WO2013128727A1 - 調整機器制御システム、調整機器制御方法および記録媒体 - Google Patents

調整機器制御システム、調整機器制御方法および記録媒体 Download PDF

Info

Publication number
WO2013128727A1
WO2013128727A1 PCT/JP2012/079632 JP2012079632W WO2013128727A1 WO 2013128727 A1 WO2013128727 A1 WO 2013128727A1 JP 2012079632 W JP2012079632 W JP 2012079632W WO 2013128727 A1 WO2013128727 A1 WO 2013128727A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
adjustment device
state
adjustment
Prior art date
Application number
PCT/JP2012/079632
Other languages
English (en)
French (fr)
Inventor
寿人 佐久間
耕治 工藤
仁之 矢野
悠真 岩崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/381,528 priority Critical patent/US9812871B2/en
Priority to JP2014501964A priority patent/JP6206396B2/ja
Publication of WO2013128727A1 publication Critical patent/WO2013128727A1/ja
Priority to US15/725,829 priority patent/US20180041045A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an adjustment device control system, an adjustment device control method, and a recording medium, and in particular, an adjustment device control system, an adjustment device control method, and a control device for controlling a plurality of adjustment devices for adjusting a power supply / demand balance in an electric power system.
  • the present invention relates to a recording medium.
  • New power supply and demand adjustment methods include devices such as “storage batteries”, “electric vehicles (EV)”, and “heat pump water heaters (HP)” linked to the power distribution network (hereinafter referred to as “electric power devices”). Can be used as an adjusting device for adjusting the balance of power supply and demand.
  • the performance of the adjusting device varies depending on the usage situation.
  • the deterioration progresses, and the performance deteriorates as the deterioration progresses.
  • the degree of progress of deterioration of the adjusting device varies depending on the amount of electric power adjusted by the adjusting device and the state (for example, temperature) of the adjusting device to adjust the power supply / demand balance.
  • the change in the performance of the adjusting device also depends on characteristics other than the deterioration of the adjusting device.
  • An object of the present invention is to provide an adjusting device control system, an adjusting device control method, and a recording medium that can solve the above-described problems.
  • the adjusting device control system of the present invention is an adjusting device control system that controls the operation of a plurality of adjusting devices for adjusting the power supply-demand balance in the power system, Storage means for storing correlation information representing the correlation between the state of the adjustment device, the amount of power the adjustment device is responsible for, and the amount of change in the performance of the adjustment device, for each adjustment device;
  • the state information indicating the state of each adjustment device and the power information indicating the amount of adjustment power necessary for adjusting the power supply / demand balance are received, and the state of each adjustment device is a state represented by the state information.
  • Determining means for determining based on correlation information, the state information, and the power information;
  • Control means for controlling the operation of each adjusting device based on the determination result of the determining means.
  • the adjusting device control method of the present invention is an adjusting device control method in an adjusting device control system that controls the operation of a plurality of adjusting devices for adjusting the power supply-demand balance in the power system, For each of the adjustment devices, the correlation information indicating the correlation between the state of the adjustment device, the amount of power that the adjustment device is responsible for, and the amount of change in the performance of the adjustment device is stored in the storage unit, The state information indicating the state of each adjustment device and the power information indicating the amount of adjustment power necessary for adjusting the power supply-demand balance are received, and the state of each adjustment device is the state represented by the state information.
  • each adjustment device In order for the total value of the amount of change in the performance of each adjustment device to be the smallest in the situation where the total value of the amount of power that each adjustment device is responsible for becomes the adjustment power amount, Determining based on the correlation information, the state information, and the power information; The operation of each adjusting device is controlled based on the determination result.
  • the recording medium of the present invention is stored in a computer.
  • Correlation information representing the correlation between the state of the adjustment device, the amount of power that the adjustment device is responsible for, and the amount of change in the performance of the adjustment device, for each of a plurality of adjustment devices for adjusting the power supply / demand balance in the power system Storing procedure in the storage means;
  • the state information indicating the state of each adjustment device and the power information indicating the amount of adjustment power necessary for adjusting the power supply-demand balance are received, and the state of each adjustment device is the state represented by the state information.
  • Temperature T 0 is a diagram showing an example of the values of D k of the time of 15, 20, 25 degrees. It is a sequence diagram for demonstrating operation
  • Temperature SoC 0 is a diagram showing an example of the values of D k of the time of 0.5,0.6,0.7.
  • FIG. 1 is a diagram showing a power control system that employs the adjusting device control system according to the first embodiment of the present invention.
  • the power control system includes a power system 1, a power line 2, storage battery systems 31 to 3n (n is an integer of 2 or more), an EMU (Energy Management Unit) 4, and a battery management unit 5. And including.
  • the power system 1 is a system for supplying power to the customer side, and includes, for example, a power plant such as a thermal power plant, a renewable power source, and a transformer.
  • the power system 1 supplies generated power from a power plant or a renewable power source to the power line 2 via a transformer.
  • power system 1 includes power line 2, but in order to simplify the description, power system 1 and power line 2 are shown separately in FIG.
  • the storage battery systems 31 to 3n are used to adjust the power supply / demand balance in the power system 1. For example, each of the storage battery systems 31 to 3n is managed by a customer. Note that some of the storage battery systems 31 to 3n may be managed on the power supply side.
  • Each of the power storage systems 31 to 3n includes a communication unit 301, an ES (energy storage) 302, an inverter 303, a BMU (Battery Management Unit) 304, and temperature detection units 304a and 304b.
  • ES energy storage
  • BMU Battery Management Unit
  • FIG. 1 the communication unit 301, ES 302, inverter 303, BMU 304, and temperature detection units 304 a and 304 b are shown in the storage battery system 31.
  • the communication unit 301 the communication unit 301, the ES 302, the inverter 303, the BMU 304, and the temperature detection units 304a and 304b in the storage battery system 31 will be described.
  • the communication unit 301 communicates with the battery management unit 5.
  • ES 302 is an example of an adjustment device.
  • ES302 is, for example, a stationary storage battery or a secondary battery in an electric vehicle.
  • the ES 302 is, for example, a lithium ion secondary battery.
  • the ES 302 is not limited to a lithium ion secondary battery, but may be a storage battery.
  • the inverter 303 converts the AC voltage from the power line 2 into a DC voltage when charging the ES 302, and charges the ES 302 with the DC voltage. Further, when discharging the ES 302, the inverter 303 converts the DC voltage from the ES 302 into an AC voltage, and supplies the AC voltage to the power line 2 to discharge the ES 302.
  • the BMU 304 controls the inverter 303 in accordance with an operation instruction from the battery management unit 5 to control charging and discharging of the ES 302.
  • the BMU 304 also detects the detection result of the temperature detection unit 304a that detects the temperature T 0 of the ES 302 and the detection result of the temperature detection unit 304b that detects the temperature T E around the ES 302 (the temperature of the environment where the ES 302 is placed). Are transmitted to the battery management unit 5 via the communication unit 301.
  • the BMU 304 calculates and manages a capacity reduction amount D total, k from the initial stage of the ES 302 in the storage battery system 31.
  • the BMU 304 transmits the capacity reduction amount D total, k to the battery management unit 5 via the communication unit 301. Since the technology for calculating the capacity reduction amount D total, k from the initial stage of the ES 302 is a known technology, detailed description thereof is omitted.
  • Temperature T E and capacity reduction amount D total, k of ES302 ambient temperature T 0 and ES302 of ES302 is an example of a state of ES302.
  • the communication unit 301, the ES 302, the inverter 303, the BMU 304, and the temperature detection units 304a and 304b in each storage battery system (hereinafter referred to as “storage battery system 3a”) other than the storage battery system 31 are described in the communication in the storage battery system 31 described above.
  • the phrase “storage battery system 31” in the description of unit 301, ES302, inverter 303, BMU 304, and temperature detection units 304a and 304b may be read as “storage battery system 3a”.
  • the EMU 4 calculates an adjustment power amount P t necessary for adjusting the power supply / demand balance. For example, if there is a part (hereinafter referred to as a “peak cut target part”) that exceeds a reference threshold value that serves as a reference for determining whether or not there is a peak cut process in the future forecast total demand curve calculated or provided in advance, the amount of power corresponding to the peak cut target portion is calculated as an adjustment amount of power P t.
  • EMU4 when power demand in order to adjust the power supply-demand balance is required, the value of the adjustment amount of power P t is a positive value, requires power supply to adjust the power supply and demand balance In such a case, the value of the adjustment power amount Pt is set to a negative value.
  • the EMU 4 transmits power information representing the adjusted power amount P t to the battery management unit 5.
  • EMU4 each time elapses ⁇ t time, transmitting power information indicating the adjustment amount of power P t to calculate the adjustment amount of power P t to the battery management unit 5.
  • the battery management unit 5 is an example of an adjustment device control system.
  • the battery management unit 5 controls the operation of the storage battery systems 31 to 3n, that is, the operation of each ES 302, in order to adjust the power supply / demand balance in the power system 1.
  • the battery management unit 5 includes a communication unit 51, a storage unit 52, a determination unit 53, and a control unit 54.
  • the communication unit 51 communicates with each of the storage battery systems 31 to 3n.
  • the communication unit 51 is, for example, from each of the battery system 31 ⁇ 3n, and the detection result of the temperature T 0 of the ES302, the detection result of the temperature T E of the surrounding ES302, capacity reduction amount D total, k calculated result of the ES302 And outputs each detection result and calculation result to the determination unit 53.
  • the storage unit 52 is an example of a storage unit.
  • the storage unit 52 stores, for each ES 302 in the storage battery systems 31 to 3n, correlation information indicating a correlation between the state of the ES 302, the amount of power that the ES 302 is responsible for, and the deterioration change amount of the ES 302.
  • the deterioration change amount of the ES 302 is an example of the change amount of the performance of the ES 302.
  • the storage unit 52 stores the following equation (1) as correlation information for each ES 302 in the storage battery systems 31 to 3n.
  • the deterioration change amount represents the deterioration change amount of the ES 302 in the storage battery system k.
  • P k represents the amount of power (W) that the ES 302 in the storage battery system k is responsible for, that is, the amount of power (W) assigned to the ES 302 in the storage battery system k.
  • x k is the ES302 state (the embodiment of the battery system k, a temperature T 0 of ES302 in the battery system k, and the temperature T E of the surrounding ES302 in the battery system k, in the battery system k ES302 The amount of reduction in capacity D total, k ).
  • D k (P k , x k ) represents the ES 302 in the storage battery system k as ⁇ t under the condition that the ES 302 in the storage battery system k is in charge of the amount of power P k in the situation where the ES 302 in the storage battery system k is in the state x k.
  • This represents the amount of decrease in capacity when used over time, that is, the amount of change in deterioration of the ES 302 in the storage battery system k.
  • the storage unit 52 stores the minimum value Pmin, k and the maximum value Pmax, k of the charge / discharge amount of the ES 302 for each ES 302 in the storage battery systems 31 to 3n.
  • D k when temperature is dominant as a factor for reducing the capacity of the ES 302 in the storage battery system k, D k follows Arrhenius law and root law, so D k can be approximately expressed as the following equation (2). .
  • the function T k (P k , T 0 , T E , t) in the expression (2) is an expression representing the temperature change of the ES 302 in the storage battery system k, and the current time is 0 and the temperature T of the current ES 302 is 0, as the temperature T E of around the current ES302, a function that gives the temperature of the time t.
  • the function T k (P k , T 0 , T E , t) can be expressed as the following equation (3).
  • Equation (2) values corresponding to x k in Equation (1) are T 0 , T E , and D total, k .
  • Equation (2) and Equation (3) a 1, k , a 2, k , a 3, k and a 4, k are constants.
  • FIG. 2 is a diagram showing an example of the value of D k when the temperature T 0 is 15, 20, and 25 degrees.
  • D k is not limited to those specified by Expression (2) and Expression (3), and can be changed as appropriate.
  • the storage unit 52 stores Expression (2) and Expression (3) as correlation information for each ES 302 in the storage battery systems 31 to 3n.
  • the determination unit 53 is an example of a determination unit.
  • Determination unit 53 a detection result of the temperature T 0 of the ES302, the detection result of the temperature T E around each ES302, each ES302 capacity reduction amount D total, the calculation result of k, the adjustment amount of power P t Power information to be received.
  • the detection result of the temperature T 0 of the ES302, detection results, the ES302 capacity reduction amount D total, k calculation result of the temperature T E around each ES302 is an example of the state information.
  • the determination unit 53 detects the temperature T 0 of each ES 302 using the power amount P k that each ES 302 is responsible for so that the increase in deterioration of each ES 302 caused by the use of each ES 302 for adjusting the power supply / demand balance is reduced. result, the detection result of the temperature T E around each ES302, each ES302 capacity reduction amount D total, the calculation result of k, and the correlation information in the storage unit 52, a power information representing the adjustment amount of power P t , Based on the decision.
  • the determination unit 53, the ES302 state, and the detection result of the temperature T 0 of the state (the ES302 notified from the battery storage system, and the detection result of the temperature T E around each ES302, each capacity reduction amount D total of ES302, so that the sum of the calculation results), and the total value of the adjustment amount of power P t in situations that each ES302 deterioration variation D k of the amount of power each ES302 takes charge of k is minimized
  • the amount of power P k that each ES 302 is responsible for, the detection result of the temperature T 0 of each ES 302, the detection result of the ambient temperature T E of each ES 302, and the calculation result of the capacity reduction amount D total, k of each ES 302 , the correlation information in the storage unit 52, a power information representing the adjustment amount of power P t, is determined based on.
  • the determination unit 53 estimates the state of each ES 302 from the correlation information stored in the storage unit 52. As in the case of the notification, the determination unit 53 determines the power amount P k that each ES 302 is responsible for, the estimated state of each ES 302, the correlation information in the storage unit 52, and the power that represents the adjustment power amount P t. And based on the information. For example, the determination unit 53 detects the temperature detection result of each ES 302 received in the past, the detection result of the ambient temperature of each ES 302 received in the past, the calculation result of the capacity reduction amount received in the past, and the past control.
  • the current temperature of each ES 302 can be estimated by substituting the adjustment power amount transmitted via the unit 54 into the equation (3), and the capacity reduction amount up to the present by substituting them into the equation (2).
  • the amount of change can be estimated, and by adding the value to the capacity reduction amount of each ES 302 received in the past, the current capacity degradation amount of each ES 302 can be estimated.
  • the determination unit 53 estimates the state of each ES 302, compares the estimation result with the notified state, and stores the correlation stored in the storage unit 52.
  • the accuracy of the correlation information may be improved by correcting the information.
  • each ES 302 As an example of the state of each ES 302 notified from each storage battery system to the determination unit 53, the detection result of the temperature T 0 of each ES 302, the detection result of the ambient temperature T E of each ES 302 shown in this embodiment, Besides the calculation result of the capacity reduction amount D total, k of ES302, the internal impedance value of each ES302, the thickness of each ES302, the volume of each ES302, the internal pressure of each ES302, the number of charge / discharge cycles so far of each ES302 And the terminal voltage of each ES 302 or the SoC value of each ES 302 shown in the second embodiment to be described later.
  • the control unit 54 is an example of a control unit.
  • the control unit 54 controls the operation of each ES 302 based on the determination result of the determination unit 53.
  • the control unit 54 transmits an operation instruction representing the power amount P k that each ES 302 determined by the determination unit 53 determines to each of the storage battery systems 31 to 3n.
  • FIG. 3 is a sequence diagram for explaining the operation of the power control system.
  • the storage battery system 3c is shown among the storage battery systems 31 to 3n for the sake of simplicity.
  • EMU4 calculates the adjustment amount of power P t, the transmitting power information indicating the adjustment amount of power P t to the battery management unit 5 (step S301), determination unit 53 of the battery management unit 5 receives the power information.
  • the determination unit 53 When receiving the power information, the determination unit 53 transmits a request for notifying the storage battery systems 31 to 3n (hereinafter referred to as “status notification request”) via the communication unit 51 (step S302). ).
  • the BMU 304 receives the state notification request via the communication unit 301, the detection result of the temperature detection unit 304a (temperature T 0 of ES302) and the detection result of the temperature detection unit 304b (ES302). a temperature T E) of the surrounding, the capacity reduction amount D total of ES302, the calculated value of k, as a state notification, and transmits to the battery management unit 5 via the communication unit 301 (step S303).
  • the determination unit 53 when the determination unit 53 receives the status notification from each of the storage battery systems 31 to 3n, the determination unit 53 performs an operation of determining the amount of power P k that each ES 302 is responsible for (step S304).
  • step S304 the determination unit 53 determines the amount of power Pk that each ES 302 is responsible for satisfying the following expressions (4), (5), and (6) at the same time.
  • the determination unit 53 obtains a plurality of sets of the electric energy P 1 to P n of each ES 302 in the storage battery systems 31 to 3n satisfying the expressions (4) and (5), and the total value of D k for each set look, a set amount of power P 1 - P n the total value of D k is minimized, is determined as a power amount P 1 - P n, each ES302 battery system 31 to the 3n is responsible.
  • the determination unit 53 determines the power amounts P 1 to P n that each ES 302 in the storage battery systems 31 to 3n has, the determination result is output to the control unit 54.
  • control unit 54 Upon receiving the determination result of the determination unit 53, the control unit 54 sends an operation instruction indicating the power amount determined for the ES 302 in the storage battery system to each of the storage battery systems 31 to 3n via the communication unit 51. Transmit (step S305).
  • step S306 when the BMU 304 receives the operation instruction via the communication unit 301, if the electric energy indicated in the operation instruction is a positive value, the electric energy indicated in the operation instruction Is charged to the ES 302 using the inverter 303 (step S306).
  • the BMU 304 discharges the electric energy indicated in the operation instruction from the ES 302 using the inverter 303 (step S306).
  • the storage unit 52 stores, for each ES 302, correlation information indicating a correlation between the state of the ES 302, the amount of power that the ES 302 is responsible for, and the amount of change in the performance of the ES 302 (deterioration change amount).
  • the determination unit 53 receives state information representing the state of each ES 302 and power information representing the amount of adjustment power necessary for adjusting the power supply / demand balance.
  • the determining unit 53 determines the amount of change in performance (deterioration change amount) of each ES 302 in a state where the state of each ES 302 is represented by the state information and the total value of the electric energy handled by each ES 302 becomes the adjustment electric energy.
  • the amount of power handled by each ES 302 is determined based on the correlation information, the state information, and the power information so that the total value becomes the smallest.
  • the control unit 54 controls the operation of each ES 302 based on the determination result of the determination unit 53.
  • the battery management unit 5 including the storage unit 52, the determination unit 53, and the control unit 54.
  • FIG. 4 is a diagram showing the battery management unit 5 including the storage unit 52, the determination unit 53, and the control unit 54.
  • the deterioration change amount of the ES 302 is used as the change amount of the performance of the ES 302.
  • ES302 (storage battery) is used as an adjustment device for adjusting the power supply / demand balance in the power system, and the temperature of ES302, the ambient temperature of ES302, and ES302 are used as the adjustment device state. The amount of capacity reduction from the initial stage is used.
  • the determination unit 53 and the control unit 54 are illustrated as separate devices, but the determination unit 53 may incorporate the control unit 54.
  • an adjustment device control system including a communication unit 51, a storage unit 52, a determination unit 53, and a control unit 54 is built in the battery management unit 5, but the communication unit 51, the storage unit 52, and the determination unit 53 and the controller 54 do not have to be built in the same device.
  • the determination unit 53 receives the power information indicating the adjusted power amount and then acquires the state of each ES 302. However, the determination unit 53 determines the state of each ES 302 before receiving the power information. May be obtained.
  • the determination unit 53 may repeat the operations of steps S302, S304, and S305 shown in FIG. 3 within the reception time interval of the power information.
  • the battery management unit 5 may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, so that the communication unit 51, the storage unit 52, the determination unit 53, and It functions as the control unit 54.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, so that the communication unit 51, the storage unit 52, the determination unit 53, and It functions as the control unit 54.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • FIG. 5 is a diagram showing a power control system adopting the adjusting device control system of the second embodiment of the present invention.
  • the same components as those shown in FIG. Hereinafter, the power control system shown in FIG. 5 will be described focusing on differences from the power control system shown in FIG.
  • the adjustment device control system of the first embodiment uses correlation information suitable when the temperature is dominant as a factor of the capacity reduction (degradation) of the ES 302.
  • the adjustment device control system of the second embodiment Correlation information suitable for the case where the SoC (State of Charge) of ES302 is dominant as a factor of capacity reduction (degradation) is used.
  • each of the storage battery systems 31 to 3n has a BMU 304A instead of the BMU 304, the temperature detection units 304a and 304b are omitted, and the battery management unit 5 has a storage unit 52A instead of the storage unit 52.
  • the determination unit 53A is provided instead of the determination unit 53.
  • the BMU 304A controls the charging and discharging of the ES 302 by controlling the inverter 303 in accordance with the operation instruction from the battery management unit 5 in the same manner as the BMU 304.
  • the BMU 304A calculates and manages the SoC 0 that is the current SoC value of the ES 302, the current capacity C k of the ES 302, and the capacity reduction amount D total, k from the initial stage of the ES 302.
  • the BMU 304 ⁇ / b> A transmits the SoC 0 of the ES 302, the current capacity C k of the ES 302, and the capacity reduction amount D total, k from the initial stage of the ES 302 to the battery management unit 5 via the communication unit 301.
  • the SoC 0 of the ES 302, the current capacity Ck of the ES 302, and the capacity reduction amount D total, k from the initial stage of the ES 302 are examples of the state of the ES 302.
  • the storage unit 52A is an example of a storage unit.
  • the storage unit 52A stores the following expressions (7) and (8) as the above-described expression (1).
  • the function V (SoC) in the expression (7) is an expression representing the voltage between the terminals of the ES 302 in the storage battery system k, and the SoC value is used as an argument.
  • SoC value at time t (SoC 0 + P k t / C k ) is used as an argument.
  • Expression (8) is obtained by approximating the function V (SoC) in Expression (7) with a polynomial, for example.
  • Equation (7) the values corresponding to x k in Equation (1) are SoC 0 , C k , and D total, k , and b 1, k , b 2 that are values representing degradation specific to ES302. , k , b 3, k , and b 4, k , are constants.
  • FIG. 6 is a diagram illustrating an example of the value of D k when SoC 0 is 0.5, 0.6, and 0.7.
  • the storage unit 52A stores the minimum value Pmin, k and the maximum value Pmax, k of the charge / discharge amount of the ES 302 for each ES 302 in the storage battery systems 31 to 3n.
  • the determination unit 53A is an example of a determination unit.
  • the determination unit 53A receives the SoC 0 of each ES 302, the current capacity C k of each ES 302, the capacity reduction amount D total, k from the initial state of each ES 302, and power information indicating the adjusted power amount P t. .
  • the SoC 0 of each ES 302, the current capacity C k of each ES 302, and the capacity reduction amount D total, k from the initial stage of each ES 302 are examples of state information.
  • the determination unit 53A includes the expressions (7) and (8) in the storage unit 52A, the SoC 0 of each ES 302, the current capacity C k of each ES 302, and the capacity reduction amount D total, Based on k and the power information indicating the adjusted power amount P t , the power amount P k that each ES 302 is responsible for satisfying the above-described equations (4), (5), and (6) at the same time is determined.
  • the determining unit 53A determines the power amounts P 1 to P n that each ES 302 in the storage battery systems 31 to 3n determines, the determining unit 53A outputs the determination result to the control unit 54.
  • control unit 54 Upon receiving the determination result of the determination unit 53, the control unit 54 sends an operation instruction indicating the power amount determined for the ES 302 in the storage battery system to each of the storage battery systems 31 to 3n via the communication unit 51. Send.
  • ES302 storage battery
  • SoC the current capacity of ES302
  • ES302 The amount of capacity reduction from the initial stage is used.
  • the determination unit 53A and the control unit 54 are shown as separate devices, but the determination unit 53A may incorporate the control unit 54.
  • an adjustment device control system including a communication unit 51, a storage unit 52A, a determination unit 53A, and a control unit 54 is built in the battery management unit 5, but the communication unit 51, the storage unit 52A, and the determination unit. All of 53A and control unit 54 need not be built in the same device.
  • the battery management unit 5 shown in FIG. 5 may be realized by a computer.
  • the computer reads and executes a program recorded on a computer-readable recording medium, and functions as the communication unit 51, the storage unit 52A, the determination unit 53A, and the control unit 54.
  • each ES 302 may be a storage battery having different characteristics or a storage battery having the same characteristics.
  • EMU4 when power demand in order to adjust the power supply-demand balance is required, the value of the adjustment amount of power P t is a negative value, the power to regulate the power supply and demand balance If the supply is required, the value of the adjustment amount of power P t may be a positive value.
  • the BMU 304 charges the ES 302 using the inverter 303 with the electric energy indicated in the operation instruction.
  • the BMU 304 discharges the electric energy indicated in the operation instruction from the ES 302 using the inverter 303.
  • the amount of change in the performance of the ES 302 is not limited to the amount of change in the deterioration of the ES 302, and can be changed as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 電力需給バランス調整用の複数の調整機器の動作を制御する調整機器制御システムは、調整機器ごとに調整機器の状態と調整機器が受け持つ電力量と調整機器の性能の変化量との相関関係を表す相関情報を記憶する記憶手段と、各調整機器の状態を表す状態情報と電力需給バランスの調整に必要な調整電力量を表す電力情報とを受け付け、各調整機器の状態が状態情報にて表された状態であり各調整機器が受け持つ電力量の合計値が調整電力量になる状況で各調整機器の性能の変化量の合計値が最も小さくなるように、各調整機器が受け持つ電力量を相関情報と状態情報と電力情報とに基づいて決定する決定手段と、決定手段の決定結果に基づいて各調整機器の動作を制御する制御手段と、を含む。

Description

調整機器制御システム、調整機器制御方法および記録媒体
 本発明は、調整機器制御システム、調整機器制御方法および記録媒体に関し、特には、電力系統での電力需給バランスを調整するための複数の調整機器を制御する調整機器制御システム、調整機器制御方法および記録媒体に関する。
 電力系統において電力需給バランスを調整する手法としては、火力発電の出力を制御する手法や、火力発電の出力を制御しつつ揚水式発電を適宜実施する手法がとられていた。
 しかし今後、発電量が天候に依存する太陽光発電や風力発電等の再生可能電源が分散電源として電力系統に組み込まれていくと、この分散電源が、電力需給バランスを悪化させる恐れがある。
 分散電源に起因する電力需給のアンバランスを補償するためには、火力発電や揚水式発電を用いた電力需給調整手法だけでは不十分となる恐れがある。このため、新たな電力需給調整手法が必要とされてきている。
 新たな電力需給調整手法としては、電力系統の配電網に連系している“蓄電池”や“電気自動車(EV)”や“ヒートポンプ給湯器(HP)”等の機器(以下「電力機器」と称する)を、電力需給のバランスを調整するための調整機器として用いる手法が考えられる。
 特許文献1には、電力機器である需要家側の二次電池(ES)を、電力需給のバランスを調整するための調整機器として用いて、電力需給バランスを調整する電力系統制御装置が記載されている。
特開2006-94648号公報
 調整機器は、使用状況に応じて性能が変化する。
 例えば、調整機器は、使用されると劣化が進行し、劣化の進行に応じて性能が悪化する。調整機器の劣化の進行の程度は、電力需給バランスを調整するために調整機器が調整する電力量の大きさや調整機器の状態(例えば、温度)に応じて変動する。なお、調整機器の性能の変化は、調整機器の劣化以外の特性にも依存する。
 このため、電力需給バランスを調整するために使用される複数の調整機器の性能の変化量を抑制するように、複数の調整機器に電力を割り当てる手法が望まれるという課題があった。
 本発明の目的は、上記課題を解決可能な調整機器制御システム、調整機器制御方法および記録媒体を提供することである。
 本発明の調整機器制御システムは、電力系統での電力需給バランスを調整するための複数の調整機器の動作を制御する調整機器制御システムであって、
 前記調整機器ごとに、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶する記憶手段と、
 各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定する決定手段と、
 前記決定手段の決定結果に基づいて前記各調整機器の動作を制御する制御手段と、を含む。
 本発明の調整機器制御方法は、電力系統での電力需給バランスを調整するための複数の調整機器の動作を制御する調整機器制御システムでの調整機器制御方法であって、
 前記調整機器ごとに、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶手段に記憶し、
 各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定し、
 前記決定の結果に基づいて前記各調整機器の動作を制御する。
 本発明の記録媒体は、コンピュータに、
 電力系統での電力需給バランスを調整するための複数の調整機器の各々について、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶手段に記憶する記憶手順と、
 各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定する決定手順と、
 前記決定の結果に基づいて前記各調整機器の動作を制御する制御手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明によれば、電力需給バランスを調整するために使用される複数の調整機器の性能の変化を抑制することが可能になる。
本発明の第1実施形態の調整機器制御システムを採用した電力制御システムを示した図である。 温度T0が15、20、25度のときのDkの値の例を示した図である。 電力制御システムの動作を説明するためのシーケンス図である。 記憶部52と決定部53と制御部54からなる電池管理部5を示した図である。 本発明の第2実施形態の調整機器制御システムを採用した電力制御システムを示した図である。 温度SoC0が0.5、0.6、0.7のときのDkの値の例を示した図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態の調整機器制御システムを採用した電力制御システムを示した図である。
 図1において、電力制御システムは、電力系統1と、電力線2と、蓄電池システム31~3n(nは2以上の整数)と、EMU(Energy Management Unit:エネルギ管理部)4と、電池管理部5と、を含む。
 電力系統1は、電力を需要家側へ供給するためのシステムであり、例えば、火力発電所等の発電所、再生可能電源および変圧器を含む。電力系統1は、発電所や再生可能電源からの発電電力を、変圧器を介して電力線2に供給する。なお、一般的に、電力系統1には電力線2が含まれるが、図1では、説明の簡略化を図るため、電力系統1と電力線2とを別々に示している。
 蓄電池システム31~3nは、電力系統1での電力需給バランスを調整するために使用される。例えば、蓄電池システム31~3nは、それぞれ、需要家にて管理される。なお、蓄電池システム31~3nのいくつかは、電力供給側で管理されてもよい。
 蓄電システム31~3nは、それぞれ、通信部301と、ES(エネルギーストレージ)302と、インバータ303と、BMU(Battery Management Unit:電池管理部)304と、温度検出部304aおよび304bと、を含む。図1では、通信部301とES302とインバータ303とBMU304と温度検出部304aおよび304bについては、蓄電池システム31内のものが示されている。
 以下、蓄電池システム31内の通信部301とES302とインバータ303とBMU304と温度検出部304aおよび304bについて説明する。
 通信部301は、電池管理部5と通信する。
 ES302は、調整機器の一例である。
 ES302は、例えば、定置用蓄電池または電気自動車内の二次電池である。ES302は、例えば、リチウムイオン二次電池である。なお、ES302は、リチウムイオン二次電池に限らず、蓄電池であればよい。
 インバータ303は、ES302の充電時には、電力線2からの交流電圧を直流電圧に変換し、その直流電圧でES302を充電する。また、インバータ303は、ES302の放電時には、ES302からの直流電圧を交流電圧に変換し、その交流電圧を電力線2に供給してES302を放電する。
 BMU304は、電池管理部5からの動作指示に従ってインバータ303を制御して、ES302の充電および放電を制御する。
 また、BMU304は、ES302の温度T0を検出する温度検出部304aの検出結果と、ES302の周囲の温度TE(ES302の置かれている環境の温度)を検出する温度検出部304bの検出結果とを、通信部301を介して電池管理部5に送信する。
 また、BMU304は、蓄電池システム31内のES302の初期からの容量低減量Dtotal,kを算出し管理する。BMU304は、容量低減量Dtotal,kを、通信部301を介して電池管理部5に送信する。なお、ES302の初期からの容量低減量Dtotal,kを算出する技術は公知技術であるため、詳細な説明は省略する。
 ES302の温度T0とES302の周囲の温度TEとES302の容量低減量Dtotal,kは、ES302の状態の一例である。
 蓄電池システム31以外の各蓄電池システム(以下「蓄電池システム3a」と称する)内の通信部301とES302とインバータ303とBMU304と温度検出部304aおよび304bについての説明は、上述した蓄電池システム31内の通信部301とES302とインバータ303とBMU304と温度検出部304aおよび304bについての説明のうち「蓄電池システム31」という語句を「蓄電池システム3a」と読み替えればよい。
 EMU4は、電力需給バランスの調整に必要な調整電力量Ptを算出する。例えば、EMU4は、予め算出または提供された今後の予想総需要曲線に、ピークカット処理の有無判断の基準となる基準閾値を超える部分(以下「ピークカット対象部分」と称する)が存在すると、そのピークカット対象部分に対応する電力量を、調整電力量Ptとして算出する。
 本実施形態では、EMU4は、電力需給バランスを調整するために電力需要が必要な場合には、調整電力量Ptの値を正の値とし、電力需給バランスを調整するために電力供給が必要な場合には、調整電力量Ptの値を負の値とする。
 EMU4は、調整電力量Ptを表す電力情報を、電池管理部5に送信する。
 本実施形態では、EMU4は、Δt時間経過するごとに、調整電力量Ptを算出し調整電力量Ptを表す電力情報を電池管理部5に送信する。
 電池管理部5は、調整機器制御システムの一例である。
 電池管理部5は、電力系統1での電力需給バランスを調整するために、蓄電池システム31~3nの動作、さらに言えば、各ES302の動作を制御する。
 電池管理部5は、通信部51と、記憶部52と、決定部53と、制御部54と、を含む。
 通信部51は、蓄電池システム31~3nの各々と通信する。
 通信部51は、例えば、蓄電池システム31~3nの各々から、ES302の温度T0の検出結果と、ES302の周囲の温度TEの検出結果と、ES302の容量低減量Dtotal,kの算出結果と、を受信し、各検出結果および算出結果を決定部53に出力する。
 記憶部52は、記憶手段の一例である。
 記憶部52は、蓄電池システム31~3n内のES302ごとに、ES302の状態とES302が受け持つ電力量とES302の劣化変化量との相関関係を表す相関情報を記憶する。なお、ES302の劣化変化量は、ES302の性能の変化量の一例である。
 例えば、記憶部52は、蓄電池システム31~3n内のES302ごとに、相関情報として、以下の式(1)を記憶する。
Figure JPOXMLDOC01-appb-M000001
 なお、k=1~nである。
 劣化変化量は、蓄電池システムk内のES302の劣化変化量を表す。
 Pkは、蓄電池システムk内のES302が受け持つ電力量(W)、つまり、蓄電池システムk内のES302に割り当てられる電力量(W)を表す。
 xkは、蓄電池システムk内のES302の状態(本実施形態では、蓄電池システムk内のES302の温度T0と、蓄電池システムk内のES302の周囲の温度TEと、蓄電池システムk内のES302の容量低減量Dtotal,k)を表す。
 Dk(Pk,xk)は、蓄電池システムk内のES302が状態xkである状況で蓄電池システムk内のES302が電力量Pkを受け持った条件下で蓄電池システムk内のES302をΔt時間使用した場合の容量低下量、つまり、蓄電池システムk内のES302の劣化変化量を表す。
 また、記憶部52は、蓄電池システム31~3n内のES302ごとに、ES302の充放電量の最小値Pmin,kおよび最大値Pmax,kを記憶する。
 なお、蓄電池システムk内のES302の容量低減の要因として温度が支配的である場合、Dkはアレニウス則、ルート則に従うため、Dkは、近似的に以下の式(2)のように表せる。
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)内の関数Tk(Pk,T0,TE,t)は、蓄電池システムk内のES302の温度変化を表す式で、現在を時刻0、現在のES302の温度T0、現在のES302の周囲の温度TEとして、時刻tの温度を与える関数である。例えば、関数Tk(Pk,T0,TE,t)は、以下の式(3)のように表せる。
Figure JPOXMLDOC01-appb-M000003
 なお、式(2)において、式(1)のxkに対応する値は、T0、TE、Dtotal,kであり、式(2)および式(3)において、a1,k、a2,k、a3,kおよびa4,kは定数である。
 図2は、温度T0が15、20、25度のときのDkの値の例を示した図である。
 なお、Dkは、式(2)および式(3)にて特定されるものに限らず適宜変更可能である。
 本実施形態では、記憶部52は、蓄電池システム31~3n内のES302ごとに、相関情報として、式(2)および式(3)を記憶する。
 決定部53は、決定手段の一例である。
 決定部53は、各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果と、調整電力量Ptを表す電力情報と、を受け付ける。なお、各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果は、状態情報の一例である。
 決定部53は、各ES302が電力需給バランスの調整に使われることによって生じる各ES302の劣化の増加量が小さくなるように、各ES302が受け持つ電力量Pkを、各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果と、記憶部52内の相関情報と、調整電力量Ptを表す電力情報と、に基づいて決定する。
 本実施形態では、決定部53は、各ES302の状態が、各蓄電池システムから通知された状態(各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果)であり各ES302が受け持つ電力量の合計値が調整電力量Ptになる状況で各ES302の劣化変化量Dkの合計値が最も小さくなるように、各ES302が受け持つ電力量Pkを、各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果と、記憶部52内の相関情報と、調整電力量Ptを表す電力情報と、に基づいて決定する。
 決定部53は、各蓄電池システムから各ES302の状態を通知されなかった場合は、記憶部52に保管された相関情報より、各ES302の状態を推定する。そして通知された場合と同様に、決定部53は、各ES302が受け持つ電力量Pkを、推定された各ES302の状態と、記憶部52内の相関情報と、調整電力量Ptを表す電力情報と、に基づいて決定する。例えば、決定部53は、過去に受け付けた各ES302の温度の検出結果と、過去に受け付けた各ES302の周囲の温度の検出結果と、過去に受け付けた容量低減量の算出結果と、過去に制御部54を介して送信した調整電力量を、式(3)に代入することで現在の各ES302の温度を推定でき、また、それらを式(2)に代入することで容量低減量の現在までの変化量を推定でき、その値を過去に受け付けた各ES302の容量低減量に加えることで、現在の各ES302の容量劣化量を推定できる。
 決定部53は、各蓄電池システムから各ES302の状態を通知された場合でも、各ES302の状態の推定を行い、推定結果と通知された状態との比較を行って記憶部52に保管された相関情報を修正することで、相関情報の精度を向上させてもよい。
 決定部53が各蓄電池システムから通知される各ES302の状態の例として、本実施形態で示した各ES302の温度T0の検出結果と、各ES302の周囲の温度TEの検出結果と、各ES302の容量低減量Dtotal,kの算出結果以外にも、各ES302の内部インピーダンス値、各ES302の厚さ、各ES302の体積、各ES302の内部圧力、各ES302のこれまでの充放電サイクル数、各ES302の端子間電圧、もしくは後述する第2実施形態に示した各ES302のSoC値などがある。
 制御部54は、制御手段の一例である。
 制御部54は、決定部53の決定結果に基づいて、各ES302の動作を制御する。本実施形態では、制御部54は、決定部53が決定した各ES302が受け持つ電力量Pkを表す動作指示を、蓄電池システム31~3nの各々に送信する。
 次に、動作を説明する。
 図3は、電力制御システムの動作を説明するためのシーケンス図である。なお、図3では、説明の簡略化を図るために、蓄電池システム31~3nのうち蓄電池システム3cを示している。
 EMU4が、調整電力量Ptを算出し、調整電力量Ptを表す電力情報を電池管理部5に送信すると(ステップS301)、電池管理部5内の決定部53は電力情報を受信する。
 決定部53は、電力情報を受信すると、蓄電池システム31~3nの各々に、状態を通知する旨の要求(以下「状態通知要求」と称する)を、通信部51を介して送信する(ステップS302)。
 蓄電池システム31~3nの各々では、BMU304は、通信部301を介して状態通知要求を受信すると、温度検出部304aの検出結果(ES302の温度T0)と、温度検出部304bの検出結果(ES302の周囲の温度TE)と、ES302の容量低減量Dtotal,kの算出値とを、状態通知として、通信部301を介して電池管理部5に送信する(ステップS303)。
 電池管理部5では、決定部53は、蓄電池システム31~3nの各々から状態通知を受信すると、各ES302が受け持つ電力量Pkを決定する動作を実行する(ステップS304)。
 本実施形態では、ステップS304において、決定部53は、以下の式(4)、式(5)および式(6)を同時に満たす、各ES302が受け持つ電力量Pkを決定する。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 例えば、決定部53は、式(4)および式(5)を満たす蓄電池システム31~3n内の各ES302の電力量P1~Pnの複数の組を求め、組ごとにDkの合計値を求め、Dkの合計値が最小となる電力量P1~Pnの組を、蓄電池システム31~3n内の各ES302が受け持つ電力量P1~Pnとして決定する。
 例えば、決定部53は、P1~Pnの値が、電力量Pk=Pmin,kもしくはPk=Pmin,kであるものを除いて、Dkを各々Pkで微分した値であるdDk/dPkが同一になるように、P1~Pnの値を与える場合もある。
 決定部53は、蓄電池システム31~3n内の各ES302が受け持つ電力量P1~Pnを決定すると、その決定結果を制御部54に出力する。
 制御部54は、決定部53の決定結果を受け付けると、蓄電池システム31~3nの各々に、その蓄電池システム内のES302に対して決定された電力量を示す動作指示を、通信部51を介して送信する(ステップS305)。
 蓄電池システム31~3nの各々では、BMU304は、通信部301を介して動作指示を受信すると、動作指示に示された電力量が正の値である場合には、動作指示に示された電力量を、インバータ303を用いてES302に充電する(ステップS306)。
 一方、動作指示に示された電力量が負の値である場合には、BMU304は、動作指示に示された電力量を、インバータ303を用いてES302から放電する(ステップS306)。
 次に、本実施形態の効果を説明する。
 本実施形態によれば、記憶部52は、ES302ごとに、ES302の状態とES302が受け持つ電力量とES302の性能の変化量(劣化変化量)との相関関係を表す相関情報を記憶する。
 決定部53は、各ES302の状態を表す状態情報と、電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付ける。決定部53は、各ES302の状態が状態情報にて表された状態であり各ES302が受け持つ電力量の合計値が調整電力量になる状況で各ES302の性能の変化量(劣化変化量)の合計値が最も小さくなるように、各ES302が受け持つ電力量を、相関情報と状態情報と電力情報とに基づいて決定する。
 制御部54は、決定部53の決定結果に基づいて各ES302の動作を制御する。
 このため、電力需給バランスを調整するために使用される複数のES302の性能の変化を抑制するように、複数のES302に電力を割り当てることが可能になる。
 なお、上記効果は、記憶部52と決定部53と制御部54とからなる電池管理部5でも奏する。
 図4は、記憶部52と決定部53と制御部54とからなる電池管理部5を示した図である。
 また、本実施形態では、ES302の性能の変化量として、ES302の劣化変化量を用いている。
 このため、電力需給バランスを調整するために使用される複数のES302の劣化を抑制するように、複数のES302に電力を割り当てることが可能になる。
 また、本実施形態では、電力系統での電力需給バランスを調整するための調整機器として、ES302(蓄電池)が用いられ、調整機器の状態として、ES302の温度と、ES302の周囲の温度と、ES302の初期からの容量低減量とが用いられる。
 このため、ES302の容量低減(劣化)の要因として特に温度が大きな影響を与える場合に、複数のES302の劣化を抑制するように、複数のES302に電力を割り当てることが可能になる。
 なお、図1では、決定部53と制御部54とを個別の機器として示したが、決定部53が制御部54を内蔵してもよい。
 また、図1では、通信部51と記憶部52と決定部53と制御部54とを含む調整機器制御システムが電池管理部5に内蔵されているが、通信部51と記憶部52と決定部53と制御部54との全てが同一の機器に内蔵されなくてもよい。
 また、本実施形態では、決定部53は、調整電力量を表す電力情報を受信してから、各ES302の状態を取得したが、決定部53は、電力情報を受信する前に各ES302の状態を取得してもよい。
 また、決定部53は、図3に示したステップS302、S304およびS305の動作を、電力情報の受信時間間隔内で繰り返してもよい。
 なお、電池管理部5は、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、通信部51、記憶部52、決定部53および制御部54として機能する。記録媒体は、CD-ROMに限らず適宜変更可能である。
 (第2実施形態)
 次に、本発明の第2実施形態を説明する。
 図5は、本発明の第2実施形態の調整機器制御システムを採用した電力制御システムを示した図である。なお、図5において、図1に示したものと同一構成のものには同一符号を付してある。以下、図5に示した電力制御システムについて、図1に示した電力制御システムと異なる点を中心に説明する。
 第1実施形態の調整機器制御システムは、ES302の容量低減(劣化)の要因として温度が支配的である場合に適する相関情報を用いたが、第2実施形態の調整機器制御システムは、ES302の容量低減(劣化)の要因としてES302のSoC(State of Charge)が支配的である場合に適する相関情報を用いる。
 図5において、蓄電池システム31~3nは、それぞれ、BMU304の代わりにBMU304Aを有し、温度検出部304aおよび304bが省略され、電池管理部5は、記憶部52の代わりに記憶部52Aを有し、決定部53の代わりに決定部53Aを有する。
 BMU304Aは、BMU304と同様に、電池管理部5からの動作指示に従ってインバータ303を制御して、ES302の充電および放電を制御する。
 また、BMU304Aは、ES302の現在のSoC値であるSoC0と、ES302の現在の容量Ckと、ES302の初期からの容量低減量Dtotal,kと、を算出し管理する。BMU304Aは、ES302のSoC0と、ES302の現在の容量Ckと、ES302の初期からの容量低減量Dtotal,kとを、通信部301を介して電池管理部5に送信する。
 なお、ES302のSoC0、ES302の現在の容量CkおよびES302の初期からの容量低減量Dtotal,kを算出する技術は公知技術であるため、詳細な説明は省略する。
 ES302のSoC0、ES302の現在の容量CkおよびES302の初期からの容量低減量Dtotal,kは、ES302の状態の一例である。
 記憶部52Aは、記憶手段の一例である。
 記憶部52Aは、上述した式(1)として、以下の式(7)および式(8)を記憶する。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 なお、式(7)内の関数V(SoC)は、蓄電池システムk内のES302の端子間電圧を表す式で、SoC値を引数とする。なお、式(7)では時刻tにおける端子間電圧を知りたいため、時刻tにおけるSoC値=(SoC0+Pkt/Ck)を引数とする。式(7)内の関数V(SoC)を、例えば多項式で近似したものが、式(8)である。
 なお、式(7)において、式(1)のxkに対応する値は、SoC0、Ck、Dtotal,kであり、ES302固有の劣化を表す値であるb1,k, b2,k, b3,k,およびb4,k,は定数である。
 図6は、SoC0が0.5、0.6、0.7のときのDkの値の例を示した図である。
 また、記憶部52Aは、蓄電池システム31~3n内のES302ごとに、ES302の充放電量の最小値Pmin,kおよび最大値Pmax,kを記憶する。
 決定部53Aは、決定手段の一例である。
 決定部53Aは、各ES302のSoC0と、各ES302の現在の容量Ckと、各ES302の初期からの容量低減量Dtotal,kと、調整電力量Ptを表す電力情報と、を受け付ける。なお、各ES302のSoC0と、各ES302の現在の容量Ckと、各ES302の初期からの容量低減量Dtotal,kは、状態情報の一例である。
 決定部53Aは、記憶部52A内の式(7)および式(8)と、各ES302のSoC0と、各ES302の現在の容量Ckと、各ES302の初期からの容量低減量Dtotal,kと、調整電力量Ptを表す電力情報と、に基づいて、上述した式(4)、式(5)および式(6)を同時に満たす、各ES302が受け持つ電力量Pkを決定する。
 決定部53Aは、蓄電池システム31~3n内の各ES302が受け持つ電力量P1~Pnを決定すると、その決定結果を制御部54に出力する。
 制御部54は、決定部53の決定結果を受け付けると、蓄電池システム31~3nの各々に、その蓄電池システム内のES302に対して決定された電力量を示す動作指示を、通信部51を介して送信する。
 本実施形態によれば、電力系統での電力需給バランスを調整するための調整機器として、ES302(蓄電池)が用いられ、調整機器の状態として、ES302のSoCと、ES302の現在の容量と、ES302の初期からの容量低減量とが用いられる。
 このため、ES302の容量低減(劣化)の要因として特にSoC値が大きな影響を与える場合に、複数のES302の劣化を抑制するように、複数のES302に電力を割り当てることが可能になる。
 なお、図5では、決定部53Aと制御部54とを個別の機器として示したが、決定部53Aが制御部54を内蔵してもよい。
 また、図5では、通信部51と記憶部52Aと決定部53Aと制御部54とを含む調整機器制御システムが電池管理部5に内蔵されているが、通信部51と記憶部52Aと決定部53Aと制御部54との全てが同一の機器に内蔵されなくてもよい。
 なお、図5に示した電池管理部5は、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能な記録媒体に記録されたプログラムを読込み実行して、通信部51、記憶部52A、決定部53Aおよび制御部54として機能する。
 また、上記各実施形態において、各ES302は、互いに異なる特性を有する蓄電池でもよいし、同一の特性を有する蓄電池でもよい。
 また、上記各実施形態において、EMU4は、電力需給バランスを調整するために電力需要が必要な場合には、調整電力量Ptの値を負の値とし、電力需給バランスを調整するために電力供給が必要な場合には、調整電力量Ptの値を正の値としてもよい。この場合、BMU304は、動作指示に示された電力量が負の値である場合には、動作指示に示された電力量を、インバータ303を用いてES302に充電する。一方、動作指示に示された電力量が正の値である場合には、BMU304は、動作指示に示された電力量を、インバータ303を用いてES302から放電する。
 また、上記各実施形態において、ES302の性能の変化量は、ES302の劣化変化量に限らず適宜変更可能である。
 以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
 各実施形態を参照して本願発明を説明したが、本願発明は上記各実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。この出願は、2012年2月28日に出願された日本出願特願2012-41609を基礎とする優先権を主張し、その開示の全てをここに取り込む。
   1   電力系統
   2   電力線
   31~3n 蓄電池システム
   301 通信部
   302 ES
   303 インバータ
   304、304A BMU
   304a、304b 温度検出部
   4   EMU
   5   電池管理部
   51  通信部
   52、52A 記憶部
   53、53A 決定部
   54  制御部

Claims (6)

  1.  電力系統での電力需給バランスを調整するための複数の調整機器の動作を制御する調整機器制御システムであって、
     前記調整機器ごとに、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶する記憶手段と、
     各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定する決定手段と、
     前記決定手段の決定結果に基づいて前記各調整機器の動作を制御する制御手段と、を含む調整機器制御システム。
  2.  請求項1に記載の調整機器制御システムにおいて、
     前記調整機器の性能の変化量は、前記調整機器の劣化変化量である、調整機器制御システム。
  3.  前記調整機器は、蓄電池であり、
     前記調整機器の状態は、前記蓄電池の温度と、前記蓄電池の周囲の温度と、前記蓄電池の初期からの容量低減量である、請求項2に記載の調整機器制御システム。
  4.  前記調整機器は、蓄電池であり、
     前記調整機器の状態は、前記蓄電池のSoCと、前記蓄電池の容量と、前記蓄電池の初期からの容量低減量である、請求項2に記載の調整機器制御システム。
  5.  電力系統での電力需給バランスを調整するための複数の調整機器の動作を制御する調整機器制御システムでの調整機器制御方法であって、
     前記調整機器ごとに、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶手段に記憶し、
     各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定し、
     前記決定の結果に基づいて前記各調整機器の動作を制御する、調整機器制御方法。
  6.  コンピュータに、
     電力系統での電力需給バランスを調整するための複数の調整機器の各々について、当該調整機器の状態と当該調整機器が受け持つ電力量と当該調整機器の性能の変化量との相関関係を表す相関情報を記憶手段に記憶する記憶手順と、
     各調整機器の状態を表す状態情報と、前記電力需給バランスの調整に必要な調整電力量を表す電力情報と、を受け付け、前記各調整機器の状態が前記状態情報にて表された状態であり前記各調整機器が受け持つ電力量の合計値が前記調整電力量になる状況で前記各調整機器の性能の変化量の合計値が最も小さくなるように、前記各調整機器が受け持つ電力量を、前記相関情報と前記状態情報と前記電力情報とに基づいて決定する決定手順と、
     前記決定の結果に基づいて前記各調整機器の動作を制御する制御手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/079632 2012-02-28 2012-11-15 調整機器制御システム、調整機器制御方法および記録媒体 WO2013128727A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/381,528 US9812871B2 (en) 2012-02-28 2012-11-15 Regulating device control system, regulating device control method, and recording medium for regulating the balance between power supply and demand
JP2014501964A JP6206396B2 (ja) 2012-02-28 2012-11-15 調整機器制御システム、調整機器制御方法、およびプログラム
US15/725,829 US20180041045A1 (en) 2012-02-28 2017-10-05 Regulating device control system, regulating device control method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-041609 2012-02-28
JP2012041609 2012-02-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/381,528 A-371-Of-International US9812871B2 (en) 2012-02-28 2012-11-15 Regulating device control system, regulating device control method, and recording medium for regulating the balance between power supply and demand
US15/725,829 Continuation US20180041045A1 (en) 2012-02-28 2017-10-05 Regulating device control system, regulating device control method, and recording medium

Publications (1)

Publication Number Publication Date
WO2013128727A1 true WO2013128727A1 (ja) 2013-09-06

Family

ID=49081949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079632 WO2013128727A1 (ja) 2012-02-28 2012-11-15 調整機器制御システム、調整機器制御方法および記録媒体

Country Status (3)

Country Link
US (2) US9812871B2 (ja)
JP (2) JP6206396B2 (ja)
WO (1) WO2013128727A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046200A4 (en) * 2013-09-12 2017-09-27 Nec Corporation Control device, electricity storage device, battery control system, battery control device, control method, battery control method, and recording medium
WO2020080284A1 (ja) * 2018-10-15 2020-04-23 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016081579A (ja) * 2014-10-10 2016-05-16 株式会社日立製作所 二次電池システム
CN113258581B (zh) * 2021-05-31 2021-10-08 广东电网有限责任公司佛山供电局 一种基于多智能体的源荷协调电压控制方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
JP2008118790A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 電源制御装置
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6532884B2 (en) * 2000-05-01 2003-03-18 Maruta Electric Boatworks Llc High speed electric watercraft
DE10046631A1 (de) * 2000-09-20 2002-03-28 Daimler Chrysler Ag Verfahren zur Regelung der Generatorspannung in einem Kraftfahrzeug
US20040090195A1 (en) * 2001-06-11 2004-05-13 Motsenbocker Marvin A. Efficient control, monitoring and energy devices for vehicles such as watercraft
US6659815B2 (en) * 2001-06-11 2003-12-09 Maruta Electric Boatworks Llc Efficient motors and controls for watercraft
KR100471249B1 (ko) * 2002-08-23 2005-03-10 현대자동차주식회사 전기 자동차의 배터리 온도 관리방법
US20040265662A1 (en) * 2003-06-30 2004-12-30 Cyril Brignone System and method for heat exchange using fuel cell fluids
JP4514449B2 (ja) 2003-12-24 2010-07-28 古河電気工業株式会社 二次蓄電池の残存容量を判定する方法、および、判定結果を用いて車両に搭載された二次電池の残存容量を検出する方法と装置、並びに、二次蓄電池の残存容量を判定するための端子電圧を演算するために使用する傾きと切片とを求める方法と装置
JP4770208B2 (ja) * 2005-03-10 2011-09-14 トヨタ自動車株式会社 空冷式燃料電池システム
JP4211860B2 (ja) 2007-04-25 2009-01-21 トヨタ自動車株式会社 電動車両の充電制御装置、電動車両、電動車両の充電制御方法およびその充電制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CA2687037A1 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
JP4715881B2 (ja) 2008-07-25 2011-07-06 トヨタ自動車株式会社 電源システムおよびそれを備えた車両
JP5310003B2 (ja) 2009-01-07 2013-10-09 新神戸電機株式会社 風力発電用鉛蓄電池制御システム
US20100312411A1 (en) * 2009-06-05 2010-12-09 Lineage Power Corporation Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
JP5519665B2 (ja) * 2009-06-24 2014-06-11 日本碍子株式会社 電池制御装置及び電池制御方法
US8667806B2 (en) * 2009-09-21 2014-03-11 Airgenerate, Llc Efficient photovoltaic (PV) cell based heat pump liquid heater
KR20110119324A (ko) * 2010-04-27 2011-11-02 엘지전자 주식회사 스마트 제어 디바이스
JP5259763B2 (ja) * 2011-03-25 2013-08-07 株式会社東芝 電力管理装置、システム及び方法
US8993136B2 (en) * 2011-06-30 2015-03-31 Lg Chem, Ltd. Heating system for a battery module and method of heating the battery module
US9722443B2 (en) * 2011-09-16 2017-08-01 Hitachi, Ltd. Power distribution device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094648A (ja) * 2004-09-24 2006-04-06 Kansai Electric Power Co Inc:The 二次電池を用いた電力系統制御方法及び電力系統制御装置
JP2008118790A (ja) * 2006-11-06 2008-05-22 Hitachi Ltd 電源制御装置
JP2009044862A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 電気自動車の電源制御装置及び電源システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046200A4 (en) * 2013-09-12 2017-09-27 Nec Corporation Control device, electricity storage device, battery control system, battery control device, control method, battery control method, and recording medium
US10056757B2 (en) 2013-09-12 2018-08-21 Nec Corporation Control device, power storage device, battery control system, battery control device, control method, battery control method, and recording medium
WO2020080284A1 (ja) * 2018-10-15 2020-04-23 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
JPWO2020080284A1 (ja) * 2018-10-15 2021-09-24 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
US20210349151A1 (en) * 2018-10-15 2021-11-11 Kyocera Corporation Power management apparatus, power management system and power management method
JP7059394B2 (ja) 2018-10-15 2022-04-25 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
US12000897B2 (en) 2018-10-15 2024-06-04 Kyocera Corporation Power management apparatus, power management system and power management method

Also Published As

Publication number Publication date
US9812871B2 (en) 2017-11-07
JP6206396B2 (ja) 2017-10-04
US20150012150A1 (en) 2015-01-08
JPWO2013128727A1 (ja) 2015-07-30
JP6414301B2 (ja) 2018-10-31
US20180041045A1 (en) 2018-02-08
JP2018007554A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
JP6414301B2 (ja) 調整機器管理装置、調整機器管理方法、およびプログラム
JP5613447B2 (ja) 蓄電池制御システム及び蓄電池制御方法
US9543775B2 (en) Battery controller, management system, battery control method, battery control program, and storage medium
KR101759819B1 (ko) 축전지 제어 장치 및 축전지 제어 방법
US20140002027A1 (en) Method and system for regulating battery operation
WO2016084347A1 (ja) エネルギー管理装置、エネルギー管理方法及びプログラム記録媒体
JP2014522491A (ja) Essの劣化状態予測方法
KR20150080169A (ko) 에너지 저장 시스템에서 전력 분배 방법 및 장치
JP2016178052A (ja) 二次電池の制御システム
JP6405754B2 (ja) 電池制御装置及び電池制御システム
JP6903882B2 (ja) 制御装置、制御方法、およびプログラム
JP5576826B2 (ja) 風力発電装置群の制御システム及び制御方法
JP2022036156A (ja) 電池管理装置、電池管理方法、電力貯蔵システム
CN115833179A (zh) 一种低频振荡控制方法及系统
WO2015118744A1 (ja) エネルギーマネジメントシステム
JP6189092B2 (ja) 系統用蓄電池の複数目的制御装置
JP6184815B2 (ja) 二次電池システムおよびその制御方法ならびにプログラム
US9985467B2 (en) Control device of power storage apparatus, wind power generation system, and control method of power storage apparatus
KR20210032261A (ko) 클러스터링을 이용한 이종의 전력 밸런싱을 수행하기 위한 시스템, 이를 위한 장치 및 이를 위한 방법
US9946286B2 (en) Information processing apparatus, power-consuming body, information processing method, and program
KR101736717B1 (ko) 에너지 저장 장치 및 그의 제어 방법
JP7463338B2 (ja) 電力需要調整装置
JP6390259B2 (ja) 充放電制御装置及び充放電制御方法
WO2017042973A1 (ja) 蓄電池システム、方法及びプログラム
KR101539810B1 (ko) 배터리 팩 제어방법 및 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014501964

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14381528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870128

Country of ref document: EP

Kind code of ref document: A1