JP6402002B2 - 電力貯蔵システムの評価装置、評価方法および評価プログラム - Google Patents

電力貯蔵システムの評価装置、評価方法および評価プログラム Download PDF

Info

Publication number
JP6402002B2
JP6402002B2 JP2014221805A JP2014221805A JP6402002B2 JP 6402002 B2 JP6402002 B2 JP 6402002B2 JP 2014221805 A JP2014221805 A JP 2014221805A JP 2014221805 A JP2014221805 A JP 2014221805A JP 6402002 B2 JP6402002 B2 JP 6402002B2
Authority
JP
Japan
Prior art keywords
control parameter
battery
power
storage system
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014221805A
Other languages
English (en)
Other versions
JP2016092896A (ja
Inventor
ファニー マテ
ファニー マテ
賢治 武田
賢治 武田
貴嗣 上城
貴嗣 上城
裕司 永嶋
裕司 永嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2014221805A priority Critical patent/JP6402002B2/ja
Priority to US14/926,767 priority patent/US10466664B2/en
Publication of JP2016092896A publication Critical patent/JP2016092896A/ja
Application granted granted Critical
Publication of JP6402002B2 publication Critical patent/JP6402002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • G06Q10/06375Prediction of business process outcome or impact based on a proposed change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Description

本発明は、電力貯蔵システムを評価するための評価装置、評価方法および評価プログラムに関する。
近年、地球温暖化問題の観点から、太陽光や風力などの再生可能エネルギーを利用して発電を行う電力システムを導入する重要性が増している。しかし、こうした再生可能エネルギーを用いた発電では、気象条件の変化により秒から分単位での電力変動が生じることで、送電網に流れる電力の周波数や電圧の安定性に悪影響を与えることが懸念される。
上記に関して、送電網に対する電力安定化サービスを送電網の運営管理者に有償で提供するサービス事業者の存在が知られている。サービス事業者は、電池を用いて電力を貯蔵および放出することができる、電力貯蔵システム(Battery Energy Storage System:BESS)を利用して、必要に応じて送電網との間で充放電を行う。これにより、送電網に流れる電力の周波数や電圧の変動を抑えて、電力安定化サービスを提供し、金銭的利益を得ている。
BESSの充放電性能や寿命は、BESSの動作条件や、BESSが置かれる環境条件によって変化する。また、電力安定化サービスの提供によってサービス事業者が送電網の運営管理者から得られる金銭的利益の額は、送電網の電力需要に応じた運営管理者からの要求に対するBESSの応答性に影響される。そのため、サービス事業者は、BESSの寿命および電力安定化サービスの提供によって得られる金銭的利益が、共に最大になるように、BESSの評価を行い、BESSの動作制御に用いられるパラメータの値を設定することが望ましい。
従来、家庭などの電力消費先に設置される蓄電システムについて、初期投資と耐用年数までの費用対効果の関係を試算し、その計算結果に基づいて蓄電システムの仕様を選定する装置が発案されている(特許文献1参照)。
国際公開WO2011/042943号公報
しかしながら、特許文献1に記載の装置では、蓄電システムの動作制御状態が考慮されていない。そのため、前述のようなサービス事業者に利用される電力貯蔵システムであるBESSの評価には適さない。
本発明の電力貯蔵システムの評価装置は、充放電可能な電池を有し、前記電池を用いて送電網に対する電力安定化のサービスを提供する電力貯蔵システムの評価を行う評価装置であって、前記電力貯蔵システムの仕様に関する仕様情報と、前記電力貯蔵システムにおいて前記電池の充放電制御を行うために用いられる制御パラメータに関する制御パラメータ情報とを少なくとも含む入力情報を取得する情報取得部と、前記情報取得部により取得された入力情報に基づいて、前記電池の寿命および前記サービスにより得られる金銭的利益を推測する推測部と、前記推測部により推測された前記電池の寿命および前記金銭的利益に基づいて、最適な前記制御パラメータの値を決定する最適化部と、を備え、前記推測部は、前記入力情報に基づいて、複数の前記制御パラメータの値にそれぞれ対応する前記電力貯蔵システムの充放電電力、消費電力、電流および充電状態を求める要素モデル部と、前記要素モデル部により求められた前記電流および前記充電状態に基づいて、将来の前記電池の劣化状態を予測して前記電池の寿命を前記制御パラメータの値ごとに求める電池劣化モデル部と、前記要素モデル部により求められた前記充放電電力および前記消費電力に基づいて、所定の単位期間内に得られる前記金銭的利益を前記制御パラメータの値ごとに算出する利益算出部と、を備え、前記最適化部は、前記利益算出部により算出された前記単位期間ごとの前記金銭的利益を、前記電力貯蔵システムの運用開始から前記制御パラメータの値ごとに異なる前記電池の寿命までの期間について累積して、前記電池の寿命までに得られる前記電力貯蔵システムの総累積利益を前記制御パラメータの値ごとに算出する累積利益計算部と、前記制御パラメータの値ごとに算出された複数の前記総累積利益同士を比較する比較部と、を備え、前記比較部の比較結果に基づいて、最適な前記制御パラメータの値を決定することを特徴とする。
本発明によれば、送電網に対する電力安定化のサービスを提供するBESSについて、その動作制御に最適な制御パラメータを決定することができる。
本発明の一実施形態に係るBESSの評価装置の構成を示すブロック図である。 入力情報を入力するための表示画面例である。 動作制御パラメータに応じた充放電電力需要とBESS応答との関係の例を示す図である。 本発明の一実施形態に係るBESSにおける要素モデル部の構成を示すブロック図である。 本発明の一実施形態に係るBESSにおける電池劣化モデル部の構成を示すブロック図である。 要素モデル部および電池劣化モデル部の処理の流れを示すフローチャートである。 本発明の一実施形態に係るBESSにおける利益算出部の構成を示すブロック図である。 本発明の一実施形態に係るBESSにおける最適化部の構成を示すブロック図である。 評価装置のGUIに表示されるシミュレーション結果の画面例を示す図である。 評価装置の全体の処理の流れを示すフローチャートである。
以下の実施形態では、前述のようにBESSと呼ばれる電力貯蔵システムの評価を行うための評価装置および評価方法について説明する。
米国などの国や地域では、送電網の運営や維持管理を行う運営管理者として、RTO(Regional Transmission Organization)やISO(Independent Transmission Operator)と呼ばれる機関が存在する。こうした送電網の運営管理者には、多様な発電設備で発電された電力を利用しつつ、送電網から消費者に供給される電力の周波数や電圧を一定の範囲内に維持する責務がある。さらに、送電網の運営管理者に対して、供給電力の安定化のために、周波数調整、無効電力の供給および電圧制御、系統再起動などの補助的なサービスを提供するサービス事業者の存在が知られている。こうしたサービス事業者は、前述のようにBESSを利用して、上記のような電力安定化サービスを提供し、その内容や提供時間に応じた対価を送電網の運営管理者から得ることで収益を上げている。
上記のような送電網への電力安定化サービスの提供に利用されるBESSは、一般に、充放電可能な複数の電池と、直流電力と交流電力の相互変換を行う電力変換装置(Power Conditioning System:PCS)と、装置内の温度を調整する冷却システムと、BESS全体を制御する制御システムとから構成される。電池の特性は、容量(Ah)、内部抵抗(Ω)、充電状態(State Of Charge:SOC)(%)などによって表される。また、電池の劣化が進むと、その容量が減少すると共に内部抵抗が増加していく。容量や内部抵抗が一定の閾値に達した電池は、寿命終了(End Of Life:EOL)と判断される。
電池の充放電性能や寿命は、BESSの動作条件や、BESSが置かれる環境条件によって変化する。電池を劣化させる要因は、電池の充放電に用いられるSOCの範囲、充放電サイクルの数や周期、充放電電流、外気温などを含む。電池の劣化状況は、BESSによって提供される電力安定化サービスから得られる金銭的利益の総額に影響するため、BESSの導入計画を策定する際の重要な指針となる。そのため、サービス事業者にとっては、事前にBESSの評価を行うことで、最適なBESSの動作条件を設定することが好ましい。本実施形態では、こうしたBESSの評価を実現するための方法および装置について説明する。
図1は、本発明の一実施形態に係るBESSの評価装置の構成を示すブロック図である。評価装置1は、送電網に対する電力安定化サービスを送電網の運営管理者に有償で提供するサービス事業者が利用するBESSを評価するためのものであり、情報取得部11、推測部12、最適化部13およびデータ保存部14を備える。評価装置1は、これらの各構成を、CPUや記憶装置を備えたコンピュータにより実現することができる。
評価装置1には、入力情報2が入力される。入力情報2は、評価装置1が評価対象とするBESSの仕様に関する仕様情報21と、BESSに対する充放電電力需要に関する需要情報22と、BESSにより提供される電力安定化サービスの価格に関する価格情報23と、BESSの動作制御に用いる制御パラメータに関する制御パラメータ情報24とを含む。なお、これらの情報は、必ずしも全てが必要とは限らない。評価装置1が行う処理の内容に応じて、任意の情報を入力情報2として評価装置1に入力することができる。
情報取得部11は、不図示のキーボードやマウス等の入力装置を用いてユーザから入力された情報や、不図示のネットワークを介して受信した情報に基づいて、入力情報2を取得する。情報取得部11で取得された入力情報2は、推測部12に出力される。
推測部12は、情報取得部11により取得された入力情報2に基づいて、BESSの構成要素である電池の寿命や、BESSが提供する電力安定化サービスにより得られる金銭的利益などを推測する。推測部12による推測結果は、出力情報3として評価装置1から出力されると共に、最適化部13やデータ保存部14にも出力される。推測部12は、要素モデル部121、電池劣化モデル部122、利益算出部123を有している。なお、これらの各部については、後で詳しく説明する。
最適化部13は、推測部12により推測された電池の寿命および金銭的利益に基づいて、BESSの動作を制御するのに最適な制御パラメータの値を決定する。最適化部13については、後で詳しく説明する。
データ保存部14は、推測部12の推測結果や、最適化部13により決定された制御パラメータの値などを記憶保存するための部分である。データ保存部14は、たとえばハードディスクドライブやフラッシュメモリ等によって構成することができる。
評価装置1から出力される出力情報3は、BESSにおける電池の劣化状態を表す電池劣化状態31と、BESSの状態を表すBESS変数32と、BESSが提供する電力安定化サービスにより得られる金銭的利益の額を表す利益33と、BESSの運用開始から運用終了までの金銭的利益の累積額を表す総累積利益34と、BESSの動作制御に最適な制御パラメータの値を表す最適制御パラメータ値35とを含む。ユーザは、出力情報3に基づいて、評価装置1に含まれる不図示の表示モニタ等のGUI(Graphical User Interface)に画面表示されるこれらの情報を確認することで、BESSの評価結果を得ることができる。なお、これらの情報の全てを必ずしも出力する必要はない。評価装置1が行う処理の内容に応じて、任意の情報を出力情報3として評価装置1から出力することができる。
評価装置1は、以上説明したような構成を備えている。これにより、サービス事業者がBESSを利用して送電網に対する電力安定化サービスを提供する際のBESSの寿命や利益の総額を見積もることができる。また、数学モデリング、演算処理および最適化処理により、BESSの動作制御パラメータの最適値を導出することができる。
図2は、入力情報2を入力するための表示画面例である。図2の画面には、入力情報2を構成する仕様情報21、需要情報22、価格情報23、制御パラメータ情報24について、図に示すような入力欄がそれぞれ設けられている。ユーザは、不図示の表示モニタに表示される図2のような画面において、たとえばマウスやキーボード等の操作により、評価装置1に入力情報2を入力することができる。
ユーザは、図2の画面において、BESSの名称に加えて、図に示すような電池や空調システムの特性に関する情報などを、仕様情報21として入力することができる。電池の特性に関する情報は、たとえば、1電池ストリング当たりの直列に接続された電池の数、並列に接続された電池ストリングの数、PCSの数、各PCSの定格出力、1PCS当たりの並列接続された電池ストリングの数、電池の容量および内部抵抗の初期値、充電サイクル開始時のSOCの初期値、SOCの許容範囲(最小値および最大値)などの情報を含む。空調システムの特性に関する情報は、たとえば、空調ファンの数や、1ファン当たりの空気流量率、消費電力、空調能力および効率などの情報を含む。なお、仕様情報21として入力可能な情報は、これに限定されるものではない。
ユーザは、図2の画面において、充放電電力の需要変動を示すプロファイル情報を、需要情報22として入力することができる。プロファイル情報は、たとえば1日(24時間)の範囲内での離散時間信号Edemandとして定義され、充電時に正の値、放電時に負の値をとるように定められている。ユーザは、たとえばサービス事業者が電力安定化サービスを提供する送電網の運営管理者が所有するデータベースなど、外部の情報源から需要情報22を取得してもよいし、予め取得した情報から選択してもよい。または、ユーザ自身が新規に需要情報22を作成してもよい。
ユーザは、図2の画面において、BESSを用いて電力安定化サービスを提供する送電網の運営管理者の名称と、各年次および各時間帯ごとのサービス提供価格を示す情報とを、価格情報23として入力することができる。送電網の運営管理者は、BESSを用いた事業者から電力安定化サービスの提供を受けるための制度を独自に設計して運用している。ユーザは、この制度に従って、サービス提供先の送電網の運営管理者に対応する価格情報23を入力する必要がある。なお、価格情報23において設定される具体的な金額は、送電網の運営管理者とサービスを提供する各事業者との間で、たとえば市場決済価格(需要均衡価格)として決定されるものである。
ユーザは、図2の画面において、各年次の制御パラメータX〜Xの情報を、制御パラメータ情報24として入力することができる。なお、各制御パラメータX〜Xは、時間帯ごとにその値を指定できるようになっている。
送電網の運営管理者は、電力安定化サービスの提供元である各事業者のBESSに対して、電力需要信号を送信する。この電力需要信号に対するBESSの応答性能は実績指数と呼ばれる値によって表され、この実績指数に基づいて各事業者が得られる利益が決定される。一方、BESSの応答性能は制御パラメータに応じて決定される。各事業者は、制御パラメータの値を任意に設定してBESSの動作を制御し、電力安定化サービスの提供を行うことができる。したがってユーザは、BESSの寿命を最大化し、かつ利益の総額を最大化するように、制御パラメータX〜Xを設定することが望ましい。この目的を達成するために、ユーザは、図2の画面において、マニュアルモードまたは最適化モードを選択することができる。マニュアルモードを選択した場合、ユーザは、制御パラメータX〜Xの値を個別に指定して入力する必要がある。一方、最適化モードを選択した場合、ユーザは、制御パラメータX〜Xのそれぞれについて許容される最小値と最大値を入力すればよい。この場合、ユーザに入力された最小値と最大値の間の範囲内で、各制御パラメータX〜Xの最適解が評価装置1により求められる。
図3(a)、図3(b)、図3(c)および図3(d)は、制御パラメータに応じた充放電電力需要とBESS応答との関係の例を示す図である。
図3(a)は、制御パラメータX(X>0)によりBESSの充放電を開始する電力を定めた場合の例を示している。この場合、図に示すように、送電網の運営管理者から送信された電力需要信号が表す充放電電力需要の絶対値が制御パラメータXの値よりも小さければ、BESSは充電、放電のいずれも行わないように制御される。一方、充放電電力需要の絶対値が制御パラメータXを超えると、充放電電力需要に応じてBESSが充電または放電を行うことにより、送電網からの供給電力を安定化するためのサービスが提供される。
図3(b)は、制御パラメータX(X>0)によりBESSの充放電を制限する電力を定めた場合の例を示している。この場合、図に示すように、送電網の運営管理者から送信された電力需要信号が表す充放電電力需要の絶対値が制御パラメータXの値よりも大きければ、BESSはそれ以上の充電または放電を行わないように制御される。一方、充放電電力需要の絶対値が制御パラメータX以内であれば、充放電電力需要に応じてBESSが充電または放電を行うことにより、送電網からの供給電力を安定化するためのサービスが提供される。
図3(c)は、制御パラメータX(X>0)によりBESSの充放電電力を定めた場合の例を示している。この場合、図に示すように、送電網の運営管理者から送信された電力需要信号が表す充放電電力需要に、制御パラメータXを比例係数として掛け算することで、BESSの充放電電力が制御される。
BESSの制御戦略では、複数の制御パラメータX〜Xを設定することで、これらを組み合わせてBESSの動作制御を行うことができる。図3(d)は、上記の制御パラメータX、XおよびXを組み合わせてBESSの動作制御を行った場合の例を示している。このように複数の制御パラメータを組み合わせて用いることで、ユーザは、充放電電力需要の変動に応じて、BESSの動作制御をきめ細かく行うことができる。その結果、BESSの寿命を最大化し、かつ利益の総額を最大化するために、最適な制御の実現が可能となる。
次に、評価装置1の推測部12および最適化部13の詳細について説明する。推測部12および最適化部13は、以下に説明するような数学モデル、計算方法および計算手順を用いて、それぞれの処理を行うことができる。
(マニュアルモードにおける処理)
推測部12の要素モデル部121において、BESSの各構成要素は、数式によりモデル化されたものとして表現される。各構成要素のモデルを用いて、要素モデル部121は、BESSの充放電電力、空調システムの消費電力、電池状態などを算出することが可能である。
図4は、本発明の一実施形態に係るBESSにおける推測部12のうち要素モデル部121の構成を示すブロック図である。要素モデル部121は、制御モデル1210、PCSモデル1211、電池モデル1212および冷却モデル1213を備える。
制御モデル1210は、入力情報2として評価装置1に入力された需要情報22および制御パラメータ情報24に基づいて、BESSの充放電電力Eacを算出する。具体的には、需要情報22が表すプロファイル情報の離散時間信号Edemandと、制御パラメータ情報24が表す各制御パラメータX〜Xとに基づいて、所定の関数fを用いて以下の式(1)で表される数学的処理により、充放電電力Eacを算出する。なお、式(1)において充放電電力Eacは、1日(24時間)の中で変化する離散時間信号として求められる。
Figure 0006402002
PCSモデル1211は、電力変換装置(PCS)の効率を数学的に定式化したものである。PCSモデル1211は、制御モデル1210により計算された充放電電力Eacの値と、入力情報2として評価装置1に入力された仕様情報21が表すPCSの個数とに基づいて、各PCSにおける直流電力Edcを算出する。この直流電力Edcは、充電時にはPCSから出力されて電池に入力される充電電力を表し、放電時には電池から出力されてPCSに入力される放電電力を表している。なお、直流電力Edcは、前述の充放電電力Eacと同様に、1日(24時間)の中で変化する離散時間信号として求められる。さらに、PCSモデルモジュール1211は、充放電電力Eacおよび直流電力Edcに基づいて、各PCSでの電力変換による損失電力Elossも計算する。
BESSの電池は、等価回路図によりモデル化することができる。最も単純な電池の等価モデルは、理想的な開回路電圧(Open-Circuit Voltage:OCV)と、これに直列に接続された内部抵抗Rからなる。ここで、電池のSOCとOCVの間には、一定の関係性が成り立つことが知られている。これを利用して、電池モデル1212は、電池のSOCとOCVの関係を数学的に定式化したものである。電池モデル1212は、PCSモデル1211により計算された直流電力Edcの値と、入力情報2として評価装置1に入力された仕様情報21が表す電池の各諸元と、出力情報3に含まれる電池劣化状態31が表す電池の容量および内部抵抗の値とに基づいて、各電池に流れる電流Icellと、BESS全体での電池のSOCを表すBESS充電状態Stotalとを算出する。なお、電池劣化状態31のデータを取得する方法については後述する。
電池モデル1212により求められたBESS充電状態Stotalの値は、制御モデル1210にフィードバックされる。制御モデル1210は、ある時間ステップtにおけるBESS充電状態Stotalの値が、仕様情報21においてユーザに設定されたSOCの許容範囲における最大値よりも高いか、または最小値よりも低ければ、そのときの充放電電力Eacの値を0とする。このとき、BESSは充電も放電も行わない。この場合、時間ステップtで新たに設定された充放電電力Eacの値を考慮に入れて、PCSモデル1211および電池モデル1212での計算が実行される。
冷却モデル1213は、BESSのPCSや電池の温度上昇を抑えて好ましい動作温度に調節するために用いられる冷却システムの消費電力を数学的に定式化したものである。冷却モデル1213は、PCSモデル1211により計算された損失電力Elossと、入力情報2として評価装置1に入力された仕様情報21が表す冷却システムの各諸言と、電池モデル1212により計算された電池の電流Icellとに基づいて、冷却システムの消費電力Eauxを算出する。
要素モデル部121は、以上説明したようにして、入力情報2に基づいて、BESSにおいて電池を充放電するために用いられる制御パラメータに応じた充放電電力Eacと、BESSにおいて消費される消費電力Eauxと、充放電電力Eacに応じた電池の電流IcellおよびBESS充電状態Stotalとを求めることができる。
なお、図4に示されるように、要素モデル部121への入力は、仕様情報21、需要情報22、制御パラメータ情報24および電池劣化状態31である。また、図4に示されるように、要素モデル部121の出力は、BESSに入出力される交流電力を表す充放電電力Eacと、この充放電電力Eacを基に計算されるBESS全体での電池の充電状態を表すBESS充電状態Stotalと、充放電電力Eacに応じて冷却システムの動作により消費される消費電力Eauxと、電池の電流Icellとを含む。
図5は、本発明の一実施形態に係るBESSにおける推測部12のうち電池劣化モデル部122の構成を示すブロック図である。電池劣化モデル部122は、電池容量減衰モデル1220および内部抵抗増加モデル1221を備える。
BESSに使用される電池については、通常、電池の製造業者の実験結果等に基づいて、電池の劣化によって生じる電池容量の減衰および内部抵抗の増加に関する電池の劣化モデリングが行われる。本実施形態の評価装置1では、BESSの動作が1つの充放電のサイクルに従って行われ、同一の充放電サイクルが継続的に反復するものとする。この場合、時間tにおける電池の容量および内部抵抗は、時間tまでに行われた充放電サイクルの回数と、初期サイクル(充放電サイクルの開始時)における電池電流InewおよびBESS充電状態Snewと、BESSの動作温度Tに依存する。
したがって、時間tにおける電池容量の初期状態からの減衰量ΔQ(t)(ΔQ(t)>0)は、所定の関数fを用いた以下の式(2)で定義される。
Figure 0006402002
また、時間tにおける電池内部抵抗の初期状態からの増加量ΔR(t)(ΔR(t)>0)は、所定の関数fを用いた以下の式(3)で定義される。
Figure 0006402002
したがって、時間tにおける電池の容量Q(t)と電池の内部抵抗R(t)は、以下の式(4)、式(5)によりそれぞれ計算される。
Figure 0006402002
Figure 0006402002
式(4)、(5)において、Qinitial、Rinitialは、仕様情報21においてユーザに設定された電池の初期容量と初期内部抵抗の値をそれぞれ表している。また、ΔQ(t)、ΔR(t)は、式(2)、式(3)でそれぞれ計算された時間tにおける電池の容量と内部抵抗の値をそれぞれ表している。
図5に示した電池劣化モデル部122において、電池容量減衰モデル1220は、上記式(2)、(4)を用いて、各年の電池容量を計算する。また、内部抵抗増加モデル1221は、上記式(3)、(5)を用いて、各年の内部抵抗を計算する。すなわち、電池容量減衰モデル1220および内部抵抗増加モデル1221は、BESSの運用開始からの年数に応じた時間tを式(2)、(3)にそれぞれ代入することで、各年の電池容量の減少量と内部抵抗の増加量をそれぞれ求める。この計算結果を基に、電池容量減衰モデル1220および内部抵抗増加モデル1221は、式(4)、(5)を用いて、各年の電池容量と内部抵抗の値をそれぞれ計算する。なお、式(2)、(4)において、初期サイクルの電池電流InewおよびBESS充電状態Snewは、図4で説明した要素モデル部121において、Q=Qinitial、R=Rinitialとしたときの電池電流IcellおよびBESS充電状態Stotalとしてそれぞれ計算される。
電池劣化モデル部122は、以上説明したようにして算出した各年の電池容量の値を、Qinitial,Q(y),Q(y),…,Q(y)として出力する。また、算出した各年の内部抵抗の値を、Rinitial,R(y),R(y),…,R(y)として出力する。ここで、y,y,…,yは、BESSの運用開始からの各年次を表している。これらの電池劣化モデル部122からの出力は、出力情報3において、電池劣化状態31として参照される。
図4の要素モデル部121には、電池劣化モデル部122から出力された電池劣化状態31が入力され、電池モデル1212における計算に利用される。要素モデル部121と電池劣化モデル部122との関係について、以下に説明する。
図6は、要素モデル部121および電池劣化モデル部122の処理の流れを示すフローチャートである。以下では、図6のフローチャートを参照して、要素モデル部121と電池劣化モデル部122がどのように共働して、BESSの評価に用いる各変数の計算を行うかを説明する。
ステップS1において、要素モデル部121および電池劣化モデル部122は、各変数の初期化を行う。ここでは、カウンタkを0にセットすると共に、第0年次、すなわち初期サイクルの電池容量値Q(y)および内部抵抗値R(y)を、Q(y)=Qintial、R(y)=Rintialとしてそれぞれ設定する。なお、カウンタkは、0からYまでの整数値をとる。
ステップS2において、要素モデル部121は、入力情報2に含まれる仕様情報21、需要情報22および制御パラメータ情報24に基づいて、各変数の初期値を計算する。具体的には、要素モデル部121は、前述の式(1)に従って、第0年次、すなわち初期サイクルでの充放電電力Eac(y)を計算する。また、要素モデル部121は、初期サイクルにおける電池電流InewおよびBESS充電状態Snewとして、第0年次の電池電流Icell(y)およびBESS充電状態Stotal(y)をそれぞれ算出する。さらに、要素モデル部121は、初期サイクルにおける冷却システムの消費電力Eaux(y)を計算する。
ステップS3において、電池劣化モデル部122は、前述の式(2)〜(4)を用いて、第1年次から第Y年次までの各年の電池容量値Q(y),Q(y),…,Q(y)および内部抵抗値R(y),R(y),…,R(y)を計算する。
ステップS4において、電池劣化モデル部122は、ステップS3で算出した各年の電池容量値および内部抵抗値と、所定の閾値とを比較し、その比較結果に基づいて、電池が寿命に達すると予測される寿命到達年yeolを算出する。このときの閾値には、たとえば電池製造業者から提供された値などが用いられる。一般的には、電池容量の値により電池寿命が規定される。
ステップS5において、要素モデル部121は、カウンタkを1つインクリメントする計算を行う。
ステップS6において、要素モデル部121は、ステップS5でインクリメントしたカウンタkの値に従い、ステップS3で算出した第k年次の電池容量値Q(y)および内部抵抗値R(y)を用いて、第k年次における各変数を計算する。具体的には、要素モデル部121は、充放電電力Eac(y)と、これに対応する電池電流Icell(y)、BESS充電状態Stotal(y)および冷却システムの消費電力Eaux(y)を計算する。
要素モデル部121は、以上説明したステップS5およびステップS6の処理を、電池の寿命到達年yeolにおける充放電電力Eac(yeol)およびBESS充電状態Stotal(yeol)が計算されるまで、繰り返し実行する。そして、算出した初期サイクルから電池の寿命到達年までの各年の充放電電力Eac(y),Eac(y),…,Eac(yeol)、BESS充電状態Stotal(y),Stotal(y),…,Stotal(yeol)および冷却システムの消費電力Eaux(y),Eaux(y),…,Eaux(yeol)を、出力情報3に含まれるBESS変数32として出力する。
電池劣化モデル部122は、以上説明したようにして、要素モデル部121により求められた電池の電流IcellおよびBESS充電状態Stotalに基づいて、将来の電池の劣化状態を予測し、電池の寿命を表す寿命到達年yeolを求めることができる。
図7は、本発明の一実施形態に係るBESSにおける推測部12のうち利益算出部123の構成を示すブロック図である。利益算出部123は、報酬アルゴリズム部1231、損失計算部1232および差分算出部1233を備える。
報酬アルゴリズム部1231は、価格情報23において指定された送電網の運営管理者に対して提供する電力安定化サービスに従って、収益面の計算を行う。本実施形態では、電力安定化サービスとして、たとえば周波数制御が行われるものとする。報酬アルゴリズム部1231は、入力情報2として評価装置1に入力された需要情報22および価格情報23と、要素モデル部121により計算された充放電電力Eac(y)とに基づいて、BESSの所有者が受け取る報酬額を計算する。具体的には、報酬アルゴリズム部1231は、需要情報22のプロファイル情報が表す充放電電力の需要変動サイクルと、価格情報23が表すサービス提供価格と、充放電電力Eac(y)とを用いて、第k年次における一日当たりの報酬を計算する。その後、報酬アルゴリズム部1231は、求められた一日当たりの報酬に365を掛け算することにより、第k年次の報酬額Prevenue(y)を算出する。
損失計算部1232は、BESSの冷却システムの稼働による金銭的損失の計算を行う。具体的には、損失計算部1232は、要素モデル部121により計算された冷却システムの消費電力Eaux(y)に基づいて、第k年次における一日当たりの金銭的損失を計算する。その後、損失計算部1232は、求められた一日当たりの金銭的損失に365を掛け算することにより、第k年次の損失額Ploss(y)を算出する。
差分算出部1233は、下記の式(6)に従い、報酬アルゴリズム部1231で算出された報酬額Prevenue(y)から、損失計算部1232で算出された損失額Ploss(y)を引き算することにより、これらの差分を算出する。そして、求められた差分を、第k年次の金銭的利益Pprofit(y)として出力する。
Figure 0006402002
利益算出部123は、以上説明したような計算を、BESSの運用開始年yから寿命到達年yeolまでの各年についてそれぞれ行う。これにより、電力安定化サービスの提供によってBESSの所有者が得られる各年の利益を計算することができる。利益算出部123で算出された各年の利益は、出力情報3において、利益33として参照される。
利益算出部123は、以上説明したようにして、要素モデル部121により求められた充放電電力Eac(y)および消費電力Eaux(y)に基づいて、各年に得られる金銭的利益Pprofit(y)を算出することができる。なお、本実施形態では、1年を金銭的利益の算出期間の単位とした例を説明したが、本発明はこれに限定されない。すなわち、利益算出部123は、任意の単位期間について、その期間内に得られる金銭的利益を算出することができる。
評価装置1において、推測部12は、以上説明したようにして、BESSの評価に用いられる各種の変数や値を求めることができる。これらの計算結果は、出力情報3に含まれる電池劣化状態31、BESS変数32および利益33として、データ保存部14に記憶保存される。
ユーザは、評価装置1において入力情報2の内容を変化させることで、様々な設定条件に応じたシミュレーションを行うことができる。そして、設定条件を規定する入力情報2と、その設定条件下で得られた出力情報3との組み合わせを、シミュレーション結果としてデータ保存部14に記憶しておくことができる。すなわち、データ保存部14には、設定条件が異なる複数のシミュレーション結果を保存可能である。以下では、データ保存部14において、少なくとも2つのシミュレーション結果が保存されているものとして説明する。
図8は、本発明の一実施形態に係るBESSにおける最適化部13の構成を示すブロック図である。最適化部13は、累積利益計算部131、比較部132および最適解導出部133を備える。
累積利益計算部131は、入力情報2として評価装置1に入力された仕様情報21と、推測部12において利益算出部123により算出されたBESSの運用開始年yから寿命到達年yeolまでの各年の金銭的利益Pprofit(y)とに基づいて、BESSの総累積利益を計算する。具体的には、累積利益計算部131は、以下の式(7)に基づいて、BESSの運用を開始してから終了するまでの間にBESSの所有者が得られる総累積利益Ptotalを算出する。式(7)において、Pcostは、BESSの設置に対する投資コストを表しており、仕様情報21の内容等に基づいて決定することができる。
Figure 0006402002
比較部132は、互いに異なる複数組の制御パラメータの値に応じてそれぞれ算出された複数の総累積利益同士を比較することで、各シミュレーション結果の比較を行う。具体的には、比較部132は、累積利益計算部131で計算された最新のシミュレーション結果による総累積利益Ptotalの値と、データ保存部14に保存された過去のシミュレーション結果による総累積利益Ptotalの値とを比較する。これにより、制御パラメータ情報24で設定された制御パラメータの値に応じて計算されたシミュレーションごとの総累積利益Ptotalの値同士を比較する。さらに、比較部132は、この比較結果に基づいて、シミュレーションごとの総累積利益Ptotalを順位付けする。
前述のように、ユーザは、制御パラメータを設定する際に、マニュアルモードまたは最適化モードを選択することができる。マニュアルモードが選択された場合、最適化部13は、比較部132の比較結果に基づいて、最適なBESSの制御戦略を決定する。具体的には、最適化部13は、比較部132での総累積利益Ptotalの順位付けの結果に基づいて、寿命到達年yeolまでの総累積利益Ptotalが最大となる制御パラメータの組み合わせを決定する。こうして決定された最適な総累積利益Ptotalと制御パラメータの値は、出力情報3において、総累積利益34、最適制御パラメータ値35としてそれぞれ参照される。
最適解導出部133は、最適化モードが選択されたときに、ユーザに設定された範囲内で最適な制御パラメータの値を求める。具体的には、入力情報2のうち制御パラメータ情報24において設定された最小値と最大値の間の範囲内で、寿命到達年yeolまでの総累積利益Ptotalが最大となる制御パラメータの組み合わせを決定する。こうして決定された最適な総累積利益Ptotalと制御パラメータの値は、マニュアルモードの場合と同様に、出力情報3において、総累積利益34、最適制御パラメータ値35としてそれぞれ参照される。
最適化部13は、以上説明したようにして、推測部12により推測された電池の寿命到達年yeolおよび金銭的利益Pprofit(y)に基づいて、BESSの動作を制御するのに最適な制御パラメータの値を決定する。
図9は、評価装置1のGUIに表示されるシミュレーション結果の画面例を示す図である。図9の画面では、2つのシミュレーション結果を比較して表示した場合の例を示している。これらのシミュレーション結果は、入力情報2のうち仕様情報21、需要情報22および価格情報23については、それぞれ同一の値を設定する一方で、制御パラメータ情報24については、互いに異なる値を制御パラメータに設定して得られたものである。図9では、一方のシミュレーション条件を「シナリオA」とし、もう一方のシミュレーション条件を「シナリオB」として、それぞれのシミュレーション結果を画面表示した例を示している。
図9の画面には、シナリオAとシナリオBのそれぞれについて、出力情報3に含まれる電池劣化状態31、BESS変数32、利益33、総累積利益34および最適制御パラメータ値35の各比較結果を示している。
図9の画面において、電池劣化状態31については、シナリオA、BのそれぞれにおけるBESSの電池容量の減衰および内部抵抗の増加の様子がグラフ表示されている。これらのグラフでは、横軸が年単位での時間を表している。
図9の画面において、BESS変数32については、シナリオA、Bのそれぞれにおける第3年次のSOCの変化の様子がグラフ表示されている。このグラフでは、横軸が時間(時刻)を表している。ユーザは、図9の画面において、BESS変数32が表す情報の中でグラフ表示の対象とする波形(変数)の種類と年次を選択することができる。ここで選択可能な年次の範囲は、第0年次から、各シナリオでのシミュレーション結果の最終年(電池の寿命到達年yeol)のうち最大値までの間である。すなわち、シナリオAでの電池の寿命到達年をyeolA、シナリオBでの電池の寿命到達年をyeolBと表すと、ユーザは、yeolAまたはyeolBのいずれか大きい方を上限値として、グラブ表示の対象年次を選択することができる。また、ユーザは、推測部12により求められてBESS変数32として出力された各年の充放電電力Eac(y)、BESS充電状態Stotal(y)または冷却システムの消費電力Eaux(y)のいずれかを、グラフ表示の対象とする変数として選択することができる。ここで選択された変数について、シナリオA、Bでそれぞれ計算された選択年次における時間ごとの値の変化を示す波形が、図9の画面においてグラフ表示される。
図9の画面において、利益33については、シナリオA、Bのそれぞれにおける各年の金銭的利益Pprofit(y)の値がまとめて表形式で表示されている。
図9の画面において、総累積利益34については、シナリオA、Bのそれぞれにおける各年の金銭的利益Pprofit(y)の累積値がグラフ表示されている。このグラフは、横軸が年単位での時間を表している。グラフ上の各曲線の最大値、すなわち右端の値は、シナリオA、Bそれぞれの最終的な総累積利益Ptotalの値を表す。
図9の画面において、最適制御パラメータ値35については、シナリオA,Bのうちで総累積利益Ptotalが最大となるシナリオ(ここではシナリオB)での各制御パラメータの値を表している。
なお、図9では、ユーザがマニュアルモードを選択し、さらに2種類の制御パラメータの組み合わせをそれぞれシナリオA、Bとして、シミュレーションを行った場合の表示画面例を示している。図9の例では、シナリオBにおいて設定した各制御パラメータの値が、最適制御パラメータ値35として表示されていることが分かる。
(最適化モードにおける処理)
一方、ユーザが最適化モードを選択した場合、最適化部13の最適解導出部133は、前述のように、予め実装されたモデルを用いて、総累積利益Ptotalが最大となる制御パラメータの組み合わせを、制御パラメータ情報24において設定された範囲内で決定する。この場合、入力情報2のうち制御パラメータ情報24以外の情報、すなわち仕様情報21、需要情報22および価格情報23については、マニュアルモードの場合と同様に、ユーザがその値を設定する。評価装置1のGUIは、こうして決定された最適な制御パラメータの値と、これに対応するシミュレーション結果とを、図9に示したのと同様の表現形式を用いて画面表示する。
以上説明したように、本実施形態の評価装置1を用いることで、ユーザは、マニュアルモードと最適化モードの両方のモードにおいて、BESSの寿命および総累積利益が最大となる制御パラメータの最適値を取得することができる。したがって、送電網に対してBESSを用いた電力安定化サービスを提供する際の経済的評価を容易に行うことができる。その結果、経済的利益を得るための戦略に沿って、制御パラメータ値の選択を容易に行うことができる。
図10は、評価装置1の全体の処理の流れを示すフローチャートである。
ステップS10において、評価装置1は、シナリオデータの設定を行う。ここでは、評価装置1は、図2に示したような表示画面においてユーザに入力情報2を入力させることにより、シミュレーションに用いるシナリオデータを設定する。
ステップS20において、評価装置1は、入力情報2を取得する。ここでは、評価装置1は、ステップS10でシナリオデータとして設定された入力情報2を推測部12により読み込む。
ステップS30において、評価装置1は、BESSの評価に用いる各変数を算出する。ここでは、評価装置1は、ステップS20で取得した入力情報2に含まれる仕様情報21、需要情報22、価格情報23および制御パラメータ情報24に基づいて、推測部12により、前述のような処理を行う。これにより、各年の充放電電力Eac(y)、BESS充電状態Stotal(y)、冷却システムの消費電力Eaux(y)などを求める。
ステップS40において、評価装置1は、ステップS30で算出した各変数に基づいて、電池寿命および金銭的利益を推測する。ここでは、評価装置1は、ステップS30で算出した各年の充放電電力Eac(y)、BESS充電状態Stotal(y)、冷却システムの消費電力Eaux(y)などに基づいて、推測部12により、前述のような処理を行う。これにより、電池の寿命到達年yeolと、この寿命到達年yeolまでの各年の金銭的利益Pprofit(y)とを求める。
ステップS50において、評価装置1は、ステップS40で推測した電池寿命および金銭的利益に基づいて、BESSの運用によって得られる総累積利益を算出する。ここでは、評価装置1は、ステップS40で算出した寿命到達年yeolおよび各年の金銭的利益Pprofit(y)に基づいて、最適化部13により、前述のような処理を行う。これにより、総累積利益Ptotalを求める。
ステップS60において、評価装置1は、シミュレーションを終了するか否かを判定する。マニュアルモードの場合は、少なくとも2回以上のシミュレーションを実行済みであり、かつユーザがシミュレーションを終了する旨の所定の操作を行ったときに、ステップS60においてシミュレーションを終了すると判定してステップS70に進む。なお、過去のシミュレーション結果がデータ保存部14に保存されていれば、必ずしも2回以上のシミュレーションを実行しなくてもよい。また、最適化モードの場合は、ステップS50の処理で総累積利益が正しく算出されていれば、ステップS60においてシミュレーションを終了すると判定してステップS70に進む。一方、これらの条件を満たさなければ、評価装置1は、ステップS60を否定判定してステップS10に戻り、前述のステップS10以降の処理を再び実行する。
ステップS70において、評価装置1は、ステップS50で算出した各シナリオの総累積利益に基づいて、最適な制御パラメータを決定する。このとき評価装置1は、ユーザに選択されたモードに応じて、前述のような処理をそれぞれ実行することにより、制御パラメータの最適値を求める。具体的には、マニュアルモードが選択されている場合には、評価装置1は、最適化部13により、シミュレーションを実行済みの複数のシナリオの中で、ステップS50で算出した総累積利益が最も大きいシナリオを選択する。そして、選択したシナリオにおいてユーザに設定された各制御パラメータの値を、最適な制御パラメータとして決定する。一方、最適化モードが選択されている場合、評価装置1は、最適化部13により、ユーザに設定された各制御パラメータの範囲内で、ステップS50で算出される総累積利益が最も大きくなる値を、最適な制御パラメータとして決定する。
ステップS70で最適な制御パラメータを決定できたら、評価装置1は、図10のフローチャートに示す処理を終了する。
なお、データ保存部14には、図10のフローチャートに示す処理を評価装置1に実行させるためのプログラムを記憶することができる。このプログラムに応じた演算処理をCPU等のコンピュータで実行することにより、評価装置1は、上記のような処理を実現することができる。
以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)評価装置1は、充放電可能な電池を有し、この電池を用いて送電網に対する電力安定化のサービスを提供する電力貯蔵システムであるBESSの評価を行う。評価装置1は、BESSの仕様に関する仕様情報21を少なくとも含む入力情報2を取得する情報取得部11と、情報取得部11により取得された入力情報2に基づいて、電池の寿命およびサービスにより得られる金銭的利益を推測する推測部12と、推測部12により推測された電池の寿命および金銭的利益に基づいて、BESSの動作を制御するのに最適な制御パラメータの値を決定する最適化部13とを備える。このようにしたので、送電網に対する電力安定化のサービスを提供するBESSについて、その動作制御に最適な制御パラメータを決定することができる。
(2)推測部12は、要素モデル部121と、電池劣化モデル部122と、利益算出部123とを備える。要素モデル部121は、入力情報2に基づいて、BESSにおいて電池を充放電するために用いられる制御パラメータに応じた充放電電力Eac(y)と、BESSにおいて消費される消費電力Eaux(y)と、充放電電力Eac(y)に応じた電池の電流Icell(y)およびBESS充電状態Stotal(y)とを求める。電池劣化モデル部122は、要素モデル部121により求められた電流Icell(y)およびBESS充電状態Stotal(y)に基づいて、将来の電池の劣化状態を予測して、電池の寿命を表す寿命到達年yeolを求める。利益算出部123は、要素モデル部121により求められた充放電電力Eac(y)および消費電力Eaux(y)に基づいて、所定の単位期間内に得られる金銭的利益Pprofit(y)を算出する。このようにしたので、推測部12は、入力情報2に基づいて、電池の寿命およびサービスにより得られる金銭的利益を確実かつ正確に推測することができる。
(3)最適化部13は、累積利益計算部131と、比較部132とを備える。累積利益計算部131は、上記の利益算出部123により算出された単位期間ごとの金銭的利益Pprofit(y)を累積して、電池の寿命までに得られるBESSの総累積利益Ptotalを算出する。比較部132は、シナリオごとに互いに異なる制御パラメータの値に応じて算出された複数の総累積利益Ptotal同士を比較する。この比較部132の比較結果に基づいて、最適化部13は、比較部132(マニュアルモードの場合)または最適解導出部133(最適化モードの場合)により、最適な制御パラメータの値を決定する。このようにしたので、最適化部13は、BESSの動作を制御するのに最適な制御パラメータの値を確実に決定することができる。
(4)入力情報2は、BESSに対する充放電電力需要に関する需要情報22と、サービスの価格に関する価格情報23と、制御パラメータに関する制御パラメータ情報24とをさらに含むことが好ましい。このようにすれば、推測部12において、要素モデル部121は、需要情報22および制御パラメータ情報24に基づいて充放電電力Eac(y)を求めると共に、充放電電力Eac(y)および仕様情報21に基づいて消費電力Eaux(y)、電流Icell(y)およびBESS充電状態Stotal(y)を求めることができる。また、利益算出部123は、需要情報22、価格情報23、充放電電力Eac(y)および消費電力Eaux(y)に基づいて、単位期間内に得られる金銭的利益Pprofit(y)を算出することができる。そのため、推測部12により、電池の寿命およびサービスにより得られる金銭的利益をより一層正確に推測することができる。また、最適化部13により、BESSの動作を制御するのに最適な制御パラメータをより一層正確に決定することができる。
(5)評価装置1は、制御パラメータと電池の寿命および金銭的利益との関係を記憶するためのデータ保存部14をさらに備える。このようにしたので、制御パラメータの値が互いに異なる複数のシナリオを設定し、それぞれのシナリオに応じたシミュレーション結果を記憶保持しておくことができる。
(6)評価装置1は、制御パラメータごとの金銭的利益の比較結果を示した図9のような画面を表示するための出力情報3を出力する。このようにしたので、ユーザは、シナリオごとに異なるシミュレーション結果の比較検討を容易に行うことができる。
なお、本発明は、以上説明した実施形態の内容に制限されることはない。本発明の変形例としては、たとえば、最適な制御戦略としての制御パラメータの値をシミュレーション結果から選ぶ際の条件を、ユーザの望む条件に合わせて適宜変更できるようにしてもよい。また、評価装置1は、BESSの一部として実装されてもよいし、BESSとは別の場所に設置されていてもよい。評価装置1をBESSとは別の場所に設置する場合、これらをインターネット等の通信手段を介して互いに接続してもよい。さらに、シミュレーションに用いる電池容量と内部抵抗の初期値には、現在または特定の時点での値を設定してもよい。このようにすれば、現在または特定の時点におけるBESSの状態に合わせた解析が可能になる。
また、需要情報22における充放電電力需要のプロファイル情報は、実施形態のように24時間の範囲内で設定されるものに限らない。すなわち、24時間よりも短い範囲で設定してもよいし、または、24時間よりも長い範囲、たとえば数日、数週間、数か月等のタイムスケールで設定してもよい。また、価格情報23におけるサービス提供価格や、制御パラメータ情報24における制御パラメータの値などについても、任意の時間単位で設定可能である。すなわち、実施形態のように1時間ごとに設定されるものに限らず、1時間よりも短い時間単位で設定してもよいし、数時間や数日等の時間単位で設定してもよい。さらに、本発明の目的が損なわれない範囲で、電池容量の減衰量や内部抵抗の増加量等の計算内容に適宜変更を加えてもよい。
BESSの制御に用いられる制御パラメータは、図3(a),(b)および(c)に例示されたものに制限されない。さらに、制御パラメータは、図3(a),(b)に示されているように、充放電について対称な影響をもたらすものでなくともよい。また、送電網に対して電力安定化サービスを提供する際には、充電と放電での扱いが異なる場合がある。この点を考慮して、制御パラメータの定義や設定を行ってもよい。
本発明において、評価装置1が評価対象とするBESSは、送電網の運営管理者に対して1つの電力安定化サービスのみを提供するものに限定されない。複数のサービスを提供するBESSを評価対象とする場合、評価装置1からの出力情報3は、サービスごとに分類して扱うことが好ましい。一方、このBESSによって得られる総累積利益は、全てのサービスでの利益の合計として算出することが好ましい。
以上説明した実施形態や各種の変化例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されない。本発明は上述した実施形態や変形例に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
1 評価装置
2 入力情報
3 出力情報
11 情報取得部
12 推測部
13 最適化部
14 データ保存部
21 仕様情報
22 需要情報
23 価格情報
24 制御パラメータ情報
31 電池劣化状態
32 BESS変数
33 利益
34 総累積利益
35 最適制御パラメータ値
121 要素モデル部
122 電池劣化モデル部
123 利益算出部
131 累積利益計算部
132 比較部
133 最適解導出部

Claims (9)

  1. 充放電可能な電池を有し、前記電池を用いて送電網に対する電力安定化のサービスを提供する電力貯蔵システムの評価を行う評価装置であって、
    前記電力貯蔵システムの仕様に関する仕様情報と、前記電力貯蔵システムにおいて前記電池の充放電制御を行うために用いられる制御パラメータに関する制御パラメータ情報とを少なくとも含む入力情報を取得する情報取得部と、
    前記情報取得部により取得された入力情報に基づいて、前記電池の寿命および前記サービスにより得られる金銭的利益を推測する推測部と、
    前記推測部により推測された前記電池の寿命および前記金銭的利益に基づいて、最適な前記制御パラメータの値を決定する最適化部と、
    を備え
    前記推測部は、
    前記入力情報に基づいて、複数の前記制御パラメータの値にそれぞれ対応する前記電力貯蔵システムの充放電電力、消費電力、電流および充電状態を求める要素モデル部と、
    前記要素モデル部により求められた前記電流および前記充電状態に基づいて、将来の前記電池の劣化状態を予測して前記電池の寿命を前記制御パラメータの値ごとに求める電池劣化モデル部と、
    前記要素モデル部により求められた前記充放電電力および前記消費電力に基づいて、所定の単位期間内に得られる前記金銭的利益を前記制御パラメータの値ごとに算出する利益算出部と、を備え、
    前記最適化部は、
    前記利益算出部により算出された前記単位期間ごとの前記金銭的利益を、前記電力貯蔵システムの運用開始から前記制御パラメータの値ごとに異なる前記電池の寿命までの期間について累積して、前記電池の寿命までに得られる前記電力貯蔵システムの総累積利益を前記制御パラメータの値ごとに算出する累積利益計算部と、
    前記制御パラメータの値ごとに算出された複数の前記総累積利益同士を比較する比較部と、を備え、
    前記比較部の比較結果に基づいて、最適な前記制御パラメータの値を決定する電力貯蔵システムの評価装置。
  2. 請求項1に記載の電力貯蔵システムの評価装置において、
    前記制御パラメータは、前記電池の充放電を開始する電力を定める第1制御パラメータと、前記電池の充放電を制限する電力を定める第2制御パラメータと、前記電力貯蔵システムに対する充放電電力需要と前記電池の充放電電力との比例係数を定める第3制御パラメータと、を少なくとも含み、
    前記最適化部は、前記第1制御パラメータ、前記第2制御パラメータおよび前記第3制御パラメータのそれぞれについて最適な値を決定する電力貯蔵システムの評価装置。
  3. 請求項1または2に記載の電力貯蔵システムの評価装置において、
    前記入力情報は、前記電力貯蔵システムに対する充放電電力需要に関する需要情報と、前記サービスの価格に関する価格情報と、をさらに含む電力貯蔵システムの評価装置。
  4. 請求項に記載の電力貯蔵システムの評価装置において、
    前記要素モデル部は、前記需要情報および前記制御パラメータ情報に基づいて前記充放電電力を求めると共に、前記充放電電力および前記仕様情報に基づいて前記消費電力、前記電流および前記充電状態を求める電力貯蔵システムの評価装置。
  5. 請求項3または4に記載の電力貯蔵システムの評価装置において、
    前記利益算出部は、前記需要情報、前記価格情報、前記充放電電力および前記消費電力に基づいて、前記単位期間内に得られる前記金銭的利益を算出する電力貯蔵システムの評価装置。
  6. 請求項1乃至のいずれかに記載の電力貯蔵システムの評価装置において、
    前記制御パラメータと前記電池の寿命および前記金銭的利益との関係を記憶するためのデータ保存部をさらに備える電力貯蔵システムの評価装置。
  7. 請求項1乃至6のいずれかに記載の電力貯蔵システムの評価装置において、
    前記制御パラメータごとの前記金銭的利益の比較結果を示した画面を表示するための出力情報を出力する電力貯蔵システムの評価装置。
  8. 充放電可能な電池を有し、前記電池を用いて送電網に対する電力安定化のサービスを提供する電力貯蔵システムの評価方法であって、
    コンピュータにより、
    前記電力貯蔵システムの仕様に関する仕様情報と、前記電力貯蔵システムにおいて前記電池の充放電制御を行うために用いられる制御パラメータに関する制御パラメータ情報とを少なくとも含む入力情報を取得し、
    前記取得した入力情報に基づいて、前記電池の寿命および前記サービスにより得られる金銭的利益を推測し、
    前記推測した前記電池の寿命および前記金銭的利益に基づいて、前記電力貯蔵システムの動作を制御するのに最適な制御パラメータの値を決定し、
    前記金銭的利益を推測する際に、前記コンピュータは、
    前記入力情報に基づいて、複数の前記制御パラメータの値にそれぞれ対応する前記電力貯蔵システムの充放電電力、消費電力、電流および充電状態を求め、
    求めた前記電流および前記充電状態に基づいて、将来の前記電池の劣化状態を予測して前記電池の寿命を前記制御パラメータの値ごとに求め、
    求めた前記充放電電力および前記消費電力に基づいて、所定の単位期間内に得られる前記金銭的利益を前記制御パラメータの値ごとに算出し、
    最適な前記制御パラメータの値を決定する際に、前記コンピュータは、
    前記単位期間ごとの前記金銭的利益を、前記電力貯蔵システムの運用開始から前記制御パラメータの値ごとに異なる前記電池の寿命までの期間について累積して、前記電池の寿命までに得られる前記電力貯蔵システムの総累積利益を前記制御パラメータの値ごとに算出し、
    前記制御パラメータの値ごとに算出した複数の前記総累積利益同士を比較し、
    複数の前記総累積利益同士の比較結果に基づいて、最適な前記制御パラメータの値を決定する、
    電力貯蔵システムの評価方法。
  9. 充放電可能な電池を有し、前記電池を用いて送電網に対する電力安定化のサービスを提供する電力貯蔵システムの評価を行うための評価プログラムであって、
    コンピュータに、
    前記電力貯蔵システムの仕様に関する仕様情報と、前記電力貯蔵システムにおいて前記電池の充放電制御を行うために用いられる制御パラメータに関する制御パラメータ情報とを少なくとも含む入力情報を取得する処理と、
    前記取得した入力情報に基づいて、前記電池の寿命および前記サービスにより得られる金銭的利益を推測する処理と、
    前記推測した前記電池の寿命および前記金銭的利益に基づいて、最適な前記制御パラメータの値を決定する処理と、
    を実行させ
    前記金銭的利益を推測する処理では、
    前記入力情報に基づいて、複数の前記制御パラメータの値にそれぞれ対応する前記電力貯蔵システムの充放電電力、消費電力、電流および充電状態を求め、
    求めた前記電流および前記充電状態に基づいて、将来の前記電池の劣化状態を予測して前記電池の寿命を前記制御パラメータの値ごとに求め、
    求めた前記充放電電力および前記消費電力に基づいて、所定の単位期間内に得られる前記金銭的利益を前記制御パラメータの値ごとに算出するように、前記コンピュータを動作させ、
    最適な前記制御パラメータの値を決定する処理では、
    前記単位期間ごとの前記金銭的利益を、前記電力貯蔵システムの運用開始から前記制御パラメータの値ごとに異なる前記電池の寿命までの期間について累積して、前記電池の寿命までに得られる前記電力貯蔵システムの総累積利益を前記制御パラメータの値ごとに算出し、
    前記制御パラメータの値ごとに算出した複数の前記総累積利益同士を比較し、
    複数の前記総累積利益同士の比較結果に基づいて、最適な前記制御パラメータの値を決定するように、前記コンピュータを動作させる、
    電力貯蔵システムの評価プログラム。
JP2014221805A 2014-10-30 2014-10-30 電力貯蔵システムの評価装置、評価方法および評価プログラム Active JP6402002B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014221805A JP6402002B2 (ja) 2014-10-30 2014-10-30 電力貯蔵システムの評価装置、評価方法および評価プログラム
US14/926,767 US10466664B2 (en) 2014-10-30 2015-10-29 Evaluation device, evaluation method, and evaluation program for power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014221805A JP6402002B2 (ja) 2014-10-30 2014-10-30 電力貯蔵システムの評価装置、評価方法および評価プログラム

Publications (2)

Publication Number Publication Date
JP2016092896A JP2016092896A (ja) 2016-05-23
JP6402002B2 true JP6402002B2 (ja) 2018-10-10

Family

ID=55852604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014221805A Active JP6402002B2 (ja) 2014-10-30 2014-10-30 電力貯蔵システムの評価装置、評価方法および評価プログラム

Country Status (2)

Country Link
US (1) US10466664B2 (ja)
JP (1) JP6402002B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9898203B2 (en) * 2016-05-20 2018-02-20 Oracle International Corporation Replacing data structures for process control
US20190137956A1 (en) * 2017-11-06 2019-05-09 Nec Laboratories America, Inc. Battery lifetime maximization in behind-the-meter energy management systems
WO2019124570A1 (ko) * 2017-12-18 2019-06-27 한국 전기안전공사 인공지능기법을 이용한 전기설비 안전도 평가 시스템
CN108647854A (zh) * 2018-04-04 2018-10-12 中国电力科学研究院有限公司 一种确定电力传输网运行质量的方法和系统
JP7129228B2 (ja) * 2018-06-06 2022-09-01 三菱重工業株式会社 蓄電システムの運用評価方法及び蓄電システムの運用評価装置
CN110390495B (zh) * 2019-08-15 2022-07-26 山东劳动职业技术学院(山东劳动技师学院) 一种输电线路最大允许温度经济性评估方法及系统
CN114325446A (zh) * 2021-12-21 2022-04-12 南方电网调峰调频发电有限公司 电池组循环寿命的测试方法、装置、电子设备和存储介质

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590472B2 (en) * 2006-11-09 2009-09-15 Gridpoint, Inc. Energy arbitrage by load shifting
JP5310003B2 (ja) * 2009-01-07 2013-10-09 新神戸電機株式会社 風力発電用鉛蓄電池制御システム
US8829720B2 (en) * 2009-10-05 2014-09-09 Toyota Jidosha Kabushiki Kaisha Apparatus for selecting specifications of power storage system and method for selecting specifications of power storage system
CN102598468A (zh) * 2010-09-10 2012-07-18 松下电器产业株式会社 电力控制装置、电力控制方法及电力供给系统
EP2518665A1 (en) * 2011-04-28 2012-10-31 Vestas Wind Systems A/S Renewable energy configurator
EP2752955B1 (en) * 2011-08-30 2017-11-22 Hitachi, Ltd. Power system stabilization system
CN104040822B (zh) * 2012-01-06 2016-12-07 株式会社日立制作所 电网稳定化系统及电网稳定化方法
US9634508B2 (en) * 2012-09-13 2017-04-25 Stem, Inc. Method for balancing frequency instability on an electric grid using networked distributed energy storage systems
CN103151798B (zh) * 2013-03-27 2015-02-04 浙江省电力公司电力科学研究院 独立微网系统的优化方法
CN103595107B (zh) * 2013-12-02 2015-11-11 国家电网公司 电动汽车充放电控制系统及方法
US9583945B2 (en) * 2014-06-09 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Frequency control method and frequency control apparatus

Also Published As

Publication number Publication date
JP2016092896A (ja) 2016-05-23
US10466664B2 (en) 2019-11-05
US20160124483A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
JP6402002B2 (ja) 電力貯蔵システムの評価装置、評価方法および評価プログラム
JP6554410B2 (ja) 電力貯蔵システム管理装置、電力貯蔵システム管理方法、電力貯蔵システム
CN108292860B (zh) 电力控制装置、运转计划制定方法以及记录介质
JP5255462B2 (ja) 電力需給運用管理サーバ、および電力需給運用管理システム
JP7179500B2 (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP6079215B2 (ja) 電力需要予測装置、プログラム
US20170186108A1 (en) Supply-demand control device, charge-discharge control device, accumulator device, supply-demand control system, and supply-demand control method
JP7249155B2 (ja) 蓄電池管理装置および蓄電池管理方法
JP7131920B2 (ja) 蓄電池管理装置、蓄電池管理方法および蓄電池管理プログラム
JP6729985B2 (ja) 蓄電池システム充電制御装置、蓄電池システム及び蓄電池充電制御方法
US10380706B2 (en) Equipment management apparatus
KR20150060734A (ko) 연료 전지 플릿 최적화
JP6515640B2 (ja) 潮流計算装置、潮流計算方法、及びプログラム
US20190137956A1 (en) Battery lifetime maximization in behind-the-meter energy management systems
US20190058330A1 (en) Electric power control apparatus, electric power control method, and program
US20190140465A1 (en) Demand charge minimization in behind-the-meter energy management systems
JP6262954B2 (ja) 蓄電池導入効果評価装置、蓄電池導入効果評価方法及びプログラム
GB2586654A (en) Method and system for optimising battery usage
JP2017028869A (ja) 需給計画作成装置、プログラム
US8612362B2 (en) Appliance cooperation operation device
JP2018165859A (ja) 予測装置、予測方法および予測プログラム
Loew et al. Economic model predictive control of Li‐ion battery cyclic aging via online rainflow‐analysis
JP2016073072A (ja) 機器制御装置
JP6590910B2 (ja) コントローラ、電気料金表示方法、及びプログラム
JP2019159628A (ja) 制御装置、制御方法およびコンピュータプログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6402002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150