WO2010079745A1 - 風力発電用蓄電池制御システム及びその制御方法 - Google Patents

風力発電用蓄電池制御システム及びその制御方法 Download PDF

Info

Publication number
WO2010079745A1
WO2010079745A1 PCT/JP2010/000042 JP2010000042W WO2010079745A1 WO 2010079745 A1 WO2010079745 A1 WO 2010079745A1 JP 2010000042 W JP2010000042 W JP 2010000042W WO 2010079745 A1 WO2010079745 A1 WO 2010079745A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
wind power
power generation
deterioration
battery operation
Prior art date
Application number
PCT/JP2010/000042
Other languages
English (en)
French (fr)
Inventor
安部圭子
渡辺雅浩
小林康弘
古川俊行
高林久顯
広瀬義和
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to CN201080002373.2A priority Critical patent/CN102124219B/zh
Priority to KR1020117003731A priority patent/KR101260137B1/ko
Priority to US13/059,919 priority patent/US9124135B2/en
Priority to EP10729165.0A priority patent/EP2386754B1/en
Publication of WO2010079745A1 publication Critical patent/WO2010079745A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0069Charging or discharging for charge maintenance, battery initiation or rejuvenation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a control system and a control method for extending the life of a storage battery for suppressing fluctuations in wind power generation in a wind power generation system. It also relates to the optimal operation of a wind power generation system that minimizes system costs including storage batteries and maximizes wind power revenues.
  • Japan the government has set a target for introducing new energy to reduce CO2 emissions, and is promoting the introduction of new energy power generation such as solar and wind power while implementing subsidies.
  • FIG. 18 shows an example of a storage battery system for suppressing output fluctuations in a wind power generation system.
  • the power generation output by wind power generation fluctuates greatly depending on the wind conditions, and if it flows directly into the power system, it adversely affects the power quality of the power system. Therefore, a power storage system output that matches the wind power generation output status is output by a power storage system using a storage battery such as a lead storage battery, a lithium ion battery, or a super capacitor.
  • a smooth grid output is generated by synthesizing the wind power generation output and the power storage system output in the power grid, and adverse effects on power quality can be avoided.
  • FIG. 19 shows an example of grid interconnection requirements for wind power generation in an electric power company.
  • the fluctuation of the combined output of wind power generation and storage battery is regulated so that the difference between the maximum value and the minimum value in 20 minutes of the value averaged for 1 minute is suppressed to 10% or less of the rated output of wind power. Therefore, it is required to satisfy such grid interconnection requirements.
  • Patent Document 1 is disclosed as a method for controlling the charge / discharge state (SOC) of a lead storage battery. This method measures the number of times of entering the lower limit range of SOC during charge / discharge of the lead storage battery and raises the SOC level accordingly.
  • SOC charge / discharge state
  • Patent Document 2 regarding the maintenance of power storage equipment is disclosed.
  • the capacity of all the storage batteries is checked by short-time discharge, and only the storage battery whose capacity has become insufficient is replaced to reduce the cost of replacement of the storage battery. .
  • JP 2004-186087 A Japanese Patent Laid-Open No. 2006-100000
  • Patent Document 1 cannot be implemented in a wind power generation system in which what kind of SOC control should be performed has not been established. Further, it is not only the SOC that affects the life of the storage battery but also various other operating conditions. However, the method of Patent Document 1 does not consider a comprehensive control method including operating conditions other than the SOC. .
  • the first object of the present invention is to construct a system that evaluates a control method that can maximize the life of a storage battery and feeds back the result to an actual wind power generation system.
  • the second issue is how to make a profit in the entire wind power generation and storage battery system equipped with storage batteries.
  • it is a challenge to construct a power generation system that can maximize profits by comprehensively considering the benefits of wind power generation, costs related to grid interconnection, storage battery costs, and the like.
  • the purchase price of wind power may change depending on the power quality.
  • the purchase price may change depending on whether the wind power generation system has been able to generate electricity according to the amount predicted. Even in such a case, it is required to construct a power generation system that can maximize the profit from the balance between the income and the cost.
  • the present invention provides a wind power generation / storage battery system having a storage battery, a storage battery operation / storage battery deterioration data collection unit for collecting storage battery data in the wind power generation / storage battery system, and the storage battery operation / storage battery. Based on the data collected by the degradation data collection unit, based on the information obtained by the storage battery operation-degradation relationship evaluation unit and the storage battery operation-degradation relationship evaluation unit for evaluating the relationship between the operation of the storage battery and the life and degradation.
  • a storage battery operation planning unit that plans a storage battery operation method that satisfies the required life requirements, and a storage battery operation instruction unit that instructs the operation of the storage battery in the wind power generation / storage battery system according to the plan of the storage battery operation planning unit It is characterized by that.
  • a wind power generation / storage battery system having a storage battery, a storage battery operation / storage battery deterioration data collection unit for collecting storage battery data in the wind power generation / storage battery system, and data collected by the storage battery operation / storage battery deterioration data collection unit
  • a storage battery operation-deterioration relationship evaluation unit that evaluates the relationship between storage battery operation, life and deterioration
  • a storage battery cost evaluation unit that evaluates information related to the cost of the storage battery
  • a grid connection penalty cost paid to the power company Electricity company penalty cost evaluation section that evaluates costs including revenues from wind power generation and wind power generation, and storage battery operation that optimizes the cost based on information obtained from the storage battery operation-degradation relation evaluation section, storage battery cost information, and power company cost information
  • a storage battery operation planning unit for planning a method, and according to the plan of the storage battery operation planning unit, Characterized by providing a storage battery operation instruction unit for instructing the operation of the storage battery in the force generation and the battery system.
  • a wind power generation / storage battery system a storage battery operation / storage battery deterioration data collection unit that collects data of the wind power generation / storage battery system, and a storage battery operation based on data collected by the storage battery operation / storage battery deterioration data collection unit
  • Storage battery operation for evaluating the relationship between operation and deterioration-Degradation relation evaluation unit, and storage battery operation plan for planning a storage battery operation method that satisfies the required life requirements using information obtained by the storage battery operation-deterioration relationship evaluation unit In accordance with the plan of the storage battery operation planning unit, and a storage battery operation control unit for instructing the wind power generation / storage battery system to operate the storage battery.
  • the operation of the storage battery is performed using the Taguchi method (dynamic characteristics). Seeking influence on battery life and degradation sites conditions, and performs relationship evaluation of operational conditions and battery life and degradation sites.
  • a wind power generation / storage battery system having a storage battery, a storage battery operation / storage battery deterioration data collection unit for collecting storage battery data in the wind power generation / storage battery system, and a data collected by the storage battery operation / storage battery deterioration data collection unit
  • a storage battery operation / deterioration relationship evaluation unit that evaluates the relationship between storage battery operation and deterioration
  • a storage battery cost evaluation unit that evaluates information related to the cost of the storage battery, a grid connection penalty cost paid to an electric power company
  • wind power A power company cost evaluation unit that evaluates costs including revenues from power generation, and a storage battery operation-degradation relationship evaluation unit, a storage battery cost information, and a power company cost information based on the information obtained from the storage battery operation-degradation relationship evaluation unit
  • the wind power generation / storage battery according to the plan of the storage battery operation planning unit
  • a storage battery operation instruction unit for instructing the operation of the storage battery in the system, in a control method of a storage battery control system for
  • the wind power generation / storage battery can be maintained up to the target life of the storage battery under natural conditions such as wind conditions / temperature conditions specific to the power generation site where the wind power generation / storage battery system is installed.
  • System control can be optimized at any time.
  • Wind power generation and storage batteries that optimize (maximize profits) total costs such as revenue from electricity generated using natural energy, wind power generation and storage battery system costs including maintenance costs, and costs paid to electric power companies System control can be implemented at any time.
  • Example 1 of this invention It is a functional block diagram which shows Example 1 of this invention. It is a schematic diagram which shows the storage battery data collection by a semiconductor chip. It is explanatory drawing which shows the data of a storage battery operation and a storage battery degradation data collection part. It is a schematic diagram which shows the lifetime prediction tool of this invention. It is a functional block diagram which shows the structure of a storage battery operation and a storage battery deterioration relation evaluation part. It is explanatory drawing which shows the relationship between the operating conditions of a lead acid battery, a battery life, and a degradation part. It is explanatory drawing which shows the lifetime prediction method by Taguchi method. It is explanatory drawing which shows the relationship between the operating conditions of a lead acid battery, a battery life, and a degradation part.
  • FIG. 1 shows a functional block diagram of the first embodiment.
  • the functional blocks of the present invention include a wind power generation / storage battery system 101 and storage battery operation / storage battery deterioration data collection unit 102 provided at a power generation site, a storage battery operation / deterioration relationship evaluation unit 103 provided at a remote control site, and a lead storage battery.
  • the storage battery operation planning unit 104 and the storage battery operation instruction unit 105 satisfy the necessary life requirements.
  • the wind power generation / storage battery system 101 includes a wind power generation apparatus and a control apparatus that controls a lead storage battery that equalizes the output thereof.
  • the storage battery operation / storage battery deterioration data collection unit 102 is usually provided in a control device of the wind power generation / storage battery system, and collects operation data and deterioration data of the lead storage battery in the wind power generation / storage battery system 101. Data collected by the storage battery operation / storage battery deterioration data collection unit 102 is transmitted to the storage battery operation / deterioration relationship evaluation unit 103 of the remote control site via the network.
  • Storage battery operation / collection of storage battery degradation data may be performed by a semiconductor chip 106 mounted on the storage battery itself in the wind power generation / storage battery system 101 as shown in FIG.
  • the storage battery operation / deterioration relationship evaluation unit 103 evaluates the relationship between the operation of the lead storage battery and the life and deterioration based on the collected data of the lead storage battery. Then, the storage battery operation planning unit 104 uses the storage battery operation-deterioration relationship evaluation unit 103 to determine the operation method of the lead storage battery so as to satisfy the required life requirement of the lead storage battery based on the relationship information on the operation and deterioration of the lead storage battery. (Control method) is planned. Based on the operation plan created by the storage battery operation planning unit 104, the storage battery operation instruction unit 105 transmits the operation instruction information of the lead storage battery to the wind power generation / storage battery system 101 via the network, and wind power generation based on this information. The control device of the storage battery system 101 performs appropriate operation and control of the lead storage battery.
  • the storage battery operation / deterioration relationship evaluation unit 103, the storage battery operation planning unit 104, and the storage battery operation instruction unit 105 are configured on a life prediction tool that is a software program that operates on a host computer at a remote control site.
  • Storage Battery Operation / Storage Battery Degradation Data Collection Department Next, the operation and contents of each functional block will be described in detail.
  • the storage battery operation / storage battery deterioration data collection unit 102 includes various sensors, a storage device, a communication device, and the like, and collects data related to the operation and deterioration of the lead storage battery. An example of data collected by the storage battery operation / storage battery deterioration data collection unit 102 is shown in FIG.
  • the storage battery operation / storage battery deterioration data collection unit 102 collects data such as storage battery operation data (controllable data) and storage battery deterioration data.
  • Examples of storage battery operation data include: (1a) equal charge interval, (1b) equal charge voltage, (1c) equal charge amount, (1d) SOC usage range (central value), (1e) SOC Use range (width), (1f) charge / discharge cycle (high frequency), (1g) charge / discharge cycle (low frequency), (1h) charge / discharge current and the like.
  • the charge / discharge cycle is a time interval of charge / discharge.
  • (1f) charge / discharge cycle (high frequency) has a short charge / discharge time interval (eg, several seconds to several minutes)
  • (1g) charge / discharge cycle (low frequency) has a long charge / discharge time interval (eg, : Several hours to several tens of hours).
  • Examples of storage battery deterioration data include (2a) battery capacity reduction, (2b) positive electrode lattice corrosion, (2c) negative electrode sulfation (lead sulfate amount), (2d) electrolyte stratification (specific gravity), (2e) electrolyte amount Etc.
  • the storage battery operation / storage battery deterioration data collection unit 102 collects the data as described above, and transmits the collected data to the storage battery operation / deterioration relationship evaluation unit 103 via the network.
  • the storage battery operation / deterioration relationship evaluation unit 103 has constructed a part of a life prediction tool (life / deterioration analysis model) as shown in the schematic diagram of FIG. 4, and the content is updated as needed according to input data.
  • the life prediction tool is composed of computer hardware and software programs. Given the operation conditions of the battery including the charge / discharge pattern of the lead storage battery, the life of the lead storage battery and the deterioration status of each part of the lead storage battery are determined by a predetermined calculation process. Is predicted and output.
  • the present invention mainly includes the configuration of this life prediction tool (life / deterioration prediction model).
  • the life sensitivity evaluation part 301 calculates the sensitivity with respect to the lead storage battery life of each operation condition from the data of the storage battery operation / storage battery deterioration data collection part 102 by the Taguchi method method. Further, the limit value of each use condition is input from the use limit input unit 302. The operation condition / battery life comparison and evaluation unit 305 compares and evaluates these data, determines the relationship between the data, and outputs the data to the storage battery operation planning unit 104. Based on the output of the storage battery operation / deterioration relationship evaluation unit 103, the storage battery operation planning unit 104 calculates and displays the life corresponding to the use condition input desired by the client and the life under the optimum conditions.
  • the deterioration sensitivity evaluation unit 303 calculates the sensitivity of each operation condition with respect to the lead storage battery deterioration site from the data of the storage battery operation / storage battery deterioration data collection unit 102 by the Taguchi method method. Further, the limit value of each use condition is input from the use limit input unit 304. The operation condition / degraded part comparison / evaluation unit 306 compares and evaluates these data, determines the relationship between the data, and outputs the data to the storage battery operation plan unit 104. Based on the output of the storage battery operation / deterioration relationship evaluation unit 103, the storage battery operation planning unit 104 calculates and displays the use limit and the optimum use condition according to the use condition input desired by the client.
  • FIG. 6 is an explanatory diagram showing the relationship between the operation conditions of the lead-acid battery and the battery life / deterioration site.
  • the following (1) to (6) are examples of operating conditions that are controllable and that are considered to affect the life and deterioration.
  • Equal charge interval Equal charge interval that is regularly fully charged
  • SOC State of Charge
  • Charge / discharge cycle Charge / discharge cycle (cycle) (Charge ⁇ Discharge time interval)
  • Charging / discharging current magnitude of current when charging / discharging
  • Temperature temperature of the place where the battery is installed
  • Charging efficiency parameters used when estimating the efficiency and SOC during charging
  • Positive electrode lattice corrosion The positive electrode lattice corrodes due to oxidation.
  • Electrolyte stratification The specific gravity of the electrolyte can be biased, which hinders the role of the battery.
  • Charging / discharging cycle Generally, deterioration proceeds when there are many charging / discharging cycles. (Effects of charging and discharging with a short cycle such as wind power generation output may differ from this).
  • Charging / discharging current When the magnitude of the current during charging / discharging is too large, the temperature in the battery rises due to heat generation of the battery, and promotes positive grid corrosion. In addition, water evaporation of the electrolytic solution (decrease in the electrolytic solution) is also caused, and there is a case where the capacity is reduced faster than usual.
  • Temperature When the temperature of the battery installation place is high, positive grid corrosion tends to be promoted.
  • Charging efficiency a charging efficiency parameter used when estimating the SOC. If the charging efficiency is different from the actual charging efficiency, the SOC estimation error accumulates, resulting in overcharging, and (A) positive grid corrosion may progress. There is.
  • FIG. 7 shows a schematic diagram of a life prediction model using the dynamic characteristics of Taguchi method.
  • FIG. 7 is an explanatory diagram showing a life prediction method using the Tacti method.
  • the Taguchi method dynamic characteristics
  • sensitivity expressed by “sensitivity”.
  • the operation condition “equal charge interval” is compared under the conditions of (A) equal charge interval “every two weeks” and (B) equal charge interval “every month”.
  • a deterioration prediction model can be constructed in the same manner as the life (capacity reduction) of the lead storage battery.
  • FIG. 8 shows an example of a method for measuring the lifetime of a battery and deterioration of each part, and a limit value that can be used.
  • the life of a lead-acid battery has reached the limit of use when its capacity drops by 30%.
  • the deterioration of each part is measured by measuring the following values, and the use limit is reached when a predetermined reference value is reached.
  • FIGS. 9A and 9B are explanatory views showing an example of examining the influence of the use range of the SOC on (A) positive electrode grid corrosion.
  • FIG. 9A shows the positive grid corrosion with respect to battery usage
  • FIG. 9B shows the sensitivity of each level.
  • 10A and 10B are explanatory views showing an example of examining the influence of the use range of the SOC on (B) sulfation of the negative electrode.
  • FIG. 10A shows the amount of lead sulfate with respect to the battery usage date
  • FIG. 10B shows the sensitivity of each level.
  • the SOC use range is set to the current standard use range (30% to 80%), and the values shaken up and down are set to the following levels (1) to (3). Assume that
  • FIG. 11 is a setting example of control factors and level values in the L18 experiment.
  • control factors that affect the life of lead-acid batteries (a) uniform charging interval, (b) SOC usage range (center value), (c) SOC usage range (width), (d) charge / discharge cycle (high frequency) ), (E) charge / discharge cycle (low frequency), (f) charge / discharge current, (g) temperature, and (h) charge efficiency.
  • FIG. 12 shows an example of the L18 orthogonal table.
  • the storage battery operation-deterioration relationship evaluation unit 103 can be constructed using the life prediction based on the Taguchi method (dynamic characteristics).
  • FIG. 13 to 15 are examples of interface screens in a computer system in which the user can easily check the life / deterioration prediction results of the lead storage battery by the life prediction tool using Taguchi method (dynamic characteristics).
  • FIG. 13 shows an input (menu selection) screen of the life prediction tool.
  • the operating conditions are control factors (a to h), and the experimental level (a: 2 level, b to h: 3 level) of the lead-acid battery for wind power generation is displayed in a pull-down menu, which can be specified by the combination. .
  • the Life Prediction Tool After selecting the operating condition to be evaluated with the menu button on the left side of the screen, select the evaluation execution button on the right side.
  • the Life Prediction Tool displays the operating conditions selected from the menu on the left, the number of years until the lead-acid battery reaches the end of its life under the optimal operating conditions, The number of years of deterioration of the part (until the usage limit is reached) is calculated and displayed.
  • the life prediction tool passes the operating conditions selected in the menu on the left and the years specified in the optimal operating conditions The capacity of the lead storage battery and the degree of deterioration of each part are obtained and displayed.
  • FIG. 14 shows an example 1 of an output screen that is displayed when the “life prediction” button is pressed in the upper right column.
  • the result of evaluating the number of years until the lead-acid battery life (usage limit) is reached [30% reduction in lead-acid battery capacity] is shown. ing.
  • the operational conditions selected by the user from the menu are displayed in the center of the lower column of the life prediction tool screen, and a prediction result is displayed that the lead storage battery life is 17 years.
  • the “lifetime” when the “lifetime prediction tool” automatically performs “optimum operation conditions” and the optimum operation is also required.
  • the optimum operating condition obtained by the life prediction tool is displayed in the right part of the lower column of the screen, and it can be seen that the predicted life in the case where the optimum operation is performed is 21 years.
  • FIG. 15 shows an example 2 of a prediction result display screen when a specified number of years has elapsed by pressing the “year of use” ⁇ “capacity / degradation degree” prediction column button in the lower right of FIG.
  • An example in which the positive electrode lattice corrosion after 21 years of use is predicted is displayed in the lower column of the screen in FIG.
  • the operation conditions selected by the user from the menu are displayed again in the center column of the life prediction tool screen.
  • the amount of corrosion of the positive electrode lattice is 41%, and a message “Over Use Limit” is displayed. In other words, if an operation method and a target year are specified and evaluated, it can be predicted whether or not the target can be achieved by such operation.
  • This life prediction tool automatically requires "optimal operating conditions” and "deterioration status when the specified years have passed after optimal operation".
  • the optimum operation condition obtained by the life prediction tool is shown on the right side.
  • the predicted value of the positive electrode grid corrosion amount after 21 years is predicted to be 35%.
  • the use limit of positive grid corrosion has not been reached even after 21 years. Therefore, if the control to use the lead storage battery can be performed under the operating conditions as required by the life prediction tool, it is predicted that the positive electrode grid corrosion can be used even after the target 21 years have passed.
  • this life prediction tool it is possible to predict the life of a lead storage battery and the years until deterioration (use limit) of each part under various operating conditions. In addition, under various operating conditions, it is possible to predict the battery capacity decrease and the progress of deterioration of each part when a specified number of years have passed. Furthermore, even if the user does not operate, it is possible to automatically obtain the optimum operation condition by the life prediction tool itself. These outputs are transmitted to a power generation site using a network, and are used for optimal operation of the wind power generation / storage battery system 101.
  • FIG. 16 shows an example 3 of a display screen of the result of analyzing the factor of the Taguchi method automatically by analyzing the data collected by the life prediction tool through experiments.
  • FIG. 16 shows a graph showing the factor effect (sensitivity) for each control factor (operating condition).
  • the level of sensitivity at the level of 3 levels (2 levels only for A) is displayed visually and clearly.
  • the life / deterioration prediction the lower the sensitivity, the harder the life / deterioration progresses, and the operation method has a longer life.
  • the life prediction tool can automatically analyze the factors of Taguchi method and build a prediction model. The more data, the better the prediction accuracy improves. is there. Therefore, it is possible to collect data periodically based on the L18 experiment plan created for the lead acid battery for wind power and improve the prediction accuracy. In addition, it is possible to plan control that satisfies the required life using the above life prediction tool.
  • Example 2 of this invention replaces with the storage battery operation planning part 104 which plans the operation method of the lead storage battery of Example 1, and evaluates the information regarding the cost of a lead storage battery.
  • Storage battery cost evaluation unit 201 grid connection penalty cost paid to the power company, power company penalty cost evaluation unit 202 for evaluating costs such as profits obtained by selling wind power generation, and storage battery operation-deterioration relationship
  • An optimum cost storage battery operation planning unit 203 for planning the operation of the lead storage battery having the optimum cost from the information of the evaluation unit 103, the information of the storage battery cost evaluation unit 201, and the information of the power company cost evaluation unit 202 is provided.
  • the lead battery storage cost information evaluated by the storage battery cost evaluation unit 201 includes storage battery initial purchase costs, maintenance costs, storage battery replacement costs, and the like.
  • the electric power company cost evaluated by the electric power company cost evaluation unit 202 includes a wind power purchase cost (revenue), a consignment fee, and interconnection requirements (which may vary depending on the quality of electric power). Includes penalty costs.
  • the operation method may be planned so that the cost related to the lead storage battery and the cost (revenue) related to the electric power company are maximized.
  • Embodiment 2 of the present invention can be implemented.
  • the second embodiment even when the purchase price of wind power generation changes depending on the quality of the power generated by wind power generation in the future, or whether or not the power is generated according to the amount of notice, etc. It is possible to control the system to obtain the optimum profit including the price difference.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Wind Motors (AREA)

Abstract

 発電サイトの温度条件や風の条件で、蓄電池の寿命を最も長くできるSOCや、その他の運用条件について現時点で分かっている条件に基づき、蓄電池の寿命を最も長くできる制御方法を確立しながら、実際の風力発電・蓄電池システムにフィードバックできる制御システムを構築する。風力発電・蓄電池システムと、風力発電・蓄電池システムのデータを収集する蓄電池運用・蓄電池劣化データ収集部と、収集されたデータをもとに蓄電池の運用と劣化の関係を評価する蓄電池運用-劣化関係評価部と、蓄電池運用-劣化関係評価部により得られた情報を用いて、必要な寿命要件を満足するような蓄電池の運用方法を計画する蓄電池運用計画部と、蓄電池運用計画部の計画に従って風力発電・蓄電池システムに対して蓄電池の運用を指示する蓄電池運用指示部を有する。

Description

風力発電用蓄電池制御システム及びその制御方法
 本発明は、風力発電システムにおいて、風力発電の変動抑制用の蓄電池を長寿命化する制御システム及びその制御方法に関するものである。また、蓄電池を含むシステムコストを最小限にして風力発電の収益を最大化する風力発電システムの最適な運用に関するものである。
 地球温暖化は、全人類にとって重大な問題であり、世界各国で温暖化の進行を遅らせ食い止めるために、省エネルギーの推進やCO2を排出しない新エネルギーの利用などが進められている。
 日本でも、CO2排出削減のため、国が新エネルギー導入の目標を定め、補助金なども実施しながら太陽光や風力などの新エネルギー発電の導入を進めている。
 ところで、風力発電は自然エネルギーを利用しており、CO2を排出しないというメリットがあるものの発電出力が安定せず、電力系統への悪影響、電力品質の低下が懸念されている。このような電力系統への悪影響を防ぐ目的で、風力発電を導入する際には、同時に蓄電池システムを導入することが広く実施されている。
 図18に、風力発電システムにおける出力変動抑制用の蓄電池システムの例を示す。風力発電による発電出力は風況によって大きく変動し、そのまま電力系統に流すと電力系統の電力品質に悪影響を及ぼす。そこで、鉛蓄電池等の蓄電池やリチウムイオン電池、スーパーキャパシタなどを用いた蓄電システムにより風力発電出力の状況に合わせた蓄電システム出力を出力する。結果として、電力系統には風力発電出力と蓄電システム出力が合成されて滑らかとなった系統出力が流され、電力品質への悪影響を回避することが可能となる。
 図19に、電力会社における風力発電の系統連系要件の一例を示す。図の例では、風力発電と蓄電池の合成出力の変動を、1分平均化された値の20分間における最大値と最小値の差が風力の定格出力の10%以下に抑制するよう規定しており、このような系統連系要件を満たすことが求められている。
 蓄電池は、運用条件によって寿命が大きく異なることが知られている。蓄電池を風力発電の出力変動抑制に用いることは比較的新しい試みのため、蓄電池の運用条件のうち、風力発電の系統連系要件を満たしつつ制御可能な条件をどのように運用すれば電池の寿命を最も長寿命化できるのかは現時点で必ずしも明確でない。従来の産業用の負荷平準化(夜間電力を蓄電し負荷が多い昼間時間帯に放電する)の用途とは異なり、風力発電蓄電池システムでは、満充電でない部分充電状態PSOC(Percial State of Charge)で短時間の充放電を繰り返すと考えられる。このような、これまでにない運用条件でも蓄電池の劣化を抑え、風力発電機のライフサイクルと同等以上の長寿命となる運用が必要とされている。
 鉛蓄電池の充放電状態(SOC)の制御方法として、特許文献1が公開されている。本方法は、鉛蓄電池の充放電の際にSOCの下限範囲に入った回数を計測しそれに応じてSOCレベルを上昇させるものである。
 また、蓄電設備の保守に関し特許文献2が公開されている。これには、蓄電設備の保守を行う際に短時間の放電により全ての蓄電池の容量チェックを行い、容量不足となった蓄電池のみを交換することにより蓄電池交換のコストを削減する旨の開示がある。
特開2004-186087号公報 特開2006-100000号公報
 特許文献1の方法は、どのようなSOC制御を行えば良いのかが確立されていない風力発電システムでは実施することができない。また、蓄電池の寿命に影響するのはSOCだけでなくその他様々な運用条件が関係しているが、特許文献1の方法はSOC以外の運用条件を含む総合的な制御方法については考慮されていない。
 発電サイトの温度条件や風の条件で蓄電池の寿命を最も長くできるSOCや、その他の運用条件の全てについて現時点では解明されていない。しかし、地球温暖化の進行を食い止めるには、全ての技術の確立を待って風力発電や風力発電用蓄電池システムを導入することはできない。そこで、蓄電池の寿命を最も長くできる制御方法を評価しながら、その結果を実際の風力発電システムにフィードバックするシステムの構築が本発明の第一の課題である。
 第二の課題は、蓄電池を備えた風力発電・蓄電池システム全体でいかに収益をあげるかということである。即ち、風力発電による利益や系統連系に関するコスト、蓄電池のコストなどを総合的に考えて収益を最大化できる発電システムの構築が課題である。将来風力発電電力は電力品質により買取価格が変わる可能性がある。また予告どおりの量で風力発電システムが発電できたか否かにより買取価格が変わる可能性がある。そのような場合にも、収入とコストのバランスから収益を最大化できる発電システムの構築が求められている。
 本発明は、上記目的を達成するために、蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、該蓄電池運用-劣化関係評価部により得られた情報に基づいて必要な寿命要件を満足する蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする。
 また、蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、前記蓄電池のコストに関する情報を評価する蓄電池コスト評価部と、電力会社に対して支払う系統連系ペナルティコストや風力発電による収益を含むコストを評価する電力会社ペナルティコスト評価部と、該蓄電池運用-劣化関係評価部により得られた情報および蓄電池コスト情報および電力会社コスト情報に基づいてコスト最適な蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする。
 さらに、風力発電・蓄電池システムと、該風力発電・蓄電池システムのデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と劣化の関係を評価する蓄電池運用-劣化関係評価部と、該蓄電池運用-劣化関係評価部により得られた情報を使って必要な寿命要件を満足する蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムに対して蓄電池の運用を指示する蓄電池運用指示部とを設けた風力発電用蓄電池制御システムの制御方法において、蓄電池の運用と劣化の関係を評価し必要な寿命要件を満足する蓄電池の運用を計画する際に、タグチメソッド(動特性)を用いて蓄電池の運用条件の蓄電池寿命および劣化部位に対する影響度を求め、運用条件と蓄電池寿命および劣化部位の関係評価を行うことを特徴とする。
 さらに、蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と劣化の関係を評価する蓄電池運用-劣化関係評価部と、前記蓄電池のコストに関する情報を評価する蓄電池コスト評価部と、電力会社に対して支払う系統連系ペナルティコストや風力発電による収益を含むコストを評価する電力会社コスト評価部と、該蓄電池運用-劣化関係評価部により得られた情報および蓄電池コスト情報および電力会社コスト情報に基づいてコスト最適な蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする風力発電用蓄電池制御システムの制御方法において、蓄電池の運用と劣化の関係を評価し必要な寿命要件を満足する蓄電池の運用を計画する際に、タグチメソッド(動特性)を用いて蓄電池の運用条件の蓄電池寿命および劣化部位に対する影響度を求め、運用条件と蓄電池寿命および劣化部位の関係評価を行うことを特徴とする。
 本発明によれば、風力発電・蓄電池システムの設置された発電サイト固有の風力条件・温度条件などの自然条件の下で、蓄電池の寿命を目標とする年月まで維持できるよう、風力発電・蓄電池システムの制御を随時最適化してゆくことができる。
 また、自然エネルギーを使って発電した電力の収益や、保守費用を含む風力発電・蓄電池システムのコストおよび電力会社に支払うコストなどのトータルコストを最適化(収益最大化)するような風力発電・蓄電池システム制御を、随時実施してゆくことができる。
本発明の実施例1を示す機能ブロック図である。 半導体チップによる蓄電池データ収集を示す模式図である。 蓄電池運用・蓄電池劣化データ収集部のデータを示す説明図である。 本発明の寿命予測ツールを示す模式図である。 蓄電池運用・蓄電池劣化関係評価部の構成を示す機能ブロック図である。 鉛蓄電池の運用条件と電池寿命・劣化部位の関係を示す説明図である。 タグチメソッドによる寿命予測手法を示す説明図である。 鉛蓄電池の運用条件と電池寿命・劣化部位の関係を示す説明図である。 タグチメソッドによる各水準毎の寿命予測の例を示す説明図である。 タグチメソッドによる各水準毎の寿命予測の例を示す説明図である。 タグチメソッドによる各水準毎の寿命予測の例を示す説明図である。 タグチメソッドによる各水準毎の寿命予測の例を示す説明図である。 L18実験計画の制御因子を示す説明図である。 L18実験計画(直交表)を示す説明図である。 タグチメソッドによる寿命予測ツール画面を示す模式図である。 タグチメソッドによる寿命予測ツール画面を示す模式図である。 タグチメソッドによる寿命予測ツール画面を示す模式図である。 タグチメソッドによる寿命予測ツールの感度表示画面を示す模式図である。 本発明の実施例2を示す機能ブロック図である。 従来の風力発電・蓄電池システムの模式図である。 従来の電力会社の風力発電の系統連系要件の模式図である。
 以下に図面を用いて、鉛蓄電池を蓄電池として用いた場合の本発明の実施形態について詳しく説明する。
 図1に、実施例1の機能ブロック図を示す。本発明の機能ブロックは、発電サイトに設けられた風力発電・蓄電池システム101と蓄電池運用・蓄電池劣化データ収集部102、及び遠隔制御サイトに設けられた蓄電池運用-劣化関係評価部103、鉛蓄電池の必要な寿命要件を満足する蓄電池運用計画部104、および蓄電池運用指示部105からなる。
 実施例1の動作を以下に説明する。風力発電・蓄電池システム101は風力発電装置及びその出力を平準化する鉛蓄電池を制御する制御装置を有する。蓄電池運用・蓄電池劣化データ収集部102は通常は風力発電・蓄電池システムの制御装置に設けられ、風力発・蓄電池システム101における鉛蓄電池の運用データおよび劣化データを収集する。蓄電池運用・蓄電池劣化データ収集部102により収集されたデータは、ネットワークを介して遠隔制御サイトの蓄電池運用-劣化関係評価部103に送信される。蓄電池運用・蓄電池劣化データの収集は、図2に示すように風力発電・蓄電池システム101内の蓄電池自体に搭載された半導体チップ106により実施しても良い。
 蓄電池運用-劣化関係評価部103は、収集された鉛蓄電池のデータをもとに鉛蓄電池の運用と寿命及び劣化の関係を評価する。そして、蓄電池運用計画部104は蓄電池運用-劣化関係評価部103によって求められた鉛蓄電池の運用と劣化の関係情報を基に、鉛蓄電池が必要な寿命要件を満足するように鉛蓄電池の運用方法(制御方法)を計画する。
蓄電池運用計画部104によって作成された運用計画をもとに、蓄電池運用指示部105は、ネットワークを介して風力発電・蓄電池システム101に鉛蓄電池の運用指示情報を送信し、これを元に風力発電・蓄電池システム101の制御装置は鉛蓄電池の適切な運用および制御を行う。
 蓄電池運用-劣化関係評価部103、蓄電池運用計画部104および蓄電池運用指示部105は、遠隔制御サイトにおいてホストコンピュータ上で作動するソフトウェアプログラムである寿命予測ツール上に構成される。
〔蓄電池運用・蓄電池劣化データ収集部〕
 次に、各機能ブロックの動作・内容について詳しく説明する。蓄電池運用・蓄電池劣化データ収集部102は各種センサと記憶装置、通信装置等を備え、鉛蓄電池の運用や劣化に関するデータを収集する。蓄電池運用・蓄電池劣化データ収集部102が収集するデータの例を図3に示す。蓄電池運用・蓄電池劣化データ収集部102は、蓄電池の運用データ(制御可能データ)、蓄電池劣化データ等のデータを収集する。
 蓄電池の運用データ(制御可能データ)の例としては、(1a)均等充電間隔、(1b)均等充電電圧、(1c)均等充電量、(1d)SOC使用範囲(中心値)、(1e)SOC使用範囲(幅)、(1f)充放電サイクル(高周波)、(1g)充放電サイクル(低周波)、(1h)充放電電流などが挙げられる。ここで、充放電サイクルとは、充放電の時間間隔のことである。例えば、(1f)充放電サイクル(高周波)は、充放電時間間隔が短いもの(例:数秒~数分)、(1g)充放電サイクル(低周波)は、充放電時間間隔が長いもの(例:数時間~数十時間)を考えることができる。
 蓄電池劣化データの例としては、(2a)電池容量低下、(2b)正極格子腐食、(2c)負極サルフェーション(硫酸鉛量)、(2d)電解液成層化(比重)、(2e)電解液量などが挙げられる。
〔蓄電池運用-劣化関係評価部〕
 蓄電池運用・蓄電池劣化データ収集部102は、上述のようなデータを収集し、収集したデータをネットワークを介して蓄電池運用-劣化関係評価部103に送信する。
 蓄電池運用-劣化関係評価部103は、図4の模式図に示すような寿命予測ツール(寿命・劣化解析モデル)の一部を構築しており、その内容は入力されるデータに応じて随時更新されている。寿命予測ツールはコンピュータハードウェアとソフトウェアプログラムから構成され、鉛蓄電池の充放電パターンを含む電池の運用条件などを与えると、所定の演算処理により鉛蓄電池の寿命や鉛蓄電池の各部位の劣化状況などを予測し出力する。本発明はこの寿命予測ツール(寿命・劣化予測モデル)の構成を要部とするものである。
 以下に蓄電池運用-劣化関係評価部103の構成を図5の機能ブロック図を用いて説明する。図5において、寿命感度評価部301は、蓄電池運用・蓄電池劣化データ収集部102のデータから、タグチメソッド手法により各運用条件の鉛蓄電池寿命に対する感度を算出する。また各使用条件の限界値が使用限界入力部302から入力される。運用条件・電池寿命比較評価部305はこれらデータを比較評価し、各データの関係を決定して蓄電池運用計画部104に出力する。蓄電池運用計画部104は蓄電池運用-劣化関係評価部103の出力に基づき、クライアントの希望する使用条件入力に応じた寿命、及び最適条件での寿命を算出して表示する。
 また、劣化感度評価部303は、蓄電池運用・蓄電池劣化データ収集部102のデータから、タグチメソッド手法により各運用条件の鉛蓄電池劣化部位に対する感度を算出する。また各使用条件の限界値が使用限界入力部304から入力される。運用条件・劣化部位比較評価部306はこれらデータを比較評価し、各データの関係を決定して蓄電池運用計画部104に出力する。蓄電池運用計画部104は蓄電池運用-劣化関係評価部103の出力に基づき、クライアントの希望する使用条件入力に応じた使用限界、及び最適使用条件を算出して表示する。
 図6は、鉛蓄電池の運用条件と電池寿命・劣化部位の関係を示す説明図である。鉛蓄電池の運用条件のうち、制御可能でかつ寿命・劣化に影響すると考えられる運用条件の一例として下記の(1)~(6)が挙げられる。
 (1)均等充電間隔:定期的に満充電状態とする均等充電の間隔
 (2)SOC(State of Charge):鉛蓄電池のチャージレベル
 (3)充放電サイクル:充放電のサイクル(周期)(充電・放電の時間間隔)
 (4)充放電電流:充放電する時の電流の大きさ
 (5)温度:電池を設置する場所の温度
 (6)充電効率:充電時の効率、SOCを推定する時に用いるパラメータ
 また、鉛蓄電池の劣化部位/劣化現象の代表的な例としては下記の(A)~(C)が挙げられる。
 (A)正極の格子腐食:正極の格子が酸化により腐食する。
 (B)負極のサルフェーション:負極の硫酸鉛が結晶化しイオン化しなくなるため
   電池役割に支障をきたす。
 (C)電解液の成層化: 電解液の比重に偏りができて、電池役割に支障をきたす。
 現状で知られている上記運用条件(1)~(6)と劣化部位/劣化現象(A)~(C)との関係(傾向)を下記に記す。
(1)均等充電間隔:定期的に満充電状態とすると、長期間部分充電状態(PSOC)で使用する時に起こりがちな(B)負極のサルフェーションや(C)電解液の成層化を緩和し、鉛蓄電池の寿命を延ばすことができる。
(2)SOC:SOCレベルが高くて過充電となると(A)正極格子腐食が進む。逆にSOCレベルが低いと(B)負極のサルフェーションが起こる可能性が高まる。
(3)充放電サイクル:一般的には、充放電のサイクルが多いと劣化が進行する。(風力発電出力のような周期の短い充放電による影響は、これと異なる場合がある)。
(4)充放電電流:充放電する時の電流の大きさがあまり大きいと、電池の発熱により電池内温度が上昇して、正極格子腐食を促進する。また、電解液の水分蒸発(電解液減少)も引き起こし、通常より早い容量低下が起こる場合がある。
(5)温度:電池設置場所の温度が高温の場合、正極格子腐食が促進される傾向がある。
(6)充電効率:SOCを推定する時に用いる充電時の効率パラメータであり、実際の充電効率と異なっているとSOC推定誤差が累積し、過充電となって(A)正極格子腐食が進む恐れがある。
 以上は、従来知られている劣化・寿命に対する傾向である。風力発電・蓄電池システムの寿命を正確に予測するには、風力発電・蓄電池システムの運用条件(電力会社の系統連系要件を満たしながら制御可能な運用条件)の組み合わせで、寿命や劣化がどのように進むかについて、これらの関係の定量的なモデル化が必要である。
〔寿命・劣化予測モデル〕
 電池の運用条件と電池の寿命・劣化関係に関する予測モデルを構築するための、タグチメソッド(動特性)を使ったモデル化手法について説明する。電池の劣化にかかわる運用条件は前述のとおり様々なものがある。さらに、これらの条件の組合せについては膨大な組合せ数が考えられ、コストや期間の制約から全ての組合せ条件について寿命や劣化がどのように進むのか実験・測定を行うのは困難である。しかし、タグチメソッド技法とL18実験計画技法を用いることにより、電池の劣化にかかわる運用条件との寿命や劣化の関係を、現実的な組合せ数範囲内の実験により求めることができる。図7にタグチメソッドの動特性を使った寿命予測モデルの模式図を示す。
 タグチメソッドの要因分析を行い「感度」を求めることで、複雑な運用条件の組合せの中で、各々の運用条件について独立して寿命に対する影響度を調べることが出来る。(ここで、運用条件はタグチメソッドの「制御因子」に相当する)。
 図7はタクチメソッドによる寿命予測手法を示す説明図である。図7では、タグチメソッド(動特性)で、各制御因子毎の「年月」-「電池容量低下」の関係を明らかにする(「感度」により表現)。例えば、図7の例では運用条件「均等充電間隔」を(A)均等充電間隔「2週間毎」と(B)均等充電間隔「1ヶ月毎」の条件で比較する場合について説明する。
 (A)、(B)の制御因子で比較した時、入力(電池使用年月)に対する出力(電池容量低下)の感度(β(A)、β(B))の比を比較して、(β(B)/β(A))=1.5倍という値が得られたとする。この場合は、均等充電間隔の寿命に与える影響は(A)に比べて(B)の方が1.5倍影響度が大きく、均等充電間隔「2週間毎」を実施するよりも、均等充電間隔「1ヶ月毎」の方が1.5倍早く劣化が進んでしまうということが分かる。
 鉛蓄電池の各部位の劣化についても、鉛蓄電池の寿命(容量低下)と同様に劣化予測モデルを構築することができる。図8に、電池の寿命および各部位の劣化の測定方法と、使用できる限界値の一例を示す。
 鉛蓄電池の寿命を、その容量が30%低下した時点で使用限界に達したものとする。同様に、各部位の劣化は下記に示す値を測定することで劣化進行度を測定し、所定の基準値に達したときに使用限界に達したものとする。
  (A)正極格子腐食・・・測定値:格子腐食量、使用限界:40wt%
  (B)負極のサルフェーション・・・測定値:硫酸鉛量、使用限界:15%
  (C)電解液の成層化・・・測定値:電解液比重、使用限界:0.1
 前節で説明したのと同様に、劣化に関係する様々な運用条件と各部位の劣化の関係を調べるため、タグチメソッドの要因分析を行いて各要因の感度を求める。それにより、複雑な運用条件(制御因子)の組合せがある中で、各々の運用条件についてそれぞれ独立に各部位の劣化に対する影響度を調べることができる。
 図9A、9Bは(A)正極格子腐食に対するSOCの使用範囲の影響を調べる例を示す説明図である。図9Aは電池使用年月に対する正極格子腐食を示し、図9Bは各水準の感度を示す。また、図10A、10Bは(B)負極のサルフェーションに対するSOCの使用範囲の影響を調べる例を示す説明図である。図10Aは電池使用年月に対する硫酸鉛量を示し、図10Bは各水準の感度を示す。図9A~図10Bの例では、SOC使用範囲を現在の標準的な使用範囲(30%~80%)と、そこから、上下に振った値を下記水準(1)~(3)に設定したと仮定する。
  (1)20%~70%
  (2)30%~80%
  (3)40%~90%
 一般的には、SOCが高い方が「(A)正極格子腐食」を促進する方向の影響が出やすく、SOCが低い方が「(B)負極のサルフェーション」を促進する方向の影響が出やすい傾向があると言われている。しかし、もし上記(1)~(3)の水準にて実験を行い、タグチメソッドの要因分析を行った結果、感度が図9Bに示すような関係だったとする。即ち、現在の標準的な使用範囲(2)のケースでは図9Aに示すように「(A)正極格子腐食」の進行が目標の年数を達成するか否かぎりぎりのところであるが、使用範囲を(1)に下げると、「(A)正極格子腐食」の進行が劇的に遅くなる(長寿命化する)とする。一方、図10Aに示す様に(B)負極のサルフェーションについては、現状のSOC使用範囲(2)から使用範囲を(1)に下げても劣化の進行はそれほど早まらず目標の年数をクリアできるとする。その場合、風力発電用鉛蓄電池のSOC使用範囲は(1)とした方が長寿命にできることが分かる。
 このようなタグチメソッド(動特性)による予測を行うためのデータを、L18実験計画によって求める例を示す。図11はL18実験の制御因子と水準値の設定例である。ここでは、鉛蓄電池において寿命を左右する制御因子として、(a)均等充電間隔、(b)SOC使用範囲(中心値)、(c)SOC使用範囲(幅)、(d)充放電サイクル(高周波)、(e)充放電サイクル(低周波)、(f)充放電電流、(g)温度、(h)充電効率の例とした。なお、鉛蓄電池の種類・特性により、寿命に影響がある制御因子を使用して実験計画を組むことができる。図12はL18直交表の例を示す。L18直交表を使った組合せで実験を行い、得られたデータをタグチメソッド(動特性)で要因分析を行いその感度を求めることで、鉛蓄電池の運用を変化した時に寿命が何年となるか推定することができる。以上のように、タグチメソッド(動特性)による寿命予測を用いて、蓄電池運用―劣化関係評価部103を構築することができる。
 なお、タグチメソッド(動特性)の要因分析の詳細については、「田口玄一:ロバスト設計のための機能性評価―効率的開発の方法、日本規格協会(2000/06)」「矢野宏:品質工学入門―技術を変革する新しい考え方、日本規格協会(1995/08)」「田口玄一、横山巽子:ベーシック品質工学へのとびら、日本規格協会(2007/09)」「田口玄一、横山巽子:オフライン品質工学、日本規格協会(2007/05)」「上田太一郎:Excelによるタグチメソッド(品質工学)算法、新技術開発センター」等の書籍に詳しく紹介されている。
〔寿命予測ツール〕
 図13~図15は、タグチメソッド(動特性)を用いた寿命予測ツールによる鉛蓄電池の寿命・劣化予測結果を、ユーザが容易に確認できるようにしたコンピュータシステムにおけるインタフェース画面の例である。図13に、寿命予測ツールの入力(メニュー選択)画面を示す。画面左に表示されている「制御可能な条件の選択」メニューボタンにより、鉛蓄電池の運用条件を指定し、指定した条件での鉛蓄電池の寿命や劣化の評価を行うことができる。運用条件は、制御因子(a~h)で、風力発電用鉛蓄電池の実験水準(a:2水準、b~h:3水準)がプルダウンメニュー表示され、その組合せで指定できるようになっている。
 画面左のメニューボタンで評価したい運用条件を選択した後、右側の評価実行ボタンを選択する。右上「寿命予測」欄に表示されている寿命予測ボタンを押すと、寿命予測ツールは左のメニューで選んだ運用条件、および最適な運用条件での鉛蓄電池が寿命となるまでの年数や、各部位の劣化(使用限界となるまで)の年数を演算処理により求めて表示する。
 右下の「使用年数」→「容量・劣化度」予測欄に表示されているボタンを押すと、寿命予測ツールは左のメニューで選んだ運用条件、および最適な運用条件で指定した年数が経過した時の鉛蓄電池の容量や、各部位の劣化度合いを求めて表示する。
 図14に、右上欄で「寿命予測」のボタンを押した場合に表示される出力画面の例1を示す。図14の例では、「寿命予測」のボタンを押した結果、鉛蓄電池の寿命(使用限界)である[鉛蓄電池の容量低下が30%減]となるまでの年数を評価した結果が示されている。
 ユーザがメニューで選択した運用条件は、寿命予測ツール画面下欄中央に、鉛蓄電池寿命は17年であると予測結果が表示されている。また、寿命予測ツールで自動的に「最適な運用条件」と最適な運用を行ったときの「寿命」も求められる。図の例では、画面下欄右側の部分に、寿命予測ツールが求めた最適な運用条件が表示され、最適な運用を行ったケースでの予測寿命は21年であることが分かる。
 図15に、図13の右下の「使用年数」→「容量・劣化度」予測欄ボタンを押して、指定した年数が経過した時の予測結果表示画面の例2を示す。図15の画面下欄に使用21年後の正極格子腐食を予測した例が表示されている。
 ユーザがメニューで選択した運用条件は、寿命予測ツール画面中央の欄に再表示される。この運用方法で21年経過した時の正極格子腐食量は41%であり、[使用限界を超えている]旨のメッセージが表示される。つまり、もし運用の方法と目標年数を指定して評価すれば、そのような運用で目標を達成可能か否かを予測することができる。
 本寿命予測ツールは、自動的に「最適な運用条件」と「最適な運用を行い、指定した年数が経過した時の劣化状況」も求められるようになっている。図の例では、右側の部分に寿命予測ツールが求めた最適な運用条件が示されている。この最適な運用を行ったケースで、21年が経過した時の正極格子腐食量予測値は35%と予測されている。本ケース(最適な運用条件で運用のケース)では、21年が経過しても正極格子腐食の使用限界に至っていない。従って、寿命予測ツールが求めたような運用条件で鉛蓄電池を使用するような制御ができれば、正極格子腐食は目標の21年を経過しても使用可能な状態であると予測される。
 以上のように、本寿命予測ツールを用いれば、様々な運用条件の下で鉛蓄電池の寿命や各部位の劣化(使用限界)までの年数を予測することができる。また、様々な運用条件の下で、指定した年数を経過した時の電池の容量低下具合や各部位の劣化進行状況などを予測することができる。さらにはユーザが操作しなくても、寿命予測ツール自体で自動的に最適な運用条件を求めることも可能である。これらの出力は、ネットワークを用いて発電サイトに送信され、風力発電・蓄電池システム101の最適な運用に用いられる。
 図16は、本寿命予測ツールが実験により収集したデータを自動的にタグチメソッドの要因分析を行い、分析した結果の表示画面の例3を示す。図16には各制御因子(運用条件)毎に要因効果(感度)を示すグラフが示されている。グラフは、3水準(Aのみ2水準)の水準での感度の高低が視覚的に分かりやすく表示されている。寿命・劣化予測に関しては、感度が低い方が寿命・劣化が進みにくく、長寿命である運用方法となる。
 本寿命予測ツールは、実験により収集したデータを与えると、寿命予測ツールが自動的にタグチメソッドの要因分析を行い予測モデルを構築することができ、データを多く与える程予測精度が向上する特徴がある。従って、風力用鉛蓄電池用に作成したL18実験計画に基づき定期的にデータを収集し、予測精度を向上してゆくことが可能である。また、上記の寿命予測ツールを使って必要な寿命を満たす制御を計画することが可能である。
 本発明の実施例2については、図17の機能ブロック図に示すように、実施例1の鉛蓄電池の運用方法を計画する蓄電池運用計画部104に代えて、鉛蓄電池のコストに関する情報を評価する蓄電池コスト評価部201と、電力会社に対して支払う系統連系ペナルティコストや、風力発電を売電することによって得られる収益などコストを評価する電力会社ペナルティコスト評価部202と、蓄電池運用-劣化関係評価部103の情報、および蓄電池コスト評価部201の情報、および電力会社コスト評価部202の情報からコスト最適となる鉛蓄電池の運用を計画する最適コスト蓄電池運用計画部203を設ける。
 蓄電池コスト評価部201が評価する鉛蓄電池のコスト情報とは、蓄電池初期購入費用、保守費用、蓄電池交換費用などが含まれる。また、電力会社コスト評価部202が評価する電力会社コストには、(電力の品質により異なることになる可能性がある)風力発電買取コスト(収益)、託送料金、連系要件に違反した時のペナルティコストなどが含まれる。これらのように、鉛蓄電池に関わるコストと電力会社に関わるコスト(収益)が最大化するように運用方法を計画すればよい。以上により本発明の実施例2を実施することが可能である。
 以上のように、実施例2によれば、将来風力発電による電力の品質、あるいは予告どうりの量で発電したか否かなどにより風力発電電力の買取価格の高低が変わった場合などにも、それらの価格差も含めて最適な収益を得られるシステム制御が可能となる。
101:風力発電・蓄電池システム
102:蓄電池運用・蓄電池劣化データ収集部
103:蓄電池運用-劣化関係評価部
104:蓄電池運用計画部
105:蓄電池運用指示部
106:半導体チップ
201:蓄電池コスト評価部
202:電力会社ペナルティコスト評価部
203:最適コスト蓄電池運用計画部

Claims (13)

  1.  蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、該蓄電池運用-劣化関係評価部により得られた情報に基づいて必要な寿命要件を満足する蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする風力発電用蓄電池制御システム。
  2.  蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、前記蓄電池のコストに関する情報を評価する蓄電池コスト評価部と、電力会社に対して支払う系統連系ペナルティコストや風力発電による収益を含むコストを評価する電力会社ペナルティコスト評価部と、該蓄電池運用-劣化関係評価部により得られた情報および蓄電池コスト情報および電力会社コスト情報に基づいて最適な蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする風力発電用蓄電池制御システム。
  3.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用-劣化関係評価部と、前記蓄電池運用計画部と、前記蓄電池運用指示部は、コンピュータ上で作動するソフトウェアプログラムから構成され、蓄電池運用-劣化関係評価部は前記風力発電・蓄電池システムにおいて前記蓄電池運用・蓄電池劣化データ収集部で収集された蓄電池の運用・劣化データを、タグチメソッド(動特性)を用いて評価処理することを特徴とする風力発電用蓄電池制御システム。
  4.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用・蓄電池劣化データ収集部が収集する蓄電池運用データは、均等充電間隔、均等充電電圧、均等充電量、SOC使用範囲、充放電サイクル(周期)、充放電のパターン、充電と放電の時間間隔、充放電電流、温度、充電効率の少なくとも一つを含むことを特徴とする風力発電用蓄電池制御システム。
  5.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用・蓄電池劣化データ収集部が収集する蓄電池劣化データは、電池容量低下、正極格子腐食、負極サルフェーション、電解液成層化、電解液量の少なくとも一つを含むことを特徴とする風力発電用蓄電池制御システム。
  6.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、蓄電池寿命と劣化部位の限界値を、蓄電池の定格に比較した蓄電池容量低下をマイナス30%以下、正極格子腐食量を40重量%以下、負極サルフェーションにおける硫酸鉛量を15%以下、電解液成層化における電解液比重差を0.1以下として警告を表示することを特徴とする風力発電用蓄電池制御システム。
  7.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池は鉛蓄電池を用いたことを特徴とする風力発電用蓄電池制御システム。
  8.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用・蓄電池劣化データ収集部は蓄電池に設けられた半導体チップからなることを特徴とする風力発電用蓄電池制御システム。
  9.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部は発電サイトに設けられ、前記蓄電池運用-劣化関係評価部と、前記蓄電池運用計画部と、前記蓄電池運用指示部は発電サイトとネットワークで接続された遠隔制御サイトに設けられたことを特徴とする風力発電用蓄電池制御システム。
  10.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用-劣化関係評価部と、前記蓄電池運用計画部と、前記蓄電池運用指示部は、コンピュータ上で作動するソフトウェアプログラムから構成されたことを特徴とする風力発電用蓄電池制御システム。
  11.  請求項1または2に記載された風力発電用蓄電池制御システムにおいて、前記蓄電池運用-劣化関係評価部と、前記蓄電池運用計画部と、前記蓄電池運用指示部は、指定条件に対する予測寿命と、最適条件における予測寿命を出力することを特徴とする風力発電用蓄電池制御システム。
  12.  風力発電・蓄電池システムと、該風力発電・蓄電池システムのデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、該蓄電池運用-劣化関係評価部により得られた情報を使って必要な寿命要件を満足する蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムに対して蓄電池の運用を指示する蓄電池運用指示部とを設けた風力発電用蓄電池制御システムの制御方法において、
     蓄電池の運用と劣化の関係を評価し必要な寿命要件を満足する蓄電池の運用を計画する際に、タグチメソッド(動特性)を用いて蓄電池の運用条件の蓄電池寿命および劣化部位に対する影響度を求め、運用条件と蓄電池寿命および劣化部位の関係評価を行うことを特徴とする風力発電用蓄電池制御システムの制御方法。
  13.  蓄電池を有する風力発電・蓄電池システムと、該風力発電・蓄電池システムにおける蓄電池のデータを収集する蓄電池運用・蓄電池劣化データ収集部と、該蓄電池運用・蓄電池劣化データ収集部により収集されたデータをもとに蓄電池の運用と寿命及び劣化の関係を評価する蓄電池運用-劣化関係評価部と、前記蓄電池のコストに関する情報を評価する蓄電池コスト評価部と、電力会社に対して支払う系統連系ペナルティコストや風力発電による収益を含むコストを評価する電力会社コスト評価部と、該蓄電池運用-劣化関係評価部により得られた情報および蓄電池コスト情報および電力会社コスト情報に基づいてコスト最適な蓄電池の運用方法を計画する蓄電池運用計画部と、該蓄電池運用計画部の計画に従って、前記風力発電・蓄電池システムにおける蓄電池の運用を指示する蓄電池運用指示部とを設けたことを特徴とする風力発電用蓄電池制御システムの制御方法において、
     蓄電池の運用と劣化の関係を評価し必要な寿命要件を満足する蓄電池の運用を計画する際に、タグチメソッド(動特性)を用いて蓄電池の運用条件の蓄電池寿命および劣化部位に対する影響度を求め、運用条件と蓄電池寿命および劣化部位の関係評価を行うことを特徴とする風力発電用蓄電池制御システムの制御方法。
PCT/JP2010/000042 2009-01-07 2010-01-06 風力発電用蓄電池制御システム及びその制御方法 WO2010079745A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080002373.2A CN102124219B (zh) 2009-01-07 2010-01-06 风力发电用蓄电池控制系统及其控制方法
KR1020117003731A KR101260137B1 (ko) 2009-01-07 2010-01-06 풍력 발전용 축전지 제어 시스템 및 그 제어 방법
US13/059,919 US9124135B2 (en) 2009-01-07 2010-01-06 System for control of wind power generation storage battery and method of control thereof
EP10729165.0A EP2386754B1 (en) 2009-01-07 2010-01-06 System for control of wind power electricity generation accumulator and method of control thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009001345A JP5310003B2 (ja) 2009-01-07 2009-01-07 風力発電用鉛蓄電池制御システム
JP2009-001345 2009-01-07
JP2013134492A JP5630537B2 (ja) 2009-01-07 2013-06-27 寿命予測システム

Publications (1)

Publication Number Publication Date
WO2010079745A1 true WO2010079745A1 (ja) 2010-07-15

Family

ID=59928612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000042 WO2010079745A1 (ja) 2009-01-07 2010-01-06 風力発電用蓄電池制御システム及びその制御方法

Country Status (6)

Country Link
US (1) US9124135B2 (ja)
EP (1) EP2386754B1 (ja)
JP (2) JP5310003B2 (ja)
KR (1) KR101260137B1 (ja)
CN (1) CN102124219B (ja)
WO (1) WO2010079745A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020575A1 (ja) * 2010-08-11 2012-02-16 新神戸電機株式会社 自然エネルギー利用システム用鉛蓄電池および鉛蓄電池システム
JP2012073740A (ja) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd 蓄電池管理サーバ、蓄電池管理装置、蓄電池管理システム、蓄電池管理方法、蓄電池管理プログラムおよびコンピュータ読み取り可能な記録媒体
WO2012109236A1 (en) * 2011-02-07 2012-08-16 United Technologies Corporation Method and system for operating a flow battery system based on energy costs
WO2012111234A1 (ja) * 2011-02-18 2012-08-23 三洋電機株式会社 電力供給システム
CN102830365A (zh) * 2012-09-12 2012-12-19 国电联合动力技术有限公司 兆瓦级风力发电机组变桨系统电池自动测试方法及系统
US20130024179A1 (en) * 2011-07-22 2013-01-24 General Electric Company Model-based approach for personalized equipment degradation forecasting
WO2013168320A1 (ja) * 2012-05-11 2013-11-14 パナソニック株式会社 蓄電池管理装置、蓄電池管理方法、プログラムを記憶した記憶媒体
JP2014163875A (ja) * 2013-02-27 2014-09-08 Shin Kobe Electric Mach Co Ltd 蓄電池制御システム及びその蓄電池劣化度予測方法
US8866443B2 (en) 2010-08-11 2014-10-21 Shin-Kobe Electric Machinery Co., Ltd. Lead acid storage battery and lead acid storage battery system for natural energy utilization system
WO2023149302A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030380A1 (ja) * 2009-09-10 2011-03-17 株式会社日立エンジニアリング・アンド・サービス 発電システムの電力貯蔵装置およびその電力貯蔵装置の運用方法
JP5386444B2 (ja) * 2010-06-30 2014-01-15 株式会社日立製作所 蓄電池制御装置及び蓄電池の制御方法、及び蓄電池の仕様決定方法
JP2012100487A (ja) * 2010-11-04 2012-05-24 Toshiba Mitsubishi-Electric Industrial System Corp 電力系統安定化装置
EP2458704A1 (en) * 2010-11-30 2012-05-30 Restore N.V. Method and system for charging a fleet of batteries
JP5677161B2 (ja) * 2011-03-28 2015-02-25 株式会社東芝 充放電判定装置及びプログラム
JP5747610B2 (ja) 2011-03-30 2015-07-15 ソニー株式会社 充電制御装置、充電制御方法、プログラム及びシステム
JP5526079B2 (ja) * 2011-05-30 2014-06-18 株式会社日立パワーソリューションズ 風力発電システムおよび風力発電システムにおける風力発電機増設方法
JP2013051839A (ja) * 2011-08-31 2013-03-14 Sekisui Chem Co Ltd 運用方法選択装置、電池運用システム、運用方法選択方法、電池運用方法及びコンピュータプログラム
JP5743367B2 (ja) * 2011-10-04 2015-07-01 エルジー・ケム・リミテッド バッテリー管理システムおよびバッテリー管理方法
WO2013054672A1 (ja) 2011-10-11 2013-04-18 新神戸電機株式会社 鉛蓄電池システム
JP5247874B2 (ja) 2011-12-06 2013-07-24 パナソニック株式会社 蓄電池移転支援装置および蓄電池移転支援方法
WO2013105259A1 (ja) * 2012-01-12 2013-07-18 株式会社日立製作所 蓄電池システムの容量決定装置および方法と、それに基づく蓄電池システム、および蓄電池システムを併設した電力供給システム
JP5890513B2 (ja) * 2012-02-27 2016-03-22 京セラ株式会社 制御装置、制御システム及び蓄電池制御方法
WO2013128727A1 (ja) 2012-02-28 2013-09-06 日本電気株式会社 調整機器制御システム、調整機器制御方法および記録媒体
JP2013192401A (ja) * 2012-03-14 2013-09-26 Toshiba Corp 電力需給制御装置
JP5710530B2 (ja) 2012-03-19 2015-04-30 株式会社協和コンサルタンツ 風力発電システム
CN103548197B (zh) * 2012-03-19 2018-04-20 松下知识产权经营株式会社 蓄电池监视方法、蓄电池监视系统以及蓄电池系统
US9208529B2 (en) 2012-04-06 2015-12-08 International Business Machines Corporation Smoothing power output from a wind farm
CN102664401B (zh) * 2012-04-16 2014-11-19 中国电力科学研究院 一种基于电池寿命模型的微电网控制方法
US9406094B2 (en) * 2012-08-14 2016-08-02 Stem Inc. Method and apparatus for delivering power using external data
JP6096447B2 (ja) * 2012-09-13 2017-03-15 株式会社東芝 蓄電池管理装置および蓄電池管理システム
JP6122594B2 (ja) * 2012-09-20 2017-04-26 積水化学工業株式会社 蓄電池管理装置、蓄電池管理方法及びプログラム
TW201425649A (zh) * 2012-12-17 2014-07-01 Shun-Ji Zhong 利用風力發電之電能進行氫氧電解及收集之裝置
JP5936711B2 (ja) * 2012-12-26 2016-06-22 三菱電機株式会社 蓄電デバイスの寿命予測装置及び蓄電デバイスの寿命予測方法
WO2014122832A1 (ja) * 2013-02-06 2014-08-14 日本電気株式会社 蓄電装置及び劣化判定方法
JP2014190763A (ja) * 2013-03-26 2014-10-06 Toshiba Corp 電池寿命推定方法及び電池寿命推定装置
JP6488538B2 (ja) * 2013-07-23 2019-03-27 日本電気株式会社 劣化係数決定システム、劣化予測システム、劣化係数決定方法およびプログラム
US10066604B2 (en) 2014-05-13 2018-09-04 General Electric Company Method and system for hybrid wind power generation
JP2015228280A (ja) * 2014-05-30 2015-12-17 株式会社Gsユアサ 硫酸鉛の還元反応可能距離の評価方法と還元方法
CN104022534B (zh) * 2014-06-17 2016-02-24 华北电力大学 风光储发电单元多目标协调运行优化方法
KR101581685B1 (ko) * 2014-08-20 2015-12-31 서강대학교산학협력단 에너지 저장장치의 충방전 스케줄링 장치 및 방법
KR101581684B1 (ko) * 2014-08-25 2015-12-31 서강대학교산학협력단 에너지 저장장치의 방전심도 제어를 통한 충방전 스케줄링 장치 및 방법
WO2016030967A1 (ja) * 2014-08-26 2016-03-03 株式会社日立製作所 エネルギーストレージ運転計画システムおよび運用条件決定方法
JP6402002B2 (ja) * 2014-10-30 2018-10-10 株式会社日立製作所 電力貯蔵システムの評価装置、評価方法および評価プログラム
KR101988623B1 (ko) * 2015-08-31 2019-06-12 주식회사 엘지화학 발전 데이터를 이용한 배터리 수명 예측 시스템 및 그 예측 방법
KR102527334B1 (ko) 2015-11-24 2023-05-02 삼성전자주식회사 배터리 관리 장치 및 방법
JP2017111860A (ja) * 2015-12-14 2017-06-22 株式会社日立製作所 二次電池制御システム
JP2017181484A (ja) * 2016-03-28 2017-10-05 Ntn株式会社 二次電池の劣化判定装置
JP2018061359A (ja) * 2016-10-05 2018-04-12 富士電機株式会社 二次電池装置、充電制御装置及び充電制御方法
WO2018081110A1 (en) * 2016-10-24 2018-05-03 Wandering WiFi LLC Systems and methods for monitoring battery life
KR102483644B1 (ko) * 2017-04-28 2023-01-02 삼성전자주식회사 충전가능한 배터리의 용량 저하율을 예측하는 방법 및 장치
JP6885816B2 (ja) 2017-07-27 2021-06-16 株式会社Screenホールディングス パラメータ設計支援装置、及びパラメータ設計支援方法
JP7036121B2 (ja) * 2017-10-30 2022-03-15 株式会社Gsユアサ 蓄電システム、二次電池の容量推定装置、および、鉛蓄電池の容量推定方法
US10581249B2 (en) 2017-11-14 2020-03-03 Inventus Holdings, Llc Battery energy storage system integrated with electrical generation site
JP7064266B2 (ja) * 2018-01-22 2022-05-10 昭和電工マテリアルズ株式会社 蓄電制御装置、蓄電制御方法、および蓄電制御プログラム
JP7129228B2 (ja) * 2018-06-06 2022-09-01 三菱重工業株式会社 蓄電システムの運用評価方法及び蓄電システムの運用評価装置
KR102164293B1 (ko) * 2018-06-20 2020-10-12 두산중공업 주식회사 풍력 발전 장치에 연결된 ESS(energy storage system)의 충전 또는 방전을 스케줄링하는 방법 및 장치
KR102068643B1 (ko) 2019-05-29 2020-01-22 한국기계연구원 풍력발전기 예지방법
CN113875067A (zh) * 2019-05-30 2021-12-31 株式会社杰士汤浅国际 生成装置、预测系统、生成方法以及计算机程序
JP2021061118A (ja) 2019-10-03 2021-04-15 株式会社Gsユアサ 推定装置、推定方法、及びコンピュータプログラム
JP7472459B2 (ja) * 2019-10-03 2024-04-23 株式会社Gsユアサ 推定装置、推定方法、及びコンピュータプログラム
JP7552008B2 (ja) * 2019-10-03 2024-09-18 株式会社Gsユアサ 推定装置、推定方法、及びコンピュータプログラム
JP7438723B2 (ja) * 2019-11-15 2024-02-27 株式会社日立製作所 製造プロセスの適正化システムおよびその方法
CN111162551B (zh) * 2020-01-15 2023-03-21 国网内蒙古东部电力有限公司 一种基于风电功率超短期预测的蓄电池充放电控制方法
JP7518630B2 (ja) * 2020-02-21 2024-07-18 古河電池株式会社 蓄電池の運用方法
CN115280356A (zh) * 2020-03-27 2022-11-01 本田技研工业株式会社 管理系统、管理方法、服务器装置、程序、电池信息提供系统以及电池信息提供方法
CN111753431B (zh) * 2020-06-29 2023-08-18 国网山西省电力公司电力科学研究院 综合能源系统中最优配置的计算方法和计算设备
WO2022195701A1 (ja) * 2021-03-16 2022-09-22 株式会社東芝 蓄電池管理装置、蓄電池管理方法、および、プログラム
JP7521469B2 (ja) 2021-03-22 2024-07-24 トヨタ自動車株式会社 管理システム、及びエネルギーマネジメント方法
EP4246162B1 (en) * 2022-03-18 2024-07-10 ABB Schweiz AG Method of estimation of battery degradation
CN117217031B (zh) * 2023-11-09 2024-02-20 新研氢能源科技有限公司 一种用于燃料电池电堆的智能生产方法及系统

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222279A (ja) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd 密閉形鉛蓄電池の劣化状態検出方法
JPH09115554A (ja) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd 陰極吸収式シ−ル形鉛蓄電池の残存寿命推定方法
JP2002027679A (ja) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd 風力発電制御方法及びその装置
JP2003250227A (ja) * 2002-02-21 2003-09-05 Showa Dengyosha:Kk 系統連係維持装置
JP2004079914A (ja) * 2002-08-21 2004-03-11 Sony Corp 電子部品の実装信頼性予測方法及びその予測システム
JP2004186087A (ja) 2002-12-05 2004-07-02 Matsushita Electric Ind Co Ltd 蓄電池の制御方法
JP2005143218A (ja) * 2003-11-06 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> エネルギーシステムの制御装置および制御方法
JP2006100000A (ja) 2004-09-28 2006-04-13 Kansai Electric Power Co Inc:The 蓄電設備の保守方法
JP2006313127A (ja) * 2005-05-09 2006-11-16 Hitachi Ltd はんだ接続部評価システム
JP2007074891A (ja) * 2005-08-08 2007-03-22 Toyota Motor Corp パワートレイン用の電池寿命予知装置及び電池寿命警告装置
JP2007274806A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp ハイブリッド車両用電池情報表示装置
JP2008042960A (ja) * 2006-08-01 2008-02-21 Toyota Motor Corp 二次電池の充放電制御装置およびそれを搭載したハイブリッド車両

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037751A (en) * 1998-07-01 2000-03-14 Gnb Technologies, Inc. Method and apparatus for charging batteries
JP2000090964A (ja) * 1998-09-14 2000-03-31 Yuasa Corp 密閉形鉛蓄電池
JP2004179097A (ja) * 2002-11-29 2004-06-24 Shin Kobe Electric Mach Co Ltd 鉛蓄電池の均等充電方式
CN1306675C (zh) * 2002-12-26 2007-03-21 北京机电研究所 用于电动汽车动力蓄电池组的管理装置
GB2397656A (en) * 2003-01-21 2004-07-28 Intelligent Battery Technology Battery monitoring system
JP2007103351A (ja) * 2005-09-06 2007-04-19 Denso Corp 蓄電池の劣化判定方法及びその装置
JP5220269B2 (ja) * 2005-09-16 2013-06-26 古河電気工業株式会社 蓄電池の劣化状態・充電状態の検知方法及びその装置
JP2007146674A (ja) * 2005-11-24 2007-06-14 Toyota Motor Corp エンジンオイルの劣化判定装置
JP5054338B2 (ja) * 2006-07-20 2012-10-24 本田技研工業株式会社 車両用電源の制御装置およびその制御方法
JP2008058278A (ja) * 2006-09-04 2008-03-13 Toyota Motor Corp 二次電池の内部状態推定装置、二次電池の内部状態推定方法、プログラム、および記録媒体
US7590472B2 (en) * 2006-11-09 2009-09-15 Gridpoint, Inc. Energy arbitrage by load shifting
JP2008159298A (ja) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd 電源システム
JP5096018B2 (ja) 2007-02-23 2012-12-12 日本碍子株式会社 ナトリウム−硫黄電池の制御システム
US7928735B2 (en) * 2007-07-23 2011-04-19 Yung-Sheng Huang Battery performance monitor
CN201122851Y (zh) 2007-12-13 2008-09-24 何峰 可远程操控的高可靠性独立不间断电源装置
US20090228225A1 (en) * 2008-03-04 2009-09-10 Eaton Corporation Battery Service Life Estimation Methods, Apparatus and Computer Program Products Using State Estimation Techniques Initialized Using a Regression Model
WO2010053872A1 (en) * 2008-11-05 2010-05-14 Greensmith Energy Management Systems, Llc Distributed energy storage system, and applications thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222279A (ja) * 1995-02-13 1996-08-30 Japan Storage Battery Co Ltd 密閉形鉛蓄電池の劣化状態検出方法
JPH09115554A (ja) * 1995-10-23 1997-05-02 Japan Storage Battery Co Ltd 陰極吸収式シ−ル形鉛蓄電池の残存寿命推定方法
JP2002027679A (ja) * 2000-07-10 2002-01-25 Mitsubishi Heavy Ind Ltd 風力発電制御方法及びその装置
JP2003250227A (ja) * 2002-02-21 2003-09-05 Showa Dengyosha:Kk 系統連係維持装置
JP2004079914A (ja) * 2002-08-21 2004-03-11 Sony Corp 電子部品の実装信頼性予測方法及びその予測システム
JP2004186087A (ja) 2002-12-05 2004-07-02 Matsushita Electric Ind Co Ltd 蓄電池の制御方法
JP2005143218A (ja) * 2003-11-06 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> エネルギーシステムの制御装置および制御方法
JP2006100000A (ja) 2004-09-28 2006-04-13 Kansai Electric Power Co Inc:The 蓄電設備の保守方法
JP2006313127A (ja) * 2005-05-09 2006-11-16 Hitachi Ltd はんだ接続部評価システム
JP2007074891A (ja) * 2005-08-08 2007-03-22 Toyota Motor Corp パワートレイン用の電池寿命予知装置及び電池寿命警告装置
JP2007274806A (ja) * 2006-03-31 2007-10-18 Toyota Motor Corp ハイブリッド車両用電池情報表示装置
JP2008042960A (ja) * 2006-08-01 2008-02-21 Toyota Motor Corp 二次電池の充放電制御装置およびそれを搭載したハイブリッド車両

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GENICHIRO TAGUCHI: "Functional Evaluation for Robust Design: Methods for Efficient Development", 2000, JAPANESE STANDARDS ASSOCIATION
GENICHIRO TAGUCHI; YOSHIKO YOKOYAMA: "Door to Basic Quality Engineering", 2007, JAPANESE STANDARDS ASSOCIATION
GENICHIRO TAGUCHI; YOSHIKO YOKOYAMA: "Off-Line Quality Engineering", 2007, JAPANESE STANDARDS ASSOCIATION
HIROSHI YANO: "Guide to Quality Engineering: New Way of Thinking for Changing Technology", 1995, JAPANESE STANDARDS ASSOCIATION
See also references of EP2386754A4
TAICHIRO UEDA: "Taguchi Method (Quality Engineering) Calculation Method Using Excel", TECHNO CONSULTANTS INC.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020575A1 (ja) * 2010-08-11 2012-02-16 新神戸電機株式会社 自然エネルギー利用システム用鉛蓄電池および鉛蓄電池システム
US8866443B2 (en) 2010-08-11 2014-10-21 Shin-Kobe Electric Machinery Co., Ltd. Lead acid storage battery and lead acid storage battery system for natural energy utilization system
JP2012073740A (ja) * 2010-09-28 2012-04-12 Sanyo Electric Co Ltd 蓄電池管理サーバ、蓄電池管理装置、蓄電池管理システム、蓄電池管理方法、蓄電池管理プログラムおよびコンピュータ読み取り可能な記録媒体
WO2012109236A1 (en) * 2011-02-07 2012-08-16 United Technologies Corporation Method and system for operating a flow battery system based on energy costs
WO2012111234A1 (ja) * 2011-02-18 2012-08-23 三洋電機株式会社 電力供給システム
US20130024179A1 (en) * 2011-07-22 2013-01-24 General Electric Company Model-based approach for personalized equipment degradation forecasting
WO2013168320A1 (ja) * 2012-05-11 2013-11-14 パナソニック株式会社 蓄電池管理装置、蓄電池管理方法、プログラムを記憶した記憶媒体
JPWO2013168320A1 (ja) * 2012-05-11 2015-12-24 パナソニックIpマネジメント株式会社 蓄電池管理装置、蓄電池管理方法、プログラムを記憶した記憶媒体
CN102830365A (zh) * 2012-09-12 2012-12-19 国电联合动力技术有限公司 兆瓦级风力发电机组变桨系统电池自动测试方法及系统
CN102830365B (zh) * 2012-09-12 2015-04-01 国电联合动力技术有限公司 兆瓦级风力发电机组变桨系统电池自动测试方法及系统
JP2014163875A (ja) * 2013-02-27 2014-09-08 Shin Kobe Electric Mach Co Ltd 蓄電池制御システム及びその蓄電池劣化度予測方法
WO2023149302A1 (ja) * 2022-02-03 2023-08-10 古河電気工業株式会社 鉛蓄電池システム及び鉛蓄電池の寿命推定方法

Also Published As

Publication number Publication date
CN102124219A (zh) 2011-07-13
US9124135B2 (en) 2015-09-01
US20110288691A1 (en) 2011-11-24
KR20110033278A (ko) 2011-03-30
JP5630537B2 (ja) 2014-11-26
EP2386754A1 (en) 2011-11-16
JP2013231441A (ja) 2013-11-14
JP2010159661A (ja) 2010-07-22
EP2386754B1 (en) 2017-05-17
JP5310003B2 (ja) 2013-10-09
KR101260137B1 (ko) 2013-05-02
EP2386754A4 (en) 2014-02-26
CN102124219B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5630537B2 (ja) 寿命予測システム
Pandžić et al. An accurate charging model of battery energy storage
Padmanabhan et al. Battery energy storage systems in energy and reserve markets
Zhang et al. Balancing wind-power fluctuation via onsite storage under uncertainty: Power-to-hydrogen-to-power versus lithium battery
Alharbi et al. Planning and operation of isolated microgrids based on repurposed electric vehicle batteries
Schneider et al. Rechargeable batteries for simultaneous demand peak shaving and price arbitrage business
Battke et al. A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications
US9442165B2 (en) Method for estimating battery life in presence of partial charge and discharge cycles
US9098817B2 (en) Method for real-time control of energy storage units to reduce electricity cost
US20140350743A1 (en) Tiered power management system for microgrids
WO2012020575A1 (ja) 自然エネルギー利用システム用鉛蓄電池および鉛蓄電池システム
JPWO2011118607A1 (ja) 電力供給装置、蓄電装置並びに電力制御装置
Xu et al. Multi-objective chance-constrained optimal day-ahead scheduling considering BESS degradation
JP2008210586A (ja) ナトリウム−硫黄電池の運用ガイダンス装置
Alsaidan et al. Determination of optimal size and depth of discharge for battery energy storage in standalone microgrids
CN112001598A (zh) 基于储能选型的不同用户储能配置评估与运行优化方法
Chen et al. Optimal configuration and operation for user-side energy storage considering lithium-ion battery degradation
Saha et al. A comparative study of commonly used batteries in household rooftop solar battery systems based on test data of commercial batteries
Zhou et al. Learning curve with input price for tracking technical change in the energy transition process
Amini et al. Optimal scheduling and cost-benefit analysis of lithium-ion batteries based on battery state of health
Martins et al. Linear battery aging model for industrial peak shaving applications
Shabani et al. Smart and optimization-based operation scheduling strategies for maximizing battery profitability and longevity in grid-connected application
CN109412250A (zh) 一种离网发电系统储能电池最佳充电速率的确定方法
Galeela et al. Reliability Framework Integrating Grid Scale BESS Considering BESS Degradation
JP6789020B2 (ja) 蓄電池運用方法および蓄電池運用装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002373.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 967/DELNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010729165

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010729165

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117003731

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13059919

Country of ref document: US