WO2010074026A1 - フィルムコンデンサ用高誘電性フィルム形成組成物 - Google Patents

フィルムコンデンサ用高誘電性フィルム形成組成物 Download PDF

Info

Publication number
WO2010074026A1
WO2010074026A1 PCT/JP2009/071236 JP2009071236W WO2010074026A1 WO 2010074026 A1 WO2010074026 A1 WO 2010074026A1 JP 2009071236 W JP2009071236 W JP 2009071236W WO 2010074026 A1 WO2010074026 A1 WO 2010074026A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
high dielectric
inorganic particles
compound
dielectric
Prior art date
Application number
PCT/JP2009/071236
Other languages
English (en)
French (fr)
Inventor
幸治 横谷
美晴 太田
麻有子 立道
信之 小松
恵吏 向井
明天 高
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2010544052A priority Critical patent/JP5679822B2/ja
Priority to DK09834827.9T priority patent/DK2378529T3/da
Priority to EP09834827.9A priority patent/EP2378529B1/en
Priority to US13/141,274 priority patent/US8934216B2/en
Priority to KR1020117017053A priority patent/KR101332473B1/ko
Priority to CN2009801521874A priority patent/CN102265362A/zh
Publication of WO2010074026A1 publication Critical patent/WO2010074026A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/206Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 inorganic and synthetic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a composition used for forming a high dielectric film for a film capacitor, and a high dielectric film for a film capacitor formed from the composition.
  • plastic insulators are characterized by high insulation resistance, excellent frequency characteristics, and excellent flexibility, so they are used for communication, electronic equipment, power, medium / low-pressure phase advance, and inverter. It is expected as a film material such as a film capacitor, a piezoelectric element, a pyroelectric element, and a dielectric for carrying a transfer body.
  • a film capacitor is usually composed of a film having a structure in which aluminum or zinc is vapor-deposited on the surface of a dielectric resin film, or a film in which an aluminum foil and a dielectric resin film are laminated. A material in which an electrode is formed is also frequently used.
  • a high dielectric film for a film capacitor is usually formed as a single layer using a dielectric resin as a film-forming resin.
  • a dielectric resin as a film-forming resin.
  • a polyester or polyphenylene sulfide (PPS) having a high relative dielectric constant is used as the film-forming resin.
  • PPS polyphenylene sulfide
  • Non-fluorinated thermoplastic resins such as fluorinated resins such as vinylidene fluoride (VdF) have been studied.
  • Patent Documents 1 to 4 the recent demand for higher energy density is limited only by the resin that is an organic compound, and high dielectric inorganic particles are blended.
  • the inventors of the present invention have made extensive studies in order to improve such electrical insulation, and found that the above problems can be solved by blending special inorganic particles surface-treated as high dielectric inorganic particles. It came to complete.
  • the surface of the thermoplastic resin (A) and the high dielectric inorganic particles (b1) having a relative dielectric constant (20 ° C., 1 kHz) of 100 or more has a relative dielectric constant (20 ° C., 1 kHz) of 10 or less.
  • the present invention relates to a film-forming composition for a film capacitor comprising surface-treated high dielectric inorganic particles (B) obtained by surface treatment with a low dielectric compound (b2).
  • the relative dielectric constant (20 ° C., 1 kHz) of the high dielectric inorganic particles (b1) is preferably 300 or more.
  • the relative dielectric constant (20 ° C., 1 kHz) of the low dielectric compound (b2) is preferably 5 or less.
  • the low dielectric compound (b2) is preferably at least one selected from organic compounds.
  • the high dielectric inorganic particles (b1) are at least one selected from the group consisting of barium titanate, barium calcium zirconate titanate, and strontium titanate
  • the low dielectric compound (b2) is an organic titanium compound or organic silane. It is preferably at least one selected from the group consisting of a compound, an organic zirconium compound, an organic aluminum compound, and an organic phosphorus compound.
  • the thermoplastic resin (A) may be a fluorinated thermoplastic resin (a1), a non-fluorinated thermoplastic resin (a2), or a combination thereof.
  • composition of the present invention preferably contains 10 to 300 parts by mass of the surface-treated high dielectric inorganic particles (B) with respect to 100 parts by mass of the thermoplastic resin (A).
  • the present invention also relates to a high dielectric film for a film capacitor obtained by molding the film forming composition of the present invention.
  • the surface of the high dielectric inorganic particles (b1) having a relative dielectric constant (20 ° C., 1 kHz) of 100 or more in the thermoplastic resin (A) is 10% in relative dielectric constant (20 ° C., 1 kHz).
  • the present invention also relates to a high dielectric film for a film capacitor in which surface-treated high dielectric inorganic particles (B) obtained by surface treatment with the following low dielectric compound (b2) are dispersed.
  • the present invention further relates to a laminated film capacitor high dielectric film in which an insulating resin coating layer is provided on at least one surface of the film capacitor high dielectric film.
  • the present invention also relates to a film capacitor in which an electrode layer is provided on at least one surface of the high dielectric film for a film capacitor of the present invention.
  • the present invention it is possible to provide a high dielectric film for a film capacitor that can suppress a decrease in electrical insulation, even though high dielectric inorganic particles are blended at a high filling rate.
  • the film-forming composition for a film capacitor of the present invention contains a thermoplastic resin (A) and surface-treated high dielectric inorganic particles (B).
  • thermoplastic resin (A) may be a fluorinated thermoplastic resin (a1) or a non-fluorinated thermoplastic resin (a2).
  • (A1) Fluorine-containing thermoplastic resin As the fluorine-containing thermoplastic resin (a1), in addition to vinylidene fluoride (VdF) resin, tetrafluoroethylene (TFE), trifluoroethylene (TrFE), hexafluoropropylene (A copolymer such as HFP) or perfluoro (alkyl vinyl ether) (PAVE) can be exemplified, but a VdF resin is preferable from the viewpoint of good solvent solubility.
  • VdF vinylidene fluoride
  • TFE tetrafluoroethylene
  • TrFE trifluoroethylene
  • hexafluoropropylene A copolymer such as HFP) or perfluoro (alkyl vinyl ether) (PAVE)
  • a VdF resin is preferable from the viewpoint of good solvent solubility.
  • VdF resins include VdF homopolymers (PVdF) and copolymers with one or more of other monomers copolymerizable with VdF.
  • the rate (20 ° C., 1 kHz) is 3 or more, 5 or more, especially 8 or more, particularly 10 or more, the withstand voltage, the insulation, the relative permittivity is improved, and the relative permittivity when a film is formed Is preferable from the viewpoint of high.
  • the upper limit is not particularly limited, but is usually 12, preferably 11.
  • the VdF-based resin may be a vinylidene fluoride (VdF) homopolymer (PVdF) or a copolymer with other monomers copolymerizable with VdF. Further, it may be a blend of a VdF homopolymer and a VdF copolymer, or a blend of VdF copolymers.
  • VdF examples include tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE tetrafluoroethylene
  • CTFE chlorotrifluoroethylene
  • TrFE trifluoroethylene
  • HFP hexafluoropropylene
  • Fluorinated olefins such as fluoro (alkyl vinyl ether) (PAVE); fluorinated acrylates, functional group-containing fluorinated monomers, and the like.
  • TFE, CTFE, and HFP are preferred from the viewpoint of good solvent solubility.
  • VdF is 50 mol% or more, preferably 60 mol% or more from the viewpoint of
  • a polymer containing 60 to 100 mol% of VdF units, 0 to 40 mol% of TFE units and 0 to 40 mol% of HFP is preferable because the relative dielectric constant is 6 or more.
  • VdF homopolymer PVdF
  • VdF / TFE copolymer VdF / TFE / HFP copolymer
  • VdF / HFP copolymer VdF / CTFE copolymer, etc.
  • PVdF, VdF / TFE copolymers, and VdF / HFP copolymers are preferred from the viewpoint of high relative dielectric constant and good solvent solubility.
  • the composition ratio is such that the VdF unit is 60 to 95 mol% and the TFE unit is 5 to 40 mol%, particularly the VdF unit is 70 to 90 mol% and the TFE unit is A content of 10 to 30 mol% is preferable from the viewpoint of increasing the withstand voltage.
  • Non-fluorinated thermoplastic resin As the non-fluorinated thermoplastic resin (a2), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene naphthalate (from the point of flexibility and high relative dielectric constant) PEN), etc .; Polycarbonate (PC); Silicone resin, polyether, polyvinyl acetate, polyethylene, polypropylene (PP), etc. are preferred.
  • poly (meth) acrylates such as polymethyl methacrylate, epoxy Resins, polyethylene oxide, polypropylene oxide, polyphenylene oxide (PPO), polyphenylene sulfide (PPS), polyamide (PA), polyimide (PI), polyamideimide (PAI), PC, polystyrene, polybenzimidazole Sol (PBI) and the like, and odd-numbered polyamides, cyano pullulans, copper phthalocyanine-based polymers and the like from the viewpoint of supplementing high dielectric properties, and cellulose-based resins from the viewpoint of improving mechanical strength and insulation resistance.
  • Polycarbonate, polyethylene oxide, polypropylene oxide, poly (meth) acrylate, polyvinyl acetate, and cellulose resin are particularly preferable from the viewpoint of improving mechanical strength and insulation resistance.
  • the fluorine-based thermoplastic resin (a1) when used in combination with the fluorine-based thermoplastic resin (a1), the group consisting of a cellulose-based resin, a polyester resin, and polymethyl methacrylate from the viewpoint of excellent compatibility with the fluorine-based thermoplastic resin (a1). Particularly preferred is at least one selected from
  • cellulose-based resin examples include ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate; and celluloses substituted with ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • ester-substituted celluloses such as cellulose monoacetate, cellulose diacetate, cellulose triacetate, and cellulose acetate propionate
  • ethers such as methylcellulose, ethylcellulose, and hydroxypropylmethylcellulose.
  • (mono, di, tri) cellulose acetate and methyl cellulose are preferable from the viewpoint of low temperature coefficient of dielectric loss.
  • the proportion of the cellulose-based resin is 0.1% by mass or more in the thermoplastic resin (A) from the viewpoint of high dielectric constant and low dielectric loss, and 20% by mass or more from the point of good mechanical properties Is preferred. Further, it is preferably 99.9% by mass or less from the viewpoint of low dielectric loss, good mechanical properties and high relative dielectric constant, and 98% by mass or less from the point of low temperature dependence of dielectric loss.
  • the surface-treated high dielectric inorganic particles (B) have a relative dielectric constant (b) of the surface of the high dielectric inorganic particles (b1) having a relative dielectric constant (20 ° C., 1 kHz) of 100 or more. (20 ° C., 1 kHz) is obtained by surface treatment with a low dielectric compound (b2) of 10 or less.
  • the high dielectric inorganic particles (b1) are not particularly limited as long as they are high dielectric inorganic particles having a relative dielectric constant (20 ° C., 1 kHz) of 100 or more.
  • a preferable dielectric constant (20 ° C., 1 kHz) is 300 or more, further 500 or more, and particularly 1000 or more.
  • the high dielectric inorganic particles (b1) are preferably at least one selected from the group consisting of the following (b1a) to (b1c).
  • (B1a) Formula (b1a): M 1 a1 N b1 O C1 (Wherein M 1 is a Group 2 metal element of the periodic table; N is a Group 4 metal element of the periodic table; a1 is 0.9 to 1.1; b1 is 0.9 to 1.1; c1 is 2.8 to 3) 2; M 1 and N may each be a plural number).
  • Preferred examples of the periodic table group 2 metal element M 1 include Be, Mg, Ca, Sr, Ba, and the like, and examples of the periodic table group 4 metal element N include Ti, Zr, and the like.
  • barium titanate, barium zirconate, calcium titanate, calcium zirconate, strontium titanate, strontium zirconate and the like can be exemplified, and barium titanate is particularly preferable because of its high relative dielectric constant.
  • the composite oxide (b1b) include magnesium stannate, calcium stannate, strontium stannate, barium stannate, magnesium antimonate, calcium antimonate, strontium antimonate, barium antimonate, magnesium zirconate, Examples thereof include calcium zirconate, strontium zirconate, barium zirconate, magnesium indium acid, calcium indium acid, strontium indium acid, and barium indium acid.
  • (B1c) Composite oxide particles containing at least three metal elements selected from the group consisting of a periodic table group 2 metal element and a periodic table group 4 metal element.
  • specific examples of the periodic table group 2 metal element include Be, Mg, Ca, Sr, Ba, and the like
  • specific examples of the periodic table group 4 metal element include, for example, Ti. , Zr, Hf and the like.
  • Preferred combinations of three or more selected from Group 2 metal elements and Group 4 metal elements of the periodic table include, for example, a combination of Sr, Ba, Ti, a combination of Sr, Ti, Zr, and a combination of Sr, Ba, Zr. , Ba, Ti, Zr combination, Sr, Ba, Ti, Zr combination, Mg, Ti, Zr combination, Ca, Ti, Zr combination, Ca, Ba, Ti combination, Ca, Ba, Zr combination , Ca, Ba, Ti, Zr combination, Ca, Sr, Zr combination, Ca, Sr, Ti, Zr combination, Mg, Sr, Zr combination, Mg, Sr, Ti, Zr combination, Mg, Ba , Ti, Zr, Mg, Ba, Ti, Zr, Mg, Ba, Zr, and the like.
  • composite oxide particles (b1c) barium calcium titanate, strontium zirconate titanate, barium zirconate titanate, barium strontium zirconate titanate, magnesium zirconate titanate, calcium zirconate titanate And barium calcium zirconate titanate.
  • At least one selected from the group consisting of barium titanate, barium calcium zirconate titanate, and strontium titanate is preferable from the viewpoint of a high relative dielectric constant.
  • composite oxide particles such as lead zirconate titanate, lead antimonate, zinc titanate, lead titanate, and titanium oxide may be used in combination.
  • the average particle size of the high dielectric inorganic particles (b1) is 2 ⁇ m or less, more preferably 1.2 ⁇ m or less, particularly about 0.01 to 0.5 ⁇ m. From the point which is excellent in it.
  • the low dielectric compound (b2) has a role of improving compatibility and adhesion with a resin and improving insulation, and a low dielectric compound having a relative dielectric constant (20 ° C., 1 kHz) of 10 or less. If it is, it will not restrict
  • a preferable dielectric constant (20 ° C., 1 kHz) is 5 or less, and further 4 or less from the viewpoint of a low dielectric loss tangent. From the viewpoint of good dielectric properties at high temperatures, 3 or less is more preferable.
  • the lower limit of the relative dielectric constant of the low dielectric compound (b2) is not particularly limited, but is usually about 2.
  • the difference in relative dielectric constant between the high dielectric inorganic particles (b1) and the low dielectric compound (b2) is 90 or more, 100 or more, more preferably 200 or more, particularly 300 or more. This is preferable because a low dielectric loss tangent can be realized.
  • the difference between the relative dielectric constant (20 ° C., 1 kHz) of the thermoplastic resin (A) and the relative dielectric constant (20 ° C., 1 kHz) of the low dielectric compound is 10 or less, further 5 or less, particularly 3 or less. It is preferable that the dispersibility of the high dielectric inorganic particles in the thermoplastic resin is good.
  • an organic compound particularly at least one organic compound selected from the group consisting of the following (b2a) to (b2e) is preferable from the viewpoint of high dielectric property and low dielectric loss tangent. .
  • organic Titanium compound examples include coupling agents such as alkoxytitanium, titanium chelate, and titanium acylate, and particularly from the viewpoint of good affinity with the high dielectric inorganic particles (b1). Alkoxy titanium and titanium chelate are preferable.
  • tetraisopropyl titanate titanium isopropoxyoctylene glycolate, diisopropoxy bis (acetylacetonato) titanium, diisopropoxytitanium diisostearate, tetraisopropylbis (dioctylphosphite) titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, and the like.
  • tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate is preferable from the viewpoint of good affinity with the high dielectric inorganic particles (b1).
  • Organosilane compound As the organosilane compound, there are, for example, a high molecular type and a low molecular type, and a cup of monoalkoxysilane, dialkoxysilane, trialkoxysilane, tetraalkoxysilane, etc. in terms of the number of functional groups. Examples thereof include a ring agent, and a low molecular weight alkoxysilane is particularly preferable from the viewpoint of good affinity with the high dielectric inorganic particles (b1).
  • vinyl silane, epoxy silane, amino silane, methaoxy silane, mercapto silane and the like can be suitably used.
  • the volume resistivity which is the effect of the surface treatment, can be further improved (improvement of electrical insulation) by hydrolysis.
  • organic zirconium compound examples include coupling agents such as alkoxyzirconium and zirconium chelate.
  • Organoaluminum compound examples include coupling agents such as alkoxyaluminum and aluminum chelate.
  • Organophosphorus compound examples include phosphites, phosphate esters, and phosphate chelates.
  • At least one selected from the group consisting of alkoxytitanium, titanium chelate and alkoxysilane is preferable from the viewpoint of good affinity with the high dielectric inorganic particles (b1).
  • Examples of the surface treatment method of the high dielectric inorganic particles (b1) with the low dielectric compound (b2) include the following methods, but are not limited thereto.
  • the high dielectric inorganic particles (B) subjected to the surface treatment are produced by continuing the stirring and then drying. If the particles are aggregated after drying, pulverization may be performed with a ball mill, a bead mill, or the like.
  • the amount of the low dielectric compound (b2) is 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, particularly 1 to 5 parts by weight with respect to 100 parts by weight of the high dielectric inorganic particles (b1). preferable. If the amount is excessively large, the excessive amount of the low dielectric compound (b2) may adversely affect the electrical characteristics and the like. If the amount is excessively small, the high dielectric inorganic particles (b1) not subjected to the surface treatment remain. The possibility increases.
  • the surface-treated high dielectric inorganic particles (B) are all or part of the surface of the high dielectric inorganic particles (b1) covered with the low dielectric compound (b2).
  • the compounding amount of the surface-treated high dielectric inorganic particles (B) is 10 parts by mass or more, preferably 50 parts by mass or more, particularly preferably 150 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (A). If the amount is too small, the effect of improving the relative dielectric constant of the high dielectric film tends to decrease. A preferable upper limit is 300 parts by mass. If the amount is too large, the resulting film tends to be brittle. A more preferred upper limit is 250 parts by mass.
  • the film-forming composition for film capacitors of the present invention may contain other components (C) as necessary.
  • Rubber particles The rubber particles (C1) have a role of imparting mechanical strength, particularly elongation, and elasticity and other properties to the film.
  • Suitable rubber particles for fulfilling such a role include, but are not limited to, diene series such as natural rubber (NR), butadiene rubber (BR), styrene-butadiene rubber (SBR), isoprene rubber, and chloroprene rubber.
  • diene series such as natural rubber (NR), butadiene rubber (BR), styrene-butadiene rubber (SBR), isoprene rubber, and chloroprene rubber.
  • the rubber include acrylic rubber, silicone rubber, nitrile rubber; fluorine rubber such as VdF-tetrafluoroethylene (TFE) rubber and TFE-perfluorovinyl ether rubber. Of these, acrylic rubber and butadiene rubber are preferred from the viewpoint of good elongation and elasticity.
  • the rubber particles may be uncrosslinked rubber (raw rubber) particles or crosslinked rubber particles, but crosslinked rubber particles are preferred from the viewpoint of good tensile strength, elongation and elasticity.
  • the rubber may be crosslinked according to a known method.
  • the rubber particles (C1) have an average primary particle size of 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and particularly about 0.3 to 0.5 ⁇ m, so that the dispersibility in the thermoplastic resin is good. In addition, it is preferable from the viewpoint of excellent tensile strength and elongation.
  • the compounding amount of the rubber particles (C1) is 10 parts by mass or more, preferably 15 parts by mass or more, and particularly preferably 20 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (A). If the amount is too small, the effect of improving the mechanical strength, particularly elongation, of the film tends to be small.
  • the upper limit is 30 parts by mass. If the amount is too large, the dispersibility in the thermoplastic resin tends to be poor. A preferred upper limit is 25 parts by mass.
  • an affinity improver (C2) may be blended.
  • the affinity improver uniformly disperses the surface-treated high dielectric inorganic particles (B) in the thermoplastic resin (A), and the surface-treated high dielectric inorganic particles (B) and the thermoplastic resin (A) in the film. It plays a role of tightly bonding, suppressing the generation of voids and increasing the dielectric constant.
  • affinity improver a coupling agent, a surfactant or an epoxy group-containing compound is effective.
  • the coupling agent as the affinity improver (C2) may be the same as or different from the low dielectric compound (b2) used for the surface treatment of the high dielectric inorganic particles (b1). The same type is preferable from the viewpoint of further improving the affinity.
  • Specific examples of the coupling agent as the affinity improver (C2) include coupling agents such as organic titanium compounds, organic silane compounds, organic zirconium compounds, and organic aluminum compounds exemplified as the low dielectric compound (b2) and organic phosphorus. The compounds can also be used here with preferred examples.
  • surfactants there are high molecular types and low molecular types, and there are nonionic surfactants, anionic surfactants, and cationic surfactants in terms of the types of functional groups. From the viewpoint of good stability, a polymeric surfactant is preferred.
  • Nonionic surfactants include, for example, polyether derivatives, polyvinyl pyrrolidone derivatives, alcohol derivatives and the like, and in particular, polyethers from the viewpoint of good affinity with surface-treated high dielectric inorganic particles (B). Derivatives are preferred.
  • anionic surfactant examples include polymers containing sulfonic acid, carboxylic acid, and salts thereof.
  • Examples of the cationic surfactant include compounds having a nitrogen-containing complex ring such as amine compounds and imidazolines, and halogenated salts thereof, but from the viewpoint of low aggressiveness to the thermoplastic resin (A).
  • a compound having a nitrogen-containing complex ring is preferred.
  • Examples of the salt form include ammonium salts containing halogen anions such as alkyltrimethylammonium chloride. An ammonium salt containing a halogen anion is preferable from the viewpoint of a high relative dielectric constant.
  • the epoxy group-containing compound examples include epoxy compounds and glycidyl compounds, which may be low molecular weight compounds or high molecular weight compounds. Among these, a low molecular weight compound having one epoxy group is preferable from the viewpoint of particularly good affinity with the thermoplastic resin (A).
  • the epoxy group containing coupling agent classified into a coupling agent for example, epoxysilane etc. is not included in an epoxy group containing compound in this invention, but is included in a coupling agent.
  • the compound having the formula from the viewpoint of excellent affinity with the thermoplastic resin (A).
  • R has a hydrogen atom, an oxygen atom, a nitrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms which may contain a carbon-carbon double bond or a substituent.
  • the affinity improver can be blended within a range that does not impair the object of the present invention.
  • the blending amount is 0 with respect to 100 parts by mass of the surface-treated high dielectric inorganic particles (B). From 0.01 to 30 parts by mass, more preferably from 0.1 to 25 parts by mass, and particularly from 1 to 20 parts by mass can be uniformly dispersed, and the resulting film has a high relative dielectric constant.
  • additives such as other reinforcing fillers may be included as optional components within a range not impairing the effects of the present invention.
  • the reinforcing filler examples include inorganic materials other than the high dielectric inorganic particles (b1). Examples thereof include silica, silicon carbide, silicon nitride, magnesium oxide, potassium titanate, glass, alumina, and boron compound particles or fibers. .
  • the film capacitor-forming film-forming composition of the present invention has the above-described thermoplastic resin (A) (may contain other components (C) described above as necessary. The same applies hereinafter) and the surface. It can be prepared by mixing the treated high dielectric inorganic particles (B). As a mixing method, a conventionally known melt-kneading method or a method of dissolving and dispersing in a solvent can be employed.
  • the high dielectric film for a film capacitor of the present invention can be formed from the film forming composition for a film capacitor of the present invention by a melt extrusion method or a coating method. It is advantageous to manufacture by a coating method (cast method) from the viewpoint of simplicity and excellent uniformity of the film obtained.
  • a coating composition in which surface-treated high dielectric inorganic particles (B) and, if necessary, other additives (C) are added to the thermoplastic resin (A) and dissolved or dispersed in a solvent. Then, a film is prepared according to various coating methods.
  • any solvent that can dissolve or uniformly disperse the thermoplastic resin (A) can be used, and a polar organic solvent is particularly preferable.
  • a polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • methyl ethyl ketone methyl isobutyl ketone (MIBK), acetone, diethyl ketone, dipropyl ketone, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl Preferred examples include carbonate, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethylformamide (DMF), dimethylacetamide and the like.
  • MIBK methyl isobutyl ketone
  • knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity.
  • the method, the gravure coating method and the cast coating method are preferable.
  • the coating method a highly concentrated uniform composition can be prepared and coating is easy, so that the film thickness of the obtained high dielectric film is 20 ⁇ m or less, preferably 15 ⁇ m or less, and further 10 ⁇ m or less. Can do.
  • the lower limit of the film thickness is about 2 ⁇ m from the viewpoint of maintaining mechanical strength.
  • the high dielectric film for a film capacitor of the present invention may be provided with an insulating resin coating layer on at least one surface of the high dielectric film to form a laminated high dielectric film. Good.
  • This insulating resin coating layer further improves electric insulation and at the same time withstand voltage.
  • the reason is not clear, but the voltage is applied to the relatively thin film due to voltage division. That is, it is estimated that the high voltage is applied to the insulating resin having high insulating properties, and the voltage load on the thermoplastic resin (A) is reduced.
  • the insulating resin constituting the insulating resin coating layer is a non-fluorine resin having a volume resistivity of 10 13 ⁇ ⁇ cm or more, preferably 10 14 ⁇ ⁇ cm or more, particularly 10 15 ⁇ ⁇ cm or more. From the viewpoint of excellent electrical insulation and withstand voltage improvement effect.
  • the lower limit is preferably as small as possible because it is preferable that the electrical insulation is as high as possible (the electrical conductivity is small).
  • polypropylene polystyrene
  • polyester polycarbonate
  • polyimide polyimide
  • cellulose resin examples include polypropylene, polystyrene, polyester, polycarbonate, polyimide, and cellulose resin.
  • a solvent-soluble non-fluorine resin is preferable from the viewpoint of easy formation of the insulating resin coating layer.
  • a particularly preferred specific example is at least one selected from the group consisting of polystyrene, polyester, polymethyl methacrylate and cellulose resin.
  • the insulating resin coating layer may be composed only of an insulating resin, or may contain other additives.
  • additives examples include plasticizers, leveling agents, antifoaming agents, antioxidants, antistatic agents, flame retardants, buffer materials, wettability improvers, inorganic oxides such as barium titanate, and rubber fine particles. It can be illustrated. What is necessary is just to select the kind and compounding quantity in the range which does not impair the effect of this invention.
  • the insulating resin coating layer is formed by a conventionally known coating method using the insulating resin described above (non-fluorinated resin composition containing other additives described above as necessary). Laminate (form) on a dielectric film.
  • Laminate (form) on a dielectric film.
  • a film is prepared according to various coating methods from a coating composition in which other additives are added to an insulating resin as necessary and dissolved or dispersed in a solvent.
  • any solvent capable of dissolving the insulating resin can be used, but when using a solvent having an affinity for the thermoplastic resin (A) constituting the high dielectric film. Can form an insulating resin coating layer having excellent adhesion and durability.
  • a preferred organic solvent is a polar organic solvent.
  • polar organic solvent for example, ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents are preferable.
  • ketone solvents for example, methyl ethyl ketone, methyl isobutyl ketone (MIBK), acetone, diethyl ketone, dipropyl ketone, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl
  • Preferred examples include carbonate, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethylformamide (DMF), dimethylacetamide and the like.
  • knife coating method, cast coating method, roll coating method, gravure coating method, blade coating method, rod coating method, air doctor coating method, curtain coating method, fakunrun coating method, kiss coating method, screen coating Method, spin coating method, spray coating method, extrusion coating method, electrodeposition coating method, etc. can be used, but roll coating is easy because of its ease of operation, small variations in film thickness, and excellent productivity.
  • the method, the gravure coating method and the cast coating method are preferable.
  • the thickness of the obtained insulating resin coating layer is preferably 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 2 ⁇ m or more from the viewpoint of obtaining good insulation and improved withstand voltage.
  • the upper limit is 5 ⁇ m, preferably 3 ⁇ m, from the viewpoint of maintaining high dielectric properties.
  • the film capacitor of the present invention can be produced by laminating an electrode layer on at least one surface of the high dielectric film of the present invention.
  • the structure of the film capacitor for example, a laminated type in which electrode layers and high dielectric films are alternately laminated (Japanese Patent Laid-Open Nos. 63-181411, 3-18113, etc.) or a tape-like high dielectric Winding type in which a conductive film and an electrode layer are wound (disclosed in, for example, Japanese Patent Application Laid-Open No. 60-262414 in which electrodes are not continuously laminated on a high dielectric film, or electrodes on a high dielectric film And the like disclosed in Japanese Patent Laid-Open No. 3-286514, etc.) are continuously laminated.
  • a wound film capacitor that has a simple structure and is relatively easy to manufacture, and in which a wound film capacitor is formed by continuously laminating electrode layers on a highly dielectric film, it is generally highly dielectric with electrodes laminated on one side. Two films are rolled up so that the electrodes do not come into contact with each other. If necessary, the film is rolled and fixed so as not to be loosened.
  • the electrode layer is not particularly limited, but is generally a layer made of a conductive metal such as aluminum, zinc, gold, platinum, or copper, and is used as a metal foil or a deposited metal film.
  • a metal foil or a vapor-deposited metal film, or both may be used in combination.
  • a vapor-deposited metal film is preferable in that the electrode layer can be thinned, and as a result, the capacity can be increased with respect to the volume, the adhesiveness with the dielectric is excellent, and the thickness variation is small.
  • the vapor-deposited metal film is not limited to a single layer.
  • a method of forming an aluminum oxide layer of a semiconductor on an aluminum layer to form an electrode layer for example, JP-A-2-250306)
  • it may be laminated as necessary.
  • the thickness of the vapor-deposited metal film is not particularly limited, but is preferably in the range of 100 to 2,000 angstrom, more preferably 200 to 1,000 angstrom. When the thickness of the deposited metal film is within this range, the capacity and strength of the capacitor are balanced, which is preferable.
  • the method for forming the film is not particularly limited, and for example, a vacuum deposition method, a sputtering method, an ion plating method, or the like can be employed. Usually, a vacuum deposition method is used.
  • Vacuum deposition methods include, for example, the batch method for molded products, the semi-continuous method used for long products, and the air-to-air method.
  • the semi-continuous method is the mainstay. Has been done.
  • the semi-continuous metal vapor deposition method is a method in which after vapor deposition and winding of a metal in a vacuum system, the vacuum system is returned to the atmospheric system, and the deposited film is taken out.
  • the semi-continuous method can be specifically performed by the method described in Japanese Patent No. 3664342 with reference to FIG.
  • the surface of the high dielectric film can be subjected in advance to treatment for improving adhesion such as corona treatment or plasma treatment.
  • the thickness of the metal foil is not particularly limited, but is usually in the range of 0.1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, more preferably 3 to 15 ⁇ m.
  • the fixing method is not particularly limited, and for example, fixing and protecting the structure may be performed simultaneously by sealing with resin or enclosing in an insulating case.
  • the method for connecting the lead wires is not limited, and examples thereof include welding, ultrasonic pressure welding, heat pressure welding, and fixing with an adhesive tape.
  • a lead wire may be connected to the electrode before it is wound.
  • the opening may be sealed with a thermosetting resin such as urethane resin or epoxy resin to prevent oxidative degradation.
  • the electrode layer may be provided on the insulating resin coating layer or on the other surface.
  • the film capacitor thus obtained has high dielectric properties, high insulating properties, high withstand voltage, and excellent mechanical strength, particularly elongation.
  • the thickness of the insulating resin layer is determined by measuring the total thickness of the final laminated high dielectric film in the same manner, and subtracting the thickness of the VdF resin film.
  • the volume resistivity ( ⁇ ⁇ cm) is measured at 500 VDC in a dry air atmosphere with a digital super insulation meter / microammeter (manufactured by Toa DK Corporation).
  • the film placed on the substrate is measured under a dry air atmosphere using a withstand voltage / insulation resistance tester (TOS9201 manufactured by Kikusui Electronics Co., Ltd.).
  • the step-up speed is measured at 100 V / s.
  • Compound b2-1 which is a low dielectric compound, dissolved in N, N-dimethylacetamide (DMAc).
  • DMAc N, N-dimethylacetamide
  • Mass%) add the same mass of zirconia beads with a diameter of 1 mm, and place in a tabletop planetary ball mill (Planet M manufactured by Gokin Planetaring).
  • a slurry of high dielectric inorganic particles was prepared. The slurry is passed through a stainless steel mesh (80 mesh manufactured by Manabe Kogyo Co., Ltd.) to remove the zirconia beads, and then dried at 100 ° C. in a vacuum dryer to obtain surface-treated highly dielectric inorganic particles. It was.
  • Production Example 2 Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that the amount of tetramethoxysilane (compound b2-1) as the low dielectric compound was changed to 0.1 parts by mass in Production Example 1.
  • Production Example 3 Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that the amount of tetramethoxysilane (compound b2-1) as the low dielectric compound in Production Example 1 was changed to 5 parts by mass.
  • Production Example 4 In Production Example 1, an organic titanium compound (tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate. Compound b2-2) is used as the low dielectric compound instead of tetramethoxysilane. Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that 1 part by mass was used.
  • Production Example 5 In Production Example 1, an organic zirconium compound (tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite zirconate. Compound b2-3) instead of tetramethoxysilane as a low dielectric compound Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that 1 part by mass of was used.
  • organic zirconium compound tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite zirconate.
  • Compound b2-3 instead of tetramethoxysilane as a low dielectric compound
  • Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that 1 part by mass of was used.
  • Production Example 6 In Production Example 1, as a low dielectric compound, instead of tetramethoxysilane, an organoaluminum compound (alkyl acetoacetate aluminum diisopropinate, relative dielectric constant: 6 (20 ° C., 1 kHz), compound b2-4) for 1 part by mass In the same manner as in Production Example 1, surface-treated high dielectric inorganic particles were prepared.
  • organoaluminum compound alkyl acetoacetate aluminum diisopropinate, relative dielectric constant: 6 (20 ° C., 1 kHz), compound b2-4
  • Production Example 7 In Production Example 1, an organic phosphorus compound (acid phosphooxyethyl methacrylate. Relative dielectric constant: 5 (20 ° C., 1 kHz). Compound b2-5) was used in place of tetramethoxysilane as a low dielectric compound. Prepared surface-treated high dielectric inorganic particles in the same manner as in Production Example 1.
  • Example 1 In a 3 L separable flask, 800 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and polyvinylidene fluoride (PVdF) (KAYNAR761 manufactured by ARKEMA, relative dielectric constant 9.2 (20 ° C., 1 kHz)) 200 parts by mass was stirred with a three-one motor at 80 ° C. for 3 hours to obtain a PVdF solution having a concentration of 20% by mass. This PVdF solution was a transparent homogeneous solution.
  • DMAc N, N-dimethylacetamide
  • PVdF polyvinylidene fluoride
  • the obtained composition was applied onto an aluminum substrate with a bar coater and dried with hot air at 180 ° C. for 3 minutes to prepare a VdF resin film having a thickness of about 7.0 ⁇ m.
  • Examples 2-7 A high dielectric film was produced in the same manner as in Example 1 except that the surface-treated high dielectric inorganic particle dispersion liquid produced in Production Examples 2 to 7 was used as the surface-treated high dielectric inorganic particle dispersion liquid. did.
  • Comparative Example 1 A high dielectric film was produced in the same manner as in Example 1 except that BCTZ used in Production Example 1 was used as it was without surface treatment.
  • Examples 8-10 A high dielectric film was prepared in the same manner as in Example 1 except that the amount of the surface-treated high dielectric inorganic particles (to 100 parts by mass of the thermoplastic resin) was changed to the amount shown in Table 2.
  • Example 11 A coating composition comprising a 15% strength by weight polyester solution was applied to one side of the high dielectric film obtained in Example 1 with a bar coater, and dried with hot air at 180 ° C. for 3 minutes to form an insulating resin layer. A laminated high dielectric film was prepared. The thickness of the insulating resin layer was 1.0 ⁇ m.
  • Example 12 A coating composition comprising a 15% strength by weight polyester solution was applied to one side of the high dielectric film obtained in Example 3 with a bar coater and dried with hot air at 180 ° C. for 3 minutes to form an insulating resin layer. A laminated high dielectric film was prepared. The thickness of the insulating resin layer was 0.8 ⁇ m.
  • Example 13 In a 3 L separable flask, 800 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and cellulose acetate (AC) (L-20 manufactured by Daicel Chemical Industries, Ltd.), relative dielectric constant 0 (20 ° C., 1 kHz)) 200 parts by mass was added and stirred with a mechanical stirrer at 80 ° C. for 3 hours to obtain an AC solution having a concentration of 20% by mass. This AC solution was a transparent homogeneous solution.
  • DMAc N, N-dimethylacetamide
  • AC cellulose acetate
  • the obtained composition was applied onto an aluminum substrate with a bar coater and dried with hot air at 180 ° C. for 1 minute to produce an AC resin film having a thickness of about 7.3 ⁇ m.
  • Example 14 A coating composition comprising a 15% strength by weight polyester solution was applied to one side of the high dielectric film obtained in Example 13 with a bar coater and dried with hot air at 180 ° C. for 3 minutes to form an insulating resin layer. Thus, a laminated high dielectric film was produced. The thickness of the insulating resin layer was 0.8 ⁇ m.
  • Comparative Example 2 A high dielectric film was produced in the same manner as in Example 13 except that BCTZ used in Production Example 1 was used as it was without surface treatment.
  • Example 15 In Example 1, VdF / TFE (manufactured by Daikin Industries, Ltd., VP-50) was used instead of the polyvinylidene fluoride (PVdF) for the VdF-based resin film layer (a1), relative permittivity: 9.0 (1 kHz, 25 A VdF-based resin film (a1) having a film thickness of 6.7 ⁇ m was obtained in the same manner except that [° C.) was used.
  • PVdF polyvinylidene fluoride
  • Example 16 In a 3 L separable flask, 800 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.) and cellulose acetate (AC) (L-20 manufactured by Daicel Chemical Industries, Ltd.), relative dielectric constant 0 (20 ° C., 1 kHz)) 200 parts by mass was added and stirred with a mechanical stirrer at 80 ° C. for 3 hours to obtain an AC solution having a concentration of 20% by mass. This AC solution was a transparent homogeneous solution.
  • DMAc N, N-dimethylacetamide
  • AC cellulose acetate
  • Example 1 instead of 50 parts by mass of the PVdF solution, 40 parts by mass of the PVdF solution (8.0 parts by mass of PVdF and 32.0 parts by mass of DMAc) and 10 parts by mass of the AC solution (2.0 parts by mass of AC, DMAc8.
  • a VdF-based resin film (a1) having a thickness of 7.2 ⁇ m was obtained in the same manner except that the blend solution (containing 0 part by mass) was used.
  • Example 17 In a 3 L separable flask, 800 parts by mass of N, N-dimethylacetamide (DMAc) (manufactured by Kishida Chemical Co., Ltd.), methyl methacrylate (PMMA) (RX-083 manufactured by Mitsubishi Rayon Co., Ltd.), relative dielectric constant 0 (20 ° C., 1 kHz)) 200 parts by mass was added, and the mixture was stirred with a mechanical stirrer at 80 ° C. for 3 hours to obtain a 20% by mass PMMA solution. This PMMA solution was a transparent homogeneous solution.
  • DMAc N, N-dimethylacetamide
  • PMMA methyl methacrylate
  • RX-083 methyl methacrylate
  • relative dielectric constant 0 20 ° C., 1 kHz
  • Example 1 instead of 50 parts by mass of the PVdF solution, 40 parts by mass of the PVdF solution (containing 8.0 parts by mass of PVdF and 32.0 parts by mass of DMAc) and 10 parts by mass of the PMMA solution (2.0 parts by mass of PMMA, DMAc8.
  • a VdF-based resin film (a1) having a film thickness of 7.4 ⁇ m was obtained in the same manner except that a blend solution of 0 part by mass was used.
  • Example 18 In Production Example 1, strontium titanate (ST-03 manufactured by Sakai Chemical Industry Co., Ltd., relative dielectric constant: 300 (20 ° C., 1 kHz), average particle diameter of 0.3 ⁇ m as high dielectric inorganic particles instead of BCTZ. Surface-treated high dielectric inorganic particles were prepared in the same manner as in Production Example 1 except that 100 parts by mass of the inorganic particles b1-2) was used.
  • VdF-based resin film (a1) having a film thickness of 6.8 ⁇ m was obtained in the same manner as in Example 1 except that this surface-treated high dielectric inorganic particle dispersion was used.
  • Example 19 In Production Example 1, as the high dielectric inorganic particles (b1), strontium zirconate (manufactured by Kojundo Chemical Laboratory Co., Ltd., relative dielectric constant: 100 (20 ° C., 20 ° C., in place of barium calcium zirconate titanate (BCTZ)) 1 kHz), an average particle diameter of 1 ⁇ m, and a dispersion of surface-treated high dielectric inorganic particles was produced in the same manner except that the inorganic particles b1-3) were used.
  • strontium zirconate manufactured by Kojundo Chemical Laboratory Co., Ltd., relative dielectric constant: 100 (20 ° C., 20 ° C., in place of barium calcium zirconate titanate (BCTZ) 1 kHz
  • BCTZ barium calcium zirconate titanate
  • a VdF resin film (a1) having a film thickness of 6.7 ⁇ m was obtained in the same manner as in Example 1 except that the dispersion liquid of the surface-treated high dielectric inorganic particles was used.
  • Example 20 In Production Example 1, as high dielectric inorganic particles (b1), barium titanate (BT) (BT-4FB manufactured by Nippon Chemical Industry Co., Ltd.) instead of barium calcium zirconate titanate (BCTZ), relative dielectric constant: A dispersion of surface-treated high dielectric inorganic particles was produced in the same manner except that 2500 (20 ° C., 1 kHz), average particle diameter 0.7 ⁇ m, inorganic particles b1-4) were used.
  • BT barium titanate
  • BCTZ barium calcium zirconate titanate
  • VdF-based resin film (a1) having a film thickness of 7.0 ⁇ m was obtained in the same manner as in Example 1 except that this surface-treated highly dielectric inorganic particle dispersion was used.
  • the volume resistivity, the withstand voltage, the dielectric loss and the relative dielectric constant at each frequency (100 Hz, 1 kHz, 10 kHz) at 20 ° C. and 80 ° C. were calculated.
  • the results are shown in Table 5.
  • Example 21 From Table 5, it can be seen that the film has a good volume resistivity regardless of the type of high dielectric inorganic particles.
  • Electrodes were formed by vapor-depositing aluminum on both surfaces of the high dielectric film produced in Example 1 with a target of 3 ⁇ / ⁇ using a vacuum deposition apparatus (VE-2030 manufactured by Vacuum Device Co., Ltd.). A voltage-applying lead wire was attached to these aluminum electrodes to produce stamp-type (for simple evaluation) film capacitors.
  • a vacuum deposition apparatus VE-2030 manufactured by Vacuum Device Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

 高誘電性無機粒子が高充填率で配合されているにもかかわらず、電気絶縁性の低下を抑制できるフィルムコンデンサ用高誘電性フィルムであって、熱可塑性樹脂(A)と、比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる表面処理高誘電性無機粒子(B)とを含むフィルムコンデンサ用フィルム形成組成物を成形して得られるフィルムコンデンサ用高誘電性フィルムを提供する。

Description

フィルムコンデンサ用高誘電性フィルム形成組成物
 本発明は、フィルムコンデンサ用の高誘電性フィルムの形成に用いる組成物、および該組成物から形成されるフィルムコンデンサ用高誘電性フィルムに関する。
 近年、プラスチック絶縁体は、絶縁抵抗が高く、周波数特性に優れ、柔軟性にも優れるという特徴を有しているため、通信用、電子機器用、電力用、中・低圧進相用、インバータ用などのフィルムコンデンサや、圧電素子、焦電素子、転写体担持用誘電体などの膜材料として期待されている。
 フィルムコンデンサは通常、誘電性樹脂フィルムの表面にアルミニウムまたは亜鉛を蒸着した構造のフィルム、またはアルミニウム箔と誘電性樹脂フィルムを積層したフィルムから構成されており、近年、金属蒸着により誘電性樹脂フィルム上に電極を形成したものも多用されている。
 フィルムコンデンサ用の高誘電性フィルムは、通常、誘電性樹脂をフィルム形成樹脂とする単一層として形成されており、フィルム形成樹脂としては、一般的に比誘電率の高いポリエステル、ポリフェニレンサルファイド(PPS)などの非フッ素系熱可塑性樹脂やフッ化ビニリデン(VdF)などのフッ素系樹脂が検討されている。
 しかし、最近の高エネルギー密度化への要求に対して有機化合物である樹脂だけでは限界があり、高誘電性の無機粒子を配合することが行われている(特許文献1~4)。
特開2000-294447号公報 特開2002-356619号公報 特開2007-005531号公報 特開2008-034189号公報
 これまでは高誘電性の無機粒子を樹脂に均一に分散させることによりフィルムの比誘電率や耐電圧の向上を追及してきているが、高誘電性無機粒子を高充填率で誘電性樹脂に配合すると電気絶縁性が低下してしまう。
 本発明者らは、こうした電気絶縁性を向上させるべく鋭意検討を重ねたところ、高誘電性無機粒子として表面処理した特殊な無機粒子を配合することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち本発明は、熱可塑性樹脂(A)と、比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる表面処理高誘電性無機粒子(B)とを含むフィルムコンデンサ用フィルム形成組成物に関する。
 高誘電性無機粒子(b1)の比誘電率(20℃、1kHz)は、300以上であるのが好ましい。
 低誘電性化合物(b2)の比誘電率(20℃、1kHz)は、5以下であるのが好ましい。
 また、高誘電性無機粒子(b1)としては、
(b1a)式(b1a):
 M1 a1b1C1
(式中、M1は周期表2族金属元素;Nは周期表4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
(b1b)式(b1b):
 M2 a23 b2c2
(式中、M2とM3は異なり、M2は周期表2族金属元素、M3は周期表第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)
で示される複合酸化物粒子、および
(b1c)周期表2族金属元素および周期表4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子よりなる群から選ばれる少なくとも1種が好ましい。
 低誘電性化合物(b2)としては、有機化合物から選ばれる少なくとも1種が好ましい。
 さらに高誘電性無機粒子(b1)がチタン酸バリウム、チタン酸ジルコン酸バリウムカルシウムおよびチタン酸ストロンチウムよりなる群から選ばれる少なくとも1種であり、低誘電性化合物(b2)が有機チタン化合物、有機シラン化合物、有機ジルコニウム化合物、有機アルミニウム化合物および有機リン化合物よりなる群から選ばれる少なくとも1種であることが好ましい。
 熱可塑性樹脂(A)としては、フッ素系熱可塑性樹脂(a1)でも、非フッ素系熱可塑性樹脂(a2)でも、これらの併用でもよい。
 本発明の組成物は、熱可塑性樹脂(A)100質量部に対し、表面処理高誘電性無機粒子(B)を10~300質量部含むことが好ましい。
 本発明はまた、本発明のフィルム形成組成物を成形して得られるフィルムコンデンサ用高誘電性フィルムにも関する。
 さらにまた、本発明は、熱可塑性樹脂(A)中に比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる表面処理高誘電性無機粒子(B)が分散しているフィルムコンデンサ用高誘電性フィルムにも関する。
 本発明はさらに、上記フィルムコンデンサ用高誘電性フィルムの少なくとも片面に絶縁性樹脂塗膜層が設けられている積層型のフィルムコンデンサ用高誘電性フィルムにも関する。
 また本発明は、本発明のフィルムコンデンサ用高誘電性フィルムの少なくとも片面に電極層が設けられてなるフィルムコンデンサにも関する。
 本発明によれば、高誘電性無機粒子が高充填率で配合されているにもかかわらず、電気絶縁性の低下を抑制できるフィルムコンデンサ用高誘電性フィルムを提供することができる。
 本発明のフィルムコンデンサ用フィルム形成組成物は、熱可塑性樹脂(A)と表面処理高誘電性無機粒子(B)を含む。
 以下、各成分について説明する。
(A)熱可塑性樹脂
 熱可塑性樹脂(A)は、フッ素系熱可塑性樹脂(a1)であっても、非フッ素系熱可塑性樹脂(a2)であってもよい。
(a1)含フッ素系熱可塑性樹脂
 含フッ素系熱可塑性樹脂(a1)としては、フッ化ビニリデン(VdF)系樹脂のほか、テトラフルオロエチレン(TFE)、トリフルオロエチレン(TrFE)、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)などの共重合体が例示できるが、溶剤可溶性が良好な点から、VdF系樹脂が好ましい。
 VdF系樹脂としては、VdFの単独重合体(PVdF)のほか、VdFと共重合可能な他の単量体の1種または2種以上との共重合体が例示でき、これらのうち、比誘電率(20℃、1kHz)が3以上、さらには5以上、なかでも8以上、特に10以上のものが、耐電圧、絶縁性、比誘電率の向上、さらにはフィルムとしたときの比誘電率が高い点から好ましい。なお、上限値はとくに制限はないが、通常12、好ましくは11である。
 VdF系樹脂としては、フッ化ビニリデン(VdF)の単独重合体(PVdF)でも、VdFと共重合可能な他の単量体との共重合体であってもよい。また、VdFの単独重合体とVdF共重合体とのブレンド、またはVdF共重合体同士のブレンドであってもよい。
 VdFと共重合可能な他の単量体としては、たとえば、テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(TrFE)、モノフルオロエチレン、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)などの含フッ素オレフィン類;含フッ素アクリレート、官能基含有含フッ素単量体などがあげられる。これらのうち、溶剤溶解性が良好な点から、TFE、CTFE、HFPが好ましい。共重合割合は、VdFが50モル%以上、好ましくは60モル%以上であることが、比誘電率が高い点、溶剤溶解性が高い点から好ましい。
 なかでも、VdF単位60~100モル%、TFE単位0~40モル%およびHFP0~40モル%を含む重合体であることが、比誘電率が6以上であり好ましい。
 具体的には、VdFの単独重合体(PVdF)、VdF/TFE系共重合体、VdF/TFE/HFP系共重合体、VdF/HFP系共重合体、VdF/CTFE系共重合体などが例示でき、特に比誘電率が高い点、溶剤溶解性が良好な点から、PVdF、VdF/TFE系共重合体、VdF/HFP系共重合体が好ましい。
 VdF/TFE系共重合体の場合、その組成比は、VdF単位が60~95モル%でTFE単位が5~40モル%であることが、特にVdF単位が70~90モル%でTFE単位が10~30モル%であることが、耐電圧が高くなる点から好ましい。また、VdF系樹脂自体の誘電損失を下げるために、エチレン、プロピレン、アルキルビニルエーテル、酢酸ビニル、塩化ビニル、塩化ビニリデン、CH2=CHCF3、CH2=CFCF3などと共重合することも好ましい。この場合、VdFとは直接反応しにくいので、TFEのような上記の共重合可能な他の単量体とともに共重合することもできる。
(a2)非フッ素系熱可塑性樹脂
 非フッ素系熱可塑性樹脂(a2)としては、可撓性がよく比誘電率が高い点からポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル;ポリカーボネート(PC);シリコーン樹脂、ポリエーテル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン(PP)などが好ましく、強度を高めるためにはポリメタクリル酸メチルなどのポリ(メタ)アクリレート、エポキシ樹脂、ポリエチレンオキシド、ポリプロピレンオキシド、ポリフェニレンオキシド(PPO)、ポリフェニレンサルファイド(PPS)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、PC、ポリスチレン、ポリベンゾイミダゾール(PBI)などがあげられ、また高誘電性を補足する点から奇数ポリアミド、シアノプルラン、銅フタロシアニン系ポリマーなどがあげられ、機械的強度や絶縁抵抗の向上の点からセルロース系樹脂があげられる。なお、ポリカーボネート、ポリエチレンオキシド、ポリプロピレンオキシド、ポリ(メタ)アクリレート、ポリ酢酸ビニル、セルロース系樹脂は、機械的強度や絶縁抵抗の向上の点から、特に好ましい。
 なかでも、フッ素系熱可塑性樹脂(a1)と併用する場合、フッ素系熱可塑樹脂(a1)との相溶性に優れている点から、セルロース系樹脂、ポリエステル樹脂、およびポリメタクリル酸メチルよりなる群から選ばれる少なくとも1種が特に好ましい。
 特に、セルロース系樹脂を併用するときは、比誘電率の向上と誘電損失の低減に有効である。
 セルロース系樹脂としては、たとえばモノ酢酸セルロース、ジ酢酸セルロース、トリ酢酸セルロース、酢酸セルロースプロピオネートなどのエステル置換セルロース;メチルセルロース、エチルセルロース、ヒドロキシプロピルメチルセルロースなどのエーテルで置換されたセルロースなどが例示できる。これらの中でも、誘電損失の温度係数が低い点から、(モノ、ジ、トリ)酢酸セルロース、メチルセルロースが好ましい。
 併用する場合、セルロース系樹脂の割合は、比誘電率が高く、誘電損失が低い点から熱可塑性樹脂(A)中に0.1質量%以上、さらに機械特性が良好な点から20質量%以上が好ましい。また、誘電損失が低く機械特性が良好で比誘電率が高い点から99.9質量%以下、さらに誘電損失の温度依存性が低い点から98質量%以下が好ましい。
(B)表面処理高誘電性無機粒子
 表面処理高誘電性無機粒子(B)は、比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる。
 高誘電性無機粒子(b1)としては、比誘電率(20℃、1kHz)が100以上の高誘電性の無機粒子であれば特に制限されない。好ましい比誘電率(20℃、1kHz)は300以上、さらには500以上、特に1000以上である。高誘電性無機粒子(b1)の比誘電率に上限は特にないが、現状では3000程度である。
 高誘電性無機粒子(b1)としては、具体的にはつぎの(b1a)~(b1c)よりなる群れから選ばれる少なくとも1種が好ましい。
(b1a)式(b1a):
 M1 a1b1C1
(式中、M1は周期表2族金属元素;Nは周期表4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子。
 周期表2族金属元素M1としては、Be、Mg、Ca、Sr、Baなどが、周期表4族金属元素NとしてはTi、Zrなどが好ましく例示できる。
 具体的には、チタン酸バリウム、ジルコン酸バリウム、チタン酸カルシウム、ジルコン酸カルシウム、チタン酸ストロンチウム、ジルコン酸ストロンチウムなどが例示でき、特にチタン酸バリウムが比誘電率が高い点から好ましい。
(b1b)式(b1b):
 M2 a23 b2c2
(式中、M2とM3は異なり、M2は周期表2族金属元素、M3は周期表第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)で示される複合酸化物粒子。
 複合酸化物(b1b)としては、具体的には、スズ酸マグネシウム、スズ酸カルシウム、スズ酸ストロンチウム、スズ酸バリウム、アンチモン酸マグネシウム、アンチモン酸カルシウム、アンチモン酸ストロンチウム、アンチモン酸バリウム、ジルコン酸マグネシウム、ジルコン酸カルシウム、ジルコン酸ストロンチウム、ジルコン酸バリウム、インジウム酸マグネシウム、インジウム酸カルシウム、インジウム酸ストロンチウム、インジウム酸バリウムなどがあげられる。
(b1c)周期表2族金属元素および周期表4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子。
 複合酸化物(b1c)において、周期表2族金属元素の具体例としては、たとえばBe、Mg、Ca、Sr、Baなどがあげられ、周期表4族金属元素の具体例としては、たとえば、Ti、Zr、Hfなどがあげられる。
 周期表2族金属元素と周期表4族金属元素から選ばれる3種以上の好ましい組み合わせとしては、たとえば、Sr、Ba、Tiの組み合わせ、Sr、Ti、Zrの組み合わせ、Sr、Ba、Zrの組み合わせ、Ba、Ti、Zrの組み合わせ、Sr、Ba、Ti、Zrの組み合わせ、Mg、Ti、Zrの組み合わせ、Ca、Ti、Zrの組み合わせ、Ca、Ba、Tiの組み合わせ、Ca、Ba、Zrの組み合わせ、Ca、Ba、Ti、Zrの組み合わせ、Ca、Sr、Zrの組み合わせ、Ca、Sr、Ti、Zrの組み合わせ、Mg、Sr、Zrの組み合わせ、Mg、Sr、Ti、Zrの組み合わせ、Mg、Ba、Ti、Zrの組み合わせ、Mg、Ba、Zrの組み合わせなどがあげられる。
 複合酸化物粒子(b1c)としては、具体的には、チタン酸バリウムカルシウム、チタン酸ジルコン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸ジルコン酸バリウムストロンチウム、チタン酸ジルコン酸マグネシウム、チタン酸ジルコン酸カルシウム、チタン酸ジルコン酸バリウムカルシウムなどがあげられる。
 なかでも、比誘電率が高い点から、チタン酸バリウムおよび、チタン酸ジルコン酸バリウムカルシウム、チタン酸ストロンチウムよりなる群から選ばれる少なくとも1種が好ましい。
 なお、これらの複合酸化物粒子に加えて、チタン酸ジルコン酸鉛、アンチモン酸鉛、チタン酸亜鉛、チタン酸鉛、酸化チタンなどの他の複合酸化物粒子を併用してもよい。
 高誘電性無機粒子(b1)の粒子径は、平均粒子径で2μm以下、さらには1.2μm以下、特に0.01~0.5μm程度であることが、フィルムの表面平滑性や均一分散性に優れる点から好ましい。
 低誘電性化合物(b2)は、樹脂との相溶性、密着性を高め、絶縁性を向上させる役割を有しており、比誘電率(20℃、1kHz)が10以下の低誘電性の化合物であれば特に制限されず、無機化合物でも、有機化合物でもよい。好ましい比誘電率(20℃、1kHz)としては誘電正接が低く良好な点から5以下、さらには4以下である。高温での誘電特性が良好な点から、さらには3以下が好ましい。低誘電性化合物(b2)の比誘電率の下限は特にないが、通常2程度である。
 また、高誘電性無機粒子(b1)と低誘電性化合物(b2)の比誘電率の差は、90以上、また100以上、さらには200以上、特に300以上であることが、高誘電性かつ低誘電正接を実現できる点から好ましい。
 さらには、熱可塑性樹脂(A)の比誘電率(20℃、1kHz)と低誘電性化合物の比誘電率(20℃、1kHz)との差は、10以下、さらには5以下、特に3以下であることが、熱可塑性樹脂への高誘電性無機粒子の分散性が良好な点から好ましい。
 低誘電性化合物(b2)の具体例としては、有機化合物、特につぎの(b2a)~(b2e)よりなる群れから選ばれる少なくとも1種の有機化合物が高誘電性かつ誘電正接が低い点から好ましい。
(b2a)有機チタン化合物
 有機チタン化合物としては、たとえば、アルコキシチタニウム、チタニウムキレート、チタニウムアシレートなどのカップリング剤があげられ、とくに高誘電性無機粒子(b1)との親和性が良好な点から、アルコキシチタニウム、チタニウムキレートが好ましい。
 具体例としては、テトライソプロピルチタネート、チタニウムイソプロポキシオクチレングリコレート、ジイソプロポキシ・ビス(アセチルアセトナト)チタン、ジイソプロポキシチタンジイソステアレート、テトライソプロピルビス(ジオクチルフォスファイト)チタネート、イソプロピルトリ(n-アミノエチル-アミノエチル)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネートなどがあげられる。とくに高誘電性無機粒子(b1)との親和性が良好な点からテトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネートが好ましい。
(b2b)有機シラン化合物
 有機シラン化合物としては、たとえば、高分子型、低分子型があり、また官能基の数の点からモノアルコキシシラン、ジアルコキシシラン、トリアルコキシシラン、テトラアルコキシシランなどのカップリング剤があげられ、とくに高誘電性無機粒子(b1)との親和性が良好な点から低分子型のアルコキシシランが好ましい。
 また、ビニルシラン、エポキシシラン、アミノシラン、メタクロキシシラン、メルカプトシランなども好適に使用できる。
 アルコキシシランを用いる場合、加水分解することにより、表面処理の効果である体積抵抗率のより一層の向上(電気絶縁性の向上)が図れる。
(b2c)有機ジルコニウム化合物
 有機ジルコニウム化合物としては、たとえば、アルコキシジルコニウム、ジルコニウムキレートなどのカップリング剤があげられる。
(b2d)有機アルミニウム化合物
 有機アルミニウム化合物としては、たとえば、アルコキシアルミニウム、アルミニウムキレートなどのカップリング剤があげられる。
(b2e)有機リン化合物
 有機リン化合物としては、亜リン酸エステル、リン酸エステル、リン酸キレートなどがあげられる。
 これらのなかでも、高誘電性無機粒子(b1)との親和性が良好な点から、アルコキシチタニウム、チタニウムキレートおよびアルコキシシランよりなる群から選ばれる少なくとも1種が好ましい。
 高誘電性無機粒子(b1)の低誘電性化合物(b2)による表面処理方法としては、たとえばつぎの方法が例示できるが、これらに限定されるものではない。
(表面処理方法1)湿式処理法
 高誘電性無機粒子(b1)に水溶性有機溶剤を加え、高速撹拌機やホモジナイザーで撹拌しスラリーを調製する。この高誘電性無機粒子(b1)のスラリーに低誘電性化合物(b2)を必要に応じて水で希釈して添加し、高速撹拌機やホモジナイザーで撹拌する。ついでこのスラリーをそのまま、または加熱しながら撹拌する。得られた分散液をろ過し乾燥処理を行い、表面処理を施した高誘電性無機粒子(B)を製造する。乾燥後、凝集している場合は、ボールミル、ビーズミルなどで粉砕処理を行なえばよい。
(表面処理方法2)乾式処理法
 高誘電性無機粒子(b1)を乾式ミキサーや乾式ビーズミル、ヘンシェルミキサーなどの混合装置を用いて撹拌しながら、必要により溶剤で希釈した低誘電性化合物(b2)を仕込み、撹拌を続けた後乾燥処理することにより表面処理を施した高誘電性無機粒子(B)を製造する。乾燥後、凝集している場合は、ボールミル、ビーズミルなどで粉砕処理を行なえばよい。
 低誘電性化合物(b2)の量は、高誘電性無機粒子(b1)100質量部に対して0.1~20質量部、さらには0.5~10質量部、特に1~5質量部が好ましい。多くなりすぎると、過剰分の低誘電性化合物(b2)が電気特性などに悪影響を与える場合があり、少なくなりすぎると、表面処理が施されていない高誘電性無機粒子(b1)が残存する可能性が高くなる。
 表面処理された高誘電性無機粒子(B)は、高誘電性無機粒子(b1)の表面の全部または一部が低誘電性化合物(b2)で覆われている。
 表面処理高誘電性無機粒子(B)の配合量は、熱可塑性樹脂(A)100質量部に対して、10質量部以上、好ましくは50質量部以上、特に好ましくは150質量部以上である。少なすぎると、高誘電性フィルムの比誘電率を向上させる効果が少なくなる傾向にある。好ましい上限は300質量部である。多くなりすぎると得られたフィルムが脆くなる傾向にある。より好ましい上限は250質量部である。
 本発明のフィルムコンデンサ用フィルム形成組成物には、その他の成分(C)を必要に応じて配合することができる。
(C)その他の成分
(C1)ゴム粒子
 ゴム粒子(C1)はフィルムに機械的強度、特に伸びを与え、さらに弾性などの性質を付与する役割をもっている。
 そうした役割を果たすのに好適なゴム粒子のゴムとしては、限定的ではないが、天然ゴム(NR)、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、イソプレンゴム、クロロプレンゴムなどのジエン系ゴム;アクリルゴム、シリコーンゴム、ニトリルゴム;VdF-テトラフルオロエチレン(TFE)系ゴム、TFE-パーフルオロビニルエーテル系ゴムなどのフッ素系ゴムなどが例示できる。これらのうち伸びや弾性が良好な点から、アクリル系ゴム、ブタジエン系ゴムが好ましい。
 また、ゴム粒子は未架橋ゴム(生ゴム)粒子でもよいし、架橋されたゴム粒子でもよいが、引張強度、伸び、弾性が良好な点から、架橋ゴム粒子が好ましい。ゴムの架橋は公知の定法に従って行えばよい。
 ゴム粒子(C1)の粒子径は、平均一次粒子径で1.0μm以下、さらには0.8μm以下、特に0.3~0.5μm程度であることが、熱可塑性樹脂への分散性が良好でかつ引張強度、伸びを付与することが優れる点から好ましい。
 ゴム粒子(C1)の配合量は、熱可塑性樹脂(A)100質量部に対して、10質量部以上、好ましくは15質量部以上、特に好ましくは20質量部以上である。少なすぎるとフィルムの機械的強度、特に伸びの向上効果が小さくなる傾向にある。上限は30質量部である。多くなりすぎると熱可塑性樹脂への分散性が不良となる傾向にある。好ましい上限は25質量部である。
(C2)親和性向上剤
 表面処理高誘電性無機粒子(B)と熱可塑性樹脂(A)との親和性を高めるために、親和性向上剤(C2)を配合してもよい。親和性向上剤は、表面処理高誘電性無機粒子(B)を熱可塑性樹脂(A)に均一に分散させると共に、表面処理高誘電性無機粒子(B)と熱可塑性樹脂(A)をフィルム中でしっかり結合させる役割を果たし、ボイドの発生を抑制し、比誘電率を高めることができる。
 親和性向上剤としては、カップリング剤、界面活性剤またはエポキシ基含有化合物が有効である。
 親和性向上剤(C2)としてのカップリング剤は、高誘電性無機粒子(b1)の表面処理用に用いる低誘電性化合物(b2)と同じでも異なっていてもよい。好ましくは、同種のものが、より一層親和性が向上する点から好ましい。親和性向上剤(C2)としてのカップリング剤の具体例は、低誘電性化合物(b2)として例示した有機チタン化合物、有機シラン化合物、有機ジルコニウム化合物、有機アルミニウム化合物などのカップリング剤と有機リン化合物が、好ましい例と共にここでも使用できる。
 界面活性剤としては、高分子型、低分子型があり、官能基の種類の点から非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤があり、これらが使用でき、熱安定性が良好な点から、高分子型の界面活性剤が好ましい。
 非イオン性界面活性剤としては、たとえば、ポリエーテル誘導体、ポリビニルピロリドン誘導体、アルコール誘導体などがあげられ、とくに、表面処理高誘電性無機粒子(B)との親和性が良好な点から、ポリエーテル誘導体が好ましい。
 アニオン性界面活性剤としては、たとえば、スルホン酸やカルボン酸、およびそれらの塩を含有するポリマーなどがあげられ、とくに、熱可塑性樹脂(A)との親和性が良好な点から、具体的にはアクリル酸誘導体系ポリマー、メタクリル酸誘導体系ポリマー、無水マレイン酸系共重合体が好ましい。
 カチオン性界面活性剤としては、たとえば、アミン系化合物やイミダゾリンなどの含チッ素系複合環を有する化合物やそのハロゲン化塩があげられるが、熱可塑性樹脂(A)への攻撃性が低い点から、含チッ素系複合環を有する化合物が好ましい。塩型としては、塩化アルキルトリメチルアンモニウムなどのハロゲンアニオンを含むアンモニウム塩があげられる。比誘電率が高い点からハロゲンアニオンを含むアンモニウム塩が好ましい。
 エポキシ基含有化合物としては、エポキシ化合物またはグリシジル化合物などがあげられ、低分子量化合物でも高分子量化合物でもよい。なかでも、熱可塑性樹脂(A)との親和性がとくに良好な点から、エポキシ基を1個有する低分子量の化合物が好ましい。なお、カップリング剤に分類されるエポキシ基含有カップリング剤(たとえばエポキシシランなど)は、本発明ではエポキシ基含有化合物には含めず、カップリング剤に含める。
 エポキシ基含有化合物の好ましい例としては、とくに熱可塑性樹脂(A)との親和性に優れている点から、式:
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子、または酸素原子、チッ素原子もしくは炭素-炭素二重結合を含んでいてもよい炭素数1~10の1価の炭化水素基または置換基を有していてもよい芳香環;lは0または1;mは0または1;nは0~10の整数)
で示される化合物があげられる。
 具体例としては、
Figure JPOXMLDOC01-appb-C000002
などのケトン基やエステル基を有するものがあげられる。
 親和性向上剤は、本発明の目的を損なわない範囲で配合することができるが、具体的には、その配合量は、表面処理高誘電性無機粒子(B)100質量部に対して、0.01~30質量部が、さらには0.1~25質量部が、とくには1~20質量部が、均一に分散させることができ、得られるフィルムの比誘電率が高い点から好ましい。
 さらに本発明において、任意成分として、他の補強用フィラーなどの添加剤を、本発明の効果を損なわない範囲内で含ませてもよい。
 補強用フィラーとしては高誘電性無機粒子(b1)以外の無機材料があげられ、たとえばシリカ、炭化ケイ素、窒化ケイ素、酸化マグネシウム、チタン酸カリウム、ガラス、アルミナ、硼素化合物の粒子または繊維を例示できる。
 本発明のフィルムコンデンサ用フィルム形成組成物は、以上に説明した熱可塑性樹脂(A)(必要に応じて以上説明した他の成分(C)などを含有していてもよい。以下同様)と表面処理高誘電性無機粒子(B)を混合することにより調製することができる。混合方法としては、従来公知の溶融混練法や溶剤に溶解分散させる方法が採用できる。
 本発明のフィルムコンデンサ用高誘電性フィルムは、本発明のフィルムコンデンサ用フィルム形成組成物を溶融押出法やコーティング法などにより形成することができる。簡便さや得られるフィルムの均質性に優れる点からコーティング法(キャスト法)で製造することが有利である。
 コーティング法では、熱可塑性樹脂(A)に、表面処理高誘電性無機粒子(B)、さらに必要に応じて他の添加剤(C)などを加えて溶剤に溶解または分散させたコーティング用組成物から、各種のコーティング法に従ってフィルムを作製する。
 コーティング用溶剤としては、熱可塑性樹脂(A)を溶解または均一に分散し得る任意の溶媒を使用できるが、特に、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン(MIBK)、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド等が好ましくあげられる。
 コーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法が好ましい。
 コーティング法によれば、高濃度の均一な組成物が調製でき、コーティングが容易である点から、得られる高誘電性フィルムの膜厚を20μm以下、好ましくは15μm以下、さらには10μm以下にすることができる。膜厚の下限は機械的強度の維持の点から約2μmである。
 本発明のフィルムコンデンサ用の高誘電性フィルムには、電気絶縁性をさらに向上させるために、絶縁性樹脂塗膜層を高誘電性フィルムの少なくとも片面に設けて積層型の高誘電性フィルムとしてもよい。
 この絶縁性樹脂塗膜層は、電気絶縁性をさらに向上させると同時に耐電圧も向上させる。その理由は明らかではないが、電圧の分圧により相対的に膜厚が薄い方により電圧がかかる。つまり高い絶縁性を有する絶縁性樹脂の方に高電圧がかかり、熱可塑性樹脂(A)への電圧負荷が低減されるためであるからと推定される。
 片面のみに設ける場合は、絶縁抵抗を向上させかつ高比誘電率を維持する点で有利であり、両面に設ける場合はより電気絶縁性を向上させる点で有利である。
 絶縁性樹脂塗膜層を構成する絶縁性樹脂は、体積抵抗率1013Ω・cm以上、好ましくは1014Ω・cm以上、特に1015Ω・cm以上の非フッ素系の樹脂であることが、電気絶縁性と耐電圧の向上効果が優れる点から好ましい。下限は、できるだけ電気絶縁性が高い(電気伝導度が小さい)方が好ましいことから、できるだけ小さいものが好ましい。
 この点から、具体的には、ポリプロピレン、ポリスチレン、ポリエステル、ポリカーボネート、ポリイミド、セルロース系樹脂などがあげられる。
 また別の観点から、溶剤可溶型の非フッ素系樹脂であることが、絶縁性樹脂塗膜層の形成が容易な点から好ましい。
 特に好ましい具体例は、ポリスチレン、ポリエステル、ポリメタクリル酸メチルおよびセルロース系樹脂よりなる群れから選ばれる少なくとも1種である。
 絶縁性樹脂塗膜層は、絶縁性樹脂のみで構成されていてもよいし、他の添加剤が含まれていてもよい。
 他の添加剤としては、たとえば可塑剤、レベリング剤、消泡剤、酸化防止剤、帯電防止剤、難燃剤、緩衝材、濡れ性改良剤、チタン酸バリウムなどの無機酸化物、ゴム微粒子などが例示できる。その種類および配合量は、本発明の効果を損なわない範囲で選定すればよい。
 絶縁性樹脂塗膜層は、以上に説明した絶縁性樹脂(必要に応じて以上説明した他の添加剤などを含有する非フッ素系樹脂組成物)を用いて、従来公知のコーティング法により、高誘電性フィルム上に積層(形成)する。コーティング法により塗膜を形成することにより、高誘電性フィルムの熱可塑性樹脂(A)と表面処理高誘電性無機粒子(B)との界面接触の確率が高くなりより密着性が良くなるため、絶縁性をさらに向上させ、耐電圧を向上させる効果が奏される。
 コーティング法では、絶縁性樹脂に、必要に応じて他の添加剤を加えて溶剤に溶解または分散させたコーティング用組成物から、各種のコーティング法に従ってフィルムを作製する。
 絶縁性樹脂塗膜層の形成用溶剤としては、絶縁性樹脂を溶解し得る任意の溶媒を使用できるが、高誘電性フィルムを構成する熱可塑性樹脂(A)に親和性を有する溶剤を用いるときは、密着性や耐久性に優れた絶縁性樹脂塗膜層を形成できる。
 好ましい溶剤としては、極性有機溶媒が好ましい。なかでも極性有機溶媒としては、たとえばケトン系溶剤、エステル系溶媒、カーボネート系溶媒、環状エーテル系溶媒、アミド系溶剤が好ましい。具体的には、メチルエチルケトン、メチルイソブチルケトン(MIBK)、アセトン、ジエチルケトン、ジプロピルケトン、酢酸エチル、酢酸メチル、酢酸プロピル、酢酸ブチル、乳酸エチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド等が好ましくあげられる。
 コーティング方法としては、ナイフコーティング法、キャストコーティング法、ロールコーティング法、グラビアコーティング法、ブレードコーティング法、ロッドコーティング法、エアドクタコーティング法、カーテンコーティング法、ファクンランコーティング法、キスコーティング法、スクリーンコーティング法、スピンコーティング法、スプレーコーティング法、押出コーティング法、電着コーティング法などが使用できるが、これらのうち操作性が容易な点、膜厚のバラツキが少ない点、生産性に優れる点からロールコーティング法、グラビアコーティング法、キャストコーティング法が好ましい。
 得られる絶縁性樹脂塗膜層の厚さは、良好な絶縁性および耐電圧の向上が得られる点から、0.5μm以上、好ましくは1μm以上、さらには2μm以上が好ましい。上限は、高誘電性を維持する点から、5μm、好ましくは3μmである。
 本発明のフィルムコンデンサは、本発明の高誘電性フィルムの少なくとも片面に電極層を積層することにより作製することができる。
 フィルムコンデンサの構造としては、たとえば、電極層と高誘電性フィルムが交互に積層された積層型(特開昭63-181411号公報、特開平3-18113号公報など)や、テープ状の高誘電性フィルムと電極層を巻き込んだ巻回型(高誘電性フィルム上に電極が連続して積層されていない特開昭60-262414号公報などに開示されたものや、高誘電性フィルム上に電極が連続して積層されている特開平3-286514号公報などに開示されたものなど)などがあげられる。構造が単純で、製造も比較的容易な、高誘電性フィルム上に電極層が連続して積層されている巻回型フィルムコンデンサの場合は、一般的には片面に電極を積層した高誘電性フィルムを電極同士が接触しないように2枚重ねて巻き込んで、必要に応じて、巻き込んだ後に、ほぐれないように固定して製造される。
 電極層は、特に限定されないが、一般的に、アルミニウム、亜鉛、金、白金、銅などの導電性金属からなる層であって、金属箔として、または蒸着金属被膜として用いる。本発明においては、金属箔と蒸着金属被膜のいずれでも、また、両者を併用しても構わない。電極層を薄くでき、その結果、体積に対して容量を大きくでき、誘電体との密着性に優れ、また、厚さのバラつきが小さい点で、通常は、蒸着金属被膜が好ましい。蒸着金属被膜は、一層のものに限らず、例えば、耐湿性を持たせるためにアルミニウム層にさらに半導体の酸化アルミニウム層を形成して電極層とする方法(例えば特開平2-250306号公報など)など、必要に応じて積層にしてもよい。蒸着金属被膜の厚さも特に限定されないが、好ましくは100~2,000オングストローム、より好ましくは200~1,000オングストロームの範囲とする。蒸着金属被膜の厚さがこの範囲である時に、コンデンサの容量や強度がバランスされ好適である。
 電極層として蒸着金属被膜を用いる場合、被膜の形成方法は特に限定されず、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法などを採用することができる。通常は、真空蒸着法が用いられる。
 真空蒸着法としては、たとえば成形品のバッチ方式と、長尺品で使用される半連続(セミコンテニアス)方式と連続(air to air)方式などがあり、現在は、半連続方式が主力として行われている。半連続方式の金属蒸着法は、真空系の中で金属蒸着、巻き取りした後、真空系を大気系に戻し、蒸着されたフィルムを取り出す方法である。
 半連続方式については、具体的にはたとえば、特許第3664342号明細書に図1を参照して記載されている方法で行うことができる。
 高誘電性フィルム上に金属薄膜層を形成する場合、あらかじめ高誘電性フィルム表面に、コロナ処理、プラズマ処理など、接着性向上のための処理を施しておくこともできる。電極層として金属箔を用いる場合も、金属箔の厚さは特に限定されないが、通常は、0.1~100μm、好ましくは1~50μm、より好ましくは3~15μmの範囲である。
 固定方法は、特に限定されず、例えば、樹脂で封止したり絶縁ケースなどに封入したりすることにより、固定と構造の保護とを同時に行えばよい。リード線の接続方法も限定されず、溶接、超音波圧接、熱圧接、粘着テープによる固定などが例示される。巻き込む前から電極にリード線を接続しておいてもよい。絶縁ケースに封入する場合など、必要に応じて、ウレタン樹脂、エポキシ樹脂などの熱硬化性樹脂で開口部などを封止して酸化劣化などを防止してもよい。
 本発明の高誘電性フィルムが絶縁性樹脂塗膜層を有する積層型の場合、電極層は絶縁性樹脂塗膜層上に設けてもよいし、他方の面に設けてもよい。
 このようにして得られたフィルムコンデンサは、高誘電性、高絶縁性でかつ高耐電圧であって、機械的強度、特に伸びに優れたものである。
 つぎに本発明の実施例などをあげて具体的に説明するが、本発明はかかる例のみに限定されるものではない。
 なお、本明細書で使用している特性値は、つぎの方法で測定したものである。
(膜厚)
 デジタル測長機((株)仙台ニコン製のMF-1001)を用いて、基板に載せたフィルムを室温下にて測定する。絶縁性樹脂層の厚さは、最終的な積層型高誘電性フィルムの全厚を同様にして測定し、VdF系樹脂フィルムの厚さを引いた厚さとする。
(誘電損失および比誘電率)
 複合フィルムを真空中で両面にアルミニウムを蒸着しサンプルとする。このサンプルをLCRメーター((株)エヌエフ回路設計ブロック製のZM2353)にて、ドライエアー雰囲気下、室温(20℃)および80℃にて、周波数100Hz~10kHzでの静電容量と誘電正接を測定する。得られた各静電容量と誘電正接の測定値から比誘電率および誘電損失(%)を算出する。
(電気絶縁性)
 デジタル超絶縁計/微小電流計(東亜ディーケーケー(株)製)にて、体積抵抗率(Ω・cm)をドライエアー雰囲気下、DC500Vで測定する。
(耐電圧)
 耐電圧・絶縁抵抗試験器(菊水電子工業(株)製のTOS9201)を用いて基板に載せたフィルムをドライエアー雰囲気下にて測定する。昇圧速度は100V/sで測定する。
製造例1
 平均粒子径1.0μmのチタン酸ジルコン酸バリウムカルシウム(BCTZ)(日本化学工業(株)製、比誘電率:2000(20℃、1kHz)。無機粒子b1-1)100質量部を純水100質量部に加え撹拌し、スラリーを調製した。
 このスラリーに低誘電性化合物であるテトラメトキシシラン(比誘電率:3(20℃、1kHz)。化合物b2-1)1質量部をN,N-ジメチルアセトアミド(DMAc)に溶解した溶液(濃度1質量%)を加え、さらに直径1mmのジルコニアビーズを同質量加えて卓上遊星ボールミル((有)Gokin Planetaring製のPlanet M)に入れ、室温下、回転数800rpmで15分間分散処理を行い、表面処理高誘電性無機粒子のスラリーを調製した。このスラリーをステンレススチール製のメッシュ(真鍋工業(株)製の80メッシュ)に通してジルコニアビーズを取り除いた後、真空乾燥機にて100℃で乾燥することで表面処理高誘電性無機粒子を得た。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例2
 製造例1において、低誘電性化合物としてテトラメトキシシラン(化合物b2-1)の量を0.1質量部に変更したほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例3
 製造例1において、低誘電性化合物としてテトラメトキシシラン(化合物b2-1)の量を5質量部に変更したほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例4
 製造例1において、低誘電性化合物としてテトラメトキシシランに代えて有機チタン化合物(テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート。化合物b2-2)を1質量部用いたほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例5
 製造例1において、低誘電性化合物としてテトラメトキシシランに代えて有機ジルコニウム化合物(テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトジルコネート。化合物b2-3)を1質量部用いたほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例6
 製造例1において、低誘電性化合物としてテトラメトキシシランに代えて有機アルミニウム化合物(アルキルアセトアセテートアルミニウムジイソプロピネート。比誘電率:6(20℃、1kHz)。化合物b2-4)を1質量部用いたほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
製造例7
 製造例1において、低誘電性化合物としてテトラメトキシシランに代えて有機リン化合物(アシッドホスホオキシエチルメタクリレート。比誘電率:5(20℃、1kHz)。化合物b2-5)を1質量部用いたほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
実施例1
 3Lセパラブルフラスコ中にN,N-ジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部とポリフッ化ビニリデン(PVdF)(ARKEMA社製のKAYNAR761、比誘電率9.2(20℃、1kHz))200質量部を80℃、3時間スリーワンモーターにて攪拌し、20質量%濃度のPVdF溶液を得た。このPVdF溶液は透明の均一溶液であった。
 製造例1で調製した表面処理高誘電性無機粒子分散液の34質量部と上記PVdF溶液の50質量部(PVdF10.0質量部、DMAc40.0質量部含有)、およびMIBKの26.7質量部を混合しコーティング用組成物を調製した。
 ついで得られた組成物をアルミ基板上にバーコーターで塗布し、180℃で3分間熱風乾燥して、厚さ約7.0μmのVdF系樹脂フィルムを作製した。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。
実施例2~7
 実施例1において、表面処理高誘電性無機粒子分散液として製造例2~7で製造した表面処理高誘電性無機粒子分散液を用いたほかは実施例1と同様にして高誘電性フィルムを作製した。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
比較例1
 製造例1で使用したBCTZを表面処理せずにそのまま用いたほかは実施例1と同様にして高誘電性フィルムを作製した。
 得られた比較用の高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、表面処理高誘電性無機粒子を添加することで、フィルムの体積抵抗率、耐電圧が向上しているということが分かる。
実施例8~10
 実施例1において、表面処理高誘電性無機粒子の量(対熱可塑性樹脂100質量部)を表2に示す量としたほかは実施例1と同様にして高誘電性フィルムを作製した。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
実施例11
 実施例1で得られた高誘電性フィルムの片面に15質量%濃度のポリエステル溶液からなるコーティング用組成物をバーコーターで塗布し、180℃で3分間熱風乾燥して絶縁性樹脂層を形成し、積層型高誘電性フィルムを作製した。絶縁性樹脂層の厚さは、1.0μmであった。
 得られた積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
実施例12
 実施例3で得られた高誘電性フィルムの片面に15質量%濃度のポリエステル溶液からなるコーティング用組成物をバーコーターで塗布し、180℃で3分間熱風乾燥して絶縁性樹脂層を形成し、積層型高誘電性フィルムを作製した。絶縁性樹脂層の厚さは、0.8μmであった。
 得られた積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2から、表面処理高誘電性無機粒子の添加量が多くなるほど、得られたフィルムは高い比誘電率を示すことがわかる。また、フィルムの片面に絶縁性樹脂層を形成することで、体積抵抗率、耐電圧を大幅に向上させているということも分かる。
実施例13
 3Lセパラブルフラスコ中にN,N-ジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部と酢酸セルロース(AC)(ダイセル化学工業(株)製のL-20、比誘電率3.0(20℃、1kHz))200質量部を入れ、80℃、3時間メカニカルスターラーにて攪拌し、20質量%濃度のAC溶液を得た。このAC溶液は透明の均一溶液であった。
 製造例1で調製した表面処理高誘電性無機粒子分散液の34質量部と上記AC溶液の50質量部(AC10.0質量部、DMAc40.0質量部含有)、およびMIBKの26.7質量部を混合し、コーティング用組成物を調製した。
 ついで得られた組成物をアルミ基板上にバーコーターで塗布し、180℃で1分間熱風乾燥して、厚さ約7.3μmのAC樹脂フィルムを作製した。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
実施例14
 実施例13で得られた高誘電性フィルムの片面に、15質量%濃度のポリエステル溶液からなるコーティング用組成物をバーコーターで塗布し、180℃で3分間熱風乾燥して絶縁性樹脂層を形成し、積層型高誘電性フィルムを作製した。絶縁性樹脂層の厚さは、0.8μmであった。
 得られた積層型高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
比較例2
 製造例1で使用したBCTZを表面処理せずにそのまま用いたほかは実施例13と同様にして高誘電性フィルムを作製した。
 得られた比較用の高誘電性フィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3から、非フッ素系熱可塑性樹脂の場合でも、フッ素系共重合体の熱可塑性樹脂の場合でも、さらにはフッ素系熱可塑性樹脂と非フッ素系熱可塑性樹脂をブレンドした場合でも、表面処理高誘電性無機粒子を添加することで、フィルムの体積抵抗率、耐電圧が向上し、さらに絶縁性樹脂層を形成することで、体積抵抗率、耐電圧を大幅に向上させているということが分かる。
実施例15
 実施例1において、VdF系樹脂フィルム層(a1)をポリフッ化ビニリデン(PVdF)に代えて、VdF/TFE(ダイキン工業(株)社製VP-50。比誘電率:9.0(1kHz、25℃))を用いたほかは、同様にして膜厚6.7μmのVdF系樹脂フィルム(a1)を得た。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
実施例16
 3Lセパラブルフラスコ中にN,N-ジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部と酢酸セルロース(AC)(ダイセル化学工業(株)製のL-20、比誘電率3.0(20℃、1kHz))200質量部を入れ、80℃、3時間メカニカルスターラーにて攪拌し、20質量%濃度のAC溶液を得た。このAC溶液は透明の均一溶液であった。
 実施例1において、PVdF溶液の50質量部に代えて、PVdF溶液40質量部(PVdF8.0質量部、DMAc32.0質量部含有)とAC溶液の10質量部(AC2.0質量部、DMAc8.0質量部含有)のブレンド溶液を用いたほかは、同様にして膜厚7.2μmのVdF系樹脂フィルム(a1)を得た。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
実施例17
 3Lセパラブルフラスコ中にN,N-ジメチルアセトアミド(DMAc)(キシダ化学(株)製)800質量部とメタクリル酸メチル(PMMA)(三菱レイヨン(株)製のRX-083、比誘電率3.0(20℃、1kHz))200質量部を入れ、80℃、3時間メカニカルスターラーにて攪拌し、20質量%濃度のPMMA溶液を得た。このPMMA溶液は透明の均一溶液であった。
 実施例1において、PVdF溶液の50質量部に代えて、PVdF溶液40質量部(PVdF8.0質量部、DMAc32.0質量部含有)とPMMA溶液の10質量部(PMMA2.0質量部、DMAc8.0質量部含有)のブレンド溶液を用いたほかは、同様にして膜厚7.4μmのVdF系樹脂フィルム(a1)を得た。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000006
 表4から、フッ素系共重合体の熱可塑性樹脂の場合でも、さらにはフッ素系熱可塑性樹脂と非フッ素系熱可塑性樹脂をブレンドした場合でも、表面処理高誘電性無機粒子を添加することで、良好なフィルムの体積抵抗率、耐電圧を有していることが分かる。
実施例18
 製造例1において、高誘電性無機粒子としてBCTZに代えてチタン酸ストロンチウム(堺化学工業(株)製のST-03、比誘電率:300(20℃、1kHz)、平均粒子径0.3μm。無機粒子b1-2)を100質量部用いたほかは製造例1と同様にして表面処理高誘電性無機粒子を調製した。
 ついで、得られた表面処理高誘電性無機粒子166質量部、DMAc100質量部およびメチルイソブチルケトン(MIBK)66.3質量部を撹拌混合して、表面処理高誘電性無機粒子の分散液を製造した。
 この表面処理高誘電性無機粒子の分散液を用いたほかは実施例1と同様にして膜厚6.8μmのVdF系樹脂フィルム(a1)を得た。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表5に示す。
実施例19
 製造例1において、高誘電性無機粒子(b1)として、チタン酸ジルコン酸バリウムカルシウム(BCTZ)に代えてジルコン酸ストロンチウム((株)高純度化学研究所製、比誘電率:100(20℃、1kHz)、平均粒子径1μm。無機粒子b1-3)を用いたほかは同様にして表面処理高誘電性無機粒子の分散液を製造した。
 この表面処理高誘電性無機粒子の分散液を用いたほかは実施例1と同様にして膜厚6.7μmのVdF系樹脂フィルム(a1)を得た。
 得られたフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表5に示す。
実施例20
 製造例1において、高誘電性無機粒子(b1)として、チタン酸ジルコン酸バリウムカルシウム(BCTZ)に代えてチタン酸バリウム(BT)(日本化学工業(株)製のBT-4FB、比誘電率:2500(20℃、1kHz)、平均粒子径0.7μm。無機粒子b1-4)を用いたほかは同様にして表面処理高誘電性無機粒子の分散液を製造した。
 この表面処理高誘電性無機粒子の分散液を用いたほかは実施例1と同様にして膜厚7.0μmのVdF系樹脂フィルム(a1)を得た。
 得られた本発明のフィルムについて、体積抵抗率、耐電圧、20℃および80℃における各周波数(100Hz、1kHz、10kHz)での誘電損失および比誘電率を算出した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000007
 表5から、高誘電性無機粒子の種類にかかわらず、良好なフィルムの体積抵抗率を有しているということが分かる。
実施例21
 実施例1で製造した高誘電性フィルムの両面に、真空蒸着装置((株)真空デバイス製のVE-2030)により3Ω/□を目標にしてアルミニウムを蒸着して電極を形成した。これらのアルミニウム電極に電圧印加用のリード線を取り付け、スタンプ型(簡易評価用)のフィルムコンデンサを作製した。

Claims (12)

  1. 熱可塑性樹脂(A)と、比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる表面処理高誘電性無機粒子(B)とを含むフィルムコンデンサ用フィルム形成組成物。
  2. 高誘電性無機粒子(b1)の比誘電率(20℃、1kHz)が300以上である請求項1記載の組成物。
  3. 低誘電性化合物(b2)の比誘電率(20℃、1kHz)が5以下である請求項1または2記載の組成物。
  4. 高誘電性無機粒子(b1)が
    (b1a)式(b1a):
     M1 a1b1C1
    (式中、M1は周期表2族金属元素;Nは周期表4族金属元素;a1は0.9~1.1;b1は0.9~1.1;c1は2.8~3.2である;M1とNはそれぞれ複数であってもよい)で示される複合酸化物粒子、
    (b1b)式(b1b):
     M2 a23 b2c2
    (式中、M2とM3は異なり、M2は周期表2族金属元素、M3は周期表第5周期の金属元素;a2は0.9~1.1;b2は0.9~1.1;c2は2.8~3.2である)
    で示される複合酸化物粒子、および
    (b1c)周期表2族金属元素および周期表4族金属元素よりなる群から選ばれる少なくとも3種の金属元素を含む複合酸化物粒子
    よりなる群から選ばれる少なくとも1種である請求項1~3のいずれかに記載の組成物。
  5. 低誘電性化合物(b2)が有機化合物から選ばれる少なくとも1種である請求項1~4のいずれかに記載の組成物。
  6. 高誘電性無機粒子(b1)が、チタン酸バリウム、チタン酸ジルコン酸バリウムカルシウムおよびチタン酸ストロンチウムよりなる群から選ばれる少なくとも1種であり、低誘電性化合物(b2)が有機チタン化合物、有機シラン化合物、有機ジルコニウム化合物、有機アルミニウム化合物および有機リン化合物よりなる群から選ばれる少なくとも1種である請求項1~5のいずれかに記載の組成物。
  7. 熱可塑性樹脂(A)が、フッ素系熱可塑性樹脂(a1)および非フッ素系熱可塑性樹脂(a2)よりなる群から選ばれる少なくとも1種である請求項1~6のいずれかに記載の組成物。
  8. 熱可塑性樹脂(A)100質量部に対し、表面処理高誘電性無機粒子(B)を10~300質量部含む請求項1~7のいずれかに記載の組成物。
  9. 請求項1~8のいずれかに記載のフィルム形成組成物を成形して得られるフィルムコンデンサ用高誘電性フィルム。
  10. 熱可塑性樹脂(A)中に、比誘電率(20℃、1kHz)が100以上の高誘電性無機粒子(b1)の表面を比誘電率(20℃、1kHz)が10以下の低誘電性化合物(b2)で表面処理して得られる表面処理高誘電性無機粒子(B)が分散しているフィルムコンデンサ用高誘電性フィルム。
  11. 請求項9または10記載のフィルムコンデンサ用高誘電性フィルムの少なくとも片面に絶縁性樹脂層が設けられてなる積層型のフィルムコンデンサ用高誘電性フィルム。
  12. 請求項9~11のいずれかに記載のフィルムコンデンサ用高誘電性フィルムの少なくとも片面に電極層が設けられてなるフィルムコンデンサ。
PCT/JP2009/071236 2008-12-22 2009-12-21 フィルムコンデンサ用高誘電性フィルム形成組成物 WO2010074026A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010544052A JP5679822B2 (ja) 2008-12-22 2009-12-21 フィルムコンデンサ用高誘電性フィルム形成組成物
DK09834827.9T DK2378529T3 (da) 2008-12-22 2009-12-21 Sammensætning til dannelse af højdielektrisk film til filmkondensator
EP09834827.9A EP2378529B1 (en) 2008-12-22 2009-12-21 Composition for forming high-dielectric film for film capacitor
US13/141,274 US8934216B2 (en) 2008-12-22 2009-12-21 Composition for forming high dielectric film for film capacitor
KR1020117017053A KR101332473B1 (ko) 2008-12-22 2009-12-21 필름 콘덴서용 고유전성 필름 형성 조성물
CN2009801521874A CN102265362A (zh) 2008-12-22 2009-12-21 膜电容器用高介电性膜形成组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008326104 2008-12-22
JP2008-326104 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010074026A1 true WO2010074026A1 (ja) 2010-07-01

Family

ID=42287635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071236 WO2010074026A1 (ja) 2008-12-22 2009-12-21 フィルムコンデンサ用高誘電性フィルム形成組成物

Country Status (7)

Country Link
US (1) US8934216B2 (ja)
EP (1) EP2378529B1 (ja)
JP (1) JP5679822B2 (ja)
KR (1) KR101332473B1 (ja)
CN (1) CN102265362A (ja)
DK (1) DK2378529T3 (ja)
WO (1) WO2010074026A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108463A1 (ja) * 2011-02-10 2012-08-16 ダイキン工業株式会社 エレクトロウエッティング用疎水性誘電体フィルム
JP2015046553A (ja) * 2013-08-29 2015-03-12 京セラ株式会社 誘電体フィルムおよびフィルムコンデンサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882623B (zh) * 2014-02-25 2016-07-06 嘉兴学院 一种普鲁士蓝/聚偏氟乙烯复合纳米纤维膜及其制备方法
KR101674081B1 (ko) 2015-06-03 2016-11-22 주식회사 지엘머티리얼즈 고유전성 필름컨덴서용 조성물, 이의 제조방법 및 이를 포함하는 필름컨덴서용 고유전성 필름
KR102362917B1 (ko) * 2017-08-02 2022-02-14 오지 홀딩스 가부시키가이샤 폴리프로필렌 필름, 금속층 일체형 폴리프로필렌 필름 및 필름 콘덴서
DE102020107286A1 (de) * 2019-03-28 2020-10-01 Taiyo Yuden Co., Ltd. Mehrschichtiger Keramikkondensator und Verfahren zu dessen Herstellung
GB201911133D0 (en) * 2019-08-05 2019-09-18 Qinetiq Ltd Materials and methods
WO2021033786A1 (ko) * 2019-08-16 2021-02-25 주식회사 솔루에타 고유전 필름 및 그 제조 방법
CN110760144B (zh) * 2019-11-06 2021-07-23 裘天政 一种聚偏氟乙烯复合压电薄膜及其制备方法和应用
JP7344316B2 (ja) * 2019-12-25 2023-09-13 京セラ株式会社 フィルムコンデンサ用誘電体フィルム、これを用いたフィルムコンデンサおよび連結型コンデンサ、ならびにインバータ、電動車輌
CN113969019A (zh) * 2021-09-18 2022-01-25 西安交通大学 一种纳米锆钛酸钡-聚丙烯-马来酸酐接枝聚丙烯复合材料的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63127515A (ja) * 1986-11-17 1988-05-31 富士電機株式会社 複合誘電体
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP2000294447A (ja) 1999-04-09 2000-10-20 Unitika Ltd フィルムコンデンサ用高誘電率フィルムおよびその製造方法
JP2002356619A (ja) 2001-05-29 2002-12-13 Nippon Paint Co Ltd 熱硬化性複合誘電体フィルム及びその製造方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
JP2007005531A (ja) 2005-06-23 2007-01-11 Murata Mfg Co Ltd 複合成形体、その製造方法及びフィルムコンデンサ
WO2007088924A1 (ja) * 2006-02-01 2007-08-09 Daikin Industries, Ltd. 高誘電性フィルム
WO2008013048A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Coating composition
JP2008074699A (ja) * 2006-09-19 2008-04-03 Korea Res Inst Of Chem Technol 結晶性チタン酸バリウムナノ粒子を含む高誘電率の無/有機ハイブリッド膜の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61224205A (ja) * 1985-03-29 1986-10-04 株式会社明電舎 強誘電性複合材料の製造方法
JP2002151270A (ja) * 2000-11-07 2002-05-24 Matsushita Electric Ind Co Ltd Elランプ
JP2005008665A (ja) 2003-06-16 2005-01-13 Fujikura Ltd 高誘電率エポキシ樹脂組成物並びに電子部品
JP4759959B2 (ja) * 2004-09-13 2011-08-31 住友化学株式会社 ポリエーテルスルホン樹脂組成物およびそのフィルム

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262414A (ja) 1984-06-09 1985-12-25 松下電器産業株式会社 フイルムコンデンサ
JPS63127515A (ja) * 1986-11-17 1988-05-31 富士電機株式会社 複合誘電体
JPS63181411A (ja) 1987-01-23 1988-07-26 日本ケミコン株式会社 積層フイルムコンデンサ
JPH02250306A (ja) 1989-03-23 1990-10-08 Toray Ind Inc コンデンサ用金属化フイルムおよびその製造方法
JPH0318113A (ja) 1989-06-14 1991-01-25 Murata Mfg Co Ltd ノイズフィルタの取付け構造
JPH03286514A (ja) 1990-04-02 1991-12-17 Nitsuko Corp 金属化フィルムコンデンサのフィルム巻回方法
JP3664342B2 (ja) 1996-09-30 2005-06-22 日本ゼオン株式会社 高分子誘電体フィルム
JP2000294447A (ja) 1999-04-09 2000-10-20 Unitika Ltd フィルムコンデンサ用高誘電率フィルムおよびその製造方法
JP2002356619A (ja) 2001-05-29 2002-12-13 Nippon Paint Co Ltd 熱硬化性複合誘電体フィルム及びその製造方法
JP2007005531A (ja) 2005-06-23 2007-01-11 Murata Mfg Co Ltd 複合成形体、その製造方法及びフィルムコンデンサ
WO2007088924A1 (ja) * 2006-02-01 2007-08-09 Daikin Industries, Ltd. 高誘電性フィルム
WO2008013048A1 (en) * 2006-07-27 2008-01-31 Daikin Industries, Ltd. Coating composition
JP2008034189A (ja) 2006-07-27 2008-02-14 Daikin Ind Ltd コーティング組成物
JP2008074699A (ja) * 2006-09-19 2008-04-03 Korea Res Inst Of Chem Technol 結晶性チタン酸バリウムナノ粒子を含む高誘電率の無/有機ハイブリッド膜の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108463A1 (ja) * 2011-02-10 2012-08-16 ダイキン工業株式会社 エレクトロウエッティング用疎水性誘電体フィルム
JP2012181513A (ja) * 2011-02-10 2012-09-20 Daikin Ind Ltd エレクトロウエッティング用疎水性誘電体フィルム
CN103354914A (zh) * 2011-02-10 2013-10-16 大金工业株式会社 电润湿用疏水性电介质膜
JP2015046553A (ja) * 2013-08-29 2015-03-12 京セラ株式会社 誘電体フィルムおよびフィルムコンデンサ

Also Published As

Publication number Publication date
JPWO2010074026A1 (ja) 2012-06-14
EP2378529A4 (en) 2018-01-10
DK2378529T3 (da) 2021-08-09
EP2378529A1 (en) 2011-10-19
JP5679822B2 (ja) 2015-03-04
US8934216B2 (en) 2015-01-13
KR20110096596A (ko) 2011-08-30
CN102265362A (zh) 2011-11-30
US20110249374A1 (en) 2011-10-13
EP2378529B1 (en) 2021-05-19
KR101332473B1 (ko) 2013-11-25

Similar Documents

Publication Publication Date Title
JP5310744B2 (ja) フィルムコンデンサ用フィルムおよびフィルムコンデンサ
JP5679822B2 (ja) フィルムコンデンサ用高誘電性フィルム形成組成物
JP4952793B2 (ja) 高誘電性フィルム
JP5494676B2 (ja) 高誘電性フィルム
JP5246256B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5135937B2 (ja) 高誘電性フィルム
JPWO2007088924A1 (ja) 高誘電性フィルム
KR101449356B1 (ko) 필름 콘덴서용 필름 및 필름 콘덴서
JP5070976B2 (ja) 高誘電性フィルム
JP5338282B2 (ja) 積層型高誘電性フィルム
JP5333456B2 (ja) 積層型高誘電性フィルム
JP5472091B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム
JP5733371B2 (ja) 積層フィルム
JP5151588B2 (ja) 高誘電性フィルム形成用のコーティング組成物および高誘電性フィルム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152187.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010544052

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009834827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141274

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117017053

Country of ref document: KR

Kind code of ref document: A