WO2010067705A1 - 画素回路、固体撮像素子、およびカメラシステム - Google Patents
画素回路、固体撮像素子、およびカメラシステム Download PDFInfo
- Publication number
- WO2010067705A1 WO2010067705A1 PCT/JP2009/069848 JP2009069848W WO2010067705A1 WO 2010067705 A1 WO2010067705 A1 WO 2010067705A1 JP 2009069848 W JP2009069848 W JP 2009069848W WO 2010067705 A1 WO2010067705 A1 WO 2010067705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- field effect
- amplifier circuit
- pixel
- effect transistor
- transistor
- Prior art date
Links
- 230000005669 field effect Effects 0.000 claims abstract description 116
- 238000006243 chemical reaction Methods 0.000 claims abstract description 72
- 238000009825 accumulation Methods 0.000 claims description 136
- 238000003384 imaging method Methods 0.000 claims description 41
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000009792 diffusion process Methods 0.000 description 73
- 238000000926 separation method Methods 0.000 description 32
- 238000010586 diagram Methods 0.000 description 30
- 238000003860 storage Methods 0.000 description 27
- 230000006870 function Effects 0.000 description 26
- 230000007704 transition Effects 0.000 description 23
- 230000003071 parasitic effect Effects 0.000 description 13
- 238000012432 intermediate storage Methods 0.000 description 12
- 229920006395 saturated elastomer Polymers 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000005684 electric field Effects 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005036 potential barrier Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 2
- 102220634580 Vacuolar protein-sorting-associated protein 36_T10S_mutation Human genes 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 102220075111 rs147516123 Human genes 0.000 description 2
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 1
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 241000519995 Stachys sylvatica Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14609—Pixel-elements with integrated switching, control, storage or amplification elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/50—Control of the SSIS exposure
- H04N25/57—Control of the dynamic range
- H04N25/59—Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
- H04N25/77—Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
Definitions
- the present invention relates to a pixel circuit typified by a CMOS image sensor, a solid-state imaging device, and a camera system.
- CMOS imagers have been widely used in applications such as digital still cameras, camcorders, and surveillance cameras, and the market is expanding.
- the CMOS imager converts light incident on each pixel into electrons with a photodiode which is a photoelectric conversion element, accumulates it for a certain period, digitizes a signal reflecting the amount of accumulated charge, and outputs it to the outside. .
- FIG. 1 is a diagram illustrating an example of a pixel circuit including four transistors in one unit pixel.
- the unit pixel circuit PX1 includes a photodiode 1, a transfer transistor 2, a reset transistor 3, an amplifier transistor 4, a row selection transistor 5, a storage node 6, and a floating diffusion (FD: Floating Diffusion).
- the gate electrode of the transfer transistor 2 is connected to the transfer line 8
- the gate electrode of the reset transistor 3 is connected to the reset line 9.
- the gate electrode of the amplifier transistor 4 is connected to the FD 7, and the gate electrode of the row selection transistor 5 is connected to the row selection line 10.
- the source of the row selection transistor 5 is connected to the vertical signal line 11.
- a constant current circuit 12 and a sensing circuit 13 are connected to the vertical signal line 11.
- the light incident on the silicon substrate of the pixel generates a pair of electrons and holes, and the electrons in the light are condensed and accumulated on the node 6 by the photodiode 1.
- the electrons are finally read out as a signal to the vertical signal line 11.
- FIG. 2A to 2D are timing charts of the pixel circuit in FIG.
- the pixel Prior to charge accumulation, the pixel is first reset. This sets the reset line 9 and the transfer line 8 to the high level, and turns on the reset transistor 3 and the transfer transistor 2. This is an operation for transmitting a power supply voltage of 3 V to the storage node 6 of the photodiode, for example. As a result, the potential of the storage node 6 rises and the electrons stored therein are extracted.
- HAD Hole-Accumulation In the (diode) structure, the storage node 6 is formed of an n-type buried diffusion layer sandwiched between p-type layers, and all of its electrons are discharged to be in a fully depleted state.
- the transfer line 8 is set to a low level and the transfer transistor 2 is turned off, whereby the storage node 6 enters a floating state, and a new charge accumulation is started.
- the reset transistor 3 is also normally turned off. In general, such a pixel reset operation is used as an electronic shutter operation of a CMOS image sensor.
- the row selection line 10 becomes high level, the row selection transistor 5 is turned on, and the amplifier transistor 4 of the pixel is connected to the vertical signal line 11.
- the vertical signal line 11 connected to the amplifier transistor 4 and the constant current circuit 12 forms a source follower circuit, and the potential Vf of the FD 7 that is the input and the potential Vsl of the vertical signal line 11 that is the output are:
- the variation ratio is a linear relationship close to 1. That is, when the current value of the constant current circuit 12 is i, the following equation is ideally established.
- Vf ⁇ Vth ⁇ Vsl is constant, and fluctuations in Vf are reflected linearly in Vsl. That is, the source follower circuit operates as an amplifier circuit having a gain of approximately 1, and drives the vertical signal line 11 in accordance with the signal amount of the FD 7 that is an input node.
- the power supply voltage 3V is transmitted to the FD 7 by setting the reset line 9 to the high level and turning on the reset transistor 3. Further, after the reset transistor 3 is turned off, the first sensing of the potential Vsl of the vertical signal line 11 is performed by the sensing circuit 13 constituted by a comparator, an AD converter, or the like. This is readout of the reset signal.
- the transfer line 8 is set to the high level to turn on the transfer transistor 2, whereby electrons stored in the storage node 6 flow into the FD 7.
- the transfer transistor 2 is turned off, and the sensing circuit 13 senses the potential of the vertical signal line 11 for the second time. This is readout of the accumulated signal.
- the difference between the first sensing and the second sensing of Vsl accurately reflects the amount of charge accumulated in the accumulation node 6 by the exposure of the photodiode 1.
- the CMOS imager digitizes this difference and outputs it as a pixel signal value.
- the electron accumulation time of each pixel is a period between the reset operation and the readout operation, and more precisely, is a period T1 from when the transfer transistor 2 is turned off after reset to when it is turned off by readout.
- the accumulated electrons generated by the photoelectric conversion element are converted into an analog signal of the vertical signal line 11 via the amplifier circuit for each pixel and transmitted to the sensing circuit 13. Further, this analog signal is converted into a digital signal by an AD converter and output outside the chip. This is in sharp contrast with a CCD imager in which the stored electrons themselves are vertically and horizontally transferred by CCD transfer until just before the chip output amplifier circuit.
- the potential after transfer of the FD 7 that is the input node of the amplifier circuit 118 is maintained at a higher potential than the photodiode 1 at the time of complete depletion. Need to be drunk.
- the saturated accumulated charge amount Qs of the photodiode corresponds to the number of donors in the diffusion layer, normally, when the saturated accumulated charge amount Qs is increased, the potential at the time of complete depletion becomes deep (high potential). This is in the direction of further narrowing the range of the potential change amount ⁇ Vf.
- Such a transfer margin problem has been a major design limitation.
- An object of the present invention is to provide a pixel circuit, a solid-state imaging device, and a camera system that can facilitate charge transfer in a pixel, improve the amount of stored charge, improve sensitivity, and improve imaging performance. .
- a pixel circuit includes a photoelectric conversion element, an amplifier circuit, and a transfer transistor capable of transferring charges generated by the photoelectric conversion element to an input node of the amplifier circuit,
- the transfer transistor includes first, second, and third field effect transistors that are integrated and connected in series from the photoelectric conversion element toward the amplifier circuit, and the first and second field effect transistors.
- the gate electrode is driven simultaneously and collectively, the threshold voltage of the first field effect transistor is set higher than the threshold voltage of the second field effect transistor, and with the stepwise driving of the gate electrode, The charge generated by the photoelectric conversion element and transferred via the first field effect transistor is accumulated in the channel region of the second field effect transistor, and the channel The charge accumulated in the region to transfer to the input of the amplifier circuit via the third field effect transistor, the amplifier circuit drives a signal line, reading the accumulated charge is performed.
- a pixel circuit includes a photoelectric conversion element, an amplifier circuit, and a transfer transistor capable of transferring charges generated by the photoelectric conversion element to an input node of the amplifier circuit
- the transfer transistor includes first and second field effect transistors that are integrated and connected in series from the photoelectric conversion element toward the amplifier circuit, and the first and second field effect transistors include gates
- the electrodes are driven simultaneously and the threshold voltage of the first field effect transistor is set to be higher than the threshold voltage of the second field effect transistor.
- a predetermined amount of charge generated and transferred through the first field effect transistor is accumulated in the channel region of the second field effect transistor, and the channel Transfers the charge accumulated in the region to the input of the amplifier circuit, the amplifier circuit drives a signal line, reading the accumulated charge is performed.
- a solid-state imaging device includes a pixel unit in which a plurality of pixel circuits are arranged, and a pixel driving unit that drives the pixel circuit of the pixel unit to read out a pixel signal,
- Each pixel circuit includes a photoelectric conversion element, an amplifier circuit, and a transfer transistor capable of transferring charges generated by the photoelectric conversion element to an input node of the amplifier circuit, and the transfer transistor includes the photoelectric conversion element.
- the first and second field effect transistors have gate electrodes
- the threshold voltage of the first field effect transistor is set to be higher than the threshold voltage of the second field effect transistor, and the gate electrode is driven stepwise by the pixel driver. Accordingly, the charge generated by the photoelectric conversion element and transferred through the first field effect transistor is stored in the channel region of the second field effect transistor, and the charge stored in the channel region is stored in the channel region.
- the signal is transferred to the input of the amplifier circuit via the third field effect transistor, and the amplifier circuit drives the signal line to read out the accumulated charge.
- a solid-state imaging device includes a pixel unit in which a plurality of pixel circuits are arranged, and a pixel driving unit that drives the pixel circuit of the pixel unit and reads out a pixel signal.
- Each pixel circuit includes a photoelectric conversion element, an amplifier circuit, and a transfer transistor capable of transferring charges generated by the photoelectric conversion element to an input node of the amplifier circuit, and the transfer transistor includes the photoelectric conversion element.
- the first and second field effect transistors are integrated and connected in series from the conversion element toward the amplifier circuit, and the gate electrodes of the first and second field effect transistors are simultaneously and collectively connected.
- the threshold voltage of the first field-effect transistor is set higher than the threshold voltage of the second field-effect transistor, and the gate electrode is gradually driven by the pixel driver.
- a predetermined amount of charge generated by the photoelectric conversion element and transferred through the first field effect transistor is accumulated in the channel region of the second field effect transistor, and the charge accumulated in the channel region is amplified
- the signal is transferred to the input of the circuit, and the amplifier circuit drives the signal line to read out the accumulated charge.
- a camera system includes a solid-state imaging device, an optical system that forms a subject image on the imaging device, and a signal processing circuit that processes an output image signal of the imaging device
- the solid-state imaging device includes a pixel unit in which a plurality of pixel circuits are arranged, and a pixel driving unit that drives the pixel circuit of the pixel unit and reads out a pixel signal.
- the first, second, and third field effect transistors that are integrated and connected in series, the gate electrodes of the first and second field effect transistors being simultaneously and collectively driven, Up
- the threshold voltage of the first field effect transistor is set higher than the threshold voltage of the second field effect transistor, and is generated by the photoelectric conversion element in accordance with the stepwise driving of the gate electrode by the pixel driver,
- the charge transferred via one field effect transistor is accumulated in the channel region of the second field effect transistor, and the charge accumulated in the channel region is input to the amplifier circuit via the third field effect transistor. Then, the amplifier circuit drives the signal line to read out the accumulated charge.
- a camera system includes a solid-state imaging device, an optical system that forms a subject image on the imaging device, and a signal processing circuit that processes an output image signal of the imaging device
- the solid-state imaging device includes a pixel unit in which a plurality of pixel circuits are arranged, and a pixel driving unit that drives the pixel circuit of the pixel unit and reads out a pixel signal.
- the first and second field effect transistors integrated and connected in series, the gate electrodes of the first and second field effect transistors being simultaneously and collectively driven,
- the threshold voltage of the field effect transistor is set to be higher than the threshold voltage of the second field effect transistor, and is generated by the photoelectric conversion element with the stepwise driving of the gate electrode by the pixel driver, and the first electric field is generated.
- a predetermined amount of charge transferred through the effect transistor is accumulated in the channel region of the second field effect transistor, the charge accumulated in the channel region is transferred to the input of the amplifier circuit, and the amplifier circuit The accumulated charge is read by driving the line.
- charge transfer within a pixel can be facilitated, the amount of accumulated charge and sensitivity can be improved, and imaging performance can be improved.
- FIG. 6 is a diagram illustrating a cross-sectional structure example of the transfer circuit of FIG. 5.
- FIG. 5 is a timing chart when reset, charge accumulation, and readout are performed in the pixel circuit of FIG. 4. It is a figure which shows the equivalent circuit of the transfer circuit containing the transfer transistor of the pixel circuit of FIG. It is a figure which shows the potential transition accompanying the read transfer operation
- FIG. 13 is a timing chart when reset, charge accumulation, and readout are performed in the pixel circuit of FIG. 12. It is a figure which shows the pixel circuit of the CMOS image sensor which concerns on the 4th Embodiment of this invention. It is a figure which shows the timing chart of the operation
- FIG. 20 is a diagram illustrating a timing chart of a pixel operation that adopts an intermediate holding mode and improves the large-capacity accumulation operation of the sixth embodiment in the eighth embodiment. It is a figure which shows the timing chart of the operation
- FIG. 28 is a diagram illustrating a cross-sectional structure example of the transfer circuit of FIG. 27.
- FIG. 16 is a diagram illustrating a configuration example of a transfer circuit according to a fifteenth embodiment in which a photodiode is replaced with a MOS capacitor with respect to FIG. 6 which is a cross-sectional structure example corresponding to the first embodiment. It is a figure which shows the example of a cross-section of the transfer circuit which concerns on 16th Embodiment which has a cross-sectional structure different from the transfer circuit of 1st Embodiment. It is a figure which shows an example of a structure of the camera system with which the solid-state image sensor which concerns on embodiment of this invention is applied.
- FIG. 3 is a diagram showing a configuration example of a CMOS image sensor (solid-state imaging device) employing the pixel circuit according to the embodiment of the present invention.
- CMOS image sensor solid-state imaging device
- the present CMOS image sensor 100 includes a pixel array unit 110, a row selection circuit (Vdec) 120 as a pixel driving unit, and a column readout circuit (AFE) 130.
- Vdec row selection circuit
- AFE column readout circuit
- a plurality of pixel circuits 110A are arranged in a two-dimensional shape (matrix shape) of M rows ⁇ N columns.
- the pixel circuit 110A basically includes a photoelectric conversion element, a transfer transistor, a reset transistor, an amplifier transistor, a row selection transistor, a storage node, and an FD (floating diffusion).
- the transfer transistor of the pixel circuit 110A is formed of at least first and second insulated gate field effect transistors (MOS transistors) that are integrated and connected in series, as will be described in detail later.
- the first and second MOS transistors are formed as a high threshold voltage Vth transistor and a low threshold voltage Vth transistor whose gate electrodes are driven simultaneously. A specific configuration of the pixel circuit 110A will be described in detail later.
- a transfer line 140 (LTRG), a reset line 150 (LRST), and a row selection line 160 (LSL) wired to the pixel array unit 110 are wired as a set for each row of the pixel array.
- M control lines are provided for the transfer line 140 (LTRG), the reset line 150 (LRST), and the row selection line 160 (LSL).
- These transfer line 140 (LTRG), reset line 150 (LRST), and row selection line 160 (LSL) are driven by the row selection circuit 120.
- the row selection circuit 120 controls the operation of pixels arranged in an arbitrary row in the pixel array unit 110.
- the row selection circuit 120 controls the pixel circuit through the transfer line 140 (LTRG), the reset line 150 (LRST), and the row selection line 160 (LSL).
- the column readout circuit 130 receives the data of the pixel row controlled to be read out by the row selection circuit 120 through the vertical signal line (LSGN) 170 and transfers it to the signal processing circuit at the subsequent stage.
- a constant current circuit and a sensing circuit are connected to the vertical signal line 170.
- the read circuit 130 includes a CDS circuit and an ADC (analog / digital converter).
- FIG. 4 is a diagram showing a pixel circuit of the CMOS image sensor according to the first embodiment of the present invention.
- the unit pixel circuit 110A includes a photodiode 111 as a photoelectric conversion element, a transfer transistor 112, a reset transistor 113, an amplifier transistor 114, a row selection transistor 115, a storage node 116, and an FD 117. Note that an amplifier circuit 118 is formed by the amplifier transistor 114, and an input node of the amplifier circuit 118 is formed by the FD 117.
- the transfer transistor 112 of the first embodiment is connected between the photodiode 111 and the FD 117 as an output node.
- the transfer transistor 112 is formed of at least a first MOS transistor 1121, a second MOS transistor 1122, and a third MOS transistor 1123 which are integrated and connected in series.
- the first and second MOS transistors 1121 and 1122 are formed as a transistor having a high threshold voltage Vth and a transistor having a low threshold voltage Vth that are driven by applying a drive signal to the gate electrodes simultaneously.
- the first MOS transistor 1121 is formed as a transistor having a high threshold voltage HVth
- the second MOS transistor 1122 is formed as a transistor having a low threshold voltage LVth.
- the gate electrodes of the first and second MOS transistors 1121 and 1122 are connected in common to the transfer line 140, and the gate electrode of the third MOS transistor 1123 is connected to a reference potential, for example, the ground GND.
- the first, second, and third MOS transistors 1121, 1122, and 1123 are formed as n-channel MOS (NMOS) transistors.
- NMOS n-channel MOS
- the high threshold voltage HVth of the first NMOS transistor 1121 is set to 0V, for example, and the low threshold voltage LVth of the second NMOS transistor 1122 is set to ⁇ 1.5V.
- the threshold voltage of the third MMOS transistor is set to -0.6V.
- the reset transistor 113 is connected between the power supply line and the FD 117, and the regate electrode is connected to the reset line 150.
- the gate of the amplifier transistor 114 is connected to the FD 117.
- the amplifier transistor 114 is connected to the signal line 170 via the row selection transistor 115 and constitutes a constant current circuit 131 outside the pixel portion and a source follower.
- a gate electrode of the row selection transistor 115 is connected to the row selection line 160.
- the source of the row selection transistor 115 is connected to the vertical signal line 170.
- a constant current circuit 131 and a sensing circuit 132 are connected to the vertical signal line 170.
- FIG. 5 is a diagram showing an equivalent circuit of a transfer circuit including the transfer transistor of the pixel circuit 110A according to the first embodiment.
- reference numerals 201 and 202 denote gate electrodes, 203 denotes a parasitic capacitance, and 118 denotes an amplifier circuit.
- the amplifier circuit 118 is formed by an amplifier transistor 114.
- Electrons generated by photoelectric conversion in the photodiode 111 are fed to the FD 117, which is an input node of the amplifier circuit 118, through the first, second, and third NMOS transistors 1121, 1122, and 1123 that are integrated and connected in series. Completely transferred.
- the integrated first, second, and third NMOS transistors 1121, 1122, and 1123 are directly connected to each other without an n-type diffusion layer or the like interposed therebetween.
- the drive signals are applied simultaneously to the gate electrodes 201 of the first and second NMOS transistors 1121 and 1122.
- the first MOS transistor 1121 has a high threshold voltage HVth
- the second MOS transistor 1122 has a low threshold voltage LVth.
- the FD 117 which is an input node, has a parasitic capacitance 203. If the accumulated charge amount is Q and the parasitic capacitance value is Cf, the potential change amount ⁇ Vf is as follows.
- this displacement drives the vertical signal line 170 through the amplifier circuit 118 with a constant gain.
- FIG. 6 is a diagram showing an example of a cross-sectional structure of the transfer circuit of FIG.
- the photodiode 111 employs a so-called HAD structure in which the vicinity of the silicon surface in contact with the oxide film is made p-type.
- the photoelectrically converted electrons are initially stored in the n-type diffusion node 204.
- This diffusion node 204 corresponds to the storage node 116.
- the signal is transferred to the channel region of the second NMOS transistor 1122 via the first NMOS transistor 1121 and stored therein.
- the threshold value of the first NMOS transistor 1121 is set high and the threshold value of the second NMOS transistor 1122 is set low.
- the channel portion CH2 of the second NMOS transistor 1122 forms an electron accumulation well
- the channel portion CH1 of the first NMOS transistor 1121 forms a potential wall for preventing backflow.
- the third NMOS transistor 1123 is controlled by an independent gate electrode 202.
- the potential of the channel region of the third NMOS transistor 1123 is set to be shallower (higher potential) than that of the second NMOS transistor 1122 when an ON voltage is applied to the gate electrode 201.
- the potential of the channel region is set to be deeper (lower potential) than that of the second NMOS transistor 1122 when a voltage for turning off is applied to the gate electrode 201.
- the potential of the gate electrode 202 of the third NMOS transistor 1123 may be fixed. If the impurity profile of the channel portion CH3 of the third NMOS transistor 1123 is appropriately adjusted, it may be connected to a power supply line or a ground line. Is possible.
- the diffusion layer 205 is connected to the input of the amplifier circuit 118 not shown in the cross-sectional view.
- the third NMOS transistor 1123 functions as a separation transistor.
- first NMOS transistor 1121 and the second NMOS transistor 1122 are regarded as two separate transistors here.
- the gate electrode is also integrally formed as shown in the figure, it can be regarded as a single NMOS transistor having a gradient in the impurity profile of the channel portion. In any case, it is functionally similar to two individual transistors connected in series, and the present invention encompasses such a form.
- FIGS. 7A to 7D are diagrams showing potential transitions associated with a read transfer operation using the transfer circuit of the pixel circuit according to the first embodiment.
- each node serves as a well for accumulating negatively charged electrons, and the potential is lifted upward, that is, in the negative potential direction as the well fills with electrons.
- Step ST11 In step ST11 of FIG. 7A, the diffusion node 204 of the photodiode 111 is designed to be positively charged by a certain number of donors and have a potential bottom of about 2.0 V when fully depleted. Here, the photoelectrically converted electrons are filled up to a saturated state (about 0 V).
- the channel regions of the first NMOS transistor 1121 and the second NMOS transistor 1122 are modulated in the range of R11 and R12, respectively, according to the potential applied to both gate electrodes, for example, ⁇ 1.5V to 3V. Is done.
- the gate electrode 202 of the third NMOS transistor 1123 as the isolation transistor is connected to the ground GND, and the channel potential is adjusted to about 0.6V. Further, the diffusion layer 205 (FD 117) which is an input node of the amplifier circuit 118 is reset and is in a floating state of 3V.
- Step ST12 In step ST12 in FIG. 7B, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are turned on, electrons are moved as follows. The electrons accumulated in the diffusion node 204 of the photodiode 111 do not remain through the first NMOS transistor 1121 and move to the channel region of the second NMOS transistor 1122. That is, electrons move to the channel region of the second NMOS transistor 1122 in a deep depletion state, and are accumulated in an analog state.
- the potential of the channel region of the third NMOS transistor 1123 is shallower (lower potential) than that of the second NMOS transistor 1122, and between the diffusion layer 205 (FD 117) that is the input node of the amplifier circuit 118. It forms a barrier.
- Step ST13 In step ST13 of FIG. 7C, when the gate electrode is driven to turn off the first NMOS transistor 1121 and the second NMOS transistor 1122, the potential of the channel region is modulated in the negative potential direction accordingly. Is done.
- the channel of the first NMOS transistor 1121 forms a potential barrier to prevent the backflow of accumulated electrons to the diffusion node 204 of the photodiode 111.
- the height of the barrier corresponds to the difference between the threshold values of the first NMOS transistor 1121 and the second NMOS transistor 1122, and is, for example, 1.5V.
- the gate electrodes 201 of the first and second NMOS transistors 1121 and 1122 reach an appropriate intermediate voltage, the stored electrons are separated from both the diffusion node 204 of the photodiode 111 and the FD 117 which is the input of the amplifier. A condition can arise.
- the gate may be driven all at once until the next step, but a new function can be added by temporarily holding such an intermediate state as will be described later. Further, when the gate is continuously driven from here to modulate the potential of the channel region of the second NMOS transistor 1122 in the negative potential direction, the electrons accumulated therein are diffusion layers 205 ( Start moving to FD117).
- Step ST114 In step ST14 of FIG. 7D, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are completely turned off, the potential of the channel region of the second NMOS transistor 1122 that has released all accumulated electrons is It becomes like this. That is, the channel region potential of the second NMOS transistor 1122 exceeds the channel potential of the third NMOS transistor 1123. Then, all the electrons accumulated in the photodiode 111 in step ST11 are moved to the diffusion layer 205 (FD117) which is an input node of the amplifier circuit 118. As a result, the amplifier circuit 118 drives the vertical signal line 170 to read out the accumulated signal.
- FD117 diffusion layer 205
- stepwise transfer it is not necessary to secure a potential difference between the diffusion node 204 of the photodiode 111 that is in a fully depleted state and the FD 117 that is the input node of the amplifier circuit 118. That is, in this example, complete transfer is realized even if the potential of the FD 117 filled with electrons is shallower than that of the diffusion node 204.
- FIG. 8A to 8D are timing charts when reset, charge accumulation, and readout are performed in the pixel circuit of FIG. 8A shows the signal potential of the reset line 150, FIG. 8B shows the signal potential of the transfer line 140, FIG. 8C shows the signal potential of the row selection line 160, and FIG. 8D shows the vertical potential. Each signal potential of the signal line 170 is shown.
- the characteristic operation of the pixel circuit 110A of the first embodiment is that the transfer of the stored electrons of the photodiode 111 to the FD 117 is performed in two stages corresponding to the drive of the transfer line 140. That is, when the transfer line 140 rises from the low level to the high level, the accumulated electrons are transferred from the diffusion node 204 of the photodiode 111 to the channel region of the second NMOS transistor 1122 as shown in step ST12 of FIG. Transferred. Further, when the transfer line 140 returns from the high level to the low level, the electrons in the channel region are transferred to the FD 117 which is the input node of the amplifier circuit 118, as shown in step ST14 of FIG.
- the FD 117 which is the input node of the amplifier circuit 118 is connected to the reset level potential (power supply voltage ⁇ 3 V).
- the transfer line 140 rises from the low level to the high level and further falls from the high level to the low level, the electrons accumulated in the photodiode 111 are transferred to the diffusion layer 205 and extracted to the reset level.
- a new electron accumulation period T2 starts at this point.
- the reset pulse of the reset line 150 falls to the low level after waiting for the transfer line 140 to fall to the low level.
- the electrons accumulated in the photodiode 111 are transferred to the diffusion layer 205 when the transfer line 140 rises from the low level to the high level and further falls from the high level to the low level. Therefore, the driving of the vertical signal line 170 via the amplifier circuit 118 by the accumulated signal occurs when the transfer line 140 returns from the high level to the low level.
- the accumulation period T2 also ends at this point.
- the pixel circuit 110A it is possible to facilitate the charge transfer in the pixel in the CMOS image sensor, to improve the amount of accumulated charge and the sensitivity, and to improve the imaging performance. Become.
- FIG. 9 is a diagram showing an equivalent circuit of the transfer circuit including the transfer transistor of the pixel circuit PX1 of FIG.
- GT1 represents a gate electrode
- C1 represents a parasitic capacitance
- 8 represents an amplifier circuit.
- the amplifier circuit 14 is formed by the amplifier transistor 4.
- the transfer circuit TX1 electrons generated by photoelectric conversion by the photodiode 1 are accumulated in the accumulation node 6 that is a diffusion layer node of the photodiode 1. At the time of reading, they are completely transferred to the FD 7 that is the input node of the amplifier circuit 14 via the transfer transistor 2.
- an NMOS transistor such as the amplifier transistor 4 is usually used, but a unique random noise Nr is generated. Therefore, when the gain is G, the S / N ratio of the accumulated signal generated in the vertical signal line as an output is ⁇ G ⁇ ⁇ Vf / Nr ⁇ . Since the gain G and random noise Nr are substantially constant once the configuration of the amplifier circuit 14 is determined, the magnitude of the potential change amount ⁇ Vf directly affects the imaging performance.
- FIGS. 10A to 10D are diagrams showing potential transitions associated with the read transfer operation using the pixel circuits as shown in FIGS.
- each node serves as a well for accumulating negatively charged electrons, and the potential is lifted upward, that is, in the negative potential direction as the well fills with electrons.
- Step ST1 In step ST1 of FIG. 10A, the storage node 6 which is the diffusion node of the photodiode 1 is designed to be positively charged by a certain number of donors and have a potential bottom of about 1.5 V when fully depleted. ing. Here, the photoelectrically converted electrons are filled up to a saturated state (about 0 V). On the other hand, the potential of the channel region of transfer transistor 2 is modulated in the range of R1 according to the potential applied to the gate electrode, for example, 1V to 3V. Further, the FD 7 which is an input node of the amplifier circuit 14 is reset and is in a floating state of 3V.
- Step ST2 In step ST2 of FIG. 10B, when the transfer transistor 2 is turned on, electrons move as follows. That is, when the transfer transistor 2 is turned on, the electrons accumulated in the accumulation node 6 that is the diffusion node of the photodiode 1 are not distributed and are distributed to the channel region of the transfer transistor 2 and the FD 7 that is the input node of the amplifier circuit 14. Moving.
- Step ST3 In step ST3 of FIG. 10C, when the potential of the channel region rises as the gate electrode rises in order to turn off the transfer transistor 2, the electrons accumulated therein are the input nodes of the amplifier circuit 14. Move to FD7.
- Step ST4 In step ST4 of FIG. 10D, when the transfer transistor 2 is in an off state, all the electrons accumulated in the photodiode 1 in step ST1 are moved to the FD7 that is the input node of the amplifier circuit. As a result, the amplifier circuit 14 drives the vertical signal line 11 to read out the accumulated signal.
- the pixel circuit PX1 in FIG. 1 is between the storage node 6 of the photodiode 1 in a fully depleted state and the FD7 that is the input node of the amplifier circuit 14. Needs to have a potential difference M1. On the other hand, if this potential difference is not sufficiently secured, electrons accumulated in the channel region of the transfer transistor 2 will flow backward to the photodiode 1 and the amount of electrons accumulated in the photodiode 1 will not be reflected linearly in the read signal.
- the potential after transfer of the FD 7 that is the input node of the amplifier circuit 14 needs to be kept higher than the photodiode 1 at the time of complete depletion. is there.
- the pixel circuit PX1 of FIG. 1 has a disadvantage that the potential dynamic range of the FD 7 is limited, ⁇ Vf cannot be sufficiently increased, and the S / N ratio cannot be increased.
- ⁇ Vf has a limit of (3.0V ⁇ 1.5V), and the potential difference corresponding to the transfer margin is further subtracted.
- the saturation accumulated charge amount Qs of the photodiode 1 corresponds to the number of donors in the diffusion layer. Therefore, when Qs is increased normally, the potential at the time of complete depletion becomes deep (high potential). . This is a direction that further narrows the range of ⁇ Vf. Such a transfer margin problem is a great design limitation.
- the pixel circuit 110A of the first embodiment employs transfer using an integrated series transistor for transferring electrons from the photodiode in the pixel to the amplifier circuit.
- an intermediate transfer node capable of potential modulation is formed in the channel portion of the MOS transistor, and stored electrons are transferred stepwise from the photodiode 111 to the amplifier circuit 118 via the intermediate node. .
- the above-described potential restriction for transfer can be released, thereby increasing the saturation accumulated charge amount Qs or reducing the parasitic capacitance of the amplifier input unit,
- the dynamic range can be improved.
- the pixel circuit 110A stores electrons photoelectrically converted during exposure not in the photodiode but in a channel region of a separately formed MOS transistor, and at the time of reading, completely transfers the stored electrons to the amplifier circuit. Can do. Therefore, according to the pixel circuit 110A, the exposure sensitivity can be improved and the saturated accumulated charge amount Qs can be greatly improved.
- the pixel circuit 110A electron (charge) transfer is performed only within the pixel, and after the vertical signal line is driven by the amplifier circuit, a low-impedance analog signal or digital signal is transmitted. Therefore, it is possible to realize a high-speed and low power consumption imager without problems of M smear and transfer leakage.
- FIG. 11 is a diagram showing a pixel circuit of a CMOS image sensor according to the second embodiment of the present invention.
- the pixel circuit 110B according to the second embodiment is different from the pixel circuit 110A according to the first embodiment as follows.
- a plurality of, for example, two pixels PXL110a and PXL110b each having a unique photodiode 111 and transfer circuit 112 share an FD 117 and an amplifier transistor 114 that form an amplifier circuit.
- the reset transistor 113 and the row selection transistor 115 are also shared by the plurality of pixels PXL110a and PXL110b.
- the shared gate electrodes of the first and second NMOS transistors are connected to different transfer lines 140a and 140b, respectively.
- the gate electrodes of the third MOS transistors 1123 of the transfer transistors 112a and 112b of the pixels PXL110a and PXL110b are respectively grounded.
- the electrons accumulated in the photodiodes 111a and 111b are transferred to the FDF 117 (input node of the amplifier circuit) at individual timings according to the independent transfer lines 140a and 140b.
- Sharing the amplifier circuit can reduce the effective size of the pixel, but the parasitic capacity of the FD 117 increases as the number of shared pixels increases. Therefore, the number of shared pixels is desirably 2 pixels or more and 16 pixels or less.
- FIG. 12 is a diagram showing a pixel circuit of a CMOS image sensor according to the third embodiment of the present invention.
- the pixel circuit 110C according to the third embodiment is different from the pixel circuit 110A according to the first embodiment as follows.
- the gate electrode 202 of the third NMOS transistor 1123 which was set to the fixed potential in the first embodiment, is driven by the row selection circuit 120 that is a peripheral circuit.
- the shared gate electrode 201 of the first and second NMOS transistors 1121 and 1122 is connected to the first transfer line 141, and the gate electrode 202 of the third NMOS transistor 1123 is connected to the second transfer line (distribution). (Separated line) 142.
- FIGS. 13A to 13D are diagrams showing potential transitions associated with a read transfer operation using the pixel circuit 110C according to the third embodiment.
- Step ST21 In step ST21 in FIG. 13A, the diffusion node 204 of the photodiode 111 is designed to be positively charged by a certain number of donors and have a potential bottom of about 2.0 V when fully depleted. Here, the photoelectrically converted electrons are filled up to a saturated state (about 0 V).
- the channel regions of the first NMOS transistor 1121 and the second NMOS transistor 1122 are modulated in the range of R13 and R14, respectively, in accordance with the potential applied to both gate electrodes, for example, ⁇ 0.5V to 3V. Is done.
- the potential of the channel region of the third NMOS transistor 1123 as the isolation transistor is modulated in the range of R15 according to the potential inherent to the gate electrode, for example, 0V to 3V.
- the diffusion layer 205 (FD 117) which is an input node of the amplifier circuit 118 is reset and is in a floating state of 3V.
- Step ST22 In step ST22 of FIG. 13B, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are turned on, the electron transfer is performed as follows. That is, the electrons accumulated in the diffusion node 204 of the photodiode 111 do not remain through the first NMOS transistor 1121 and move to the channel region of the second NMOS transistor 1122. That is, electrons move to the channel region of the second NMOS transistor 1122 in a deep depletion state, and are accumulated in an analog state.
- the potential of the channel region of the third NMOS transistor 1123 is secondly shallower (lower potential) than that of the NMOS transistor 1122, and between the diffusion layer 205 (FD 117) that is the input node of the amplifier circuit 118. It forms a barrier.
- Step ST23 In step ST23 of FIG. 13C, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are turned off again, the potential of the channel region is modulated in the negative potential direction.
- the channel of the first NMOS transistor 1121 forms a potential barrier to prevent the backflow of accumulated electrons to the diffusion node 204 of the photodiode 111.
- the height of the barrier corresponds to the difference between the threshold values of the first NMOS transistor 1121 and the second NMOS transistor 1122, and is, for example, 1.5V.
- Step ST24 In step ST24 of FIG. 13D, when the gate electrode 203 of the third NMOS transistor 1123 is driven through the second transfer line 142 as a separation line and the third NMOS transistor 1123 is turned on, the stored electrons are amplified. It flows into the FD 117 which is an input node of the circuit 118. Further, when the third NMOS transistor 1123 is turned off, all the stored electrons are moved to the diffusion layer 205 (FD 117) which is an input node of the amplifier circuit 118. As a result, the amplifier drives the vertical signal line, and the stored signal is read out.
- the transfer from the channel of the second NMOS transistor 1122 in the third embodiment to the FD 117 that is the input node of the amplifier circuit 118 is performed as follows.
- stepwise transfer it is not necessary to secure a potential difference between the diffusion node 204 of the photodiode 111 that is in a fully depleted state and the FD 117 that is the input node of the amplifier circuit 118. That is, in this example, complete transfer is realized even if the potential of the FD 117 filled with electrons is shallower than that of the diffusion node 204.
- FIG. 14A to 14E are timing charts when reset, charge accumulation, and readout are performed in the pixel circuit of FIG. 14A shows the signal potential of the reset line 150, FIG. 14B shows the signal potential of the first transfer line 141, and FIG. 14C shows the signal potential of the second transfer line (separation line) 142. Respectively. 14D shows the signal potential of the row selection line 160, and FIG. 14E shows the signal potential of the vertical signal line 170.
- the diffusion node 204 of the photodiode 111 moves from the diffusion node 204 to the channel region of the second NMOS transistor 1122 as shown in step ST22 of FIG.
- Stored electrons are transferred.
- the first transfer line 141 returns from the high level to the low level and the second transfer line 142 as the separation line becomes the high level almost simultaneously with the first transfer line 141, the following electron movement is performed.
- the third NMOS transistor 1123 is turned on as a separation transistor, and stored electrons flow into the FD 117 which is an input node of the amplifier circuit 118.
- the second transfer line 142 as the separation line falls to a low level, complete transfer to the FD 117 that is the input node of the electronic amplifier circuit 118 is completed.
- the FD 117 which is an input node of the amplifier circuit is connected to the reset level potential (power supply voltage ⁇ 3 V).
- the first transfer line 141 rises from the low level to the high level, excess electrons accumulated in the photodiode 111 pass through the first NMOS transistor 1121 and the channel portion CH2 of the second NMOS transistor 1122.
- the first transfer line 141 falls from the high level to the low level, and at the same time, the second transfer line 142 becomes the high level as the separation line, and the third NMOS transistor 1123 as the separation transistor becomes conductive.
- T3 starts when the first transfer line 141 falls from the high level to the low level.
- the electrons accumulated in the photodiode 111 are first increased from the low level to the high level by the first transfer line 141, so that the second MOS transistor 1122 is passed through the first NMOS transistor 1121.
- the first transfer line 141 falls from the high level to the low level, and the second transfer line 142 as the separation line rises to the high level substantially at the same time, and finally falls to the low level, they are amplified. Is completely transferred to the FD 117, which is the input node of.
- the accumulation period T3 ends at this point.
- the timing at which the second transfer line 142 as the separation line is turned on may be before or after the timing at which the first transfer line 141 is turned off.
- the amplifier transistor 114 is turned on through the FD 117 before the level at which the first transfer line 141 is turned off, the state from step ST22 in FIG. 13B to step ST23 in FIG. 13C is skipped. The process proceeds to step ST24 of D).
- complete transfer can be realized as long as the second transfer line 142 as the separation line is turned off after the first transfer line 141 is turned off.
- FIG. 15 is a diagram showing a pixel circuit of a CMOS image sensor according to the fourth embodiment of the present invention.
- the pixel circuit 110D according to the fourth embodiment is different from the pixel circuit 110C according to the third embodiment as follows.
- a plurality of, for example, two pixels PXL110a and PXL110b each having a unique photodiode 111 and transfer circuit 112 share an FD 117 and an amplifier transistor 114 that form an amplifier circuit.
- the reset transistor 113 and the row selection transistor 115 are also shared by the plurality of pixels PXL110a and PXL110b.
- the transfer transistors 112a and 112b of the respective pixels PXL110a and PXL110b are connected to first transfer lines 1410a and 141b having different shared gate electrodes of the first and second NMOS transistors, respectively.
- the gate electrodes of the third MOS transistors 1123 of the transfer transistors 112a and 112b of the pixels PXL110a and PXL110b are respectively connected to second transfer lines 142a and 142b serving as separation lines.
- the electrons accumulated in the photodiodes 111a and 111b are FDF117 at individual timings according to the first transfer lines 141a and 141b that are independent from each other and the second transfer lines 142a and 142b as the separation lines. Forwarded to
- Sharing the amplifier circuit can reduce the effective size of the pixel, but the parasitic capacity of the FD 117 increases as the number of shared pixels increases. Therefore, the number of shared pixels is desirably 2 pixels or more and 16 pixels or less.
- the large-capacity storage operation can be applied to any of the circuit configurations of the first to fourth embodiments described above, and will be described below as fifth and sixth embodiments, respectively.
- the pixel circuit configuration of FIG. 4 employed in the first embodiment and the charge accumulation using the deep depletion state of the second NMOS transistor 1122 are applied. Specifically, electrons accumulated in the diffusion node 204 that is the diffusion layer of the photodiode 111 are transferred to the channel portion of the second NMOS transistor 1122 and accumulated during the accumulation period. That is, during the pixel accumulation period, the gate electrode 201 is maintained at the on-state level so that the first and second NMOS transistors 1121 and 1122 are maintained in the on-state.
- the electrons photoelectrically converted by the photodiode 111 are immediately transferred to the channel portion CH2 of the second NMOS transistor 1122 via the first NMOS transistor 1121 and stored therein.
- the gate electrode 201 is driven so that the first and second NMOS transistors 1121 and 1122 are turned off.
- the accumulated electrons are transferred to the FD 117 that is the input node of the amplifier circuit 118 via the third NMOS transistor 1123.
- FIGS. 16A to 16D are timing charts showing the operation of the fifth embodiment.
- 16A shows the signal potential of the reset line 150
- FIG. 16B shows the signal potential of the transfer line 140
- FIG. 16C shows the signal potential of the row selection line 160
- FIG. Each signal potential of the signal line 170 is shown.
- the pixel circuit is the same as that shown in FIG. 4, and the details and cross-sectional configuration of the transfer circuit are the same as those shown in FIGS.
- the transfer line 140 is again in the high level state and is maintained in the high level state during the accumulation period T4. .
- the electrons photoelectrically converted by the photodiode 111 are not accumulated in the diffusion layer but immediately transferred to the channel region of the second NMOS transistor 1122 and accumulated there.
- the row selection line 160 becomes high level, and the output of the amplifier circuit is connected to the vertical signal line 170. Further, the FD 117 that is the input node (8c) of the amplifier circuit 118 is reset by a pulse to the reset line 150, and the FD 117 is connected to the power supply voltage source, whereby the reset level is read. Next, the transfer line 140 transitions from a high level to a low level. As a result, electrons accumulated in the channel region of the second NMOS transistor 1122 are transferred to the FD 117, which is an input node of the amplifier circuit 118, and the accumulated signal is read. The accumulation period T4 also ends with the transition of the transfer line 140.
- the potential transition of the embodiment of the present invention is in accordance with FIGS. 7A to 7D.
- the state is not step ST11 in FIG. 7A but the state in step ST12 in FIG. 7B. Yes.
- the first NMOS transistor 1121 and the second NMOS transistor 1122 are kept on.
- the electrons photoelectrically converted by the photodiode 111 and collected in the diffusion node 204 immediately move to the channel region of the second NMOS transistor 1122 via the first NMOS transistor 1121. That is, electrons move to the channel region of the second NMOS transistor 1122 in a deep depletion state, and are accumulated in an analog state. Transfer of electrons from the second NMOS transistor 1122 to the diffusion layer 205 at the time of reading is the same as the steps ST13 and ST14 in FIGS. 7C and 7D.
- the photodiode 111 is always kept in the same fully depleted state. Therefore, the sensitivity and the linearity between the accumulation time and the accumulation signal are also improved.
- the sensitivity and the linearity between the accumulation time and the accumulation signal are also improved.
- holes generated in the depletion layer are attracted to the internal electric field and quickly discharged to the substrate.
- the internal electric field is reduced accordingly, the hole discharging ability is lowered, and recombination of electrons and holes is likely to occur.
- the sensitivity gradually decreases. On the other hand, such a problem does not occur in the fifth embodiment.
- the saturation accumulated charge amount of the photodiode itself is small, it does not cause a problem. Therefore, it is possible to reduce the irregularity concentration of the diffusion layer and suppress the generation of dark current and white spots.
- the potential formed in the diffusion node 204 of the photodiode 111 at the time of reset can be made shallower. Therefore, the modulation ranges R11 and R12 of the channel regions of the first NMOS transistor 1121 and the second NMOS transistor 1122 can be reduced, and it is easy to ensure reliability such as withstand voltage.
- the fifth embodiment of the present invention it is possible to improve all of the basic performances of the image sensor, such as the amount of accumulated charge, sensitivity, and white point.
- FIG. 17A shows the signal potential of the reset line 150
- FIG. 17B shows the signal potential of the first transfer line 141
- FIG. 17C shows the signal potential of the second transfer line (separation line) 142
- Respectively. 17D shows the signal potential of the row selection line 160
- FIG. 17E shows the signal potential of the vertical signal line 170.
- the pixel circuit is the same as that shown in FIG. 12, and the transition of the transfer potential is the same as that shown in FIGS.
- the first transfer line 141 again becomes a high level state, and maintains the high level state during the accumulation period T5. Yes.
- the electrons photoelectrically converted by the photodiode 111 are not accumulated in the diffusion layer but immediately transferred to the channel region of the second NMOS transistor 1122 and accumulated there. That is, the state of step ST22 in FIG. 13B in the potential diagram is maintained.
- the row selection line 160 becomes high level, and the output of the amplifier circuit 118 is connected to the vertical signal line 170.
- the reset level 150 is read by resetting the FD 117, which is the input node of the amplifier circuit 118, to the power supply voltage source by a pulse to the reset line 150.
- the first transfer line 141 changes from a high level to a low level, and a pulse is also applied to the second transfer line 142 as a separation line.
- the accumulation period T5 also ends with the transition of the first transfer line 141.
- the state is as follows in the intermediate state of step ST13.
- the electrons accumulated in the channel region of the second NMOS transistor 1122 as the intermediate accumulation node are separated from the diffusion node 204 of the photodiode 111 and the FD 117 as the amplifier input. That is, electrons newly photoelectrically converted at the diffusion node 204 of the photodiode 111 do not flow into the intermediate storage node, and electrons stored at the intermediate storage node do not flow into the FD 117.
- the shared gates of the first and second NMOS transistors 1121 and 1122 are driven with three values, and such a state is realized by the intermediate voltage, thereby maintaining this intermediate state for a certain period. Is possible.
- the following is performed in the intermediate state of step ST23.
- the electrons accumulated in the channel region of the second NMOS transistor 1122 as the intermediate accumulation node are separated from the diffusion node 204 of the photodiode 111 and the FD 117 as the amplifier input.
- the intermediate state can be maintained for a certain period by turning off the first and second NMOS transistors 1121 and 1122 and the third NMOS transistor 1123 by driving the gate electrode.
- the certain period is, for example, a period longer than the minimum accumulation period, or a period longer than the period required for reading one row.
- 18A to 18D are timing charts of pixel operations in which the intermediate holding mode is employed in the seventh embodiment and the large-capacity accumulation operation of the fifth embodiment is improved.
- 18A shows the signal potential of the reset line 150
- FIG. 18B shows the signal potential of the transfer line 140
- FIG. 18C shows the signal potential of the row selection line 160
- FIG. Each signal potential of the signal line 170 is shown.
- the pixel circuit is the same as that shown in FIG. 4, and the details and cross-sectional configuration of the transfer circuit are the same as those shown in FIGS.
- the seventh embodiment which is an improved example, increases the dark current by driving the gate electrode 201 and turning on the first and second NMOS transistors 1121 and 1122 intermittently. Is suppressed. That is, first, a reset operation similar to that in FIGS. 8 and 16 is performed to start a new accumulation.
- the first and second NMOS transistors 1121 and 1122 are not kept open through the gate electrode 201, but are intermittently set to the high level so as to be time-shared from the photodiode 111 to the intermediate accumulation node.
- the electron is being transferred.
- the gate electrode 201 is maintained at the intermediate potential, and the intermediate storage node maintains the intermediate state of step ST13 in FIG. 7C.
- the gate electrode 201 is again set to the high level, and the electrons remaining in the photodiode 111 are transferred to the intermediate storage node.
- the gate electrode 201 is set to the low level, and the electrons stored in the intermediate storage node are collectively transferred to the FD 117 as the amplifier input.
- FIGS. 19A to 19E show pixel operations in the eighth embodiment in which the intermediate holding mode is adopted based on the same concept as in the seventh embodiment, and the large capacity storage operation of the sixth embodiment is improved. It is a figure which shows a timing chart.
- FIG. 19A shows the signal potential of the reset line 150
- FIG. 19B shows the signal potential of the first transfer line 141
- FIG. 19C shows the signal potential of the second transfer line (separation line) 142
- Respectively. 19D shows the signal potential of the row selection line 160
- FIG. 19E shows the signal potential of the vertical signal line 170.
- the pixel circuit is the same as that shown in FIG. 12, and the transition of the transfer potential is the same as that shown in FIGS.
- the same reset as in FIG. 14 and FIG. 17 is performed to start a new accumulation.
- the first and second NMOS transistors 1121 and 1122 driven by the gate electrode 201 are not kept open, but pulses are intermittently applied to the intermediate accumulation node from the photodiode 111. Electrons are transferred in time division.
- the third NMOS transistor 1123 is kept off through the isolation gate electrode 202, and the intermediate accumulation node other than the intermittent transfer is maintained at the intermediate state in step ST23 of FIG. 13C. ing.
- a pulse is again applied to the gate electrode 201 to turn on the first and second NMOS transistors 1121 and 1122, and the electrons remaining in the photodiode 111 are transferred to the intermediate storage node.
- a pulse is applied to the separation gate electrode 202 to turn on the third NMOS transistor 1123, and the accumulated electrons at the intermediate accumulation node are collectively transferred to the FD 117 which is an amplifier input.
- an increase in dark current can be suppressed while realizing a large capacity accumulation as in the seventh embodiment.
- the global shutter function is a function that removes so-called focal plane distortion that has occurred due to a shift in shutter timing within the pixel array.
- the start of the read operation determines the accumulation end timing. Since reading is performed sequentially for each normal row, the accumulation end timing also follows that. Therefore, usually, a reset operation for starting accumulation is also sequentially performed by shifting for each row, and measures are taken to make the accumulation period T1 uniform for all effective pixels.
- This is called a rolling shutter and is a common technique in CMOS image sensors, but means that the shutter timing is shifted for each row, and for example, distortion occurs in an image of a subject that operates at high speed.
- the global shutter function is realized by simultaneously starting the charge accumulation of all effective pixels and ending the accumulation simultaneously.
- the accumulation data is read out for each row, in this case, it is necessary to separate the accumulation end and the read timing, and it is necessary to store a signal for each pixel during the period from the end of accumulation to the readout.
- the configuration of the transfer circuit shown in FIG. 5 is used and the intermediate holding mode is used, such an operation and good signal storage are possible. That is, in the CMOS image sensor 100, the first and second NMOS transistors 1121 and 1122 are turned off simultaneously through the gate electrode 201 for all effective pixels. Accordingly, the transfer of the photoelectrically converted electrons is stopped to complete the accumulation, and the already accumulated electrons are temporarily stored in the channel region of the second NMOS transistor 1122. After that, when reading is performed in units of rows, a pulse is given to the gate electrode 202 to sequentially turn on the third NMOS transistor 1123, and the stored electrons are transferred to the FD 117 which is the input node of the amplifier circuit 118. good.
- FIGS. 20A to 20D are timing charts showing operations in the ninth embodiment in which the global shutter function is installed in the first embodiment.
- 20A shows the signal potential of the reset line 150
- FIG. 20B shows the signal potential of the transfer line 140
- FIG. 20C shows the signal potential of the row selection line 160
- FIG. Each signal potential of the signal line 170 is shown.
- the pixel circuit conforms to FIG. 4, and the potential transition conforms to FIG.
- the FD 117 which is an input node of the amplifier circuit 118 is connected to the reset level (power supply voltage ⁇ 3V).
- the transfer line 140 rises from the low level to the high level and further falls from the high level to the low level, the electrons accumulated in the photodiode 111 are transferred to the FD 117 and extracted to the reset level.
- a new electron accumulation period T8 starts at this point.
- the pulse of the reset line 150 falls to the low level after waiting for the pulse applied to the gate electrode 201 to fall to the low level. Normally, this reset operation is performed sequentially for each selected row, but in a global reset, it is performed simultaneously for all effective pixels. That is, this step is a global shutter opening operation.
- the electrons accumulated in the photodiode 111 are first transferred to the intermediate accumulation node by the transfer line 140 rising from the low level to the high level.
- the potential state at this time corresponds to step ST12 in FIG.
- the transfer line 140 returns from the high level to the intermediate potential, the potential state shifts to the intermediate holding mode in step ST13 in FIG. 7B, and the intermediate storage node and the photodiode 111 are disconnected.
- Reading is sequentially performed for each row along the row address.
- a selection signal is applied to the row selection line 160 to selectively perform row selection
- a pulse is applied to the reset line 150, and the FD 117, which is an amplifier input unit, is connected to the reset level so that the reset level is set. Perceived.
- the transfer line 140 falls from the intermediate potential to the low level state, whereby all the electrons held in the intermediate storage node are transferred to the FD 117 that is the input node of the amplifier circuit 118.
- Each pixel maintains the intermediate holding mode for a period of H8 from the end of accumulation to reading, but the intermediate holding period H8 is different for each row. In other words, the intermediate holding is performed for a period from when the shutters are closed all the time until the reading order is turned to the corresponding row.
- FIGS. 21A to 21E are timing charts showing the operation of the tenth embodiment in which the global shutter function is installed in the third embodiment.
- FIG. 21A shows the signal potential of the reset line 150
- FIG. 21B shows the signal potential of the first transfer line 141
- FIG. 21C shows the signal potential of the second transfer line (separation line) 142
- Respectively. 21D shows the signal potential of the row selection line 160
- FIG. 21E shows the signal potential of the vertical signal line 170.
- the pixel circuit is the same as that in FIG. 12, and the transition of the transfer potential is the same as in FIGS. 13A to 13D.
- the FD 117 which is an input node of the amplifier circuit 118 is connected to the reset level (power supply voltage ⁇ 3V).
- the first transfer line 141 rises from the low level to the high level, excess electrons accumulated in the photodiode 111 are transferred to the channel portion of the second NMOS transistor 1122 via the first NMOS transistor 1121. Transferred. Further, the first transfer line 141 falls from the high level to the low level, and at the same time, the second transfer line 142 as the separation line becomes the high level, and the separation third NMOS transistor 1123 becomes conductive.
- the electrons accumulated in the photodiode 111 are first transferred to the intermediate accumulation node by the first transfer line 141 rising from the low level to the high level.
- the potential state at this time corresponds to step ST22 in FIG.
- the potential state shifts to the intermediate holding mode in step ST23 in FIG. 13B, and the intermediate storage node and the photodiode are disconnected.
- Reading is sequentially performed for each row along the row address.
- a selection signal is applied to the row selection line 160 to selectively perform row selection
- a pulse is applied to the reset line 150, and the FD 117 portion which is an input node of the amplifier circuit 118 is connected to the reset level.
- the reset level is detected.
- the second transfer line 142 as a separation line is driven to a high level, and the third NMOS transistor 1123 which is a separation transistor is turned on. As a result, electrons accumulated in the channel portion of the second NMOS transistor 1122 are transferred to the FD 117 which is an input node of the amplifier 118.
- each pixel maintains the intermediate holding mode for a period of H9 from the end of accumulation to reading, but the intermediate holding period H9 is different for each row. In other words, the intermediate holding is performed for a period from when the shutters are closed all the time until the reading order is turned to the corresponding row.
- the global shutter function can be executed in combination with the above-described large-capacity storage operation. For example, when accumulation of the global shutter sequence shown in FIGS. 20A to 20D is started, the transfer lines 140 of all effective pixels are collectively changed to the high level. Then, after maintaining the state during the accumulation period T8, the accumulation is ended by dropping it to the intermediate potential in a lump, and the state is shifted to the intermediate holding state. In this case, during the accumulation period, the potential state of step ST12 in FIG. 7B is maintained in each pixel, and electrons are accumulated not in the photodiode 111 but in the channel of the second NMOS transistor 1122, thereby accumulating large capacity. Is possible.
- Both the basic configuration of the first embodiment and the basic configuration of the third embodiment are used in combination with a large-capacity accumulation operation and a global shutter function. can do.
- This function stores a short accumulation time signal and a long accumulation signal in one pixel at the same time, and uses a short accumulation time signal for high-luminance object sensing and a long accumulation time signal for low-luminance object sensing. Thus, it is a function of capturing both images simultaneously with an appropriate exposure time.
- a signal accumulated for a long time in the same pixel is stored in the channel region of the transistor in the intermediate holding mode, and photo A separate signal can be stored in the diode.
- the long-time accumulation side signal stored in the intermediate holding mode is transferred to the amplifier input, and then the short-time accumulation side signal held in the photodiode is transferred.
- FIGS. 22 (A) to (D) and FIGS. 23 (A) to (C) An example of a wide dynamic range operation using the configuration of the first embodiment will be described using the potential transition diagrams of FIGS. 22 (A) to (D) and FIGS. 23 (A) to (C).
- 22A to 22D are first potential transition diagrams for explaining an example of the wide dynamic range operation in the eleventh embodiment using the configuration of the first embodiment.
- FIGS. 23A to 23C are second potential transition diagrams for explaining an example of the wide dynamic range operation in the eleventh embodiment using the configuration of the first embodiment.
- the pixel circuit is the same as that shown in FIG. 4, and the details and cross-sectional configuration of the transfer circuit are the same as those shown in FIGS.
- Step ST31 In step ST31 in FIG. 22A, first electron accumulation is performed in the diffusion node 204 of the photodiode 111, as in step ST11 in FIG.
- the channel regions of the first NMOS transistor 1121 and the second NMOS transistor 1122 are modulated in the range of R11 and R12, respectively, according to the potential applied to both the common gate electrodes 201, for example, -1.5V to 3V. Is done.
- the gate electrode 202 of the third NMOS transistor 1123 which is a separation transistor is connected to the ground, and the channel potential is adjusted to about 0.6V.
- Step ST32 In step ST32 of FIG. 22B, when the first NMOS transistor 1121) and the second NMOS transistor 1122 are turned on, electrons move.
- the electrons accumulated in the diffusion node 204 of the photodiode 111 do not remain through the first NMOS transistor 1121 and move to the channel region of the second NMOS transistor 1122. That is, electrons move to the channel region of the second NMOS transistor 1122 in a deep depletion state, and are accumulated in an analog state.
- Step ST33 In step ST33 of FIG. 22C, when the gate electrode 201 is driven to turn off the first NMOS transistor 1121 and the second NMOS transistor 1122, the potential of the channel region is modulated in the negative potential direction accordingly. Is done. As a result, the photodiode 111 is disconnected from the channel of the second NMOS transistor 1122, and the first accumulation is completed. At this stage when the gate electrodes of the first NMOS transistor 1121 and the second NMOS transistor 1122 reach an appropriate intermediate voltage, the stored electrons are separated from both the photodiode 111 and the FD 117 which is the input node of the amplifier circuit 118. It becomes a state.
- Step ST34 In step ST34 in FIG. 22D, if the intermediate holding state in step ST33 is maintained, light continuously enters the photodiode 111 and photoelectric conversion is performed. Accumulated electrons are accumulated.
- Step ST35 In step ST35 of FIG. 23A, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are completely turned off, electrons move as follows. That is, all the first accumulated electrons held in the channel of the second NMOS transistor 1122 move to the FD 117 that is the input node of the amplifier circuit 118. As a result, the amplifier circuit 118 including the amplifier transistor 114 drives the vertical signal line 170 to read out the first accumulated signal.
- Step ST36 In step ST36 of FIG. 23B, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are turned on again, movement to electrons is performed as follows. The second accumulated electrons accumulated in the diffusion node 204 of the photodiode 111 do not remain through the first NMOS transistor 1121 and move to the channel region of the second NMOS transistor 1122. At this time, the FD 117 which is an input node of the amplifier circuit 118 is reset to 3V.
- Step ST37 In step ST37 of FIG. 23C, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are completely turned off again, electrons move as follows. All the second accumulated electrons held in the channel of the second NMOS transistor 1122 move to the FD 117 which is an input node of the amplifier circuit. As a result, the amplifier circuit 118 including the amplifier transistor 114 drives the vertical signal line 170 to read out the second accumulated signal.
- the first electron accumulation is performed for a long time and the second electron accumulation is performed for a short time. If the first electron accumulation is not saturated, that value is used for the accumulated data of the pixel. On the other hand, when the first electron accumulation is saturated, the value of the second electron accumulation is used as the accumulation data of the pixel. If the second accumulation time is 1 / K of the first accumulation time, the second accumulation data is handled by being multiplied by K at the time of image synthesis.
- the long-time accumulation and the short-time accumulation are carried out continuously without intervening readout. Then, reading is sequentially performed twice for each row. Therefore, the user of the imager according to the embodiment of the present invention does not need to prepare two frame buffers corresponding to different accumulation times, and if only two line buffers are prepared, frame synthesis can be performed. . Further, although the frame rate is halved because the time required for reading is doubled, the doubled time required for one frame can be used for accumulation.
- 24A to 24D are timing charts showing the operation corresponding to the wide dynamic range.
- 24A shows the signal potential of the reset line 150
- FIG. 24B shows the signal potential of the transfer line 140
- FIG. 24C shows the signal potential of the row selection line 160
- FIG. Each signal potential of the signal line 170 is shown.
- the reset line 150 is set to the high level, and the FD 117 that is the input node of the amplifier circuit 118 is connected to the reset level (power supply voltage ⁇ 3 V).
- the transfer line 140 rises from the low level to the high level and further falls from the high level to the low level, the electrons accumulated in the photodiode 111 are transferred to the FD 117 and extracted to the reset level.
- the accumulation period T10L in the first electron accumulation starts at this point.
- the pulse on the reset line 150 falls to the low level after waiting for the transfer line 140 to fall to the low level.
- the transfer line (10c) rises from low to high, and the accumulated electrons are formed in the channel portion of the first NMOS transistor 1122 as shown in step ST32 of FIG. Forwarded to intermediate node. Further, when the transfer line 140 falls from the high level to the intermediate potential, the photodiode 11 and the intermediate node are disconnected as shown in step ST33 of FIG. 22C, and the long-side accumulation period T10L that is the first electron accumulation. Ends. At the same time, the second accumulation period T10S starts.
- Reading is performed as follows after a selection signal is applied to the row selection line 160 to perform row selection.
- the FD 117 that is the input node of the amplifier circuit 118 is reset by applying a pulse of the reset line 150, and the reset level is detected.
- the transfer line 140 falls from the intermediate node to the low level, the first accumulated electrons are transferred to the FD 117 which is the input node of the amplifier circuit 118 as shown in step STST35 of FIG. Done.
- the reset line 150 again, the FD 117, which is the input node of the amplifier circuit 118, is reset, and the reset level is detected.
- the second accumulated signal is transferred to the FD 117, which is an input node of the amplifier circuit 118, through steps ST36 and ST37 of FIGS. And the sensing is performed.
- the reading of the second accumulation signal also ends the accumulation period T10S.
- FIGS. 25A to 25E are timing charts of the wide dynamic range operation in the twelfth embodiment using the configuration of the third embodiment.
- the configuration of the pixel circuit is the same as that in FIG.
- the FD 117 which is an input node of the amplifier circuit 118 is connected to the reset level (power supply voltage ⁇ 3V).
- the first transfer line 141 rises from the low level to the high level, excess electrons accumulated in the photodiode 111 pass through the first NMOS transistor 1121) to the channel portion of the second NMOS transistor 1122.
- the first transfer line 141 falls from the high level to the low level, and at the same time, the second transfer line 142 as the separation line becomes the high level, and the third NMOS transistor 1123 as the separation transistor becomes conductive.
- the second transfer line 142 falls to the low level, the stored electrons are completely transferred to the FD 117 and extracted to the reset level.
- the accumulation period T11L in the first electron accumulation starts at this point.
- the pulse on the reset line 150 falls to the low level after waiting for the second transfer line 142 to fall to the low level.
- a predetermined accumulation time elapses, electrons accumulated in the photodiode 111 are transferred to the intermediate accumulation node by the first transfer line 141 rising from the low level to the high level.
- the first transfer line 141 returns from the high level to the low level, the potential state shifts to the intermediate holding mode in step ST23 in FIG. 13B, and the intermediate storage node and the photodiode are disconnected.
- the long-side accumulation period T11L which is the first electron accumulation, ends.
- the second accumulation period T11S starts.
- Reading is performed as follows after a selection signal is applied to the row selection line 160 to perform row selection. First, a pulse is applied to the reset line 150, and the FD 117, which is an input node of the amplifier circuit 118, is connected to the reset level to sense the reset level. Next, the second transfer line 142 as the separation line is driven to a high level, and the third NMOS transistor 1123 as the separation transistor becomes conductive. As a result, the first accumulated electrons accumulated in the channel portion of the second NMOS transistor 1122 are transferred to the FD 117 which is the input node of the amplifier circuit 118.
- the second accumulated electrons accumulated in the photodiode 111 are transferred to the second NMOS transistor via the first NMOS transistor 1121. It is transferred to the channel portion 1122. Furthermore, when the first transfer line 141 falls from the high level to the low level, the second transfer line 142, which is the separation line, goes to the high level substantially at the same time, and finally the second transfer line 142 falls to the low level. The second stored electrons are completely transferred to the FD 117. As a result, the second accumulation period T11S is also ended, and subsequently the second accumulation signal is sensed.
- the value is used for the accumulated data of the pixel.
- the value of the second electron accumulation is used as the accumulation data of the pixel. If the second accumulation time is 1 / K of the first accumulation time, the second accumulation data is handled by being multiplied by K at the time of image synthesis.
- FIG. 26 is a diagram showing a pixel circuit of a CMOS image sensor according to the thirteenth embodiment of the present invention.
- the pixel circuit 110E according to the thirteenth embodiment has a configuration in which the third NMOS transistor 1123 as the separation transistor of the transfer transistor 112 in the pixel circuit 110A according to the first embodiment is omitted. That is, the pixel circuit 110E according to the thirteenth embodiment is formed by a first NMOS transistor 1121 having a high threshold HVth and a second NMOS transistor 1122 having a low threshold LVth, in which transfer transistors 112E are integrated and connected in series. ing.
- FIG. 27 is a diagram illustrating an equivalent circuit of a transfer circuit including a transfer transistor of the pixel circuit 110E according to the thirteenth embodiment.
- the electrons generated by the photoelectric conversion in the photodiode 111 are completely transferred to the FDF 117 which is an input node of the amplifier circuit 118 through the integrated first and second NMOS transistors 1121 and 1122 forming the transfer transistor 112E. Transferred.
- the integrated first and second NMOS transistors 1121 and 1122 are directly connected to each other without an n-type diffusion layer or the like interposed therebetween.
- a drive signal is applied to the gate electrodes 201 of the first and second NMOS transistors 1121 and 1122 simultaneously.
- the first NMOS transistor 1121 has a high threshold voltage HVth
- the second NMOS transistor 1122 has a low threshold voltage LVth.
- the FD 117 which is an input node, has a parasitic capacitance 203.
- this displacement drives the vertical signal line 170 through the amplifier circuit 118 with a constant gain.
- the area occupied by the pixel is reduced accordingly.
- the FD 117 that is an input node of the amplifier circuit 118 that is in a floating state is easily affected by a change in state of the adjacent second NMOS transistor 1122.
- the potential of the FD 117 varies due to the coupling.
- the FD 117 which is an input node of the amplifier circuit 118, usually includes a diffusion layer into which a large amount of impurities are introduced, a contact portion of a wiring, and the like, and has poor crystallinity compared to a channel portion of a MOS transistor. Therefore, the individually leaked electrons are likely to be lost due to recombination or the like during the accumulation period, and in particular, the accumulation function in the third embodiment and the global shutter function in the ninth and tenth embodiments have a significant adverse effect. Will be affected.
- the margin restriction for complete transfer is reduced or eliminated based on the principle similar to the first embodiment. Is possible.
- FIG. 28 is a diagram showing a cross-sectional structure example of the transfer circuit of FIG.
- the photodiode 111 employs a so-called HAD structure in which the vicinity of the silicon surface in contact with the oxide film is made p-type.
- the photoelectrically converted electrons are initially stored in the n-type diffusion node 204.
- a signal for turning on the first NMOS transistor 1121 is applied to the gate electrode 201, the signal is transferred to the channel region of the second NMOS transistor 1122 through the first NMOS transistor 1121, and many electrons are present there. Accumulated.
- the threshold value of the first NMOS transistor 1121 is set high and the threshold value of the second NMOS transistor 1122 is set low.
- the channel portion of the second NMOS transistor 1122 forms an electron accumulation well, and the channel portion of the first NMOS transistor 1121 forms a potential wall for preventing backflow.
- the diffusion layer 205 is connected to the input of the amplifier circuit 118 not shown in the cross-sectional view.
- first NMOS transistor 1121 and the second NMOS transistor 1122 are regarded as two separate transistors here.
- the gate electrode is also integrally formed as shown in the figure, it can be regarded as a single NMOS transistor having a gradient in the impurity profile of the channel portion. In any case, however, it is functionally similar to two individual transistors connected in series and within the scope of the present invention.
- FIGS. 29A to 29D are diagrams showing potential transitions associated with a read transfer operation using the transfer circuit of the pixel circuit according to the thirteenth embodiment.
- the diffusion node 204 of the photodiode 111 is designed to be positively charged by a certain number of donors and have a potential bottom of about 2.5 V when fully depleted.
- the photoelectrically converted electrons are filled up to a saturated state (about 0 V).
- the channel regions of the first NMOS transistor 1121 and the second NMOS transistor 1122 are modulated in the range of R17 and R18, respectively, according to the potential applied to both gate electrodes in common (for example, 1.5 V to 3 V). Is done.
- the diffusion layer 205 (FD 117) which is an input node of the amplifier circuit 118 is reset and is in a floating state of 3V.
- Step ST42 In step ST42 of FIG. 29B, when the first NMOS transistor 1121 and the second NMOS transistor 1122 are turned on, the following potential movement is performed.
- the electrons accumulated in the diffusion node 204 of the photodiode 111 do not remain through the first NMOS transistor 1121 and move to the channel region of the second NMOS transistor 1122.
- the diffusion layer 205 (FD 117) that is an input node of the amplifier circuit 118 is also coupled and the potential rises, and some electrons are further added to the diffusion layer 205 (through the channel portion of the second NMOS transistor 1122). FD117).
- Step ST43 In step ST43 of FIG. 29C, when the gate electrode 201 is driven to turn off the first NMOS transistor 1121 and the second NMOS transistor 1122, the potential of the channel region is modulated in the negative direction accordingly. Is done.
- the channel of the first NMOS transistor 1121 forms a potential barrier to prevent the backflow of accumulated electrons to the diffusion node 204 of the photodiode 111.
- the height of this barrier corresponds to the difference between the threshold values of both transistors, and is, for example, 1.5V.
- the potential of the channel region of the second NMOS transistor 1122 increases (the potential decreases), the electrons accumulated therein move to the diffusion layer 205 (FD 117) that is the input node of the amplifier circuit 118.
- step ST44 In step ST44 of FIG. 29D, when the first and second NMOS transistors 1121 and 1122 are in an off state, all the electrons accumulated in the photodiode in step ST41 are diffusion layers that are input nodes of the amplifier circuit 118. It will be in the state which moved to 205. As a result, the amplifier drives the vertical signal line, and the stored signal is read out.
- stepwise transfer it is not necessary to secure a potential difference between the diffusion node 204 of the photodiode 111 that is in a fully depleted state and the diffusion layer 205 that is an input node of the amplifier circuit 118. That is, in the thirteenth embodiment, complete transfer is realized even when the potential of the diffusion layer 205 (FD 117) filled with electrons is shallower than the diffusion node 204.
- the storage capacity of the channel portion of the second NMOS transistor 1122 is sufficiently large in step ST42. Accordingly, it is necessary that all electrons move to the right side of the second NMOS transistor 1122 regardless of the parasitic capacitance of the diffusion layer 205 which is an input node of the amplifier circuit 118. If the saturation charge amount of the photodiode 111 is Qs, the channel capacity (capacity of the inversion layer) of the second NMOS transistor 1122 is Cinv, and the threshold difference between the first NMOS transistor 1121 and the second NMOS transistor 1122 is ⁇ Vth. The following conditions are met.
- step ST42 if more than half of the electrons generated by the photoelectric conversion of the photodiode 111 are accumulated in the channel portion of the second NMOS transistor 1122, the transfer margin has a sufficiently significant expansion effect. obtain.
- FIG. 30 is a diagram showing a pixel circuit of a CMOS image sensor according to the fourteenth embodiment of the present invention.
- the pixel circuit 110F according to the fourteenth embodiment is different from the pixel circuit 110E according to the thirteenth embodiment as follows.
- a plurality of, for example, two pixels PXL110a and PXL110b each having a unique photodiode 111 and transfer circuit 112 share an FD 117 and an amplifier transistor 114 that form an amplifier circuit.
- the reset transistor 113 and the row selection transistor 115 are also shared by the plurality of pixels PXL110a and PXL110b.
- the shared gate electrodes of the first and second NMOS transistors are connected to different transfer lines 140a and 140b, respectively.
- the electrons accumulated in the photodiodes 111a and 111b are transferred to the FDF 117 (input node of the amplifier circuit) at individual timings according to the independent transfer lines 140a and 140b.
- Sharing the amplifier circuit can reduce the effective size of the pixel, but the parasitic capacity of the FD 117 increases as the number of shared pixels increases. Therefore, the number of shared pixels is desirably 2 pixels or more and 16 pixels or less.
- FIG. 31 is a diagram illustrating a configuration example of a transfer circuit according to the fifteenth embodiment in which a photodiode is replaced with a MOS capacitor with respect to FIG. 6 which is a cross-sectional structure example corresponding to the first embodiment.
- reference numeral 210 denotes a photoelectric conversion element using a MOS capacitor.
- a fixed voltage of 2 V, for example, is applied to the electrode 211, and the MOS capacitor 210 is in a deep depletion state.
- electrons enter the depletion layer electron / hole pairs are generated.
- the holes are attracted by the electric field and escape to the p-Well side, while the electrons are accumulated in the vicinity of the oxide film of the MOS capacitor 210 as an inversion layer.
- the gate electrode 201 is set to the high level, the stored electrons are completely transferred to the channel region of the second NMOS transistor 1122 via the first MOS transistor 1121 and stored there. Further, when the gate electrode 201 is lowered to a low level, all the accumulated electrons are transferred to the diffusion layer 205 (FD 117) which is an input node of the amplifier circuit, and the vertical signal line 170 is driven to perform reading.
- FIG. 32 is a diagram illustrating a cross-sectional structure example of the transfer circuit according to the sixteenth embodiment having a different cross-sectional structure from the transfer circuit according to the first embodiment.
- the transfer circuit according to the sixteenth embodiment of FIG. 32 differs from the transfer circuit according to the first embodiment of FIG. 6 mainly in the gate structure of the integrated first to third NMOS transistors 1121, 1122, and 1123. It is.
- the first NMOS transistor 1121 and the second NMOS transistor 1122 are formed as different gate electrodes 201-1 and 201-2. These gate electrodes 201-1 and 201-2 are formed of different conductive layers or polysilicon layers, and are short-circuited in a pixel (not shown) to form an integrated electrode 201.
- the substrate impurity profile of the second NMOS transistor 1122 can be adjusted in a self-aligning manner.
- the threshold value can be adjusted by changing the work function of different gate electrode layers.
- the solid-state imaging devices according to the first to sixteenth embodiments described above can be applied as imaging devices for digital cameras and video cameras.
- FIG. 33 is a diagram illustrating an example of a configuration of a camera system to which the solid-state imaging device according to the embodiment of the present invention is applied.
- the camera system 300 includes an imaging device 310 to which the CMOS image sensors (solid-state imaging devices) 100 and 300 according to the present embodiment can be applied.
- the camera system 300 includes an optical system that guides incident light (images a subject image) to a pixel region of the imaging device 310, for example, a lens 320 that forms incident light (image light) on an imaging surface.
- the camera system 300 includes a drive circuit (DRV) 330 that drives the imaging device 310 and a signal processing circuit (PRC) 340 that processes an output signal of the imaging device 310.
- DUV drive circuit
- PRC signal processing circuit
- the drive circuit 330 includes a timing generator (not shown) that generates various timing signals including a start pulse and a clock pulse that drive a circuit in the imaging device 310, and drives the imaging device 310 with a predetermined timing signal. .
- the signal processing circuit 340 performs predetermined signal processing on the output signal of the imaging device 310.
- the image signal processed by the signal processing circuit 340 is recorded on a recording medium such as a memory.
- the image information recorded on the recording medium is hard copied by a printer or the like.
- the image signal processed by the signal processing circuit 340 is displayed as a moving image on a monitor including a liquid crystal display.
- the imaging apparatus such as a digital still camera
- the imaging device 100 by mounting the above-described imaging device 100 as the imaging device 310, a highly accurate camera with low power consumption can be realized.
- CMOS image sensor 110 Pixel array part 110A-110F Pixel circuit 111 Photodiode 112 Transfer transistor 1121 1st MOS transistor 1122 2nd MOS transistor 1123 3rd MOS transistor 113 Reset transistor 114 Amplifier transistor 115 Row selection transistor 116 Storage node 117 FD 118 amplifier circuit 120 row selection circuit 130 column readout circuit (AFE) 300 Camera system.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
CMOSイメージャーは、各画素に入射した光を光電変換素子であるフォトダイオードで電子に変換し、それを一定期間蓄積した上で、その蓄積電荷量を反映した信号をデジタル化して外部に出力する。
転送トランジスタ2のゲート電極が転送線8に接続され、リセットトランジスタ3のゲート電極がリセット線9に接続されている。アンプトランジスタ4のゲート電極がFD7に接続され、行選択トランジスタ5のゲート電極が行選択線10に接続されている。そして、行選択トランジスタ5のソースが垂直信号線11に接続されている。
垂直信号線11には、定電流回路12、および感知回路13が接続されている。
図2(A)~(D)は、図1の画素回路のタイミングチャートを示す図である。
これによって、蓄積ノード6のポテンシャルは上昇し、そこに蓄積された電子の引き抜きが行われる。
近年主流のHAD(Hole-Accumulation
Diode)構造においては、蓄積ノード6はp型層に挟まれたn型の埋め込み拡散層で形成されており、その電子は全て排出されて完全空乏状態となる。なお、電子が全て排出された時点でノード6のポテンシャル上昇も止まり、そのレベルは電源電圧3Vより低い所定の水準となる。
その後、転送線8をローレベルにして、転送トランジスタ2をオフすることで、蓄積ノード6は浮遊状態となって、新たな電荷蓄積が開始される。電荷蓄積中はリセットトランジスタ3も通常オフにしておく。
一般にこのような画素のリセット動作は、CMOSイメージセンサの電子シャッター動作として利用される。
ここでアンプトランジスタ4と定電流回路12に接続された垂直信号線11はソースフォロワ回路を形成しており、その入力であるFD7のポテンシャルVfと、出力である垂直信号線11の電位Vslは、変動比が1に近いリニアな関係となる。
すなわち定電流回路12の電流値をiとすると、理想的には次式が成立する。
i=(1/2)*β*(Vf-Vth-Vsl)2 //βは定数
すなわち、ソースファロアー回路はゲインが略1のアンプ回路として動作し、入力ノードであるFD7の信号量に応じて垂直信号線11を駆動する。
さらに、リセットトランジスタ3をオフにした後、コンパレータやAD変換器等で構成された感知回路13によって、垂直信号線11の電位Vslの1回目の感知を行う。これはリセット信号の読み出しである。
この際、FD7のポテンシャルが十分深ければ、すなわち高電位であれば、蓄積ノード6に蓄積されていた電子は全てFD7に流出し、蓄積ノード6は完全空乏状態になる。
ここで転送トランジスタ2をオフし、感知回路13によって、垂直信号線11の電位の2回目の感知を行う。これは蓄積信号の読み出しである。
CMOSイメージャーはこの差分をデジタル化し、画素の信号値として外部に出力する。各画素の電子蓄積時間は、上記リセット動作と読み出し動作との間の期間であり、正確には転送トランジスタ2がリセット後オフしてから、読み出しでオフするまでの期間T1である。
さらに、このアナログ信号はAD変換器によりデジタル信号に変換されてチップ外に出力される。
これは蓄積電子そのものがチップ出力用アンプ回路の直前までCCD転送により垂直、水平転送されていくCCD型イメージャーと著しい対照をなしている。
このような転送マージンの問題は、設計上の大きな制約となっていた。
なお、説明は以下の順序で行う。
1.第1の実施形態(画素回路の第1の構成例)
2.第2の実施形態(画素回路の第2の構成例)
3.第3の実施形態(画素回路の第3の構成例)
4.第4の実施形態(画素回路の第4の構成例)
5.第5の実施形態(深い空乏状態を用いた電荷蓄積例)
6.第6の実施形態(深い空乏状態を用いた電荷蓄積例)
7.第7の実施形態(中間保持モード)
8.第8の実施形態(中間保持モード)
9.第9の実施形態(グローバルシャッター機能)
10.第10の実施形態(グローバルシャッター機能)
11.第11の実施形態(ワイドダイナミックレンジ動作)
12.第12の実施形態(ワイドダイナミックレンジ動作)
13.第13の実施形態(画素回路の第5の構成例)
14.第14の実施形態(画素回路の第6の構成例)
15.第15の実施形態(他の断面構造)
16.第16の実施形態(他の断面構造)
17.第17の実施形態(カメラシステム)
本実施形態に係る画素回路110Aは、基本的に、光電変換素子、転送トランジスタ、リセットトランジスタ、アンプトランジスタ、行選択トランジスタ、蓄積ノード、およびFD(フローティングディフュージョン)を含んで構成される。
ただし、画素回路110Aの転送トランジスタは、後で詳述するように、一体化して直列接続された少なくとも第1および第2の絶縁ゲート型電界効果トランジスタ(MOSトランジスタ)により形成される。そして、第1および第2のMOSトランジスタは、ゲート電極が同時一括で駆動される高閾値電圧Vthのトランジスタと低閾値電圧Vthのトランジスタとして形成される。
この画素回路110Aの具体的な構成については、後で詳述する。
転送線140(LTRG)、リセット線150(LRST)、および行選択線160(LSL)の各制御線はそれぞれM本ずつ設けられている。
これらの転送線140(LTRG)、リセット線150(LRST)、および行選択線160(LSL)は、行選択回路120により駆動される。
読み出し回路130は、CDS回路やADC(アナログデジタルコンバータ)を含む。
図4は、本発明の第1の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
なお、アンプトランジスタ114によりアンプ回路118が形成され、FD117によりアンプ回路118の入力ノードが形成される。
転送トランジスタ112は、一体化して直列接続された少なくとも第1のMOSトランジスタ1121、第2のMOSトランジスタ1122、および第3のMOSトランジスタ1123により形成されている。
そして、第1および第2のMOSトランジスタ1121,1122は、ゲート電極が同時一括で駆動信号が印加されて駆動される高閾値電圧Vthのトランジスタと低閾値電圧Vthのトランジスタとして形成される。
第1のMOSトランジスタ1121は高閾値電圧HVthのトランジスタとして形成され、第2のMOSトランジスタ1122が低閾値電圧LVthのトランジスタとして形成される。
そして、第1および第2のMOSトランジスタ1121,1122のゲート電極が転送線140に共通に接続され、第3のMOSトランジスタ1123のゲート電極が基準電位、たとえばグランドGNDに接続される。
そしてたとえば、第1のNMOSトランジスタ1121の高閾値電圧HVthはたとえば0V設定され、第2のNMOSトランジスタ1122の低閾値電圧LVthは-1.5Vに設定される。
また第3のMMOSトランジスタのト閾値電圧-0.6Vに設定される。
FD117には、アンプトランジスタ114のゲートが接続されている。アンプトランジスタ114は、行選択トランジスタ115を介して信号線170に接続され、画素部外の定電流回路131とソースフォロワを構成している。
行選択トランジスタ115のゲート電極が行選択線160に接続されている。そして、行選択トランジスタ115のソースが垂直信号線170に接続されている。
垂直信号線170には、定電流回路131、および感知回路132が接続されている。
一体化された第1、第2、および第3のNMOSトランジスタ1121,1122,1123は、互いのチャネルがn型拡散層等を介することなく直接接続されている。
また、前述したように、第1および第2のNMOSトランジスタ1121,1122のゲート電極201は同時一括的に駆動信号が印加される。
そして、第1のMOSトランジスタ1121は高閾値電圧HVth、第2のMOSトランジスタ1122は低閾値電圧LVthとなっている。
ΔVf=Q/Cf
ここで光電変換された電子は、当初n型の拡散ノード204に蓄積される。この拡散ノード204は蓄積ノード116に相当する。
そして、ゲート電極201に第1のNMOSトランジスタ1121がオンする信号が印加されると、第1のNMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル領域に転送され、そこに蓄積される。
たとえば、チャネル部の不純物プロファイルを調整することで、第1のNMOSトランジスタ1121の閾値は高く、第2のNMOSトランジスタ1122の閾値は低く設定される。これにより、第2のNMOSトランジスタ1122のチャネル部CH2は電子の蓄積井戸を、第1のNMOSトランジスタ1121のチャネル部CH1は逆流防止のポテンシャル壁を形成する。
第3のNMOSトランジスタ1123のチャネル領域のポテンシャルはゲート電極201にオンとする電圧が印加されているときには第2のNMOSトランジスタ1122より浅く(高電位に)なるように設定されている。
そして、そのチャネル領域のポテンシャルは、ゲート電極201にオフとする電圧が印加されているときには第2のNMOSトランジスタ1122より深く(低電位に)なるように設定されている。
第3のNMOSトランジスタ1123のゲート電極202は電位固定しても良く、第3のNMOSトランジスタ1123のチャネル部CH3の不純物プロファイル等を適切に調整すれば、電源線あるいはグランド線等に接続させることも可能である。
また、拡散層205は断面図には記載されないアンプ回路118の入力に接続されている。
第3のNMOSトランジスタ1123は分離トランジスタとして機能する。
いずれにしても機能的には直列接続された2つの個別なトランジスタと同様であり、本発明はこのような形態も包括する。
図7(A)のステップST11においては、フォトダイオード111の拡散ノード204は、一定数のドナーによる正電荷で、その完全空乏時にポテンシャルの底が2.0V程度になるように設計されている。ここに光電変換された電子が飽和状態(約0V)にまで満たされている。
一方、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122のチャネル領域は、両者のゲート電極に共通に与えられる電位、たとえば-1.5V~3Vに従って、ポテンシャルがそれぞれR11、R12の範囲で変調される。
一方、分離トランジスタとしての第3のNMOSトランジスタ1123のゲート電極202はグランドGNDに接続されており、チャネルのポテンシャルは0.6V程度になるように調整されている。
また、アンプ回路118の入力ノードである拡散層205(FD117)にはリセットがかけられて、3Vの浮遊状態となっている。
図7(B)のステップST12においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122がオンすると次のように電子の移動が行われる。
フォトダイオード111の拡散ノード204に蓄積されていた電子は、第1のNMOSトランジスタ1121を介して残らず第2のNMOSトランジスタ1122のチャネル領域に移動する。
すなわち、深い空乏状態となった第2のNMOSトランジスタ1122のチャネル領域に電子が移動して、アナログ状態で蓄積される。
このとき、第3のNMOSトランジスタ1123のチャネル領域のポテンシャルは第2のNMOSトランジスタ1122より浅く(低電位に)なっており、アンプ回路118の入力ノードである拡散層205(FD117)との間に障壁を形成している。
図7(C)のステップST13においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122をオフするためにゲート電極が駆動されると、それに伴ってチャネル領域のポテンシャルが負電位方向に変調される。
ここで第1のNMOSトランジスタ1121のチャネルはポテンシャル障壁を形成し、蓄積電子のフォトダイオード111の拡散ノード204への逆流を防止している。
この障壁の高さは、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122の両トランジスタの閾値の差に対応しており、たとえば1.5Vである。
第1および第2のNMOSトランジスタ1121,1122のゲート電極201が適当な中間電圧に達したこの段階では、蓄積電子がフォトダイオード111の拡散ノード204とアンプの入力であるFD117の双方から分離された状態が生じ得る。
このまま次ステップまでゲートを一挙に駆動しても良いが、後述するように、このような中間状態を一時的に保持することで、新たな機能を付加することも可能である。
さらに、ここから引き続きゲートを駆動して、第2のNMOSトランジスタ1122のチャネル領域のポテンシャルを負電位方向に変調すると、そこに蓄積されていた電子がアンプ回路118の入力ノードである拡散層205(FD117)に移動し始める。
図7(D)のステップST14においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122が完全にオフすると、蓄積電子を全て放出した第2のNMOSトランジスタ1122のチャネル領域のポテンシャルは次のようになる。
すなわち、第2のNMOSトランジスタ1122のチャネル領域のポテンシャルは、第3のNMOSトランジスタ1123のチャネルのポテンシャルを超える。
そして、ステップST11でフォトダイオード111に蓄積されていた電子は全てアンプ回路118の入力ノードである拡散層205(FD117)に移動した状態になる。
これにより、アンプ回路118は垂直信号線170を駆動し、蓄積信号の読み出しが実施される。
すなわち、本例では、電子を満たしたFD117のポテンシャルが拡散ノード204より浅い状態となっても完全な転送が実現している。
次に、第1の実施形態の画素回路110Aの電荷蓄積および読み出し動作を説明する。
図8(A)はリセット線150の信号電位を、図8(B)は転送線140の信号電位を、図8(C)は行選択線160の信号電位を、図8(D)は垂直信号線170の信号電位を、それぞれ示している。
すなわち、転送線140がローレベルからハイレベルに上がると、図7(B)のステップST12に示したように、フォトダイオード111の拡散ノード204から第2のNMOSトランジスタ1122のチャネル領域に蓄積電子が転送される。
さらに、転送線140がハイレベルからローレベルに戻る際には、図7(D)のステップST14に示したように、チャネル領域の電子がアンプ回路118の入力ノードであるFD117に転送される。
一方、転送線140がローレベルからハイレベルに上がり、さらにハイレベルからローレベルに落ちた時点でフォトダイオード111に蓄積されていた電子が拡散層205に転送され、リセットレベルに引き抜かれる。
新たな電子の蓄積期間T2はこの時点で開始される。
リセット線150のリセットパルスは、転送線140がローレベルに落ちるのを待ってからローレベルに落ちている。
したがって、蓄積信号によるアンプ回路118を介した垂直信号線170の駆動は、転送線140がハイレベルからローレベルに戻った時点で発生している。蓄積期間T2もこの時点で終了する。
読み出し時、それらは転送トランジスタ2を介して、アンプ回路14の入力ノードであるFD7に完全転送される。
入力ノードであるFD7は寄生容量C1を有しており、蓄積電荷量をQ、寄生容量値をCfとすると、その電位変化量ΔVfは上述したように、{ΔVf=Q/Cf}で与えられる。
したがって、そのゲインをGとすると、出力として垂直信号線に発生する蓄積信号のS/N比は{G・ΔVf/Nr}である。
ゲインGやランダムノイズNrはアンプ回路14の構成が決まればほぼ一定なので、電位変化量ΔVfの大きさは撮像性能に直接的な影響を及ぼす。
各ノードは負電荷を持つ電子を蓄積する井戸の役割を果たし、井戸を電子が満たしていく形でポテンシャルが上方に、すなわち負電位方向に持ち上がる。
図10(A)のステップST1において、フォトダイオード1の拡散ノードである蓄積ノード6は、一定数のドナーによる正電荷で、その完全空乏時にポテンシャルの底が1.5V程度になるように設計されている。ここに光電変換された電子が飽和状態(約0V)にまで満たされている。
一方、転送トランジスタ2のチャネル領域は、ゲート電極に与えられる電位、たとえば1V~3Vに従って、そのポテンシャルがR1の範囲で変調される。
また、アンプ回路14の入力ノードであるFD7にはリセットがかけられて、3Vの浮遊状態となっている。
図10(B)のステップST2においては、転送トランジスタ2がオンすると電子が次のように移動する。
すなわち、転送トランジスタ2がオンするとフォトダイオード1の拡散ノードである蓄積ノード6に蓄積されていた電子が残らず転送トランジスタ2のチャネル領域およびアンプ回路14の入力ノードであるFD7に分配された状態で移動する。
図10(C)のステップST3においては、転送トランジスタ2をオフするため、ゲート電極の上昇に伴ってチャネル領域のポテンシャルが上昇すると、そこに蓄積されていた電子がアンプ回路14の入力ノードであるFD7に移動する。
図10(D)のステップST4においては、転送トランジスタ2がオフ状態では、ステップST1でフォトダイオード1に蓄積されていた電子が全てアンプ回路14の入力ノードであるFD7に移動した状態になる。これにより、アンプ回路14は垂直信号線11を駆動し、蓄積信号の読み出しが実施される。
逆に、このポテンシャル差が十分確保されていないと、転送トランジスタ2のチャネル領域に蓄積された電子がフォトダイオード1に逆流し、フォトダイオード1の蓄積電子量が読み出し信号にリニアに反映されなくなる。
たとえば、図10では、ΔVfは(3.0V-1.5V)が限界であり、転送マージン分のポテンシャル差がさらに差し引かれる。
このような転送マージンの問題は、設計上の大きな制約となる。
さらに、画素回路110Aは、たとえば露光中に光電変換された電子をフォトダイオード内ではなく、別途形成されたMOSトランジスタのチャネル領域に蓄積し、読み出し時にはそこからアンプ回路に蓄積電子を完全転送することができる。
したがって、画素回路110Aによれば、露光感度を向上させ、かつ飽和蓄積電荷量Qsも大幅に向上させることができる。
また、画素回路110Aにおいては、電子(電荷)転送を実施するのは画素内のみであり、アンプ回路による垂直信号線の駆動以降は低インピーダンスのアナログ信号、あるいはデジタル信号の伝達となる。
したがってMスミアや転送リークの問題もなく、高速かつ低消費電力のイメージャーを実現できる。
図11は、本発明の第2の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
本第2の実施形態に係る画素回路110Bは、各々固有のフォトダイオード111と転送回路112を持つ複数、たとえば2つの画素PXL110a,PXL110bが、アンプ回路を形成するFD117およびアンプトランジスタ114を共有していることある。
この画素回路110Bにおいては、リセットトランジスタ113および行選択トランジスタ115も複数の画素PXL110a,PXL110bで共有する。
ちなみに、各画素PXL110a,PXL110bの転送トランジスタ112a,112bの第3のMOSトランジスタ1123のゲート電極はそれぞれ接地されている。
画素回路110Bにおいては、各々独立した転送線140aおよび140bに従って、各フォトダイオード111a,111bに蓄積された電子が個別のタイミングでFDF117(アンプ回路の入力ノード)に転送される。
したがって、共有画素数は2画素以上、16画素以下であることが望ましい。
図12は、本発明の第3の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
第3の実施形態の画素回路110Cにおいては、第1の実施形態では固定電位としていた第3のNMOSトランジスタ1123のゲート電極202を補助的に周辺回路である行選択回路120により駆動する。
具体的には、第1および第2のNMOSトランジスタ1121,1122の共有ゲート電極201は第1の転送線141に接続され、第3のNMOSトランジスタ1123のゲート電極202は第2の転送線(分離線)142に接続されている。
駆動配線が一つ増えるのは面積的に不利である一方、第1の転送線141の駆動レンジを狭くできることは耐圧や信頼性上有利となる。
図13(A)のステップST21においては、フォトダイオード111の拡散ノード204は、一定数のドナーによる正電荷で、その完全空乏時にポテンシャルの底が2.0V程度になるように設計されている。ここに光電変換された電子が飽和状態(約0V)にまで満たされている。
一方、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122のチャネル領域は、両者のゲート電極に共通に与えられる電位、たとえば-0.5V~3Vに従って、ポテンシャルがそれぞれR13,R14の範囲で変調される。
一方、分離トランジスタとしての第3のNMOSトランジスタ1123のチャネル領域のポテンシャルは、そのゲート電極に固有に与えられる電位、たとえば0V~3Vに従って、R15の範囲で変調される。
また、アンプ回路118の入力ノードである拡散層205(FD117)にはリセットがかけられて、3Vの浮遊状態となっている。
図13(B)のステップST22においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122がオンすると、電子の転送が次のように行われる。
すなわち、フォトダイオード111の拡散ノード204に蓄積されていた電子は、第1のNMOSトランジスタ1121を介して残らず第2のNMOSトランジスタ1122のチャネル領域に移動する。
すなわち、深い空乏状態となった第2のNMOSトランジスタ1122のチャネル領域に電子が移動して、アナログ状態で蓄積される。
このとき、第3のNMOSトランジスタ1123のチャネル領域のポテンシャルは第2にNMOSトランジスタ1122より浅く(低電位に)なっており、アンプ回路118の入力ノードである拡散層205(FD117)との間に障壁を形成している。
図13(C)のステップST23においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122が再度オフされると、チャネル領域のポテンシャルが負電位方向に変調される。
ここで、第1のNMOSトランジスタ1121のチャネルはポテンシャル障壁を形成し、蓄積電子のフォトダイオード111の拡散ノード204への逆流を防止している。
この障壁の高さは、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122の両トランジスタの閾値の差に対応しており、たとえば1.5Vである。
この段階では、蓄積電子がフォトダイオード111の拡散ノード204とアンプ回路118の入力ノードである拡散層205(FD117)の双方から分離された状態が生じ得る。
このまま、あるいは同時に第3のNMOSトランジスタ1123のゲートを駆動して次ステップまで一挙に進めても良いが、後述するように、このような中間状態を一時的に保持することで、新たな機能を付加することも可能である。
図13(D)のステップST24においては、第3のNMOSトランジスタ1123のゲート電極203が分離線としての第2の転送線142を通して駆動され、第3のNMOSトランジスタ1123がオンすると、蓄積電子がアンプ回路118の入力ノードであるFD117に流れ込む。
さらに、第3のNMOSトランジスタ1123をオフした時点で、全ての蓄積電子がアンプ回路118の入力ノードである拡散層205(FD117)に移動した状態になる。
これによりアンプは垂直信号線を駆動し、蓄積信号の読み出しが実施される。
ステップST23の第1および第2のNMOSトランジスタ1121,1122の共有ゲート電極201のオフ駆動と、ステップST24の第3のNMOSトランジスタ1123のゲート電極202の補助的なオン/オフ駆動との双方を組み合わせて実現される。
すなわち、本例では、電子を満たしたFD117のポテンシャルが拡散ノード204より浅い状態となっても完全な転送が実現している。
次に、第3の実施形態の画素回路110Cの電荷蓄積および読み出し動作を説明する。
図14(A)はリセット線150の信号電位を、図14(B)は第1の転送線141の信号電位を、図14(C)は第2の転送線(分離線)142の信号電位を、それぞれ示している。図14(D)は行選択線160の信号電位を、図14(E)は垂直信号線170の信号電位を、それぞれ示している。
本第3実施形態では第1の転送線141により第1および第2のNMOSトランジスタ1121,1122がオフする際の蓄積電子の転送補助用に第3のNMOSトランジスタ1123を駆動する第2の転送線142のオンオフパルスが追加されていることである。
さらに、第1の転送線141がハイレベルからローレベルに戻り、それと略同時に分離線としての第2の転送線142がハイレベルになると次のような電子の移動が行われる。
図13(D)のステップST24に示したように、分離トランジスタとして第3のNMOSトランジスタ1123が導通して、蓄積電子がアンプ回路118の入力ノードであるFD117に流入する。
最後に、分離線としての第2の転送線142がローレベルに落ちると、電子のアンプ回路118の入力ノードであるFD117への完全転送が完了する。
一方、第1の転送線141がローレベルからハイレベルに上がることで、フォトダイオード111に蓄積されていた余分な電子が第1のNMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル部CH2に転送される。
さらに、第1の転送線141がハイレベルからローレベルに落ち、それと略同時に分離線として第2の転送線142がハイレベルとなって分離トランジスタとしての第3のNMOSトランジスタ1123が導通する。
最後に、分離線としての第2の転送線142がローレベルに落ちると、蓄積電子はFD117に完全転送されてリセットレベルに引き抜かれる。
新たな電子の蓄積T3はこの時点で開始される。より厳密には第1の転送線141がハイレベルからローレベルに落ちた時点でT3はスタートする。
さらに、第1の転送線141がハイレベルからローレベルに落ち、それと略同時に分離線としての第2の転送線142がハイレベルに上がり、さらに最後にローレベルに落ちると、それらはアンプ回路118の入力ノードであるFD117に完全転送される。
蓄積期間T3はこの時点で終了する。
第1の転送線141がオフするレベルと前にFD117を通してアンプトランジスタ114がオンした場合は、図13(B)のステップST22から図13(C)のステップST23の状態をスキップして図13(D)のステップST24に移行する形になる。
ただし、第1の転送線141がオフするレベルとなった後に、分離線としての第2の転送線142がオフするレベルになりさえすれば、完全転送を実現できる。
図15は、本発明の第4の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
本第4の実施形態に係る画素回路110Dは、各々固有のフォトダイオード111と転送回路112を持つ複数、たとえば2つの画素PXL110a,PXL110bが、アンプ回路を形成するFD117およびアンプトランジスタ114を共有していることある。
この画素回路110Bにおいては、リセットトランジスタ113および行選択トランジスタ115も複数の画素PXL110a,PXL110bで共有する。
各画素PXL110a,PXL110bの転送トランジスタ112a,112bの第3のMOSトランジスタ1123のゲート電極はそれぞれ分離線としての第2の転送線142a,142bに接続されている。
画素回路110Dにおいては、各々独立した第1の転送線141a,141b、および分離線としての第2の転送線142a,142bに従って、各フォトダイオード111a,111bに蓄積された電子が個別のタイミングでFDF117に転送される。
したがって、共有画素数は2画素以上、16画素以下であることが望ましい。
大容量蓄積動作は前述した第1~第4の実施形態のいずれの回路構成についても適用可能であり、それぞれ第5および第6の実施形態として以下に説明する。
本発明の第5の実施形態においては、第1の形態で採用した図4の画素回路構成と第2のNMOSトランジスタ1122の深い空乏状態を用いた電荷蓄積を応用する。
具体的には、蓄積期間中に、フォトダイオード111の拡散層である拡散ノード204に蓄積していた電子を、第2のNMOSトランジスタ1122のチャネル部分に転送して蓄積する。
すなわち、画素の蓄積期間の間、第1および第2のNMOSトランジスタ1121,1122がオン状態に維持されるようにゲート電極201はオン状態のレベルまま維持される。
そして、フォトダイオード111で光電変換された電子は直ちに第1のNMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル部CH2に転送され、そこに蓄積される。
蓄積が完了して読み出しを実施する時点で、第1および第2のNMOSトランジスタ1121,1122がオフするようにゲート電極201が駆動される。これにより、蓄積された電子は第3のNMOSトタンジスタ1123を介してアンプ回路118の入力ノードであるFD117に転送される。
図16(A)はリセット線150の信号電位を、図16(B)は転送線140の信号電位を、図16(C)は行選択線160の信号電位を、図16(D)は垂直信号線170の信号電位を、それぞれ示している。
この間、フォトダイオード111で光電変換された電子は、その拡散層内に蓄積されるのではなく、直ちに第2のNMOSトランジスタ1122のチャネル領域に転送され、そこに蓄積される。
さらに、リセット線150へのパルスで、アンプ回路118の入力ノード(8c)であるFD117がリセットされて、FD117が電源電圧源に接続されることで、リセットレベルの読み出しが実施される。
次に、転送線140がハイレベルからローレベルに遷移する。
これにより、第2のNMOSトランジスタ1122のチャネル領域に蓄積されてきた電子がアンプ回路118の入力ノードであるFD117に転送されて、蓄積信号の読み出しが実施される。
蓄積期間T4も、この転送線140の遷移をもって終了する。
蓄積期間において第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122がオン状態に維持される。すると、フォトダイオード111で光電変換され拡散ノード204に収集された電子は、第1のNMOSトランジスタ1121を介して直ちに第2のNMOSトランジスタ1122のチャネル領域に移動する。
すなわち、深い空乏状態となった第2のNMOSトランジスタ1122のチャネル領域に電子が移動して、アナログ状態で蓄積される。
読み出し時の第2のNMOSトランジスタ1122から拡散層205への電子の転送は図7(C),(D)のステップST13、ST14の工程と同一である。
したがって、第2のNMOSトランジスタ1122の深い空乏状態における蓄積容量を十分に大きくとれば、通常のフォトダイオードへの蓄積より遥かに大きい電子数を蓄積することが可能になる。
一般にフォトダイオードへの光入射により発生する電子/ホール対においては、空乏層内で発生したホールはその内部電界に誘引されて速やかに基板に排出される。
しかし、フォトダイオード内に電子が蓄積されると、それに伴って内部電界が緩和され、ホールの排出能力が低下して、電子とホールの再結合が起きやすくなる。
これにより、感度が徐々に低下していく問題がある。
これに対して、本第5の実施形態においては、このような問題は発生しない。
またその際は、リセット時にフォトダイオード111の拡散ノード204に形成されるポテンシャルもより浅くできる。したがって、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122のチャネル領域の変調レンジR11、R12も小さくでき、耐圧等の信頼性の確保も容易となる。
同様の概念を第3の実施形態に適用した第6の実施形態について説明する。
この間、フォトダイオード111で光電変換された電子は、その拡散層内に蓄積されるのではなく、直ちに第2のNMOSトランジスタ1122のチャネル領域に転送され、そこに蓄積される。
すなわち、ポテンシャル図中の図13(B)のステップST22の状態が保持される。
さらにリセット線150へのパルスで、アンプ回路118の入力ノードであるFD117がリセットされて電源電圧源に接続されることで、リセットレベルの読み出しが実施される。
次に、第1の転送線141がハイレベルからローレベルに遷移し、さらに分離線としての第2の転送線142にもパルスが印加される。
これにより、第2のNMOSトランジスタ1122のチャネル領域に蓄積されてきた電子がアンプ回路118の入力ノードであるFD117に転送されて、蓄積信号の読み出しが実施される。
蓄積期間T5も、第1の転送線141の遷移をもって終了する。
したがって、第2のNMOSトランジスタ1122の深い空乏状態における蓄積容量を十分に大きくとれば、通常のフォトダイオードへの蓄積より遥かに大きい電子数を蓄積することが可能になる。
中間蓄積ノードたる第2のNMOSトランジスタ1122のチャネル領域に蓄積された電子は、フォトダイオード111の拡散ノード204からもアンプ入力であるFD117からも切り離されている。
すなわち、フォトダイオード111の拡散ノード204で新規に光電変換された電子が中間蓄積ノードに流れ込むこともなく、中間蓄積ノードに蓄積された電子がFD117に流れ込むこともない。
第1の実施形態では第1および第2のNMOSトランジスタ1121,1122の共有ゲートを3値で駆動し、その中間電圧でこのような状態を実現することで、この中間状態を一定期間保持することが可能である。
中間蓄積ノードたる第2のNMOSトランジスタ1122のチャネル領域に蓄積された電子は、フォトダイオード111の拡散ノード204からもアンプ入力であるFD117からも切り離されている。
このケースでは第1および第2のNMOSトランジスタ1121,1122、および第3のNMOSトランジスタ1123を共にゲート電極駆動によりオフすることで、この中間状態を一定期間保持することが可能である。
一定期間とは、より具体的には、たとえば最小蓄積期間以上の期間、あるいは一行読み出しに要する期間以上の期間である。
なお、第7~第12の実施形態においては、上述した第1の実施形態~第4の実施形態の各々の構成を使用して、いずれも同様に実施できる。
図18(A)~(D)は、第7の実施形態において上記中間保持モードを採用し、第5の実施形態の大容量蓄積動作を改善した、画素動作のタイミングチャートを示す図である。
図18(A)はリセット線150の信号電位を、図18(B)は転送線140の信号電位を、図18(C)は行選択線160の信号電位を、図18(D)は垂直信号線170の信号電位を、それぞれ示している。
本改善例である第7の実施形態はこのような問題を鑑みて、ゲート電極201を駆動して第1および第2のNMOSトランジスタ1121,1122を間欠的にオンすることで、暗電流の増加を抑止する。
すなわち、まず図8や図16と同様のリセット動作を実施して新たな蓄積を開始する。その後、蓄積期間T6の間、ゲート電極201を通して第1および第2のNMOSトランジスタ1121,1122を開放し続けるのではなく、間欠的にハイレベルにして、フォトダイオード111から中間蓄積ノードに時分割で電子を転送している。
最初の転送以降、転送時以外の蓄積期間中は、ゲート電極201は中間電位に保たれ、中間蓄積ノードは図7(C)のステップST13の中間状態が維持されている。
読み出し時には、再度ゲート電極201をハイレベルにしてフォトダイオード111に残存する電子を中間蓄積ノードに転送する。そして、最後にゲート電極201をローレベルにして、中間蓄積ノードの蓄積電子をアンプ入力であるFD117にまとめて一括転送する。
しかし、第2のNMOSトランジスタ1122のチャネル部よりなる中間蓄積ノードの蓄積容量が十分大きければ、フォトダイオード111の蓄積電荷を複数回に時分割してそこに転送することで、通常より遥かに大きな電荷を蓄積することが可能になる。
また、ゲート電極201を通して第1および第2のNMOSトランジスタ1121,1122がオンしている期間は蓄積期間と比較して十分小さくできるので、暗電流の増加も防止することができる。
図19(A)~(E)は、第8の実施形態において、第7実施形態と同様の概念で中間保持モードを採用し、第6の実施形態の大容量蓄積動作を改善した画素動作のタイミングチャートを示す図である。
その後、蓄積期間T7の間、ゲート電極201の駆動による第1および第2のNMOSトランジスタ1121,1122を開放し続けるのではなく、間欠的にパルスを印加して、フォトダイオード111から中間蓄積ノードに時分割で電子を転送している。
蓄積期間中は、分離用のゲート電極202を通して第3のNMOSトランジスタ1123はオフ状態に保たれ、上記間欠的転送時以外の中間蓄積ノードは図13(C)のステップST23の中間状態が維持されている。
読み出し時には、再度ゲート電極201にパルスを与えて第1および第2のNMOSトランジスタ1121,1122をオンさせてフォトダイオード111に残存する電子を中間蓄積ノードに転送する。
そして、最後に分離用ゲート電極202にパルスを印加にして第3のNMOSトランジスタ1123をオンさせ、中間蓄積ノードの蓄積電子をアンプ入力であるFD117にまとめて一括転送する。
次に、グローバルシャッター機能について述べる。
通常の回路構成とシーケンスを採用した場合、図2に示すように、読み出し動作の開始が蓄積の終了タイミングを決定する。
読み出しは通常行ごとに順次実施されるので、蓄積終了のタイミングもそれに従う。よって、通常は蓄積開始となるリセット動作も行ごとにずらして順次実施し、蓄積期間T1を全有効画素で均一にする措置がとられている。
これはローリングシャッターと呼ばれ、CMOSイメージセンサにおいて一般的な手法であるが、行ごとにシャッタータイミングがズレることを意味し、たとえば高速に動作する被写体の像に歪みが発生する。
一方、蓄積データの読み出しは行毎に行うので、この場合、蓄積終了と読み出しのタイミングを分離する必要があり、蓄積終了から読み出しまでの期間、画素ごとに信号を保存しておく必要がある。
すなわち、CMOSイメージセンサ100において、全有効画素に対してゲート電極201を通して第1および第2のNMOSトランジスタ1121,1122を一斉にオフする。これにより、光電変換された電子の転送を中止して蓄積を終了するとともに、既に蓄積された電子を一旦第2のNMOSトランジスタ1122のチャネル領域に保存する。
その後、行単位での読み出しに伴って、ゲート電極202にパルスを与えて第3のNMOSトランジスタ1123を順次オンしていき、保存された電子をアンプ回路118の入力ノードであるFD117に転送すれば良い。
図20(A)~(D)は、第1の実施形態にグローバルシャッター機能を搭載した第9の実施形態における動作のタイミングチャートを示す図である。
図20(A)はリセット線150の信号電位を、図20(B)は転送線140の信号電位を、図20(C)は行選択線160の信号電位を、図20(D)は垂直信号線170の信号電位を、それぞれ示している。
一方、転送線140がローレベルからハイレベルに上がり、さらにハイレベルからローレベルに落ちた時点でフォトダイオード111に蓄積されていた電子がFD117に転送され、リセットレベルに引き抜かれる。
新たな電子の蓄積期間T8はこの時点で開始される。リセット線150のパルスは、ゲート電極201への印加パルスがローレベルに降りるのを待ってからローレベルに落ちている。
通常は、このリセット動作は選択行ごとに順次実施するが、グローバルリセットでは全有効画素に対して一斉に実施する。
すなわち、本工程はグローバルシャッターのシャッター開の動作となる。
さらに、転送線140がハイレベルから中間電位にまで戻ると、ポテンシャル状態は図7(B)のステップST13の中間保持モードに移行し、中間蓄積ノードとフォトダイオード111が切り離される。
これらは全有効画素に対して一斉に実施され、グローバルシャッターのシャッター閉の動作となる。
まず、行選択線160に選択信号が印加されて択一的に行選択が実施された後、リセット線150にパルスが印加され、アンプ入力部であるFD117がリセットレベルに接続されてリセットレベルが感知される。
次に、転送線140が中間電位からローレベル状態に落ち、これによって中間蓄積ノードに保持されていた電子が全てアンプ回路118の入力ノードであるFD117に転送される。
各画素は蓄積終了から読み出しまでのH8の期間、中間保持モードを維持するが、中間保持期間H8は行ごとに異なる。
すなわち、一斉にシャッターが閉となってから、該当行に読み出し順が回ってくるまでの期間、上記中間保持が実施される。
図21(A)~(E)は、第3の実施形態にグローバルシャッター機能を搭載した第10の実施形態の動作のタイミングチャートを示す図である。
一方、第1の転送線141がローレベルからハイレベルに上がることで、フォトダイオード111に蓄積されていた余分な電子が第1のNMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル部に転送される。
さらに、第1の転送線141がハイレベルからローレベルに落ち、それと略同時に分離線としての第2の転送線142がハイレベルとなって分離用の第3のNMOSトランジスタ1123が導通する。そして、最後に第2の転送線142がローレベルに落ちると、蓄積電子は拡散層205に完全転送されてリセットレベルに引き抜かれる。
新たな電子の蓄積T9はこの時点で開始される。通常はこのリセット動作は選択行ごとに順次実施するが、グローバルリセットでは全有効画素に対して一斉に実施する。
すなわち、本工程はグローバルシャッターのシャッター開の動作となる。
さらに、第1の転送線141がハイレベルからローレベルに戻ると、ポテンシャル状態は図13(B)のステップST23の中間保持モードに移行し、中間蓄積ノードとフォトダイオードが切り離される。
これらは全有効画素に対して一斉に実施され、グローバルシャッターのシャッター閉の動作となる。
まず、行選択線160に選択信号が印加されて択一的に行選択が実施された後、リセット線150にパルスが印加され、アンプ回路118の入力ノードであるFD117部がリセットレベルに接続されてリセットレベルが感知される。
次に、分離線としての第2の転送線142がハイレベルに駆動され、分離トランジスタである第3のNMOSトランジスタ1123が導通状態となる。これにより、第2のNMOSトランジスタ1122のチャネル部に蓄積された電子がアンプ118の入力ノードであるFD117に転送される。
分離線としての第2の転送線142が再度ローレベルに落ちた時点で、蓄積電子の拡散層205への完全転送が完了する。
各画素は蓄積終了から読み出しまでのH9の期間、中間保持モードを維持するが、中間保持期間H9は行ごとに異なる。
すなわち、一斉にシャッターが閉となってから、該当行に読み出し順が回ってくるまでの期間、上記中間保持が実施される。
たとえば、図20(A)~(D)に示したグローバルシャッターシーケンスの蓄積が開始されたら、全有効画素の転送線140を一括でハイレベルに変える。そして、蓄積期間T8の間その状態を維持した後に一括して中間電位に落として蓄積を終了し、中間保持状態に移行すれば良い。
この場合、蓄積期間中、各画素では図7(B)のステップST12のポテンシャル状態が維持され、電子はフォトダイオード111ではなく第2のNMOSトランジスタ1122のチャネル内に蓄積されて、大容量の蓄積が可能になる。
次に、ワイドダイナミックレンジ機能について説明する。
本機能は1画素内に蓄積時間の短い信号と長い信号とを同時に保存し、高輝度の被写体感知には蓄積時間の短い信号を、低輝度の被写体感知には蓄積時間の長い信号を使用して、両者を同時に適切な露光時間で撮像する機能である。
読み出し時にはまず中間保持モードで保存された長時間蓄積側の信号をアンプ入力に転送し、次にフォトダイオードに保持された短時間蓄積側の信号を転送する。
第1の実施形態の構成を用いたワイドダイナミックレンジ動作の例を、図22(A)~(D)および図23(A)~(C)のポテンシャル推移図を用いて説明する。
図22(A)~(D)は、第1の実施形態の構成を用いた本第11の実施形態におけるワイドダイナミックレンジ動作の例を説明するための第1のポテンシャル推移図である。
図23(A)~(C)は、第1の実施形態の構成を用いた本第11の実施形態におけるワイドダイナミックレンジ動作の例を説明するための第2のポテンシャル推移図である。
図22(A)のステップST31においては、図7(A)のステップST11と同様に、フォトダイオード111の拡散ノード204には第1の電子蓄積が行われている。
第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122のチャネル領域は、両者の共有ゲート電極201に共通に与えられる電位、たとえば―1.5V~3Vに従って、ポテンシャルがそれぞれR11、R12の範囲で変調される。
一方、分離トランジスタである第3のNMOSトランジスタ1123のゲート電極202はグランドに接続されており、チャネルのポテンシャルは0.6V程度になるように調整されている。
図22(B)のステップST32においては、第1のNMOSトランジスタ1121)および第2のNMOSトランジスタ1122がオンすると電子の移動が行われる。
フォトダイオード111の拡散ノード204に蓄積されていた電子は、第1のNMOSトランジスタ1121を介して残らず第2のNMOSトランジスタ1122のチャネル領域に移動する。
すなわち、深い空乏状態となった第2のNMOSトランジスタ1122のチャネル領域に電子が移動して、アナログ状態で蓄積される。
図22(C)のステップST33においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122をオフするためにゲート電極201が駆動されと、それに伴ってチャネル領域のポテンシャルが負電位方向に変調される。
これにより、フォトダイオード111は第2のNMOSトランジスタ1122のチャネルから切断され、第1の蓄積が完了する。
第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122のゲート電極が適当な中間電圧に達したこの段階では、蓄積電子がフォトダイオード111とアンプ回路118の入力ノードであるFD117の双方から分離された状態となる。
図22(D)のステップST34においては、ステップST33の中間保持状態を維持していると、フォトダイオード111には継続して光が入射し光電変換が実行されるので、その拡散ノード204に新たな電子が蓄積される。
図23(A)のステップST35においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122が完全にオフすると電子の移動が次のように行われる。
すなわち、第2のNMOSトランジスタ1122のチャネルに保持されていた第1の蓄積電子が全てアンプ回路118の入力ノードであるFD117に移動する。
これにより、アンプトランジスタ114からなるアンプ回路118は垂直信号線170を駆動し、第1の蓄積信号の読み出しが実施される。
図23(B)のステップST36においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122が再度オンすると電子に移動が次のように行われる。
フォトダイオード111の拡散ノード204に蓄積されていた第2の蓄積電子が、第1のNMOSトランジスタ1121を介して残らず第2のNMOSトランジスタ1122のチャネル領域に移動する。このとき、アンプ回路118の入力ノードであるFD117は3Vにリセットしておく。
図23(C)のステップST37においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122が再度完全にオフすると電子の移動が次のように行われる。
第2のNMOSトランジスタ1122のチャネルに保持されていた第2の蓄積電子が全てアンプ回路の入力ノードであるFD117に移動する。
これにより、アンプトランジスタ114からなるアンプ回路118は垂直信号線170を駆動し、第2の蓄積信号の読み出しが実施される。
第1の電子蓄積が飽和していない場合、画素の蓄積データにはその値を使用する。一方、第1の電子蓄積が飽和している場合、画素の蓄積データには第2の電子蓄積の値を使用する。第2の蓄積時間が第1の蓄積時間の1/Kであれば、第2の蓄積データは画像合成時にK倍されて扱われる。
したがって、本発明の実施形態に係るイメージャーの使用者は異なる蓄積時間に対応して2枚のフレームバッファーを用意する必要はなく、2枚のラインバッファーのみを用意すればフレーム合成が可能になる。
また、読み出しに倍の時間がかかる分、フレームレートは1/2になるが、倍になった1フレーム所要時間の全てを蓄積に使用することができる。
図24(A)はリセット線150の信号電位を、図24(B)は転送線140の信号電位を、図24(C)は行選択線160の信号電位を、図24(D)は垂直信号線170の信号電位を、それぞれ示している。
一方、転送線140がローレベルからハイレベルに上がり、さらにハイレベルからローレベルに落ちた時点でフォトダイオード111に蓄積されていた電子がFD117に転送され、リセットレベルに引き抜かれる。
第1の電子蓄積における蓄積期間T10Lはこの時点で開始される。リセット線150のパルスは、転送線140がローレベルに降りるのを待ってからローレベルに落ちている。
さらに、転送線140がハイレベルから中間電位に落ちると、図22(C)のステップST33のように、フォトダイオード11と中間ノードが切断され、第1の電子蓄積たる長時間側の蓄積期間T10Lが終了する。
またそれと同時に第2の蓄積期間T10Sがスタートする。
まず、リセット線150のパルス印加でアンプ回路118の入力ノードであるFD117がリセットされ、リセットレベルが感知される。
次に、転送線140が中間ノードからローレベルに落ちると、図23(A)のステップSTST35のように、第1の蓄積電子がアンプ回路118の入力ノードであるFD117に転送され、その感知が行われる。
再度リセット線150のパルス印加でアンプ回路118の入力ノードであるFD117がリセットされ、リセットレベルが感知される。
次に、転送線140にパルスが印加されると、図23(B),(C)のステップST36,ST37の段階を経て、第2の蓄積信号がアンプ回路118の入力ノードであるFD117に転送され、その感知が行われる。
第2の蓄積信号の読み出しでその蓄積期間T10Sも終了する。
なお、上記ワイドダイナミックレンジ機能は、第3の実施形態の構成に対しても、同様の概念を持って実施できる。
第12の実施形態において画素回路の構成は図12と同様である。
一方、第1の転送線141がローレベルからハイレベルに上がることで、フォトダイオード111に蓄積されていた余分な電子が第1のNMOSトランジスタ1121)を介して第2のNMOSトランジスタ1122のチャネル部に転送される。
さらに、第1の転送線141がハイレベルからローレベルに落ち、それと略同時に分離線としての第2の転送線142がハイレベルとなって分離トランジスタである第3のNMOSトランジスタ1123が導通する。そして、最後に第2の転送線142がローレベルに落ちると、蓄積電子はFD117に完全転送されてリセットレベルに引き抜かれる。
第1の電子蓄積における蓄積期間T11Lはこの時点で開始される。リセット線150のパルスは、第2の転送線142がローレベルに降りるのを待ってからローレベルに落ちている。
所定の蓄積時間が経過すると、フォトダイオード111に蓄積されていた電子は、第1の転送線141がローレベルからハイレベルに上がることで中間蓄積ノードに転送される。
さらに、第1の転送線141がハイレベルからローレベルに戻ると、ポテンシャル状態は図13(B)のステップST23の中間保持モードに移行し、中間蓄積ノードとフォトダイオードが切り離される。
これにより、第1の電子蓄積たる長時間側の蓄積期間T11Lが終了する。またそれと同時に第2の蓄積期間T11Sがスタートする。
まず、リセット線150にパルスが印加され、アンプ回路118の入力ノードであるFD117がリセットレベルに接続されてリセットレベルが感知される。
次に、分離線としての第2の転送線142がハイレベルに駆動されて、分離トランジスタとしての第3のNMOSトランジスタ1123が導通状態となる。これにより、第2のNMOSトランジスタ1122のチャネル部に蓄積されていた第1の蓄積電子がアンプ回路118の入力ノードであるFD117に転送される。分離線としての第2の転送線142が再度ローレベルに落ちた時点で、第1の蓄積電子のFD117への完全転送が完了し、第1の蓄積信号の感知が行われる。
再度リセット線150のパルス印加でアンプ回路118の入力ノードであるFD117がリセットされ、リセットレベルが感知される。
さらに、第1の転送線141がハイレベルからローレベルに落ち、それと略同時に分離線である第2の転送線142がハイレベルになり、最後に第2の転送線142がローレベルに落ちると、第2の蓄積電子はFD117に完全転送される。
これにより、第2の蓄積期間T11Sも終了し、続いて第2の蓄積信号の感知が行われる。
次に、画素内転送回路の構造を変えた、第12の実施形態について説明する。
図26は、本発明の第13の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
すなわち、本第13の実施形態に係る画素回路110Eは、転送トランジスタ112Eが一体化され直列接続された高閾値HVthの第1のNMOSトランジスタ1121と低閾値LVthの第2のNMOSトランジスタ1122により形成されている。
一体化された第1および第2のNMOSトランジスタ1121,1122は、互いのチャネルがn型拡散層等を介することなく直接接続されている。
また、第1および第2のNMOSトランジスタ1121,1122のゲート電極201は同時一括で駆動信号が印加される。
そして、第1のNMOSトランジスタ1121は高閾値電圧HVth、第2のNMOSトランジスタ1122は低閾値電圧LVthとなっている。
入力ノードであるFD117は寄生容量203を有しており、蓄積電荷量をQ、寄生容量値をCfとすると、その電位変化量ΔVfは{ΔVf=Q/Cf}となる。
その一方で、浮遊状態であるアンプ回路118の入力ノードであるFD117は隣接する第2のNMOSトランジスタ1122の状態変動に影響されやすくなる。
たとえば、ゲート電極201を通して第1および第2のNMOSトランジスタ1121,1122をオンした際に、FD117のポテンシャルもそのカップリングを受けて変動する。その結果、第2のNMOSトランジスタ1122のチャネル部に蓄積されるべき電子の一部がアンプ回路118の入力ノードであるFD117に漏れる等の影響が出る。
アンプ回路118の入力ノードであるFD117は、通常不純物が多量に導入された拡散層や、配線のコンタクト部等を含んでおり、MOSトランジスタのチャネル部に比較して結晶性が悪い。
したがって、個々に漏れ出た電子は蓄積期間中に再結合等で失われやすく、特に第3の実施形態における蓄積機能や、第9や第10の実施形態におけるグローバルシャッター機能には有意な悪影響を及ぼすことになる。
ここで光電変換された電子は、当初n型の拡散ノード204に蓄積される。
そして、ゲート電極201に第1のNMOSトランジスタ1121がオンする信号が印加されると、第1のNMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル領域に転送され、多くの電子はそこに蓄積される。
たとえば、チャネル部の不純物プロファイルを調整することで、第1のNMOSトランジスタ1121の閾値は高く、第2のNMOSトランジスタ1122の閾値は低く設定される。これにより、第2のNMOSトランジスタ1122のチャネル部は電子の蓄積井戸を、第1のNMOSトランジスタ1121のチャネル部は逆流防止のポテンシャル壁を形成する。
また、拡散層205は断面図には記載されないアンプ回路118の入力に接続されている。
しかしいずれにしても機能的には直列接続された2つの個別なトランジスタと同様であり、本発明の適用範囲内である。
図29(A)のステップST41においては、フォトダイオード111の拡散ノード204は、一定数のドナーによる正電荷で、その完全空乏時にポテンシャルの底が2.5V程度になるように設計されている。ここに光電変換された電子が飽和状態(約0V)にまで満たされている。
一方、第1のNMOSトランジスタ1121および第2のNMOSトラジスタ1122のチャネル領域は、両者のゲート電極に共通に与えられる電位、たとえば1.5V~3V)に従って、ポテンシャルがそれぞれR17、R18の範囲で変調される。
また、アンプ回路118の入力ノードである拡散層205(FD117)にはリセットがかけられて、3Vの浮遊状態となっている。
図29(B)のステップST42においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122がオンすると次のような電位の移動が行われる。
フォトダイオード111の拡散ノード204に蓄積されていた電子は、第1のNMOSトランジスタ1121を介して残らず第2のNMOSトランジスタ1122のチャネル領域に移動する。
この際、アンプ回路118の入力ノードである拡散層205(FD117)もカップリングを受けて電位が上昇し、一部の電子は第2のNMOSトランジスタ1122のチャネル部を介してさらに拡散層205(FD117)に流入する。
すなわち、読み出し信号である電子は、深い空乏状態となった第2のNMOSトランジスタ1122のチャネル領域にその多くは蓄積され、また一部はアンプ回路118の入力ノードである拡散層205(FD117)に蓄積される。
図29(C)のステップST43においては、第1のNMOSトランジスタ1121および第2のNMOSトランジスタ1122をオフするためにゲート電極201が駆動されると、それに伴ってチャネル領域のポテンシャルが負方向に変調される。
ここで第1のNMOSトランジスタ1121のチャネルはポテンシャル障壁を形成し、蓄積電子のフォトダイオード111の拡散ノード204への逆流を防止している。この障壁の高さは両トランジスタの閾値の差に対応しており、たとえば1.5Vである。
こうして、第2のNMOSトランジスタ1122のチャネル領域のポテンシャルが上昇(電位は低下)するにつれて、そこに蓄積されていた電子がアンプ回路118の入力ノードである拡散層205(FD117)に移動する。
図29(D)のステップST44においては、第1および第2のNMOSトランジスタ1121,1122のオフ状態では、ステップST41でフォトダイオードに蓄積されていた電子は全てアンプ回路118の入力ノードである拡散層205に移動した状態になる。これによりアンプは垂直信号線を駆動し、蓄積信号の読み出しが実施される。
すなわち、本第13の実施形態では、電子を満たした拡散層205(FD117)のポテンシャルが拡散ノード204より浅い状態となっても完全な転送が実現している。
フォトダイオード111の飽和蓄積電荷量をQs、第2のNMOSトランジスタ1122のチャネル容量(反転層の容量)をCinv、第1のNMOSトランジスタ1121と第2のNMOSトランジスタ1122の閾値差をΔVthとすれば、次の条件となる。
|Cinv*ΔVth| > |Qs|
図30は、本発明の第14の実施形態に係るCMOSイメージセンサの画素回路を示す図である。
本第2の実施形態に係る画素回路110Fは、各々固有のフォトダイオード111と転送回路112を持つ複数、たとえば2つの画素PXL110a,PXL110bが、アンプ回路を形成するFD117およびアンプトランジスタ114を共有していることある。
この画素回路110Fにおいては、リセットトランジスタ113および行選択トランジスタ115も複数の画素PXL110a,PXL110bで共有する。
画素回路110Bにおいては、各々独立した転送線140aおよび140bに従って、各フォトダイオード111a,111bに蓄積された電子が個別のタイミングでFDF117(アンプ回路の入力ノード)に転送される。
したがって、共有画素数は2画素以上、16画素以下であることが望ましい。
一方、光電変換素子にはMOSキャパシタが使用される場合もあり、第1から第14の実施形態全てについて、フォトダイオードの替わりにMOSキャパシタを使用しても同様の効果を得ることができる。
図31は、第1の実施形態に対応した断面構造例である図6に対して、フォトダイオードをMOSキャパシタに入れ替えた第15の実施形態に係る転送回路の構成例を示す図である。
電極211には、たとえば2Vの固定電圧が印加されており、MOSキャパシタ210は深い空乏状態になっている。
この空乏層内に電子が入射すると電子/ホール対が生成され、ホールは電界に誘引されてp-Well側に抜ける一方で、電子は反転層としてMOSキャパシタ210の酸化膜近傍に蓄積される。
ゲート電極201をハイレベルにすると、蓄積電子は第1のMOSトランジスタ1121を介して第2のNMOSトランジスタ1122のチャネル領域に完全転送され、そこに蓄積される。
さらに、ゲート電極201をローレベルに落とすと、この蓄積電子は全てアンプ回路の入力ノードである拡散層205(FD117)に転送され、垂直信号線170が駆動されて読み出しが実施される。
図32は、第1の実施形態の転送回路と異なる断面構造を有する第16の実施形態に係る転送回路の断面構造例を示す図である。
本第16の実施形態においては、第1のNMOSトランジスタ1121と第2のNMOSトランジスタ1122は、異なるゲート電極201-1,201-2として形成されている。
これらのゲート電極201-1,201-2は異なる導電層、あるいはポリシリコン層で形成され、図示しない画素内でショートされて、一体化された電極201が形成される。
このような構造では、第2のNMOSトランジスタ1122の基板不純物プロファイルを自己整合的に調整できる。あるいは異なるゲート電極層の仕事関数を変えて、閾値を調整することも可能である。
図33は、本発明の実施形態に係る固体撮像素子が適用されるカメラシステムの構成の一例を示す図である。
カメラシステム300は、この撮像デバイス310の画素領域に入射光を導く(被写体像を結像する)光学系、たとえば入射光(像光)を撮像面上に結像させるレンズ320を有する。
さらに、カメラシステム300は、撮像デバイス310を駆動する駆動回路(DRV)330と、撮像デバイス310の出力信号を処理する信号処理回路(PRC)340と、を有する。
信号処理回路340で処理された画像信号は、たとえばメモリなどの記録媒体に記録される。記録媒体に記録された画像情報は、プリンタなどによってハードコピーされる。また、信号処理回路340で処理された画像信号を液晶ディスプレイ等からなるモニターに動画として映し出される。
110 画素アレイ部
110A~110F 画素回路
111 フォトダイオード
112 転送トランジスタ
1121 第1のMOSトランジスタ
1122 第2のMOSトランジスタ
1123 第3のMOSトランジスタ
113 リセットトランジスタ
114 アンプトランジスタ
115 行選択トランジスタ
116 蓄積ノード
117 FD
118 アンプ回路
120 行選択回路
130 カラム読み出し回路(AFE)
300 カメラシステム。
Claims (17)
- 光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1、第2、および第3の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
ゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷を上記第3の電界効果トランジスタを介してアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
画素回路。 - 上記第3の電界効果トランジスタのゲート電極は、電位固定されている
請求項1記載の画素回路。 - 上記第3の電界効果トランジスタは、
ゲート電極にパルスが印加されると、上記第2の電界効果トランジスタのチャネル領域から上記アンプ回路の入力に電荷を転送する
請求項1記載の画素回路。 - 上記転送トランジスタは、
上記第1および第2の電界効果トランジスタのゲート電極が中間電圧で維持されて、当該第2の電界効果トランジスタのチャネル領域に蓄積された電荷を、所定の期間保持する機能を有する
請求項2記載の画素回路。 - 上記転送トランジスタは、
上記第1および第2の電界効果トランジスタのゲート電極、および上記第3の電界効果トランジスタのゲート電極を共に所定レベルに維持することで、当該該第2の電界効果トランジスタのチャネル領域に蓄積された電荷を、所定の期間保持する機能を有する
請求項3記載の画素回路。 - 上記転送トランジスタは、
上記第1の電界効果トランジスタをオン状態に維持し、上記光電変換素子で生成された電荷を直ちに上記第2の電界効果トランジスタのチャネル領域に転送して蓄積する蓄積機能と、
当該蓄積電荷を上記第3の電界効果トランジスタを介して上記アンプ回路に転送する読み出し機能と
を有する請求項1記載の画素回路。 - 上記転送トランジスタは、
上記光電変換素子で生成された第1の蓄積信号を、第1の電界効果トランジスタを介して上記第2の電界効果トランジスタのチャネル領域に転送して蓄積し、
上記第2の電界効果トランジスタのチャネル領域に当該電荷を蓄積したまま、上記光電変換素子で第2の蓄積が開始されて第2の蓄積信号が生成される間、上記第1の電界効果トランジスタがオフされて、
上記第1の蓄積信号を上記第3の電界効果トランジスタを介して上記アンプ回路の入力に転送する、第1の読み出しを行い、
上記第2の蓄積信号を第1、第2、および第3の電界効果トランジスタを介して上記アンプ回路に転送する、第2の読み出しを行う
請求項1記載の画素回路。 - 上記光電変換素子と、第1、第2、および第3の電界効果トランジスタを含む転送トランジスタが複数の各画素に配置されており、
上記アンプ回路は複数の画素間で共有されている
請求項1記載の画素回路。 - 光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1および第2の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
ゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷の所定量を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷をアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
画素回路。 - 上記光電変換素子と、第1および第2の電界効果トランジスタを含む転送トランジスタが複数の各画素に配置されており、
上記アンプ回路は複数の画素間で共有されている
請求項9記載の画素回路。 - 複数の画素回路が配列された画素部と、
上記画素部の画素回路を駆動して画素信号の読み出しを行う画素駆動部と、を有し、
上記各画素回路は、
光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1、第2、および第3の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
上記画素駆動部によるゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷を上記第3の電界効果トランジスタを介してアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
固体撮像素子。 - 上記転送トランジスタは、
上記画素駆動部によるゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
上記第2の電界効果トランジスタのチャネル領域に当該電荷を蓄積したまま、上記第1の電界効果トランジスタが、全有効画素に対して一斉にオフされ、
しかる後に上記電荷が第3の電界効果トランジスタを介して上記アンプ回路の入力に行毎に順次転送され、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
請求項11記載の固体撮像素子。 - 上記転送トランジスタは、
上記光電変換素子で生成された第1の蓄積信号を、第1の電界効果トランジスタを介して上記第2の電界効果トランジスタのチャネル領域に転送して蓄積し、
上記第2の電界効果トランジスタのチャネル領域に当該電荷を蓄積したまま、上記光電変換素子で第2の蓄積が開始されて第2の蓄積信号が生成される間、上記第1の電界効果トランジスタがオフされて、
上記第1の蓄積信号を上記第3の電界効果トランジスタを介して上記アンプ回路の入力に転送する、第1の読み出しを行い。
上記第2の蓄積信号を第1、第2、および第3の電界効果トランジスタを介して上記アンプ回路に転送する、第2の読み出しを行う
請求項11記載の固体撮像素子。 - 複数の画素回路が配列された画素部と、
上記画素部の画素回路を駆動して画素信号の読み出しを行う画素駆動部と、を有し、
上記各画素回路は、
光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1および第2の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
上記画素駆動部によるゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷の所定量を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷をアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
固体撮像素子。 - 上記光電変換素子と、第1および第2の電界効果トランジスタを含む転送トランジスタが複数の各画素に配置されており、
上記アンプ回路は複数の画素間で共有されている
請求項11記載の固体撮像素子。 - 固体撮像素子と、
上記撮像素子に被写体像を結像する光学系と、
上記撮像素子の出力画像信号を処理する信号処理回路と、を有し、
上記固体撮像素子は、
複数の画素回路が配列された画素部と、
上記画素部の画素回路を駆動して画素信号の読み出しを行う画素駆動部と、を有し、
上記各画素回路は、
光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1、第2、および第3の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
上記画素駆動部によるゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷を上記第3の電界効果トランジスタを介してアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
カメラシステム。 - 固体撮像素子と、
上記撮像素子に被写体像を結像する光学系と、
上記撮像素子の出力画像信号を処理する信号処理回路と、を有し、
上記固体撮像素子は、
複数の画素回路が配列された画素部と、
上記画素部の画素回路を駆動して画素信号の読み出しを行う画素駆動部と、を有し、
上記各画素回路は、
光電変換素子と、
アンプ回路と、
上記光電変換素子で生成された電荷を上記アンプ回路の入力ノードに転送可能な転送トランジスタと、を有し、
上記転送トランジスタは、
上記光電変換素子から上記アンプ回路側に向かって、一体化して直列接続された第1および第2の電界効果トランジスタを有し、
上記第1および第2の電界効果トランジスタは、ゲート電極が同時一括的に駆動され、上記第1の電界効果トランジスタの閾値電圧が上記第2の電界効果トランジスタの閾値電圧より高く設定され、
上記画素駆動部によるゲート電極の段階的な駆動に伴って、
光電変換素子で生成され、上記第1の電界効果トランジスタを介して転送された電荷の所定量を上記第2の電界効果トランジスタのチャネル領域に蓄積し、
当該チャネル領域に蓄積した上記電荷をアンプ回路の入力に転送し、
上記アンプ回路が、信号線を駆動して、蓄積電荷の読み出しが行われる
カメラシステム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BRPI0920930A BRPI0920930A2 (pt) | 2008-12-08 | 2009-11-25 | circuito de pixel, dispositivo de captura de imagem, e, sistema de câmera. |
CN200980146674.XA CN102224730B (zh) | 2008-12-08 | 2009-11-25 | 像素电路、固态摄像器件和相机系统 |
EP09831810.8A EP2357797B1 (en) | 2008-12-08 | 2009-11-25 | Pixel circuit, solid-state image pickup device, and camera system |
RU2011121157/07A RU2494565C2 (ru) | 2008-12-08 | 2009-11-25 | Схема пиксела, полупроводниковое устройство формирования изображения и система камеры |
US13/126,790 US8605184B2 (en) | 2008-12-08 | 2009-11-25 | Pixel circuit, solid-state image pickup device, and camera |
US14/068,413 US9270912B2 (en) | 2008-12-08 | 2013-10-31 | Pixel circuit, solid-state image pickup device, and camera system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008312413A JP5422985B2 (ja) | 2008-12-08 | 2008-12-08 | 画素回路、固体撮像素子、およびカメラシステム |
JP2008-312413 | 2008-12-08 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/126,790 A-371-Of-International US8605184B2 (en) | 2008-12-08 | 2009-11-25 | Pixel circuit, solid-state image pickup device, and camera |
US14/068,413 Continuation US9270912B2 (en) | 2008-12-08 | 2013-10-31 | Pixel circuit, solid-state image pickup device, and camera system |
US14/068,413 Continuation-In-Part US9270912B2 (en) | 2008-12-08 | 2013-10-31 | Pixel circuit, solid-state image pickup device, and camera system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010067705A1 true WO2010067705A1 (ja) | 2010-06-17 |
Family
ID=42242695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/069848 WO2010067705A1 (ja) | 2008-12-08 | 2009-11-25 | 画素回路、固体撮像素子、およびカメラシステム |
Country Status (9)
Country | Link |
---|---|
US (1) | US8605184B2 (ja) |
EP (1) | EP2357797B1 (ja) |
JP (1) | JP5422985B2 (ja) |
KR (1) | KR101611646B1 (ja) |
CN (1) | CN102224730B (ja) |
BR (1) | BRPI0920930A2 (ja) |
RU (1) | RU2494565C2 (ja) |
TW (1) | TWI445400B (ja) |
WO (1) | WO2010067705A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5258551B2 (ja) * | 2008-12-26 | 2013-08-07 | キヤノン株式会社 | 固体撮像装置、その駆動方法及び撮像システム |
JP5511541B2 (ja) * | 2010-06-24 | 2014-06-04 | キヤノン株式会社 | 固体撮像装置及び固体撮像装置の駆動方法 |
JP5771079B2 (ja) * | 2010-07-01 | 2015-08-26 | 株式会社半導体エネルギー研究所 | 撮像装置 |
JP5755111B2 (ja) * | 2011-11-14 | 2015-07-29 | キヤノン株式会社 | 撮像装置の駆動方法 |
JP5657516B2 (ja) * | 2011-12-27 | 2015-01-21 | 本田技研工業株式会社 | 画素駆動装置及び画素駆動方法 |
CN102572323B (zh) * | 2011-12-28 | 2014-12-10 | 中国科学院上海高等研究院 | 图像传感器像素电路 |
JP6327779B2 (ja) * | 2012-02-29 | 2018-05-23 | キヤノン株式会社 | 光電変換装置、焦点検出装置および撮像システム |
JP6021360B2 (ja) * | 2012-03-07 | 2016-11-09 | キヤノン株式会社 | 撮像装置、撮像システム、および撮像装置の駆動方法。 |
US8817154B2 (en) * | 2012-08-30 | 2014-08-26 | Omnivision Technologies, Inc. | Image sensor with fixed potential output transistor |
JP6021613B2 (ja) * | 2012-11-29 | 2016-11-09 | キヤノン株式会社 | 撮像素子、撮像装置、および、撮像システム |
US9369648B2 (en) * | 2013-06-18 | 2016-06-14 | Alexander Krymski | Image sensors, methods, and pixels with tri-level biased transfer gates |
US10134788B2 (en) * | 2013-09-17 | 2018-11-20 | Omnivision Technologies, Inc. | Dual VPIN HDR image sensor pixel |
JP6354221B2 (ja) * | 2014-03-12 | 2018-07-11 | 株式会社リコー | 撮像装置及び電子機器 |
EP2924979B1 (en) * | 2014-03-25 | 2023-01-18 | IMEC vzw | Improvements in or relating to imaging sensors |
JP6541347B2 (ja) * | 2014-03-27 | 2019-07-10 | キヤノン株式会社 | 固体撮像装置および撮像システム |
TWI643500B (zh) * | 2014-03-31 | 2018-12-01 | 日商新力股份有限公司 | 攝像元件、攝像方法及電子機器 |
JP6548391B2 (ja) * | 2014-03-31 | 2019-07-24 | キヤノン株式会社 | 光電変換装置および撮像システム |
CN106576147B (zh) * | 2014-07-31 | 2021-02-19 | 索尼半导体解决方案公司 | 像素电路、半导体光检测装置和辐射计数装置 |
US10205894B2 (en) * | 2015-09-11 | 2019-02-12 | Canon Kabushiki Kaisha | Imaging device and imaging system |
US9521351B1 (en) * | 2015-09-21 | 2016-12-13 | Rambus Inc. | Fractional-readout oversampled image sensor |
US10141356B2 (en) * | 2015-10-15 | 2018-11-27 | Semiconductor Components Industries, Llc | Image sensor pixels having dual gate charge transferring transistors |
JP6774224B2 (ja) * | 2016-05-26 | 2020-10-21 | キヤノン株式会社 | 固体撮像装置及び撮像システム |
WO2020082390A1 (en) * | 2018-10-27 | 2020-04-30 | Huawei Technologies Co., Ltd. | Sensor and display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002064751A (ja) * | 2000-08-22 | 2002-02-28 | Victor Co Of Japan Ltd | 固体撮像装置 |
JP2004111590A (ja) * | 2002-09-18 | 2004-04-08 | Sony Corp | 固体撮像装置およびその駆動制御方法 |
JP2007300083A (ja) * | 2006-05-04 | 2007-11-15 | Magnachip Semiconductor Ltd | 転送ゲートを電位井戸と統合して、拡張された画素の動的範囲を有するイメージセンサ |
JP2008004692A (ja) * | 2006-06-21 | 2008-01-10 | Nikon Corp | 固体撮像装置 |
JP2008021925A (ja) * | 2006-07-14 | 2008-01-31 | Sony Corp | 固体撮像装置及びその駆動方法 |
JP2008078489A (ja) * | 2006-09-22 | 2008-04-03 | Asahi Kasei Electronics Co Ltd | Cmosイメージセンサおよびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5576763A (en) * | 1994-11-22 | 1996-11-19 | Lucent Technologies Inc. | Single-polysilicon CMOS active pixel |
JP2002330345A (ja) * | 2001-04-27 | 2002-11-15 | Canon Inc | 撮像装置 |
US6777660B1 (en) * | 2002-02-04 | 2004-08-17 | Smal Technologies | CMOS active pixel with reset noise reduction |
US6888122B2 (en) * | 2002-08-29 | 2005-05-03 | Micron Technology, Inc. | High dynamic range cascaded integration pixel cell and method of operation |
JP4418720B2 (ja) * | 2003-11-21 | 2010-02-24 | キヤノン株式会社 | 放射線撮像装置及び方法、並びに放射線撮像システム |
US7443437B2 (en) * | 2003-11-26 | 2008-10-28 | Micron Technology, Inc. | Image sensor with a gated storage node linked to transfer gate |
US7332786B2 (en) * | 2003-11-26 | 2008-02-19 | Micron Technology, Inc. | Anti-blooming storage pixel |
JP2005229159A (ja) * | 2004-02-10 | 2005-08-25 | Matsushita Electric Ind Co Ltd | 増幅型固体撮像装置とその駆動方法およびカメラ |
JP4533367B2 (ja) * | 2005-11-18 | 2010-09-01 | キヤノン株式会社 | 固体撮像装置 |
JP4650249B2 (ja) * | 2005-12-13 | 2011-03-16 | 船井電機株式会社 | 撮像装置 |
JP4967801B2 (ja) * | 2007-05-17 | 2012-07-04 | ソニー株式会社 | 電源装置および電源装置の動作方法 |
US8723094B2 (en) * | 2010-12-21 | 2014-05-13 | Sionyx, Inc. | Photodetecting imager devices having correlated double sampling and associated methods |
-
2008
- 2008-12-08 JP JP2008312413A patent/JP5422985B2/ja not_active Expired - Fee Related
-
2009
- 2009-11-25 RU RU2011121157/07A patent/RU2494565C2/ru not_active IP Right Cessation
- 2009-11-25 KR KR1020117011850A patent/KR101611646B1/ko not_active IP Right Cessation
- 2009-11-25 WO PCT/JP2009/069848 patent/WO2010067705A1/ja active Application Filing
- 2009-11-25 EP EP09831810.8A patent/EP2357797B1/en not_active Not-in-force
- 2009-11-25 US US13/126,790 patent/US8605184B2/en active Active
- 2009-11-25 BR BRPI0920930A patent/BRPI0920930A2/pt not_active IP Right Cessation
- 2009-11-25 CN CN200980146674.XA patent/CN102224730B/zh active Active
- 2009-12-03 TW TW098141410A patent/TWI445400B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002064751A (ja) * | 2000-08-22 | 2002-02-28 | Victor Co Of Japan Ltd | 固体撮像装置 |
JP2004111590A (ja) * | 2002-09-18 | 2004-04-08 | Sony Corp | 固体撮像装置およびその駆動制御方法 |
JP2007300083A (ja) * | 2006-05-04 | 2007-11-15 | Magnachip Semiconductor Ltd | 転送ゲートを電位井戸と統合して、拡張された画素の動的範囲を有するイメージセンサ |
JP2008004692A (ja) * | 2006-06-21 | 2008-01-10 | Nikon Corp | 固体撮像装置 |
JP2008021925A (ja) * | 2006-07-14 | 2008-01-31 | Sony Corp | 固体撮像装置及びその駆動方法 |
JP2008078489A (ja) * | 2006-09-22 | 2008-04-03 | Asahi Kasei Electronics Co Ltd | Cmosイメージセンサおよびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2357797A4 * |
Also Published As
Publication number | Publication date |
---|---|
TW201027989A (en) | 2010-07-16 |
EP2357797A1 (en) | 2011-08-17 |
RU2011121157A (ru) | 2012-11-27 |
BRPI0920930A2 (pt) | 2015-12-29 |
RU2494565C2 (ru) | 2013-09-27 |
JP5422985B2 (ja) | 2014-02-19 |
US8605184B2 (en) | 2013-12-10 |
EP2357797B1 (en) | 2018-01-24 |
KR101611646B1 (ko) | 2016-04-11 |
CN102224730A (zh) | 2011-10-19 |
US20110205416A1 (en) | 2011-08-25 |
TWI445400B (zh) | 2014-07-11 |
JP2010136281A (ja) | 2010-06-17 |
EP2357797A4 (en) | 2012-12-12 |
KR20110093810A (ko) | 2011-08-18 |
CN102224730B (zh) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5422985B2 (ja) | 画素回路、固体撮像素子、およびカメラシステム | |
KR101705491B1 (ko) | 고체 촬상 장치, 고체 촬상 장치의 신호 처리 방법, 및, 전자 기기 | |
EP2858348B1 (en) | Image sensor, drive method, and electronic device | |
JP5552858B2 (ja) | 固体撮像装置、固体撮像装置の駆動方法、及び、電子機器 | |
JP6124217B2 (ja) | 固体撮像装置及びそれを用いたカメラシステム | |
JP5282690B2 (ja) | 画素回路、固体撮像素子、およびカメラシステム | |
JP5257176B2 (ja) | 固体撮像装置、固体撮像装置の駆動方法および電子機器 | |
JP2000165755A (ja) | 固体撮像装置 | |
JP4242510B2 (ja) | 固体撮像素子およびその駆動方法 | |
US9270912B2 (en) | Pixel circuit, solid-state image pickup device, and camera system | |
JP6655922B2 (ja) | 固体撮像装置 | |
JP4720402B2 (ja) | 固体撮像装置 | |
JP5358520B2 (ja) | 固体撮像素子、撮像装置、固体撮像素子の駆動方法 | |
US20150014750A1 (en) | Solid-state imaging apparatus, method of manufacturing the same, and electronic apparatus | |
JP2011040482A (ja) | 固体撮像装置 | |
JP2011061018A (ja) | Mos型イメージセンサ及び撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980146674.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09831810 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13126790 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009831810 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117011850 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011121157 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4387/DELNP/2011 Country of ref document: IN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI0920930 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI0920930 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110526 |