JP2007287652A - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
JP2007287652A
JP2007287652A JP2006264842A JP2006264842A JP2007287652A JP 2007287652 A JP2007287652 A JP 2007287652A JP 2006264842 A JP2006264842 A JP 2006264842A JP 2006264842 A JP2006264842 A JP 2006264842A JP 2007287652 A JP2007287652 A JP 2007287652A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting layer
organic
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006264842A
Other languages
English (en)
Inventor
Manabu Tobiyo
学 飛世
Masaji Kinoshita
正兒 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006264842A priority Critical patent/JP2007287652A/ja
Priority to US11/725,523 priority patent/US20070235742A1/en
Publication of JP2007287652A publication Critical patent/JP2007287652A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Abstract

【課題】高い外部量子効率の発光素子を提供する。
【解決手段】一対の電極間に発光層を挟持してなる有機電界発光素子であって、前記発光層(4a,4b)が厚み方向に複数に分割され、該分割された発光層間に電荷輸送材料および発光材料の少なくとも一方を含有する中間層(8)を有する。
【選択図】図2

Description

本発明は外部量子効率が改良された発光素子に関する。特に、フルカラ−ディスプレイ、バックライト、照明光源等の面光源やプリンタ−等の光源アレイ等に有効に利用できる発光素子に関する。
発光素子は、発光層もしくは発光層を含む複数の機能層と、これらの層を挟んだ対向電極とから構成されている。発光素子は、陰極から注入された電子と陽極から注入された正孔とが発光層において再結合し、生成した励起子からの発光及び前記励起子の少なくとも一方からエネルギー移動して生成した他の分子の励起子からの発光を利用した、発光を得るための素子である。
これまで発光素子は、機能を分離した積層構造を用いることにより、輝度及び素子効率が大きく改善され発展してきた。例えば、正孔輸送層と発光兼電子輸送層を積層した二層積層型素子や正孔輸送層と発光層と電子輸送層とを積層した三層積層型素子や、正孔輸送層と発光層と正孔阻止層と電子輸送層とを積層した四層積層型素子がよく用いられる(例えば、非特許文献1参照。)。
しかしながら、発光素子の実用化には未だ多くの課題が残されている。第1に高い外部量子効率を達成すること、第2に高い駆動耐久性を達成することである。特に、連続駆動時の品質低下、即ち非発光あるいは輝度低下領域(いわゆるダークスポット)の発生と成長は最大の課題である。
例えば、発光層と正孔輸送層との間に0.1nm〜5nmの界面層をバリア層として設け、正孔の移動を遅くすることによって正孔と電子の移動バランスを調整して外部量子効率を高める試みが提案されている(例えば、特許文献1参照。)。しかしながら、この手段では、キャリア総体の移動は低下するので輝度が低下し、駆動電圧が増加し、また、キャリアの素子内滞留時間が長くなるために駆動耐久性が低下する問題が懸念される。
また、マルチフォトンと呼ばれる発光層と機能層を含む一つの発光ユニットを多層に積層した構成が知られている。例えば、複数の有機発光素子(以後、有機EL素子とも記述する。)の発光ユニットを絶縁層で隔離し、各発光ユニットにそれぞれ対向する電極を配した構成が開示されている(例えば、特許文献2参照。)。しかしながら、この構成では、発光ユニット間の絶縁層および電極が発光の取り出しを妨げるため、実質的に各発光ユニットから発光が十分に利用することができない。また、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。無機発光素子(以後、無機EL素子とも記述する。)において、同様に発光ユニットを積層し、各発光ユニットを絶縁層で隔離した構成も開示されている(例えば、特許文献3参照。)。
マルチフォトン有機EL素子が開示されて、複数の発光層が、互いに電気絶縁性電荷発生層によって隔離されている(例えば、特許文献4参照。)。しかしながら、この構成においても、発光ユニットが単に複数積層されているだけであって、各発光ユニットが本来抱えている外部量子効率の低さを改良する手段にはならない。
高い外部量子効率と高い駆動耐久性とを両立させることは、実用的に有用な発光素子を設計する上で極めて重要な課題であり、常に改良を求められている課題であった。
サイエンス(Science),267巻,3号,1995年,1332頁 特開2003−123984号公報 特開平6−310275号公報 特開平8−162273号公報 特開2003−45676号公報
本発明は、外部量子効率が改良された発光素子を提供することを目的とする。
本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に複数に分割され、該分割された発光層間に電荷輸送材料および発光材料の少なくとも一方を含有する中間層を有することを特徴とする発光素子。
<2> 前記発光層が厚み方向に2層以上50層以下に分割され、該分割された単一の発光層の厚みが2nm以上50nm以下であることを特徴とする<1>に記載の発光素子。
<3> 前記中間層が導電性電荷ブロック層であることを特徴とする<1>または<2>に記載の発光素子。
<4> 前記中間層が前記電荷輸送材料および前記発光材料を含有することを特徴とする<1>〜<3>のいずれか1項に記載の発光素子。
<5> 前記電荷輸送材料として正孔輸送材料および電子輸送材料の少なくとも一方を含有することを特徴とする<1>〜<4>のいずれか1項に記載の発光素子。
<6> 前記陽極に最も近い分割された発光層と該陽極との間に前記発光層に隣接して電子ブロック層を有することを特徴とする<1>〜<5>のいずれか1項に記載の発光素子。
<7> 前記電子ブロック層が発光材料を含有することを特徴とする<6>に記載の発光素子。
<8> 前記陰極も最も近い分割された発光層と陰極との間に該発光層に隣接して正孔ブロック層を有することを特徴とする<1>〜<7>のいずれか1項に記載の発光素子。
<9> 前記正孔ブロック層が発光材料を含有することを特徴とする<8>に記載の発光素子。
<10> 前記発光層の発光材料が燐光材料であることを特徴とする<1>〜<9>のいずれか1項に記載の発光素子。
<11> 前記中間層が発光材料として燐光材料を含有することを特徴とする<1>〜<10>のいずれか1項に記載の発光素子。
<12> 前記発光素子が有機電界発光素子であることを特徴とする<1>〜<11>のいずれか1項に記載の発光素子。
本発明により、飛躍的に外部量子効率が改良された発光素子が提供される。さらに、外部量子効率の改良と共に駆動耐久性が改良された発光素子が提供される。
本発明の発光素子は、一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に複数に分割され、該分割された発光層間に中間層を有することを特徴とする。
好ましくは、前記中間層が導電性電荷ブロック層である。
即ち、本発明の発光素子は、厚み方向に薄層に細分された発光層と各細分された発光層間に中間層を挟持した多数積層構成を特徴とする。
さらに好ましくは、本発明の発光素子は、厚み方向に薄層に細分された発光層と各細分された発光層間に中間層を挟持し、発光層と陽極との間に電子ブロック層、および発光層と陰極との間に正孔ブロック層を配した多数積層構成である。
本発明者らは、発光素子における外部量子効率の低い原因を解析した結果、主な発光は発光層と隣接層の極く限られた界面付近で起こっていること、また、電荷がこの極限られた界面に局在化する結果、再結合に至るまでに徐々に劣化を引き起こすことも原因と推定された。
本発明者らは改良手段を鋭意探索の結果、発光層を厚み方向に複数の薄層の発光層に細分し、細分された各発光層間に中間層として導電性電荷ブロック層を配することにより、解決出来ることを見出し本発明に到達した。即ち、電子と正孔の局在化する領域間の距離が短縮され再結合の速度が速まり、効率が向上した。また、各薄層の発光ユニットを連結するのは導電性電荷ブロック層であり、駆動抵抗を大きく高めることなく、かつ各素子で発生した光を効率よく外部に取り出すことが出来る。従って、高輝度の発光を得ることが可能である。さらに導電性電荷ブロック層に発光材料を含有させることにより、該層が発光することも可能であって、より高輝度の発光を得ることが可能である。
本発明の発光素子は、有機EL素子および無機EL素子のいずれでも構わないが、特に有機EL素子でより高い効果を得ることが出来る。
1.素子の構成
本発明の素子は、一対の電極間に、少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に分割され、分割された各発光層間に電荷輸送材料および発光材料の少なくとも一方を含有する中間層を有する。該中間層は導電性電荷ブロック層として機能する。本願では厚み方向に細分された発光層を「単位発光層」と以後記載する。
本発明における単位発光層の厚みは、好ましくは2nm以上50nm以下、より好ましくは2nm以上20nm以下、さらに好ましくは2nm以上10nm以下である。
本発明における発光層は、好ましくは、厚み方向に3層以上30層以下、より好ましくは、4層以上15層以下に細分される。
本発明における単位発光層は、電荷輸送材料および発光材料の少なくとも一方を含有する中間層によって連結される。好ましくは、少なくとも厚み方向に4層の単位発光層とそれらを連結する3層の中間層を有する。
本発明のより好ましい態様は、陽極側に最も近い単位発光層と陽極との間の該単位発光層に隣接して電子ブロック層を配した構成である。また別の好ましい態様として、陰極側に最も近い単位発光層と陰極との間の該単位発光層に隣接して正孔ブロック層を配した構成である。最も好ましくは、陽極側に最も近い単位発光層と陽極との間の該単位発光層に隣接して電子ブロック層を配し、陰極側に最も近い単位発光層と陰極との間の該単位発光層に隣接して正孔ブロック層を配した構成である。
本発明における中間層は、好ましくは、電荷輸送材料および発光材料の少なくとも一方を含有する。好ましくは、前記電荷輸送材料として正孔輸送材料および電子輸送材料を含有する。
好ましくは、前記中間層が発光材料として燐光材料を含有する。
(中間層)
本発明における中間層についてより詳細に説明する。
本発明における中間層は、導電性電荷ブロック層として機能する。
本発明における導電性電荷ブロック層とは、陰極側から発光層側に輸送された電子が、陽極側に通りぬけることを抑制し、また、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを抑制する機能を有する層であり、完全にキャリアの移動を止めるための層ではない。
1)導電性電荷ブロック材料
本発明における中間層が含有する導電性電荷ブロック材料は、ある程度キャリアの移動をブロックしつつ、中間層の陰極側隣接層から電子を受け取り、陽極側の隣接層に渡すことができる電子輸送材料、あるいは中間層の陽極側隣接層から正孔を受け取り、陰極側の隣接層に渡すことができる正孔輸送材料で有れば特に限定されることはない。
例えば、本発明における中間層が含有する導電性電荷ブロック材料として、以下の材料を挙げることができる。すなわち、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、およびポリフルオレン誘導体等の高分子化合物を挙げることができる。
2)中間層の構成
本発明における中間層は、上記材料を発光層内の電荷輸送材料(ホスト)および発光材料の少なくとも一方と共蒸着した有機化合物層として設けることができる。
中間層を構成する割合は、一般的に、導電性電荷ブロック材料が5質量%〜90質量%、発光材料が0質量%〜30質量%、電荷輸送材料が0質量%〜95質量%(発光材料と電荷輸送材料の合計が10質量%〜95質量%)あることが好ましく、導電性電荷ブロック材料が10質量%〜80質量%、発光材料が0質量%〜30質量%、電荷輸送材料が0質量%〜90質量%(発光材料と電荷輸送材料の合計が20質量%〜80質量%)であることが好ましく、導電性電荷ブロック材料が30質量%〜70質量%、発光材料が0質量%〜30質量%、電荷輸送材料が0質量%〜70質量%(発光材料と電荷輸送材料の合計が30質量%〜70質量%)であることが更に好ましい。
導電性電荷ブロック材料が90質量%を超えるとキャリアの移動が大きく阻害され駆動電圧が上がる問題があり好ましくない。導電性電荷ブロック材料が5質量%を下回ると電荷のブロック性能が殆どなくなるため外部量子効率の向上効果が現れない問題があり好ましくない。
3)厚み
本発明における中間層の厚さは、駆動電圧を下げるため、一般的に3nm〜100nmであることが好ましく、5nm〜30nmであることが好ましく、10nm〜20nmであることが更に好ましい。
厚みが100nmを超えるとキャリアの移動が大きく阻害され駆動電圧が上がる問題が生じるので好ましくない。厚みが3nmを下回ると層の形成が不十分となり導電性電荷ブロック層としての機能を部分的あるいは全面的に失うので好ましくない。
4)層数
本発明における中間層の層数は、1〜49であることが好ましく、より好ましくは2〜29、さらに好ましくは3〜14である。
(発光層)
本発明の発光素子に用いられる発光層は、有機EL発光層もしくは無機EL発光層である。各発光層についてはそれぞれの発光素子の説明で詳細に説明する。
本発明の構成においては、発光層は厚み方向に薄層に細分化され、好ましくは、3層以上30層以下、より好ましくは、4層以上15層以下に細分されていることを特徴とする。
本発明における発光層は、好ましくは、厚み方向に細分された単位発光層の厚みが2nm以上50nm以下、より好ましくは2nm以上20nm以下、さらに好ましくは2nm以上10nm以下と極めて薄層であることを特徴とする。
本発明における発光素子に電流を通じると、発光層の単位ユニットの隣接する導電性電荷ブロック層との界面近傍に正孔および電子が発生し蓄積してこれらが再結合することにより発光する。本発明においては発光層が複数のユニットに細分され、各ユニットの厚みは薄層であるので、各ユニットにおける正孔濃度が蓄積する領域と電子が蓄積する領域との距離が近くなるため、効率的に再結合する。また、正孔および電子の滞留時間も短くなるため、発光に結びつかない反応による消費が減少するため、さらに効率が向上する。
本発明における多層の発光層は、互いに同一の発光を示す層であっても、互いに異なる発光を示す層であっても良い。例えば、同一の発光を示す層であれば、単一の発光で輝度の高い発光を取り出すことができる。一方、互いに異なる波長の光を発光する場合、それぞれの発光波長の組合せによって所望の色調の発光を取り出すことも、あるいは白色発光を得ることも出来る。
(電子ブロック層)
本発明における電子ブロック層は正孔輸送材料から構成され、陽極から注入された正孔を陽極側に最も近い単位発光層に輸送し、かつ、該単位発光層から陽極側に抜け出る電子をブロックできる正孔輸送性材料であれば特に限定されることはない。電子ブロック層には、発光効率向上、高耐久化の観点から、発光材料が含有されていても良い。
本発明における電子ブロック層の厚さは、駆動電圧を下げるため、一般的に3nm〜100nmであることが好ましく、5nm〜30nmであることが好ましく、10nm〜20nmであることが更に好ましい。厚みが100nmを超えると正孔の移動が大きく阻害され駆動電圧が上がる問題が生じるので好ましくない。厚みが3nmを下回ると層の形成が不十分となり電子ブロック層としての機能を部分的あるいは全面的に失うので好ましくない。
(正孔ブロック層)
本発明における正孔ブロック層は電子輸送材料から構成され、陰極から注入された電子を陰極側に最も近い単位発光層に輸送し、かつ、該単位発光層から陰極側に抜け出る正孔をブロックできる電子輸送性材料であれば特に限定されることはない。正孔ブロック層には、発光効率向上、高耐久化の観点から、発光材料が含有されていても良い。
本発明における正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に3nm〜100nmであることが好ましく、5nm〜30nmであることが好ましく、10nm〜20nmであることが更に好ましい。厚みが100nmを超えると電子の移動が大きく阻害され駆動電圧が上がる問題が生じるので好ましくない。厚みが3nmを下回ると層の形成が不十分となり正孔ブロック層としての機能を部分的あるいは全面的に失うので好ましくない。
(層構成)
図面により層構成を説明する。図示した層構成は、本願の意図を説明するのに必要な層のみを示している。発光素子として必要であっても本願の説明に直接必要ではない要素は省略してある。図1は比較の発光素子の層構成の概略図である。基板(図示していない)上にITO等からなる陽極電極1を有し、その上に順に正孔注入層2、正孔輸送層3、発光層4、電子輸送層5、電子注入層6、およびアルミニウム等の金属による陰極7を配する。図2は本願の発光素子の一例であり、発光層が第1発光層4aおよび第2発光層4bの2つに分割され、間に中間層8を配した構成である。2つの発光層4a、4bおよび中間層8を含む総厚みは、図1における発光層4とほぼ同等である。図3は本願の別の層構成の例を示す。発光層は4a、4b、4c、および4dに4分割され、各分割された発光層の間にそれぞれ中間層8a、8b、および8cを配する。4つの分割された発光層4a、4b、4c、および4dと3つの中間層8a、8b、および8cを含めた総厚みは、図1における発光層とほぼ同等である。図4は本願の別の層構成の例を示す。発光層は4a、4b、および4cに3分割され、各分割された発光層の間にそれぞれ中間層8a、および8bを配し、単位発光層4aと正孔輸送層3との間に電子ブロック層9、および単位発光層4cと電子輸送層5との間に正孔ブロック層10を配した構成である。3つの分割された発光層4a、4b、および4d、2つの中間層8a、および8b、電子ブロック層9、および正孔ブロック層10を含めた総厚みは、図1における発光層とほぼ同等である。
2.有機電界発光素子
発明に用いられる有機電界発光素子を構成する各構成要素について、さらに詳細に説明する。
本発明における有機電界発光素子は、共振器構造を有し、陰極と陽極との間に薄層の複数の有機化合物層より構成されるのが好ましい。
本発明における好ましい態様の一つは、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明または半透明電極、発光層、および金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
本発明におけるもう一つの好ましい態様は、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。
第一の態様の場合の計算式は特開平9−180883号明細書に記載されている。第2の態様の場合の計算式は特開2004−127795号明細書に記載されている。
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び発光層と電子輸送層との間に電子輸送性中間層の少なくとも一方を有する。また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。
本発明の有機電界発光素子における有機化合物層の好適な態様は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(2)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様、(3)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)、を有する態様である。
本発明においては、発光層は厚み方向に薄層に細分され、各細分された発光層間に中間層を挟持する。好ましくは、発光層と陽極との間に電子ブロック層、および発光層と陰極との間に正孔ブロック層が配される。
上記正孔輸送性中間層は、発光層への正孔注入を促進する機能及び電子をブロックする機能の少なくとも一方を有することが好ましい。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能及び正孔をブロックする機能の少なくとも一方を有することが好ましい。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層の少なくとも一方は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、または励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
尚、各層は複数の二次層に分かれていてもよい。
次に、本発明の発光素子を構成する要素について、詳細に説明する。
本発明の有機電界発光素子は、少なくとも一層の発光層を含む有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔注入層、正孔輸送層、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、または電子注入層等の各層が挙げられる。
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
(発光層)
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性バッファー層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性バッファー層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含む。
発光層の各層に、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含有することが好ましい。
本発明における発光層に含有する発光性ドーパントと複数のホスト化合物としては、一重項励起子からの発光(蛍光)が得られる蛍光発光性ドーパントと複数のホスト化合物との組み合せでも、三重項励起子からの発光(燐光)が得られる燐光発光性ドーパントと複数のホスト化合物との組み合せでもよい。
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
本発明における発光性ドーパントは、更に前記ホスト化合物との間で、1.2eV>△Ip>0.2eV及び1.2eV>△Ea>0.2eVの少なくとも一方の関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
《燐光発光性ドーパント》
本発明に用いられる燐光発光材料としては特に限定されることはないが、オルトメタル化金属錯体、又はポルフィリン金属錯体が好ましい。
上記オルトメタル化金属錯体とは、例えば山本明夫著「有機金属化学−基礎と応用−」、150頁、232頁、裳華房社(1982年発行)やH.Yersin著「Photochemistry and Photophisics of Coodination Compounds」、71頁〜77頁、135頁〜146頁、Springer−Verlag社(1987年発行)等に記載されている化合物群の総称である。該オルトメタル化金属錯体を発光材料として発光層に用いることは、高輝度で外部量子効率に優れる点で有利である。
上記オルトメタル化金属錯体を形成する配位子としては、種々のものがあり、上記文献にも記載されているが、その中でも好ましい配位子としては、2−フェニルピリジン誘導体、7,8−ベンゾキノリン誘導体、2−(2−チエニル)ピリジン誘導体、2−(1−ナフチル)ピリジン誘導体、および2−フェニルキノリン誘導体等が挙げられる。これらの誘導体は必要に応じて置換基を有してもよい。また、上記オルトメタル化金属錯体は、上記配位子のほかに、他の配位子を有していてもよい。
本発明で用いるオルトメタル化金属錯体は、Inorg Chem.,1991年,30号,1685頁、同1988年,27号,3464頁.、同1994年,33号,545頁、Inorg.Chim.Acta,1991年,181号,245頁、J.Organomet.Chem.,1987年,335号,293頁、J.Am.Chem.Soc.1985年,107号,14頁−31頁等、種々の公知の手法で合成することができる。
上記オルトメタル化錯体の中でも、三重項励起子から発光する化合物が本発明においては外部量子効率向上の観点から好適に使用することができる。
また、ポルフィリン金属錯体の中ではポルフィリン白金錯体が好ましい。
燐光発光材料は1種単独で使用してもよいし、2種以上を併用してもよい。また、蛍光発光材料と燐光発光材料を同時に用いてもよい。
《蛍光発光性ドーパント》
蛍光発光材料としては、例えばベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、スチリルベンゼン誘導体、ポリフェニル誘導体、ジフェニルブタジエン誘導体、テトラフェニルブタジエン誘導体、ナフタルイミド誘導体、クマリン誘導体、ペリレン誘導体、ペリノン誘導体、オキサジアゾール誘導体、アルダジン誘導体、ピラリジン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体、キナクリドン誘導体、ピロロピリジン誘導体、チアジアゾロピリジン誘導体、スチリルアミン誘導体、芳香族ジメチリデン化合物、8−キノリノール誘導体の金属錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、およびポリフルオレン誘導体等の高分子化合物等が挙げられる。これらは1種または2種以上を混合して用いることができる。
これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。
Figure 2007287652
Figure 2007287652
Figure 2007287652
Figure 2007287652
上記の中でも、本発明で用いる発光性ドーパントとしては、外部量子効率、耐久性の観点からD−2、D−3、D−4、D−5、D−6、D−7、D−8、D−9、D−10、D−11、D−12、D−13、D−14、D−15、D−16、D−21、D−22、D−23、D−24、またはD−25〜D−28が好ましく、D−2、D−3、D−4、D−5、D−6、D−7、D−8、D−12、D−14、D−15、D−16、D−21、D−22、D−23、D−24、またはD−25〜D−28がより好ましく、D−21、D−22、D−23、D−24、またはD−25〜D−28が更に好ましい。
発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜30質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜15質量%含有されることが好ましく、2質量%〜12質量%含有されることがより好ましい。
(ホスト材料)
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
《正孔輸送性ホスト》
本発明の有機層に用いられる正孔輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.4eV以下であることが好ましく、5.4eV以上6.2eV以下であることがより好ましく、5.6eV以上6.0eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
このような正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、カルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、またはポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及びそれらの誘導体等が挙げられる。
中でも、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にカルバゾール骨格および芳香族第三級アミン骨格の少なくとも一方を複数個有するものが好ましい。
このような正孔輸送性ホストとしての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
Figure 2007287652
Figure 2007287652
Figure 2007287652
《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、またはトリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、およびターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、およびヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、および2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、および4−ビフェニルオキシなどが挙げられる。)、
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
Figure 2007287652
Figure 2007287652
Figure 2007287652
電子輸送層ホストとしては、E−1〜E−6、E−8、E−9、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−21、またはE−22が更に好ましい。
本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト化合物の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、外部量子効率、駆動耐久性の点で好ましい。
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、外部量子効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上85質量%以下であることが好ましい。
また、発光層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、外部量子効率の点から10−6cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
該発光層のキャリア移動度は、後述の前記キャリア輸送層のキャリア移動度より小さいことが外部量子効率、駆動耐久性の観点から好ましい。
該キャリア移動度は、Time of Flight法により測定し、得られた値をキャリア移動度とした。
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
正孔注入層は正孔の移動のキャリアとなるドーパントを含有するのが好ましい。正孔注入層に導入するドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用でき、具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、および五塩化アンチモンなどのルイス酸化合物を好適に用いることができる。
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、またはトリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、またはフレーレンなどを好適に用いることができる。
具体的にはヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンが特に好ましい。
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔注入材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。該使用量が、正孔注入材料に対して0.01質量%未満のときには、本発明の効果が不十分であるため好ましくなく、50質量%を超えると正孔注入能力が損なわれるため好ましくない。
正孔注入層がアクセプタを含有する場合、正孔輸送層は、実質的にアクセプタを含有しないことが好ましい。
正孔注入層、正孔輸送層の材料としては、具体的には、ピロール誘導体、カルバゾール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、またはカーボン等を含有する層であることが好ましい。
正孔注入層、正孔輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、外部量子効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が正孔輸送層であるとき、該正孔輸送層のIp(HTL)は前記発光層中に含有されるドーパントのIp(D)より小さいことが駆動耐久性の点で好ましい。
正孔輸送層におけるIp(HTL)は、後述するIpの測定方法により測定することができる。
また、正孔輸送層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、外部量子効率の点から10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−3cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
該キャリア移動度は、前記発光層のキャリア移動度の測定方法と同様の方法により測定した値を採用する。
また、該正孔輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性、外部量子効率の観点から好ましい。
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入され得た正孔を障壁する機能のいずれかを有している層である。
電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属などが好適に用いられる。
特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。該使用量が、電子輸送層材料に対して0.1質量%未満のときには、本発明の効果が不十分であるため好ましくなく、99質量%を超えると電子輸送能力が損なわれるため好ましくない。
電子注入層、電子輸送層の材料としては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
電子注入層、電子輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、外部量子効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が電子輸送層であるとき、該電子輸送層のEa(ETL)は前記発光層中に含有されるドーパントのEa(D)より大きいことが駆動耐久性の点で好ましい。
該Ea(ETL)は、後述するEaの測定方法と同様の方法により測定した値を用いる。
また、電子輸送層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、外部量子効率の点から10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−3cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
また、該電子輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性の観点から好ましい。該キャリア移動度は、前記正孔輸送層の測定方法と同様に行った。
本発明における発光素子のキャリア移動度において、正孔輸送層、電子輸送層、及び発光層におけるキャリア移動度としては、(電子輸送層=正孔輸送層)>発光層であることが、駆動耐久性の点で好ましい。
バッファー層に含有されるホスト材料としては、後述する正孔輸送性ホストまたは電子輸送性ホストを好適に用いることができる。
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明においては、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層は、特に限定されるものではないが、具体的には、BAlq等のアルミニウム錯体、トリアゾール誘導体、ピラザボール誘導体等を含有することができる。
また、正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に50nm以下であることが好ましく、1nm〜50nmであることが好ましく、5nm〜40nmであることが更に好ましい。
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、またはCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、およびイオンプレーティング法等により形成することができる。
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
(基板)
本発明においては基板を用いることができる。用いられる基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、またはNi等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、またはTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、またはCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、または転写法を適用できる。
(封止)
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。
水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、およびシリコーンオイル類が挙げられる。
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明における有機電界発光素子の駆動耐久性は、特定の輝度における、ある輝度まで減少する時間により測定することができる。例えば、KEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させ、初期輝度を緑の発光なら1500cd/m、青の発光であれば360cd/mの条件で連続駆動試験をおこない、輝度が初期輝度の80%になった時間を輝度減少時間として、該輝度減少時間を従来発光素子と比較することにより求めることができる。本発明においてはこの数値を用いた。
この有機電界発光素子の重要な特性値として、外部量子効率がある。外部量子効率は、「外部量子効率φ=素子から放出されたフォトン数/素子に注入された電子数」で算出され、この値が大きいほど消費電力の点で有利な素子と言える。
また、有機電界発光素子の外部量子効率は、「外部量子効率φ=内部量子効率×光取り出し効率」で決まる。有機化合物からの蛍光発光を利用する有機EL素子においては、内部量子効率の限界値が25%であり、光取り出し効率が約20%であることから、外部量子効率の限界値は約5%とされている。
該外部量子効率の数値は、20℃で素子を駆動したときの外部量子効率の最大値、もしくは、20℃で素子を駆動した時の100cd/m〜2000cd/m付近(好ましくは、緑の発光なら1500cd/m、青の発光であれば360cd/m)での外部量子効率の値を用いることができる。
本発明においては、東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加し発光させ、その光量をトプコン社製輝度計SR−3を用いて測定し、その輝度での外部量子効率を算出した値を用いる。
また、発光素子の外部量子効率は、発光輝度、発光スペクトル、電流密度を測定し、その結果と比視感度曲線から算出することができる。すなわち、電流密度値を用い、入力した電子数を算出することができる。そして、発光スペクトルと比視感度曲線(スペクトル)を用いた積分計算により、発光輝度を発光したフォトン数に換算することができる。これらから外部量子効率(%)は、「(発光したフォトン数/素子に入力した電子数)×100」で計算することができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
3.無機電界発光素子
無機電界発光素子(無機EL素子)は、電極間に配置した高誘電率を有する酸化物からなる第1及び第2絶縁膜、それら絶縁膜の間に狭持された硫化物からなる発光層等の機能層を含む。絶縁層としては、五酸化タンタル(Ta)、酸化チタン(TiO)、酸化イットリウム(Y)、チタン酸バリウム(BaTiO)、チタン酸ストロンチウム(SrTiO)、等の材料を用いることができる。発光層としては、硫化亜鉛(ZnS)、硫化カルシウム(CaS)、硫化ストロンチウム(SrS)、バリウムチオアルミネート(BaAl)、等の材料を発光層の母体材料に用い、発光中心としてマンガン(Mn)、等の遷移金属元素やユーロピウム(Eu)、セリウム(Ce)、テルビウム(Tb)、等の希土類元素を微量含有したものを用いることができる。
4.用途
本発明の発光素子の用途は特に限定されないが、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明等広い分野に適用できる。
以下に、本発明の有機電界発光素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。
実施例1
1.有機EL素子の作製
(比較の有機EL素子1の作製)
0.5mm厚み、2.5cm角のITOガラス基板(ジオマテック(株)製、表面抵抗10Ω/□)を洗浄容器に入れ、2−プロパノール中で超音波洗浄した後、30分間UV−オゾン処理を行った。この透明陽極上に真空蒸着法にて以下の層を蒸着した。本発明の実施例における蒸着速度は特に断りのない場合は0.2nm/秒である。蒸着速度は水晶振動子を用いて測定した。以下に記載の膜厚も水晶振動子を用いて測定したものである。
正孔注入層:ITOの上にCuPcを膜厚10nmに蒸着した。
正孔輸送層:正孔注入層の上に、α−NPDを膜厚10nmに蒸着した。
発光層:CBPとIr(ppy)を体積比で95:5となるように共蒸着を行った。発光層の膜厚は60nmとした。
電子輸送層:発光層の上に、BAlqを10nmの厚みに蒸着した。
電子注入層:電子輸送層の上に、Alqを20nmの厚みに蒸着した。
この上にパタ−ニングしたマスク(発光領域が2mm×2mmとなるマスク)を設置し、フッ化リチウムを0.01nm/秒の蒸着速度にて1nm蒸着し電子注入層とした。更に金属アルミニウムを100nm蒸着し陰極とした。
作製した積層体を、窒素ガスで置換したグロ−ブボックス内に入れ、ステンレス製の封止缶および紫外線硬化型の接着剤(XNR5516HV、長瀬チバ製)を用いて封止し、有機EL素子1を作製した。
(本発明の有機EL素子1の作製)
比較の有機EL素子1において、発光層を下記に示すように2つに分割し、各発光層の間に下記導電性電荷ブロック層として下記中間層Aを配した。
発光層1:比較例1と同じ組成の発光層を膜厚は20nmに蒸着した。
中間層A:化合物A、CBP、およびIr(ppy)を体積比で55:40:5となるように共蒸着を行った。中間層の膜厚は20nmとした。
発光層2:比較例1と同じ組成の発光層を膜厚は20nmに蒸着した。
2.性能評価結果
得られた比較有機EL素子1および本発明の有機EL素子1を同一条件で下記の手段によって外部量子効率を測定した。
《外部量子効率の測定方法》
作製した発光素子をKEITHLEY製ソ−スメジャ−ユニット2400型を用いて、直流電圧を発光素子に印加し発光させた。その発光スペクトルと光量をトプコン社製輝度計SR−3を用いて測定し、発光スペクトル、光量と測定時の電流から外部量子効率を計算した。
その結果、比較有機EL素子1の外部量子効率が5.62%であったが、本発明の有機EL素子1の外部量子効率は8.23%であった。中間層および2つの発光層の合計厚みは比較の有機EL素子の発光層厚み60nmと同等であるにも拘わらず高い外部量子効率を示したことは全く予想外の結果であった。
実施例2
1.有機EL素子の作製
《比較の有機EL素子2の作製》
比較の有機EL素子1の作製において、発光層の蒸着厚みを110nmに変更した以外は比較の有機EL素子1と同様にして比較の有機EL素子2を作製した。
《本発明の有機EL素子2の作製》
比較の有機EL素子2において、発光層を下記の6層の単位発光層に分割し、各単位発光層の間に、下記中間層Bを配した。
単位発光層1〜6:比較の有機EL素子1の発光層と同一組成で厚み10nmに蒸着した。
中間層B:化合物B、CBP、およびIr(ppy)を体積比で47.5:47.5:5となるように共蒸着を行った。中間層Bの膜厚は10nmとした。
即ち、単位発光層1/中間層B/単位発光層2/中間層B/単位発光層3/中間層B/単位発光層4/中間層B/単位発光層5/中間層B/単位発光層6の合計11層に細分化された構成でその総厚みは110nmであり、比較の有機EL素子2の発光層と同一である。
2.性能評価結果
得られた比較有機EL素子2および本発明の有機EL素子2を実施例1と同様に外部量子効率を測定した。
その結果、比較有機EL素子2の外部量子効率が6.81%であったが、本発明の有機EL素子2の外部量子効率は8.77%と極めて高い値を示した。
実施例3
1.有機EL素子の作製
(比較の有機EL素子3の作製)
比較の有機EL素子1の作製において、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層を下記の組成に変更した以外は、比較の有機EL素子1と同様にして比較の有機EL素子3を作製した。
正孔注入層:実施例1と同様のITO基板上に2−TNATAとF4−TCNQ(テトラフルオロテトラシアノキノジメタン)をF4−TCNQ(テトラフルオロテトラシアノキノジメタン)が2−TNATAに対し0.3質量%となるように共蒸着を行った。膜厚は160nmとした。
正孔輸送層:正孔注入層の上に、α−NPDを膜厚10nmに蒸着した。
発光層:mCPとFIrpicを体積比で90:10となるように共蒸着を行った。発光層の膜厚は120nmとした。
電子輸送層:発光層の上に、BAlqを10nmの厚みに蒸着した。
電子注入層:電子輸送層の上に、Alqを20nmの厚みに蒸着した。
《本発明の有機EL素子3の作製》
比較の有機EL素子3において、発光層を下記の4層の単位発光層に分割し、各単位発光層の間に、下記中間層Cを配した。
単位発光層11〜14:比較の有機EL素子3の発光層と同一組成で厚み15nmに蒸着した。
中間層C:化合物A、mCP、およびFIrpicを体積比で70:10:20となるように共蒸着を行った。中間層Cの膜厚は20nmとした。
即ち、単位発光層11/中間層C/単位発光層12/中間層C/単位発光層13/中間層C/単位発光層14の合計7層に細分化された構成でその総厚みは120nmであり、比較の有機EL素子3の発光層と同一である。
2.性能評価結果
得られた比較有機EL素子3および本発明の有機EL素子3を実施例1と同様に外部量子効率を測定した。
その結果、比較有機EL素子3の外部量子効率が2.47%であったが、本発明の有機EL素子3の外部量子効率は5.22%と向上した。
実施例4
1.有機EL素子の作製
《比較の有機EL素子4の作製》
比較の有機EL素子3の作製において、発光材料をIr(ppy)、発光層の蒸着厚みを110nmに変更した以外は比較の有機EL素子3と同様にして比較の有機EL素子4を作製した。
《本発明の有機EL素子4の作製》
比較の有機EL素子4において、発光層を下記の6層の単位発光層に分割し、各単位発光層の間に、下記中間層Dを配した。
単位発光層21〜26:比較の有機EL素子4の発光層と同一組成で厚み10nmに蒸着した。
中間層D:化合物B、mCP、およびIr(ppy)を体積比で45:45:10となるように共蒸着を行った。中間層Dの膜厚は10nmとした。
即ち、単位発光層21/中間層D/単位発光層22/中間層D/単位発光層23/中間層D/単位発光層24/中間層D/単位発光層25/中間層D/単位発光層26の合計11層に細分化された構成でその総厚みは110nmであり、比較の有機EL素子4の発光層と同一である。
2.性能評価結果
得られた比較有機EL素子4および本発明の有機EL素子4を実施例1と同様に外部量子効率を測定した。
その結果、比較有機EL素子4の外部量子効率が5.67%であったが、本発明の有機EL素子42の外部量子効率は8.92%と極めて高い値を示した。
実施例5
1.有機EL素子の作製
(比較の有機EL素子5の作製)
比較の有機EL素子1の作製において、正孔注入層、正孔輸送層、電子注入層および電子輸送層を実施例3で用いた正孔注入層、正孔輸送層および電子注入・輸送層に変更した以外は、比較の有機EL素子1と同様にして比較の有機EL素子5を作製した。
《本発明の有機EL素子5の作製》
比較の有機EL素子5において、発光層を2層の単位発光層に分割し、2つの単位発光層の間に、下記中間層Eを配した。
単位発光層31、32:比較の有機EL素子5の発光層と同一組成で厚み25nmに蒸着した。
中間層E:化合物A、CBP、およびIr(ppy)を体積比で80:10:10となるように共蒸着を行った。中間層Eの膜厚は10nmとした。
2.性能評価結果
得られた比較有機EL素子5および本発明の有機EL素子5を実施例1と同様に外部量子効率を測定した。
その結果、比較有機EL素子5の外部量子効率が6.27%であったが、本発明の有機EL素子5の外部量子効率は8.99%と極めて高い値を示した。
実施例6
1.有機EL素子の作製
《比較の有機EL素子6の作製》
比較の有機EL素子1の作製において、発光層の蒸着厚みを100nmに変更した以外は比較の有機EL素子1と同様にして比較の有機EL素子6を作製した。
《本発明の有機EL素子6の作製》
比較の有機EL素子6において、発光層を下記の3層の単位発光層に分割し、各単位発光層の間に下記中間層Bを配し、および発光層と正孔輸送層との間に電子ブロック層を配した。
単位発光層11〜13:比較の有機EL素子1の発光層と同一組成で厚み20nmに蒸着した。
中間層B:化合物B、CBP、およびIr(ppy)を体積比で47.5:47.5:5となるように共蒸着を行った。中間層Bの膜厚は20nmとした。
電子ブロック層:化合物CおよびIr(ppy)を体積比で95:5となるように共蒸着を行った。電子ブロック層の膜厚は10nmとした。
即ち、陽極/正孔注入層/正孔輸送層/電子ブロック層/単位発光層11/中間層B/単位発光層12/中間層B/単位発光層13電子輸送層/電子注入層/陰極の構成の有機EL素子を作製した。
2.性能評価結果
得られた比較有機EL素子6および本発明の有機EL素子6を実施例1と同様に外部量子効率を測定した。
その結果、比較有機EL素子6の外部量子効率が6.41%であったが、本発明の有機EL素子6の外部量子効率は9.02%と極めて高い値を示した。
実施例7
1.本発明の有機EL素子7の作製
比較の有機EL素子6において、発光層を下記の3層の単位発光層に分割し、各単位発光層の間に下記中間層Bを配し、および発光層と電子輸送層との間に正孔ブロック層を配した。
単位発光層11〜13:比較の有機EL素子1の発光層と同一組成で厚み20nmに蒸着した。
中間層B:化合物B、CBP、およびIr(ppy)を体積比で47.5:47.5:5となるように共蒸着を行った。中間層Bの膜厚は20nmとした。
正孔ブロック層:化合物DおよびIr(ppy)を体積比で95:5となるように共蒸着を行った。正孔ブロック層の膜厚は10nmとした。
即ち、陽極/正孔注入層/正孔輸送層/単位発光層1/中間層B/単位発光層2/中間層B/単位発光層3/正孔ブロック層/電子輸送層/電子注入層/陰極の構成の有機EL素子を作製した。
2.性能評価結果
得られた本発明の有機EL素子7を実施例1と同様に外部量子効率を測定した。
その結果、本発明の有機EL素子7の外部量子効率は9.11%であり、実施例6の比較有機EL素子6の外部量子効率が6.41%に比べて、極めて高い値を示した。
実施例8
1.本発明の有機EL素子8の作製
比較の有機EL素子6において、発光層を下記の3層の単位発光層に分割し、各単位発光層の間に下記中間層Bを配し、発光層と正孔輸送層との間に電子ブロック層、および発光層と電子輸送層との間に正孔ブロック層を配した。
単位発光層11〜13:比較の有機EL素子1の発光層と同一組成で厚み20nmに蒸着した。
中間層B:化合物B、CBP、およびIr(ppy)を体積比で47.5:47.5:5となるように共蒸着を行った。中間層Bの膜厚は20nmとした。
電子ブロック層:化合物CおよびIr(ppy)を体積比で95:5となるように共蒸着を行った。電子ブロック層の膜厚は10nmとした。
正孔ブロック層:化合物DおよびIr(ppy)を体積比で95:5となるように共蒸着を行った。正孔ブロック層の膜厚は10nmとした。
即ち、陽極/正孔注入層/正孔輸送層/電子ブロック層/単位発光層1/中間層B/単位発光層2/中間層B/単位発光層3/正孔ブロック層/電子輸送層/電子注入層/陰極の構成の有機EL素子を作製した。
2.性能評価結果
得られた本発明の有機EL素子8を実施例1と同様に外部量子効率を測定した。
その結果、本発明の有機EL素子8の外部量子効率は9.80%であり、実施例6の比較有機EL素子6の外部量子効率が6.41%に比べて、極めて高い値を示した。
前記の発光素子に用いられる化合物の構造を下記に示す。
Figure 2007287652
比較の発光素子の層構成の概念図である。 本発明の発光素子の一例の概念図であり、発光層が2つに分割され、間に中間層を配した構成である。 本発明の発光素子の別の例の層構成の概念図である。発光層が4分割され、それぞれの間に中間層を配した構成である。 本発明の発光素子の別の例の層構成の概念図である。発光層が3分割され、それぞれの間に中間層を配し、発光層と陽極との間に電子ブロック層、および発光層と陰極との間に正孔ブロック層を配した構成である。
符号の説明
1:陽極
2:正孔注入層
3:正孔輸送層
4:発光層
4a、4b、4c、4d:分割された発光層
5:電子輸送層
6:電子注入層
7:陰極
8:中間層
8a、8b、8c:分割された中間層
9:電子ブロック層
10:正孔ブロック層

Claims (12)

  1. 一対の電極間に少なくとも発光層を挟持してなる有機電界発光素子であって、前記発光層が厚み方向に複数に分割され、該分割された発光層間に電荷輸送材料および発光材料の少なくとも一方を含有する中間層を有することを特徴とする発光素子。
  2. 前記発光層が厚み方向に2層以上50層以下に分割され、該分割された単一の発光層の厚みが2nm以上50nm以下であることを特徴とする請求項1に記載の発光素子。
  3. 前記中間層が導電性電荷ブロック層であることを特徴とする請求項1又は請求項2に記載の発光素子。
  4. 前記中間層が前記電荷輸送材料および前記発光材料を含有することを特徴とする請求項1〜請求項3のいずれか1項に記載の発光素子。
  5. 前記電荷輸送材料として正孔輸送材料および電子輸送材料の少なくとも一方を含有することを特徴とする請求項1〜請求項4のいずれか1項に記載の発光素子。
  6. 前記陽極に最も近い分割された発光層と前記陽極との間に該発光層に隣接して電子ブロック層を有することを特徴とする請求項1〜請求項5のいずれか1項に記載の発光素子。
  7. 前記電子ブロック層が発光材料を含有することを特徴とする請求項6に記載の発光素子。
  8. 前記陰極に最も近い分割された発光層と前記陰極との間に該発光層に隣接して正孔ブロック層を有することを特徴とする請求項1〜請求項7のいずれか1項に記載の発光素子。
  9. 前記正孔ブロック層が発光材料を含有することを特徴とする請求項8に記載の発光素子。
  10. 前記発光層が発光材料として燐光材料を含有することを特徴とする請求項1〜請求項9のいずれか1項に記載の発光素子。
  11. 前記中間層が発光材料として燐光材料を含有することを特徴とする請求項1〜請求項10のいずれか1項に記載の発光素子。
  12. 前記発光素子が有機電界発光素子であることを特徴とする請求項1〜請求項11のいずれか1項に記載の発光素子。
JP2006264842A 2006-03-23 2006-09-28 発光素子 Abandoned JP2007287652A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006264842A JP2007287652A (ja) 2006-03-23 2006-09-28 発光素子
US11/725,523 US20070235742A1 (en) 2006-03-23 2007-03-20 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006081472 2006-03-23
JP2006264842A JP2007287652A (ja) 2006-03-23 2006-09-28 発光素子

Publications (1)

Publication Number Publication Date
JP2007287652A true JP2007287652A (ja) 2007-11-01

Family

ID=38574269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006264842A Abandoned JP2007287652A (ja) 2006-03-23 2006-09-28 発光素子

Country Status (2)

Country Link
US (1) US20070235742A1 (ja)
JP (1) JP2007287652A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034484A (ja) * 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2010180204A (ja) * 2009-01-06 2010-08-19 Fujifilm Corp 電荷輸送材料及び有機電界発光素子
JP2010225563A (ja) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd 有機el素子
WO2012020650A1 (ja) * 2010-08-10 2012-02-16 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
JP2013214531A (ja) * 2008-05-23 2013-10-17 Lg Chem Ltd 有機発光素子およびその製造方法
KR20160068074A (ko) * 2014-12-04 2016-06-15 삼성디스플레이 주식회사 유기발광소자

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1749423A4 (en) * 2004-04-28 2010-09-22 Semiconductor Energy Lab LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING THE SAME, AND LIGHT EMITTING DEVICE USING THE LIGHT EMITTING ELEMENT
KR101383454B1 (ko) * 2007-09-21 2014-04-08 엘지디스플레이 주식회사 전계발광소자
EP2180704A1 (en) * 2008-10-27 2010-04-28 Thomson Licensing Method of management of trick mode commands destined to control a digital content streaming server
JP2010165977A (ja) * 2009-01-19 2010-07-29 Sony Corp 有機電界発光素子、表示装置、および電子機器
JP2013214496A (ja) * 2012-03-08 2013-10-17 Seiko Epson Corp 有機el装置の製造方法、有機el装置、電子機器
CN102651454B (zh) * 2012-04-25 2015-02-11 京东方科技集团股份有限公司 一种电致发光器件、显示装置和电致发光器件制备方法
KR102191933B1 (ko) 2013-02-19 2020-12-18 루미리즈 홀딩 비.브이. 다층 구조체에 의해 형성되는 발광 다이 컴포넌트
CN104064676A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104022229A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 Oled器件及其制备方法、显示装置
KR102269488B1 (ko) * 2014-07-02 2021-06-25 삼성디스플레이 주식회사 유기 발광 소자
CN106252523B (zh) * 2016-09-30 2018-02-09 福州大学 一种提高有机发光器件发光效率的新型结构
KR102500996B1 (ko) * 2019-07-12 2023-02-20 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 패널

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009088A1 (ja) * 2003-07-23 2005-01-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2005228733A (ja) * 2004-01-16 2005-08-25 Fuji Photo Film Co Ltd 発光素子
JP2005527090A (ja) * 2002-05-24 2005-09-08 ノバレット、ゲーエムベーハー 有機層を有する燐光発光素子
JP2005310547A (ja) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd 有機電界発光素子
WO2006013738A1 (ja) * 2004-08-05 2006-02-09 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075654A (ja) * 2000-08-28 2002-03-15 Fuji Xerox Co Ltd 有機電界発光素子
US6717358B1 (en) * 2002-10-09 2004-04-06 Eastman Kodak Company Cascaded organic electroluminescent devices with improved voltage stability
US7180089B2 (en) * 2003-08-19 2007-02-20 National Taiwan University Reconfigurable organic light-emitting device and display apparatus employing the same
KR101156014B1 (ko) * 2004-08-27 2012-06-18 쇼와 덴코 가부시키가이샤 유기전계발광소자의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527090A (ja) * 2002-05-24 2005-09-08 ノバレット、ゲーエムベーハー 有機層を有する燐光発光素子
WO2005009088A1 (ja) * 2003-07-23 2005-01-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2005228733A (ja) * 2004-01-16 2005-08-25 Fuji Photo Film Co Ltd 発光素子
JP2005310547A (ja) * 2004-04-21 2005-11-04 Fuji Photo Film Co Ltd 有機電界発光素子
WO2006013738A1 (ja) * 2004-08-05 2006-02-09 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置および照明装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013214531A (ja) * 2008-05-23 2013-10-17 Lg Chem Ltd 有機発光素子およびその製造方法
JP2010034484A (ja) * 2008-07-01 2010-02-12 Nippon Hoso Kyokai <Nhk> 有機エレクトロルミネッセンス素子
JP2010180204A (ja) * 2009-01-06 2010-08-19 Fujifilm Corp 電荷輸送材料及び有機電界発光素子
JP2010225563A (ja) * 2009-03-25 2010-10-07 Panasonic Electric Works Co Ltd 有機el素子
WO2012020650A1 (ja) * 2010-08-10 2012-02-16 住友化学株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US9929369B2 (en) 2010-08-10 2018-03-27 Sumitomo Chemical Company, Limited Organic electroluminescent element and method for manufacturing the same
KR20160068074A (ko) * 2014-12-04 2016-06-15 삼성디스플레이 주식회사 유기발광소자
US9837626B2 (en) 2014-12-04 2017-12-05 Samsung Display Co., Ltd. Organic light emitting device
KR102209107B1 (ko) 2014-12-04 2021-01-29 삼성디스플레이 주식회사 유기발광소자

Also Published As

Publication number Publication date
US20070235742A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4833106B2 (ja) 有機発光素子
JP4896544B2 (ja) 有機電界発光素子
JP2007287652A (ja) 発光素子
JP5441654B2 (ja) 有機電界発光素子
JP5117199B2 (ja) 有機電界発光素子
JP4850521B2 (ja) 有機電界発光素子
US20060194076A1 (en) Organic electroluminescent element
JP5063007B2 (ja) 有機電界発光素子
WO2010058716A1 (ja) 有機電界発光素子
JP2007141736A (ja) 有機電界発光素子
US20120068165A1 (en) Organic electroluminescence element
JP2007110102A (ja) 有機電界発光素子
KR102238719B1 (ko) 유기 전계 발광 소자
JP2009016579A (ja) 有機電界発光素子および製造方法
JP2009055010A (ja) 有機電界発光素子
JP2007042875A (ja) 有機電界発光素子
JP2007200938A (ja) 有機電界発光素子
JP2009032990A (ja) 有機電界発光素子
JP2007134677A (ja) 有機電界発光素子
JP2007221097A (ja) 有機電界発光素子
WO2011021433A1 (ja) 有機電界発光素子
JP5349921B2 (ja) 有機電界発光素子
JP2010153820A (ja) 有機電界発光素子
JP4855286B2 (ja) 有機電界発光素子の製造方法
JP2009032987A (ja) 有機電界発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110209