WO2010067610A1 - 半導体モジュール、半導体モジュールの製造方法および携帯機器 - Google Patents

半導体モジュール、半導体モジュールの製造方法および携帯機器 Download PDF

Info

Publication number
WO2010067610A1
WO2010067610A1 PCT/JP2009/006765 JP2009006765W WO2010067610A1 WO 2010067610 A1 WO2010067610 A1 WO 2010067610A1 JP 2009006765 W JP2009006765 W JP 2009006765W WO 2010067610 A1 WO2010067610 A1 WO 2010067610A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
semiconductor module
electrodes
semiconductor
Prior art date
Application number
PCT/JP2009/006765
Other languages
English (en)
French (fr)
Inventor
中里真弓
伊藤克実
臼井良輔
五十嵐優助
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US13/139,075 priority Critical patent/US20110241203A1/en
Publication of WO2010067610A1 publication Critical patent/WO2010067610A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02319Manufacturing methods of the redistribution layers by using a preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02333Structure of the redistribution layers being a bump
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02379Fan-out arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0239Material of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05557Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09427Special relation between the location or dimension of a pad or land and the location or dimension of a terminal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a semiconductor module in which a semiconductor element is mounted on a substrate.
  • the solder for electrically connecting the external connection electrode of the semiconductor element and the electrode pad of the wiring board swells in the lateral direction (direction parallel to the substrate surface), and the adjacent external connection electrode and the electrode pad There is a possibility that a short circuit may occur due to contact with the connection portion. For this reason, there has been a restriction on narrowing the pitch between the electrode pads.
  • solder connecting the external connection electrode and the electrode pad swells in the lateral direction, so that when the underfill is filled between the semiconductor element and the wiring board, the solder obstructs the flow of the underfill, and a void is generated. There was a fear.
  • the present invention has been made in view of these problems, and an object thereof is a semiconductor module having a soldered structure in which an external connection electrode of a semiconductor element and an electrode pad of a wiring board are an example of a conductive connection member.
  • the present invention provides a technique for improving the connection reliability of the solder connection portion.
  • Another object of the present invention is to fill an underfill between a semiconductor element and a wiring board in a semiconductor module having a structure in which an external connection electrode of a semiconductor element and an electrode pad of a wiring board are soldered.
  • the present invention provides a technique capable of suppressing the generation of voids.
  • An aspect of the present invention is a semiconductor module.
  • the semiconductor module includes a substrate on which a first electrode is provided, a semiconductor element on which a second electrode is provided, and a conductive connection member that connects the first electrode and the second electrode, In a cross section along a line connecting adjacent first electrodes at the shortest distance, the width of the first electrode is smaller than the width of the second electrode corresponding to the first electrode, and the first electrode The height of the first electrode is higher than the width.
  • the conductive connection member that connects the first electrode and the second electrode is suppressed from spreading in the lateral direction, the conductive connection member fits inside the width of the second electrode. .
  • the conductive connection member since it is suppressed that a short circuit arises between adjacent 1st electrode and 2nd electrode, without impairing the connection reliability at the time of the connection by an electroconductive connection member, 1st electrode and 2nd The pitch of the electrodes can be reduced.
  • the conductive connecting member since the conductive connecting member is prevented from spreading in the lateral direction, the conductive connecting member becomes an obstacle to filling the underfill when filling the underfill between the element mounting substrate and the semiconductor element.
  • the underfill is likely to enter the gap between the element mounting substrate and the semiconductor element. As a result, generation of voids during underfill filling is suppressed.
  • the conductive connecting member since the conductive connecting member is prevented from spreading in the lateral direction, the conductive connecting member becomes an obstacle to filling the underfill when filling the underfill between the element mounting substrate and the semiconductor element.
  • the underfill is likely to enter the gap between the element mounting substrate and the semiconductor element. As a result, generation of voids during underfill filling is suppressed.
  • the conductive connecting member in the cross section along the line connecting the adjacent first electrodes at the shortest distance, is in a region connecting the bottom side of the first electrode and the upper side of the second electrode. It may fit.
  • the ratio (L1 / S1) between the width L1 of the first electrode and the interval S1 between the adjacent first electrodes is the first It may be smaller than the ratio (L2 / S2) between the width L2 of the second electrode corresponding to the electrode and the interval S2 between the adjacent second electrodes.
  • the side surface of the first electrode in the cross section along the line connecting the adjacent first electrodes with the shortest distance, may be inclined inward of the electrode formation region.
  • the first electrode may be a protruding electrode that protrudes from the wiring layer provided on the substrate toward the semiconductor element.
  • the shape of the first electrode may be substantially triangular or trapezoidal.
  • the portable device includes any one of the semiconductor modules described above.
  • Still another aspect of the present invention is a method for manufacturing a semiconductor module.
  • the manufacturing method of the semiconductor module includes a wiring forming step of patterning a wiring layer including an adjacent substrate electrode on one main surface of the substrate, an element electrode provided on the semiconductor element corresponding to the substrate electrode, and the substrate electrode And an element mounting step of mounting a semiconductor element on the substrate, and in the wiring forming step, in the cross section along the line connecting the adjacent substrate electrodes at the shortest distance, The substrate electrode is formed so that the width is narrower than the width of the element electrode corresponding to the substrate electrode.
  • the conductive connection member that electrically connects the external connection electrode of the semiconductor element and the electrode pad of the wiring board is suppressed from expanding in the lateral direction, and between the connection portions of the adjacent conductive connection members. Since insulation is enhanced, connection reliability at the solder connection portion is improved.
  • FIG. 1 is a cross-sectional view showing a configuration of a semiconductor module according to a first embodiment. It is a top view which shows an example of the pattern of the wiring layer containing a board
  • FIG. 6 is a process cross-sectional view illustrating the method for manufacturing the semiconductor module according to the first embodiment.
  • FIG. 6 is a process cross-sectional view illustrating the method for manufacturing the semiconductor module according to the first embodiment. It is a top view which shows the other example of the wiring layer pattern containing a board
  • FIG. 6 is a cross-sectional view showing a configuration of a semiconductor module according to Embodiment 2.
  • FIG. 10 is a process cross-sectional view illustrating the manufacturing method of the semiconductor module according to the second embodiment.
  • FIG. 10 is a process cross-sectional view illustrating the manufacturing method of the semiconductor module according to the second embodiment.
  • FIG. 10 is a process cross-sectional view illustrating the manufacturing method of the semiconductor module according to the second embodiment.
  • FIG. 10 is a process cross-sectional view illustrating the manufacturing method of the semiconductor module according to the second embodiment.
  • FIG. 10 is a process cross-sectional view illustrating the manufacturing method of the semiconductor module according to the second embodiment.
  • It is sectional drawing which shows the structure of the semiconductor module which concerns on a modification. It is a figure which shows the structure of the mobile telephone provided with the semiconductor module which concerns on embodiment. It is a fragmentary sectional view of the mobile phone shown in FIG.
  • FIG. 1 is a cross-sectional view showing the configuration of the semiconductor module according to the first embodiment.
  • the semiconductor module 10 includes an element mounting substrate 20 and a semiconductor element 30.
  • the semiconductor element 30 is mounted on the element mounting substrate 20 with the electrode forming surface on which the element electrode (external electrode terminal) is formed face down, and the element electrode and the electrode terminal provided on the element mounting substrate 20 are mounted. And are electrically connected using solder. That is, the semiconductor element 30 is flip-chip connected to the element mounting substrate 20.
  • the element mounting substrate 20 includes an insulating resin layer 22, a wiring layer 24 provided on one main surface (on the semiconductor element mounting side) of the insulating resin layer 22, a protective layer 28, and the other main surface of the insulating resin layer 22.
  • the material constituting the insulating resin layer 22 examples include thermosetting resins such as melamine derivatives such as BT resin, liquid crystal polymers, epoxy resins, PPE resins, polyimide resins, fluororesins, phenol resins, and polyamide bismaleimides.
  • thermosetting resins such as melamine derivatives such as BT resin, liquid crystal polymers, epoxy resins, PPE resins, polyimide resins, fluororesins, phenol resins, and polyamide bismaleimides.
  • the insulating resin layer 22 has high thermal conductivity.
  • the insulating resin layer 22 contains silver, bismuth, copper, aluminum, magnesium, tin, zinc, an alloy thereof, and the like as a highly thermally conductive filler.
  • the insulating resin layer 22 is a glass epoxy in which a glass cloth is embedded in the insulating resin layer 22 in order to reduce the difference in thermal expansion coefficient from the semiconductor element 30 or to increase the rigidity of the insulating resin layer 22. You may consist of resin.
  • the wiring layer 24 has a predetermined pattern and is provided on one main surface of the insulating resin layer 22.
  • the wiring layer 24 is formed of a conductive material such as copper.
  • the wiring layer 24 includes a substrate electrode 24 a (electrode pad) for connecting the semiconductor element 30.
  • the substrate electrode 24a corresponds to the “first electrode” of the present invention. The shape of the substrate electrode 24a will be described later.
  • FIG. 2 is a plan view showing an example of the pattern of the wiring layer 24 including the substrate electrode 24a.
  • the substrate electrode 24a has a comb-like shape protruding from a part of the wiring layer 24 (comb-like electrode), and a pair of comb-like electrodes face each other, and the comb-like portion of one comb-like electrode and the other comb-like portion The comb-tooth-shaped portions of the electrode are alternately arranged.
  • the solder for flip chip connection is formed on the substrate electrode 24a. 2 corresponds to a line connecting adjacent substrate electrodes 24a at the shortest distance, and FIG. 1 corresponds to a cross-sectional view taken along the line A-A 'in FIG. 2 indicates a region where the semiconductor device 30 is mounted.
  • the protective layer 28 is provided on one main surface of the insulating resin layer 22 so as to cover the wiring layer 24 excluding the substrate electrode 24a.
  • the protective layer 28 suppresses the oxidation of the wiring layer 24 and the deterioration of the insulating resin layer 22.
  • the protective layer 28 is formed by, for example, a photo solder resist, and the thickness of the protective layer 28 is, for example, 10 to 50 ⁇ m.
  • the wiring layer 26 has a predetermined pattern and is provided on the other main surface of the insulating resin layer 22.
  • the wiring layer 26 is formed of a conductive material such as copper.
  • the thickness of the wiring layer 24 and the wiring layer 26 is, for example, 10 to 25 ⁇ m.
  • a via conductor 40 penetrating the insulating resin layer 22 is provided at a predetermined position of the insulating resin layer 22.
  • the via conductor 40 is formed by, for example, copper plating.
  • the wiring layer 24 and the wiring layer 26 are electrically connected by the via conductor 40.
  • the protective layer 28 is also provided on the other main surface of the insulating resin layer 22 so as to cover the wiring layer 26, and the oxidation of the wiring layer 26 and the deterioration of the insulating resin layer 22 are suppressed by the protective layer 28.
  • the protective layer 28 is provided with an opening for mounting the solder ball 80 on a predetermined region (land region) of the wiring layer 26.
  • the solder ball 80 is connected to the wiring layer 26 in the opening provided in the protective layer 28, and the semiconductor module 10 is connected to a printed wiring board (not shown) by the solder ball 80.
  • the semiconductor element 30 is an active element such as an IC (integrated circuit) or an LSI (large scale integrated circuit).
  • An element electrode 32 (electrode pad) is provided on the electrode forming surface of the semiconductor element 30 corresponding to the substrate electrode 24 a provided on the element mounting substrate 20, and a copper post 33 is formed on the surface of the element electrode 32.
  • the cross-sectional shape of the copper post 33 is the same as that of the element electrode 32.
  • the copper post 33 and the substrate electrode 24 a are connected by solder 70.
  • the element electrode 32 and the copper post 33 correspond to the “second electrode” of the present invention.
  • the element electrode 32 and the substrate electrode 24 a may be connected by the solder 70 without using the copper post 33. In this case, the element electrode 32 corresponds to the “second electrode” of the present invention.
  • the solder 70 corresponds to the “conductive connection member” of the present invention.
  • An underfill 72 is filled between the semiconductor element 30 and the element mounting substrate 20.
  • the underfill 72 protects the solder joint between the substrate electrode 24a and the element electrode 32, and reduces the stress acting between the semiconductor element 30 and the element mounting substrate 20. Therefore, the connection reliability of the semiconductor module 10 can be reduced. More improved.
  • the width L1 of the substrate electrode 24a is narrower than the width L2 of the element electrode 32 corresponding to the substrate electrode 24a. More preferably, when the interval between adjacent substrate electrodes 24a is S1, and the interval between adjacent element electrodes 32 is S2, the L / S ratio (L1 / S1) of the substrate electrode 24a is L / S ( L2 / S2). Further, the height H of the substrate electrode 24a is higher than the width L1 of the substrate electrode 24a, and the relationship of H> L1 is established.
  • the side surface of the substrate electrode 24a is inclined inward of the substrate electrode 24a.
  • the angle formed by the substrate surface of the element mounting substrate 20 and the side surface of the substrate electrode 24a is an acute angle. If this condition is satisfied, the shape of the substrate electrode 24a is not particularly limited.
  • the shape of the substrate electrode 24a in the cross section along the line connecting the adjacent substrate electrodes 24a is substantially triangular or trapezoidal.
  • the solder 70 is suppressed from spreading in the lateral direction (the surface direction of the element mounting substrate 20), the solder 70 is accommodated inside the width L2 of the element electrode 32. More specifically, the solder 70 is contained in a region connecting the bottom 24 b of the substrate electrode 24 a (the portion where the substrate electrode 24 and the insulating resin layer 22 are in contact) and the upper side 32 a of the element electrode 32. As a result, the occurrence of a short circuit between the adjacent substrate electrode 24a and the element electrode 32 is suppressed, so that the pitch between the substrate electrode 24a and the element electrode 32 is reduced without impairing the connection reliability at the time of solder connection. be able to.
  • the underfill 72 is filled between the element mounting substrate 20 and the semiconductor element 30 by suppressing the solder 70 from spreading in the lateral direction, the solder 70 becomes an obstacle to filling the underfill 72.
  • the underfill 72 is likely to enter the gap between the element mounting substrate 20 and the semiconductor element 30. As a result, generation of voids during underfill filling is suppressed.
  • the width L1 of the substrate electrode 24a can be reduced by the structure in which the height H of the substrate electrode 24a is higher than the width L1 of the substrate electrode 24a. Therefore, the adjacent substrate electrodes 24a can be narrowed or densified.
  • an insulating resin layer 22 having a copper foil 23 attached to one main surface and a copper foil 25 attached to the other main surface is prepared.
  • via holes 27 are formed in predetermined regions of the insulating resin layer 22 and the copper foils 23 and 25 by excavation such as drilling and laser processing.
  • the via hole 27 is filled with copper by the electroless plating method and the electrolytic plating method to form the via conductor 40 and provided on the main surface of the insulating resin layer 22.
  • the copper foils 23 and 25 are thickened.
  • resist patterns 100a, 100b, 102 corresponding to the wiring layers 24, 24a, 26 are formed on the copper foils 23, 25, respectively.
  • the wiring layer 24 having a predetermined pattern including the substrate electrode 24a on one main surface of the insulating resin layer 22 is formed.
  • patterning is performed so that the width L1 of the substrate electrode 24a is narrower than the width of the element electrode corresponding to the substrate electrode 24a in the cross section along the line connecting the adjacent substrate electrodes 24a. More preferably, a ratio (L1 / S1) between the width L1 of the substrate electrode 24a and the interval S1 between the adjacent substrate electrodes 24a in a cross section along the line connecting the adjacent substrate electrodes 24a corresponds to the element corresponding to the substrate electrode 24a.
  • the patterning is performed so as to be smaller than the ratio (L2 / S2) between the electrode width L2 and the interval S2 between adjacent element electrodes. Further, patterning is performed so that the side surface of the substrate electrode 24a is inclined inward of the formation region of the substrate electrode 24a.
  • the wiring layer 26 is formed on the other main surface of the insulating resin layer 22 by performing wet etching using the resist pattern 102 as a mask.
  • the wiring layer 24 excluding the substrate electrode 24a is coated on one main surface of the insulating resin layer 22 by using a well-known photolithography method.
  • a protective layer 28 is formed. Further, a protective layer 28 having an opening that exposes the land region of the wiring layer 26 in a predetermined region is formed on the other main surface of the insulating resin layer 22.
  • a semiconductor element 30 is prepared in which the element electrode 32 and the copper post 33 are provided on the electrode forming surface, and the solder 70 is mounted on the copper post 33. Then, the semiconductor element 30 is mounted on the element mounting substrate 20.
  • the copper post 33 can be formed using, for example, a plating method.
  • the corresponding copper post 33 and the substrate electrode 24a are bonded using a solder 70 by a reflow process.
  • the copper post 33 and the substrate electrode 24a are electrically connected.
  • an underfill 72 is filled between the semiconductor element 30 and the element mounting substrate 20.
  • solder balls 80 are mounted on the wiring layer 26 in the openings provided in the protective layer 28.
  • the semiconductor module 10 according to the first embodiment can be manufactured.
  • the semiconductor element 30 may be sealed with a sealing resin layer using a transfer molding method or the like.
  • FIG. 5 is a plan view showing another example of a wiring layer pattern including a substrate electrode.
  • the protective layer 28 provided on one main surface of the insulating resin layer 22 is provided with an opening T corresponding to the outer peripheral portion of the mounted semiconductor device. In the opening T, the substrate electrode 24a and the insulating resin layer 22 are exposed.
  • the substrate electrode 24 a is formed at one end of the wiring layer 24, and the via conductor 40 is connected to the other end of the wiring layer 24.
  • the wiring layer 24 extends from the substrate electrode 24 to the via conductor 40.
  • the via conductors 40 are provided at predetermined positions in the semiconductor device mounting region (inside the opening T in FIG. 5) and outside the semiconductor device mounting region (outside the opening T in FIG. 5). .
  • a plurality of substrate electrodes 24a are provided in the opening T.
  • the longitudinal direction of the substrate electrode 24 a is provided so as to cross the opening T. 5 corresponds to a line connecting adjacent substrate electrodes 24a with the shortest distance, and the mounting region of the semiconductor element 30 in FIG. 1 is a cross-sectional view taken along the line CC ′ in FIG. Equivalent to.
  • FIG. 6 is a cross-sectional view showing the configuration of the semiconductor module according to the second embodiment.
  • the semiconductor module 10 includes an element mounting substrate 20 and a semiconductor element 30.
  • the semiconductor element 30 is formed using, for example, a P-type silicon wafer.
  • An element electrode 32 connected to the integrated circuit is provided on the main surface MS1 serving as a mounting surface.
  • a metal such as aluminum (Al) or copper (Cu) is used as the material of the device electrode 32.
  • the device electrode 32 corresponds to the “second electrode” of the present invention.
  • a protective layer 34 is formed on main surface MS1 of semiconductor element 30 so that element electrode 32 is exposed.
  • a silicon oxide film (SiO 2 ), a silicon nitride film (SiN), a polyimide (PI) film, or the like is suitable.
  • the element mounting substrate 20 is formed integrally with the insulating resin layer 22, the wiring layer 24 (rewiring) provided on the main surface of the insulating resin layer 22 opposite to the semiconductor element 30, and the wiring layer 24. And a protruding electrode 90 protruding from the wiring layer 24 toward the insulating resin layer 22 side.
  • the protruding electrode 90 corresponds to the “first electrode” of the present invention. 6 corresponds to a cross-sectional view along a line connecting adjacent protruding electrodes 90 with the shortest distance.
  • the insulating resin layer 22 is made of an insulating resin, and is formed of a material that causes plastic flow when heated or pressurized, for example.
  • a material that causes plastic flow when pressed is an epoxy thermosetting resin.
  • the epoxy thermosetting resin used for the insulating resin layer 22 may be any material having a viscosity of 1 kPa ⁇ s under conditions of a temperature of 160 ° C. and a pressure of 8 Mpa, for example.
  • the viscosity of the resin is reduced to about 1/8 compared to the case where no pressure is applied. .
  • the B stage epoxy resin before thermosetting is not as viscous as when the resin is not pressurized under the condition of the glass transition temperature Tg or lower, and does not cause viscosity even when pressurized.
  • the epoxy thermosetting resin is a dielectric having a dielectric constant of about 3-4.
  • the wiring layer 24 is provided on the main surface of the insulating resin layer 22 opposite to the semiconductor element 30 and is made of a conductive material, preferably a rolled metal, and further rolled copper. Since rolled copper is stronger in terms of mechanical strength than a metal film made of copper formed by plating or the like, it is excellent as a material for rewiring.
  • the wiring layer 24 may be formed of electrolytic copper or the like.
  • the wiring layer 24 and the protruding electrode 90 are integrally formed, so that the connection between the wiring layer 24 and the protruding electrode 90 is ensured.
  • the projecting electrode 90 has an overall shape that decreases in diameter as it approaches the tip.
  • the side surface of the protruding electrode 90 is tapered to the inside of the electrode formation region.
  • the angle formed by the surface of the wiring layer 24 and the side surface of the protruding electrode 90 is an acute angle.
  • the diameter of the tip (top surface) and the base surface of the protruding electrode 90 are, for example, about 45 ⁇ m ⁇ and about 60 ⁇ m ⁇ , respectively.
  • the height of the protruding electrode 90 is, for example, 20 ⁇ m.
  • the top surface of the protruding electrode 90 and the element electrode 32 corresponding to the protruding electrode 90 are joined by solder 70.
  • the width L 1 of the base portion of the protruding electrode 90 is narrower than the width L 2 of the element electrode 32 corresponding to the protruding electrode 90. More preferably, when the interval between the base portions of the adjacent protruding electrodes 90 is S1 and the interval between the adjacent element electrodes 32 is S2, the L / S ratio (L1 / S1) of the protruding electrodes 90 is L of the element electrodes 32. It is smaller than / S (L2 / S2). Furthermore, since the diameter of the protruding electrode 90 becomes smaller as it approaches the tip, the width L1 'of the top surface of the protruding electrode 90 is narrower than the width L1 of the base of the protruding electrode 90.
  • a protective layer 28 for preventing the wiring layer 24 from being oxidized is provided on the main surface of the wiring layer 24 opposite to the insulating resin layer 22.
  • the protective layer 28 include a solder resist layer.
  • An opening is formed in a predetermined region of the protective layer 28, and a part of the wiring layer 24 is exposed through the opening.
  • Solder balls 80 as external connection electrodes are formed in the openings, and the solder balls 80 and the wiring layer 24 are electrically connected.
  • the position where the solder ball 80 is formed, that is, the area where the opening is formed is, for example, an end portion that is routed by rewiring (wiring layer 24).
  • a semiconductor element 30 in which an element electrode 32 and a protective layer 34 are previously formed on one main surface of a semiconductor substrate 31 is prepared.
  • a semiconductor substrate 31 such as a P-type silicon substrate by using a semiconductor manufacturing process in which a well-known lithography technique, etching technique, ion implantation technique, film forming technique, and heat treatment technique are combined.
  • a predetermined integrated circuit is formed on the surface and an element electrode 32 is formed on the outer peripheral edge thereof.
  • a metal such as aluminum or copper is employed as the material of the element electrode 32.
  • An insulating protective layer 34 for protecting the semiconductor substrate 31 is formed on the main surface of the semiconductor substrate 31 excluding these element electrodes 32.
  • a silicon oxide film (SiO 2 ), a silicon nitride film (SiN), polyimide (PI), or the like is employed.
  • a solder 70 is mounted on the element electrode 32 exposed at the opening of the protective layer 34 by a screen printing method. Specifically, a solder paste in which a resin and a solder material are pasted is printed on a desired location by a screen mask and heated to a solder melting temperature to form solder 70.
  • a copper plate 200 is prepared as a metal plate having a thickness at least larger than the sum of the height of the protruding electrode 90 and the thickness of the wiring layer 24 as shown in FIG.
  • the thickness of the copper plate 200 is, for example, 125 ⁇ m.
  • a rolled metal made of rolled copper is employed as the copper plate 200.
  • a resist 210 is selectively formed by a lithography method in accordance with a pattern corresponding to the projected electrode formation region. Specifically, a resist film having a predetermined thickness is attached to the copper plate 200 using a laminator device, exposed using a photomask having a pattern of the protruding electrodes 90, and then developed to form a resist on the copper plate 200. 210 is selectively formed. In order to improve the adhesion to the resist, it is desirable to perform pretreatment such as polishing and cleaning on the surface of the copper plate 200 as needed before laminating the resist film. It is desirable to protect the copper plate 200 by forming a resist protective film (not shown) on the entire surface opposite to the surface on which the resist 210 is provided (upper surface side).
  • a predetermined frustoconical pattern protruding from the surface of the copper plate 200 is performed by performing a wet etching process using a chemical such as a ferric chloride solution using the resist 210 as a mask.
  • the protruding electrode 90 is formed.
  • the protruding electrode 90 is formed to have a tapered side surface portion whose diameter (dimension) becomes narrower as it approaches the tip portion.
  • the wet etching process is performed under such a condition that the diameter (width) L1 of the base portion of the protruding electrode 90 is smaller than the width L2 (see FIG. 1) of the element electrode 32 corresponding to the protruding electrode 90.
  • the diameter of the base portion, the diameter of the top portion, and the height of the protruding electrode 90 of this embodiment are, for example, 100 to 140 ⁇ m ⁇ , 50 ⁇ m ⁇ , and 20 to 25 ⁇ m, respectively.
  • the resist 210 and the resist protective film are stripped using a stripping agent.
  • the bump electrode 90 is integrally formed on the copper plate 200.
  • a metal mask such as silver (Ag) may be employed instead of the resist 210.
  • the patterning of the bump electrode 90 can be further miniaturized.
  • the insulating resin layer 22 is laminated on the surface of the copper plate 200 on the side where the protruding electrodes 90 are provided, using a vacuum laminating method.
  • an insulating material that causes plasticity or deformation by pressure or heating is used as the insulating resin layer 22, as described above.
  • the insulating resin layer 22 is thinned so that the top surface of the protruding electrode 90 is exposed using O 2 plasma etching.
  • the surface of the copper plate 200 opposite to the side where the protruding electrodes 90 are provided is etched back by wet etching using a chemical solution such as ferric chloride solution.
  • the copper plate 200 is thinned.
  • a resist protective film (not shown) is formed on the side where the protruding electrode 90 is provided to protect the protruding electrode 90 and the copper plate 200, and the resist protective film is removed after the etching process.
  • the copper plate 200 that is processed to have a predetermined thickness (the thickness of the wiring layer 24) and is provided with the predetermined protruding electrodes 90 integrally is formed.
  • the thickness of the copper plate 200 of this embodiment is about 20 ⁇ m.
  • the semiconductor element 30 and the copper plate 200 are pressure-bonded in a state where the corresponding protruding electrode 90 and the element electrode 32 are in contact with each other by press molding using a press machine.
  • the pressure and temperature during pressing are about 17 kN and 200 ° C., respectively.
  • the solder 70 is melted by reflow, and the corresponding protruding electrode 90 and the element electrode 32 are joined by the solder 70.
  • the solder 70 Since the wettability between the molten solder 70 and the top surface of the bump electrode 90 is higher than the wettability between the molten solder 70 and the insulating resin layer 22, the solder 70 is attracted to the top surface of the bump electrode 90, In the vicinity of the top surface of the electrode 90, the width of the solder 70 is within the top surface of the protruding electrode 90.
  • the wiring layer 24 (rewiring) is formed by processing the copper plate 200 into a predetermined wiring pattern using a lithography technique and an etching technique.
  • a protective layer (photo solder resist layer) 28 is laminated on the wiring layer 24 and the insulating resin layer 22, a predetermined region (solder) of the protective layer 28 is formed by photolithography. An opening is provided in the ball mounting area.
  • the protective layer 28 functions as a protective film for the wiring layer 24.
  • An epoxy resin or the like is employed for the protective layer 28, and the film thickness is, for example, about 40 ⁇ m.
  • solder balls 80 are mounted on the openings of the protective layer 28 by screen printing.
  • the solder ball 80 is formed by printing a solder paste made of a resin and a solder material in a paste form on a desired location using a screen mask and heating to a solder melting temperature.
  • the semiconductor module according to the second embodiment can be manufactured through the above steps.
  • the solder 70 fits in the width L ⁇ b> 1 ′ of the top surface of the protruding electrode 90.
  • the width L1 ′ of the top surface of the bump electrode 90 is narrower than the width L1 of the base portion of the bump electrode 90, and the width L1 of the base portion of the bump electrode 90 is equal to the width L2 of the element electrode 32 corresponding to the bump electrode 90. Narrower than that. That is, the width of the solder 70 on the protruding electrode 90 side is suppressed from spreading in the lateral direction (the surface direction of the element mounting substrate 20) so as to be within the width L2 of the element electrode 32.
  • the solder 70 is provided between the top surface of the bump electrode 90 and the element electrode 32, and the solder 70 is in contact with the top surface of the bump electrode 90. As long as it is within L2, it may be in contact with the side surface of the protruding electrode 90.
  • a gap is formed between the side surface portion of the tip portion of the protruding electrode 90 and the insulating resin layer 22, and the solder 70 enters the gap, whereby the protrusion
  • the solder 70 may be in contact with the side surface of the tip portion of the electrode 90.
  • the width of the side surface portion of the bump electrode 90 is narrower than the width L1 of the base portion of the bump electrode 90, and the width of the solder 70 in contact with the bump electrode 90 is narrower than the width L1 of the base portion of the bump electrode 90. . That is, the width of the solder 70 on the protruding electrode 90 side is suppressed from spreading in the lateral direction (the surface direction of the element mounting substrate 20) so as to be within the width L2 of the element electrode 32.
  • a portable device provided with the semiconductor module of the present invention.
  • the example mounted in a mobile telephone is shown as a portable apparatus, even if it is electronic apparatuses, such as a personal digital assistant (PDA), a digital video camera (DVC), a music player, and a digital still camera (DSC), for example. Good.
  • PDA personal digital assistant
  • DVC digital video camera
  • DSC digital still camera
  • FIG. 13 is a diagram showing a configuration of a mobile phone including the semiconductor module 10 according to the embodiment.
  • a cellular phone 1111 has a structure in which a first housing 1112 and a second housing 1114 are connected by a movable portion 1120. The first housing 1112 and the second housing 1114 can be rotated around the movable portion 1120.
  • the first housing 1112 is provided with a display portion 1118 and a speaker portion 1124 for displaying information such as characters and images.
  • the second housing 1114 is provided with an operation portion 1122 such as operation buttons and a microphone portion 1126. Note that any one of the semiconductor modules according to the embodiments of the present invention is mounted inside the mobile phone 1111.
  • the semiconductor module of the present invention mounted on a mobile phone is employed in a power supply circuit for driving each circuit, an RF generating circuit for generating RF, a DAC, an encoder circuit, and a display unit of the mobile phone. It can be employed as a drive circuit for a backlight as a light source of a liquid crystal panel.
  • FIG. 14 is a partial cross-sectional view (cross-sectional view of the first casing 1112) of the mobile phone shown in FIG.
  • the semiconductor module 10 according to the embodiment of the present invention is mounted on a printed circuit board 1128 via solder balls 80 and is electrically connected to the display unit 1118 and the like via such printed circuit board 1128.
  • a heat radiating substrate 1116 such as a metal substrate is provided on the back surface side of the semiconductor module 10 (the surface opposite to the solder ball 80). For example, heat generated from the semiconductor module 10 is transferred into the first housing 1112. The heat can be efficiently radiated to the outside of the first housing 1112 without stagnation.
  • the portable device including the semiconductor module according to the embodiment of the present invention, the following effects can be obtained.
  • the semiconductor module 10 since the reliability of the connection between the first electrode on the substrate side and the second electrode on the semiconductor element side is improved, the operation reliability of the semiconductor module 10 is improved. Therefore, the semiconductor module 10 is mounted. The operational reliability of the mobile device is improved.
  • the heat from the semiconductor module 10 can be efficiently radiated to the outside through the heat dissipation substrate 1116, the temperature rise of the semiconductor module 10 is suppressed, and the thermal stress between the conductive member and the wiring layer is reduced. The For this reason, compared with the case where the heat dissipation substrate 1116 is not provided, the conductive member in the semiconductor module is prevented from peeling from the wiring layer, and the reliability (heat resistance reliability) of the semiconductor module 10 is improved. As a result, the reliability (heat resistance reliability) of the portable device can be improved.
  • the semiconductor module 10 described in the above embodiment can be reduced in size, a portable device equipped with such a semiconductor module 10 can be reduced in thickness and size.
  • solder is used as a conductive connection member that electrically connects an electrode provided on the element mounting substrate 20 and an electrode provided on the semiconductor element 30.
  • a conductive paste such as a silver paste may be used in addition to the solder.
  • the present invention can be used for a semiconductor module in which a semiconductor element is mounted on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Wire Bonding (AREA)

Abstract

 半導体モジュール10は、素子搭載用基板20および半導体素子30を備える。半導体素子30は素子搭載用基板20にフリップチップ接続されており、半導体素子30に設けられた素子電極32と素子搭載用基板20に設けられた基板電極24aとがはんだ70により接続されている。隣接する基板電極24aを結ぶ線に沿った断面において、基板電極24aの幅L1は、基板電極24aに対応する素子電極32の幅L2に比べて狭くなっている。

Description

半導体モジュール、半導体モジュールの製造方法および携帯機器
 本発明は、半導体素子が基板に実装された半導体モジュールに関する。
 近年、電子機器の小型化・高機能化に伴い、電子機器に使用される半導体モジュールのさらなる小型化が求められている。こうした半導体モジュールの小型化に伴い、半導体素子(半導体チップ)を配線基板に実装するための電極パッド間の狭ピッチ化が不可欠となっている。半導体素子の表面実装方法としては、半導体素子の外部接続電極と配線基板の電極パッドとをはんだ付けするフリップチップ実装方法が知られている。
特開2006-351589号公報
 従来のフリップチップ接続では、半導体素子の外部接続電極と配線基板の電極パッドとを電気的に接続するはんだが横方向(基板面と平行な方向)に膨らみ、隣接する外部接続電極と電極パッドの接続部分に接触することにより短絡が生じてしまうおそれがあった。このため、電極パッド間の狭ピッチ化に制約が生じていた。
 また、外部接続電極と電極パッドと接続するはんだが横方向に膨らむことにより、半導体素子と配線基板との間にアンダーフィルを充填する際にはんだがアンダーフィルの流れの障害となり、ボイドが発生するおそれがあった。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、半導体素子の外部接続電極と配線基板の電極パッドとが導電性接続部材の一例であるはんだ付けされた構造を有する半導体モジュールにおいて、はんだ接続部分の接続信頼性を向上させる技術の提供にある。また、本発明の他の目的は、半導体素子の外部接続電極と配線基板の電極パッドとがはんだ付けされた構造を有する半導体モジュールにおいて、半導体素子と配線基板との間にアンダーフィルを充填する際にボイドが発生することを抑制することができる技術の提供にある。
 本発明のある態様は、半導体モジュールである。当該半導体モジュールは、第1の電極が設けられた基板と、第2の電極が設けられた半導体素子と、第1の電極と第2の電極とを接続する導電性接続部材と、を備え、隣接する第1の電極を最短距離で結ぶ線に沿った断面において、第1の電極の幅が、第1の電極に対応する第2の電極の幅に比べて狭く、かつ第1の電極の幅に比べて第1の電極の高さが高いことを特徴とする。
 この態様によれば、第1の電極と第2の電極とを接続する導電性接続部材が横方向に広がることが抑制されるため、導電性接続部材が第2の電極の幅の内側に収まる。これにより、隣接する第1の電極および第2の電極の間で短絡が生じることが抑制されるため、導電性接続部材による接続時の接続信頼性を損なうことなく、第1の電極および第2の電極の狭ピッチ化を図ることができる。
 また、導電性接続部材が横方向に広がることが抑制されることにより、素子搭載用基板と半導体素子との間にアンダーフィルを充填する場合に、導電性接続部材がアンダーフィルの充填の障害になることが低減し、素子搭載用基板と半導体素子との隙間にアンダーフィルが入り込みやすくなる。この結果、アンダーフィル充填時にボイドが発生することが抑制される。
 また、導電性接続部材が横方向に広がることが抑制されることにより、素子搭載用基板と半導体素子との間にアンダーフィルを充填する場合に、導電性接続部材がアンダーフィルの充填の障害になることが低減し、素子搭載用基板と半導体素子との隙間にアンダーフィルが入り込みやすくなる。この結果、アンダーフィル充填時にボイドが発生することが抑制される。
 上記態様の半導体モジュールに関し、隣接する第1の電極を最短距離で結ぶ線に沿った断面において、導電性接続部材が、第1の電極の底辺と第2の電極の上辺とを結ぶ領域内に収まっていてもよい。また、隣接する第1の電極を最短距離で結ぶ線に沿った断面において、第1の電極の幅L1と隣接する第1の電極の間隔S1との比(L1/S1)が、第1の電極に対応する第2の電極の幅L2と隣接する第2の電極の間隔S2との比(L2/S2)より小さくてもよい。また、隣接する第1の電極を最短距離で結ぶ線に沿った断面において、第1の電極の側面が電極形成領域の内側に傾いていてもよい。また、第1の電極が基板に設けられた配線層から半導体素子の側へ突出する突起電極であってもよい。また、隣接する第1の電極を最短距離で結ぶ線に沿った断面において、第1の電極の形状が略三角形または台形であってもよい。
 本発明の他の態様は、携帯機器である。当該携帯機器は、上述したいずれかの態様の半導体モジュールを備えることを特徴とする。
 本発明のさらに他の態様は、半導体モジュールの製造方法である。当該半導体モジュールの製造方法は、基板の一方の主表面に、隣接する基板電極を含む配線層をパターニングする配線形成工程と、基板電極に対応して半導体素子に設けられた素子電極と基板電極とを導電性接続部材を用いて接続し、基板に半導体素子を搭載する素子搭載工程と、を備え、配線形成工程において、隣接する基板電極を最短距離で結ぶ線に沿った断面において、基板電極の幅が基板電極に対応する素子電極の幅よりも狭くなるように基板電極を形成することを特徴とする。
 本発明によれば、半導体素子の外部接続電極と配線基板の電極パッドとを電気的に接続する導電性接続部材が横方向に膨らむことが抑制され、隣接する導電性接続部材の接続部分間の絶縁性が高まるため、はんだ接続部分における接続信頼性が向上する。
実施の形態1に係る半導体モジュールの構成を示す断面図である。 基板電極を含む配線層のパターンの一例を示す平面図である。 実施の形態1に係る半導体モジュールの製造方法を示す工程断面図である。 実施の形態1に係る半導体モジュールの製造方法を示す工程断面図である。 基板電極を含む配線層パターンの他の例を示す平面図である。 実施の形態2に係る半導体モジュールの構成を示す断面図である。 実施の形態2に係る半導体モジュールの製造方法を示す工程断面図である。 実施の形態2に係る半導体モジュールの製造方法を示す工程断面図である。 実施の形態2に係る半導体モジュールの製造方法を示す工程断面図である。 実施の形態2に係る半導体モジュールの製造方法を示す工程断面図である。 実施の形態2に係る半導体モジュールの製造方法を示す工程断面図である。 変形例に係る半導体モジュールの構成を示す断面図である。 実施の形態に係る半導体モジュールを備えた携帯電話の構成を示す図である。 図13に示した携帯電話の部分断面図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 (実施の形態1)
 図1は、実施の形態1に係る半導体モジュールの構成を示す断面図である。半導体モジュール10は、素子搭載用基板20および半導体素子30を備える。半導体素子30は、素子電極(外部電極端子)が形成された電極形成面をフェイスダウンした状態で素子搭載用基板20に実装され、当該素子電極と、素子搭載用基板20に設けられた電極端子とがはんだを用いて電気的に接続されている。すなわち、半導体素子30は素子搭載用基板20にフリップチップ接続されている。
 素子搭載用基板20は、絶縁樹脂層22と、絶縁樹脂層22の一方の主表面(半導体素子搭載側)に設けられた配線層24、保護層28と、絶縁樹脂層22の他方の主表面に設けられた配線層26、保護層28、はんだボール80を備える。
 絶縁樹脂層22を構成する材料としては、たとえば、BTレジン等のメラミン誘導体、液晶ポリマー、エポキシ樹脂、PPE樹脂、ポリイミド樹脂、フッ素樹脂、フェノール樹脂、ポリアミドビスマレイミド等の熱硬化性樹脂が例示される。半導体モジュール10の放熱性向上の観点から、絶縁樹脂層22は高熱伝導性を有することが望ましい。このため、絶縁樹脂層22は、銀、ビスマス、銅、アルミニウム、マグネシウム、錫、亜鉛およびこれらの合金などを高熱伝導性フィラーとして含有することが好ましい。また、絶縁樹脂層22は、半導体素子30との熱膨張係数の差を小さくするため、または、絶縁樹脂層22の剛性を高めるために、絶縁樹脂層22内にガラスクロスが埋め込まれたガラスエポキシ樹脂からなっていてもよい。
 配線層24は、所定パターンを有し、絶縁樹脂層22の一方の主表面に設けられている。配線層24は、銅などの導電材料により形成される。配線層24は、半導体素子30を接続するための基板電極24a(電極パッド)を含む。基板電極24aは、本発明の「第1の電極」に相当する。基板電極24aの形状については後述する。
 図2は、基板電極24aを含む配線層24のパターンの一例を示す平面図である。基板電極24aは、配線層24の一部から突出した櫛状をなしており(櫛状電極)、一対の櫛状電極が互いに対向し、一方の櫛状電極の櫛歯状部と他方の櫛状電極の櫛歯状部が互い違いに併設した構造を有する。フリップチップ接続用のはんだは、基板電極24aの上に形成される。なお、図2のA-A’線は、隣接する基板電極24aを最短距離で結ぶ線に相当し、図1は図2のA-A’線に沿った断面図に相当する。なお、図2に示す領域Rは、半導体装置30が搭載される領域を示す。
 図1に戻り、保護層28は、基板電極24aを除く配線層24を覆うように絶縁樹脂層22の一方の主表面に設けられている。保護層28によって配線層24の酸化や絶縁樹脂層22の劣化が抑制される。保護層28は、たとえばフォトソルダーレジストにより形成され、保護層28の厚さは、例えば10~50μmである。
 配線層26は、所定パターンを有し、絶縁樹脂層22の他方の主表面に設けられている。配線層26は、銅などの導電材料により形成される。配線層24および配線層26の厚さは、例えば10~25μmである。
 絶縁樹脂層22の所定位置において、絶縁樹脂層22を貫通するビア導体40が設けられている。ビア導体40は、例えば、銅めっきにより形成される。ビア導体40により、配線層24と配線層26とが電気的に接続されている。
 保護層28は、配線層26を覆うように絶縁樹脂層22の他方の主表面にも設けられており、保護層28によって配線層26の酸化や絶縁樹脂層22の劣化が抑制される。保護層28には、配線層26の所定領域(ランド領域)上にはんだボール80を搭載するための開口部が設けられている。はんだボール80は、保護層28に設けられた開口部内において、配線層26に接続され、半導体モジュール10は、はんだボール80によって図示しないプリント配線基板に接続される。
 半導体素子30は、IC(集積回路)、LSI(大規模集積回路)などの能動素子である。半導体素子30の電極形成面には、素子搭載用基板20に設けられた基板電極24aに対応して素子電極32(電極パッド)が設けられており、素子電極32の表面に銅ポスト33が形成されている。銅ポスト33の断面形状は素子電極32と同様である。この銅ポスト33と基板電極24aとがはんだ70により接続されている。素子電極32および銅ポスト33は、本発明の「第2の電極」に相当する。なお、銅ポスト33を介さずに、素子電極32と基板電極24aとがはんだ70により接続されていてもよい。この場合には、素子電極32が本発明の「第2の電極」に相当する。また、はんだ70は、本発明の「導電性接続部材」に相当する。
 半導体素子30と素子搭載用基板20との間にアンダーフィル72が充填されている。アンダーフィル72により、基板電極24aと素子電極32とのはんだ接合部分が保護されるとともに、半導体素子30と素子搭載用基板20との間に働く応力が緩和されるため、半導体モジュール10の接続信頼性がより向上する。
 ここで、基板電極24aの特徴について説明する。
 隣接する基板電極24aを結ぶ線に沿った断面において、基板電極24aの幅L1は、基板電極24aに対応する素子電極32の幅L2に比べて狭くなっている。より好ましくは、隣接する基板電極24aの間隔をS1、隣接する素子電極32の間隔をS2としたとき、基板電極24aのL/S比(L1/S1)は、素子電極32のL/S(L2/S2)より小さい。また、基板電極24aの高さHは、基板電極24aの幅L1より高くなっており、H>L1という関係が成り立っている。
 この他、基板電極24aの側面は、基板電極24aの内側に傾いている。言い換えると、素子搭載用基板20の基板面と基板電極24aの側面とのなす角は鋭角である。この条件を満たせば、基板電極24aの形状は特に限定されないが、たとえば、隣接する基板電極24aを結ぶ線に沿った断面における基板電極24aの形状は略三角形状、台形状である。
 以上の構成によれば、はんだ70が横方向(素子搭載用基板20の面方向)に広がることが抑制されるため、はんだ70が素子電極32の幅L2の内側に収まる。より具体的には、はんだ70は、基板電極24aの底辺24b(基板電極24と絶縁樹脂層22とが接する部分)と素子電極32の上辺32aを結ぶ領域内に収まっている。これにより、隣接する基板電極24aおよび素子電極32の間で短絡が生じることが抑制されるため、はんだ接続時の接続信頼性を損なうことなく、基板電極24aおよび素子電極32の狭ピッチ化を図ることができる。
 また、はんだ70が横方向に広がることが抑制されることにより、素子搭載用基板20と半導体素子30との間にアンダーフィル72を充填する場合に、はんだ70がアンダーフィル72の充填の障害になることが低減し、素子搭載用基板20と半導体素子30との隙間にアンダーフィル72が入り込みやすくなる。この結果、アンダーフィル充填時にボイドが発生することが抑制される。
 また、基板電極24aの高さHが基板電極24aの幅L1より高い構造により、基板電極24aの幅L1を狭めることができる。このため、隣接する基板電極24aを狭ピッチ化あるいは高密度化することができる。
 (実施の形態1の半導体モジュールの製造方法)
 実施の形態1に係る素子搭載用基板および半導体モジュールの製造方法について図3および図4を参照して説明する。
 まず、図3(A)に示すように、一方の主表面に銅箔23が、他方の主表面に銅箔25が貼り付けられた絶縁樹脂層22を準備する。
 次に、図3(B)に示すように、ドリル加工、レーザ加工などの掘削加工により、絶縁樹脂層22および銅箔23、25の所定領域にビアホール27を形成する。
 次に、図3(C)に示すように、無電解めっき法および電解めっき法により、ビアホール27に銅を充填してビア導体40を形成するとともに、絶縁樹脂層22の主表面に設けられた銅箔23、25を厚膜化する。
 そして、図3(D)に示すように、銅箔23、25の上にそれぞれ配線層24、24a、26に対応したレジストパターン100a、100b、102を形成する。
 次に、図3(E)に示すように、レジストパターン100a、100bをマスクとしてウェットエッチングを行うことにより、絶縁樹脂層22の一方の主表面に基板電極24aを含む所定パターンの配線層24を形成する。ここで、隣接する基板電極24aを結ぶ線に沿った断面において、基板電極24aの幅L1が当該基板電極24aに対応する素子電極の幅よりも狭くなるようにパターニングを行う。より好ましくは、隣接する基板電極24aを結ぶ線に沿った断面において、基板電極24aの幅L1と隣接する基板電極24aの間隔S1との比(L1/S1)が、基板電極24aに対応する素子電極の幅L2と隣接する素子電極の間隔S2との比(L2/S2)より小さくなるようにパターニングを行う。また、基板電極24aの側面が基板電極24aの形成領域の内側に傾くようにパターニングを行う。
 一方、レジストパターン102をマスクとしてウェットエッチングを行うことにより、絶縁樹脂層22の他方の主表面に配線層26を形成する。
 次に、図4(A)に示すように、フォトソルダーレジストを積層した後、周知のフォトリソグラフィ法を用いて、絶縁樹脂層22の一方の主表面に基板電極24aを除く配線層24を被覆する保護層28を形成する。また、絶縁樹脂層22の他方の主表面において、所定領域に配線層26のランド領域が露出するような開口部を有する保護層28を形成する。
 次に、図4(B)に示すように、電極形成面に素子電極32および銅ポスト33が設けられ、銅ポスト33にはんだ70が搭載された半導体素子30を準備する。そして、半導体素子30を素子搭載用基板20の上に搭載する。銅ポスト33は、たとえば、めっき法を用いて形成することができる。
 次に、図4(C)に示すように、素子搭載用基板20に半導体素子30が搭載された状態で、リフロー工程により対応する銅ポスト33と基板電極24aとをはんだ70を用いて接合し、銅ポスト33と基板電極24aとを電気的に接続する。
 次に、図4(D)に示すように、半導体素子30と素子搭載用基板20との間にアンダーフィル72を充填する。また、保護層28に設けられた開口部において、配線層26にはんだボール80を搭載する。
 以上の工程により、実施の形態1に係る半導体モジュール10を製造することができる。なお、図示は省略するが、トランスファーモールド法などを用いて、半導体素子30を覆うように封止樹脂層により封止してもよい。
 (配線層パターンの他の例)
 図5は、基板電極を含む配線層パターンの他の例を示す平面図である。絶縁樹脂層22の一方の主表面に設けられた保護層28には、搭載される半導体装置の外周部に対応して開口部Tが設けられている。開口部Tにおいて、基板電極24aおよび絶縁樹脂層22が露出している。基板電極24aは、配線層24の一方の端部に形成されており、配線層24の他方の端部に、ビア導体40が接続されている。言い換えると、基板電極24からビア導体40まで配線層24により引き回されている。ビア導体40の設置位置は、半導体装置の搭載領域内(図5の開口部Tの内部)と、半導体装置の搭載領域外(図5の開口部Tの外部)の所定箇所に設けられている。
 開口部Tにおいて、複数の基板電極24aが併設されている。基板電極24aの長手方向は、開口部Tを横切るように設けられている。図5のC-C’線は、隣接する基板電極24aを最短距離で結ぶ線に相当し、図1の半導体素子30の搭載領域は、図5のC-C’線に沿った断面図に相当する。
 (実施の形態2)
 図6は、実施の形態2に係る半導体モジュールの構成を示す断面図である。
 半導体モジュール10は、素子搭載用基板20および半導体素子30を備える。
 半導体素子30は、たとえば、P型シリコンウエハを用いて形成される。実装面となる主表面MS1に集積回路に接続された素子電極32が設けられている。素子電極32の材料として、アルミニウム(Al)や銅(Cu)などの金属が用いられる。素子電極32は、本発明の「第2の電極」に相当する。
 素子電極32が露出するように半導体素子30の主表面MS1上に保護層34が形成されている。保護層34として、シリコン酸化膜(SiO)やシリコン窒化膜(SiN)やポリイミド(PI)膜などが好適である。
 素子搭載用基板20は、絶縁樹脂層22と、絶縁樹脂層22の半導体素子30と反対側の主表面に設けられた配線層24(再配線)と、配線層24と一体的に形成され、配線層24から絶縁樹脂層22側に突出している突起電極90とを備える。突起電極90は、本発明の「第1の電極」に相当する。なお、図6は、隣接する突起電極90を最短距離で結ぶ線に沿った断面図に相当する。
 絶縁樹脂層22は、絶縁性の樹脂からなり、たとえば加熱または加圧したときに塑性流動を引き起こす材料で形成されている。加圧したときに塑性流動を引き起こす材料としては、エポキシ系熱硬化型樹脂が挙げられる。絶縁樹脂層22に用いられるエポキシ系熱硬化型樹脂は、たとえば、温度160℃、圧力8Mpaの条件下で、粘度が1kPa・sの特性を有する材料であればよい。また、このエポキシ系熱硬化型樹脂は、たとえば温度160℃の条件下で、5~15Mpaで加圧した場合に、加圧しない場合と比較して、樹脂の粘度が約1/8に低下する。これに対して、熱硬化前のBステージのエポキシ樹脂は、ガラス転移温度Tg以下の条件下では、樹脂を加圧しない場合と同程度に、粘性がなく、加圧しても粘性は生じない。また、このエポキシ系熱硬化型樹脂は、約3~4の誘電率を有する誘電体である。
 配線層24は、絶縁樹脂層22の半導体素子30と反対側の主表面に設けられており、導電材料、好ましくは圧延金属、さらには圧延銅により形成される。圧延銅は、めっき処理等によって形成された銅からなる金属膜と比較すると、機械的強度の点において強いので、再配線のための材料として優れている。なお、配線層24は電解銅などで形成されてもよい。本実施の形態においては、配線層24と突起電極90とは一体的に形成されており、それにより配線層24と突起電極90との接続が確実になっている。
 突起電極90はその全体的な形状が、先端に近づくにつれて径が細くなっている。言い換えると、突起電極90の側面は電極形成領域の内側に傾いたテーパ状となっている。言い換えると、配線層24の面と突起電極90の側面とのなす角は鋭角である。突起電極90の先端(頂部面)の径および基面の径は、それぞれたとえば約45μmφおよび約60μmφである。また、突起電極90の高さは、たとえば、20μmである。突起電極90の頂部面と突起電極90に対応する素子電極32とは、はんだ70により接合されている。
 隣接する突起電極90を結ぶ線に沿った断面において、突起電極90の基底部の幅L1は、突起電極90に対応する素子電極32の幅L2に比べて狭くなっている。より好ましくは、隣接する突起電極90の基底部の間隔をS1、隣接する素子電極32の間隔をS2としたとき、突起電極90のL/S比(L1/S1)は、素子電極32のL/S(L2/S2)より小さい。さらに、突起電極90の形状は、先端に近づくにつれて径が細くなっているため、突起電極90の頂部面の幅L1’は突起電極90の基底部の幅L1より狭い。
 配線層24の絶縁樹脂層22と反対側の主表面には、配線層24の酸化などを防ぐための保護層28が設けられている。保護層28としては、ソルダーレジスト層などが挙げられる。保護層28の所定の領域には開口部が形成されており、開口部によって配線層24の一部が露出している。開口部内には外部接続電極としてのはんだボール80が形成され、はんだボール80と配線層24とが電気的に接続されている。はんだボール80を形成する位置、すなわち開口部の形成領域は、たとえば再配線(配線層24)で引き回した先の端部である。
 (実施の形態2の半導体モジュールの製造方法)
 実施の形態2に係る素子搭載用基板および半導体モジュールの製造方法について図7乃至図11を参照して説明する。
 まず、図7(A)に示すように、あらかじめ半導体基板31の一方の主表面に素子電極32および保護層34が形成された半導体素子30を用意する。具体的には、P型シリコン基板などの半導体基板31に対して、周知のリソグラフィ技術、エッチング技術、イオン注入技術、成膜技術、及び熱処理技術などを組み合わせた半導体製造プロセスを用いて一方の主表面に所定の集積回路とその外周縁部に素子電極32を形成する。素子電極32の材料にはアルミニウムや銅などの金属が採用される。これらの素子電極32を除いた半導体基板31の主表面上に、半導体基板31を保護するための絶縁性の保護層34が形成されている。保護層34としてはシリコン酸化膜(SiO)やシリコン窒化膜(SiN)やポリイミド(PI)などが採用される。
 次に、図7(B)に示すように、保護層34の開口部において露出する素子電極32の上にスクリーン印刷法によりはんだ70を搭載する。具体的には、樹脂とはんだ材をペースト状にしたはんだペーストをスクリーンマスクにより所望の箇所に印刷し、はんだ溶融温度に加熱することではんだ70を形成する。
 一方、図8(A)に示すように、図6に示したような突起電極90の高さと配線層24の厚さとの和より少なくとも大きい厚さを有する金属板としての銅板200を用意する。銅板200の厚さは、たとえば125μmである。銅板200としては圧延された銅からなる圧延金属が採用される。
 次に、図8(B)に示すように、リソグラフィ法により、突起電極の形成予定領域に対応したパターンに合わせてレジスト210を選択的に形成する。具体的には、ラミネーター装置を用いて銅板200に所定膜厚のレジスト膜を貼り付け、突起電極90のパターンを有するフォトマスクを用いて露光した後、現像することによって、銅板200の上にレジスト210が選択的に形成される。なお、レジストとの密着性向上のために、レジスト膜のラミネート前に、銅板200の表面に研磨、洗浄等の前処理を必要に応じて施すことが望ましい。なお、レジスト210を設けた面と反対側(上面側)の全面にはレジスト保護膜(図示せず)を形成して銅板200を保護しておくことが望ましい。
 次に、図8(C)に示すように、レジスト210をマスクとして塩化第二鉄溶液などの薬液を用いたウェットエッチング処理を行うことにより、銅板200の表面から突出する所定の円錐台パターンの突起電極90を形成する。この際、突起電極90はその先端部に近づくにつれて径(寸法)が細くなるテーパ状の側面部を有するように形成される。当該ウェットエッチング処理は、突起電極90の基底部の径(幅)L1が、突起電極90に対応する素子電極32の幅L2(図1参照)よりも狭くなるような条件で行われる。本実施形態の突起電極90における基底部の径、頂部の径、高さは、たとえばそれぞれ、100~140μmφ、50μmφ、20~25μmである。
 次に、図8(D)に示すように、レジスト210およびレジスト保護膜を剥離剤を用いて剥離する。以上説明した工程により、銅板200に突起電極90が一体的に形成される。なお、レジスト210に代えて銀(Ag)などの金属マスクを採用してもよい。この場合には銅板200とのエッチング選択比が十分確保されるため、突起電極90のパターニングのさらなる微細化を図ることが可能となる。
 次に、図9(A)に示すように、真空ラミネート法を用いて、突起電極90が設けられた側の銅板200の表面に絶縁樹脂層22を積層する。絶縁樹脂層22としては、上述したように、加圧または加熱により可塑性または変形を引き起こす絶縁材料が用いられる。
 次に、図9(B)に示すように、Oプラズマエッチングを用いて、突起電極90の頂部面が露出するように絶縁樹脂層22を薄膜化する。
 次に、図9(C)に示すように、塩化第二鉄溶液などの薬液を用いたウェットエッチング処理などにより、突起電極90が設けられた側と反対側の銅板200の表面をエッチバックし銅板200を薄膜化する。この際、突起電極90が設けられた側にはレジスト保護膜(図示せず)を形成して突起電極90および銅板200を保護しておき、エッチング処理後にレジスト保護膜を除去する。これにより、所定の厚さ(配線層24の厚さ)に加工され、所定の突起電極90が一体的に設けられた銅板200が形成される。本実施形態の銅板200の厚さは約20μmである。
 次に、図10(A)に示すように、プレス機を構成する一対の平板プレート500a、500bの間に、半導体素子30と、突起電極90が一体的に形成された銅板200とを設置する。この際に、対応する突起電極90と素子電極32との位置合わせを行う。
 次に、図10(B)に示すように、プレス機を用いて加圧成形することにより、対応する突起電極90と素子電極32とが当接した状態で半導体素子30と銅板200とを圧着する。プレス加工時の圧力および温度は、それぞれ約17kNおよび200℃である。この工程の際、またはこの工程の後、リフローによりはんだ70を溶融し、はんだ70により対応する突起電極90と素子電極32とを接合する。溶融したはんだ70と突起電極90の頂部面との濡れ性は、溶融したはんだ70と絶縁樹脂層22との濡れ性に比べて高いため、はんだ70は突起電極90の頂部面に引き寄せられ、突起電極90の頂部面近傍において、はんだ70の幅は突起電極90の頂部面内に収まる。
 次に、図11(A)に示すように、リソグラフィ技術およびエッチング技術を用いて銅板200を所定の配線パターンに加工することにより、配線層24(再配線)を形成する。
 次に、図11(B)に示すように、配線層24および絶縁樹脂層22の上に保護層(フォトソルダーレジスト層)28を積層した後、フォトリソグラフィ法により保護層28の所定領域(はんだボール搭載領域)に開口部を設ける。保護層28は配線層24の保護膜として機能する。保護層28にはエポキシ樹脂などが採用され、その膜厚は、たとえば、約40μmである。
 次に、図11(C)に示すように、保護層28の開口部にスクリーン印刷法によりはんだボール80を搭載する。具体的には、樹脂とはんだ材をペースト状にしたはんだペーストをスクリーンマスクにより所望の箇所に印刷し、はんだ溶融温度に加熱することではんだボール80を形成する。
 以上の工程により実施の形態2に係る半導体モジュールを製造することができる。
 以上説明した半導体モジュール10によれば、突起電極90の頂部面近傍において、はんだ70は突起電極90の頂部面の幅L1’に収まる。突起電極90の頂部面の幅L1’は、突起電極90の基底部の幅L1より狭く、かつ、突起電極90の基底部の幅L1は、突起電極90に対応する素子電極32の幅L2に比べて狭い。すなわち、はんだ70の突起電極90側における幅は素子電極32の幅L2の内側に収まるように、横方向(素子搭載用基板20の面方向)に広がることが抑制される。これにより、隣接する基板電極24aおよび素子電極32の間で短絡が生じることが抑制されるため、はんだ接続時の接続信頼性を損なうことなく、基板電極24aおよび素子電極32の狭ピッチ化を図ることができる。
 なお、本実施の形態では、はんだ70は突起電極90の頂部面と素子電極32との間に設けられており、はんだ70は突起電極90の頂部面に接しているが、素子電極32の幅L2の内側に収まっていれば、突起電極90の側面に接していてもよい。
 具体的には、図12に示す変形例のように、突起電極90の先端部分の側面部分と絶縁樹脂層22との間に隙間が生じており、この隙間にはんだ70が入り込むことにより、突起電極90の先端部分の側面にはんだ70が接していてもよい。この場合においても、突起電極90の側面部分の幅は、突起電極90の基底部の幅L1より狭く、突起電極90と接するはんだ70の幅は、突起電極90の基底部の幅L1より狭くなる。すなわち、はんだ70の突起電極90側における幅は素子電極32の幅L2の内側に収まるように、横方向(素子搭載用基板20の面方向)に広がることが抑制される。
 (携帯機器への適用)
 次に、本発明の半導体モジュールを備えた携帯機器について説明する。なお、携帯機器として携帯電話に搭載する例を示すが、たとえば、個人用携帯情報端末(PDA)、デジタルビデオカメラ(DVC)、音楽プレーヤ、及びデジタルスチルカメラ(DSC)といった電子機器であってもよい。
 図13は実施の形態に係る半導体モジュール10を備えた携帯電話の構成を示す図である。携帯電話1111は、第1の筐体1112と第2の筐体1114が可動部1120によって連結される構造になっている。第1の筐体1112と第2の筐体1114は可動部1120を軸として回動可能である。第1の筐体1112には文字や画像等の情報を表示する表示部1118やスピーカ部1124が設けられている。第2の筐体1114には操作用ボタンなどの操作部1122やマイク部1126が設けられている。なお、本発明の各実施形態に係る半導体モジュールのいずれかがこうした携帯電話1111の内部に搭載されている。なお、このように、携帯電話に搭載した本発明の半導体モジュールとしては、各回路を駆動するための電源回路、RF発生するRF発生回路、DAC、エンコーダ回路、携帯電話の表示部に採用される液晶パネルの光源としてのバックライトの駆動回路などとして採用することが可能である。
 図14は図13に示した携帯電話の部分断面図(第1の筐体1112の断面図)である。本発明の実施形態に係る半導体モジュール10は、はんだボール80を介してプリント基板1128に搭載され、こうしたプリント基板1128を介して表示部1118などと電気的に接続されている。また、半導体モジュール10の裏面側(はんだボール80とは反対側の面)には金属基板などの放熱基板1116が設けられ、たとえば、半導体モジュール10から発生する熱を第1の筐体1112内部に篭もらせることなく、効率的に第1の筐体1112の外部に放熱することができるようになっている。
 本発明の実施形態に係る半導体モジュールを備えた携帯機器によれば、以下の効果を得ることができる。
 半導体モジュール10において、基板側の第1の電極と半導体素子側の第2の電極との接続信頼性が向上した結果、半導体モジュール10の動作信頼性が向上するので、こうした半導体モジュール10を搭載した携帯機器の動作信頼性が向上する。
 放熱基板1116を介して半導体モジュール10からの熱を効率的に外部に放熱することができるので、半導体モジュール10の温度上昇が抑制され、導電性部材と配線層との間の熱応力が低減される。このため、放熱基板1116を設けない場合に比べ、半導体モジュール内の導電性部材が配線層から剥離することが防止され、半導体モジュール10の信頼性(耐熱信頼性)が向上する。この結果、携帯機器の信頼性(耐熱信頼性)を向上させることができる。
 上記実施の形態で示した半導体モジュール10は小型化が可能であるので、こうした半導体モジュール10を搭載した携帯機器の薄型化・小型化を図ることができる。
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 たとえば、上述の各実施の形態では、素子搭載用基板20に設けられた電極と、半導体素子30に設けられた電極とを電気的に接続する導電性接続部材として、はんだが用いられているが、導電性接続部材としては、はんだ以外に、銀ペーストなどの導電性ペーストを用いてもよい。
10 半導体モジュール、20 素子搭載用基板、22 絶縁樹脂層、24、26 配線層
 本発明は、半導体素子が基板に実装された半導体モジュールに活用可能である。

Claims (8)

  1.  第1の電極が設けられた基板と、
     第2の電極が設けられた半導体素子と、
     前記第1の電極と前記第2の電極とを接続する導電性接続部材と、
     を備え、
     隣接する前記第1の電極を最短距離で結ぶ線に沿った断面において、前記第1の電極の幅が、前記第1の電極に対応する前記第2の電極の幅に比べて狭く、かつ前記第1の電極の幅に比べて前記第1の電極の高さが高いことを特徴とする半導体モジュール。
  2.  隣接する前記第1の電極を最短距離で結ぶ線に沿った断面において、
     前記導電性接続部材が、前記第1の電極の底辺と前記第2の電極の上辺とを結ぶ領域内に収まっている請求項1に記載の半導体モジュール。
  3.  隣接する前記第1の電極を最短距離で結ぶ線に沿った断面において、前記第1の電極の幅L1と隣接する前記第1の電極の間隔S1との比(L1/S1)が、前記第1の電極に対応する前記第2の電極の幅L2と隣接する前記第2の電極の間隔S2との比(L2/S2)より小さい請求項1または2に記載の半導体モジュール。
  4.  隣接する前記第1の電極を最短距離で結ぶ線に沿った断面において、前記第1の電極の側面が電極形成領域の内側に傾いている請求項1乃至3のいずれか1項に記載の半導体モジュール。
  5.  前記第1の電極が前記基板に設けられた配線層から前記半導体素子の側へ突出する突起電極である請求項1乃至4のいずれか1項に記載の半導体モジュール。
  6.  隣接する前記第1の電極を最短距離で結ぶ線に沿った断面において、前記第1の電極の形状が略三角形または台形である請求項1乃至5のいずれか1項に記載の半導体モジュール。
  7.  請求項1乃至6のいずれか1項に記載の半導体モジュールを備えることを特徴とする携帯機器。
  8.  基板の一方の主表面に、隣接する基板電極を含む配線層をパターニングする配線形成工程と、
     前記基板電極に対応して半導体素子に設けられた素子電極と前記基板電極とを導電性接続部材を用いて接続し、前記基板に前記半導体素子を搭載する素子搭載工程と、
     を備え、
     配線形成工程において、隣接する前記基板電極を最短距離で結ぶ線に沿った断面において、前記基板電極の幅が前記基板電極に対応する前記素子電極の幅よりも狭くなるように前記基板電極を形成することを特徴とする半導体モジュールの製造方法。
PCT/JP2009/006765 2008-12-10 2009-12-10 半導体モジュール、半導体モジュールの製造方法および携帯機器 WO2010067610A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/139,075 US20110241203A1 (en) 2008-12-10 2009-12-10 Semiconductor module, method for manufacturing semiconductor module, and portable apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008314960A JP2010141055A (ja) 2008-12-10 2008-12-10 半導体モジュール、半導体モジュールの製造方法および携帯機器
JP2008-314960 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010067610A1 true WO2010067610A1 (ja) 2010-06-17

Family

ID=42242602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006765 WO2010067610A1 (ja) 2008-12-10 2009-12-10 半導体モジュール、半導体モジュールの製造方法および携帯機器

Country Status (3)

Country Link
US (1) US20110241203A1 (ja)
JP (1) JP2010141055A (ja)
WO (1) WO2010067610A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102487020A (zh) * 2010-12-03 2012-06-06 新科金朋有限公司 形成引线上凸块互连的半导体器件和方法
JP2012109507A (ja) * 2010-11-16 2012-06-07 Stats Chippac Ltd 半導体素子およびフリップチップ相互接続構造を形成する方法
JP2012119648A (ja) * 2010-12-03 2012-06-21 Stats Chippac Ltd フリップチップ半導体ダイのパッドレイアウトを形成する半導体素子および方法
JP2015201661A (ja) * 2015-06-19 2015-11-12 ルネサスエレクトロニクス株式会社 半導体装置
CN105493278A (zh) * 2013-08-29 2016-04-13 高通股份有限公司 用于基板的超细间距和间隔互连
US9379084B2 (en) 2003-11-10 2016-06-28 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9865556B2 (en) 2003-11-10 2018-01-09 STATS ChipPAC Pte Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9922915B2 (en) 2003-11-10 2018-03-20 STATS ChipPAC Pte. Ltd. Bump-on-lead flip chip interconnection

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI538129B (zh) * 2010-12-06 2016-06-11 史達晶片有限公司 利用細長的遮罩開口在基板上形成窄互連位置的半導體裝置及方法
TWI527178B (zh) * 2010-12-15 2016-03-21 史達晶片有限公司 在無焊料遮罩的回焊期間的導電凸塊材料的自我局限的半導體裝置和方法
US9659893B2 (en) 2011-12-21 2017-05-23 Mediatek Inc. Semiconductor package
US8633588B2 (en) 2011-12-21 2014-01-21 Mediatek Inc. Semiconductor package
US9461008B2 (en) * 2012-08-16 2016-10-04 Qualcomm Incorporated Solder on trace technology for interconnect attachment
KR20140086531A (ko) * 2012-12-28 2014-07-08 삼성전기주식회사 패키지 기판 및 그 제조방법, 그리고 패키지 온 패키지 기판
US9806046B2 (en) * 2014-03-13 2017-10-31 Taiwan Semiconductor Manufacturing Co., Ltd Semiconductor device structure and manufacturing method
TWI538127B (zh) * 2014-03-28 2016-06-11 恆勁科技股份有限公司 封裝裝置及其製作方法
TWI624018B (zh) * 2014-08-04 2018-05-11 恆勁科技股份有限公司 封裝結構及其製法
JP6533680B2 (ja) * 2015-03-20 2019-06-19 新光電気工業株式会社 配線基板、半導体装置及び配線基板の製造方法
US11189555B2 (en) * 2019-01-30 2021-11-30 Delta Electronics, Inc. Chip packaging with multilayer conductive circuit
CN111554641A (zh) * 2020-05-11 2020-08-18 上海天马微电子有限公司 半导体封装件及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143838A (en) * 1981-02-27 1982-09-06 Mitsubishi Electric Corp Manufacture of semiconductor device
WO2004056162A1 (ja) * 2002-12-18 2004-07-01 K-Tech Devices Corp. フリップチップ実装用電子部品及びその製造法、回路板及びその製造法、実装体の製造法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115310B2 (en) * 2009-06-11 2012-02-14 Texas Instruments Incorporated Copper pillar bonding for fine pitch flip chip devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143838A (en) * 1981-02-27 1982-09-06 Mitsubishi Electric Corp Manufacture of semiconductor device
WO2004056162A1 (ja) * 2002-12-18 2004-07-01 K-Tech Devices Corp. フリップチップ実装用電子部品及びその製造法、回路板及びその製造法、実装体の製造法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388626B2 (en) 2000-03-10 2019-08-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming flipchip interconnect structure
US8853001B2 (en) 2003-11-08 2014-10-07 Stats Chippac, Ltd. Semiconductor device and method of forming pad layout for flipchip semiconductor die
US9780057B2 (en) 2003-11-08 2017-10-03 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming pad layout for flipchip semiconductor die
US9379084B2 (en) 2003-11-10 2016-06-28 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9064858B2 (en) 2003-11-10 2015-06-23 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US9385101B2 (en) 2003-11-10 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US9865556B2 (en) 2003-11-10 2018-01-09 STATS ChipPAC Pte Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9899286B2 (en) 2003-11-10 2018-02-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9922915B2 (en) 2003-11-10 2018-03-20 STATS ChipPAC Pte. Ltd. Bump-on-lead flip chip interconnection
JP2012109507A (ja) * 2010-11-16 2012-06-07 Stats Chippac Ltd 半導体素子およびフリップチップ相互接続構造を形成する方法
JP2012119649A (ja) * 2010-12-03 2012-06-21 Stats Chippac Ltd バンプオンリード相互接続を形成する半導体素子および方法
CN102487020A (zh) * 2010-12-03 2012-06-06 新科金朋有限公司 形成引线上凸块互连的半导体器件和方法
JP2012119648A (ja) * 2010-12-03 2012-06-21 Stats Chippac Ltd フリップチップ半導体ダイのパッドレイアウトを形成する半導体素子および方法
CN105493278A (zh) * 2013-08-29 2016-04-13 高通股份有限公司 用于基板的超细间距和间隔互连
CN105493278B (zh) * 2013-08-29 2019-06-07 高通股份有限公司 用于基板的超细间距和间隔互连
JP2015201661A (ja) * 2015-06-19 2015-11-12 ルネサスエレクトロニクス株式会社 半導体装置

Also Published As

Publication number Publication date
US20110241203A1 (en) 2011-10-06
JP2010141055A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2010067610A1 (ja) 半導体モジュール、半導体モジュールの製造方法および携帯機器
JP5091600B2 (ja) 半導体モジュール、半導体モジュールの製造方法および携帯機器
US8274148B2 (en) Semiconductor module
WO2009144960A1 (ja) 半導体モジュール、半導体モジュールの製造方法および携帯機器
JP2009206506A (ja) 素子搭載用基板およびその製造方法、半導体モジュールおよびこれを搭載した携帯機器
US8373281B2 (en) Semiconductor module and portable apparatus provided with semiconductor module
JP5135246B2 (ja) 半導体モジュールおよびその製造方法、ならびに携帯機器
US20100078813A1 (en) Semiconductor module and method for manufacturing the semiconductor module
JP2008053693A (ja) 半導体モジュール、携帯機器、および半導体モジュールの製造方法
JP2009224581A (ja) 素子搭載用基板およびその製造方法、半導体モジュールおよびその製造方法、電極構造、携帯機器
JP2013165087A (ja) 半導体モジュールおよび半導体モジュールの製造方法
JP4588091B2 (ja) 半導体モジュールの製造方法
JP2009158830A (ja) 素子搭載用基板およびその製造方法、半導体モジュールおよびその製造方法、ならびに携帯機器
JP2009135391A (ja) 電子装置およびその製造方法
US20100140797A1 (en) Device mounting board and method of manufacturing the board, semiconductor module and method of manufacturing the module
JP5295211B2 (ja) 半導体モジュールの製造方法
JP5484705B2 (ja) 半導体モジュールおよび半導体モジュールを備える携帯機器
JP2010040721A (ja) 半導体モジュール、半導体装置、携帯機器、半導体モジュールの製造方法および半導体装置の製造方法
JP2010040610A (ja) 半導体モジュールおよび半導体モジュールを備える携帯機器
JP2008218521A (ja) 回路装置およびその製造方法
JP2011054670A (ja) 半導体モジュールおよびその製造方法、ならびに携帯機器
JP4806468B2 (ja) 半導体モジュール
JP5002633B2 (ja) 半導体モジュールおよび携帯機器
JP5022963B2 (ja) 突起電極の構造、素子搭載用基板およびその製造方法、半導体モジュール、ならびに携帯機器
JP2009246175A (ja) 素子搭載用基板、半導体モジュール、ならびに携帯機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13139075

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09831716

Country of ref document: EP

Kind code of ref document: A1