WO2010074073A1 - エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物 - Google Patents

エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物 Download PDF

Info

Publication number
WO2010074073A1
WO2010074073A1 PCT/JP2009/071312 JP2009071312W WO2010074073A1 WO 2010074073 A1 WO2010074073 A1 WO 2010074073A1 JP 2009071312 W JP2009071312 W JP 2009071312W WO 2010074073 A1 WO2010074073 A1 WO 2010074073A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene polymer
polymer composition
group
ethylene
polymerization
Prior art date
Application number
PCT/JP2009/071312
Other languages
English (en)
French (fr)
Inventor
和人 杉山
峰雄 久保
森田 淳
康寛 甲斐
健司 杉村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP09834874.1A priority Critical patent/EP2371896B1/en
Priority to US13/141,166 priority patent/US20110256402A1/en
Priority to CN2009801518513A priority patent/CN102257059A/zh
Priority to JP2010544078A priority patent/JP5351178B2/ja
Priority to KR1020117016120A priority patent/KR101284967B1/ko
Publication of WO2010074073A1 publication Critical patent/WO2010074073A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/42Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments
    • D01D5/426Formation of filaments, threads, or the like by cutting films into narrow ribbons or filaments or by fibrillation of films or filaments by cutting films
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to an ethylene polymer composition having a very high molecular weight and a specific composition. Moreover, it is related with the manufacturing method of said ethylene polymer composition, and the molded article obtained by using this composition.
  • the so-called ultra-high molecular weight ethylene polymer which has an extremely high molecular weight, is superior in impact resistance, wear resistance, chemical resistance, strength, etc. compared to general-purpose ethylene polymers, and has excellent characteristics as an engineering plastic. is doing.
  • Such ultra-high molecular weight ethylene polymers include so-called Ziegler catalysts composed of a halogen-containing transition metal compound and an organometallic compound, Japanese Patent Application Laid-Open No. 3-130116 (Patent Document 1), and Japanese Patent Application Laid-Open No. 7-156173 (Patent Document). It is known that it can be obtained by a known catalyst such as a magnesium compound-supported catalyst described in literature 2). In recent years, from the viewpoint of production efficiency and the like, ultra high molecular weight ethylene polymers are often produced with highly active catalysts such as magnesium compound supported catalysts.
  • ultrahigh molecular weight ethylene polymers are difficult to perform melt molding, which is a general resin molding method, because of their high molecular weight. For this reason, molding methods such as gelling ultra-high molecular weight ethylene polymers and solid-phase stretching methods in which ultra-high molecular weight ethylene polymer particles are stretched after being crimped at a temperature below the melting point have been developed.
  • the molding method is disclosed in the above-mentioned Patent Document 2, JP-A-9-254252 (Patent Document 3), JP-A 63-41512 (Patent Document 4), JP-A 63-66207 (Patent Document 5). ) Etc.
  • the polymer particles are pressed at a temperature below the melting point of the particles, so that the strength of the resulting molded product is relatively low. It is said that there is.
  • an ethylene polymer having high crystallinity and heat of fusion is required.
  • suitable for solid-phase stretch molding is ethylene polymer particles with little surface irregularities, but the present inventors have polymer particles having a specific shape with many irregularities on the surface, It has also been found that the above problems can be solved because the contact point and contact area increase when the particles come into contact with each other, and that ethylene polymer particles having a high degree of crystallinity are suitable for solid-phase stretch molding (Patent Document 6). . However, further improvement in drawing performance is required in the future.
  • the intrinsic viscosity [ ⁇ ] is limited to the range of 5 to 30 dl / g.
  • the present inventors use a higher molecular weight ultrahigh molecular weight ethylene polymer, specifically, [ ⁇ ] of the entire ethylene polymer composition is in the range of more than 30 dl / g and 50 dl / g or less.
  • the composition of the composition comprises (a) an ethylene polymer having an intrinsic viscosity [ ⁇ ] in the range of 2 dl / g to 20 dl / g, and (b) an intrinsic viscosity [ ⁇ ] of 35 dl / g.
  • the present invention (A) an ethylene polymer having an intrinsic viscosity [ ⁇ ] in the range of 2 dl / g to 20 dl / g, and (b) an ethylene polymer having an intrinsic viscosity [ ⁇ ] in the range of more than 35 dl / g to 50 dl / g.
  • the ethylene polymer composition preferably has a crystallinity of 80% or more, the proportion of particles having a particle size of 355 ⁇ m or more is 2% by mass or less, and the average particle size is 100 to 300 ⁇ m. It is preferable.
  • the ethylene polymer composition is preferably obtained by reacting 500 g or more of ethylene per 1 g of the solid catalyst component.
  • the ethylene polymer composition comprises [A] a solid titanium catalyst component containing magnesium, halogen, and titanium, and [B] a metal element selected from Groups 1, 2, and 13 of the periodic table. It is preferably obtained by polymerizing an olefin containing ethylene in the presence of an olefin polymerization catalyst containing an organometallic compound catalyst component.
  • the method for producing an ethylene polymer composition of the present invention comprises: [A] a solid titanium catalyst component containing magnesium, halogen, and titanium; and [B] groups 1, 2 and 13 of the periodic table.
  • a step of polymerizing an olefin containing ethylene in the presence of an olefin polymerization catalyst containing an organic metal compound catalyst component containing a selected metal element, and the polymer obtained in the step at 90 ° C. or higher, the melting point of the polymer It is preferable to include a step of holding at the following temperature for 15 minutes to 24 hours.
  • the method for producing the ethylene polymer composition includes (a) a step of producing an ethylene polymer having an intrinsic viscosity [ ⁇ ] in the range of 2 dl / g to 20 dl / g, and (b) an intrinsic viscosity [ ⁇ ] of 35 dl.
  • the ratio of the component (a) is 0 per 100% by mass in total of the ethylene polymer composition produced through the two steps, including a step of producing an ethylene polymer in the range of more than 50 g / g and less than 50 dl / g. It is preferable that the amount of the component (b) is 100 to 50% by mass.
  • the manufacturing method of the said ethylene polymer composition performs the polymerization process of the said component (a) prior to the polymerization process of the said component (b).
  • the present invention is characterized in that it is a molded product obtained by using the above-mentioned ethylene polymer composition, and the molded product is preferably a fiber obtained by flat yarn or solid phase drawing.
  • the ethylene polymer composition of the present invention has an extremely high molecular weight compared to existing ethylene polymer compositions, and further has the above composition, so that, for example, a high-strength molded product when solid-phase stretch molding is performed. Can be obtained.
  • the copolymerization may be referred to as polymerization, and the copolymer may be referred to as a polymer.
  • the ethylene polymer composition of the present invention is characterized by satisfying the following conditions.
  • the “ethylene polymers (a) and (b)” may be referred to as “components (a) and (b)”, respectively.
  • the above intrinsic viscosity is a value measured at 135 ° C. in a decalin solvent.
  • Component (a) is preferably 5 to 18 dl / g, more preferably 8 to 15 dl / g, still more preferably 10 to 13 dl / g
  • Component (b) is preferably more than 35 dl / g and not more than 45 dl / g, more preferably more than 35 dl / g and not more than 40 dl / g, still more preferably more than 35 dl / g and not more than 39 dl / g.
  • the intrinsic viscosity [ ⁇ ] of the whole composition is preferably more than 30 dl / g and not more than 40 dl / g, more preferably more than 30 dl / g and not more than 35 dl / g, still more preferably more than 30 dl / g and 33 dl / g. It is as follows.
  • the upper limit of component (a) is 50%, preferably 40%, more preferably 35%, still more preferably 30%, and the lower limit is 0%, preferably 5%, more preferably 10%, still more preferably 15%. Most preferably, it is 20%.
  • the upper limit of component (b) is 100%, preferably 95%, more preferably 90%, still more preferably 85%, most preferably 80%, and the lower limit is 50%, preferably 60%, more preferably 65%. More preferably, it is 70%.
  • the crystallinity of the ethylene polymer composition of the present invention is usually 80% or more, preferably 80% to 90%, more preferably 80% to 88%.
  • the crystallinity is a value measured by X-ray crystal analysis using a RINT2500 type apparatus manufactured by Rigaku Corporation.
  • the heat of fusion of the ethylene polymer composition of the present invention is preferably 210 J / g or more, more preferably 210 to 240 J / g, still more preferably 220 to 240 J / g, and most preferably 225 to 240 J / g.
  • the ethylene polymer composition of the present invention is suitable for solid phase stretch molding as described later.
  • the adhesion between the polymer particles and the molecular weight are considered to be the major factors governing the moldability.
  • the component (b) contributes to the high strength of the solid-phase stretch molded product.
  • the particles of the ethylene polymer composition having a high molecular weight are inferior in adhesion between the particles, there are cases where sufficient stretching performance cannot be exhibited.
  • grains of the ethylene polymer composition of this invention are more favorable by giving the adhesive force between particle
  • Each ethylene polymer constituting the ethylene polymer composition of the present invention includes an ethylene homopolymer, ethylene and a small amount of ⁇ -olefin such as propylene, 1-butene, 4-methyl-1-pentene, 1-pentene, Examples include crystalline copolymers mainly composed of ethylene obtained by copolymerizing 1-hexene, 1-octene, 1-decene and the like. In terms of increasing the degree of crystallinity, From the viewpoint of stretchability, an ethylene homopolymer is preferable.
  • an ethylene polymer having a branched structure may be obtained depending on the olefin polymerization catalyst to be used, but each ethylene polymer constituting the ethylene polymer composition of the present invention is like this. It is preferred that there is no branching.
  • the ethylene polymer composition as described above may be used in combination with various known stabilizers as necessary.
  • stabilizers include heat-resistant stabilizers such as tetrakis [methylene (3,5-di-t-butyl-4-hydroxy) hydrocinnamate] methane, distearyl thiodipropionate, or bis (2 , 2 ', 6,6'-tetramethyl-4-piperidine) sebacate, 2- (2-hydroxy-t-butyl-5-methylphenyl) -5-chlorobenzotriazole, and the like.
  • An inorganic or organic dry color may be added as a colorant.
  • stearates such as calcium stearate known as lubricants and hydrogen chloride absorbents can also be mentioned as suitable stabilizers.
  • the ethylene polymer composition of the present invention is preferably in the form of particles, the average particle diameter is usually 100 to 300 ⁇ m, and the proportion of particles having a particle diameter of 355 ⁇ m or more is 2% by mass or less with respect to the whole particles.
  • the ratio of particles having a particle size of 250 ⁇ m or more is more preferably 2% by mass or less, and most preferably no particles having a particle size of 250 ⁇ m or more are contained.
  • the lower limit value of the average particle diameter is preferably 110 ⁇ m, more preferably 120 ⁇ m, particularly preferably 130 ⁇ m.
  • the upper limit of the average particle diameter is preferably 280 ⁇ m, more preferably 260 ⁇ m.
  • the average particle size of the ethylene polymer composition particles is less than the lower limit of the particle size, there may be a problem in handling due to easy charging.
  • the proportion of particles having a particle size of 355 ⁇ m or more is preferably 1.5% by mass or less, more preferably 1.0% by mass or less.
  • Presence of coarse particles having a particle diameter exceeding 355 ⁇ m may hinder the uniformity of the molded product during the production of a solid-phase stretch molded product.
  • a portion where coarse particles are present may disturb the uniformity of the sheet. This nonuniformity is the starting point, which may cause the sheet to break in the stretch forming process from the second stage onward, leading to a decrease in the stretch ratio.
  • the average particle size of the particles of the ethylene polymer composition of the present invention is a so-called median size, and the particle size distribution of the particles of the ethylene polymer composition by stacking 6 to 9 types of sieves having different openings in multiple stages. Can be measured by a sieving method. If there is a sieve having an opening diameter of 355 ⁇ m in the sieve, the ratio of the coarse particles can be measured simultaneously.
  • the ethylene polymer composition of the present invention can use any known olefin polymerization catalyst without limitation as long as the above intrinsic viscosity and shape can be realized.
  • the catalyst for olefin polymerization contains a solid catalyst component, and 500 g or more of an ethylene polymer is produced per 1 g of the solid catalyst component, that is, a highly active catalyst that reacts with 500 g or more of ethylene. More preferably, a catalyst component that produces 1,000 g or more, more preferably 2,000 g or more of an ethylene polymer per 1 g of the solid catalyst component is used. Although there is not much meaning in setting the upper limit of the so-called polymerization activity, in consideration of the risk of melting the ethylene polymer produced by the polymerization reaction heat, it is usually 60,000 g-polymer / g-solid catalyst. Less than component, preferably less than 30,000 g-polymer / g-solid catalyst component.
  • the solid catalyst component in the present invention is preferably a solid titanium catalyst component containing magnesium, halogen and titanium as shown below.
  • An ethylene polymer composition produced from an olefin polymerization catalyst containing a solid catalyst component is said to be an aggregate of ethylene polymer masses produced at active points in the solid catalyst component. Since the highly active solid catalyst component as described above has a relatively large number of active points in the catalyst, the ethylene polymer composition produced from the olefin polymerization catalyst containing the solid catalyst component has more ethylene polymers. It is an aggregate of lumps. Therefore, it is considered that the ethylene polymer composition tends to have a structure with a large surface area. Further, since such a solid catalyst component has high activity, it is estimated that a part of the generated polyolefin is ejected from the pores of the solid catalyst component to form a thread-like or columnar shape.
  • olefin polymerization catalyst as described above include [A] Olefin polymerization comprising a solid titanium catalyst component containing magnesium, halogen and titanium, and [B] an organometallic compound catalyst component containing a metal element selected from Group 1, Group 2 and Group 13 of the periodic table Catalyst. Examples of these catalysts are described in detail below.
  • Solid titanium catalyst component [A] examples of the solid titanium catalyst component [A] containing titanium, magnesium and halogen include JP-A-56-811, JP-A-57-63310, in addition to the above-mentioned Patent Documents 1 and 2. Examples of the solid titanium catalyst component described in JP-A-58-83006, JP-A-3-706, JP-A-2-255810, JP-A-4-218509 and the like can be given. Such a solid titanium catalyst component can be obtained by contacting a magnesium compound, a titanium compound, and, if necessary, an electron donor as described below.
  • the magnesium compound include magnesium halides such as magnesium chloride and magnesium bromide; Alkoxy magnesium halides such as methoxy magnesium chloride, ethoxy magnesium chloride, phenoxy magnesium chloride; Alkoxymagnesium such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, 2-ethylhexoxymagnesium; Aryloxymagnesium such as phenoxymagnesium; Magnesium carboxylates such as magnesium stearate; Well-known magnesium compounds, such as, can be mentioned.
  • magnesium halides such as magnesium chloride and magnesium bromide
  • Alkoxy magnesium halides such as methoxy magnesium chloride, ethoxy magnesium chloride, phenoxy magnesium chloride
  • Alkoxymagnesium such as ethoxymagnesium, isopropoxymagnesium, butoxymagnesium, 2-ethylhexoxymagnesium
  • Aryloxymagnesium such as phenoxymagnesium
  • Magnesium carboxylates such
  • These magnesium compounds may be used alone or in combination of two or more. These magnesium compounds may be complex compounds with other metals, double compounds, or mixtures with other metal compounds.
  • a magnesium compound containing a halogen is preferable, and a magnesium halide, particularly magnesium chloride is preferably used.
  • alkoxymagnesium such as ethoxymagnesium is also preferably used.
  • the magnesium compound may be derived from other substances, for example, obtained by contacting an organic magnesium compound such as a Grignard reagent with titanium halide, silicon halide, halogenated alcohol or the like. Good.
  • titanium compounds include general formula (1);
  • R is a hydrocarbon group
  • X is a halogen atom
  • the tetravalent titanium compound shown can be mentioned. More specifically, Titanium tetrahalides such as TiCl 4 and TiBr 4 ; Ti (OCH 3 ) Cl 3 , Ti (OC 2 H 5 ) Cl 3 , Ti (On—C 4 H 9 ) Cl 3 , Ti (OC 2 H 5 ) Br 3 , Ti (O—isoC 4 H 9) ) Trihalogenated alkoxy titaniums such as Br 3 ; Dihalogenated alkoxytitanium such as Ti (OCH 3 ) 2 Cl 2 , Ti (OC 2 H 5 ) 2 Cl 2 ; Monohalogenated alkoxytitanium such as Ti (OCH 3 ) 3 Cl, Ti (On-C 4 H 9 ) 3 Cl, Ti (OC 2 H 5 ) 3 Br; Examples thereof include tetraalkoxytitanium such as
  • titanium tetrahalide is preferable, and titanium tetrachloride is particularly preferable.
  • These titanium compounds may be used alone or in combination of two or more.
  • the solid titanium catalyst component [A] of the present invention may contain a known electron donor or a substitute thereof.
  • Preferred examples of the electron donor include an aromatic carboxylic acid ester, an alicyclic carboxylic acid ester, a compound having two or more ether bonds via carbon atoms (preferably a plurality of carbon atoms), that is, a polyether compound.
  • the electron donor (a) chosen is mentioned.
  • the molecular weight of the resulting ethylene polymer may be controlled to be high, or the molecular weight distribution may be controlled.
  • aromatic carboxylic acid esters include aromatic polycarboxylic acid esters such as phthalic acid esters in addition to aromatic carboxylic acid monoesters such as toluic acid esters. Among these, aromatic polycarboxylic acid esters are preferable, and phthalic acid esters are more preferable.
  • phthalic acid esters phthalic acid alkyl esters such as ethyl phthalate, n-butyl phthalate, isobutyl phthalate, diisobutyl phthalate, hexyl phthalate and heptyl phthalate are preferable, and diisobutyl phthalate is particularly preferable.
  • examples of the alicyclic carboxylic acid ester compound include alicyclic polyvalent carboxylic acid ester compounds represented by the following general formula (2).
  • n is an integer of 5 to 10, preferably an integer of 5 to 7, and particularly preferably 6.
  • C a represents a carbon atom.
  • R 2 and R 3 are each independently COOR 1 or R, and at least one of R 2 and R 3 is COOR 1 .
  • bonds between carbon atoms in the cyclic skeleton are single bonds, but any single bond other than the C a -C a bond in the cyclic skeleton may be replaced with a double bond. .
  • a plurality of R 1 s are each independently a monovalent carbon atom having 1 to 20, preferably 1 to 10, more preferably 2 to 8, more preferably 4 to 8, particularly preferably 4 to 6 carbon atoms. It is a hydrogen group.
  • hydrocarbon group examples include ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, hexyl group, heptyl group, octyl group, 2-ethylhexyl group, decyl group, dodecyl group, tetradecyl group, A hexadecyl group, an octadecyl group, an eicosyl group and the like can be mentioned.
  • an n-butyl group, an isobutyl group, a hexyl group and an octyl group are preferable, and an n-butyl group and an isobutyl group are more preferable.
  • Plural Rs are each independently an atom selected from a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, a halogen atom, a nitrogen-containing group, an oxygen-containing group, a phosphorus-containing group, a halogen-containing group and a silicon-containing group. Or a group.
  • R is preferably a hydrocarbon group having 1 to 20 carbon atoms, and examples of the hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, and an n-butyl group. , Iso-butyl group, sec-butyl group, n-pentyl group, cyclopentyl group, n-hexyl group, cyclohexyl group, vinyl group, phenyl group, octyl group and other aliphatic hydrocarbon groups, alicyclic hydrocarbon groups, An aromatic hydrocarbon group is mentioned.
  • an aliphatic hydrocarbon group is preferable, and specifically, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, and a sec-butyl group are preferable.
  • R may be bonded to each other to form a ring, and a ring skeleton formed by bonding of R to each other may contain a double bond, and in the ring skeleton, When two or more C a bonded with COOR 1 are contained, the number of carbon atoms constituting the skeleton of the ring is 5 to 10.
  • ring skeleton examples include a norbornane skeleton and a tetracyclododecene skeleton.
  • a plurality of R may be a carbonyl structure-containing group such as a carboxylic acid ester group, an alkoxy group, a siloxy group, an aldehyde group or an acetyl group, and these substituents include one or more hydrocarbon groups. Preferably it is.
  • Examples include 3,6-dimethylcyclohexane-1,2-dicarboxylic acid ester, 3-methyl-6-propylcyclohexane-1,2-dicarboxylic acid ester, and cyclohexane-1,2-dicarboxylic acid ester.
  • the compound having the diester structure as described above has isomers such as cis and trans derived from a plurality of COOR 1 groups in the general formula (2), and any structure is suitable for the purpose of the present invention.
  • the trans isomer content is particularly high.
  • examples of the polyether compound include compounds represented by the following general formula (3).
  • m is an integer of 1 ⁇ m ⁇ 10, more preferably an integer of 3 ⁇ m ⁇ 10, and R 11 to R 36 are each independently a hydrogen atom, carbon, hydrogen, A substituent having at least one element selected from oxygen, fluorine, chlorine, bromine, iodine, nitrogen, sulfur, phosphorus, boron and silicon.
  • R 11 and R 12 may be the same or different. Any R 11 to R 36 , preferably R 11 and R 12 may be bonded to each other to form a ring other than a benzene ring.
  • Such compounds include: 2,2-dicyclohexyl-1,3-dimethoxypropane, 2-methyl-2-isopropyl-1,3-dimethoxypropane, 2-cyclohexyl-2-methyl-1,3-dimethoxypropane, 2-isobutyl-2-methyl 1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) -1,3-dimethoxypropane, 2,2-diisobutyl-1,3-diethoxy Propane, 2,2-diisobutyl-1,3-dibutoxypropane, 2,2-di-sec-butyl-1,3-dimethoxypropane, 2,2-dineopentyl-1,3-dimethoxypropane, 2-isobutyl- 2-Isopropyl-1,3-dimethoxypropane, 2-isopentyl-2-
  • Disubstituted dialkoxypropanes such as 2-methoxymethyl-2-methyl-1,3-dimethoxypropane, 2-cyclohexyl-2-ethoxymethyl-1,3-diethoxypropane, 2-cyclohexyl-2-methoxymethyl-1,3-dimethoxypropane, etc.
  • Trialkoxyalkanes 2,2-diisobutyl-1,3-dimethoxy-cyclohexane, 2-isoamyl-2-isopropyl-1,3-dimethoxycyclohexane, 2-cyclohexyl-2-methoxymethyl-1,3-dimethoxycyclohexane, 2-isopropyl-2 -Methoxymethyl-1,3-dimethoxycyclohexane, 2-isobutyl-2-methoxymethyl-1,3-dimethoxycyclohexane, 2-cyclohexyl-2-ethoxymethyl-1,3-dimethoxycyclohexane, 2-ethoxymethyl-2- Dialkoxycycloalkanes such as isopropyl-1,3-dimethoxycyclohexane, 2-isobutyl-2-ethoxymethyl-1,3-dimethoxycyclohexane, Etc. can be illustrated.
  • the reactivity at the initial stage of the polymerization reaction is high and the reaction is deactivated in a relatively short time (the initial active type), and the reaction at the initial stage of the polymerization reaction
  • the properties can be broadly classified into the types in which the reaction tends to be sustained despite being mild (sustained activity type), but it is speculated that the latter sustained activity type is preferable as the solid titanium catalyst component of the present invention. This is because if the reactivity is too high, melting of the particle surface of the ethylene polymer composition as described above or fusion between the particles is likely to occur.
  • aromatic carboxylic acid ester alicyclic carboxylic acid ester, and polyether compound
  • aromatic polyvalent carboxylic acid ester alicyclic polyvalent carboxylic acid ester and polyether compound
  • more A polyether compound is preferable.
  • 1,3-diether compounds are preferred, and in particular, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, 2-isopentyl-2-isopropyl-1 1,2-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, and 2,2-bis (cyclohexylmethyl) -1,3-dimethoxypropane are preferred.
  • the solid titanium catalyst component containing the above-mentioned 1,3-diether compound tends to give an ethylene polymer having a high crystallinity.
  • These electron donors (a) such as the above aromatic carboxylic acid ester, alicyclic carboxylic acid ester and polyether compound may be used alone or in combination of two or more.
  • the electron donor may be formed in the process of preparing the solid titanium catalyst component [A]. Specifically, when an ester compound is taken as an example, when the solid titanium catalyst component [A] is prepared, the carboxylic anhydride or carboxylic dihalide corresponding to the ester compound and the corresponding alcohol are substantially in contact with each other. By providing the process of performing, the said ester compound can also be contained in a solid titanium catalyst component.
  • P-1 A solid adduct comprising an electron donor such as a magnesium compound and alcohol, an electron donor (a), and a liquid titanium compound in a suspended state in the presence of an inert hydrocarbon solvent. How to contact.
  • P-3 A solid adduct comprising an electron donor such as a magnesium compound and alcohol, an electron donor (a), and a liquid titanium compound in a suspended state in the presence of an inert hydrocarbon solvent. The method of making it contact and dividing in multiple times.
  • the preferable reaction temperature in the preparation of the solid titanium catalyst component [A] is usually in the range of ⁇ 30 ° C. to 150 ° C., more preferably ⁇ 25 ° C. to 130 ° C., and further preferably ⁇ 25 ° C. to 120 ° C.
  • the production of the above solid titanium catalyst component [A] can also be carried out in the presence of a known medium, if necessary.
  • a known medium include aromatic hydrocarbons such as slightly polar toluene and o-dichlorotoluene, known aliphatic hydrocarbons such as heptane, octane, decane, and cyclohexane, and alicyclic hydrocarbon compounds. Of these, aliphatic hydrocarbons are preferred examples.
  • the halogen / titanium (atomic ratio) (that is, the number of moles of halogen atoms / number of moles of titanium atoms) is preferably 2 to 100, more preferably 4 to 90.
  • Magnesium / titanium (atomic ratio) (that is, the number of moles of magnesium atoms / the number of moles of titanium atoms) is preferably 2 to 100, more preferably 4 to 50.
  • the electron donor (a) / titanium (molar ratio) (that is, the number of moles of electron donor selected from aromatic carboxylic acid ester, alicyclic carboxylic acid ester, polyether compound / number of moles of titanium atom) is preferable. Is from 0 to 100, more preferably from 0.2 to 10.
  • Organic metal catalyst component [B] As the organometallic compound catalyst component [B] contained in the above-mentioned olefin polymerization catalyst, a compound containing a Group 13 metal, for example, an organoaluminum compound, a complex alkylated product of a Group 1 metal and aluminum, Group 2 Metal organometallic compounds and the like can be used. Among these, an organoaluminum compound is preferable.
  • organometallic compound catalyst component [B] Specific examples of the organometallic compound catalyst component [B] are described in detail in the above-mentioned known literature. Examples of such an organometallic compound catalyst component [B] include, for example, the general formula (4);
  • R a is a hydrocarbon group having 1 to 12 carbon atoms
  • X is a halogen or hydrogen
  • n is 1 ⁇ n ⁇ 3).
  • R a is a hydrocarbon group having 1 to 12 carbon atoms, such as an alkyl group, a cycloalkyl group, or an aryl group. Specifically, a methyl group, an ethyl group, n -Propyl group, isopropyl group, isobutyl group, pentyl group, hexyl group, octyl group, cyclopentyl group, cyclohexyl group, phenyl group, tolyl group and the like.
  • trialkylaluminum with n 3, particularly triethylaluminum, triisobutylaluminum and the like are preferable.
  • the catalyst for olefin polymerization may contain the well-known catalyst component [C] as needed with said organometallic compound catalyst component [B].
  • the catalyst component [C] is preferably an organosilicon compound. Examples of the organosilicon compound include compounds represented by the following general formula (5).
  • R and R ′ are hydrocarbon groups, and n is an integer of 0 ⁇ n ⁇ 4.
  • the organosilicon compound represented by the general formula (5) include vinyltriethoxysilane, diphenyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, and dicyclopentyldimethoxysilane.
  • silane compound represented by the following general formula (6) described in International Publication No. 2004/016662 pamphlet is also a preferable example of the organosilicon compound.
  • R a is a hydrocarbon group having 1 to 6 carbon atoms, preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 6 carbon atoms
  • Preferred examples include hydrocarbon groups having 2 to 6 carbon atoms, such as methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group.
  • R b is a hydrocarbon group having 1 to 12 carbon atoms or hydrogen, preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms or hydrogen. Can be mentioned.
  • Specific examples include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, an n-pentyl group, an iso-pentyl group, and a cyclopentyl group.
  • R c is a hydrocarbon group having 1 to 12 carbon atoms, preferably an unsaturated or saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • Specific examples include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, n-pentyl group, iso-pentyl group, cyclopentyl group, n- A hexyl group, a cyclohexyl group, an octyl group, etc. are mentioned, Among these, an ethyl group is particularly preferable.
  • Specific examples of the compound represented by the general formula (6) include Dimethylaminotriethoxysilane, diethylaminotriethoxysilane, diethylaminotrimethoxysilane, diethylaminotriethoxysilane, diethylaminotri-n-propoxysilane, di-n-propylaminotriethoxysilane, methyl n-propylaminotriethoxysilane, t-butylamino Examples include triethoxysilane, ethyl n-propylaminotriethoxysilane, ethyl iso-propylaminotriethoxysilane, and methylethylaminotriethoxysilane.
  • catalyst component [C] examples include the aromatic carboxylic acid ester, alicyclic carboxylic acid ester and / or plural compounds that can be used in the preparation of the solid titanium catalyst component [A].
  • a polyether compound described as an example of a compound having two or more ether bonds via the carbon atom is also preferable.
  • 1,3-diether compounds are preferable, and in particular, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane, 2,2-diisobutyl-1,3-dimethoxypropane, and 2-isopentyl.
  • 2-isobutyl-2-isopropyl-1,3-dimethoxypropane, 2,2-dicyclohexyl-1,3-dimethoxypropane, 2,2-bis (cyclohexylmethyl) -1,3-dimethoxypropane, 2-methyl-2-n- Propyl-1,3-diethoxypropane and 2, -2-diethyl-1,3-diethoxypropane are preferred.
  • catalyst components [C] can be used alone or in combination of two or more.
  • olefin polymerization catalyst examples include metallocene compounds disclosed in JP-A No. 2004-168744, JP-A No. 2000-128931, and JP-A No. 2004-2004.
  • olefin polymerization comprising an organometallic complex having a phenoxyimine compound or the like disclosed in JP 646097 A, JP 2005-2244 A, JP 2005-2086 A, or the like as a ligand and an organometallic compound catalyst component
  • the catalyst can also be exemplified as a preferred catalyst for olefin polymerization.
  • the olefin polymerization catalyst may contain other components useful for olefin polymerization as required in addition to the above components.
  • other components include metal oxides such as silica, which are mainly used as carriers, antistatic agents, particle aggregating agents, storage stabilizers, and the like.
  • the method for producing an ethylene polymer composition according to the present invention is characterized in that an olefin containing ethylene is polymerized using the olefin polymerization catalyst.
  • polymerization may include the meaning of copolymerization such as random copolymerization and block copolymerization in addition to homopolymerization.
  • the main polymerization is carried out in the presence of a prepolymerization catalyst obtained by prepolymerizing an ⁇ -olefin in the presence of the olefin polymerization catalyst. It is also possible.
  • This prepolymerization is performed by prepolymerizing ⁇ -olefin in an amount of 0.1 to 1000 g, preferably 0.3 to 500 g, particularly preferably 1 to 200 g, per 1 g of the solid catalyst component contained in the olefin polymerization catalyst. Done.
  • a catalyst having a higher concentration than the catalyst concentration in the system in the main polymerization can be used.
  • the concentration of the solid titanium catalyst component [A] in the prepolymerization is usually 0.001 to 200 mmol, preferably 0.01 to 50 mmol, particularly preferably 0, in terms of titanium atom per liter of the liquid medium. Desirably, the range is from 1 mmol to 20 mmol.
  • the amount of the organometallic compound catalyst component [B] in the prepolymerization may be such that 0.1 g to 1000 g, preferably 0.3 g to 500 g of polymer is produced per 1 g of the solid titanium catalyst component [A].
  • the amount is usually 0.1 mol to 300 mol, preferably 0.5 mol to 100 mol, particularly preferably 1 mol to 50 mol, per mol of titanium atom in the solid titanium catalyst component [A]. It is desirable.
  • the catalyst component [C] or the like can be used as necessary.
  • these components can be used in an amount of 0.1 mol to 1 mol of titanium atom in the solid titanium catalyst component [A]. It is used in an amount of 50 mol, preferably 0.5 mol to 30 mol, more preferably 1 mol to 10 mol.
  • the prepolymerization can be performed under mild conditions by adding an olefin and the above catalyst components to an inert hydrocarbon medium.
  • inert hydrocarbon medium used examples include aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; Cycloaliphatic hydrocarbons such as cycloheptane, methylcycloheptane, cyclohexane, methylcyclohexane, methylcyclopentane, cyclooctane, methylcyclooctane; Aromatic hydrocarbons such as benzene, toluene, xylene; Halogenated hydrocarbons such as ethylene chloride and chlorobenzene; Alternatively, a mixture thereof can be used.
  • aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene
  • Cycloaliphatic hydrocarbons
  • inert hydrocarbon media it is particularly preferable to use aliphatic hydrocarbons.
  • prepolymerization can be carried out using the olefin itself as a solvent, or it can be prepolymerized in a substantially solvent-free state. In this case, it is preferable to perform preliminary polymerization continuously.
  • the olefin used in the prepolymerization may be the same as or different from the olefin used in the main polymerization described later. Specifically, ethylene and propylene are preferable.
  • the temperature during the prepolymerization is usually in the range of ⁇ 20 to + 100 ° C., preferably ⁇ 20 to + 80 ° C., more preferably 0 to + 40 ° C.
  • ethylene is polymerized in the presence of the above olefin polymerization catalyst.
  • ⁇ -olefins having 3 to 20 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1- Even if linear olefins such as hexadecene, 1-octadecene, 1-eicosene, etc., and branched olefins such as 4-methyl-1-pentene, 3-methyl-1-pentene, 3-methyl-1-butene are used in common. good.
  • These ⁇ -olefins are preferably propylene, 1-butene, 1-pentene and 4-methyl-1-pentene.
  • Aromatic vinyl compounds such as styrene and allylbenzene together with these ⁇ -olefins; Alicyclic vinyl compounds such as vinylcyclohexane and vinylcycloheptane can also be used.
  • the prepolymerization and the main polymerization can be performed by any of a liquid phase polymerization method such as a bulk polymerization method, a solution polymerization and a suspension polymerization, or a gas phase polymerization method.
  • a liquid phase polymerization method such as a bulk polymerization method, a solution polymerization and a suspension polymerization, or a gas phase polymerization method.
  • the reaction solvent may be an inert hydrocarbon used in the above prepolymerization, or an olefin that is liquid at the reaction temperature.
  • the solid titanium catalyst component [A] is usually 0.0001 mmol to 0.5 mmol, preferably 0.00, in terms of titanium atoms per liter of polymerization volume. Used in an amount of 005 mmol to 0.1 mmol.
  • the organometallic compound catalyst component [B] is usually 1 mol per 1 mol of titanium atom in the solid titanium catalyst component [A] (preliminary polymerization catalyst component when prepolymerization) in the polymerization system. It is used in such an amount that it is ⁇ 2000 mol, preferably 5 mol to 500 mol.
  • the catalyst component [C] is used, 0.001 mol to 50 mol, preferably 0.01 mol to 30 mol, particularly preferably 0.05 mol, relative to the organometallic compound catalyst component [B]. Used in an amount of ⁇ 20 mol.
  • the molecular weight of the resulting polymer can be adjusted.
  • the polymerization temperature of the olefin is usually 20 ° C. to 200 ° C., preferably 30 ° C. to 100 ° C., more preferably 50 ° C. to 90 ° C.
  • the pressure is usually set to normal pressure to 10 MPa, preferably 0.20 MPa to 5 MPa.
  • the polymerization of each of the component (a) and the component (b) can be performed by any of batch, semi-continuous and continuous methods.
  • the method for producing the ethylene polymer composition of the present invention after polymerization of each of component (a) and component (b), both are mixed, and the polymerization is carried out in two stages by changing reaction conditions.
  • Examples of the method are as follows. Among these, a method in which polymerization is performed in two or more stages by changing reaction conditions is more preferable.
  • Intrinsic viscosity [ ⁇ ] is 2 dl / g or more and 20 dl / g or less, preferably 5 dl / g or more and 18 dl / g or less, more preferably 8 dl / g or more and 15 dl / g or less, more preferably 10 dl.
  • the step of producing the component (a), ie, the lower molecular weight ethylene polymer component, is the first step
  • the step of producing component (b), ie, the higher molecular weight ethylene polymer component is the second step. It is preferable that
  • the upper limit and lower limit of the mass ratio of a component (a) and a component (b) are based also on the intrinsic viscosity of each component
  • the upper limit of a component (a) is 50%, Preferably it is 40%, More preferably 35%, more preferably 30%, and the lower limit is 0%, preferably 5%, more preferably 10%, still more preferably 15%, most preferably 20%.
  • the upper limit of component (b) is 100%, preferably 95%, more preferably 90%, still more preferably 85%, most preferably 80%, and the lower limit is 50%, preferably 60%, more preferably 65%, more preferably 70%.
  • This mass ratio is determined by measuring the amount of ethylene absorbed in each step, sampling a small amount and a specified amount of the resin obtained in each step, and determining the mass, slurry concentration, catalyst component content in the resin, etc. It can be determined by calculating the amount of resin produced.
  • the intrinsic viscosity of the polymer produced in the second stage is calculated based on the following formula.
  • the polymer produced in the initial stage of the polymerization reaction is unevenly distributed on the surface portion of the produced ethylene polymer composition particles, and the polymer produced in the late stage of the polymerization reaction is unevenly distributed in the composition particles. This phenomenon is thought to be similar to the tree rings. Therefore, when the ethylene polymer is produced by dividing the reaction conditions into two or more stages in the present invention, the intrinsic viscosity [ ⁇ ] of the ethylene polymer produced in the first stage is [ ⁇ ] of the ethylene polymer finally obtained. If the production is carried out under a lower condition, it is highly possible that a polymer having a relatively low molecular weight is present on the surface of the composition particles, and it is considered that the particles are likely to be pressure-bonded during solid-phase stretch molding.
  • the ethylene polymer composition of the present invention can be produced by a known polymerization method such as a batch type or a continuous type. When producing by the multistage polymerization process as described above, it is preferable to adopt a batch system.
  • the ethylene polymer composition obtained by the batch process has less variation in the ethylene polymer obtained in the first polymerization step and the second polymerization step for each composition particle, and is more advantageous for the above-mentioned pressure bonding between the particles. It is thought that.
  • the ethylene polymer composition thus obtained may be any of a homopolymer, a random copolymer and a block copolymer.
  • the ethylene polymer composition of the present invention is preferably an ethylene homopolymer from the viewpoint of easily obtaining a polymer having a high degree of crystallinity.
  • the ethylene polymer composition of the present invention may be a composition itself obtained by polymerizing ethylene in the presence of the olefin polymerization catalyst as described above, but the composition (the polymer) is 90%. It is preferable to pass through a step of holding at 15 ° C. to 24 hours at a temperature not lower than the melting point and not higher than the melting point of the polymer.
  • the temperature is usually 100 ° C to 140 ° C, preferably 105 ° C to 140 ° C, more preferably 110 ° C to 135 ° C
  • the holding time is usually 15 minutes to 24 hours, preferably May be 1 to 10 hours, more preferably 1 to 4 hours.
  • the method of maintaining the ethylene polymer composition obtained by polymerization under the above conditions using an oven or the like, in the process of producing the ethylene polymer composition, the step after the polymerization reaction For example, the method of performing a drying process etc. on said conditions is mentioned. By undergoing such a process, an ethylene polymer composition having a higher crystallinity can be obtained.
  • the temperature is usually 90 ° C to 140 ° C, preferably 95 ° C to 140 ° C, more preferably 95 ° C to 135 ° C, and further 95 ° C to 130 ° C, and the holding time.
  • it is preferably an ethylene polymer composition obtained through a process under the conditions of usually 15 minutes to 24 hours, preferably 1 to 10 hours, more preferably 1 to 4 hours.
  • the molded product comprising the ethylene polymer composition of the present invention can be obtained by molding the above ethylene polymer composition by a known molding method for polyethylene. Since the molded product of the present invention uses an ethylene polymer composition having a high degree of crystallinity, it tends to be excellent in strength. Moreover, since it exists in the tendency which is excellent in a moldability when the ethylene polymer composition obtained by a multistage polymerization method is used, it is anticipated that the shape freedom degree of a molding will increase rather than before. Among the molded products of the present invention, a molded product obtained by a solid phase stretch molding method is particularly preferable.
  • the molded product include a flat yarn made of the ethylene polymer composition of the present invention, and a fiber obtained by solid phase drawing of the ethylene polymer composition of the present invention.
  • the conditions for solid-phase stretch molding known conditions described in Patent Documents 3 to 5 can be used without limitation, except that the above-mentioned ethylene polymer composition is used.
  • the ethylene polymer composition of the present invention is pressure-bonded at a pressure of 1 MPa or more and formed into a sheet shape, which is stretched at a relatively high temperature, or stretched while applying pressure using a roll or the like.
  • a method is mentioned.
  • the temperature during the molding is preferably equal to or lower than the melting point of the particles of the ethylene polymer composition. However, if the melt flow does not substantially occur, the molding may be performed at the melting point or higher.
  • the stretchability of molded products using the ethylene polymer composition of the present invention and the physical properties of stretched molded products can be evaluated by the following methods.
  • a cylindrical high-density polyethylene molded product having a convex tapered shape at the tip is prepared, and this molded product is divided in half along the central axis (hereinafter referred to as billet).
  • ⁇ Fix the above cut sheet between the billet's half flat parts.
  • the billet in this state is compressed and stretched by passing it through a concave tapered nozzle heated to 120 ° C. at a speed of 1 cm / min.
  • the convex taper shape of the nozzle and the concave taper shape of the billet are shapes in which the irregularities match.
  • the ratio of the respective cross-sectional areas at the inlet and outlet of the nozzle is 6: 1, and the sheet is stretched 6 times in the longitudinal direction (preliminary stretching).
  • the stretched sheet obtained by the above pre-stretching is cut out and set in a tensile tester (manufactured by Intesco Corp., precision universal material tester, model 2005 type) so that the distance between chucks is 9 mm.
  • Uniaxial stretching is performed at a temperature of 135 ° C. and a tensile speed of 18 mm / min until breakage occurs in the same direction as the preliminary stretching.
  • the value obtained by multiplying the second draw ratio by 6 times in the preliminary drawing is evaluated as the draw ratio for the evaluation.
  • the tensile strength and tensile elastic modulus of the stretched molded product can be measured using a tensile tester (manufactured by Intesco Corporation, precision universal material tester, model 2005 type).
  • the ratio is more preferably 90 times to 500 times, further preferably 100 times to 400 times, particularly preferably 120 times to 350 times, particularly 140 times to 350 times.
  • the solid-phase stretch molded product of the present invention can be molded at a high stretch ratio, it is expected to have high strength.
  • solid-phase stretch molding is a method that does not use a solvent, the molding equipment is relatively simple, and it is a molding method that has little negative impact on the environment, and is expected to have a high contribution to society. .
  • the intrinsic viscosity [ ⁇ ], crystallinity, and heat of fusion of the ethylene polymer composition particles were measured by the following methods.
  • the intrinsic viscosity [ ⁇ ] was measured in decalin at a temperature of 135 ° C. by dissolving ethylene polymer particles in decalin.
  • the intrinsic viscosity of the polymer produced in the second stage was calculated based on the following formula.
  • X-ray crystal analyzer Rigaku Corporation RINT2500 type device X-ray source: CuK ⁇ ray Output: 50 kV, 300 mA Detector: Scintillation counter Sample: The obtained polymer composition particles were used as they were.
  • the crystallinity was calculated from the obtained wide-angle X-ray diffraction profile.
  • Heat of fusion The heat of fusion was measured under the following conditions by differential scanning calorimetry (DSC). That is, about 5 mg of ethylene polymer composition particles are filled in an aluminum pan, and the temperature is increased from 30 ° C. to 200 ° C. using a RDC220 robot DSC module manufactured by Seiko Denshi Kogyo Co., Ltd. And heated. From the melting peak obtained, the heat of fusion was determined by a conventional method.
  • DSC differential scanning calorimetry
  • classification is performed in the same manner as described above except that a sieve having an opening diameter of 355 ⁇ m is used, and the ratio of the particle mass on the sieve to the mass of the entire particle before the classification Calculated.
  • the average particle size and the ratio of particles having a particle size of 355 ⁇ m or more can be measured at the same time during classification by the average particle size calculation method.
  • the above press pressure is calculated from the pressure displayed on the molding machine by the following calculation method.
  • ⁇ Fix the above cut sheet between the billet's half flat parts.
  • the billet in this state is compressed and stretched by passing it through a concave tapered nozzle heated to 120 ° C. at a speed of 1 cm / min.
  • the convex taper shape of the nozzle and the concave taper shape of the billet are shapes in which the irregularities match.
  • the ratio of the respective cross-sectional areas at the inlet and outlet of the nozzle is 6: 1, and the sheet is stretched 6 times in the longitudinal direction (preliminary stretching).
  • the stretched sheet obtained by the above pre-stretching is cut out and set in a tensile tester (manufactured by Intesco Corp., precision universal material tester, model 2005 type) so that the distance between chucks is 9 mm.
  • Uniaxial stretching is performed at a temperature of 135 ° C. and a tensile speed of 18 mm / min until breakage occurs in the same direction as the preliminary stretching.
  • the value obtained by multiplying the second draw ratio by 6 times in the preliminary drawing is evaluated as the draw ratio for the evaluation.
  • the measurement was performed twice, and the higher value was taken as the value of the draw ratio.
  • the tensile strength after stretching was measured as follows. That is, a sample stretched to a predetermined magnification is set in a tensile tester (manufactured by Intesco Corporation, a precision universal material tester, model 2005 type) so that the gap between chucks is 100 mm, and in an environment of 23 ° C. , Measured at a tensile speed of 100 mm / min.
  • a tensile tester manufactured by Intesco Corporation, a precision universal material tester, model 2005 type
  • the solid part was collected by hot filtration, and the solid part was resuspended in 100 ml of titanium tetrachloride, and then heated again at 110 ° C. for 2 hours. After completion of the reaction, the solid part was again collected by hot filtration, and washed thoroughly with decane and hexane at a temperature of 90 ° C. until no free titanium compound was detected in the washing solution.
  • the solid titanium catalyst component prepared by the above operation was stored as a decanslurry, but a part of this was dried for the purpose of examining the catalyst composition.
  • composition of the solid titanium catalyst component [A1] thus obtained was 2.8% by mass of titanium, 17% by mass of magnesium, 58% by mass of chlorine, 2-isobutyl-2-isopropyl-1,3-dimethoxypropane 19 And 5% by mass and 1.2% by mass of 2-ethylhexyl alcohol residue.
  • Second stage After the above polymerization was completed, ethylene and hydrogen were once purged to return to normal pressure. Ethylene was fed at a constant rate of 0.3 l / min, and polymerization of ethylene was carried out at 70 ° C. for 210 minutes.
  • the slurry containing the produced solid was filtered, dried under reduced pressure at 80 ° C. overnight, and further maintained at 130 ° C. for 3 hours.
  • the intrinsic viscosity [ ⁇ ] of the obtained ethylene polymer composition was 30.6 dl / g. There was no ethylene polymer composition remaining on the sieve having an opening of 250 ⁇ m.
  • the first stage (component (a)) and the second stage (component (a)) determined from the mass of the ethylene polymer composition obtained above and the mass of the ethylene polymer (component (a)) sampled in the first stage (
  • the intrinsic viscosity [ ⁇ ] of the polymer produced in the second stage obtained from these results was 38.5 dl / g.
  • the ethylene polymer composition obtained above had a crystallinity of 85% and a heat of fusion by DSC method of 232 J / g.
  • the particles of the ethylene polymer composition were pressed at a temperature of 136 ° C. to prepare a sheet, and then pre-stretched 6 times at a temperature of 120 ° C. by the above method.
  • the prestretched sheet was cut out and the stretch ratio was measured at 135 ° C. under the above conditions, and a result of 232 times was obtained.
  • the tensile strength was measured by the above-described method for samples stretched 100 times, 150 times, and 200 times.
  • Example 2 Polymerization
  • Polymerization was carried out in the same manner as in Example 1 except that the amount of hydrogen added in the first stage was 20 ml. Further, it was passed through a sieve having an opening of 250 ⁇ m.
  • the intrinsic viscosity [ ⁇ ] of the particles of the obtained ethylene polymer composition was 32.6 dl / g. There was no ethylene polymer composition remaining on the sieve having an opening of 250 ⁇ m.
  • the intrinsic viscosity [ ⁇ ] of the polymer obtained in the first stage is 17.2 dl / g, and the mass ratio of the first stage (component (a)) and the second stage (component (b)) is 1 stage.
  • First (component (a)) / 2nd stage (component (b)) 30/70, and the intrinsic viscosity [ ⁇ ] of the polymer produced in the second stage was 39.2 dl / g.
  • the ethylene polymer composition obtained above had a crystallinity of 85% and a heat of fusion by DSC method of 234 J / g.
  • the particles of the ethylene polymer composition were pressed at a temperature of 136 ° C. to prepare a sheet, and then pre-stretched 6 times at a temperature of 120 ° C. by the above method.
  • the tensile strength was measured by the above-described method for each sample stretched 100 times and 150 times.
  • Example 3 Polymerization
  • Polymerization time in the first stage was 30 minutes and the polymerization time in the second stage was 270 minutes. Further, it was passed through a sieve having an opening of 250 ⁇ m.
  • [ ⁇ ] of the particles of the obtained ethylene polymer composition was 33.6 dl / g. There was no ethylene polymer composition remaining on the sieve having an opening of 250 ⁇ m.
  • the intrinsic viscosity [ ⁇ ] of the polymer obtained in the first stage is 5.0 dl / g, and the mass ratio of the first stage (component (a)) and the second stage (component (b)) is 1 stage.
  • First (component (a)) / 2nd stage (component (b)) 10/90, and the intrinsic viscosity [ ⁇ ] of the polymer produced in the second stage was 36.8 dl / g.
  • the ethylene polymer composition obtained above had a crystallinity of 84% and a heat of fusion by DSC method of 234 J / g.
  • the particles of the ethylene polymer composition were pressed at a temperature of 136 ° C. to prepare a sheet, and then pre-stretched 6 times at a temperature of 120 ° C. by the above method.
  • the prestretched sheet was cut out and the stretch ratio was measured at 135 ° C. under the above conditions, and a result of 244 times was obtained.
  • the tensile strength was measured by the above-described method for samples stretched 100 times, 150 times, and 200 times.
  • the intrinsic viscosity [ ⁇ ] of the particles of the obtained ethylene polymer composition was 37.8 dl / g. There was no ethylene polymer composition remaining on the sieve having an opening of 250 ⁇ m.
  • the intrinsic viscosity [ ⁇ ] of the polymer obtained in the first stage is 25.2 dl / g, and the mass ratio of the first stage (component (a)) and the second stage (component (b)) is 1 stage.
  • First (component (a)) / 2nd stage (component (b)) 30/70, and the intrinsic viscosity [ ⁇ ] of the polymer produced in the second stage was 43.2 dl / g.
  • the ethylene polymer composition obtained above had a crystallinity of 85% and a heat of fusion by DSC method of 234 J / g.
  • the particles of the ethylene polymer composition were pressed at a temperature of 136 ° C. to prepare a sheet, and then pre-stretched 6 times at a temperature of 120 ° C. by the above method.
  • the prestretched sheet was cut out, and the stretch ratio was measured at 135 ° C. under the above conditions. As a result, a result of 7 times was obtained.
  • the intrinsic viscosity [ ⁇ ] of the particles of the obtained ethylene polymer composition was 16.2 dl / g. There was no ethylene polymer composition remaining on the sieve having an opening of 250 ⁇ m.
  • the intrinsic viscosity [ ⁇ ] of the polymer obtained in the first stage is 7.9 dl / g, and the mass ratio of the first stage (component (a)) and the second stage (component (b)) is 1 stage.
  • First (component (a)) / 2nd stage (component (b)) 30/70, and the intrinsic viscosity [ ⁇ ] of the polymer produced in the second stage was 19.8 dl / g.
  • the ethylene polymer composition obtained above had a crystallinity of 83% and a heat of fusion by DSC method of 220 J / g.
  • the particles of the ethylene polymer composition were pressed at a temperature of 136 ° C. to prepare a sheet, and then pre-stretched 6 times at a temperature of 120 ° C. by the above method.
  • the ethylene polymer composition of the present invention is a composition comprising a component having a specific molecular weight, it can be suitably used for battery separator films, gel spinning fibers, sheets and the like.
  • a molded article having high strength can be obtained when solid-phase stretch molding is performed, and can be suitably used for solid-phase stretch molding.

Abstract

[課題] 固相延伸成形などの固相法で得られ、且つ強度の高い成形物を提供するのに適した以下の物性を有するエチレン重合体組成物を提供する。 [解決手段] (a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体、(b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体からなり、その質量比は(a)/(b)=0/100~50/50の範囲にあり、組成物全体の[η]が30dl/gを超えて50dl/g以下の範囲にあるエチレン重合体組成物。 該エチレン重合体組成物の製造方法としては、例えばマグネシウム、ハロゲン、チタンを含有する固体状チタン触媒成分を含むオレフィン重合用触媒を用いて特定の条件でエチレンを含むオレフィンの重合を行うことが挙げられる。

Description

エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物
 本発明は、分子量が極めて高く、特定の組成を有するエチレン重合体組成物に関するものである。また上記のエチレン重合体組成物の製造方法および該組成物を用いで得られる成形物に関する。
 分子量が極めて高い、所謂超高分子量エチレン重合体は、汎用のエチレン重合体に比して耐衝撃性、耐摩耗性、耐薬品性、強度等に優れており、エンジニアリングプラスチックとして優れた特徴を有している。
 このような超高分子量エチレン重合体は、ハロゲン含有遷移金属化合物と有機金属化合物とからなる所謂チーグラー触媒や、特開平3-130116号公報(特許文献1)、特開平7-156173号公報(特許文献2)等に記載されているようなマグネシウム化合物担持型触媒などの公知の触媒によって得られることが知られている。近年は生産効率などの観点から、超高分子量エチレン重合体はマグネシウム化合物担持型触媒などの高活性触媒で製造されることが多い。
 一方で、超高分子量エチレン重合体はその分子量の高さ故に、一般的な樹脂の成形法である溶融成形を行うことが困難とされている。このため、超高分子量エチレン重合体をゲル化させて成形する方法や超高分子量エチレン重合体粒子を融点以下の温度で圧着させた後に延伸させる固相延伸法などの成形法が開発されており、該成形法は、上記特許文献2、特開平9-254252号公報(特許文献3)、特開昭63-41512号公報(特許文献4)、特開昭63-66207号公報(特許文献5)などに記載されている。
特開平3-130116号公報 特開平7-156173号公報 特開平9-254252号公報 特開昭63-41512号公報 特開昭63-66207号公報 国際公開2008/013144号パンフレット
 前述の固相延伸法などの重合体粒子を用いる特定の成形法では、重合体粒子を該粒子の融点以下の温度で圧着させるため、得られる成形物の強度が比較的低いと言う問題点があるとされている。この問題点を克服するため、結晶化度や融解熱が高いエチレン重合体が求められている。
 また、従来、固相延伸成形に適するのは表面凹凸の少ないエチレン重合体粒子であると言われていたが、本発明者らは、表面に凹凸の多い特定の形状を有する重合体粒子は、粒子同士が接触する際に接点や接触面積が増加するため上記課題を解決できること、更に結晶化度が高いエチレン重合体粒子が固相延伸成形に好適であることをも見出した(特許文献6)。しかし、今後はさらなる延伸性能の向上が求められる。
 従来より、分子量の過大な超高分子量エチレン重合体は、延伸加工が困難で十分な延伸性能を得ることができないと考えられており、実際に特許文献6では固相延伸成形に適する分子量の範囲として、極限粘度[η]を5~30dl/gの範囲に限定された開示がなされている。
 このような状況において、極限粘度[η]が30dl/gよりも大きいエチレン重合体組成物を用いた固相延伸成形体の製造は、当業者間においては困難であると考えられてきた。
 しかし、本発明者らは、より高い分子量の超高分子量エチレン重合体を用いること、具体的にはエチレン重合体組成物全体の[η]が30dl/gを超えて50dl/g以下の範囲とすること、さらに、当該組成物の構成が、(a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体と、(b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体とからなり、その質量比が(a)/(b)=0/100~50/50の範囲となるようにすることで、驚くべきことに当該エチレン重合体組成物の延伸性能を更に向上させることができ、得られる繊維の引張強度が著しく向上することを見出し、本発明を完成するにいたった。
 即ち本発明は、
(a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体、(b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体からなる組成物であって、その質量比は(a)/(b)=0/100~50/50の範囲にあり、組成物全体の[η]が30dl/gを超えて50dl/g以下の範囲にあるエチレン重合体組成物であることを特徴としている。
 当該エチレン重合体組成物は、前記(a)と(b)との質量比が、(a)/(b)=5/95~50/50であることが好ましい。
 さらに、当該エチレン重合体組成物は、結晶化度が80%以上であることが好ましく、粒径355μm以上の粒子の割合が全体の2質量%以下であり、平均粒径が100~300μmであることが好ましい。
 当該エチレン重合体組成物は、固体状触媒成分1g当たり500g以上のエチレンが反応して得られることが好ましい。
 さらに、当該エチレン重合体組成物は、[A]マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分、ならびに[B]周期表の第1族、第2族および第13族から選ばれる金属元素を含む有機金属化合物触媒成分、を含むオレフィン重合用触媒の存在下に、エチレンを含むオレフィンを重合させて得られることが好ましい。
 また、本発明のエチレン重合体組成物の製造方法は、[A]マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分、ならびに[B]周期表の第1族、第2族および第13族から選ばれる金属元素を含む有機金属化合物触媒成分、を含むオレフィン重合用触媒の存在下に、エチレンを含むオレフィンを重合させる工程、ならびに前記工程で得られる重合体を90℃以上、該重合体の融点以下の温度で15分~24時間保持する工程を含むことが好ましい。
 当該エチレン重合体組成物の製造方法は、(a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体を製造する工程、および(b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体を製造する工程を含み、前記二工程を経て製造されるエチレン重合体組成物の合計100質量%当たり、成分(a)の割合が0~50質量%、成分(b)の割合が100~50質量%であることが好ましい。
 さらに、当該エチレン重合体組成物の製造方法は、前記成分(a)の重合工程を前記成分(b)の重合工程に先立って行うことが好ましい。
 また本発明は、上記のエチレン重合体組成物を用いて得られる成形物であることを特徴としており、当該成形物はフラットヤーンまたは固相延伸成形して得られる繊維であることが好ましい。
 本発明のエチレン重合体組成物は、既存のエチレン重合体組成物に比べて分子量が極めて高く、さらに、上記の様な組成を有することから、例えば固相延伸成形した場合に高強度の成形物を得ることができる。
 以下、本発明に係るエチレン重合体組成物およびその製造方法、エチレン重合体組成物を用いて得られる成形物について、更に詳細に説明する。
 〈エチレン重合体組成物〉
 本発明では、共重合のことを重合と言うことがあり、共重合体のことを重合体ということがある。
 本発明のエチレン重合体組成物は、以下の条件を満たすことを特徴とする。
(a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体、(b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体からなる組成物であって、その質量比は(a)/(b)=0/100~50/50の範囲にあり、組成物全体の[η]が30dl/gを超えて50dl/g以下の範囲にある。以下、「エチレン重合体(a),(b)」を、それぞれ「成分(a),(b)」ということがある。
 上記の極限粘度は、デカリン溶媒中、135℃で測定した値である。
 上記組成物における各成分の極限粘度[η]の好ましい範囲としては、
 成分(a)は、好ましくは5~18dl/g、より好ましくは8~15dl/g、更に好ましくは10~13dl/gであり、
 成分(b)は、好ましくは35dl/gを超えて45dl/g以下、より好ましくは35dl/gを超えて40dl/g以下、更に好ましくは35dl/gを超えて39dl/g以下である。
 組成物全体の極限粘度[η]は、好ましくは30dl/gを超えて40dl/g以下、より好ましくは30dl/gを超えて35dl/g以下、更に好ましくは30dl/gを超えて33dl/g以下である。
 また、上記組成物における各成分の質量割合の上限および下限としては、
 成分(a)の上限は50%、好ましくは40%、より好ましくは35%、更に好ましくは30%であり、下限は0%、好ましくは5%、より好ましくは10%、更に好ましくは15%、最も好ましくは20%である。
 成分(b)の上限は100%、好ましくは95%、より好ましくは90%、更に好ましくは85%、最も好ましくは80%であり、下限は50%、好ましくは60%、より好ましくは65%、更に好ましくは70%である。
 本発明のエチレン重合体組成物の結晶化度は通常は80%以上、好ましくは80%~90%、より好ましくは80%~88%である。上記の結晶化度は、株式会社リガク製RINT2500型装置を用いてX線結晶解析によって測定される値である。
 本発明のエチレン重合体組成物の融解熱は210J/g以上が好ましく、より好ましくは210~240J/g、更に好ましくは220~240J/g、最も好ましくは225~240J/gである。上記融解熱は、セイコー電子工業株式会社製RDC220ロボットDSCモジュールを用いて、示差走査熱分析法(DSC)により、30℃から200℃まで、昇温速度=10℃/分の条件で加熱し、得られる融解ピークから求めたものである。
 本発明のエチレン重合体組成物は、後述するように固相延伸成形に適している。固相延伸成形のようにエチレン重合体を融点以下の温度で成形する場合、重合体粒子間の接着性と分子量が成形性を支配する大きな因子であると考えられる。
 上記の様な組成を有するエチレン重合体組成物は、特に成分(b)が固相延伸成形物の高い強度に寄与すると考えられる。ただし、分子量の高いエチレン重合体組成物の粒子は、粒子間の接着性に劣るため、十分な延伸性能を発揮できない場合がある。このため、成分(a)として、成分(b)より分子量の低い成分を同時に含有させることにより、粒子間の接着力を付与することで、本発明のエチレン重合体組成物の粒子がより良好な成形性を示すと考えられる。
 本発明のエチレン重合体組成物を構成する各エチレン重合体は、エチレンの単独重合体、エチレンと少量のα-オレフィン、例えばプロピレン、1-ブテン、4-メチル-1-ペンテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン等とを共重合して得られるエチレンを主体とした結晶性の共重合体が挙げられるが、結晶化度を高める観点や後述する固相延伸成形における延伸性の観点からは、エチレンの単独重合体であることが好ましい。エチレンの単独重合体であっても使用するオレフィン重合用触媒によっては分岐構造を有するエチレン重合体が得られることがあるが、本発明のエチレン重合体組成物を構成する各エチレン重合体はこのような分岐が無いことが好ましい。
 上記のようなエチレン重合体組成物は、必要に応じて公知の各種安定剤と組み合わせて用いても良い。この様な安定剤としては、例えば、テトラキス〔メチレン(3,5-ジ-t-ブチル-4-ヒドロキシ)ヒドロシンナメート〕メタン、ジステアリルチオジプロピオネート等の耐熱安定剤、あるいはビス(2,2’,6,6’-テトラメチル-4-ピペリジン)セバケート、2-(2-ヒドロキシ-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾル等の耐候安定剤などが挙げられる。また着色剤として無機系、有機系のドライカラーを添加してもよい。また、滑剤や塩化水素吸収剤等として公知のステアリン酸カルシウムなどのステアリン酸塩も好適な安定剤として挙げることができる。
 本発明のエチレン重合体組成物は粒子形状であることが好ましく、平均粒径が通常は100~300μmであり、且つ、粒子全体に対して、粒径355μm以上の粒子の割合が2質量%以下であることが好ましく、粒径250μm以上の粒子の割合が2質量%以下であることが更に好ましく、粒径250μm以上の粒子を含まないことが最も好ましい。平均粒径の下限値は好ましくは110μm、より好ましくは120μm、特に好ましくは130μmである。一方、平均粒径の上限値は好ましくは280μm、より好ましくは260μmである。
 エチレンおよび必要に応じて用いられる他のα-オレフィンの重合によりエチレン重合体組成物の粒子を製造する際、生成するエチレン重合体組成物の粒子の平均粒径が大きくなるほど、当該組成物の粒子内部に重合反応熱が滞留し易くなるため、粒子の部分的な溶融、粒子同士の融着が発生する可能性がある。このような溶融や融着が生じると、エチレン重合体組成物の粒子の重合体鎖の絡み合いが増加すると推定される。このような重合体鎖の絡み合いの増加は、固相延伸成型用樹脂における延伸性能の低下をもたらす傾向にある。従って、平均粒径が上記粒径の上限値を越えると、固相延伸時の成形性が低下する可能性がある。
 また、エチレン重合体組成物の粒子の平均粒径が上記粒径の下限値未満であると、帯電し易いなどの理由でハンドリングに問題が生じることがある。
 本発明のエチレン重合体組成物の粒子は、粒径355μm以上の粒子の割合が好ましくは1.5質量%以下、より好ましくは1.0質量%以下である。
 粒径が355μmを越えるような粗大粒子の存在は、固相延伸成形物製造の際に成形物の均一性を阻害する可能性がある。例えば、後述する延伸成形物製造の第1段階である圧縮シートを作製する際、粗大粒子の存在する部分がシートの均一性を乱す可能性がある。この均一性不良個所が起点となって、第2段階以降の延伸成形工程に於いてシートの破断の原因となり、延伸倍率の低下をもたらすことがある。
 なお、本発明のエチレン重合体組成物の粒子の平均粒径は、所謂メディアン径であり、6~9種の異なる目開き径の篩を多段に重ねてエチレン重合体組成物の粒子の粒度分布を測定する篩別法により測定できる。上記の篩の中に目開き径355μmの篩があれば、上記の粗大粒子の割合も同時に測定することができる。
 〈オレフィン重合用触媒〉
 本発明のエチレン重合体組成物は、上記の極限粘度や形状を実現できる限り、公知のオレフィン重合用触媒を制限無く使用することができる。
 好ましくはオレフィン重合用触媒が固体状触媒成分を含み、該固体状触媒成分1g当たり500g以上のエチレン重合体が生成する、すなわち500g以上のエチレンが反応する高活性の触媒であることが好ましい。より好ましくは固体状触媒成分1g当たり1,000g以上、更に好ましくは2,000g以上のエチレン重合体が生成する触媒成分を用いることが好ましい。この所謂重合活性の上限値を設定することに余り意味はないが、重合反応熱で生成したエチレン重合体が融解する危険性を考慮すると、通常は60,000g-重合体/g-固体状触媒成分以下、好ましくは30,000g-重合体/g-固体状触媒成分以下である。
 なお、本発明における固体状触媒成分とは、下記に示すような、マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分であることが好ましい。
 固体状触媒成分を含むオレフィン重合用触媒から製造されるエチレン重合体組成物は、固体状触媒成分中の活性点で生成するエチレン重合体塊の集合体であるとされている。上記の様な高活性の固体状触媒成分は触媒中の活性点数が比較的多いため、固体状触媒成分を含むオレフィン重合用触媒から製造されるエチレン重合体組成物は、より多くのエチレン重合体塊の集合体となっている。そのため、エチレン重合体組成物は表面積が広い構造を取りやすいと考えられる。またこのような固体状触媒成分は、活性が高いことから一部の生成したポリオレフィンが固体状触媒成分の細孔から噴出して糸状、柱状の形状を形成すると推測される。
 上記の様なオレフィン重合用触媒の好ましい例としては、
 [A]マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分、ならびに
 [B]周期表の第1族、第2族および第13族から選ばれる金属元素を含む有機金属化合物触媒成分を含むオレフィン重合用触媒が挙げられる。これらの触媒の例を以下に詳しく述べる。
 [固体状チタン触媒成分[A]]
 上記のチタン、マグネシウム、ハロゲンを含む固体状チタン触媒成分[A]としては、前述の特許文献1、特許文献2の他、特開昭56-811号公報、特開昭57-63310号公報、特開昭58-83006号公報、特開平3-706号公報、特開平2-255810号公報、特開平4-218509号公報等に記載されている固体状チタン触媒成分を例示することができる。このような固体状チタン触媒成分は、下記のようなマグネシウム化合物、チタン化合物や必要に応じて電子供与体を接触させて得ることができる。
  <マグネシウム化合物>
 マグネシウム化合物としては、具体的には、塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウム;
 メトキシ塩化マグネシウム、エトキシ塩化マグネシウム、フェノキシ塩化マグネシウムなどのアルコキシマグネシウムハライド;
 エトキシマグネシウム、イソプロポキシマグネシウム、ブトキシマグネシウム、2-エチルヘキソキシマグネシウムなどのアルコキシマグネシウム;
 フェノキシマグネシウムなどのアリーロキシマグネシウム;
 ステアリン酸マグネシウムなどのマグネシウムのカルボン酸塩;
などの公知のマグネシウム化合物を挙げることができる。
 これらのマグネシウム化合物は単独で用いても、2種以上を組み合わせて用いてもよい。またこれらのマグネシウム化合物は、他の金属との錯化合物、複化合物あるいは他の金属化合物との混合物であってもよい。
 これらの中ではハロゲンを含有するマグネシウム化合物が好ましく、ハロゲン化マグネシウム、特に塩化マグネシウムが好ましく用いられる。他に、エトキシマグネシウムのようなアルコキシマグネシウムも好ましく用いられる。また、該マグネシウム化合物は、他の物質から誘導されたもの、たとえばグリニャール試薬のような有機マグネシウム化合物とハロゲン化チタンやハロゲン化珪素、ハロゲン化アルコールなどとを接触させて得られるものであってもよい。
  <チタン化合物>
 チタン化合物としては、たとえば一般式(1);
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rは炭化水素基であり、Xはハロゲン原子であり、gは0≦g≦4である。)で示される4価のチタン化合物を挙げることができる。より具体的には、
 TiCl4、TiBr4などのテトラハロゲン化チタン;
 Ti(OCH3)Cl3、Ti(OC25)Cl3、Ti(O-n-C49)Cl3、Ti(OC25)Br3、Ti(O-isoC49)Br3などのトリハロゲン化アルコキシチタン;
 Ti(OCH32Cl2、Ti(OC252Cl2などのジハロゲン化アルコキシチタン;
 Ti(OCH33Cl、Ti(O-n-C493Cl、Ti(OC253Brなどのモノハロゲン化アルコキシチタン;
 Ti(OCH34、Ti(OC254、Ti(OC494、Ti(O-2-エチルヘキシル)4などのテトラアルコキシチタン
などを挙げることができる。
 これらの中で好ましいものは、テトラハロゲン化チタンであり、特に四塩化チタンが好ましい。これらのチタン化合物は単独で用いても2種以上を組み合わせて用いてもよい。
  <電子供与体>
 本発明の固体状チタン触媒成分[A]には、公知の電子供与体やその置換体が含まれていても良い。電子供与体の好ましい例としては、芳香族カルボン酸エステル、脂環族カルボン酸エステル、炭素原子(好ましくは複数の炭素原子)を介して2個以上のエーテル結合を有する化合物、即ちポリエーテル化合物から選ばれる電子供与体(a)が挙げられる。
 本発明の固体状チタン触媒成分[A]が電子供与体を含んでいると、得られるエチレン重合体の分子量を高く制御できたり、分子量分布を制御したりすることができる場合がある。
 この様な芳香族カルボン酸エステルとしては、具体的にはトルイル酸エステルなどの芳香族カルボン酸モノエステルの他、フタル酸エステル類等の芳香族多価カルボン酸エステルが挙げられる。これらの中でも芳香族多価カルボン酸エステルが好ましく、フタル酸エステル類がより好ましい。このフタル酸エステル類としては、フタル酸エチル、フタル酸n-ブチル、フタル酸イソブチル、フタル酸ジイソブチル、フタル酸ヘキシル、フタル酸へプチル等のフタル酸アルキルエステルが好ましく、フタル酸ジイソブチルが特に好ましい。
 また、前記脂環族カルボン酸エステル化合物としては、下記一般式(2)で表される脂環族多価カルボン酸エステル化合物が例示できる。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)において、nは、5~10の整数、好ましくは5~7の整数であり、特に好ましくは6である。またCaは、炭素原子を表す。
 R2およびR3はそれぞれ独立にCOOR1またはRであり、R2およびR3のうちの少なくとも1つはCOOR1である。
 環状骨格中の炭素原子間結合は、すべてが単結合であることが好ましいが、環状骨格中のCa-Ca結合以外のいずれかの単結合は、二重結合に置き換えられていてもよい。
 複数個あるR1は、それぞれ独立に、炭素原子数が1~20、好ましくは1~10、より好ましくは2~8、更に好ましくは4~8、特に好ましくは4~6の1価の炭化水素基である。
 この炭化水素基としては、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、ヘキシル基、へプチル基、オクチル基、2-エチルヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、エイコシル基などが挙げられ、中でもn-ブチル基、イソブチル基、ヘキシル基、オクチル基が好ましく、更にはn-ブチル基、イソブチル基が好ましい。
 複数個あるRは、それぞれ独立に、水素原子、炭素原子数1~20の炭化水素基、ハロゲン原子、窒素含有基、酸素含有基、リン含有基、ハロゲン含有基およびケイ素含有基から選ばれる原子または基である。
 Rは、炭素原子数1~20の炭化水素基が好ましく、この炭素原子数1~20の炭化水素基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、ビニル基、フェニル基、オクチル基などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基が挙げられる。中でも脂肪族炭化水素基が好ましく、具体的にはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基が好ましい。
 またRは、互いに結合して環を形成していてもよく、Rが互いに結合して形成される環の骨格中には二重結合が含まれていてもよく、該環の骨格中に、COOR1が結合したCaを2つ以上含む場合は、該環の骨格をなす炭素原子の数は5~10である。
 このような環の骨格としては、ノルボルナン骨格、テトラシクロドデセン骨格などが挙げられる。
 また複数個あるRは、カルボン酸エステル基、アルコキシ基、シロキシ基、アルデヒド基やアセチル基などのカルボニル構造含有基であってもよく、これらの置換基は、炭化水素基1個以上を含んでいることが好ましい。
 このような脂環族エステル化合物の好ましい例としては、
 3,6-ジメチルシクロヘキサン-1,2-ジカルボン酸エステル、3-メチル-6-プロピルシクロヘキサン-1,2-ジカルボン酸エステル、シクロヘキサン-1,2-ジカルボン酸エステル
等が挙げられる。
 上記のようなジエステル構造を持つ化合物には、一般式(2)における複数のCOOR1基に由来するシス、トランス等の異性体が存在するが、どの構造であっても本発明の目的に合致する効果を有する。重合活性の観点等からは、特にトランス体の含有率が高いことが好ましい。
 また、前記ポリエーテル化合物としては、より具体的には以下の一般式(3)で表わされる化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式(3)において、mは1≦m≦10の整数、より好ましくは3≦m≦10の整数であり、R11~R36は、それぞれ独立に、水素原子、あるいは炭素、水素、酸素、フッ素、塩素、臭素、ヨウ素、窒素、硫黄、リン、ホウ素およびケイ素から選択される少なくとも1種の元素を有する置換基である。
 mが2以上である場合、複数個存在するR11およびR12は、それぞれ同じであっても異なっていてもよい。任意のR11~R36、好ましくはR11およびR12は互いに結合してベンゼン環以外の環を形成していてもよい。
 この様な化合物の一部の具体例としては、
 2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2-メチル-2-イソプロピル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-メチル-1,3-ジメトキシプロパン、2-イソブチル-2-メチル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジエトキシプロパン、2,2-ジイソブチル-1,3-ジブトキシプロパン、2,2-ジ-sec-ブチル-1,3-ジメトキシプロパン、2,2-ジネオペンチル-1,3-ジメトキシプロパン、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-シクロヘキシルメチル-1,3-ジメトキシプロパン、2-メチル-2-n-プロピル-1,3-ジエトキシプロパン、2,2-ジエチル-1,3-ジエトキシプロパン
等の2置換ジアルコキシプロパン類、
 2-メトキシメチル-2-メチル-1,3-ジメトキシプロパン、2-シクロヘキシル-2-エトキシメチル-1,3-ジエトキシプロパン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシプロパン
等のトリアルコキシアルカン類、
 2,2-ジイソブチル-1,3-ジメトキシ-シクロヘキサン、2-イソアミル-2-イソプロピル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソプロピル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-メトキシメチル-1,3-ジメトキシシクロヘキサン、2-シクロヘキシル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン、2-エトキシメチル-2-イソプロピル-1,3-ジメトキシシクロヘキサン、2-イソブチル-2-エトキシメチル-1,3-ジメトキシシクロヘキサン
等のジアルコキシシクロアルカン、
等を例示することができる。
 これらの中でも、特に、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2-メチル-2-n-プロピル-1,3-ジエトキシプロパン、2,2-ジエチル-1,3-ジエトキシプロパンが好ましい。
 これらの化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明に用いられる固体状チタン触媒成分は、オレフィン重合用触媒として用いると、重合反応初期の反応性が高く比較的短期で失活してしまうタイプ(初期活性型)と、重合反応初期の反応性はマイルドながらも反応が持続する傾向にあるタイプ(活性持続型)に大別できるが、本発明の固体状チタン触媒成分としては、後者の活性持続型が好ましいと推測される。反応性が高過ぎると前述したようなエチレン重合体組成物の粒子表面の溶融や、粒子同士の融着が起こり易いと考えられるためである。
 その観点からは、上記の芳香族カルボン酸エステル、脂環族カルボン酸エステル、ポリエーテル化合物の中でも、芳香族多価カルボン酸エステル、脂環族多価カルボン酸エステルおよびポリエーテル化合物が好ましく、より好ましくはポリエーテル化合物が好ましい。更には1,3-ジエーテル化合物が好ましく、特に、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパンが好ましい。理由は不明であるが、本発明者らの実験結果によれば、上述の1,3-ジエーテル化合物を含む固体状チタン触媒成分は、高い結晶化度のエチレン重合体を与え易い傾向がある。
 これら上記の芳香族カルボン酸エステル、脂環族カルボン酸エステル、ポリエーテル化合物等の電子供与体(a)は、単独で用いてもよく2種類以上を組み合わせて用いてもよい。また上記の電子供与体は、固体状チタン触媒成分[A]を調製する過程で形成されてもよい。具体的にはエステル化合物を例とした場合、固体状チタン触媒成分[A]を調製する際に、上記エステル化合物に対応する無水カルボン酸やカルボン酸ジハライドと、対応するアルコールとが実質的に接触する工程を設けることで、上記エステル化合物を固体状チタン触媒成分中に含有させることもできる。
 本発明で用いられる固体状チタン触媒成分[A]の調製には、公知の方法を制限無く使用することができる。具体的な好ましい方法としては、たとえば以下の(P-1)~(P-4)の方法を挙げることができる。
 (P-1)マグネシウム化合物およびアルコールなどの電子供与体からなる固体状付加物と、電子供与体(a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させる方法。
 (P-2)マグネシウム化合物およびアルコールなどの電子供与体からなる固体状付加物と、電子供与体(a)と、液状状態のチタン化合物とを、複数回に分けて接触させる方法。
 (P-3)マグネシウム化合物およびアルコールなどの電子供与体からなる固体状付加物と、電子供与体(a)と、液状状態のチタン化合物とを、不活性炭化水素溶媒共存下、懸濁状態で接触させ、且つ複数回に分けて接触させる方法。
 (P-4)マグネシウム化合物およびアルコールなどの電子供与体からなる液状状態のマグネシウム化合物と、液状状態のチタン化合物と、電子供与体(a)とを接触させる方法。
 固体状チタン触媒成分[A]の調製における、好ましい反応温度は、通常は-30℃~150℃、より好ましくは-25℃~130℃、更に好ましくは-25℃~120℃の範囲である。
 また上記の固体状チタン触媒成分[A]の製造には、必要に応じて公知の媒体の存在下に行うこともできる。上記の媒体としては、やや極性を有するトルエンやo-ジクロロトルエンなどの芳香族炭化水素や、ヘプタン、オクタン、デカン、シクロヘキサンなどの公知の脂肪族炭化水素、脂環族炭化水素化合物が挙げられるが、これらの中では脂肪族炭化水素が好ましい例として挙げられる。
 本発明で用いられる固体状チタン触媒成分[A]において、ハロゲン/チタン(原子比)(すなわち、ハロゲン原子のモル数/チタン原子のモル数)は、好ましくは2~100、より好ましくは4~90である。
 マグネシウム/チタン(原子比)(すなわち、マグネシウム原子のモル数/チタン原子のモル数)は、好ましくは2~100、より好ましくは4~50である。
 電子供与体(a)/チタン(モル比)(すなわち、芳香族カルボン酸エステル、脂環族カルボン酸エステル、ポリエーテル化合物から選ばれる電子供与体のモル数/チタン原子のモル数)は、好ましくは0~100、より好ましくは0.2~10である。
[有機金属化合物触媒成分[B]]
 前述のオレフィン重合用触媒に含まれる、有機金属化合物触媒成分[B]としては、第13族金属を含む化合物、たとえば、有機アルミニウム化合物、第1族金属とアルミニウムとの錯アルキル化物、第2族金属の有機金属化合物などを用いることができる。これらの中でも有機アルミニウム化合物が好ましい。
 有機金属化合物触媒成分[B]としては具体的には、前述の公知文献に詳細な記載があるが、このような有機金属化合物触媒成分[B]としては、たとえば一般式(4);
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、Raは炭素原子数1~12の炭化水素基であり、Xはハロゲンまたは水素であり、nは1≦n≦3である)で示される有機アルミニウム化合物を例示することができる。
 上記一般式(4)において、Raは炭素原子数1~12の炭化水素基、たとえばアルキル基、シクロアルキル基またはアリ-ル基であるが、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、フェニル基、トリル基などである。この中でもn=3のトリアルキルアルミニウム、特に、トリエチルアルミニウム、トリイソブチルアルミニウム等が好ましい。これらの化合物は、2種以上混合して用いることもできる。
[触媒成分[C]]
 また、オレフィン重合用触媒は、上記の有機金属化合物触媒成分[B]と共に、必要に応じて公知の触媒成分[C]を含んでいてもよい。触媒成分[C]として好ましくは、有機ケイ素化合物が挙げられる。この有機ケイ素化合物としては、たとえば以下の一般式(5)で表される化合物を例示できる。
Figure JPOXMLDOC01-appb-C000005
(一般式(5)中、RおよびR’は炭化水素基であり、nは0<n<4の整数である。)
 上記のような一般式(5)で示される有機ケイ素化合物の好ましい具体例としてはビニルトリエトキシシラン、ジフェニルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジシクロペンチルジメトキシシランが挙げられる。
 また、国際公開第2004/016662号パンフレットに記載されている以下の一般式(6)で表されるシラン化合物も前記有機ケイ素化合物の好ましい例である。
Figure JPOXMLDOC01-appb-C000006
(一般式(6)中、Raは、炭素原子数1~6の炭化水素基であり、好ましくは、炭素原子数1~6の不飽和あるいは飽和脂肪族炭化水素基などが挙げられ、特に好ましくは炭素原子数2~6の炭化水素基が挙げられる。具体例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられ、これらの中でもエチル基が特に好ましい。)
 また一般式(6)中、Rbは、炭素原子数1~12の炭化水素基または水素であり、好ましくは、炭素原子数1~12の不飽和あるいは飽和脂肪族炭化水素基または水素などが挙げられる。具体例としては水素原子、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基等が挙げられ、これらの中でもエチル基が特に好ましい。
 また一般式(6)中、Rcは、炭素原子数1~12の炭化水素基であり、好ましくは、炭素原子数1~12の不飽和あるいは飽和脂肪族炭化水素基などが挙げられる。具体例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、n-ペンチル基、iso-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、オクチル基等が挙げられ、これらの中でもエチル基が特に好ましい。
 上記一般式(6)で表される化合物の具体例としては、
 ジメチルアミノトリエトキシシラン、ジエチルアミノトリエトキシシラン、ジエチルアミノトリメトキシシラン、ジエチルアミノトリエトキシシラン、ジエチルアミノトリn-プロポキシシラン、ジn-プロピルアミノトリエトキシシラン、メチルn-プロピルアミノトリエトキシシラン、t-ブチルアミノトリエトキシシラン、エチルn-プロピルアミノトリエトキシシラン、エチルiso-プロピルアミノトリエトキシシラン、メチルエチルアミノトリエトキシシラン
が挙げられる。
 触媒成分[C]として他に有用な化合物としては、前記固体状チタン触媒成分[A]の調製の際に使用することができる前記芳香族カルボン酸エステル、脂環族カルボン酸エステルおよび/または複数の炭素原子を介して2個以上のエーテル結合を有する化合物の例として記載したポリエーテル化合物も好ましい例として挙げられる。
 これらのポリエーテル化合物の中でも、1,3-ジエーテル化合物が好ましく、特に、2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジイソブチル-1,3-ジメトキシプロパン、2-イソペンチル-2-イソプロピル-1,3-ジメトキシプロパン、2,2-ジシクロヘキシル-1,3-ジメトキシプロパン、2,2-ビス(シクロヘキシルメチル)-1,3-ジメトキシプロパン、2-メチル-2-n-プロピル-1,3-ジエトキシプロパン、2,-2-ジエチル-1,3-ジエトキシプロパンが好ましい。
 これらの触媒成分[C]は、単独で用いることも2種以上を組み合わせて用いることもできる。
 また本発明で使用することができるオレフィン重合用触媒としては、これらの他にも特開2004-168744号公報等に開示されているメタロセン化合物や、特開2000-128931号公報、特開2004-646097号公報、特開2005-2244号公報、特開2005-2086号公報等に開示されているフェノキシイミン化合物などを配位子とする有機金属錯体と有機金属化合物触媒成分とを含むオレフィン重合用触媒も好ましいオレフィン重合用触媒として例示できる。
 なお、上記オレフィン重合用触媒は、上記のような各成分以外にも必要に応じてオレフィン重合に有用な他の成分を含んでいてもよい。この他の成分としては、たとえば、担体として主に用いられるシリカなど金属酸化物、帯電防止剤等、粒子凝集剤、保存安定剤などが挙げられる。
 〈エチレン重合体組成物の製造方法〉
 本発明に係るエチレン重合体組成物の製造方法は、上記オレフィン重合用触媒を用いてエチレンを含むオレフィンの重合を行うことを特徴としている。本発明において、「重合」には、ホモ重合の他、ランダム共重合、ブロック共重合などの共重合の意味が含まれることがある。
 本発明のエチレン重合体組成物の製造方法では、上記オレフィン重合用触媒の存在下にα-オレフィンを予備重合(prepolymerization)させて得られる予備重合触媒の存在下で、本重合(polymerization)を行うことも可能である。この予備重合は、オレフィン重合用触媒に含まれる固体状触媒成分1g当り0.1~1000g、好ましくは0.3~500g、特に好ましくは1~200gの量でα-オレフィンを予備重合させることにより行われる。
 予備重合では、本重合における系内の触媒濃度よりも高い濃度の触媒を用いることができる。
 予備重合における前記固体状チタン触媒成分[A]の濃度は、液状媒体1リットル当り、チタン原子換算で、通常0.001ミリモル~200ミリモル、好ましくは0.01ミリモル~50ミリモル、特に好ましくは0.1ミリモル~20ミリモルの範囲とすることが望ましい。
 予備重合における前記有機金属化合物触媒成分[B]の量は、固体状チタン触媒成分[A]1g当り0.1g~1000g、好ましくは0.3g~500gの重合体が生成するような量であればよく、固体状チタン触媒成分[A]中のチタン原子1モル当り、通常0.1モル~300モル、好ましくは0.5モル~100モル、特に好ましくは1モル~50モルの量であることが望ましい。
 予備重合では、必要に応じて前記触媒成分[C]等を用いることもでき、この際これらの成分は、前記固体状チタン触媒成分[A]中のチタン原子1モル当り、0.1モル~50モル、好ましくは0.5モル~30モル、更に好ましくは1モル~10モルの量で用いられる。
 予備重合は、不活性炭化水素媒体にオレフィンおよび上記の触媒成分を加え、温和な条件下に行うことができる。
 この場合、用いられる不活性炭化水素媒体としては、具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素;
 シクロヘプタン、メチルシクロヘプタン、シクロヘキサン、メチルシクロヘキサン、メチルシクロペンタン、シクロオクタン、メチルシクロオクタンなどの脂環族炭化水素;
 ベンゼン、トルエン、キシレンなどの芳香族炭化水素;
 エチレンクロリド、クロルベンゼンなどのハロゲン化炭化水素;
あるいはこれらの混合物などを挙げることができる。
 これらの不活性炭化水素媒体のうちでは、特に脂肪族炭化水素を用いることが好ましい。このように、不活性炭化水素媒体を用いる場合、予備重合はバッチ式で行うことが好ましい。
 一方、オレフィン自体を溶媒として予備重合を行うこともできるし、また実質的に溶媒の無い状態で予備重合することもできる。この場合には、予備重合を連続的に行うのが好ましい。
 予備重合で使用されるオレフィンは、後述する本重合で使用されるオレフィンと同一であっても、異なっていてもよく、具体的には、エチレン、プロピレンであることが好ましい。
 予備重合の際の温度は、通常-20~+100℃、好ましくは-20~+80℃、更に好ましくは0~+40℃の範囲であることが望ましい。
 次に、前記の予備重合を経由した後に、あるいは予備重合を経由することなく実施される本重合(polymerization)について説明する。
 本重合(polymerization)においてはエチレンを上記のオレフィン重合用触媒の存在下に重合させる。エチレンの他に炭素原子数が3~20のα-オレフィン、たとえば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの直鎖状オレフィンや、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテン等の分岐状オレフィンが共用されても良い。これらのα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテンが好ましい。
 これらのα-オレフィンと共に、スチレン、アリルベンゼン等の芳香族ビニル化合物;
 ビニルシクロヘキサン、ビニルシクロヘプタン等の脂環族ビニル化合物を用いることもできる。
 本発明では、予備重合および本重合は、バルク重合法、溶解重合、懸濁重合などの液相重合法あるいは気相重合法のいずれにおいても実施できる。
 本重合がスラリー重合の反応形態を採る場合、反応溶媒としては、上述の予備重合時に用いられる不活性炭化水素を用いることもできるし、反応温度において液体であるオレフィンを用いることもできる。
 本発明の重合方法における本重合においては、前記固体状チタン触媒成分[A]は、重合容積1リットル当りチタン原子に換算して、通常は0.0001ミリモル~0.5ミリモル、好ましくは0.005ミリモル~0.1ミリモルの量で用いられる。また、前記有機金属化合物触媒成分[B]は、重合系中の前記固体状チタン触媒成分[A](予備重合を行う場合は予備重合触媒成分)中のチタン原子1モルに対し、通常1モル~2000モル、好ましくは5モル~500モルとなるような量で用いられる。前記触媒成分[C]を使用する場合は、前記有機金属化合物触媒成分[B]に対して、0.001モル~50モル、好ましくは0.01モル~30モル、特に好ましくは0.05モル~20モルの量で用いられる。
 本重合を水素の存在下に行えば、得られる重合体の分子量を調節することができる。
 本発明における本重合において、オレフィンの重合温度は、通常は20℃~200℃、好ましくは30℃~100℃、より好ましくは50℃~90℃である。圧力は、通常は常圧~10MPa、好ましくは0.20MPa~5MPaに設定される。本発明の重合方法においては、成分(a)、成分(b)の各々の重合は、回分式、半連続式、連続式の何れの方法においても行うことができる。
 本発明のエチレン重合体組成物の製造方法としては、成分(a)、成分(b)の各々の重合を行った後に、両者を混合する方法、また、重合を、反応条件を変えて二段以上に分けて行う方法が挙げられる。これらのうちでは、重合を、反応条件を変えて二段以上に分けて行う方法のほうがより好ましい。
 本発明におけるエチレン重合体組成物の製造方法の具体例としては、
 (i)成分(a):極限粘度[η]が2dl/g以上20dl/g以下、好ましくは5dl/g以上18dl/g以下、より好ましくは8dl/g以上15dl/g以下、更に好ましくは10dl/g以上13dl/g以下のエチレン重合体を製造する工程、および
 (ii)成分(b):極限粘度[η]が35dl/gを超えて50dl/g以下、好ましくは35dl/gを超えて45dl/g以下、より好ましくは35dl/gを超えて40dl/g以下、更に好ましくは35dl/gを超えて39dl/g以下のエチレン重合体を製造する工程、
を含む条件でエチレン重合体を製造することが好ましい。この場合、1段目に製造された成分の極限粘度は実測値であり、2段目に製造された成分の極限粘度は後述する式に基づいて算出される。ただし、成分(a)、すなわち、より低分子量のエチレン重合体成分を製造する工程を1段目とし、成分(b)、すなわち、より高分子量のエチレン重合体成分を製造する工程を2段目とすることが好ましい。
 また、成分(a)と成分(b)との質量割合の上限および下限は、それぞれの成分の極限粘度にもよるが、成分(a)の上限は50%、好ましくは40%、より好ましくは35%、更に好ましくは30%であり、下限は0%、好ましくは5%、より好ましくは10%、更に好ましくは15%、最も好ましくは20%である。一方、成分(b)の上限は100%、好ましくは95%、より好ましくは90%、更に好ましくは85%、最も好ましくは80%であり、下限は50%、好ましくは60%、より好ましくは65%、更に好ましくは70%である。
 この質量比は、各工程でのエチレン吸収量測定や、各工程で得られた樹脂を少量且つ規定量をサンプリングし、その質量やスラリー濃度、樹脂中の触媒成分の含有率等から各工程での樹脂生成量を計算する事によって決定することができる。また、2段目に製造された重合体の極限粘度は以下の式に基づいて算出する。
 [数1]
Figure JPOXMLDOC01-appb-I000007
(式中、[η](1)は1段目で生成した重合体の極限粘度、[η](2)は2段目で生成した重合体の極限粘度、[η](t)は2段目終了後の全重合体の極限粘度、w(1)は1段目の質量分率、w(2)は2段目の質量分率をそれぞれ示す。)
 固体状チタン触媒成分を含む触媒により、エチレンや必要に応じて用いられる他のオレフィンの重合反応を行う場合、その重合反応が固体状チタン触媒成分中の触媒活性点で起こる。重合反応初期に生成する重合体は生成するエチレン重合体組成物粒子の表面部に、重合反応後期に生成する重合体は組成物粒子の内部に、それぞれ偏在すると推測されている。木の年輪と類似した現象であると考えられる。従って、本発明で2段以上に反応条件を分けてエチレン重合体を製造する場合、1段目に製造するエチレン重合体の極限粘度[η]が、最終的に得られるエチレン重合体の[η]より低くなる条件で製造すると、組成物粒子表面に相対的に分子量の低い重合体が存在する可能性が高く、固相延伸成形の際に粒子同士が圧着し易いと考えられる。
 本発明のエチレン重合体組成物はバッチ式、連続式等、公知の重合法で製造することができる。上記の様な多段階の重合工程で製造する場合は、バッチ式を採用することが好ましい。バッチ式プロセスで得られるエチレン重合体組成物は、組成物粒子毎の1段目の重合工程と2段目の重合工程で得られるエチレン重合体のバラツキが少なく、上述の粒子同士の圧着により有利であると考えられる。
 このようにして得られたエチレン重合体組成物は、単独重合体、ランダム共重合体およびブロック共重合体などのいずれであってもよい。好ましくは結晶化度の高い重合体を得やすい観点から本発明のエチレン重合体組成物はエチレンの単独重合体であることが好ましい。
 本発明のエチレン重合体組成物は、上記の様なオレフィン重合用触媒の存在下にエチレンを重合して得られた組成物そのものであっても良いが、該組成物(該重合体)を90℃以上、該重合体の融点以下の温度で15分~24時間保持する工程を経ることが好ましい。
 例えば、該組成物を気相雰囲気下で100℃以上、該重合体の融点以下の温度に保持する工程を経ることが好ましい。具体的な条件としては、温度が、通常は100℃~140℃、好ましくは105℃~140℃、より好ましくは110℃~135℃であり、保持時間が、通常は15分~24時間、好ましくは1~10時間、より好ましくは1~4時間の条件を挙げることができる。具体的な方法としては、重合して得られたエチレン重合体組成物を、オーブンなどを用いて上記の条件に保持する方法や、エチレン重合体組成物の製造工程において、重合反応後の工程、例えば乾燥工程などを上記の条件で行う方法などが挙げられる。この様な工程を経ることで、より高い結晶化度を有するエチレン重合体組成物を得ることができる。
 また、液相雰囲気下では、温度が、通常は90℃~140℃、好ましくは、95℃~140℃、より好ましくは95℃~135℃で、更には95℃~130℃であり、保持時間が、通常は15分~24時間、好ましくは1~10時間、より好ましくは1~4時間の条件の工程を経て得られるエチレン重合体組成物であることが好ましい。
 〈エチレン重合体組成物からなる成形物〉
 本発明のエチレン重合体組成物からなる成形物は、上記のエチレン重合体組成物を公知のポリエチレン用成形法で成形することによって得られる。本発明の成形物は、結晶化度の高いエチレン重合体組成物を用いているので、強度に優れる傾向にある。また多段重合法で得られるエチレン重合体組成物を用いると、成形性に優れる傾向にあるので、従来よりも成形物の形状自由度が高まることが期待される。本発明の成形物の中でも特に好ましくは、固相延伸成形法で得られる成形物である。
 具体的な成形物としては、本発明のエチレン重合体組成物からなるフラットヤーン、本発明のエチレン重合体組成物を固相延伸成形して得られる繊維などが挙げられる。
 固相延伸成形の条件は、上記のエチレン重合体組成物を用いる以外は特許文献3~5等に記載されている公知の条件を制限無く用いることができる。例えば、本発明のエチレン重合体組成物を、1MPa以上の圧力で圧着してシート状に成形し、これを比較的高温で引張延伸したり、ロール等を用いて圧力をかけながら延伸したりする方法が挙げられる。この成形中の温度は、エチレン重合体組成物の粒子の融点以下であることが好ましいが、実質的に溶融流動が起こらなければ融点以上での成形となっても構わない。
 本発明のエチレン重合体組成物を用いた成形物の延伸性や延伸成形物の物性は、以下のような方法で評価することができる。
 (延伸倍率)
 エチレン重合体組成物の粒子を温度136℃、圧力7.1MPaで30分間加圧することで、厚さ約500μmのシートを作製し、縦35mm×横7mmの形状に切り出す。
 別途、先端を凸型テーパー形状とした円柱形状の高密度ポリエチレン成形品を作成し、この成形品を中心軸にそって半割りする(以下、これをビレットという)。
 上記の切り出したシートを、ビレットの半割りした平面部分に挟んで固定する。この状態のビレットを、120℃に加熱した凹型テーパー形状のノズルに1cm/分の速度で通過させることで圧縮延伸する。このノズルの凸型テーパー形状とビレットの凹型テーパー形状は、凹凸が合致する形状である。ノズルの入口と出口におけるそれぞれの断面積の比が6:1であり、シートは長手方向に6倍に延伸される(予備延伸)。
 次いで、上記の予備延伸で得られた延伸シートを切り出して、チャック間が9mmとなるように引張試験機((株)インテスコ社製、精密万能材料試験機、型式2005型)にセットする。温度135℃、引張速度が18mm/分の条件で、前記予備延伸と同じ方向に破断が起こるまで一軸延伸する。
 上記2回目の延伸倍率に、前記予備延伸での6倍を乗じた値を当該評価の延伸倍率として評価する。
 (物性)
 ASTM規格に基づき、引張試験機((株)インテスコ社製、精密万能材料試験機、型式2005型)を用いて、延伸成形物の引張強度、引張弾性率を測定することができる。
 本発明のエチレン重合体組成物を用いると上記の延伸倍率が90倍以上の高い性能を得ることができる。より好ましくは90倍から500倍、更に好ましくは100倍~400倍、特に好ましくは120倍~350倍、殊には140倍~350倍である。
 本発明の固相延伸成形物は高い延伸倍率での成形が可能であるので、高い強度を有することが期待される。また固相延伸成形は溶媒を用いずに成形する方法であるため、成形設備が比較的シンプルでありまた環境への悪影響も少ない成形法であり、社会への貢献度が高いことが予想される。
 次に、本発明を実施例に基づいて説明するが、本発明はその要旨を逸脱しない限り下記の実施例に限定されないことは言うまでもない。
 以下の実施例において、エチレン重合体組成物の粒子の極限粘度[η]、結晶化度、融解熱は下記の方法によって測定した。
 (極限粘度[η])
 極限粘度[η]は、エチレン重合体組成物の粒子をデカリンに溶解させ、温度135℃のデカリン中で測定した。
 (2段目に製造された重合体の極限粘度)
 2段目に製造された重合体の極限粘度は以下の式に基づいて算出した。
 [数2]
Figure JPOXMLDOC01-appb-I000008
(式中、[η](1)は1段目で生成した重合体の極限粘度、[η](2)は2段目で生成した重合体の極限粘度、[η](t)は2段目終了後の全重合体の極限粘度、w(1)は1段目の質量分率、w(2)は2段目の質量分率をそれぞれ示す。)
 (結晶化度)
 以下の装置および条件で、広角X線回折透過法による結晶化度測定を行った。
 X線結晶解析装置 :株式会社リガク製RINT2500型装置
 X線源      :CuKα線 出力:50kV、300mA
 検出器      :シンチレーションカウンター
 サンプル     :得られた重合体組成物の粒子をそのまま用いた。
 具体的には、重合体組成物の粒子約0.002gを試料ホルダーに充填し、株式会社リガク製RINT2500型装置付属の回転試料台で試料ホルダーを77回転/分で回転させながら広角X線回折透過測定を実施した。
 得られた広角X線回折プロファイルより結晶化度を算出した。
 (融解熱)
 融解熱は、示差走査熱分析法(DSC)により次の条件で測定した。すなわち、エチレン重合体組成物の粒子、約5mgをアルミパンに充填し、セイコー電子工業株式会社製RDC220ロボットDSCモジュールを用いて、30℃から200℃まで、昇温速度=10℃/分の条件で加熱した。得られる融解ピークから、常法により融解熱を求めた。
 (平均粒径、および粒径355μm以上の粒子の割合)
 目開き径44μm、88μm、105μm、125μm、149μm、177μm、250μm、350μm、1190μmの9種の篩を用い、帯電防止剤として極少量のカーボンブラックを混合したエチレン重合体組成物の粒子5gを分級した。その結果を基に常法によりメディアン径を求めることにより、平均粒径を算出した。
 一方、粒径355μm以上の粒子の割合については、目開き径355μmの篩を用いた以外は上記と同様の分級を行い、当該篩上の粒子質量の前記分級前の粒子全体の質量に対する割合として算出される。前記の平均粒径算出法の分級の際に平均粒径と粒径355μm以上の粒子の割合とを一度に測定することができる。
 (延伸倍率)
 エチレン重合体組成物の粒子を、(株)小平製作所製プレス機PH-10Eを用いて、設定温度136℃、圧力7.1MPaで30分間加圧することで、厚さ約500μmのシートを作製し、縦35mm×横7mmの形状に切り出す。
 なお、上記のプレス圧力は、成形機に表示された圧力から、次の計算方法により算出したものである。
  (ゲージ表示圧力)×(成形機シリンダ断面積)÷(シート面積)
 別途、先端を凸型テーパー形状とした円柱形状の高密度ポリエチレン成形品を作成し、この成形品を中心軸にそって半割りする(以下、これをビレットという)。
 上記の切り出したシートを、ビレットの半割りした平面部分に挟んで固定する。この状態のビレットを、120℃に加熱した凹型テーパー形状のノズルに1cm/分の速度で通過させることで圧縮延伸する。このノズルの凸型テーパー形状とビレットの凹型テーパー形状は、凹凸が合致する形状である。ノズルの入口と出口におけるそれぞれの断面積の比が6:1であり、シートは長手方向に6倍に延伸される(予備延伸)。
 次いで、上記の予備延伸で得られた延伸シートを切り出して、チャック間が9mmとなるように引張試験機((株)インテスコ社製、精密万能材料試験機、型式2005型)にセットする。温度135℃、引張速度が18mm/分の条件で、前記予備延伸と同じ方向に破断が起こるまで一軸延伸する。
 上記2回目の延伸倍率に、前記予備延伸での6倍を乗じた値を当該評価の延伸倍率として評価する。測定は2回行い、高いほうの値を延伸倍率の値とした。
 (引張強度)
 延伸後の引張強度は、以下のように測定した。すなわち、所定の倍率に延伸した試料を、チャック間が100mmになるように引張試験機((株)インテスコ社製、精密万能材料試験機、型式2005型)にセットし、23℃の環境下で、100mm/minの引張速度で測定した。
[実施例1]
 (固体状チタン触媒成分[A1]の調製)
 無水塩化マグネシウム75g、デカン280.3gおよび2-エチルヘキシルアルコ-ル308.3gを130℃で3時間加熱反応させて均一溶液とした後、この溶液中に2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン19.9gを添加し、更に100℃にて1時間攪拌混合を行った。
 このようにして得られた均一溶液を室温まで冷却した後、この均一溶液30mlを-20℃に保持した四塩化チタン80ml中に攪拌下45分間にわたって全量滴下装入した。装入終了後、この混合液の温度を6時間かけて110℃に昇温し、110℃になったところで混合液中に2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン0.55gを添加し、2時間同温度にて攪拌下保持した。2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を100mlの四塩化チタンにて再懸濁させた後、再び110℃で2時間、加熱反応を行った。反応終了後、再び熱濾過にて固体部を採取し、温度90℃のデカンおよびヘキサンで洗液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。以上の操作によって調製した固体状チタン触媒成分はデカンスラリ-として保存したが、触媒組成を調べる目的でこの内の一部を乾燥した。このようにして得られた固体状チタン触媒成分[A1]の組成はチタン2.8質量%,マグネシウム17質量%,塩素58質量%,2-イソブチル-2-イソプロピル-1,3-ジメトキシプロパン19.5質量%および2-エチルヘキシルアルコ-ル残基1.2質量%であった。
 (重合)
 1段目:充分に窒素置換した内容積1リットルの重合器に、室温で500mlの精製デカンを装入し、窒素雰囲気下、温度78℃で、有機金属化合物触媒成分[B1]として、トリイソブチルアルミニウム1.0ミリモルおよび固体状チタン触媒成分[A1]をチタン原子換算で0.01ミリモルを加えた。次いで水素25ミリリットルを添加した後、エチレンを0.3リットル/分の一定速度でフィードし温度80℃で90分間エチレン重合を行った。この時点で重合器からスラリー10mlを抜き出し、濾過、乾燥して得られた白色固体の極限粘度[η]を測定したところ12.2dl/gであった。
 2段目:上記の重合終了後、一旦エチレンと水素とをパージして常圧に戻した。エチレンを0.3リットル/分の一定速度でフィードし70℃で210分間エチレンの重合を行った。
 重合終了後、生成した固体を含むスラリーを濾過し、80℃で一晩減圧乾燥後、更に130℃で3時間保持した。
 更に目開き250μmの篩にかけた。
 得られたエチレン重合体組成物の極限粘度[η]は30.6dl/gであった。
目開き250μmの篩に残留するエチレン重合体組成物は存在しなかった。
 また、上記で得られたエチレン重合体組成物の質量と、1段目でサンプリングしたエチレン重合体(成分(a))の質量から求めた1段目(成分(a))と2段目(成分(b))の質量割合は1段目(成分(a))/2段目(成分(b))=30/70であった。また、これらの結果から求めた2段目で生成した重合体の極限粘度[η]は38.5dl/gであった。上記で得られたエチレン重合体組成物の結晶化度は85%、DSC法による融解熱は232J/gであった。
 上記のエチレン重合体組成物の粒子を温度136℃で圧着してシートを作製した後、上記の方法で温度120℃で6倍に予備延伸した。
 更に予備延伸シートを切り出し、上記条件で135℃で延伸倍率の測定を行ったところ、232倍の結果を得た。
 また、100倍、150倍、200倍にそれぞれ延伸した試料について、上記の方法で引張強度を測定した。
 上記結果を表1に記載する。
 [実施例2]
 (重合)
 1段目での水素の添加量を20ミリリットルとした以外は実施例1と同様にして重合を行った。更に目開き250μmの篩にかけた。
 得られたエチレン重合体組成物の粒子の極限粘度[η]は32.6dl/gであった。目開き250μmの篩に残留するエチレン重合体組成物は存在しなかった。
 また、1段目で得られた重合体の極限粘度[η]は17.2dl/g、1段目(成分(a))と2段目(成分(b))の質量割合は、1段目(成分(a))/2段目(成分(b))=30/70であり、2段目で生成した重合体の極限粘度[η]は39.2dl/gであった。上記で得られたエチレン重合体組成物の結晶化度は85%、DSC法による融解熱は234J/gであった。
 上記のエチレン重合体組成物の粒子を温度136℃で圧着してシートを作製した後、上記の方法で温度120℃で6倍に予備延伸した。
 更に予備延伸シートを切り出し、上記条件で135℃で延伸倍率の測定を行ったところ、180倍の結果を得た。
 また、100倍、150倍にそれぞれ延伸した試料について、上記の方法で引張強度を測定した。
 上記結果を表1に記載する。
 [実施例3]
 (重合)
 1段目での重合時間を30分、2段目での重合時間を270分とした以外は実施例1と同様にして重合を行った。更に目開き250μmの篩にかけた。
 得られたエチレン重合体組成物の粒子の[η]は33.6dl/gであった。目開き250μmの篩に残留するエチレン重合体組成物は存在しなかった。
 また、1段目で得られた重合体の極限粘度[η]は5.0dl/g、1段目(成分(a))と2段目(成分(b))の質量割合は、1段目(成分(a))/2段目(成分(b))=10/90であり、2段目で生成した重合体の極限粘度[η]は36.8dl/gであった。上記で得られたエチレン重合体組成物の結晶化度は84%、DSC法による融解熱は234J/gであった。
 上記のエチレン重合体組成物の粒子を温度136℃で圧着してシートを作製した後、上記の方法で温度120℃で6倍に予備延伸した。
 更に予備延伸シートを切り出し、上記条件で135℃で延伸倍率の測定を行ったところ、244倍の結果を得た。
 また、100倍、150倍、200倍にそれぞれ延伸した試料について、上記の方法で引張強度を測定した。
 上記結果を表1に記載する。
 [比較例1]
 (重合)
 1段目での水素の添加量を10ミリリットルとした以外は実施例1と同様にして重合を行った。更に目開き250μmの篩にかけた。
 得られたエチレン重合体組成物の粒子の極限粘度[η]は37.8dl/gであった。目開き250μmの篩に残留するエチレン重合体組成物は存在しなかった。
 また、1段目で得られた重合体の極限粘度[η]は25.2dl/g、1段目(成分(a))と2段目(成分(b))の質量割合は、1段目(成分(a))/2段目(成分(b))=30/70であり、2段目で生成した重合体の極限粘度[η]は43.2dl/gであった。上記で得られたエチレン重合体組成物の結晶化度は85%、DSC法による融解熱は234J/gであった。
 上記のエチレン重合体組成物の粒子を温度136℃で圧着してシートを作製した後、上記の方法で温度120℃で6倍に予備延伸した。
 更に予備延伸シートを切り出し、上記条件で135℃で延伸倍率の測定を行ったところ、7倍の結果を得た。
 上記結果を表2に記載する。
 [比較例2]
 (重合)
 2段目のエチレンフィード前に水素を10ミリリットル添加した以外は実施例1と同様にして重合を行った。
 得られたエチレン重合体組成物の粒子の極限粘度[η]は16.2dl/gであった。目開き250μmの篩に残留するエチレン重合体組成物は存在しなかった。
 また、1段目で得られた重合体の極限粘度[η]は7.9dl/g、1段目(成分(a))と2段目(成分(b))の質量割合は、1段目(成分(a))/2段目(成分(b))=30/70であり、2段目で生成した重合体の極限粘度[η]は19.8dl/gであった。上記で得られたエチレン重合体組成物の結晶化度は83%、DSC法による融解熱は220J/gであった。
 上記のエチレン重合体組成物の粒子を温度136℃で圧着してシートを作製した後、上記の方法で温度120℃で6倍に予備延伸した。
 更に予備延伸シートを切り出し、上記条件で135℃で延伸倍率の測定を行ったところ、102倍の結果を得た。
 また、100倍に延伸した試料について、上記の方法で引張強度を測定した。
 上記結果を表2に記載する。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明のエチレン重合体組成物は、特定の分子量を有する成分からなる組成物であることから、バッテリーセパレーターフィルム、ゲル紡糸法繊維、シートなどに好適に使用することができる。
 特に固相延伸成形した際に強度の高い成形物を得ることができ、固相延伸成形用途に好適に使用することができる。

Claims (13)

  1. (a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体、
    (b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体
    からなり、
    その質量比は(a)/(b)=0/100~50/50の範囲にあり、
    組成物全体の[η]が30dl/gを超えて50dl/g以下の範囲にあるエチレン重合体組成物。
  2. 前記(a)と(b)との質量比が、(a)/(b)=5/95~50/50である請求項1に記載のエチレン重合体組成物。
  3. 結晶化度が80%以上である請求項1または2に記載のエチレン重合体組成物。
  4. 粒径355μm以上の粒子の割合が全体の2質量%以下であり、
    平均粒径が100~300μmである請求項1~3のいずれか1項に記載のエチレン重合体組成物。
  5. 固体状触媒成分1g当たり500g以上のエチレンが反応して得られる請求項1~4のいずれか1項に記載のエチレン重合体組成物。
  6. [A]マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分、ならびに
    [B]周期表の第1族、第2族および第13族から選ばれる金属元素を含む有機金属化合物触媒成分、
    を含むオレフィン重合用触媒の存在下に、エチレンを含むオレフィンを重合させて得られる請求項1~5のいずれか1項に記載のエチレン重合体組成物。
  7. [A]マグネシウム、ハロゲン、チタンを含む固体状チタン触媒成分、ならびに
    [B]周期表の第1族、第2族および第13族から選ばれる金属元素を含む有機金属化合物触媒成分、
    を含むオレフィン重合用触媒の存在下に、エチレンを含むオレフィンを重合させる工程、ならびに前記工程で得られる重合体を90℃以上、該重合体の融点以下の温度で15分~24時間保持する工程を含む請求項1~5のいずれか1項に記載のエチレン重合体組成物の製造方法。
  8. (a)極限粘度[η]が2dl/g以上20dl/g以下の範囲のエチレン重合体を製造する工程、および
    (b)極限粘度[η]が35dl/gを超えて50dl/g以下の範囲のエチレン重合体を製造する工程を含み、
    上記二工程を経て製造されるエチレン重合体組成物の合計100質量%当たり、
    成分(a)の割合が0~50質量%、成分(b)の割合が100~50質量%である請求項1~5のいずれか1項に記載のエチレン重合体組成物の製造方法。
  9. 成分(a)の重合工程を成分(b)の重合工程に先立って行う請求項8に記載のエチレン重合体組成物の製造方法。
  10. 請求項1~6のいずれか1項に記載のエチレン重合体組成物を用いて得られる成形物。
  11. 固相延伸成形法で得られる請求項10に記載の成形物。
  12. 請求項1~6のいずれか1項に記載のエチレン重合体組成物からなるフラットヤーン。
  13. 請求項1~6のいずれか1項に記載のエチレン重合体組成物を固相延伸成形して得られる繊維。
PCT/JP2009/071312 2008-12-26 2009-12-22 エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物 WO2010074073A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09834874.1A EP2371896B1 (en) 2008-12-26 2009-12-22 Ethylene polymer composition, manufacturing method therefor, and molded article obtained using same
US13/141,166 US20110256402A1 (en) 2008-12-26 2009-12-22 Ethylene polymer composition, method for producing the same, and molded article obtained using the same
CN2009801518513A CN102257059A (zh) 2008-12-26 2009-12-22 乙烯聚合物组合物、其制造方法及用其得到的成型物
JP2010544078A JP5351178B2 (ja) 2008-12-26 2009-12-22 エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物
KR1020117016120A KR101284967B1 (ko) 2008-12-26 2009-12-22 에틸렌 중합체 조성물, 그의 제조 방법 및 그것을 이용하여 얻어지는 성형물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-332879 2008-12-26
JP2008332879 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010074073A1 true WO2010074073A1 (ja) 2010-07-01

Family

ID=42287682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071312 WO2010074073A1 (ja) 2008-12-26 2009-12-22 エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物

Country Status (6)

Country Link
US (1) US20110256402A1 (ja)
EP (1) EP2371896B1 (ja)
JP (1) JP5351178B2 (ja)
KR (1) KR101284967B1 (ja)
CN (1) CN102257059A (ja)
WO (1) WO2010074073A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053261A1 (ja) * 2010-10-21 2012-04-26 三井化学株式会社 エチレン系重合体粒子の製造方法ならびに該エチレン系重合体粒子から得られる延伸成形体
JP2012229417A (ja) * 2011-04-14 2012-11-22 Asahi Kasei Chemicals Corp 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体
JP2014040525A (ja) * 2012-08-22 2014-03-06 Asahi Kasei Chemicals Corp 粒状超高分子量ポリエチレン及び成形体
JP2015140369A (ja) * 2014-01-27 2015-08-03 東ソー株式会社 超高分子量ポリエチレン組成物およびそれよりなる成形体
JP2015212373A (ja) * 2014-04-18 2015-11-26 旭化成ケミカルズ株式会社 繊維用ポリエチレンパウダー、繊維、及び物品
WO2016052751A1 (ja) * 2014-10-03 2016-04-07 旭化成ケミカルズ株式会社 エチレン重合体、及び、これを延伸した延伸成形物、並びに、エチレン重合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886375B1 (ko) * 2015-11-09 2018-08-07 대한유화(주) 이차전지 분리막용 폴리에틸렌의 제조방법 및 이에 따라 제조된 폴리에틸렌

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56811A (en) 1979-06-18 1981-01-07 Mitsui Petrochem Ind Ltd Preparation of olefin polymer or copolymer
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS6310647A (ja) * 1985-06-27 1988-01-18 Mitsui Petrochem Ind Ltd ポリオレフイン組成物
JPS6341512A (ja) 1986-08-07 1988-02-22 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPS6366207A (ja) 1986-09-05 1988-03-24 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPS63159408A (ja) * 1986-06-17 1988-07-02 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPH02255810A (ja) 1988-09-30 1990-10-16 Himont Inc オレフィン重合用触媒
JPH03706A (ja) 1988-09-30 1991-01-07 Himont Inc オレフィン重合用固体触媒成分および触媒
JPH03130116A (ja) 1989-07-28 1991-06-03 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH04218509A (ja) 1990-04-13 1992-08-10 Mitsui Petrochem Ind Ltd 予備重合触媒、オレフィン重合用触媒およびオレフィンの重合方法
JPH06322190A (ja) * 1993-03-24 1994-11-22 Hoechst Ag ポリエチレン射出成形用材料
JPH07156173A (ja) 1993-12-02 1995-06-20 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH09254252A (ja) 1996-03-22 1997-09-30 Nippon Oil Co Ltd ポリオレフィン材料の製造方法
JP2000128931A (ja) 1998-10-21 2000-05-09 Mitsui Chemicals Inc エチレン/α−オレフィン共重合体及びその製造方法
WO2003022920A1 (fr) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Composition de resine de polyethylene
WO2004016662A1 (ja) 2002-08-19 2004-02-26 Ube Industries, Ltd. α−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は重合用触媒、その触媒成分及びその触媒を用いたα−オレフィン重合方法
JP2004168744A (ja) 2002-11-22 2004-06-17 Mitsui Chemicals Inc オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2005002086A (ja) 2003-05-20 2005-01-06 Mitsui Chemicals Inc 遷移金属化合物およびこれを含むオレフィン重合用触媒
JP2005002244A (ja) 2003-06-13 2005-01-06 Mitsui Chemicals Inc オレフィンの重合方法
WO2008013144A1 (fr) 2006-07-25 2008-01-31 Mitsui Chemicals, Inc. Particule de polymère éthylénique, son procédé de production, et article moulé fabriqué à partir d'une telle particule

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879076A (en) * 1986-06-17 1989-11-07 Nippon Oil Co., Ltd. Process for the production of polyethylene materials
JPS63230751A (ja) * 1987-03-19 1988-09-27 Mitsui Petrochem Ind Ltd 超高分子量オレフイン重合体組成物及びその製法
JPS63241050A (ja) * 1987-03-30 1988-10-06 Mitsui Petrochem Ind Ltd 超高分子量エチレン重合体組成物及びその製法
MY103793A (en) * 1987-11-05 1993-09-30 Mitsui Petrochemical Ind Olefin resin composition for injection molding
JP2659375B2 (ja) * 1987-11-13 1997-09-30 三井石油化学工業株式会社 ポリオレフイン組成物
WO2009075303A1 (ja) * 2007-12-12 2009-06-18 Mitsubishi Chemical Corporation 脂肪族ポリエステル樹脂及びその製造方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56811A (en) 1979-06-18 1981-01-07 Mitsui Petrochem Ind Ltd Preparation of olefin polymer or copolymer
JPS5763310A (en) 1980-08-13 1982-04-16 Montedison Spa Ingredient and catalyst for olefin polymerization
JPS5883006A (ja) 1981-11-13 1983-05-18 Mitsui Petrochem Ind Ltd オレフインの重合方法
JPS6310647A (ja) * 1985-06-27 1988-01-18 Mitsui Petrochem Ind Ltd ポリオレフイン組成物
JPS63159408A (ja) * 1986-06-17 1988-07-02 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPS6341512A (ja) 1986-08-07 1988-02-22 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPS6366207A (ja) 1986-09-05 1988-03-24 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の製造方法
JPH02255810A (ja) 1988-09-30 1990-10-16 Himont Inc オレフィン重合用触媒
JPH03706A (ja) 1988-09-30 1991-01-07 Himont Inc オレフィン重合用固体触媒成分および触媒
JPH03130116A (ja) 1989-07-28 1991-06-03 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH04218509A (ja) 1990-04-13 1992-08-10 Mitsui Petrochem Ind Ltd 予備重合触媒、オレフィン重合用触媒およびオレフィンの重合方法
JPH06322190A (ja) * 1993-03-24 1994-11-22 Hoechst Ag ポリエチレン射出成形用材料
JPH07156173A (ja) 1993-12-02 1995-06-20 Nippon Oil Co Ltd 高強度・高弾性率ポリエチレン材料の連続的製造方法
JPH09254252A (ja) 1996-03-22 1997-09-30 Nippon Oil Co Ltd ポリオレフィン材料の製造方法
JP2000128931A (ja) 1998-10-21 2000-05-09 Mitsui Chemicals Inc エチレン/α−オレフィン共重合体及びその製造方法
WO2003022920A1 (fr) * 2001-09-06 2003-03-20 Mitsui Chemicals, Inc. Composition de resine de polyethylene
WO2004016662A1 (ja) 2002-08-19 2004-02-26 Ube Industries, Ltd. α−オレフィンの重合又は共重合に用いられるα−オレフィンの重合又は重合用触媒、その触媒成分及びその触媒を用いたα−オレフィン重合方法
JP2004168744A (ja) 2002-11-22 2004-06-17 Mitsui Chemicals Inc オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2005002086A (ja) 2003-05-20 2005-01-06 Mitsui Chemicals Inc 遷移金属化合物およびこれを含むオレフィン重合用触媒
JP2005002244A (ja) 2003-06-13 2005-01-06 Mitsui Chemicals Inc オレフィンの重合方法
WO2008013144A1 (fr) 2006-07-25 2008-01-31 Mitsui Chemicals, Inc. Particule de polymère éthylénique, son procédé de production, et article moulé fabriqué à partir d'une telle particule

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2371896A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053261A1 (ja) * 2010-10-21 2012-04-26 三井化学株式会社 エチレン系重合体粒子の製造方法ならびに該エチレン系重合体粒子から得られる延伸成形体
US9181359B2 (en) 2010-10-21 2015-11-10 Mitsui Chemicals, Inc. Method of production of ethylene-based polymer particles and stretch-molded article obtained from ethylene-based polymer particles
JP2012229417A (ja) * 2011-04-14 2012-11-22 Asahi Kasei Chemicals Corp 超高分子量ポリエチレン粒子の製造方法、およびそれを用いた成形体
JP2014040525A (ja) * 2012-08-22 2014-03-06 Asahi Kasei Chemicals Corp 粒状超高分子量ポリエチレン及び成形体
JP2015140369A (ja) * 2014-01-27 2015-08-03 東ソー株式会社 超高分子量ポリエチレン組成物およびそれよりなる成形体
JP2015212373A (ja) * 2014-04-18 2015-11-26 旭化成ケミカルズ株式会社 繊維用ポリエチレンパウダー、繊維、及び物品
WO2016052751A1 (ja) * 2014-10-03 2016-04-07 旭化成ケミカルズ株式会社 エチレン重合体、及び、これを延伸した延伸成形物、並びに、エチレン重合体の製造方法
JP5942162B1 (ja) * 2014-10-03 2016-06-29 旭化成株式会社 エチレン重合体、及び、これを延伸した延伸成形物、並びに、エチレン重合体の製造方法
US10087262B2 (en) 2014-10-03 2018-10-02 Asahi Kasei Kabushiki Kaisha Ethylene polymer, stretch-molded product obtained by stretching the same, and method for producing ethylene polymer

Also Published As

Publication number Publication date
EP2371896B1 (en) 2014-02-12
US20110256402A1 (en) 2011-10-20
KR20110094338A (ko) 2011-08-23
EP2371896A4 (en) 2012-04-18
JP5351178B2 (ja) 2013-11-27
JPWO2010074073A1 (ja) 2012-06-21
EP2371896A1 (en) 2011-10-05
CN102257059A (zh) 2011-11-23
KR101284967B1 (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5750212B2 (ja) エチレン重合体粒子、その製造方法およびそれを用いた成形物
JP5530054B2 (ja) オレフィン重合体製造用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP5351178B2 (ja) エチレン重合体組成物、その製造方法およびそれを用いて得られる成形物
JP5457835B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP4864274B2 (ja) ブテン系共重合体、その樹脂組成物およびそれらの成形体並びにそれを製造する固体状チタン触媒およびその製造方法
JP5689232B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP6360698B2 (ja) プロピレン系ブロック共重合体
JP6108894B2 (ja) オレフィン重合用触媒、それを用いたオレフィン系重合体の製造方法
JP2012211220A (ja) エチレン重合体粒子、エチレン重合体粒子の製造方法および該エチレン重合体粒子から得られる成形物
JP7466661B2 (ja) 固体状チタン触媒成分、オレフィン重合用触媒、オレフィンの重合方法およびプロピレン重合体
JP2004002742A (ja) オレフィン重合用固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2020105357A (ja) 成形体
JPS6322806A (ja) オレフインの重合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980151851.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009834874

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141166

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010544078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117016120

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0922512

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110624