、AlF、CaF等の金属フッ化物;ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、などが挙げられる。
 前記保護層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法などが挙げられる。
-封止容器-
 本発明の有機電界発光素子は、封止容器を用いて素子全体が封止されていてもよい。更に、前記封止容器と有機電界発光素子の間の空間には、水分吸収剤又は不活性液体を封入してもよい。
 前記水分吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウム、などが挙げられる。
 前記不活性液体としては、特に制限はなく、目的に応じて適宜選択することができ、例えばパラフィン類、流動パラフィン類;パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤;塩素系溶剤、シリコーンオイル類、などが挙げられる。
-樹脂封止層-
 本発明の有機電界発光素子は、大気からの酸素や水分による素子性能劣化を樹脂封止層により封止することで抑制することが好ましい。
 前記樹脂封止層の樹脂素材としては、特に制限はなく、目的に応じて適宜選択することができ、例えばアクリル樹脂、エポキシ樹脂、フッ素系樹脂、シリコーン系樹脂、ゴム系樹脂、エステル系樹脂、などが挙げられる。これらの中でも、水分防止機能の点からエポキシ樹脂が特に好ましい。前記エポキシ樹脂の中でも熱硬化型エポキシ樹脂、又は光硬化型エポキシ樹脂が好ましい。
 前記樹脂封止層の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、樹脂溶液を塗布する方法、樹脂シートを圧着又は熱圧着する方法、蒸着やスパッタリング等により乾式重合する方法、などが挙げられる。
-封止接着剤-
 本発明に用いられる封止接着剤は、端部よりの水分や酸素の侵入を防止する機能を有する。
 前記封止接着剤の材料としては、前記樹脂封止層で用いる材料と同じものを用いることができる。これらの中でも、水分防止の点からエポキシ系の接着剤が好ましく、光硬化型接着剤あるいは熱硬化型接着剤が特に好ましい。
 前記封止接着剤にフィラーを添加することも好ましい。前記フィラーとしては、例えばSiO、SiO(酸化ケイ素)、SiON(酸窒化ケイ素)、SiN(窒化ケイ素)等の無機材料が好ましい。該フィラーの添加により、封止接着剤の粘度が上昇し、加工適正が向上し、及び耐湿性が向上する。
 前記封止接着剤は、乾燥剤を含有してもよい。前記乾燥剤としては、例えば酸化バリウム、酸化カルシウム、酸化ストロンチウム、などが挙げられる。前記乾燥剤の添加量は、前記封止接着剤に対し0.01質量%~20質量%が好ましく、0.05質量%~15質量%がより好ましい。前記添加量が、0.01質量%未満であると、乾燥剤の添加効果が薄れることになり、20質量%を超えると、封止接着剤中に乾燥剤を均一分散させることが困難になることがある。
 本発明においては、前記乾燥剤の入った封止接着剤をディスペンサー等により任意量塗布し、塗布後第2基板を重ねて、硬化させることにより封止することができる。
 図1は、本発明の有機電界発光素子の層構成の一例を示す概略図である。有機EL素子10は、ガラス基板1上に形成された陽極2(例えばITO電極)と、正孔注入層3と、正孔輸送層4と、発光層5と、電子輸送層6と、電子注入層7と、陰極8(例えばAl-Li電極)とをこの順に積層してなる層構成を有する。なお、陽極2(例えばITO電極)と陰極8(例えばAl-Li電極)とは電源を介して互いに接続されている。
-駆動-
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
 本発明の有機電界発光素子は、薄膜トランジスタ(TFT)によりアクティブマトリックスへ適用することができる。薄膜トランジスタの活性層としてアモルファスシリコン、高温ポリシリコン、低温ポリシリコン、微結晶シリコン、酸化物半導体、有機半導体、カーボンナノチューブ等を適用することができる。
 本発明の有機電界発光素子は、例えばWO2005/088726号パンフレット、特開2006-165529号公報、米国特許出願公開2008/0237598A1明細書などに記載の薄膜トランジスタを適用することができる。
 本発明の有機電界発光素子は、特に制限はなく、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板、ITO層、有機層の屈折率を制御する、基板、ITO層、有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
 本発明の有機電界発光素子からの光取り出し方式は、トップエミッション方式であってもボトムエミッション方式であってもよい。
 本発明の有機電界発光素子は、共振器構造を有してもよい。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明又は半透明電極、発光層、及び金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
 別の好ましい態様では、透明基板上に、透明又は半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
 共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。第一の態様の場合の計算式は、特開平9-180883号公報に記載されている。第2の態様の場合の計算式は、特開2004-127795号公報に記載されている。
-用途-
 本発明の有機電界発光素子は、特に制限はなく、目的に応じて適宜選択することができるが、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信等に好適に利用できる。
 前記有機ELディスプレイをフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33~37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機EL素子を基板上に配置する3色発光法、白色発光用の有機電界発光素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機電界発光素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。また、上記方法により得られる異なる発光色の有機電界発光素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色及び黄色の発光素子を組み合わせた白色発光光源、青色、緑色、赤色の発光素子を組み合わせた白色発光光源、などが挙げられる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(比較例1)
-有機電界発光素子の作製-
 0.5mm厚み、2.5cm角のガラス基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に真空蒸着法にて以下の各層を蒸着した。なお、以下の実施例及び比較例における蒸着速度は、特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。また、以下の各層厚は水晶振動子を用いて測定した。
 まず、ガラス基板上に、陽極としてITO(Indium Tin Oxide)を厚み100nmにスパッタ蒸着した。
 次に、陽極(ITO)上に、正孔注入層として2-TNATA(4,4’,4”-Tris(N-(2-naphtyl)-N-phenyl-amino)-triphenylamine)を厚み140nmに蒸着した。
 次に、正孔注入層上に、正孔輸送層としてα-NPD(Bis[N-(1-naphthyl)-N-pheny]benzidine)を厚み7nmに蒸着した。
 次に、正孔輸送層上に、第二の正孔輸送層として下記構造式で表されるアミン化合物1を厚み3nmに蒸着した。
Figure JPOXMLDOC01-appb-C000049
 次に、第二の正孔輸送層上に、正孔輸送性ホスト材料である下記構造式で表されるH-4〔mCP;(N,N’-dicarbazolyl-3,5-benzene)〕と、該mCPに対して6.0質量%の正孔輸送性燐光発光材料であるFirpic〔iridium(III)bis[4,6-di-fluorophenyl]-pyridinato-)picolinate〕をドープした発光層を30nmの厚みとなるように蒸着した。
Figure JPOXMLDOC01-appb-C000050
 次に、発光層上に、電子輸送層として一般式(1)に含まれる高電子輸送性材料である下記構造式で表される含窒素複素環誘導体1を厚み40nmに蒸着した。
Figure JPOXMLDOC01-appb-C000051

 次に、電子輸送層上に、電子注入層としてLiFを厚み1nmとなるように蒸着した。
 次に、電子注入層上に、陰極としてパタ-ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、金属アルミニウムを厚み100nmとなるように蒸着した。
 以上により作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶、及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ株式会社製)を用いて封止した。以上により、比較例1の有機電界発光素子を作製した。
(比較例2)
-有機電界発光素子の作製-
 比較例1において、電子輸送層として低電子輸送性材料であるBAlq〔Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III)〕を用いた以外は、比較例1と同様にして、有機電界発光素子を作製した。
(比較例3)
-有機電界発光素子の作製-
 比較例2において、発光材料として一般式(2)に含まれる電子輸送性燐光発光材料である下記構造式で表されるD-1を用いた以外は、比較例2と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000052
(実施例1)
-有機電界発光素子の作製-
 比較例1において、発光材料としてFirpicの代わりに上記構造式で表されるD-1を用いた以外は、比較例1と同様にして、有機電界発光素子を作製した。
(実施例2)
-有機電界発光素子の作製-
 実施例1において、電子輸送層として下記構造式で表される含窒素複素環誘導体2を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000053
(実施例3)
-有機電界発光素子の作製-
 実施例1において、電子輸送層として下記構造式で表される含窒素複素環誘導体3を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000054
(実施例4)
-有機電界発光素子の作製-
 実施例1において、電子輸送層として下記構造式で表される含窒素複素環誘導体4を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000055
(実施例5)
-有機電界発光素子の作製-
 実施例1において、発光材料として下記構造式で表されるD-2を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000056
(実施例6)
-有機電界発光素子の作製-
 実施例5において、ホスト材料として下記構造式で表されるH-24を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体2を用いた以外は、実施例5と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000057
(実施例7)
-有機電界発光素子の作製-
 実施例5において、ホスト材料として下記構造式で表されるH-27を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体3を用いた以外は、実施例5と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000058
(実施例8)
-有機電界発光素子の作製-
 実施例1において、ホスト材料として下記構造式で表されるH-17を用い、発光材料として下記構造式で表されるD-3を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体4を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000059

Figure JPOXMLDOC01-appb-C000060
(実施例9)
-有機電界発光素子の作製-
 実施例1において、発光材料として下記構造式で表されるD-4を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000061
(実施例10)
-有機電界発光素子の作製-
 実施例9において、ホスト材料として上記構造式で表されるH-24を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体2を用いた以外は、実施例9と同様にして、有機電界発光素子を作製した。
(実施例11)
-有機電界発光素子の作製-
 実施例1において、発光材料として下記構造式で表されるD-5を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体3を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000062
(実施例12)
-有機電界発光素子の作製-
 実施例1において、発光材料として下記構造式で表されるD-9を用い、電子輸送層として上記構造式で表される含窒素複素環誘導体4を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000063
(実施例13)
-有機電界発光素子の作製-
 実施例12において、電子輸送層として上記構造式で表される含窒素複素環誘導体1を用いた以外は、実施例12と同様にして、有機電界発光素子を作製した。
(実施例14)
-有機電界発光素子の作製-
 実施例2において、発光材料として下記構造式で表されるD-10を用いた以外は、実施例2と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000064
(実施例15)
-有機電界発光素子の作製-
 実施例14において、電子輸送層として上記構造式で表される含窒素複素環誘導体3を用いた以外は、実施例14と同様にして、有機電界発光素子を作製した。
(実施例16)
-有機電界発光素子の作製-
 実施例4において、発光材料として下記構造式で表されるD-14を用いた以外は、実施例4と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000065
(実施例17)
-有機電界発光素子の作製-
 実施例1において、発光材料として下記構造式で表されるD-15を用いた以外は、実施例1と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000066
(実施例18)
-有機電界発光素子の作製-
 実施例2において、発光材料として下記構造式で表されるD-23を用いた以外は、実施例2と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000067
(実施例19)
-有機電界発光素子の作製-
 実施例3において、発光材料として下記構造式で表されるD-24を用いた以外は、実施例3と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000068
(実施例20)
-有機電界発光素子の作製-
 実施例19において、電子輸送層として上記構造式で表される含窒素複素環誘導体4を用いた以外は、実施例19と同様にして、有機電界発光素子を作製した。
 次に、作製した実施例1~20及び比較例1~3について、以下のようにして、駆動電圧、及び外部量子効率を測定した。結果を表1に示す。
<駆動電圧の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。電流が10mA/cmとなったときの電圧を駆動電圧として測定した。
<外部量子効率の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。発光スペクトル・輝度はトプコン社製スペクトルアナライザーSR-3を用いて測定し、これらの数値をもとに電流が10mA/cmにおける外部量子効率を輝度換算法により算出した。
Figure JPOXMLDOC01-appb-T000069

 表1の結果から、比較例1と比較例2を比較した場合、正孔輸送性燐光発光材料であるFirpicを用いた場合は、電子輸送層を低電子輸送性材料であるBAlqから高電子輸送性材料である含窒素複素環誘導体1に変えたところ、確かに駆動電圧は低下しているが、外部量子効率の低下が生じてしまい、せっかくの燐光発光による高い量子効率と低電圧化を両立させることができなかった。
 しかし、電子輸送性燐光発光材料率のである四座配位子白金錯体(D-1)を用いた比較例3と実施例1を比較すると、電子輸送層をBAlqから含窒素複素環誘導体1に変えることにより、大幅な低電圧化が見られ、更に外部量子効率は高い効率を維持させることができた。また、実施例2~4では一般式(1)を満たす含窒素複素環誘導体3種類で同様の効果が認められ、実施例5~20では一般式(2)を満たす電子輸送性燐光発光材料においてやはり同様の効果が認められた。
(比較例4)
-有機電界発光素子の作製-
 比較例1において、正孔注入層の2-TNATAを、DNTPD(N,N’-bis-[4-(di-m-tolylamino)phenyl]-N,N’-diphenylbiphenyl-4,4’-diamine)に代えた以外は、比較例1と同様にして、有機電界発光素子を作製した。
(実施例21)
-有機電界発光素子の作製-
 比較例4において、発光材料としてFirpicを下記構造式で表されるD-1に代えた以外は、比較例4と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000070
(実施例22)
-有機電界発光素子の作製-
 実施例21において、電子輸送層として下記構造式で表される含窒素複素環誘導体2を用いた以外は、実施例21と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000071
(実施例23)
-有機電界発光素子の作製-
 実施例21において、電子輸送層として下記構造式で表される含窒素複素環誘導体3を用いた以外は、実施例21と同様にして、有機電界発光素子を作製した。
Figure JPOXMLDOC01-appb-C000072
 得られた比較例4及び実施例21~23について、実施例1と同じ方法により、駆動電圧及び外部量子効率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000073
 本発明の有機電界発光素子は、駆動電圧の低電圧化を図れると共に、高い発光効率を維持することが可能となるので、例えば表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、光通信などに好適に用いられる。

Claims (12)

  1.  陽極と陰極の間に、発光層を含む少なくとも一層の有機層を有してなり、
     前記有機層における少なくとも1層が、下記一般式(1)で表される含窒素複素環誘導体から選択される少なくとも1種を含有し、かつ前記有機層における少なくとも1層が、下記一般式(2)で表される電子輸送性燐光発光材料を含有することを特徴とする有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000001

     ただし、前記一般式(1)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。Rは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の場合、複数のRは同一でも異なっていてもよく、また、隣接する複数のR基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環を形成していてもよい。
    Figure JPOXMLDOC01-appb-C000002

     ただし、前記一般式(2)中、X、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。X、X、X及びXのうち、いずれか1つ以上は、窒素原子を表す。X、X、X、X、X及びX10は、それぞれ独立に炭素原子又は窒素原子を表す。X11及びX12は、それぞれ独立に、炭素原子又は窒素原子を表し、X13、X14及びX15は、それぞれ独立に、炭素原子、窒素原子、酸素原子、又は硫黄原子を表し、X11、X12、X13、X14及びX15により表される5員環骨格に含まれる窒素原子の数は、2以下である。Lは、単結合又は2価の連結基を表す。
  2.  一般式(1)で表される含窒素複素環誘導体が、下記一般式(3)で表される含窒素複素環誘導体である請求項1に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000003

     ただし、前記一般式(3)中、A~Aは、それぞれ独立に、窒素原子又は炭素原子である。Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基であり、Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
     L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
     R’は、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
  3.  一般式(3)で表される含窒素複素環誘導体が、下記一般式(4)で表される含窒素複素環誘導体である請求項2に記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000004

     ただし、前記一般式(4)中、A及びAは、それぞれ独立に、窒素原子又は炭素原子である。
     Arは、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数3~60のヘテロアリール基である。Arは、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基である。ただし、Ar及びArのいずれか一方は、置換もしくは無置換の核炭素数10~60の縮合環基、又は置換もしくは無置換の核炭素数3~60のモノヘテロ縮合環基である。
     L及びLは、それぞれ独立に、単結合、置換もしくは無置換の核炭素数6~60のアリーレン基、置換もしくは無置換の核炭素数3~60のヘテロアリーレン基、又は置換もしくは無置換のフルオレニレン基である。
     R’及びR”は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数6~60のアリール基、置換もしくは無置換の核炭素数3~60のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、又は置換もしくは無置換の炭素数1~20のアルコキシ基であり、R’及びR”は同一でも異なっていてもよい。
  4.  一般式(1)、(3)及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、L及びLの少なくともいずれかが、下記構造式で表される基から選択される請求項1から3のいずれかに記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005

     
  5.  一般式(1)、(3)及び(4)の少なくともいずれかで表される含窒素複素環誘導体において、Arが、下記一般式(5)から(14)のいずれかで表される基である請求項1から4のいずれかに記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000006

     ただし、前記式中、R~R92は、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の核炭素数6~40のアリールオキシ基、置換もしくは無置換の核炭素数12~80のジアリールアミノ基、置換もしくは無置換の核炭素数6~40のアリール基、置換もしくは無置換の核炭素数3~40のヘテロアリール基、又は置換もしくは無置換の核炭素数18~120のジアリールアミノアリール基を表す。Lは、単結合、又は下記構造式で表される置換基を表す。
    Figure JPOXMLDOC01-appb-C000007
  6.  一般式(2)で表される化合物が、下記一般式(15a-3)で表される化合物である請求項1から5のいずれかに記載の有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000008

     ただし、前記一般式(15a-3)中、X、X及びXは、それぞれ独立に、炭素原子又は窒素原子を表す。R41、R42、R43、R44、R45及びR46は、それぞれ独立に水素原子又は置換基を表す。X53及びX54は、それぞれ独立に、炭素原子又は窒素原子を表し、X53及びX54を含有する5員環骨格に含まれる窒素原子の数は、1又は2である。R75は、水素原子又は置換基を表す。Lは、単結合又は2価の連結基を表す。
  7.  一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、及び一般式(15a-3)で表される四座配位子の白金錯体化合物の少なくとも一種が、発光層に含有される請求項1から6のいずれかに記載の有機電界発光素子。
  8.  一般式(2)で表される部分構造を有する多座配位子の金属錯体化合物、及び一般式(15a-3)で表される四座配位子の白金錯体化合物の少なくとも一種と、少なくとも一種のホスト材料が、発光層に含有される請求項1から7のいずれかに記載の有機電界発光素子。
  9.  少なくとも一種のホスト材料が正孔輸送性である請求項8に記載の有機電界発光素子。
  10.  含窒素複素環誘導体が、電子注入材料及び電子輸送材料の少なくともいずれかとして用いられている請求項1から9のいずれかに記載の有機電界発光素子。
  11.  含窒素複素環誘導体を含有する層が、還元性ドーパントを含有する請求項1から10のいずれかに記載の有機電界発光素子。
  12.  還元性ドーパントが、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、及び希土類金属の有機錯体から選ばれる少なくとも一種である請求項11に記載の有機電界発光素子。
PCT/JP2009/071557 2009-01-22 2009-12-25 有機電界発光素子 WO2010084690A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980155173.8A CN102292840B (zh) 2009-01-22 2009-12-25 有机电致发光元件
EP09838880.4A EP2381501B1 (en) 2009-01-22 2009-12-25 Organic electroluminescent element
KR1020117016226A KR101659104B1 (ko) 2009-01-22 2009-12-25 유기 전계 발광 소자
US13/132,046 US20110227058A1 (en) 2009-01-22 2009-12-25 Organic electroluminescence element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009012389A JP5210187B2 (ja) 2009-01-22 2009-01-22 有機電界発光素子
JP2009-012389 2009-01-22

Publications (1)

Publication Number Publication Date
WO2010084690A1 true WO2010084690A1 (ja) 2010-07-29

Family

ID=42355753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071557 WO2010084690A1 (ja) 2009-01-22 2009-12-25 有機電界発光素子

Country Status (7)

Country Link
US (1) US20110227058A1 (ja)
EP (1) EP2381501B1 (ja)
JP (1) JP5210187B2 (ja)
KR (1) KR101659104B1 (ja)
CN (1) CN102292840B (ja)
TW (1) TWI480358B (ja)
WO (1) WO2010084690A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716282B2 (en) 2009-10-30 2014-05-06 Janssen Pharmaceutica Nv Imidazo[1,2-b]pyridazine derivatives and their use as PDE10 inhibitors
US8859543B2 (en) 2010-03-09 2014-10-14 Janssen Pharmaceutica Nv Imidazo[1,2-a]pyrazine derivatives and their use for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases
CN104744349A (zh) * 2010-11-04 2015-07-01 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
US9550784B2 (en) 2012-07-09 2017-01-24 Beerse Pharmaceutica NV Inhibitors of phosphodiesterase 10 enzyme
US9669035B2 (en) 2012-06-26 2017-06-06 Janssen Pharmaceutica Nv Combinations comprising PDE 2 inhibitors such as 1-aryl-4-methyl-[1,2,4]triazolo-[4,3-A]]quinoxaline compounds and PDE 10 inhibitors for use in the treatment of neurological of metabolic disorders
US10604523B2 (en) 2011-06-27 2020-03-31 Janssen Pharmaceutica Nv 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5627883B2 (ja) * 2009-01-07 2014-11-19 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
TWI638807B (zh) * 2009-04-28 2018-10-21 環球展覽公司 具有甲基-d3取代之銥錯合物
US20130203996A1 (en) 2010-04-30 2013-08-08 Jian Li Synthesis of Four Coordinated Palladium Complexes and Their Applications in Light Emitting Devices Thereof
JP5794771B2 (ja) * 2010-09-30 2015-10-14 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子用材料、膜、発光層、有機電界発光素子、及び有機電界発光素子の作製方法
CN106986858B (zh) * 2012-01-16 2019-08-27 默克专利有限公司 有机金属络合物
JP6118034B2 (ja) * 2012-02-06 2017-04-19 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子とそれに用いることができる化合物および有機電界発光素子用材料、並びに該素子を用いた発光装置、表示装置及び照明装置
KR102124227B1 (ko) 2012-09-24 2020-06-17 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 금속 화합물, 방법, 및 이의 용도
CN103709180B (zh) * 2012-09-29 2016-12-21 昆山维信诺显示技术有限公司 含咪唑并[1,2-a]吡啶基团的稠环芳烃衍生物及其在OLED中的应用
US20150274762A1 (en) 2012-10-26 2015-10-01 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
JP6603445B2 (ja) 2013-06-10 2019-11-06 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティー 改変された発光スペクトルを有する蛍光性四座配位金属錯体
US9130182B2 (en) * 2013-06-28 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, lighting device, light-emitting device, and electronic device
JP6804823B2 (ja) * 2013-10-14 2020-12-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
WO2016025921A1 (en) 2014-08-15 2016-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
WO2016029186A1 (en) 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent oleds
WO2016029137A1 (en) 2014-08-22 2016-02-25 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
EP3266790B1 (en) 2016-07-05 2019-11-06 Samsung Electronics Co., Ltd Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
CN110291094A (zh) 2016-10-12 2019-09-27 亚利桑那州立大学董事会 窄带红色磷光四配位基铂(ii)络合物
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
WO2018140765A1 (en) 2017-01-27 2018-08-02 Jian Li Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
WO2019079508A2 (en) 2017-10-17 2019-04-25 Jian Li PREFERRED MOLECULAR ORIENTATED PHOSPHORESCENT EXCIMERS AS MONOCHROMATIC TRANSMITTERS FOR DISPLAY AND LIGHTING APPLICATIONS
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
KR102027512B1 (ko) * 2017-12-22 2019-10-01 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
KR102027523B1 (ko) * 2017-12-22 2019-10-01 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
US12037348B2 (en) 2018-03-09 2024-07-16 Arizona Board Of Regents On Behalf Of Arizona State University Blue and narrow band green and red emitting metal complexes
CN112585239A (zh) 2018-04-11 2021-03-30 纳米技术有限公司 具有量子点和热活化延迟荧光分子的顶发射型印刷显示器
CN109535205B (zh) * 2018-12-30 2021-10-08 浙江工业大学 一种含有四齿配体和芳氧基衍生物的铂配合物
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
KR102332549B1 (ko) * 2019-09-25 2021-12-01 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
KR102150870B1 (ko) * 2019-09-25 2020-09-02 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
KR102259315B1 (ko) * 2019-09-25 2021-05-31 엘지디스플레이 주식회사 유기발광다이오드 및 이를 포함하는 유기발광 표시장치
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
KR20210142790A (ko) 2020-05-18 2021-11-26 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 유기 금속 화합물
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180883A (ja) 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc 微小光共振器型有機電界発光素子
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
WO2004028217A1 (ja) * 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2004034751A1 (ja) * 2002-10-09 2004-04-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2004127795A (ja) 2002-10-04 2004-04-22 Sony Corp 表示素子およびこれを用いた表示装置
JP2004515506A (ja) 2000-12-07 2004-05-27 キヤノン株式会社 光電子デバイス用のジュウテリウム化された有機半導体化合物
JP2004214179A (ja) 2002-12-17 2004-07-29 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221068A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221062A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004217547A (ja) * 2003-01-14 2004-08-05 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004221065A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004327313A (ja) 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 有機電界発光素子
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2008126130A (ja) 2006-11-20 2008-06-05 Hitachi Koki Co Ltd 遠心分離機用ロータとこれを備えた遠心分離機
US20080237598A1 (en) 2007-03-27 2008-10-02 Masaya Nakayama Thin film field effect transistor and display
JP2009283891A (ja) * 2008-04-22 2009-12-03 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4041624B2 (ja) 1999-07-21 2008-01-30 三井化学株式会社 有機電界発光素子
EP1582516B1 (en) * 2003-01-10 2013-07-17 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP4500735B2 (ja) * 2004-09-22 2010-07-14 富士フイルム株式会社 有機電界発光素子
JP4531509B2 (ja) * 2004-09-27 2010-08-25 富士フイルム株式会社 発光素子
WO2006073001A1 (ja) * 2005-01-07 2006-07-13 Sugikou Co., Ltd. 緑化仮設構造体
JP5006606B2 (ja) 2006-09-13 2012-08-22 双葉電子工業株式会社 有機el素子用化合物及び有機el素子
JP2009076865A (ja) * 2007-08-29 2009-04-09 Fujifilm Corp 有機電界発光素子

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09180883A (ja) 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc 微小光共振器型有機電界発光素子
JP2004515506A (ja) 2000-12-07 2004-05-27 キヤノン株式会社 光電子デバイス用のジュウテリウム化された有機半導体化合物
JP2002235076A (ja) 2001-02-09 2002-08-23 Fuji Photo Film Co Ltd 遷移金属錯体及びそれからなる発光素子用材料、並びに発光素子
WO2004028217A1 (ja) * 2002-09-20 2004-04-01 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2004127795A (ja) 2002-10-04 2004-04-22 Sony Corp 表示素子およびこれを用いた表示装置
WO2004034751A1 (ja) * 2002-10-09 2004-04-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
JP2004214179A (ja) 2002-12-17 2004-07-29 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221062A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221068A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004221065A (ja) 2002-12-27 2004-08-05 Fuji Photo Film Co Ltd 有機電界発光素子
JP2004217547A (ja) * 2003-01-14 2004-08-05 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004327313A (ja) 2003-04-25 2004-11-18 Fuji Photo Film Co Ltd 有機電界発光素子
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
JP2006165529A (ja) 2004-11-10 2006-06-22 Canon Inc 非晶質酸化物、及び電界効果型トランジスタ
JP2008126130A (ja) 2006-11-20 2008-06-05 Hitachi Koki Co Ltd 遠心分離機用ロータとこれを備えた遠心分離機
US20080237598A1 (en) 2007-03-27 2008-10-02 Masaya Nakayama Thin film field effect transistor and display
JP2009283891A (ja) * 2008-04-22 2009-12-03 Fujifilm Corp 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIO YAMAMOTO: "YUHKI KINZOKU KAGAKU-KISO TO OUYOU", 1982, SHOKABO PUBLISHING CO., LTD.
H. YERSIN: "Photochemistry and Photophysics of Coordination Compounds", 1987, SPRINGER-VERLAG CO.
MONTHLY DISPLAY, September 2000 (2000-09-01), pages 33 - 37
See also references of EP2381501A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716282B2 (en) 2009-10-30 2014-05-06 Janssen Pharmaceutica Nv Imidazo[1,2-b]pyridazine derivatives and their use as PDE10 inhibitors
US8859543B2 (en) 2010-03-09 2014-10-14 Janssen Pharmaceutica Nv Imidazo[1,2-a]pyrazine derivatives and their use for the prevention or treatment of neurological, psychiatric and metabolic disorders and diseases
CN104744349A (zh) * 2010-11-04 2015-07-01 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
CN104744349B (zh) * 2010-11-04 2017-09-22 捷恩智株式会社 电子传输材料及使用其的有机电激发光元件
US10604523B2 (en) 2011-06-27 2020-03-31 Janssen Pharmaceutica Nv 1-aryl-4-methyl-[1,2,4]triazolo[4,3-a]quinoxaline derivatives
US9669035B2 (en) 2012-06-26 2017-06-06 Janssen Pharmaceutica Nv Combinations comprising PDE 2 inhibitors such as 1-aryl-4-methyl-[1,2,4]triazolo-[4,3-A]]quinoxaline compounds and PDE 10 inhibitors for use in the treatment of neurological of metabolic disorders
US9550784B2 (en) 2012-07-09 2017-01-24 Beerse Pharmaceutica NV Inhibitors of phosphodiesterase 10 enzyme

Also Published As

Publication number Publication date
KR101659104B1 (ko) 2016-09-22
TWI480358B (zh) 2015-04-11
KR20110114569A (ko) 2011-10-19
TW201033329A (en) 2010-09-16
JP2010171205A (ja) 2010-08-05
EP2381501A1 (en) 2011-10-26
US20110227058A1 (en) 2011-09-22
EP2381501B1 (en) 2014-07-23
CN102292840B (zh) 2014-08-13
JP5210187B2 (ja) 2013-06-12
CN102292840A (zh) 2011-12-21
EP2381501A4 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5210187B2 (ja) 有機電界発光素子
JP2010278354A (ja) 有機電界発光素子
JP4850521B2 (ja) 有機電界発光素子
US8294361B2 (en) Organic electric field light-emitting element
JP5324513B2 (ja) 有機電界発光素子
WO2011021433A1 (ja) 有機電界発光素子
JP2008109085A (ja) 有機電界発光素子
JP2007287652A (ja) 発光素子
JP5833322B2 (ja) 有機電界発光素子及びその製造方法
WO2010140482A1 (ja) 有機電界発光素子
JP2011171279A (ja) 有機電界発光素子
JP5649327B2 (ja) 有機電界発光素子
JP5670223B2 (ja) 有機電界発光素子
JP5572004B2 (ja) 白色有機電界発光素子
JP5761962B2 (ja) 有機電界発光素子
JP2011192829A (ja) 有機電界発光素子
KR101989746B1 (ko) 백색 유기 전계발광 소자
JP2011034805A (ja) 有機電界発光素子及びその評価方法
JP2010157606A (ja) 有機電界発光素子
JP5890504B2 (ja) 有機電界発光素子
JP2010171204A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155173.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13132046

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009838880

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016226

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE