WO2012108463A1 - エレクトロウエッティング用疎水性誘電体フィルム - Google Patents
エレクトロウエッティング用疎水性誘電体フィルム Download PDFInfo
- Publication number
- WO2012108463A1 WO2012108463A1 PCT/JP2012/052858 JP2012052858W WO2012108463A1 WO 2012108463 A1 WO2012108463 A1 WO 2012108463A1 JP 2012052858 W JP2012052858 W JP 2012052858W WO 2012108463 A1 WO2012108463 A1 WO 2012108463A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrowetting
- hydrophobic
- film
- electrode
- dielectric film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/18—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
- H01B3/30—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
- H01B3/44—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
- H01B3/443—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
- H01B3/445—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502784—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
- B01L3/502792—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/004—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
- G02B26/005—Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/16—Surface properties and coatings
- B01L2300/161—Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0415—Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
- B01L2400/0427—Electrowetting
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/12—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
- C08J2327/16—Homopolymers or copolymers of vinylidene fluoride
Definitions
- the present invention relates to a hydrophobic dielectric film for electrowetting.
- Electrowetting means that the wettability of the surface of the hydrophobic dielectric film is changed from hydrophobic (water repellent) to hydrophilic using an electric field. By this electrowetting, the conductive liquid disposed on the surface can be driven. This mechanism is advantageous for downsizing and extending the life of the apparatus in that the conductive liquid can be driven without mechanically moving parts. Therefore, the electrowetting device has been proposed to be applied to various applications such as optical elements in display devices, liquid lenses that can arbitrarily change the focal length, and transportation of small amounts of liquid in inspection equipment.
- the wettability of the surface of the hydrophobic derivative film is represented by the contact angle.
- the driving of the conductive liquid is based on the change in wettability of the hydrophobic dielectric film, as understood from this equation, in order to reduce the voltage required for driving the conductive liquid. It is necessary to reduce the film thickness of the dielectric film or increase the dielectric constant.
- hydrophobic film made of a fluorine material is used as the hydrophobic film, but such a hydrophobic film has a low relative dielectric constant (5 or less).
- Patent Document 1 In order to solve this problem, for example, in Patent Document 1, it is possible to suppress the generation of pinholes and reduce the thickness of the dielectric film by anodizing only the surface of the metal that becomes the electrode to form a dielectric film. As a result, it has been proposed to reduce the drive voltage.
- the inventors have Vinylidene fluoride polymer (A) and highly dielectric inorganic particles (B)
- the present inventors have found that the above-mentioned problems can be solved by using a hydrophobic dielectric film for electrowetting containing the present invention.
- [Claim 7] A first electrode; A second electrode; A conductive liquid movably disposed between the first electrode and the second electrode; Item 7.
- hydrophobic dielectric for electrowetting according to any one of Items 1 to 6, wherein the hydrophobic dielectric is disposed between the first electrode and the conductive liquid so as to insulate the first electrode from the second electrode.
- An electrowetting device having a body film.
- the hydrophobic dielectric film for electrowetting of the present invention can drive a conductive liquid at a low voltage.
- the electrowetting device of the present invention has low power consumption because the conductive liquid it has can be driven at a low voltage.
- hydrophobic dielectric film for electrowetting contains a vinylidene fluoride polymer.
- VdF polymers examples include: (1) VdF homopolymer (PVdF) and (2) VdF and other copolymerizable with VdF And a copolymer with one or more of these monomers.
- Examples of other monomers copolymerizable with VdF include Fluorinated olefins such as tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), and perfluoro (alkyl vinyl ether) (PAVE); Fluorine-containing acrylate; and fluorine-containing monomers having a functional group.
- Fluorinated olefins such as tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), trifluoroethylene (TrFE), monofluoroethylene, hexafluoropropylene (HFP), and perfluoro (alkyl vinyl ether) (PAVE); Fluorine-containing acrylate; and fluorine-containing monomers having a functional group.
- TFE TFE
- CTFE CTFE
- TrFE TrFE
- HFP HFP
- perfluoro means that all hydrogen (or all hydrogen except one hydrogen) in the hydrocarbon compound (or hydrocarbon group) is substituted with fluorine.
- the copolymerization ratio of VdF in the VdF polymer is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, from the viewpoint of high relative dielectric constant and high solvent solubility. It is.
- VdF polymers include PVdF, VdF / TFE copolymers, VdF / TFE / HFP copolymers, VdF / HFP copolymers, VdF / TrFE copolymers, and VdF / CTFE copolymers.
- preferred examples are PVdF, VdF / TFE copolymer, VdF / TrFE copolymer, and the like because of their high relative dielectric constant and good solvent solubility.
- VdF / HFP copolymers are mentioned, and more preferred examples include PVdF, VdF / TrFE copolymers, and VdF / TFE copolymers, and particularly preferred examples include VdF / TFE copolymers. Can be mentioned. Since the VdF / TFE copolymer has a particularly high relative dielectric constant, the power consumption using the hydrophobic dielectric film for electrowetting constructed therefrom can be reduced particularly.
- the VdF unit content is preferably 60 to 95 mol% and the TFE unit content is 5 to 40 mol% from the viewpoint of high withstand voltage. More preferably, the VdF unit is 65 to 90 mol% and the TFE unit is 10 to 35 mol%.
- the lower limit of the relative dielectric constant (25 ° C., 1 kHz) of the VdF-based polymer is preferably 3, from the viewpoint of high withstand voltage, insulation, and relative dielectric constant, and high relative dielectric constant when formed into a film. More preferably 5, more preferably 8, and particularly preferably 9 or more.
- the upper limit is not particularly limited, but is usually 12, preferably 11.
- VdF polymer (A) may be used alone or in combination of two or more.
- the content of the fluoropolymer (A) in the hydrophobic dielectric film for electrowetting of the present invention is preferably 50 w / w% or more.
- High dielectric inorganic particles (B) are preferably particles of at least one metal oxide selected from the group consisting of the following metal oxides (Ba) and (Bb), for example.
- (Ba) Formula: M a na M b nb O nC (Where M a is a periodic table group 2 metal element, M b is a periodic table group 4 metal element, na is 0.9 to 1.1, nb is 0.9 to 1.1, and nc is 2.8 to 3.2) (hereinafter sometimes referred to as metal oxide (Ba)).
- Preferred examples of the periodic table Group 2 metal element M a in the metal oxide (Ba) is beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) and the like.
- each of M a and M b may be one element or two or more elements.
- metal oxide (Ba) examples include barium titanate, barium zirconate, calcium titanate, calcium zirconate, strontium titanate, and strontium zirconate, among which barium titanate is particularly preferable.
- (Bb) Formula: M a na M b 'nb' O nc (Where M a is a periodic table group 2 metal element, M b ′ is a periodic table fifth periodic metal element, na is 0.9 to 1.1, nb ′ is 0.9 to 1.1, and nc is 2.8 to 3.2)
- a metal oxide hereinafter, referred to as a metal oxide (Bb) in some cases).
- Preferred examples of the periodic table Group 2 metal element M a in the metal oxide (Bb) is beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), and barium (Ba) and the like.
- Preferable examples of the fifth periodic metal element Mb ′ of the periodic table include tin (Sn), antimony (Sb), zirconium (Zr), and indium (In).
- M a and M b ′ may each be one element or two or more elements.
- metal oxide (Bb) examples include magnesium stannate, calcium stannate, strontium stannate, barium stannate, magnesium antimonate, calcium antimonate, strontium antimonate, barium antimonate, magnesium zirconate, zirconate Calcium, strontium zirconate, barium zirconate, magnesium indium acid, calcium indium acid, strontium indium acid, and barium indium acid.
- preferred examples include barium titanate, barium calcium zirconate titanate, and strontium titanate, and more preferred examples include barium titanate because of the high relative dielectric constant.
- High dielectric inorganic particles (B) may be used alone or in combination of two or more.
- metal oxide particles in combination with such metal oxide particles, other metal oxides such as lead zirconate titanate, zinc titanate, and lead titanate (especially, composite oxides of titanium oxide other than those described above) Particles) may be used.
- lead zirconate titanate, zinc titanate, and lead titanate especially, composite oxides of titanium oxide other than those described above Particles
- the upper limit of the mass average primary particle diameter of the high dielectric inorganic particles (B) is preferably 500 nm, more preferably 100 nm, from the viewpoint of excellent uniform dispersibility of the film. On the other hand, if the mass average particle size is too small, a high relative dielectric constant may not be obtained. Therefore, the lower limit of the mass average particle size is preferably 10 nm, more preferably 20 nm, still more preferably 50 nm. .
- the lower limit of the relative dielectric constant (25 ° C., 1 kHz) of the high dielectric inorganic particles (B) is preferably 100, more preferably 300.
- the upper limit is not particularly limited, but is usually about 3000.
- the lower limit of the content of the high dielectric inorganic particles (B) is preferably 10 parts by mass with respect to 100 parts by mass of the VdF polymer (A). Preferably it is 50 mass parts, More preferably, it is 150 mass parts. If this amount is too small, the dielectric constant of the film tends to be low.
- the upper limit of this content is preferably 300 parts by mass, more preferably 250 parts by mass, and even more preferably 100 parts by mass. If this amount is too high, the film tends to become brittle.
- hydrophobic dielectric film for electrowetting of the present invention may contain other components such as an affinity improver, if desired.
- the affinity improver increases the affinity between the high dielectric inorganic particles and the vinylidene fluoride polymer, and uniformly disperses the high dielectric inorganic particles in the vinylidene fluoride polymer. And vinylidene fluoride polymer can be firmly bonded in the film to suppress the generation of voids and increase the dielectric constant.
- a coupling agent, a surfactant, or an epoxy group-containing compound is effective.
- Couplers examples include organic titanium compounds, organic silane compounds, organic zirconium compounds, organic aluminum compounds, and organic phosphorus compounds.
- organic titanium compound examples include coupling agents such as alkoxytitanium, titanium chelate, and titanium acylate.
- preferred examples are those having good affinity with the high dielectric inorganic particles (B).
- examples thereof include alkoxytitanium and titanium chelate.
- tetraisopropyl titanate titanium isopropoxyoctylene glycolate, diisopropoxy bis (acetylacetonato) titanium, diisopropoxytitanium diisostearate, tetraisopropyl bis (dioctylphosphite) titanate
- examples thereof include isopropyl tri (n-aminoethyl-aminoethyl) titanate and tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate.
- the organic silane compound may be a high molecular type or a low molecular type, and examples thereof include alkoxysilanes such as monoalkoxysilane, dialkoxysilane, trialkoxysilane, and tetraalkoxysilane. Also, vinyl silane, epoxy silane, amino silane, methacryloxy silane, mercapto silane and the like can be suitably used.
- organic zirconium compound examples include alkoxyzirconium and zirconium chelate.
- organoaluminum compounds include alkoxyaluminum and aluminum chelates.
- organic phosphorus compounds include phosphites, phosphates, and phosphate chelates.
- the “surfactant” as the affinity improver may be of a high molecular type or a low molecular type, and examples thereof include nonionic surfactants, anionic surfactants, and cations. Surfactants. Among these, a high molecular weight surfactant is preferable from the viewpoint of good thermal stability.
- nonionic surfactants include polyether derivatives, polyvinylpyrrolidone derivatives, and alcohol derivatives.
- polyether derivatives are preferred because of their good affinity with the high dielectric inorganic particles (B). Is preferred.
- anionic surfactant examples include polymers containing sulfonic acid, carboxylic acid, and salts thereof. Among them, from the viewpoint of good affinity with the VdF polymer (A). Preferred examples include acrylic acid derivative polymers and methacrylic acid derivative polymers.
- Examples of the cationic surfactant include amine compounds, compounds having a nitrogen-containing complex ring such as imidazoline, and halogenated salts thereof.
- the “epoxy group-containing compound” as the affinity improver may be a low molecular weight compound or a high molecular weight compound, and examples thereof include an epoxy compound and a glycidyl compound. Among these, a low molecular weight compound having one epoxy group is preferable from the viewpoint of particularly good affinity with the VdF polymer (A).
- the epoxy group-containing compound As a preferable example of the epoxy group-containing compound, the compound represented by the formula: from the viewpoint of excellent affinity with the VdF polymer (A).
- R is (1) (a) a hydrogen atom, (b) a methyl group, (c) an oxygen atom or a hydrocarbon group having 2 to 10 carbon atoms which may intervene with a nitrogen atom, or (2) represents an optionally substituted aromatic ring group; l represents 0 or 1; m represents 0 or 1; and n represents an integer of 0 to 10. )
- R is (1) (a) a hydrogen atom, (b) a methyl group, (c) an oxygen atom or a hydrocarbon group having 2 to 10 carbon atoms which may intervene with a nitrogen atom, or (2) represents an optionally substituted aromatic ring group; l represents 0 or 1; m represents 0 or 1; and n represents an integer of 0 to 10.
- Examples thereof include compounds having a ketone group or an ester group.
- the affinity improver can be used in an amount within the range in which the effects of the present invention are not lost. Specifically, the amount of the affinity improver is high because of uniform dispersion and a high relative dielectric constant of the obtained film.
- the amount is preferably 0.01 to 30 parts by mass, more preferably 0.1 to 25 parts by mass, and further preferably 1 to 20 parts by mass with respect to 100 parts by mass of the dielectric inorganic particles (B).
- hydrophobic dielectric film for electrowetting of the present invention may contain other additives as long as the effects of the present invention are not lost.
- the upper limit of the film thickness of the hydrophobic dielectric film for electrowetting of the present invention is preferably 15 ⁇ m, more preferably 10 ⁇ m, still more preferably 5 ⁇ m, particularly preferably from the viewpoint of reducing the voltage required for driving the conductive liquid. Is 2 ⁇ m.
- the hydrophobic dielectric film for electrowetting of the present invention is preferably thin. However, in order to maintain mechanical strength, the lower limit of the film thickness is usually about 10 nm.
- the relative dielectric constant of the hydrophobic dielectric film for electrowetting of the present invention is preferably 9 or more, more preferably 15 or more, and still more preferably 20 or more.
- the hydrophobic dielectric film for electrowetting of the present invention may be a self-supporting film or a coated film. .
- the hydrophobic dielectric film for electrowetting of the present invention can be produced by a known film forming method such as a melt extrusion method or a casting method.
- Adopting the casting method is advantageous from the standpoint of simplicity and excellent uniformity of the resulting film.
- a liquid composition is prepared by dissolving or dispersing the above-described VdF polymer (A), high dielectric inorganic particles (B), and other components (C) as desired in a solvent.
- any solvent that can dissolve or uniformly disperse the VdF polymer (A) can be used, and a polar organic solvent is particularly preferable.
- Preferred examples of the polar organic solvent include ketone solvents, ester solvents, carbonate solvents, cyclic ether solvents, and amide solvents, and preferred specific examples thereof include methyl ethyl ketone, methyl isobutyl ketone (MIBK), Acetone, diethyl ketone, dipropyl ketone, ethyl acetate, methyl acetate, propyl acetate, butyl acetate, ethyl lactate, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl ethyl carbonate, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethylformamide (DMF) , And dimethylacetamide.
- MIBK methyl isobutyl ketone
- a knife coating method, a cast coating method, a roll coating method, a gravure coating method, a blade coating method, a rod coating method, or an air doctor coating method can be used as a method for applying the liquid composition onto the substrate.
- a knife coating method, a cast coating method, a roll coating method, a gravure coating method, a blade coating method, a rod coating method, or an air doctor coating method can be used as a method for applying the liquid composition onto the substrate.
- a knife coating method, a cast coating method, a roll coating method, a gravure coating method, a blade coating method, a rod coating method, or an air doctor coating method can be used as a knife coating method, a cast coating method, a roll coating method, a gravure coating method, a blade coating method, a rod coating method, or an air doctor coating method.
- the roll coating method, the gravure coating method, or the cast coating method is preferable from the viewpoints of easy operability, small variations in film thickness, and excellent productivity.
- the hydrophobic dielectric film for electrowetting of the present invention is driven by a conductive liquid in contact with the surface by changing the wettability of the surface when a charge is applied to the surface.
- the hydrophobic dielectric film for electrowetting of the present invention accumulates electric charge on the surface when electric charge is applied to the surface, the liquid at a short distance is driven by the Coulomb force of the electric charge. To do.
- the conductive liquid examples include, but are not limited to, water and an aqueous solution containing an electrolyte (eg, potassium chloride, sodium chloride).
- the conductive liquid is usually a polar liquid.
- To drive the conductive liquid includes moving the conductive liquid and deforming the conductive liquid.
- the hydrophobic dielectric film for electrowetting of the present invention has a high relative dielectric constant as described above, and can thereby drive a conductive liquid at a low voltage, so that an optical element, display device (display), variable Focus lens, light modulation device, optical pickup device, optical recording / reproducing device, developing device, droplet manipulating device, analytical instrument (eg, it is necessary to move a small conductive liquid to analyze a sample, chemistry, biochemistry , And biological analytical instruments).
- display device display
- variable Focus lens light modulation device
- optical pickup device optical recording / reproducing device
- developing device droplet manipulating device
- analytical instrument eg, it is necessary to move a small conductive liquid to analyze a sample, chemistry, biochemistry , And biological analytical instruments.
- the hydrophobic dielectric film for electrowetting of the present invention has flexibility, it can be suitably used for such various applications.
- a substrate An electrode formed on at least a portion of the substrate; An inorganic high dielectric layer disposed on the substrate so as to cover the electrode; A laminate comprising the hydrophobic dielectric film for electrowetting of the present invention disposed on the inorganic high dielectric layer may be configured.
- the electrode When the electrode is formed on the entire main surface of the substrate, the electrode is interposed between the base material and the inorganic high dielectric layer.
- the substrate can be made of a light-transmissive insulating material such as glass or transparent resin, but is not particularly limited as long as an electrode can be formed thereon.
- transparent resin include polyethylene terephthalate (PET) resin, polycarbonate (PC) resin, polyimide (PI) resin, polymethyl methacrylate (PMMA), and polystyrene resin.
- the thickness of the substrate is not particularly limited, but is, for example, 1 ⁇ m to 100 mm.
- the electrode is made of, for example, a transparent conductive material such as indium tin oxide (ITO) which is indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), or a mixture of In 2 O 3 and SnO 2. Can be constructed.
- ITO indium tin oxide
- the electrode may be an In 2 O 3 film, a SnO 2 film, or an ITO film doped with tin (Sn), antimony (Sb), fluorine (F), or the like.
- the electrode can also be composed of, for example, magnesium oxide (MgO) or zinc oxide (ZnO).
- the electrode may be an AZO film that is a ZnO film doped with aluminum (Al), a GZO film that is a ZnO film doped with gallium (Ga), or a ZnO film that is doped with indium.
- the electrode may be a transparent organic conductive material selected from conductive polymers such as, for example, thiophene-based conductive polymers, polyaniline, and polypyrrole; or aluminum, copper, chromium, nickel, zinc, stainless steel, gold, silver, It can be comprised from metal materials, such as platinum, tantalum, titanium, niobium, and molybdenum.
- the inorganic high dielectric layer has a high insulating property and a high dielectric constant.
- the insulating property and dielectric constant of the inorganic high dielectric layer are approximately the same as those of the hydrophobic dielectric film for electrowetting of the present invention.
- the presence of the inorganic high dielectric layer can improve the electrical insulation and voltage resistance of the laminate.
- the inorganic high dielectric layer is composed of, for example, an inorganic insulating coating material containing silica.
- an inorganic insulating coating material e.g, AT-201 (trade name), Nissan Chemical Industries).
- the volume resistivity of the inorganic high dielectric layer is preferably 10 13 ⁇ ⁇ cm or more, more preferably 10 14 ⁇ ⁇ cm or more, and further preferably 10 15 ⁇ ⁇ cm, for the purpose of obtaining high electrical insulation and high withstand voltage. cm or more.
- the lower limit of the thickness of the inorganic high dielectric layer is preferably 0.5 ⁇ m, more preferably 1 ⁇ m, and even more preferably 2 ⁇ m from the viewpoint of obtaining good insulation and improved withstand voltage.
- the upper limit is preferably 5 ⁇ m, more preferably 3 ⁇ m, from the viewpoint of maintaining high dielectric properties.
- Such a laminate can be manufactured, for example, by the following method.
- An electrode is formed on the substrate as described above by sputtering or vapor deposition.
- an inorganic high dielectric layer is formed by applying a solution of the inorganic insulating coating material as described above on the main surface of the substrate so as to cover the electrode by a spin coating method or the like and then baking the solution.
- the hydrophobic dielectric film for electrowetting of the present invention is formed on the inorganic high dielectric layer by, for example, the casting method described in the method for producing the hydrophobic dielectric film for electrowetting. To obtain a laminate.
- Electrowetting device The hydrophobic dielectric film for electrowetting of the present invention can be suitably used as a film for an electrowetting device.
- the electrowetting device of the present invention is A first electrode; A second electrode; A conductive liquid movably disposed between the first electrode and the second electrode; A film for an electrowetting device according to the present invention, disposed between the first electrode and the conductive liquid so as to insulate the first electrode from the second electrode;
- the electrowetting device of the present invention when a predetermined voltage is applied between the first electrode and the second electrode, an electric field is applied to the surface of the electrowetting device film. This drives the conductive liquid as described above for the electrowetting hydrophobic dielectric film of the present invention.
- the conductive liquid is a polar liquid material, and examples thereof include water and an aqueous solution containing an electrolyte (eg, potassium chloride, sodium chloride).
- an electrolyte eg, potassium chloride, sodium chloride.
- the conductive liquid is the same as that described above for the hydrophobic dielectric film for electrowetting of the present invention, and preferably has a low viscosity.
- the first electrode and the second electrode can each be the same as the electrode described for the laminate.
- the electrowetting device of the present invention includes, for example, an optical element, a display device (display), a variable focus lens, a light modulation device, an optical pickup device, an optical recording / reproducing device, a developing device, a droplet operation device, a strobe device, and an analytical instrument.
- an optical element for example, an optical element, a display device (display), a variable focus lens, a light modulation device, an optical pickup device, an optical recording / reproducing device, a developing device, a droplet operation device, a strobe device, and an analytical instrument.
- FIG. 1 is a cross-sectional view for explaining the configuration of an optical element 100 which is an embodiment of an electrowetting device of the present invention.
- an optical element 100 of FIG. 1 two cell regions z are seen, but the optical element may have an arbitrary number of cell regions z in the left-right direction and the front-rear direction of FIG.
- the number of cell regions z may be one.
- the optical element 100 includes a first substrate 101, a first electrode 102, a hydrophobic dielectric film 103 for electrowetting, a partition 104, a hydrophobic liquid 105, a conductive liquid 106, a second electrode 107, a second substrate 108, and It has a side wall 109.
- the control unit 200 includes a switch 201 and a power source 202.
- the first substrate 101 and the second substrate 108 are supported by the side wall 109 and arranged so as to face each other.
- the first substrate 101 and the second substrate 108 are made of the materials described for the stacked substrate.
- the first substrate 101 has a signal line (not shown) for transmitting a signal generated from the control unit 200 for individually driving the driving element 111 and the driving element 111 (eg, a thin film transistor) for each cell region z.
- a signal line (not shown) for transmitting a signal generated from the control unit 200 for individually driving the driving element 111 and the driving element 111 (eg, a thin film transistor) for each cell region z.
- An example, electric wire is provided.
- the first electrode 102 is divided into a plurality of parts and insulated from each other so that a voltage can be applied to each cell region z, and each electrode thereof is arranged corresponding to each cell region z.
- the first electrode 102 is connected to each driving element 111.
- the first electrode 102 and the second electrode 107 are made of the aforementioned materials.
- the hydrophobic dielectric film 103 for electrowetting is the hydrophobic dielectric film for electrowetting of the present invention described above.
- the partition wall 104 is a partition member that partitions the cell region z, which is a unit region through which light is transmitted, and is arranged vertically on the electrowetting hydrophobic dielectric film 103.
- the material constituting the partition wall 104 does not dissolve in the hydrophobic liquid 105 or the conductive liquid 106 and does not react.
- examples of such materials include polymer materials such as acrylic resins and epoxy resins.
- the surface of the partition wall 104 may be subjected to a hydrophilic treatment so as to show affinity for the conductive liquid 106.
- the hydrophilization treatment can be performed by a known method such as ultraviolet irradiation, oxygen plasma irradiation, or laser irradiation.
- the hydrophobic liquid 105 is held in the cell region z partitioned by the partition wall 104. That is, the partition 104 prevents the hydrophobic liquid 105 from moving (outflowing) to another adjacent cell region z.
- the amount of the hydrophobic liquid 105 in each cell region z is the surface of the electrowetting hydrophobic dielectric film 103 in each cell region z when no electric field is applied to the surface of the electrowetting hydrophobic dielectric film 103. It is preferable that the amount is sufficient to cover all of the above.
- the hydrophobic liquid 105 contains a hydrophobic organic solvent as a medium.
- hydrophobic organic solvents include C6-C35 hydrocarbons such as hexane, octane, decane, dodecane, hexadecane, undecane, benzene, toluene, xylene, mesitylene, butylbenzene, 1,1-diphenylethylene; and Examples include silicone oil.
- hydrophobic organic solvents can be used alone or in combination.
- the hydrophobic liquid 105 contains a pigment or dye that absorbs light of a predetermined wavelength (eg, visible light).
- the pigment or dye is dispersed or dissolved in the medium.
- pigments examples include titanium oxide, iron oxide, carbon black, azo pigments (eg, azo lakes), and polycyclic pigments (eg, phthalocyanine pigments, perylene pigments, perinone pigments, anthraquinone pigments, quinacridone pigments, isoindolinone pigments. Quinofullerone pigments).
- the pigment preferably has high dispersibility in the hydrophobic liquid 105.
- An example of a dye is Oil Blue N (Aldrich).
- the dye preferably has high solubility in the hydrophobic liquid 105.
- the hydrophobic liquid 105 has a low viscosity and is not miscible with the conductive liquid 106.
- the hydrophobic liquid 105 is usually a nonpolar liquid.
- the hydrophobic liquid 105 is usually a non-conductive liquid.
- the conductive liquid 106 is held between the electrowetting hydrophobic dielectric film 103 and the second electrode 107.
- the hydrophobic liquid 105 and the conductive liquid 106 are separated to form two layers.
- the space between the electrowetting hydrophobic dielectric film 103 and the second electrode 107 is filled with the hydrophobic liquid 105 and the conductive liquid 106. Even in this case, since the hydrophobic liquid 105 is a fluid, the conductive liquid 106 can move.
- the conductive liquid 106 is a transparent liquid material having polarity, and examples thereof include water and an aqueous solution containing an electrolyte (eg, potassium chloride, sodium chloride).
- an electrolyte eg, potassium chloride, sodium chloride.
- the conductive liquid 106 has a low viscosity and is not miscible with the hydrophobic liquid 105.
- the side wall 109 is a seal member that seals the hydrophobic liquid 105 and the conductive liquid 106 together with the first substrate 101 and the second substrate 108.
- An example of a material constituting the side wall 109 is silicone.
- the control unit 200 performs drive control on the optical element 100.
- the control unit 200 includes a switch 201 and a power source 202.
- One terminal of the switch 201 is connected to the second electrode 107 by a conducting wire, and the other terminal is connected to the first electrode 102 by a conducting wire via the power source 202 and the driving element 111.
- the switch 201 can select two states, an on state in which both terminals are electrically connected and an off state in which both terminals are electrically disconnected.
- the power source 202 it is preferable to use a power source that can change the magnitude of the voltage and can be constant.
- control unit 200 can apply a predetermined voltage between the first electrode 102 and the second electrode 107 by the operation of the switch 201 and the voltage control of the power source 202. Selection of the cell region z to which a predetermined voltage is applied is performed by selecting the driving element 111 with a gate driver (not shown).
- FIG. 2 is an enlarged view of one of the cell regions z in the optical element 100.
- the switch 201 In the case where the switch 201 is turned off in the control unit 200 and no voltage is applied between the first electrode 102 and the second electrode 107, as shown in FIG.
- the conductive liquid 105 spreads and covers the entire cell region z. Thereby, for example, if the hydrophobic liquid 105 absorbs all wavelengths of visible light, from the side of the first substrate 101 in FIG. 2 (A), the incident light L in incident to a cell region z is hydrophobic liquid It is blocked by 105 and does not pass through the cell region z.
- the switch 201 is turned on in the control unit 200 and a voltage is applied between the first electrode 102 and the second electrode 107, the conductive liquid 106 is stored in the cell as shown in FIG.
- a part of the region z (region b) is in contact with the electrowetting hydrophobic dielectric film 103, while the hydrophobic liquid 105 collects in the other region (region a) of each cell region z. Therefore, from the first substrate 101 side, out of the incident light L in incident on a certain cell region z, the light L in -a incident on the region a is blocked by the hydrophobic liquid 105 but is incident on the region b. The remaining light L in -b passes through the region and is emitted as transmitted light L out .
- FIG. 3 shows a specific example of a laminate provided with the hydrophobic dielectric film for electrowetting of the present invention.
- the laminate 150 is A first electrode 102 formed on at least a part of the first substrate 101; An inorganic high dielectric layer 112 disposed on the first substrate 101 so as to cover the first electrode 102; It comprises an electrowetting hydrophobic dielectric film 103 disposed on the inorganic high dielectric layer 112.
- the inorganic high dielectric layer 112 is made of the aforementioned material.
- the first substrate 101, the first electrode 102, and the electrowetting hydrophobic dielectric film 103 are the same as those in FIG.
- Such a laminated body 150 can be used, for example, in place of the portion made of the first substrate 101, the first electrode 102, and the electrowetting hydrophobic dielectric film 103 in the optical element 100 shown in FIG.
- the thickness of the film was measured using a digital length measuring device (MF-1001 manufactured by Nikon).
- MEK methyl ethyl ketone
- VdF / TFE 683
- This fluororesin solution is cast on a polyethylene terephthalate (PET) film, which is a 38 ⁇ m-thick non-porous polyester film, which has been subjected to a mold release process using a micro gravure coater, and then passed through a drying furnace to A laminated film having a fluororesin film formed thereon was obtained. Next, a film having a thickness of 4.5 ⁇ m was obtained by peeling from the PET film.
- PET polyethylene terephthalate
- This coating composition was cast on a polyethylene terephthalate (PET) film, which is a 38 ⁇ m-thick non-porous polyester film, which was subjected to a mold release treatment using a micro gravure coater, and passed through a drying furnace. A laminated film having a VdF resin film formed thereon was obtained. Then, a high dielectric film having a film thickness of 6.0 ⁇ m was obtained by peeling from the PET film.
- PET polyethylene terephthalate
- Example 3 A coating composition was prepared in the same manner as in Example 2 except that the amount of barium titanate was 60 parts by mass, and cast to obtain a high dielectric film having a thickness of 9.1 ⁇ m.
- Example 5 A high-dielectric film having a film thickness of 6.2 ⁇ m was prepared in the same manner as in Example 1 except that PVdF (Daikin Industries, VP825) was used instead of VdF / TFE copolymer. Got.
- PVdF Densikin Industries, VP825
- MEK methyl ethyl ketone
- Test example 1 With respect to the films obtained in Examples 1 to 5, specific dielectric constant and dielectric loss tangent data were obtained. The results are shown in Table 1.
- the film containing the VdF polymer and the high dielectric inorganic particles has a high relative dielectric constant.
- Test example 2 Contact angle data was obtained for the film obtained in Example 6. The contact angle was measured using a contact angle meter (Kyowa Interface Science).
- the hydrophobic dielectric film for electrowetting of the present invention is capable of driving a conductive liquid at a low voltage, and is an optical element, a display device (display), a variable focus lens, a light modulation device, an optical pickup device, an optical recording / reproducing device, Suitable for electrowetting devices in developing equipment, droplet handling equipment, analytical equipment (eg, chemical, biochemical, and biological analytical equipment that needs to move small conductive liquids for sample analysis) Used for.
- analytical equipment eg, chemical, biochemical, and biological analytical equipment that needs to move small conductive liquids for sample analysis
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
θ0:電圧を印加していないときの導電性液体と疎水性誘電体フィルムの間の接触角
γLG:導電性液体の表面張力
ε:疎水性誘電体フィルムの比誘電率
ε0:真空中の誘電率
l:誘電体膜の膜厚
V:印加電圧
フッ化ビニリデン系重合体(A)、および
高誘電性無機粒子(B)
を含有するエレクトロウエッティング用疎水性誘電体フィルム
によって、前記課題を解決できることを見出し、本発明を完成させた。
フッ化ビニリデン系重合体を含有するエレクトロウエッティング用疎水性誘電体フィルム。
[項2]
フッ化ビニリデン系重合体が、フッ化ビニリデン/テトラフルオロエチレン系共重合体である前記項1に記載のエレクトロウエッティング用疎水性誘電体フィルム。
[項3]
更に高誘電性無機粒子を含有する前記項1または2に記載のエレクトロウエッティング用疎水性誘電体フィルム。
[項4]
高誘電性無機粒子が、
(Ba) 式:
Ma naMb nbOnC
(式中、
Maは周期表2族金属元素であり;
Mbは周期表4族金属元素であり;
naは0.9~1.1であり;
nbは0.9~1.1であり;および
ncは2.8~3.2である)で示される金属酸化物、および
(Bb) 式:
Ma naMb’ nb’Onc
(式中、
Maは周期表2族金属元素であり、
Mb’は周期表第5周期金属元素であり、
naは0.9~1.1であり、
nb’は0.9~1.1であり、および
ncは2.8~3.2である)
で示される金属酸化物
からなる群から選択される1種以上の金属酸化物の粒子である前記項1~3のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルム。
[項5]
金属酸化物が、チタン酸バリウムである前記項4に記載のエレクトロウエッティング用疎水性誘電体フィルム。
[項6]
フッ化ビニリデン共重合体100質量部に対し、高誘電性無機粒子を10~100質量部含有する前記項3~5のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルム。
[項7]
第1電極と、
第2電極と、
前記第1電極と前記第2電極との間に、移動可能に配置された導電性液体と、
前記第1電極と前記導電性液体との間に、前記第1電極を前記第2電極から絶縁するように配置された、前記項1~6のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルムと
を有するエレクトロウエッティングデバイス。
本発明のエレクトロウエッティング用疎水性誘電体フィルムは、フッ化ビニリデン系重合体を含有する。
フッ化ビニリデン系重合体(VdF系重合体)の例としては、(1)VdFの単独重合体(PVdF)、および(2)VdFと、当該VdFと共重合可能な他の単量体の1種または2種以上との共重合体が挙げられる。
テトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン(TrFE)、モノフルオロエチレン、ヘキサフルオロプロピレン(HFP)、およびパーフルオロ(アルキルビニルエーテル)(PAVE)などの含フッ素オレフィン類;
含フッ素アクリレート;および
官能基を有する含フッ素単量体が挙げられる。
高誘電性無機粒子(B)は、好ましくは、例えば、下記の(Ba)の金属酸化物および(Bb)の金属酸化物からなる群から選ばれる少なくとも1種の金属酸化物の粒子である。
Ma naMb nbOnC
(式中、
Maは周期表2族金属元素であり、
Mbは周期表4族金属元素であり、
naは0.9~1.1であり、
nbは0.9~1.1であり、および
ncは2.8~3.2である)で示される金属酸化物(以下、金属酸化物(Ba)と称する場合がある)。
Ma naMb’ nb’Onc
(式中、
Maは周期表2族金属元素であり、
Mb’は周期表第5周期金属元素であり、
naは0.9~1.1であり、
nb’は0.9~1.1であり、および
ncは2.8~3.2である)
で示される金属酸化物(以下、金属酸化物(Bb)と称する場合がある)。
本発明のエレクトロウエッティング用疎水性誘電体フィルムは、所望により、親和性向上剤などの、その他の成分を含有してもよい。
Rは、
(1)(a)水素原子、
(b)メチル基、
(c)酸素原子、もしくは窒素原子を介在してもよい炭素数2~10の炭化水素基、または
(2)置換されていてもよい芳香環基
を表し;
lは、0または1を表し;
mは、0または1を表し;および
nは、0~10の整数を表す。)
で示される化合物が挙げられる。
。
本発明のエレクトロウエッティング用疎水性誘電体フィルムは、溶融押出法またはキャスト法のような公知のフィルム形成方法によって製造することができる。
(1)前記で説明した、VdF系重合体(A)、高誘電性無機粒子(B)、および所望による他の成分(C)を溶媒中に溶解または分散させて液状組成物を調製すること、
(2)当該液状組成物を基材上に塗布し、および乾燥させてフィルムを形成すること、および
(3)所望により、前記基材からフィルムを剥離すること
を含む方法が挙げられる。
基板と、
前記基板の少なくとも一部の上に形成された電極と、
前記電極を覆うように前記基板の上に配置された無機高誘電体層と、
前記無機高誘電体層の上に配置された本発明のエレクトロウエッティング用疎水性誘電体フィルムと
からなる積層体が構成されてもよい。
また、電極は、例えば、酸化マグネシウム(MgO)または酸化亜鉛(ZnO)などからも構成され得る。また、電極は、アルミニウム(Al)がドープされたZnO膜であるAZO膜、ガリウム(Ga)がドープされたZnO膜であるGZO膜、またはインジウムがドープされたZnO膜であることができる。
更にまた、電極は、例えば、チオフェン系導電性ポリマー、ポリアニリン、およびポリピロールなどの導電性ポリマーから選択される透明な有機導電材料;またはアルミニウム、銅、クロム、ニッケル、亜鉛、ステンレス、金、銀、白金、タンタル、チタン、ニオブ、モリブデンなどの金属材料から構成され得る。
本発明のエレクトロウエッティング用疎水性誘電体フィルムは、エレクトロウエッティングデバイス用フィルムとして、好適に用いることができる。
第1電極と、
第2電極と、
前記第1電極と前記第2電極との間に、移動可能に配置された導電性液体と、
前記第1電極と前記導電性液体との間に、前記第1電極を前記第2電極から絶縁するように配置された、本発明のエレクトロウエッティングデバイス用フィルムと、
を有する。
第1基板101の少なくとも一部の上に形成された第1電極102と、
前記第1電極102を覆うように前記第1基板101の上に配置された無機高誘電体層112と、
前記無機高誘電体層112の上に配置されたエレクトロウエッティング用疎水性誘電体フィルム103と
からなる。
デジタル測長機(ニコン製のMF-1001)を用いて、フィルムの厚さを測定した。
フィルムを真空中で両面にアルミニウムを蒸着しサンプルとした。このサンプルをLCRメーター(ZM2353、エヌエフ回路設計ブロック社)にて、ドライエアー雰囲気下、30℃にて、周波数100Hz~10kHzでの静電容量と誘電正接を測定した。膜厚と静電容量から比誘電率を算出した。
1Lポリビン中にメチルエチルケトン(MEK)(キシダ化学)440質量部とVdF/TFE共重合体(VdF/TFE=67/33)(ダイキン工業)を60質量部入れ、ローターで攪拌し、12w/w%濃度のフッ素樹脂溶液を得た。
1Lポリビン中にメチルエチルケトン(MEK)(キシダ化学)480質量部とVdF/TFE共重合体(VdF/TFE=67/33)(ダイキン工業)を120質量部入れ、ローターで攪拌し、20w/w%濃度のフッ素樹脂溶液を得た。用いたVdF/TFE共重合体の比誘電率は9.8(25℃,1kHz)である。
実施例2でチタン酸バリウムの量を60質量部にした以外は、同様にコーティング組成物を作成し、キャストすることで膜厚9.1μmの高誘電性フィルムを得た。
実施例1でVdF/TFE共重合体の組成比を(VdF/TFE=80/20)にした以外は、同様にコーティング組成物を作成し、キャストすることで膜厚6.0μmの高誘電性フィルムを得た。
実施例1でVdF/TFE共重合体の替わりにPVdF(ダイキン工業、VP825)を用いたこと以外は、同様にコーティング組成物を作成し、キャストすることで膜厚6.2μmの高誘電性フィルムを得た。
100mlポリビン中にメチルエチルケトン(MEK)(キシダ化学)44質量部とVdF/TFE共重合体(VdF/TFE=67/33)(ダイキン工業)を6質量部入れ、ローターで攪拌し、12質量%濃度のフッ素樹脂溶液を得た。この溶液をアルミ板にバーコーターで塗布し、100℃の乾燥炉で溶剤を揮発させ、アルミ板の上に膜厚4.0μmの高誘電性フィルムを得た。
実施例1~5で得られたフィルムについて、比誘電率、および誘電正接のデータを得た。
結果を表1に示す。
実施例6で得られたフィルムについて、接触角のデータを得た
接触角は、接触角計(協和界面科学)を用いて測定を行った。
101 第1基板
102 第1電極
103 エレクトロウエッティング用疎水性誘電体フィルム
104 隔壁
105 疎水性液体
106 導電性液体
107 第2電極
108 第2基板
109 側壁
111 駆動素子
112 無機高誘電体層
150 積層体
200 制御部
201 スイッチ
202 電源
Claims (7)
- フッ化ビニリデン系重合体を含有するエレクトロウエッティング用疎水性誘電体フィルム。
- フッ化ビニリデン系重合体が、フッ化ビニリデン/テトラフルオロエチレン系共重合体である請求項1に記載のエレクトロウエッティング用疎水性誘電体フィルム。
- 更に高誘電性無機粒子を含有する請求項1または2に記載のエレクトロウエッティング用疎水性誘電体フィルム。
- 高誘電性無機粒子が、
(Ba) 式:
Ma naMb nbOnC
(式中、
Maは周期表2族金属元素であり;
Mbは周期表4族金属元素であり;
naは0.9~1.1であり;
nbは0.9~1.1であり;および
ncは2.8~3.2である)で示される金属酸化物、および
(Bb) 式:
Ma naMb’ nb’Onc
(式中、
Maは周期表2族金属元素であり、
Mb’は周期表第5周期金属元素であり、
naは0.9~1.1であり、
nb’は0.9~1.1であり、および
ncは2.8~3.2である)
で示される金属酸化物
からなる群から選択される1種以上の金属酸化物の粒子である請求項1~3のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルム。 - 金属酸化物が、チタン酸バリウムである請求項4に記載のエレクトロウエッティング用疎水性誘電体フィルム。
- フッ化ビニリデン系重合体100質量部に対し、高誘電性無機粒子を10~100質量部含有する請求項3~5のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルム。
- 第1電極と、
第2電極と、
前記第1電極と前記第2電極との間に、移動可能に配置された導電性液体と、
前記第1電極と前記導電性液体との間に、前記第1電極を前記第2電極から絶縁するように配置された、請求項1~6のいずれかに記載のエレクトロウエッティング用疎水性誘電体フィルムとを有するエレクトロウエッティングデバイス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12744420.6A EP2674804A1 (en) | 2011-02-10 | 2012-02-08 | Hydrophobic dielectric film for electrowetting |
US13/984,241 US20140016176A1 (en) | 2011-02-10 | 2012-02-08 | Hydrophobic dielectric film for electrowetting |
CN2012800081031A CN103354914A (zh) | 2011-02-10 | 2012-02-08 | 电润湿用疏水性电介质膜 |
KR1020137023758A KR20130130826A (ko) | 2011-02-10 | 2012-02-08 | 일렉트로웨팅용 소수성 유전체 필름 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-027115 | 2011-02-10 | ||
JP2011027115 | 2011-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012108463A1 true WO2012108463A1 (ja) | 2012-08-16 |
Family
ID=46638676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052858 WO2012108463A1 (ja) | 2011-02-10 | 2012-02-08 | エレクトロウエッティング用疎水性誘電体フィルム |
Country Status (7)
Country | Link |
---|---|
US (1) | US20140016176A1 (ja) |
EP (1) | EP2674804A1 (ja) |
JP (1) | JP2012181513A (ja) |
KR (1) | KR20130130826A (ja) |
CN (1) | CN103354914A (ja) |
TW (1) | TW201239905A (ja) |
WO (1) | WO2012108463A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103558685A (zh) * | 2013-09-10 | 2014-02-05 | 京东方科技集团股份有限公司 | 电润湿显示装置及制作方法 |
JP2014052562A (ja) * | 2012-09-07 | 2014-03-20 | Fujifilm Corp | 光学素子及び画像表示装置 |
WO2014061700A1 (ja) | 2012-10-16 | 2014-04-24 | ダイキン工業株式会社 | 高誘電性フィルム |
JP2018051685A (ja) * | 2016-09-28 | 2018-04-05 | シャープ ライフ サイエンス (イーユー) リミテッド | 微小流体装置 |
WO2019189319A1 (ja) * | 2018-03-30 | 2019-10-03 | 国立大学法人広島大学 | 成形体 |
WO2019189316A1 (ja) * | 2018-03-30 | 2019-10-03 | ダイキン工業株式会社 | 成形体 |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI448729B (zh) | 2012-11-14 | 2014-08-11 | Ind Tech Res Inst | 電濕潤顯示元件及其製造方法 |
TWI485428B (zh) * | 2013-05-28 | 2015-05-21 | Ind Tech Res Inst | 電濕潤顯示面板 |
US9784965B2 (en) | 2014-03-04 | 2017-10-10 | Jsr Corporation | Display element, photosensitive composition and electrowetting display |
US11192107B2 (en) * | 2014-04-25 | 2021-12-07 | Berkeley Lights, Inc. | DEP force control and electrowetting control in different sections of the same microfluidic apparatus |
US9207450B1 (en) * | 2014-06-27 | 2015-12-08 | Amazon Technologies, Inc. | Insulated notch design for pixels in an electrowetting device |
KR20160009519A (ko) * | 2014-07-16 | 2016-01-26 | 파로 | 저광출력 히스테리시스 유체렌즈 |
CN104391345B (zh) * | 2014-07-24 | 2016-01-13 | 西安应用光学研究所 | 含梯度折射率材料的电润湿型可变焦液体透镜 |
WO2016017190A1 (ja) | 2014-07-31 | 2016-02-04 | Jsr株式会社 | 表示素子、感光性組成物およびエレクトロウェッティングディスプレイ |
CN105474086A (zh) | 2014-07-31 | 2016-04-06 | Jsr株式会社 | 显示元件、感光性组合物以及电润湿显示器 |
WO2016134064A1 (en) * | 2015-02-17 | 2016-08-25 | President And Fellows Of Harvard College | Electrical valves integrated in microfluidic devices |
SG10202100281RA (en) | 2015-04-22 | 2021-02-25 | Berkeley Lights Inc | Microfluidic cell culture |
US10799865B2 (en) | 2015-10-27 | 2020-10-13 | Berkeley Lights, Inc. | Microfluidic apparatus having an optimized electrowetting surface and related systems and methods |
KR101851435B1 (ko) | 2015-12-07 | 2018-04-23 | 명지대학교 산학협력단 | 카메라 렌즈부를 클리닝하는 장치 및 방법 |
EP3435150A4 (en) * | 2016-03-24 | 2019-03-13 | Sharp Kabushiki Kaisha | ELECTROBREATING DEVICE AND METHOD FOR PRODUCING AN ELECTROBREATING DEVICE |
SG11201809539RA (en) | 2016-05-26 | 2018-12-28 | Berkeley Lights Inc | Covalently modified surfaces, kits, and methods of preparation and use |
CN106291912B (zh) * | 2016-08-10 | 2019-12-24 | 华南师范大学 | 电润湿疏水性介电层、其制备方法和电润湿器件 |
CN106291911B (zh) * | 2016-08-10 | 2019-06-11 | 华南师范大学 | 复合层结构的疏水性介电层、其制备方法和电润湿器件 |
WO2018062253A1 (ja) * | 2016-09-28 | 2018-04-05 | ダイキン工業株式会社 | フィルム |
CN108037550B (zh) * | 2017-11-24 | 2019-07-02 | 西安交通大学 | 一种低电压驱动的反转变焦微透镜 |
CN108181671A (zh) * | 2018-01-02 | 2018-06-19 | 京东方科技集团股份有限公司 | 透镜型调光装置和显示装置 |
CN109801935B (zh) * | 2019-01-31 | 2021-01-26 | 京东方科技集团股份有限公司 | 光探测面板及其制作方法、显示装置 |
CN110813926B (zh) * | 2019-08-30 | 2021-06-11 | 中国空间技术研究院 | 一种基于反电润湿效应的油污表面自清洁装置和方法 |
CN111203110B (zh) * | 2020-03-19 | 2021-07-09 | 河海大学 | 一种基于介电润湿膜的可反冲洗膜蒸馏装置及运行方式 |
CN113238371B (zh) * | 2021-02-08 | 2022-04-26 | 北京航空航天大学 | 一种高稳定和光程可调的电润湿液体透镜 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008040455A (ja) * | 2006-07-10 | 2008-02-21 | Sony Corp | レンズアレイ |
JP2008107826A (ja) | 2006-09-29 | 2008-05-08 | Sony Corp | エレクトロウエッティング装置とこれを用いた可変焦点レンズ、光ピックアップ装置、光記録再生装置、液滴操作装置、光学素子、ズームレンズ、撮像装置、光変調装置及び表示装置 |
WO2009017109A1 (ja) * | 2007-07-31 | 2009-02-05 | Daikin Industries, Ltd. | 高誘電性フィルム |
JP2009038088A (ja) * | 2007-07-31 | 2009-02-19 | Daikin Ind Ltd | 高誘電性フィルム |
JP2009038089A (ja) * | 2007-07-31 | 2009-02-19 | Daikin Ind Ltd | 高誘電性フィルム |
JP2009210738A (ja) * | 2008-03-03 | 2009-09-17 | Sony Corp | 液体光学素子の製造方法 |
WO2010074026A1 (ja) * | 2008-12-22 | 2010-07-01 | ダイキン工業株式会社 | フィルムコンデンサ用高誘電性フィルム形成組成物 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60186512A (ja) * | 1984-03-07 | 1985-09-24 | Kureha Chem Ind Co Ltd | ポリテトラフルオルエチレン透明薄膜およびその製造法 |
US6352758B1 (en) * | 1998-05-04 | 2002-03-05 | 3M Innovative Properties Company | Patterned article having alternating hydrophilic and hydrophobic surface regions |
US7420549B2 (en) * | 2003-10-08 | 2008-09-02 | E Ink Corporation | Electro-wetting displays |
US20090306264A1 (en) * | 2006-02-01 | 2009-12-10 | Meiten Koh | Highly dielectric film |
WO2008007797A1 (fr) * | 2006-07-10 | 2008-01-17 | Sony Corporation | Agencement de lentilles |
US20080118848A1 (en) * | 2006-11-16 | 2008-05-22 | Electronics & Telecommunications Research Institute | Aqeuous electrolyte composition and sealed-type primary film battery including electrolyte layer formed of the aqueous electrolyte composition |
JP2008170632A (ja) * | 2007-01-10 | 2008-07-24 | Sony Corp | 液体デバイス、液体デバイス製造装置および方法 |
US8804307B2 (en) * | 2007-01-26 | 2014-08-12 | Daikin Industries, Ltd. | Highly dielectric film having high withstanding voltage |
JP5273041B2 (ja) * | 2007-04-20 | 2013-08-28 | 旭硝子株式会社 | 含フッ素ポリマー薄膜とその製造方法 |
CN101493576B (zh) * | 2008-01-23 | 2010-12-15 | 财团法人工业技术研究院 | 电润湿法显示器装置及其制造方法 |
JP5349067B2 (ja) * | 2009-02-03 | 2013-11-20 | 日東電工株式会社 | 高誘電率絶縁シートおよびその製造方法 |
-
2012
- 2012-02-07 JP JP2012023650A patent/JP2012181513A/ja active Pending
- 2012-02-08 WO PCT/JP2012/052858 patent/WO2012108463A1/ja active Application Filing
- 2012-02-08 KR KR1020137023758A patent/KR20130130826A/ko not_active Application Discontinuation
- 2012-02-08 EP EP12744420.6A patent/EP2674804A1/en not_active Withdrawn
- 2012-02-08 US US13/984,241 patent/US20140016176A1/en not_active Abandoned
- 2012-02-08 CN CN2012800081031A patent/CN103354914A/zh active Pending
- 2012-02-10 TW TW101104371A patent/TW201239905A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008040455A (ja) * | 2006-07-10 | 2008-02-21 | Sony Corp | レンズアレイ |
JP2008107826A (ja) | 2006-09-29 | 2008-05-08 | Sony Corp | エレクトロウエッティング装置とこれを用いた可変焦点レンズ、光ピックアップ装置、光記録再生装置、液滴操作装置、光学素子、ズームレンズ、撮像装置、光変調装置及び表示装置 |
WO2009017109A1 (ja) * | 2007-07-31 | 2009-02-05 | Daikin Industries, Ltd. | 高誘電性フィルム |
JP2009038088A (ja) * | 2007-07-31 | 2009-02-19 | Daikin Ind Ltd | 高誘電性フィルム |
JP2009038089A (ja) * | 2007-07-31 | 2009-02-19 | Daikin Ind Ltd | 高誘電性フィルム |
JP2009210738A (ja) * | 2008-03-03 | 2009-09-17 | Sony Corp | 液体光学素子の製造方法 |
WO2010074026A1 (ja) * | 2008-12-22 | 2010-07-01 | ダイキン工業株式会社 | フィルムコンデンサ用高誘電性フィルム形成組成物 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014052562A (ja) * | 2012-09-07 | 2014-03-20 | Fujifilm Corp | 光学素子及び画像表示装置 |
EP2910604A4 (en) * | 2012-10-16 | 2016-06-15 | Daikin Ind Ltd | HIGH CONSTANT DIELECTRIC FILM |
WO2014061700A1 (ja) | 2012-10-16 | 2014-04-24 | ダイキン工業株式会社 | 高誘電性フィルム |
JP5516817B1 (ja) * | 2012-10-16 | 2014-06-11 | ダイキン工業株式会社 | 高誘電性フィルム |
JP2014156599A (ja) * | 2012-10-16 | 2014-08-28 | Daikin Ind Ltd | 高誘電性フィルム |
JP2014156581A (ja) * | 2012-10-16 | 2014-08-28 | Daikin Ind Ltd | 高誘電性フィルム |
CN104704046A (zh) * | 2012-10-16 | 2015-06-10 | 大金工业株式会社 | 高介电性膜 |
US9519132B2 (en) | 2013-09-10 | 2016-12-13 | Boe Technology Group Co., Ltd. | Electrowetting display device and method for preparing the same |
CN103558685A (zh) * | 2013-09-10 | 2014-02-05 | 京东方科技集团股份有限公司 | 电润湿显示装置及制作方法 |
JP2018051685A (ja) * | 2016-09-28 | 2018-04-05 | シャープ ライフ サイエンス (イーユー) リミテッド | 微小流体装置 |
US11253856B2 (en) | 2016-09-28 | 2022-02-22 | Sharp Life Science (Eu) Limited | Microfluidic device |
WO2019189319A1 (ja) * | 2018-03-30 | 2019-10-03 | 国立大学法人広島大学 | 成形体 |
WO2019189316A1 (ja) * | 2018-03-30 | 2019-10-03 | ダイキン工業株式会社 | 成形体 |
JPWO2019189316A1 (ja) * | 2018-03-30 | 2020-12-03 | ダイキン工業株式会社 | 成形体 |
JPWO2019189319A1 (ja) * | 2018-03-30 | 2021-01-14 | 国立大学法人広島大学 | 成形体 |
JP7101373B2 (ja) | 2018-03-30 | 2022-07-15 | 国立大学法人広島大学 | 成形体 |
JP7321145B2 (ja) | 2018-03-30 | 2023-08-04 | ダイキン工業株式会社 | 成形体 |
US11773225B2 (en) | 2018-03-30 | 2023-10-03 | Daikin Industries, Ltd. | Molded article |
Also Published As
Publication number | Publication date |
---|---|
US20140016176A1 (en) | 2014-01-16 |
TW201239905A (en) | 2012-10-01 |
KR20130130826A (ko) | 2013-12-02 |
JP2012181513A (ja) | 2012-09-20 |
CN103354914A (zh) | 2013-10-16 |
EP2674804A1 (en) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012108463A1 (ja) | エレクトロウエッティング用疎水性誘電体フィルム | |
JP5804100B2 (ja) | 高誘電性フィルム | |
KR102671950B1 (ko) | 액티브 매트릭스 백플레인들과의 사용을 위한 고 유전상수를 갖는 층상 구조 | |
US20130038922A1 (en) | Optical element, optical element array, display device, and electronic apparatus | |
KR20080091790A (ko) | 광학 전자습윤 디바이스 및 이를 포함하는 장치 | |
JP6504251B2 (ja) | フィルム | |
US11479647B2 (en) | Film including a fluoropolymer | |
US8922893B2 (en) | Optical element, method of forming optical element, optical element array, display device, and electronic apparatus | |
TWI703183B (zh) | 氟樹脂薄膜 | |
US10642024B2 (en) | Fluid for electrowetting device and electrowetting device using the same | |
Wadhai et al. | Large tuning in the electrowetting behaviour on ferroelectric PVDF-HFP/Teflon AF bilayer | |
Wu et al. | Electrically Responsive Fluoropolymer Surfaces and Devices | |
Tan et al. | Electrowetting on flexible, transparent and conducting single-layer graphene | |
JP2018021981A (ja) | 液体光学材料及び光学素子 | |
TW201922872A (zh) | 薄膜 | |
KR20230140996A (ko) | 광학 적층체 | |
JP6520714B2 (ja) | フィルム | |
You et al. | Electrowetting on non‐fluorinated hydrophobic surfaces | |
Chevalliot | Advancing the Frontiers of Low Voltage Electrowetting on Dielectrics through a Complete Understanding of Three Phases System Interactions | |
US20090014319A1 (en) | Transparent insulating film, method for producing the same, and sputtering target |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12744420 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012744420 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137023758 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13984241 Country of ref document: US |