WO2010055763A1 - 素子成形用部材、素子の製造方法、および素子 - Google Patents

素子成形用部材、素子の製造方法、および素子 Download PDF

Info

Publication number
WO2010055763A1
WO2010055763A1 PCT/JP2009/068336 JP2009068336W WO2010055763A1 WO 2010055763 A1 WO2010055763 A1 WO 2010055763A1 JP 2009068336 W JP2009068336 W JP 2009068336W WO 2010055763 A1 WO2010055763 A1 WO 2010055763A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
groove
peripheral surface
forming member
body mold
Prior art date
Application number
PCT/JP2009/068336
Other languages
English (en)
French (fr)
Inventor
友之 上野
幹人 長谷川
寛二 寺岡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US13/059,609 priority Critical patent/US20110135865A1/en
Priority to EP09826013A priority patent/EP2345625A1/en
Priority to JP2010508651A priority patent/JPWO2010055763A1/ja
Priority to CN2009801312775A priority patent/CN102119130A/zh
Publication of WO2010055763A1 publication Critical patent/WO2010055763A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • C03B2215/07Ceramic or cermets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/61Positioning the glass to be pressed with respect to the press dies or press axis
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/65Means for releasing gas trapped between glass and press die
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to an element molding member for molding an optical element such as a glass lens, and an element manufacturing method using the element molding member. More specifically, the present invention relates to an element molding member that suppresses molding defects, an element manufacturing method using the element molding member, and an element formed using the member or the manufacturing method.
  • Lenses as optical elements used in various optical devices and optical communication devices such as digital cameras and mobile phones are increasingly required to have high performance. Therefore, an aspheric lens is used as the lens. Since it is very expensive to manufacture an aspheric lens by polishing, it is mainstream to perform molding using an element molding member.
  • a pair of molds for forming is heated among the element forming members.
  • a gas such as air may be generated and left between the heated portion of the pair of molds and the material constituting the element arranged in the mold. If processing continues while this gas is sandwiched between the mold and the material, for example, the material to be molded is pressed by the gas, so the element molded from the material may cause a molding defect such as a shape defect. .
  • Patent Document 1 Japanese Patent Laid-Open No. 8-337428
  • Patent Document 1 describes an element among a pair of upper and lower molds.
  • a technique for forming an air groove for venting gas in a region outside a region (optical effective diameter) where a material is disposed in a lower mold in which the material constituting the material is disposed is disclosed.
  • four air grooves are arranged at equal intervals in the circumferential direction of the circumference in a radial direction from the circumference formed by the outermost area where the material is arranged to the outside. is doing.
  • the gas is released without staying between the mold and the material, it is possible to suppress molding defects such as shape defects with respect to optical elements such as lenses molded from the material, and as a result.
  • the optical characteristics of the molded lens are not impaired.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-314385
  • a technique is disclosed in which a rough surface is formed in a region where a material of an optical element is disposed outside a region (optical functional surface transfer range) that is constrained by a mold on the side and forms an optical element body.
  • This rough surface is a surface for releasing gas stagnant between the optical function surface transfer range of the lower mold and the material in the optical function surface transfer range to the outside of the mold radially through the rough surface. It is.
  • the gas is released without staying between the mold and the material, molding defects such as shape defects can be suppressed for optical elements such as lenses molded from the material, and as a result.
  • the optical characteristics of the molded lens are not impaired.
  • Patent Document 3 an element molding member disclosed in Japanese Patent Application Laid-Open No. 2007-176707 (hereinafter referred to as “Patent Document 3”) is provided in a region where a pair of upper and lower molds are engaged and an optical element material is disposed. Has a certain space (cavity) around it. The cavity overlaps with at least a part of a through hole (communication hole) provided on the outer peripheral surface of a hollow body mold arranged so as to cover the outer peripheral surface of the mold. Communication with external areas. Therefore, the gas staying between the mold and the material is discharged to the region outside the barrel mold through the communicating through hole. A technique for releasing gas without staying between the mold and the material in this way is disclosed in Patent Document 3. Also in Patent Document 3, molding defects such as shape defects can be suppressed for an optical element such as a lens molded from the material, so that the optical characteristics of the molded lens are not impaired.
  • Patent Document 4 a groove shape with a step is provided on the outer peripheral surface of a lower mold, thereby retaining between the mold and the material.
  • An element forming member that discharges gas to the outside of a mold through a groove shape with a step is disclosed.
  • forming a scratch (for example, an uneven portion) on a die of an element molding material, including providing a rough surface means that the scratch is within the optical function surface transfer range. Even if it is formed in the outer region, the durability of the mold may be deteriorated. As a result of the reduced durability, the life of the mold can be increased, resulting in increased mold manufacturing costs. Further, since the material constituting the optical element is arranged on the rough surface, the arrangement of the material may be unstable. Furthermore, when trying to perform molding in such an unstable situation, it is difficult to center the mold, and as a result, molding defects such as shape defects occur on optical elements such as lenses molded from the material. There is a possibility to make it.
  • Patent Document 3 for example, if a through-hole is provided in a hollow body mold disposed outside the outer peripheral surface of the mold, the strength of the body mold is significantly reduced. Since the body mold is hollow and only the outer peripheral surface portion is formed as a rigid component, the strength is lower than that of a hollow cylindrical object even if there is no through hole. Therefore, when molding is performed using a cylinder mold having insufficient strength in which such through holes exist, the cylinder mold may be damaged by applying stress to the cylinder mold.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an element molding member that suppresses molding defects caused by the gas staying between the mold and the material and the structure of the element molding member. It is providing the manufacturing method using the member for element shaping
  • the element molding member according to the present invention is an element molding member for molding an element, and a pair of molds for molding and a hollow body arranged so as to surround the outer peripheral surface of the pair of molds.
  • a mold and a frame mold for adjusting the position of the material constituting the element are provided between the pair of molds.
  • molding member by which a recessed part is formed in the at least one part area
  • a pair of molds is a mold that exists in a pair in the vertical direction in a normal use state, and a cross section that intersects the major axis direction is, for example, a circular cylindrical shape with the vertical direction as the major axis direction.
  • a curved surface extending in the long axis direction of the mold and covering the outer surface is defined as an outer peripheral surface here.
  • the element molding member disclosed in the above-described patent document is provided with a groove for releasing a gas staying between a mold and a material for molding the element in the mold in which the material is arranged.
  • the groove concave portion
  • the groove is provided in a hollow body mold disposed so as to surround the outer peripheral surface of the mold. Therefore, since no groove is provided in the mold in which the material for forming the element is arranged, the stress state applied to the mold and the material can be kept uniform when the material is molded.
  • a groove (recessed portion) for discharging the gas released from the outer peripheral surface of the mold to the outside of the element molding member is formed in at least a partial region of the inner peripheral surface of the body mold, which faces the outer peripheral surface of the mold.
  • the inner peripheral surface refers to a curved surface that extends in the major axis direction of the body mold and covers the inner surface. In this way, it is possible to efficiently release the gas to the outside of the element molding member through the groove on the inner peripheral surface of the body mold.
  • the concave portion when the concave portion is provided in the body mold, the degree of reduction in the strength of the body mold is small as in the case where the through hole is provided. Therefore, it is possible to provide an element molding member that has moderate durability and efficiently emits gas. According to such a member, generation
  • the outer shape of the cross section intersecting the major axis direction of the mold, the trunk mold, and the frame mold is circular.
  • the intersection refers to, for example, a case where the cross is orthogonal to the major axis direction.
  • the element molding member according to the present invention molds a lens as an optical element used in various optical devices and optical communication devices, it preferably has a circular cross section for molding a circular lens.
  • the width of the recesses extending in the direction intersecting the long axis direction of the mold is 2D (mm)
  • the center of the circle formed by the cross section of the mold To R m (mm) from the center of the mold to the outer peripheral surface of the mold, and R s (mm) from the center of the circle formed by the cross section of the cylinder mold to the inner peripheral surface of the cylinder mold,
  • the element formed by the molding process does not have eccentricity.
  • An ideal shape since a groove exists on the inner peripheral surface of the body mold, a region near the outer peripheral surface of the mold may be fitted into the groove. When the mold is inserted into the groove, the mold is decentered with respect to the body mold. Therefore, the element formed by the molding process has a shape with a certain decentering.
  • the distance L at which the above-described body mold is inserted into the recess is preferably 0.001 mm or less, and more preferably 0.0005 mm or less.
  • the sintering temperature when forming the material is T (° C.)
  • the inner diameter of the circle formed by the cross section intersecting with the long axis direction of the body mold is D i (mm)
  • intersects with the long axis direction of the mold is D p (mm)
  • the outer diameter of the circle formed by the cross section intersecting the long axis direction of the frame mold is D r (mm)
  • the material is between the pair of molds.
  • the average thermal expansion coefficient of the body mold from room temperature to T (° C.) is ⁇ 1 (/ ° C.)
  • the average thermal expansion coefficient of the mold from room temperature to T (° C.) is ⁇ 2 (/ ° C.)
  • from room temperature to T (° C. ) Is the average thermal expansion coefficient of the frame mold at ⁇ 3 (/ ° C.), and the difference between T (° C.), which is the sintering temperature, and the room temperature at which the material is placed between a pair of molds is ⁇ T (° C.).
  • the pair of opposed molds be molded in a state in which there is no eccentricity with respect to the body mold, but when the mold is actually heated,
  • the eccentricity accuracy can be made very good at the heating temperature T (° C.) at which the molding is performed.
  • T heating temperature
  • D i (mm) of the body mold when viewed in cross section at T (° C.) is smaller than the outer diameter D p (mm) of the cross section of the pair of molds.
  • shrink fitting is performed.
  • the slidability as an element molding member may be significantly reduced.
  • the gap is preferably 0.005 mm or more and 0.030 mm or less.
  • a gap of a certain level or more exists between the body mold and the frame mold at T (° C.) when viewed in cross section.
  • the frame mold is used to adjust the position where the material constituting the element is arranged, and is a member formed using a material having high strength (high bending strength). For this reason, when the frame mold causes shrink fitting to the trunk mold, the durability of the trunk mold becomes a serious problem. Therefore, the frame mold preferably has a wider gap with respect to the body mold than the pair of molds described above. However, when the gap becomes very large, the positioning accuracy of the element deteriorates.
  • the above-described numerical formula indicates that the gap is preferably 0.015 mm or more and 0.150 mm or less.
  • the above-described concave portion of the trunk mold extends in a direction along the long axis direction of the trunk mold.
  • the concave portion of the barrel mold extends in the direction along the major axis direction rather than being machined so as to be in the direction intersecting the major axis direction (that is, the direction substantially along the circumferential direction of the inner peripheral surface of the barrel mold). It is easier to process as it exists, and the cost advantage of processing is high.
  • the above-described concave portion of the trunk mold may extend in a direction intersecting with the major axis direction of the trunk mold.
  • the term “intersection” means, for example, a structure in which a concave portion extends in an oblique direction with a certain angle with respect to the major axis direction of the trunk mold, and a concave section extends in a direction substantially perpendicular to the major axis direction of the trunk mold. Including both structures. In this way, if the recess extends in a direction intersecting the long axis direction of the trunk mold, the width of the recess is, for example, substantially the same as the above-described recess extending in the direction along the long axis direction of the trunk mold.
  • a plurality of the concave portions arranged on the inner peripheral surface of the trunk mold may be formed on the inner peripheral surface of the trunk mold.
  • the said recessed part is arrange
  • the equal intervals are substantially equal intervals (for example, the error in the distance between the plurality of recesses in the circumferential direction of the body mold is within ⁇ 15% of the average value). Cases are also included. In this way, if the recesses are arranged at equal intervals, the action of releasing the gas staying between the mold and the material can be performed uniformly over the entire mold. Further, the stress applied to the entire element forming member during the forming process can be made uniform.
  • the body mold should have a material having a thermal expansion coefficient of 1.0 ⁇ 10 ⁇ 7 (/ ° C.) to 3.5 ⁇ 10 ⁇ 6 (/ ° C.) at least 90% by mass.
  • a material having a thermal expansion coefficient of 1.0 ⁇ 10 ⁇ 7 (/ ° C.) to 3.5 ⁇ 10 ⁇ 6 (/ ° C.) at least 90% by mass For example, it is preferable to contain at least 90% by mass of quartz glass. In general, quartz glass is often used as the body-shaped material.
  • glassy carbon lithium aluminum silicate (LiAlSi 2 O 6 ) and wollastonite (CaO ⁇ SiO 2 )
  • LiAlSi 2 O 6 lithium aluminum silicate
  • wollastonite CaO ⁇ SiO 2
  • adceram which is a composite ceramic, and these materials may be used as the body material.
  • a material containing 90% by mass or more of silicon nitride may be used as the body-shaped material.
  • a material containing silicon nitride as the material of the body mold, the strength of the formed body mold can be increased as compared with the case of using a material containing quartz glass.
  • the sliding surfaces of the pair of molds facing at least the inner peripheral surface of the body mold are formed of a material containing carbon.
  • the carbon-containing material preferably includes any one selected from the group consisting of graphite, glassy carbon, diamond-like carbon (DLC), and diamond.
  • the sliding surface facing the inner peripheral surface of the body mold is made of a material containing carbon.
  • a material containing carbon preferentially, thereby improving the slidability between the mold and the body mold, and the above-described mold release property.
  • examples of the carbon allotrope include graphite, glassy carbon, DLC, and diamond.
  • the sliding surfaces facing at least the inner peripheral surface of the pair of molds described above may be formed of a material containing these allotropes.
  • the edge portion where the sliding surface of the pair of upper and lower molds constituting the element molding member intersects with the pressing surface for pressing the material is 0.2 mm or more. It is preferable to provide an R surface or C surface of 0 mm or less.
  • the R plane refers to a plane in which a curved shape having a radius (R) with a boundary between two planes is formed.
  • the C plane is a plane provided to intersect two intersecting planes.
  • the radius (R) described above is preferably 0.2 mm or greater and 1.0 mm or less.
  • the length of the region where the C plane portion crosses each of the two intersecting planes is preferably 0.2 mm or greater and 1.0 mm or less.
  • the slidability between the mold and the body mold can be improved.
  • the chamfering such as the R surface and the C surface also has a role of suppressing galling and squeezing of the mold body.
  • the frame type includes at least 90% by mass or more of a ceramic having a bending strength of 300 MPa or more. More specifically, it is preferably made of a material containing any one selected from the group consisting of silicon carbide, silicon nitride, alumina, boron carbide, zirconia, and tantalum carbide.
  • the saddle frame mold is used to adjust the position where the material constituting the element is arranged between a pair of molds.
  • the pressure to be pressed at the time of molding is directly applied to the frame mold as a side pressure.
  • the frame mold is preferably formed using a material having a high strength (high bending strength). Therefore, it is preferable that the frame mold is made of a material including any one selected from the material group as described above.
  • mold generally contains the material of the intensity
  • the element manufacturing method using the element forming member described above includes a step of preparing a material, a step of placing the material in a mold, a step of heating the mold, and a step of pressing the material.
  • a step of pressing the material even if the die is inserted into a groove (concave portion) provided on the inner peripheral surface of the barrel die, if the die is heated in the step of heating the die, the die and the barrel die.
  • the position of the mold relative to the body mold can be corrected by the difference in the thermal expansion coefficient. For this reason, the element formed through this process has very good eccentricity accuracy.
  • the element molding member of the present invention it is possible to suppress molding defects of the element formed due to the gas stagnating between the mold and the material and the structure of the element molding member. As a result, an element formed using the element molding member of the present invention has very good eccentricity accuracy.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG. It is the schematic which shows the state by which a part of area
  • FIG. 6 is a development view of a trunk mold in which a groove along the major axis direction exists only in the lower half of the trunk mold, and a horizontal groove that extends from the groove to the outside exists at the lower end of the groove. It is an expanded view of the trunk
  • FIG. 4 is a development view of a trunk mold in which a groove that intersects the major axis exists only in the lower half of the trunk mold, and a horizontal groove that extends from the groove to the outside exists at the lower end of the groove.
  • drum which arrange
  • a trunk mold in which a plurality of grooves are arranged on the inner peripheral surface of the trunk mold. It is a flowchart which shows the manufacturing method of the element using the member for element shaping
  • FIG. 1 is a schematic view showing an appearance of an element molding member according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view taken along line II-II in FIG. That is, FIG. 2 represents a cross section in a direction along the major axis direction (vertical direction) of FIG.
  • an element molding member 10 according to an embodiment of the present invention includes an upper mold 11 that is a mold for performing molding and exists in a pair in the vertical direction in a normal use state.
  • a lower mold 12 is provided.
  • a hollow body mold 14 is disposed so as to surround the outer peripheral surface of the mold (the upper mold 11 and the lower mold 12).
  • the body mold 14 is provided to house the upper mold 11 and the lower mold 12 and to position and slide the upper mold 11 and the lower mold 12 inside the inner peripheral surface of the body mold 14.
  • a frame mold 16 for adjusting the position of the material constituting the element is disposed.
  • a groove 14 c serving as a concave portion having a certain width in the direction along the inner peripheral surface is formed on the left inner peripheral surface of the barrel mold 14. It is arranged in a direction along the long axis direction of the trunk mold 14 from the bottom to the bottom.
  • the groove 14c has the upper mold 11 and the lower mold 12 in the radial direction formed by the cross sections of the body mold 14 and the mold (the upper mold 11 and the lower mold 12). Part of a region in the vicinity of the upper die outer peripheral surface 11c and the lower die outer peripheral surface 12c, which are the respective outer peripheral surfaces, is inserted.
  • the element forming member 10 shown in FIGS. 1 and 2 includes various optical devices and optical communication devices such as a camera (visible light camera, infrared camera), a mobile phone, and a window (visible light transmission, infrared transmission, visible light cut). It is used for molding lenses and windows as optical elements used for the above.
  • the material constituting the element is arranged in a region inside the inner peripheral surface of the frame mold 16 that is a ring.
  • the long axis direction of the upper mold 11, the lower mold 12, and the body mold 14 constituting the frame mold 16 and the element molding member 10 (FIG. 1).
  • the outer shape of the cross section intersecting with the upper and lower directions in FIG. 2 is preferably circular.
  • a material 13 constituting the element is disposed in an area inside the frame mold 16 disposed in the lower mold 12.
  • the material 13 is sandwiched between the upper mold 11 and the lower mold 12 in the vertical direction.
  • the lower mold forming surface 12d of the lower mold 12 on which the material 13 is disposed and the upper mold forming that the material 13 is in close contact with when the upper mold 11 is set on the lower mold 12 to press the material 13.
  • the surface 11d has a shape along the shape of the lens to be molded.
  • the sleeve 15 is disposed so as to cover the entire outer peripheral surface of the body mold 14. If the upper mold 11, the lower mold 12 and the material 13 are heated rapidly, temperature control becomes difficult. For this reason, the sleeve 15 is disposed for the purpose of heating the upper mold 11, the lower mold 12, and the material 13 using radiant heat or heat transfer while blocking the heating light.
  • FIG. 3 is a schematic view showing a state in which a part of the region in the vicinity of the upper mold outer peripheral surface is inserted into the groove. That is, FIG. 3 shows a state in which FIGS. 1 and 2 are viewed from the upper plane of the drawing, or a state in which a cross section that intersects the major axis direction (vertical direction in the drawing) of the element forming member 10 is seen. .
  • the body mold outer peripheral surface 14a, the body mold inner peripheral surface 14b, and the groove 14c of the body mold 14 are shown.
  • die inner peripheral surface 14b has shown the trunk
  • FIG. 4 is a diagram for calculating the distance L into which the mold is inserted into the groove. 3 is compared with FIG. 4 described above, L in FIG. 3 corresponds to the portion described below in FIG. First, a point A where the upper die outer peripheral surface 11c inserted into the groove 14c is inserted most deeply in the depth direction of the groove 14c (left side in FIG. 4) and a circular center point O formed by a cross section of the upper die 11 are defined. Think of a straight line that connects. At this time, the distance AA ′ when the intersection point A ′ between the cylinder mold inner peripheral surface 14 b and the straight line AO when it is assumed that the groove 14 c does not exist in the cylinder mold 14 is L.
  • the radius of the circle formed by the cross section of the upper mold 11 is R m (mm)
  • the radius of the cylinder inner peripheral surface 14b is R s (mm) (the center of the cylinder inner peripheral surface 14b is O ′ ). That is, the radius from the circular center point O formed by the cross section of the upper mold 11 to the upper mold outer peripheral surface 11c is R m (mm), and from the circular center O ′ formed by the cross section of the cylinder mold 14, the inside of the cylinder mold
  • the radius to the peripheral surface 14b is R s (mm).
  • the distance between the two intersections of the upper die outer peripheral surface 11c and the barrel inner peripheral surface 14b is in a direction intersecting the major axis direction of the upper die 11 of a groove 14c (see FIG. 3) not shown in FIG. It is a widening width.
  • the width of the groove 14c can be expressed by 2D (mm) as shown in FIG.
  • one of the two intersections of the upper die outer circumferential surface 11c and the body inner circumferential surface 14b (the upper intersection in FIG. 4) is a point P, and the other of the two intersections.
  • a point Q is defined as the lower intersection point in FIG.
  • FIG. 5 is a schematic view showing a state in which a circular center formed by the cross section of the upper mold and the lower mold and a circular center formed by the cross section of the body mold coincide with each other.
  • FIG. 6 is a schematic view showing a state in which the outer peripheral surface of the upper mold is in contact with the inner peripheral surface of the trunk mold in which no groove exists.
  • FIG. 7 is an enlarged schematic view of a main part “VII” surrounded by a dotted line in FIG.
  • the allowable amount of eccentricity of the lens which can be determined from the result of optical simulation, is about 10 ⁇ m.
  • the inner peripheral surface 14b (including the groove 14c) is formed after molding because of the influence of processing errors and temperature distribution during molding. May be smaller than the diameter of the upper die outer peripheral surface 11c, and a so-called shrink-fit state may occur. In order to avoid this, as shown in FIG.
  • the radius indicated by the outer peripheral surface of the upper die 11 (and the lower die 12 (not shown)) is smaller than the radius indicated by the inner peripheral surface of the body die 14. preferable.
  • the circular center formed by the cross section of the upper mold 11 (and the lower mold 12 (not shown)) is eccentric with respect to the circular center formed by the cross section of the body mold 14 (FIG. 6 and FIG. 7, there is eccentricity on the left side).
  • there is no groove 14c (see FIGS. 2 to 4) in the body mold 14 here, if the groove 14c is present in the body mold 14, the upper outer peripheral surface 11c of the upper mold 11 is shown in FIG. As shown in FIG.
  • L is the reference for the amount of eccentricity when the upper die outer peripheral surface 11c is fitted in 14c, is at most 1 ⁇ m out of the allowable amount of eccentricity of 10 ⁇ m. Therefore, since L is preferably 1 ⁇ m or less, it is preferable to satisfy L ⁇ 0.001 (mm) as described above. It is more preferable that L ⁇ 0.0005 (mm), that is, L is 0.5 ⁇ m or less. Therefore, as described above, the actual eccentricity is considered to be larger than L.
  • FIG. 8 is a schematic cross-sectional view showing the arrangement, dimensions, and thermal expansion coefficient of a pair of molds, a trunk mold, and a frame mold at room temperature among the element molding members according to the embodiment of the present invention. .
  • FIG. 8 is a schematic cross-sectional view showing the arrangement, dimensions, and thermal expansion coefficient of a pair of molds, a trunk mold, and a frame mold at room temperature among the element molding members according to the embodiment of the present invention. .
  • FIG. 9 is a schematic diagram showing the arrangement and dimensions of a pair of molds, a trunk mold and a frame mold at a molding temperature T (° C.), and a coefficient of thermal expansion among the element molding members according to the embodiment of the present invention. It is sectional drawing.
  • the outer diameter of the circle formed by the cross section intersecting with the major axis direction of Dr is D r (mm)
  • the average thermal expansion coefficient of the body mold 14 from room temperature to T (° C.) is ⁇ 1 (/ ° C.)
  • the average thermal expansion coefficient of the upper mold 11 and the lower mold 12 at (° C.) is ⁇ 2 (/ ° C.)
  • the average thermal expansion coefficient of the frame mold 16 from room temperature to T (° C.) is ⁇ 3 (/ ° C.).
  • the dimension of each component of the element forming member 10 when the element forming member 10 of FIG. 8 is heated to the heating temperature T (° C.) at the time of forming will be described.
  • T heating temperature
  • the inner diameter of the circle formed by the cross section of the body mold 14 is D i + ⁇ 1 D i ⁇ T (mm).
  • the outer diameter of the circle formed by the cross sections of the upper mold 11 and the lower mold 12 is D p + ⁇ 2 D p ⁇ T (mm)
  • the outer diameter of the circular formed by the cross section of the frame mold 16 is D r + ⁇ 3 D r. ⁇ T (mm).
  • a certain gap exists between the body mold 14 and the frame mold 16 that is a ring.
  • the frame mold 16 is used for positioning the material 13 to be molded, which is disposed in the region inside the inner peripheral surface, and uses a high-strength material, when it is shrink-fitted by heating during molding, The durability of the mold 14 may be significantly reduced. Therefore, it is preferable to provide a wider gap between the body mold 14 and the frame mold 16 than between the body mold 14 and the upper mold 11 (lower mold 12).
  • ⁇ 1 ⁇ 2 and ⁇ 1 ⁇ 3 it is preferable that ⁇ 1 ⁇ 2 and ⁇ 1 ⁇ 3 .
  • a reasonably wide gap is provided between the trunk mold 14 and the frame mold 16 and between the trunk mold 14 and the upper mold 11 (lower mold 12).
  • T the molding temperature
  • the body mold 14 is formed using a material containing at least 90% by mass or more of a material having a thermal expansion coefficient of 1.0 ⁇ 10 ⁇ 7 (/ ° C.) to 3.5 ⁇ 10 ⁇ 6 (/ ° C.). Is preferred. In particular, it is preferable to use a material containing at least 90% by mass or more of quartz glass having a thermal expansion coefficient of 5.0 ⁇ 10 ⁇ 7 (/ ° C.). However, it is more preferable to use the material made of the above-described quartz glass (including 100% by mass of quartz glass) as the material of the body die 14.
  • quartz glass is used as the barrel mold 14, the quartz glass has a small coefficient of thermal expansion. For example, at room temperature, by providing a reasonably wide gap between the barrel mold 14 and the upper mold 11 (lower mold 12), The process of arranging 13 can be facilitated. Further, since the heating light or the radiation light is transmitted through the quartz glass, there is an effect that the temperature control of the entire mold is easy.
  • a material containing at least 90% by mass or more of silicon nitride may be used as the body mold 14.
  • the strength of the body mold 14 to be formed can be increased as compared with the case of using the material including the quartz glass described above.
  • the sleeve 15 disposed so as to cover the outer peripheral surface in the major axis direction of the body mold 14 is made of, for example, glassy carbon, graphite, silicon nitride, silicon carbide, alumina, boron carbide, zirconia, tantalum carbide, molybdenum and tungsten. It is preferable to use as the material any one selected from the group consisting of By using these materials as the sleeve 15, there is an effect that the entire element forming member 10 including the upper mold 11, the lower mold 12 and the material 13 is heated using radiant heat or heat transfer while blocking the heating light.
  • the pair of upper mold 11 and lower mold 12 is preferably formed of a material containing carbon.
  • the material containing carbon includes any one selected from the group consisting of graphite, glassy carbon, DLC, and diamond.
  • the entire pair of molds is formed of a material containing carbon as described above. It is preferable.
  • the thermal expansion coefficient of glassy carbon is 2.8 ⁇ 10 ⁇ 6 (/ ° C.)
  • the thermal expansion coefficient of diamond is 1.1 ⁇ 10 ⁇ 6 (/ ° C.). It is easy to make the expansion coefficient ⁇ 1 ⁇ 2 described above.
  • the upper mold outer peripheral surface 11 c (lower mold outer peripheral surface 12 c) is preferentially formed of a material containing carbon, so that the pair of The slidability between the mold and the body mold 14 can be improved, and the above-described mold release property can be further increased.
  • the carbon allotrope include graphite, glassy carbon, DLC, and diamond.
  • the upper mold outer peripheral surface 11c (lower mold outer peripheral surface 12c), which is a sliding surface facing at least the inner peripheral surface of the barrel mold 14, of the pair of molds described above may be formed of a material containing these allotropes. Sufficient slidability with respect to the body mold 14 can be ensured.
  • a large lateral pressure is applied to the frame 16 that is a saddle ring on the surface facing the lower mold 12 of the upper mold 11 in the step of pressing the material during molding.
  • a material having a high bending strength for the frame mold 16 assuming that a strength, particularly a stress larger than the side is applied.
  • it is preferably formed of ceramics having a bending strength of 300 MPa or more, and preferably contains at least 90% by mass of ceramics. If the frame mold 16 is formed using such a material, high durability can be maintained even when a large pressure is applied during molding (pressing).
  • the frame mold 16 is preferably made of a material including any one selected from the group consisting of silicon carbide, silicon nitride, alumina, boron carbide, zirconia, and tantalum carbide.
  • FIG. 10 is a schematic view showing a state of an edge portion where the outer peripheral surface of the upper mold and the pressing surface of the upper mold intersect with the R surface.
  • FIG. 11 is a schematic view showing a state of an edge portion where the upper die outer peripheral surface to which the C surface is applied and the upper die pressing surface intersect each other.
  • the upper die outer periphery which is a sliding surface of the upper die 11 More preferably, the edge portion where the surface 11c and the pressing surface that presses the material 13 intersect each other has an R surface 17 or a C surface 18 of 0.2 mm or more and 1.0 mm or less.
  • edge portion is a sharp corner portion that is not processed like the R surface 17 and the C surface 18, the edge portion is the barrel die 14 when the die slides in the direction along the long axis direction.
  • the edge portion is the barrel die 14 when the die slides in the direction along the long axis direction.
  • galling or scouring there is a possibility of inducing a phenomenon called galling or scouring.
  • the radius of the R portion of the edge portion (dimension A in FIG. 10) is preferably 0.2 mm or more.
  • the dimension of the C-cut portion of the edge portion (dimension B in FIG. 11) is 0.2 mm or more.
  • the radius of the R portion or the size of the C-cut portion is too large, there is a problem that the processing cost may increase. Furthermore, if the radius of the R portion and the size of the C cut portion are too large, for example, the outer diameter of the circular shape formed by the cross section intersecting the major axis of the upper mold 11 (for example, D p (mm) in FIG. 8). The ratio of the portion where the value is smaller than Dp increases. That is, the ratio of the portion of the upper mold 11 where the above-described diameter value is Dp is small. For this reason, there is a problem that the major axis direction of the upper mold 11 is easily inclined with respect to the major axis direction of the body mold 14. From the above, the radius of the R portion is preferably 1.0 mm or less. Moreover, it is preferable that the dimension of the said C cut part shall be 1.0 mm or less.
  • the element molding member 10 has good sliding properties of the upper mold 11 and the lower mold 12 with respect to the body mold 14 and when the upper mold 11 and the lower mold are heated during the molding process. 12 can be easily released.
  • the inner peripheral surface of the barrel die 14 is used to discharge the gas staying between the upper die 11 and the lower die 12 to the outside of the upper die 11 or the lower die 12 and then to the outside of the barrel die 14 more easily.
  • a groove 14c which is a recess, is disposed in at least a part of the region.
  • Fig. 12 is a developed view of a trunk type in which a groove is present in a direction along the long axis direction.
  • 12 is a development view of the inner peripheral surface of the trunk mold 14.
  • the vertical direction indicates the major axis direction of the trunk mold 14, and the horizontal direction indicates the inner peripheral direction of the trunk mold 14.
  • the groove 14c shown in FIG. 12 has a structure that extends in a direction along the long axis direction (vertical direction in FIG. 12) of the body mold 14 in the same manner as the groove 14c described in FIG. And by having a fixed width
  • the region where the material 13 is disposed between the upper die 11 and the lower die 12 shown in FIG. 2 is heated to form the material 13, for example, desorption or volatilization of adsorbed gas (for example) Evaporation) and chemical reactions generate gases such as air.
  • the generated gas stays in a region where the material 13 is disposed, which is sandwiched between the upper mold forming surface 11d of the upper mold 11 and the lower mold forming surface 12d of the lower mold 12 shown in FIG. If the gas stays in this way, stress is applied to the material 13 when the material 13 is molded.
  • the groove 14c which is disposed on the inner peripheral surface of the body mold 14 and has a certain depth (in the circular radial direction formed by the cross section of the body mold 14), allows the retained gas to be efficiently discharged from the element forming member 10 to the outside. It has a role to release.
  • the groove 14c is preferably formed over the entire major axis direction of the body mold 14 (that is, from the upper end to the lower end of the body mold 14).
  • the gas retaining region sandwiched between the upper mold 11 and the lower mold 12 exists near the center when viewed in the long axis direction, but the groove 14c existing near the center is in the long axis direction. It moves to the upper end or the lower end of the body mold 14 along the groove 14c which is a structure along the upper and lower ends, and it becomes easy to discharge gas from the upper end or the lower end. Since the gas is released to the outside, there are two types of release, upward and downward, so that the gas can be efficiently released to the outside.
  • FIG. 13 is a developed view of the trunk mold in which grooves along the major axis direction exist only in the upper half of the trunk mold.
  • the upper die outer peripheral surface 11 c that is the outer peripheral surface of the upper die 11 from the vicinity of the center in the major axis direction of the trunk die 14 (that is, the region sandwiched between the upper die 11 and the lower die 12).
  • the groove 14c having a certain width is disposed only in the direction along the long axis direction of the body mold 14 only in the region facing the surface.
  • the gas staying in the region sandwiched between the upper die 11 and the lower die 12 is moved upward from the groove portion in the vicinity of the region (that is, near the lower end of the groove 14c) to the groove 14c. It can be made to pass toward the outside and discharged from the upper end portion of the body mold 14 to the outside of the element forming member 10.
  • the upper end portion of the body die 14 does not have anything that blocks gas emission, so that the gas can be efficiently discharged from the upper end of the upper die 11 to the outside.
  • the groove 14c is opposed to the groove 14c as shown in FIG. 12, for example, from the upper end to the lower end of the trunk mold 14.
  • the amount of the pair of molds (upper mold 11) to be inserted into the groove 14c is reduced.
  • the groove 14c for inserting the lower mold 12 does not exist in the portion where the groove 14c extends downward, so that the groove 14c of the entire pair of molds is formed. Insertion is blocked. Therefore, as shown in FIG. 13, by shortening the length in the extending direction in which the groove 14c is arranged, the insertion into the pair of grooves 14c can be suppressed, and as a result, the element to be molded The amount of eccentricity can be reduced.
  • FIG. 14 is a developed view of the trunk mold in which grooves along the major axis direction exist only in the lower half of the trunk mold.
  • the lower die outer peripheral surface which is the outer peripheral surface of the lower die 12 from the vicinity of the center in the major axis direction of the trunk die 14 (that is, the region sandwiched between the upper die 11 and the lower die 12).
  • the groove 14c having a certain width is disposed only in the direction along the major axis direction of the body mold 14 only in the region facing 12c. Even in such a configuration, the gas staying in the region sandwiched between the upper die 11 and the lower die 12 is moved downward from the groove portion in the vicinity of the region (that is, near the upper end of the groove 14c) to the groove 14c. It can be made to pass toward the outside and be released from the lower end portion of the body mold 14 to the outside of the element forming member 10.
  • the gas introduced into the groove 14c is efficiently discharged to the outside of the element forming member 10. Further, since the gas introduced into the groove 14c flows downward through the groove 14c, it can be smoothly discharged to the outside by the action of gravity.
  • the length in the extending direction in which the groove 14c is arranged is shorter than the groove 14c shown in FIG. 12, for example, similarly to the groove 14c shown in FIG. For this reason, it is possible to suppress insertion into the pair of mold grooves 14c, and as a result, it is possible to reduce the amount of eccentricity of the element to be molded.
  • FIG. 15 is an exploded view of a trunk mold in which a groove along the major axis exists only in the lower half of the trunk mold, and a horizontal groove extending from the groove to the outside exists at the lower end of the groove.
  • the trunk mold 14 in which the groove 14c is disposed only on the lower side from the center in the major axis direction of the trunk mold 14 shown in FIG. 14 the upper mold introduced into the groove 14c from the vicinity of the upper end of the groove 14c, for example.
  • the gas staying in the region sandwiched between 11 and the lower mold 12 passes downward through the groove 14 c and reaches the lower end portion of the trunk mold 14.
  • the efficiency at which the gas reaching the lower end portion of the trunk mold 14 is blocked by the floor or the base on which the trunk mold 14 is installed and released to the outside of the trunk mold 14 (outside of the element molding member 10) may deteriorate. Therefore, as shown in FIG. 15, from the vicinity of the lower end of the body mold 14, the groove 14 c is arranged in the horizontal direction, so that the gas passes through the body mold 14 and the sleeve 15, and the outside of the element forming member 10. It is set as the structure made to discharge to.
  • the same as the groove 14c shown in FIG. 12 the same as the groove 14c shown in FIG.
  • the groove 14c may be provided in a direction along the horizontal direction. In this way, the gas flowing downward in the groove 14c can be discharged to the outside more efficiently.
  • FIG. 16 is a developed view of a trunk type in which a groove exists in a direction intersecting the major axis direction.
  • the groove 14c in the cylinder-shaped development view 24 shown in FIG. 16 has a groove 14c in a direction intersecting the major axis direction (vertical direction in FIG. 16). That is, it is configured to extend obliquely with respect to the major axis direction.
  • the width of the groove 14c in the body mold 14 is 2D (mm), like the groove 14c in FIGS.
  • the groove 14c in FIG. 16 differs from the groove 14c in FIG. 12 only in that it extends obliquely with respect to the major axis direction as described above.
  • the upper mold 11 and the lower mold 12 are similar to the case where the groove 14c extends in the direction along the major axis direction. It has a function of releasing the gas staying between the two.
  • the width of the groove 14c in FIG. 16 is 2D (mm) like the width of the groove 14c in FIG. 12, it extends obliquely with respect to the major axis direction as in the groove 14c in FIG.
  • the pair of molds (the upper mold 11 and the lower mold 12) facing the groove 14c are more likely to be formed than the case of extending in the direction along the major axis direction like the groove 14c in FIG.
  • the amount to be inserted into the groove 14c is reduced.
  • the pair of molds has a shape extending in a direction along the long axis direction. For this reason, even if an attempt is made to insert a pair of molds into the groove 14c having a shape that intersects the major axis direction, the length of the groove 14c is short when viewed in the direction along the major axis direction, and therefore the portion where the groove 14c does not exist However, it mechanically interferes with the pair of molds being inserted into the grooves 14c. Therefore, as the groove 14c has a larger angle with respect to the major axis direction, the interference of the pair of molds with the groove 14c is more likely to occur, so that the interference with the pair of grooves 14c can be suppressed.
  • FIG. 17 is a developed view of a trunk mold in which grooves exist in the direction intersecting the major axis direction only in the upper half of the trunk mold.
  • the upper die outer peripheral surface 11 c that is the outer peripheral surface of the upper die 11 from the vicinity of the center in the major axis direction of the trunk die 14 (ie, the region sandwiched between the upper die 11 and the lower die 12).
  • the groove 14c having a certain width is disposed only in the direction intersecting the long axis direction of the body mold 14 only in the region facing the surface.
  • the gas staying in the region sandwiched between the upper die 11 and the lower die 12 is moved upward from the groove portion in the vicinity of the region (that is, near the lower end of the groove 14c) to the groove 14c. It can be made to pass through and be discharged from the upper end portion of the body mold 14 to the outside of the element molding member 10.
  • the upper end portion of the body die 14 does not have anything that blocks gas emission, so that the gas can be efficiently discharged from the upper end of the upper die 11 to the outside.
  • the groove 14c in FIG. 17 suppresses the pair of molds from being inserted into the groove 14c by shortening the length in the extending direction of the groove 14c, similarly to the groove 14c in FIG. 13 described above. be able to. Further, similarly to the groove 14c in FIG. 16 described above, the groove 14c extends in a direction intersecting with the major axis direction, thereby preventing the pair of molds from being inserted into the groove 14c. Due to both effects, the groove 14c in FIG. 17 can further prevent the pair of molds from being inserted into the groove 14c than the groove 14c described above. As a result, the amount of eccentricity of the element to be molded can be further reduced.
  • FIG. 18 is a developed view of a trunk mold in which a groove exists in a direction intersecting the major axis direction only in the lower half of the trunk mold.
  • the lower die outer peripheral surface which is the outer peripheral surface of the lower die 12 from the vicinity of the center in the major axis direction of the trunk die 14 (that is, the region sandwiched between the upper die 11 and the lower die 12).
  • the groove 14c having a certain width is disposed only in the direction crossing the long axis direction of the body mold 14 only in the region facing the surface 12c.
  • the gas staying in the region sandwiched between the upper die 11 and the lower die 12 is moved downward from the groove portion in the vicinity of the region (that is, near the upper end of the groove 14c) to the groove 14c. It can be made to pass toward the outside and be released from the lower end portion of the body mold 14 to the outside of the element forming member 10. In this way, since the gas introduced into the groove 14c flows downward through the groove 14c, it can be smoothly discharged to the outside by the action of gravity.
  • the groove 14c in FIG. 18 suppresses the insertion of the pair of molds into the groove 14c by shortening the length in the extending direction of the groove 14c, similarly to the groove 14c in FIG. 14 described above. be able to. Further, similarly to the groove 14c in FIG. 16 described above, the groove 14c extends in a direction intersecting with the major axis direction, thereby preventing the pair of molds from being inserted into the groove 14c. Due to both effects, the groove 14c in FIG. 18 can prevent the pair of molds from being fitted into the groove 14c, similarly to the groove 14c in FIG. As a result, the amount of eccentricity of the element to be molded can be further reduced.
  • FIG. 19 is a developed view of a trunk mold in which a groove that intersects the major axis exists only in the lower half of the trunk mold, and a horizontal groove that communicates from the groove to the outside exists at the lower end of the groove.
  • the groove 14c in FIG. 19 is formed by arranging the groove 14c in the direction along the horizontal direction from the vicinity of the lower end of the body mold 14 with respect to the groove 14c in FIG. 18 in the same manner as the groove 14c shown in FIG.
  • the gas is configured to pass through the body mold 14 and the sleeve 15 and to be discharged to the outside of the element forming member 10.
  • the same as the groove 14c shown in FIG. 16 the same as the groove 14c shown in FIG.
  • the groove 14c may be provided in a direction along the horizontal direction. In this way, the gas flowing downward in the groove 14c can be discharged to the outside more efficiently.
  • FIG. 20 is a developed view of the trunk mold in which the grooves are arranged so as to draw a spiral shape on the inner peripheral surface of the trunk mold.
  • the groove 14 c in FIG. 20 is configured to draw a spiral shape on the inner peripheral surface of the body mold 14.
  • each is disposed in the upper half and the lower half of the body mold 14 in the major axis direction.
  • the upper mold 11 and the lower mold 12 introduced into the groove 14c from the vicinity of the lower end of the groove 14c existing in the upper half of the trunk mold 14 in the major axis direction (near the center of the trunk mold 14 in the major axis direction)
  • the gas staying in the region sandwiched between the two reaches the upper end of the body mold 14 along the groove 14c existing in the upper half in the longitudinal direction of the body mold 14, and is released from there to the outside of the element forming member 10. .
  • the upper mold 11 and the lower mold introduced into the groove 14c from the vicinity of the upper end of the groove 14c (near the center of the long axis direction of the trunk mold 14) existing in the lower half of the long axis service of the trunk mold 14
  • the gas staying in the region sandwiched by 12 reaches the lower end of the body die 14 along the groove 14c existing in the lower half in the longitudinal direction of the body die 14, and from there to the outside of the element forming member 10 Released. Since the gas is released to the outside in this way, there are two types of release, upward and downward, so that the gas can be efficiently released to the outside.
  • the spiral shape drawn by the groove 14c in FIG. 20 extends in a direction in which the groove 14c intersects the major axis direction, similarly to the groove 14c in FIGS. Moreover, the angle of the extending direction of the groove 14c with respect to the major axis direction of the body mold 14 is larger than the groove 14c in FIGS. Therefore, the pair of molds is prevented from being inserted into the groove 14c due to the fact that the groove 14c intersects the longitudinal direction of the body mold 14 beyond the groove 14c in FIGS. be able to. Further, in the case of the groove 14c in FIG. 20, the length of each groove 14c in the major axis direction is as short as half the length of the trunk mold 14 in the major axis direction.
  • the length of the groove 14c in the extending direction is shortened, so that a pair of molds are inserted into the groove 14c. Can be suppressed. Due to both effects, the groove 14c in FIG. 20 can prevent the pair of molds from being inserted into the groove 14c. As a result, the amount of eccentricity of the element to be molded can be further reduced.
  • FIG. 21 is a developed view of a trunk mold in which a plurality of grooves are arranged on the inner peripheral surface of the trunk mold. As shown in FIG. 21, a plurality of grooves 14 c may be arranged on the inner peripheral surface of the body mold 14. In this way, it is possible to discharge the gas to the outside more efficiently than in the case of the single groove 14c.
  • the respective grooves 14 c are arranged at equal intervals in the inner circumferential direction of the trunk mold 14.
  • the term “equal interval” as used herein includes not only the case where the interval is completely equal, but also includes the case where the interval error is substantially equal, for example, within 15% of the average interval value. If the grooves 14c are arranged at equal intervals in this way, the action of releasing the gas staying between the pair of molds and the material 13 is performed almost evenly on the pair of molds, and thus the entire element forming member 10. be able to. As a result, since the stress applied to the entire element forming member 10 during the forming process can be made substantially uniform, formation defects such as shape defects with respect to the elements to be formed can be suppressed.
  • FIG. 21 shows a cylinder development view 24 in the case where there are a plurality of grooves 14c extending in the longitudinal direction of the cylinder mold 14 as shown in FIG.
  • a plurality of grooves 14c as shown in FIGS. 13 to 19 may exist.
  • the body mold 14 having a configuration in which the grooves 14c as shown in FIGS. 13 to 19 are appropriately combined may be used. If it does in this way, it can suppress that a pair of type
  • the element forming member 10 having the groove 14c extending in the long axis direction of the body mold 14 and the element forming member having no groove 14c were prepared.
  • Table 1 below is a table showing the material and dimensions of each component of each element forming member in Example 1. As shown in Table 1, both of the element forming member 10 having the groove 14c and the element forming member having no groove 14c are described with reference to FIGS.
  • the upper mold outer peripheral surface 11c and the lower mold outer peripheral surface 12c, which are surfaces facing the body mold 14, are formed using glassy carbon.
  • the upper mold 11 and lower mold 12, a circular outer diameter formed by the cross section crossing the longitudinal direction (see D p in FIG. 8) is 19.944Mm.
  • the cylindrical die 14 is formed of quartz glass, circular diameter comprising a cross section that intersects its longitudinal axis (see D i in Fig. 8) is 20.01Mm, circular formed by the barrel-shaped cross section
  • the wall thickness is 10.00 mm.
  • the width 2D (see FIG. 4) of the groove 14c formed on the inner surface of the body mold 14 is 2.0 mm.
  • the frame mold 16 is made of silicon nitride (Si 3 N 4), (see D r in FIG. 8) circular outer diameter formed by the cross section is 19.915Mm.
  • the length of the pair of molds and the body mold 14 in the major axis direction (that is, the height in the vertical direction) is 40 mm.
  • the inner diameter (mm) of the upper mold 11 and the lower mold 12 is omitted because the inner diameter does not exist due to the structure of the upper mold 11 and the lower mold 12.
  • the inner diameter (mm) of the frame mold 16 and the outer diameter (mm) of the barrel mold 14 are not requirements which are important points in carrying out the embodiment according to the present invention, and therefore are not described.
  • FIG. 22 is a flowchart showing a method for manufacturing an element using the element molding member according to the present invention.
  • a material preparing step (S10) is performed.
  • ZnS (zinc sulfide) was prepared as the material 13.
  • mold is implemented.
  • the above-described material 13 is disposed in a circular inner region that forms a cross section of the frame mold 16 that is disposed on the upper surface of the lower mold 12 that is the surface facing the upper mold 11. I let you.
  • Example 1 a step of heating the mold (S30) was performed. Specifically, in Example 1, a pair of molds was heated to 1000 ° C. Subsequently, as shown in FIG. 22, a step of pressing the material (S40) is performed. Specifically, in Example 1, with the pair of molds heated to 1000 ° C. in the previous step (S30), the upper mold 11 is set on the lower mold 12 as shown in FIG. After arranging the pair of molds to mesh with each other, a pressure of 50 MPa was applied from the upper side of the upper mold 11 to the lower mold 12 side from the upper mold 11 side using a pressure shaft of an apparatus not shown in FIG. In this way, a pressure of 50 MPa was applied to the material 13 (ZnS) placed on the upper surface of the lower mold 12 in the previous step (S20).
  • ZnS material 13
  • Table 2 is a table showing the measurement results of the sample of the element formed using the element forming member 10 having the groove 14c and the element forming member having no groove 14c. “Present” indicates the measurement result of the element sample formed using the element forming member 10 having the groove 14c, and “No” indicates the measurement of the element sample formed using the element forming member without the groove 14c. Results are shown. As shown in Table 2, the relative density of the material was measured for all the 200 element samples formed using 100 element forming members, and the relative density was 99% or more. Was passed. Table 2 shows the number of samples that passed with a relative density of 99% or more.
  • 100 of the 100 element samples formed using the element forming member 10 having the grooves 14c were “accepted” samples having a relative density of 99% or more.
  • the sample of the element formed using the element forming member without the groove 14c 0 out of 100 “pass” samples having a relative density of 99% or more, that is, all 100 out of 100 samples.
  • the relative density was less than 99%.
  • the element is formed by using the element forming member 10 in which the groove 14c is arranged in at least a part of the inner peripheral surface of the body mold 14 according to the present invention.
  • the gas generated in the region sandwiched between the pair of molds during the molding process can be efficiently discharged to the outside through the groove 14c. Therefore, it can be said that the ratio of the gas contained in the formed element is reduced. Therefore, when the element is formed using the element forming member 10 according to the present invention, the relative density is higher and the quality is higher than when the element is formed using the element forming member having no groove in the body mold. It can be said that a simple element can be formed.
  • Example 2 a test for evaluating the eccentricity of an element formed using the element forming member 10 having the groove 14c in the body mold 14 was performed.
  • Example 2 the element forming member 10 having the groove 14c extending in the long axis direction of the body mold 14 shown in FIGS. 2 to 4 was prepared.
  • Table 3 shows the material and dimensions of each component of the element forming member prepared in Example 2.
  • the element forming member 10 prepared in Example 2 has the groove 14c, and the material thereof is the element forming member 10 having the groove 14c used in the previous Example 1.
  • the size is about half the size of the element molding member 10 used in the first embodiment.
  • four types of body molds 14 having a width 2D (see FIG. 4) of the grooves 14c formed on the inner peripheral surface of the body mold 14 having 1.5 mm, 2 mm, 3 mm, and 4 mm were prepared.
  • Table 4 is a table showing the results of evaluating the average value of the amount of increase in the eccentricity of the elements formed using the cylinder molds having different widths of the grooves 14c in Example 2.
  • the average value of the increase amount of the eccentricity of 100 samples Obtained the best results of 0.2 ⁇ m and 0.3 ⁇ m, respectively.
  • the average increase amount of the eccentric amount of 100 samples is 0.7 ⁇ m, and the eccentricity The amount was within 1 ⁇ m, which is an allowable amount of increase in the amount.
  • the average value of the increase amounts of the eccentricity of 100 samples exceeded 1 ⁇ m.
  • the eccentric amount of the formed element if the element is formed using the element forming member 10 according to the present invention, the eccentric amount of the formed element if the width of the groove 14c of the body mold 14 is 3 mm or less, more preferably 2 mm or less. It can be said that a high-quality element can be formed in which the amount of increase is within an allowable range.
  • Example 3 the same test as in Example 2 was performed using the element forming member 10 in which the material and dimensions of the pair of molds, the barrel mold, and the frame mold were changed from those in Example 2.
  • Table 5 is a table showing the material and dimensions of each component of the element forming member prepared in Example 3.
  • the element molding member 10 prepared in Example 3 has a groove 14c.
  • the upper mold 11 and the lower mold 12 are formed of silicon carbide. Formed using.
  • both the upper die 11 and the lower die 12 are the outer peripheral surfaces of the upper die outer peripheral surface 11c and the lower die outer peripheral surface 12c, which are sliding surfaces facing the body die 14, DLC is formed. did.
  • the DLC thin film had a thickness of 3 ⁇ m.
  • the thickness of the thin film formed as the sliding surface is preferably 1 ⁇ m to 5 ⁇ m, and more preferably 2 ⁇ m to 4 ⁇ m.
  • circular outer diameter of the upper die 11 and lower die 12 is 11.947Mm.
  • the cylindrical die 14 is then formed glassy carbon, (see D i in Fig. 8) circular diameter comprising a cross section that intersects its axial direction is 11.996Mm.
  • the body mold 14 four types of body molds 14 were prepared in which the width 2D (see FIG. 2) of the groove 14c on the inner surface was 2 mm, 3 mm, 4 mm, and 5 mm.
  • the frame mold 16 is made of silicon carbide (SiC), the outer diameter of the circular cross section is formed (see D r in FIG. 8) is 11.853Mm.
  • the length of the pair of molds and the body mold 14 in the major axis direction is 40 mm.
  • the average value of the increase amounts of the eccentricity of 100 samples is respectively The best results were 0.2 ⁇ m and 0.5 ⁇ m.
  • the average increase amount of the eccentricity of 100 samples is 0.9 ⁇ m, The amount was within 1 ⁇ m, which is an allowable amount of increase in the amount.
  • the average value of the eccentricity of 100 samples exceeded 1 ⁇ m.
  • Example 4 is a test conducted to verify the range of materials that can be used for each component constituting the element molding member 10.
  • Table 7 is a table
  • the element forming member 10 prepared in one aspect of Example 4 of the present invention was formed using cemented carbide for the upper mold 11 and the lower mold 12.
  • the upper die 11 and the lower die 12 are the outer peripheral surfaces of the upper die outer peripheral surface 11c and the lower die outer peripheral surface 12c, which are the sliding surfaces facing the body die 14, respectively.
  • a diamond thin film is used. A film was formed. The diamond thin film had a thickness of 3 ⁇ m. Further, (see D p in FIG.
  • the cross section crossing the longitudinal direction forms is 19.901Mm.
  • the cylindrical die 14 is formed of silicon nitride, (see D i in Fig. 8) circular diameter comprising a cross section that intersects its axial direction is 19.930Mm.
  • the body mold 14 used was a groove having a width 2D (see FIG. 2) of a groove 14c on its inner surface of 5 mm.
  • the frame mold 16 is formed by B 4 C (boron carbide), the outer diameter of the circular cross section is formed (see D r in FIG. 8) is 19.895Mm.
  • the length of the pair of molds and the body mold 14 in the major axis direction (that is, the height in the vertical direction) is 40 mm.
  • the average value of the amount of increase in eccentricity is 0.1 ⁇ m, which is 0.5 ⁇ m or less, and therefore the evaluation result was ⁇ (best). That is, as a pair of molds, for example, cemented carbide is used in addition to glassy carbon, and a diamond thin film is formed on the outer peripheral surface of the pair of molds. Material is used. Therefore, even if the element forming member 10 is configured using the material of each constituent element in one aspect of the above-described fourth embodiment of the present invention, the element forming member 10 has a small increase in the amount of eccentricity. A good element can be formed.
  • Table 8 is a table
  • the element forming member 10 prepared in one aspect of Example 4 of the present invention includes the upper mold outer peripheral surface 11c and the lower mold outer peripheral surface 12c for the upper mold 11 and the lower mold 12. And formed using graphite.
  • the circular outer diameter (D p in FIG. 8) formed by the cross section intersecting the major axis direction of the upper mold 11 and the lower mold 12 is 7.956 mm.
  • the body mold 14 is made of quartz, and the circular inner diameter (D i in FIG. 8) formed by the cross section intersecting with the major axis direction is 8.016 mm.
  • the body mold 14 used was a groove 14c having an inner surface with a width 2D of 2 mm.
  • the frame mold 16 is formed of Al 2 O 3 (alumina), the outer diameter of the circular cross section is formed (see D r in FIG. 8) is 7.908Mm.
  • Other conditions are the same as those of the one aspect of the fourth embodiment of the present invention described above.
  • the element manufacturing method and the evaluation method are also the same as in the above-described one aspect of the fourth embodiment of the present invention.
  • the average value of the amount of increase in eccentricity is 0.3 ⁇ m, which is 0.5 ⁇ m or less, and therefore the evaluation result was ⁇ (best).
  • a material containing carbon is used for the main body and outer peripheral surface of the mold.
  • the said element forming member 10 is the increase amount of eccentricity.
  • a favorable element with a small amount can be formed.
  • Table 9 is a table
  • the element forming member 10 prepared in one aspect of Example 4 of the present invention was formed using cemented carbide for the upper mold 11 and the lower mold 12.
  • DLC having a thickness of 3 ⁇ m was formed on the upper die outer peripheral surface 11c and the lower die outer peripheral surface 12c.
  • a circular outer diameter formed by the cross section crossing the longitudinal direction (D p in FIG. 8) is 24.876Mm.
  • the body mold 14 is made of glassy carbon, and the circular inner diameter (D i in FIG.
  • the body mold 14 used was a groove 14c having an inner surface with a width 2D of 6.5 mm.
  • the frame mold 16 is made of zirconia, (see D r in FIG. 8) circular outer diameter in cross section form is 24.676Mm.
  • Other conditions are the same as those of the one aspect of the fourth embodiment of the present invention described above.
  • the element manufacturing method and the evaluation method are also the same as in the above-described one aspect of the fourth embodiment of the present invention.
  • the average value of the amount of increase in eccentricity is 0.6 ⁇ m, which is 1.0 ⁇ m or less, so the evaluation result was ⁇ (good).
  • a pair of molds for example, cemented carbide is used in addition to glassy carbon, and a DLC thin film is formed on the outer peripheral surface of the pair of molds. Used. For this reason, even if it comprises the element forming member 10 using the material of each component in the 3rd aspect of Example 4 of this invention mentioned above, the said element forming member 10 is the increase amount of eccentricity. Thus, a favorable element with a small amount can be formed.
  • Embodiment 5 tests the effect when variously changing the shape and number of grooves 14c formed in the body mold 14.
  • Table 10 is a table
  • FIG. As shown in Table 10, in the element forming member 10 prepared for forming the element in Example 5 of the present invention, the material and dimensions of each component are all the same, and only the shape of the groove 14c is variously changed. In the form. Specifically, as shown in Table 10, the material and dimensions (outer diameter and inner diameter) of each component are all the same as those of the element forming member 10 prepared in Example 2 described above.
  • the element material 13 formed in Example 5 is also ZnS as in Examples 1 to 4 described above. However, the widths of the formed grooves 14c are all 2 mm. Further, similarly to Examples 1 to 4 described above, an element was formed based on the procedure of the flowchart shown in FIG.
  • Table 11 is a table showing the shape and number of grooves of each body mold in Example 5 and the evaluation results of the eccentricity of the elements formed using each.
  • the shape of the groove is one of the shapes of the respective grooves 14c in the above-described cylinder-shaped development view 24 of FIGS.
  • the number of the grooves 14c provided in the body mold 14 is shown, in the case where there are a plurality of the grooves 14c, the grooves 14c are arranged so as to be substantially equidistant in the circumferential direction of the inner peripheral surface.
  • the extending direction of the groove 14c intersects the major axis direction (vertical direction in the figure) of the body mold 14 and the cross direction (oblique direction).
  • the groove inclination angle with respect to the vertical that is, the groove inclination angle with respect to the major axis direction
  • an element molding member using the body mold 14 is used.
  • the element formed at 10 has an average increase in eccentricity of 0.3 ⁇ m or less (the evaluation result is ⁇ ), and a good element with a small increase in eccentricity could be formed.
  • the extending direction of the groove 14c shown in FIGS. 16, 17, 19, and 20 is a crossing direction (oblique direction) with respect to the major axis direction of the body mold 14, as described above.
  • the present invention is particularly excellent as a technique for forming a good element having a high relative density, a high quality, and a small amount of eccentricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

光学素子を構成する素材を成形する型に対して気体を逃がすための溝を設けると、当該素材から成形されるレンズなどの光学素子に対して歪んだ形状が転写されることがある。また、型の外周面の外側に配置された中空の胴型に貫通孔を設けると、胴型の強度が著しく低下する。 本発明では、胴型の型と対向する内周面の少なくとも一部に、気体を逃がすための溝を設ける。

Description

素子成形用部材、素子の製造方法、および素子
  本発明は、ガラスレンズなどの光学素子を成形するための素子成形用部材および当該素子成形用部材を用いた素子の製造方法に関するものである。より特定的には、成形不良を抑制する素子成形用部材および当該素子成形用部材を用いた素子の製造方法、並びに当該部材や製造方法を用いて形成させた素子に関するものである。
  たとえばデジタルカメラや携帯電話など、各種光学機器や光学通信機器などに用いる光学素子としてのレンズは、ますます高性能が要求されている。そのため、前記レンズとしては、非球面レンズが用いられている。非球面レンズを研磨加工により製造することは非常にコストがかかるため、素子成形用部材を用いて成形加工を行なうことが主流である。
  成形加工により光学素子などの素子を成形する技術においては、素子成形用部材のうち、成形を行なうための1対の型を加熱する。ところがこの加熱を行なうときに、当該1対の型の加熱した部分と、型に配置した当該素子を構成する素材との間に空気などの気体が発生し、留置することがある。この気体が型と素材との間に挟まったまま加工を続けると、たとえば成形される素材が気体に圧迫されるため、当該素材から成形される素子が形状不良などの成形不良を起こすことがある。
  そこで、型と素材との間に留置する気体を有効に外部に放出するため、たとえば特開平8-337428号公報(以下、「特許文献1」という)には、上下1対の型のうち素子を構成する素材を配置する下側の型において、素材が配置される領域(光学有効径)の外側の領域に、気体を抜くための空気溝を形成する技術が開示されている。この技術では、素材が配置される最も外側の領域がなす円周から外側に向かって放射状に、気体を外部に放出するための空気溝を、上記円周の周方向において等間隔に4箇所配置している。これにより、気体が型と素材との間に滞留することなく放出されるため、当該素材から成形されるレンズなどの光学素子に対して形状不良などの成形不良を抑制することができ、その結果、成形されるレンズの光学的特性を損なわない。
  また、たとえば特開2007-314385号公報(以下、「特許文献2」という)には、上下1対の型のうち光学素子を構成する素材を配置する下側の型において、上側の型と下側の型とに拘束されて光学素子本体を形成する領域(光学機能面転写範囲)の外側の、光学素子の素材が配置される領域に粗面を形成する技術が開示されている。この粗面は、下側の型の光学機能面転写範囲と、光学機能面転写範囲における素材との間に滞留した気体を、当該粗面を介して型の外部に放射状に放出させるための面である。これにより、気体が型と素材との間に滞留することなく放出されるため、当該素材から成形されるレンズなどの光学素子に対して形状不良などの成形不良を抑制させることができ、その結果、成形されるレンズの光学的特性を損なわない。
  さらに、たとえば特開2007-176707号公報(以下、「特許文献3」という)にて開示されている素子成形用部材は、上下1対の型の噛み合う、光学素子の素材が配置される領域には周囲に一定の空間(キャビティ)が存在する。そのキャビティが、型の外周面を覆うように複数台配置された中空の胴型の外周面に設けられた貫通孔(連通孔)の少なくとも一部と相互に重なることにより、キャビティと胴型の外部の領域とが連通される。したがって、型と素材との間に滞留した気体は、当該連通された貫通孔を介して胴型の外部の領域へと放出される。このようにして気体を型と素材との間に滞留することなく放出する技術が特許文献3には開示されている。特許文献3においても、当該素材から成形されるレンズなどの光学素子に対して形状不良などの成形不良を抑制させることができるため、成形されるレンズの光学的特性を損なわない。
  また、たとえば特開2005-145777号公報(以下、「特許文献4」という)には、下側の型の外周面に段差を伴う溝形状を設けることにより、型と素材との間に滞留した気体を、当該段差を伴う溝形状を介して型の外部に放出させる素子成形用部材が開示されている。
特開平8-337428号公報 特開2007-314385号公報 特開2007-176707号公報 特開2005-145777号公報
  しかし、たとえば特許文献1および特許文献4に開示するような、光学素子を構成する素材を配置する型に対して気体を逃がすための溝を設ける場合には、型を加熱して素材を成形する過程において型や素材に加わる応力状態が不均一となることが考えられる。すると、型に配置した光学素子を構成する素材には、微小な弾性変形が発生することがある。
また特に、型に溝を設けることにより、当該型が長軸方向に沿った、断面の中心を通る軸に対して非対称になることがある。この場合、成形加工を行なう際に型や素材に加わる応力が、素材の領域によって不均衡に印加される。その結果、素材の変形が不均衡となることにより、当該素材から成形されるレンズなどの光学素子に対して歪んだ形状が転写されるため、形状不良などの成形不良を発生させる可能性がある。
  また、たとえば特許文献2に開示されるように、粗面を設けることを含め、素子成形用素材の型に傷(たとえば凹凸部)を形成することは、たとえその傷が光学機能面転写範囲の外側の領域に形成したものであっても、型の耐久性を劣化させることがある。耐久性が劣化することにより短寿命となる結果、型の製作費用が増大する可能性がある。また、粗面の上に光学素子を構成する素材を配置するため、素材の配置が不安定な状況になる場合がある。さらに、そのような不安定な状況で成型加工を行なおうとすると、型の芯出しが困難となり、結果として当該素材から成形されるレンズなどの光学素子に対して形状不良などの成形不良を発生させる可能性がある。
  さらに、たとえば特許文献3に開示されているように、型の外周面の外側に配置された中空の胴型に貫通孔を設けると、胴型の強度が著しく低下する。胴型は中空で外周面部のみ剛体成分として形成されているため、たとえ貫通孔が存在しないとしても、中空でない円筒形状の物体よりも強度が低い。したがって、このような貫通孔の存在する強度が充分でない胴型を用いて成形加工を行なう際には、胴型に応力が加えられることにより、胴型が破損する可能性がある。
  本発明は、上述した各問題に鑑みなされたものであり、その目的は、型と素材との間に滞留する気体や、素子成形用部材の構造に起因する成形不良を抑制する素子成形用部材、素子成形用部材を用いた製造方法、および当該部材や製造方法を用いて形成された素子を提供することである。
  本発明に係る素子成形用部材は、素子を成形する素子成形用部材であり、成形を行なうための1対の型と、当該1対の型の外周面を囲むように配置された中空の胴型と、1対の型の間において、当該素子を構成する素材の位置を調整する枠型とを備えている。そして、その胴型の、型の外周面と対向する内周面の少なくとも一部の領域に、凹部が形成される、素子成形用部材である。
  1対の型は、通常の使用状態において上下方向に1対存在する型であり、上下方向を長軸方向として、その長軸方向に交差する断面はたとえば円形をなす円筒形状である。その型の長軸方向に伸び、外面を覆う曲面をここでは外周面と定義する。上述した特許文献において開示されている素子成形用部材は、型と、素子を成形するための素材との間に滞留する気体を放出するための溝を、素材を配置する型に設ける。これに対し、本発明に係る素子成形用部材においては、当該溝(凹部)を、型の外周面を囲むように配置された中空の胴型に設ける。したがって、素子を成形するための素材を配置する型には溝を設けないので、素材に対して成形加工を行なう際に型や素材に加わる応力状態の均一を保つことができる。
  また、中空の胴型については、1対の型の外周面を覆うように配置されているため、型の外周面から放出される気体を素子成形用部材の外部に放出するための溝(凹部)を、型の外周面に対向する、胴型の内周面の少なくとも一部の領域に形成する。ここで内周面とは、胴型の長軸方向に伸び、内面を覆う曲面のことをいう。このようにすれば、胴型の内周面の溝を介して効率よく、気体を素子成形用部材の外部に放出させることができる。
  なお、胴型に凹部を設けた場合は、貫通孔を設けた場合のように、胴型の強度が低下する程度は小さい。したがって、適度な耐久性を有し、効率よく気体を放出させる素子成形用部材を提供することができる。このような部材によれば、形状不良などの成形不良の発生を抑制することができる。
  なお、先述したように、型と胴型と枠型との長軸方向に交差する断面の外形は円形状であることが好ましい。ここでは交差とは、たとえば長軸方向に直交している場合を指す。
本発明に係る素子成形用部材は、各種光学機器や光学通信機器などに用いる光学素子としてのレンズを成形するため、円形のレンズを成形するためには円形状の断面を有することが好ましい。
  上述した、胴型の内周面に形成される溝(凹部)の寸法については、型の長軸方向に交差する方向に広がる凹部の幅を2D(mm)、型の断面がなす円形の中心から、型の外周面までの半径をR(mm)、胴型の断面がなす円形の中心から、胴型の内周面までの半径をR(mm)とすれば、胴型および型の断面がなす円形の径方向に関して、型が凹部に嵌挿する距離L(mm)として、
L=R-√(R -D)-{R-√(R -D)}≦0.001
が成立することが好ましい。
  対向する上下1対の型が胴型の長軸方向に交差する断面の中心に関して点対称となるように配置されておれば、成形加工を行なうことにより形成される素子は、偏芯の存在しない理想の形状となる。しかし実際は、胴型の内周面に溝が存在するため、型の外周面近傍の領域が溝に嵌挿される場合がある。型が溝に嵌挿されると、型は胴型に対して偏芯を生じることになるため、成形加工を行なうことにより形成される素子は、一定の偏芯が存在する形状となる。型が溝に嵌挿される領域を極力少なくするためには、上述した胴型が凹部に嵌挿する距離Lが0.001mm以下であることが好ましく、0.0005mm以下であることがより好ましい。
  また、素材を成形する際に焼結する温度をT(℃)、胴型の長軸方向に交差する断面がなす円形の内側の径をD(mm)、型の、長軸方向に交差する断面がなす円形の外側の径をD(mm)、枠型の長軸方向に交差する断面がなす円形の外側の径をD(mm)とし、素材を1対の型の間に配置した室温からT(℃)における胴型の平均熱膨張係数をα(/℃)、室温からT(℃)における型の平均熱膨張係数をα(/℃)、室温からT(℃)における枠型の平均熱膨張係数をα(/℃)、焼結する温度であるT(℃)と、素材を1対の型の間に配置した室温との差をΔT(℃)とすれば、
  α<α
  α<αであり、かつ、
  0.030≧(α-α)ΔT+(D-D)≧0.005
  0.150≧(α-α)ΔT+(D-D)≧0.015
の関係を満たすことが好ましい。
  上述したように、対向する1対の型は、胴型に対して偏芯が存在しない状態で成形加工が行なわれることが好ましいが、実際に型を加熱する際における、当該1対の型と、胴型との間の熱膨張差を有効に利用することにより、成形を行なう加熱温度T(℃)にて、偏芯精度を非常に良好とすることができる。しかしここで、T(℃)にて断面で見た場合の胴型の内側の径D(mm)が、1対の型の断面の外径D(mm)よりも小さくなると、焼き嵌め状態となり、素子成形用部材としての摺動性が著しく低下することがある。そこで、T(℃)において胴型と1対の型との間を断面で見た場合に一定以上の隙間が存在することが好ましい。ただし、T(℃)にて断面で見た場合の胴型の内側の径D(mm)が、1対の型の断面の外形D(mm)よりも大きくなりすぎると、素子の偏芯精度が悪化する。この隙間が、0.005mm以上0.030mm以下であることが好ましいことを示すのが、上述した数式である。
  また同様に胴型と枠型との間にもT(℃)にて、断面で見た場合に一定以上の隙間が存在することが好ましい。枠型は素子を構成する素材を配置する位置を調整するために用いるものであり、高強度(高曲げ強度)な材料を用いて形成された部材である。このため、枠型が胴型に対して焼き嵌めを発生すると、胴型の耐久性が非常に問題となる。したがって枠型は、先述した1対の型よりも、胴型に対してさらに広い隙間が存在することが好ましい。ただし、当該隙間が非常に大きくなると、素子の位置決め精度が悪化する。この隙間が、0.015mm以上0.150mm以下であることが好ましいことを示すのが、上述した数式である。
  上述した胴型の凹部は、胴型の長軸方向に沿った方向に延在することが好ましい。たとえば胴型の凹部が、長軸方向に対して交差する方向(すなわち胴型の内周面の周方向にほぼ沿った方向)となるよう加工するよりも、長軸方向に沿った方向に延在するように加工する方が容易であり、加工のコストメリットも高い。
  ただし、上述した胴型の凹部は、胴型の長軸方向に対して交差する方向に延在してもよい。ここでは交差とは、たとえば胴型の長軸方向に対してある一定角度を有し、斜め方向に凹部が延在する構造、および胴型の長軸方向にほぼ垂直な方向に凹部が延在する構造の両方を含む。このように凹部が胴型の長軸方向に対して交差する方向に延在していれば、凹部の幅がたとえば先述した胴型の長軸方向に沿った方向に延在する凹部とほぼ同じだったとしても、型が凹部に嵌挿する量が少なくなる。このため、偏芯精度を適正に保つことができる。これは、たとえば凹部が胴型の内周面上において螺旋形状を描くように配置されていてもよい。この場合も、上述した胴型の凹部が胴型の長軸方向に対して交差する方向に延在する場合と同様に、型が凹部に嵌挿する量を少なくすることができる。
  この、胴型の内周面に配置される凹部は、胴型の内周面上において複数本形成されていてもよい。この場合、当該凹部は、胴型の内周面の周方向において等間隔に配置されることが好ましい。なお、ここで等間隔とは、ほぼ等間隔である(たとえば、複数本の凹部間の、胴型の周方向での距離の誤差が、平均値に対して±15%以内になっている)場合も含まれる。このように、凹部を等間隔に配置すれば、型と素材との間に滞留する気体を放出する作用を型全体において均等に行なうことができる。また、成形加工を行なう際に素子成形用部材全体に加わる応力を均一にすることができる。
  本発明に係る素子成形用部材の各構成要素を構成する材質に関して説明する。まず胴型は、先述した数式を満足するためには、熱膨張係数が1.0×10-7(/℃)以上3.5×10-6(/℃)以下の材料を少なくとも90質量%以上含むことが好ましく、たとえば石英ガラスを少なくとも90質量%以上含むことが好ましい。胴型の材料としては一般的に、石英ガラスを用いることが多い。また、熱膨張係数の値が上述した範囲内に存在する他の材質として、たとえばガラス状カーボンや、リチウム・アルミニウムケイ酸塩(LiAlSi)とケイ灰石(CaO・SiO)との複合セラミックスであるアドセラムなどを挙げることができ、これらの材質を胴型の材料として用いてもよい。
  あるいは、当該胴型の材料として、窒化珪素を90質量%以上含むものを用いてもよい。胴型の材料として、窒化珪素を含むものを用いることにより、上述した石英ガラスを含むものを用いる場合よりも、形成される胴型の強度を高くすることができる。
  また、1対の型の、少なくとも胴型の内周面と対向する摺動面は、炭素を含む材料にて形成されていることが好ましい。ここで、炭素を含む材料とは、グラファイト、ガラス状カーボン、ダイヤモンドライクカーボン(DLC)及びダイヤモンドからなる群から選択されるいずれか1つを含むことが好ましい。
  1対の型は、胴型の内周面と対向する摺動面のみでなく、型全体が、炭素を含む材料で形成されていることが好ましい。炭素を含ませることにより、素子を成形した後に、形成した素子を型から外す脱型の程度(離型性)を高くすることができる。ただし、特に少なくとも胴型の内周面と対向する摺動面を優先的に炭素を含む材料により形成することにより、当該型と胴型との摺動性を向上させ、上述した離型性をより高くすることができる。なお、ここで、炭素の同素体として、黒鉛、ガラス状カーボン、DLC、及びダイヤモンドを挙げることができる。上述した1対の型の、少なくとも胴型の内周面と対向する摺動面は、これら同素体を含む材料にて形成されていてもよい。
  本発明に係る素子成形用部材においては、素子成形用部材を構成する上下1対の型の、摺動面と、素材を押圧する押圧面とが交差するエッジ部は、0.2mm以上1.0mm以下のR面またはC面を備えることが好ましい。ここでR面とは、2つの面の境界部がある半径(R)を有する曲面状の形状を形成した面をいう。C面とは、2つの交差する面に交差するよう設けられた面をいう。R面の場合、上述した半径(R)が0.2mm以上1.0mm以下であることが好ましい。C面の場合、C面部分が2つの交差する面のそれぞれを横切る領域の長さが0.2mm以上1.0mm以下であることが好ましい。
  このようなR面またはC面を設けることにより、型と胴型との摺動性を向上させることができる。また、R面やC面といった面取りは、型の胴型に対するカジリやカミコミを抑制する役割をも有する。
  枠型は、曲げ強度300MPa以上のセラミックスを少なくとも90質量%以上含むことが好ましい。より具体的には、炭化珪素、窒化珪素、アルミナ、炭化ボロン、ジルコニア及び炭化タンタルからなる群から選択されるいずれか1つを含む材料にて構成されることが好ましい。
  枠型は、1対の型の間において素子を構成する素材を配置する位置を調整するために用いるものである。成形時に押圧する圧力が側圧として枠型に直接的に負荷される。このため、枠型は、高強度(高曲げ強度)な材料を用いて形成されることが好ましい。したがって、枠型は、上述したような材料群から選択されるいずれか1つを含む材料にて構成されることが好ましい。また、枠型は、一般的には上述した強度の材質を含むことが好ましい。
  以上に述べた素子成形用部材を用いた素子の製造方法は、素材を準備する工程と、素材を型に配置する工程と、型を加熱する工程と、素材を押圧する工程とを備える。先述したように、素材を押圧する工程において、型が胴型の内周面に設けた溝(凹部)に嵌挿しても、型を加熱する工程において型を加熱すれば、型と胴型との熱膨張係数の差により、型の胴型に対する位置を修正しうる。このため、当該工程を経て形成される素子は、その偏芯精度が非常に良好である。
  本発明の素子成形用部材によれば、型と素材との間に滞留する気体や、素子成形用部材の構造に起因する、形成される素子の成形不良を抑制することができる。その結果、本発明の素子成形用部材を用いて形成された素子は、その偏芯精度が非常に良好なものとなる。
本発明の実施の形態に係る素子成形用部材の外観を示す概略図である。 図1の線分II-IIにおける概略断面図である。 上型外周面の近傍の領域の一部が溝に嵌挿された状態を示す概略図である。 型が溝に嵌挿する距離Lを計算するための図形である。 上型と下型との断面がなす円形の中心と、胴型の断面がなす円形の中心とが一致した状態を示す概略図である。 溝が存在しない胴型の内周面に上型の外周面が接触した状態を示す、概略図である。 図6の丸点線で囲んだ要部「VII」を拡大した概略図である。 本発明の実施の形態に係る素子成形用部材のうち、室温における1対の型と胴型と枠型との配置や寸法、熱膨張係数を示す概略断面図である。 本発明の実施の形態に係る素子成形用部材のうち、成形温度T(℃)における1対の型と胴型と枠型との配置や寸法、熱膨張係数を示す概略断面図である。 R面が施された、上型の外周面と、上型の押圧面とが交差するエッジ部の状態を示す概略図である。 C面が施された、上型の外周面と、上型の押圧面とが交差するエッジ部の状態を示す概略図である。 長軸方向に沿った方向に溝が存在する胴型の展開図である。 胴型の上側半分にのみ長軸方向に沿った溝が存在する胴型の展開図である。 胴型の下側半分にのみ長軸方向に沿った溝が存在する胴型の展開図である。 胴型の下側半分にのみ長軸方向に沿った溝が存在し、溝の下端に溝から外部へ通じる水平溝が存在する胴型の展開図である。 長軸方向に交差する方向に溝が存在する胴型の展開図である。 胴型の上側半分にのみ長軸方向に交差する方向に溝が存在する胴型の展開図である。 胴型の下側半分にのみ長軸方向に交差する方向に溝が存在する胴型の展開図である。 胴型の下側半分にのみ長軸方向に交差する溝が存在し、溝の下端に溝から外部へ通じる水平溝が存在する胴型の展開図である。 胴型の内周面上において螺旋形状を描くように溝が配置される胴型の展開図である。 胴型の内周面上において溝が複数本配置される胴型の展開図である。 本発明に係る素子成形用部材を用いた素子の製造方法を示すフローチャートである。
  以下、図面を参照しながら、本発明の実施の形態が説明される。なお、各実施の形態において、同一の機能を果たす部位には同一の参照符号が付されており、その説明は、特に必要がなければ、繰り返さない。
  (実施の形態)
  図1は、本発明の実施の形態に係る素子成形用部材の外観を示す概略図である。また、図2は、図1の線分II-IIにおける概略断面図である。すなわち、図2は図1の長軸方向(上下方向)に沿った方向の断面を表わしている。図1および図2に示すように、本発明の実施の形態に係る素子成形用部材10は、通常の使用状態において上下方向に1対存在する、成形を行なうための型である上型11および下型12を備えている。また、型(上型11および下型12)の外周面を囲むように配置された中空の胴型14が配置される。この胴型14は、上型11および下型12を収納し、当該胴型14の内周面の内部にて上型11および下型12の位置決めを行ない、かつ摺動させるために設けられる。下型12の上面には、素子を構成する素材の位置を調整するための枠型16(リング)が配置される。また、特に図2の断面図に示すように、胴型14の左側の内周面には、内周面に沿った方向に一定の幅を有する凹部としての溝14cが、胴型14の上面から下面まで、胴型14の長軸方向に沿った方向に配置されている。この溝14cには、上型11および下型12の位置によっては、胴型14および型(上型11および下型12)の断面がなす円形の径方向に、上型11および下型12のそれぞれの外周面である、上型外周面11cおよび下型外周面12cの近傍の領域の一部が嵌挿される。
  図1および図2に示す素子成形用部材10は、たとえばカメラ(可視光カメラ、赤外線カメラ)や携帯電話、ウィンドウ(可視光透過、赤外線透過、可視光カット)などの各種光学機器や光学通信機器などに用いる光学素子としてのレンズやウィンドウの成形に用いる。レンズの主面が円形である場合、リングである枠型16の内周面の内部の領域に、素子を構成する素材を配置する。この場合、素子の外面が円形状となるよう成形するために、枠型16および、素子成形用部材10を構成する、上型11と下型12と胴型14との長軸方向(図1および図2における上下方向)に交差する断面の外形は円形状であることが好ましい。
  そして図2の断面図に示すように、下型12に配置された枠型16の内部の領域には、素子を構成する素材13が配置される。図2に示すように、素材13を上側から押圧するために上型11を下型12にセットした際に、この素材13は、上型11と下型12とに上下方向に挟まれる構成となる。したがって、下型12のうち素材13が配置される下型成形面12dおよび、素材13を押圧するために上型11のうちこれを下型12にセットした際に素材13が密着する上型成形面11dは、成形したいレンズの形状に沿った形状としている。
  図1および図2に示すように、胴型14の外周面の全面を覆うように、スリーブ15が配置されている。上型11や下型12、素材13を急激に加熱すると温度制御が困難となる。このため、加熱光を遮断して輻射熱や伝熱を用いて上型11や下型12、素材13を加熱する目的で、スリーブ15が配置される。
  図3は、上型外周面の近傍の領域の一部が溝に嵌挿された状態を示す概略図である。すなわち図3は、図1および図2を図の上側の平面から見た状態、または素子成形用部材10の長軸方向(図の上下方向)に交差する断面を見た状態を示すものである。図3においては、胴型14の胴型外周面14a、胴型内周面14bおよび溝14cを示している。なお、胴型内周面14bのうち、図3において点線で示す部分は、溝14cが存在しないと仮定した場合における胴型内周面14bを示している。図3に示すように、胴型14および上型11の断面が示す円形の径方向(図における右側から左側)に関して、溝14cが存在しないと仮定した場合における胴型内周面14bに対して、上型11の上型外周面11cの近傍の領域が溝14cに嵌挿する距離Lが大きいと、上型11および下型12が胴型14に対して溝14cの存在する側(図3においては左側)に大きく偏芯する。その状態で成形を行なえば、成形された素子においても大きな偏芯が発生することになる。このため、Lを極力少なくすることが好ましい。
  図4は、型が溝に嵌挿する距離Lを計算するための図形である。先述した図3と図4とを対比して、図3におけるLは図4においては以下に述べる部分にあたる。まず、溝14cに嵌挿した上型外周面11cが溝14cの深さ方向(図4における左側)に最も深く嵌挿した点Aと、上型11の断面がなす円形の中心点Oとを結ぶ直線を考える。このとき、胴型14に溝14cが存在しないと仮定した場合における胴型内周面14bと、直線AOとの交点A’を考えたときにおけるAA’の距離がLである。
  図4に示すように、上型11の断面がなす円形の半径をR(mm)、胴型内周面14bの半径をR(mm)(胴型内周面14bの中心はO’)とする。すなわち、上型11の断面がなす円形の中心点Oから、上型外周面11cまでの半径がR(mm)であり、胴型14の断面がなす円形の中心O’から、胴型内周面14bまでの半径がR(mm)である。すると、上型外周面11cと胴型内周面14bとの交点2点間の距離は、図4において図示しない溝14c(図3参照)の、上型11の長軸方向に交差する方向に広がる幅である。たとえば点Aと点Oとを結ぶ直線により溝14cは2等分されるため、図4に示すように溝14cの幅は2D(mm)で表わせる。ここで、図4に示すように、上型外周面11cと胴型内周面14bとの2つの交点のうち一方(図4においては上側の交点)を点P、当該2つの交点のうち他方(図4においては下側の交点)を点Qとする。ここで、直線PQと直線AOとの交点をBとすれば、点Bは溝14cを2等分する点である。したがって、PB=Dとなる。ここで、直角三角形BOPに着目すれば、三平方の定理より、
BO=√(R -PB)=√(R -D
となる。また、直角三角形BO’Pに着目すれば、
BO’=√(R -PB)=√(R -D
である。また、A’O’=Rであることから、
A’B=A’O’-BO’=R-√(R -D)である。
AO=Rmであることから、
L=AA’=AO-BO-A’B=R-√(R -D)-{R-√(R -D)}である。
  この、上型11が溝14cに嵌挿する距離Lは、0.001mm以下、すなわち1μm以下となるように、溝14cの幅や1対の型の断面の半径などの寸法を設計することが好ましい。成形するレンズなどの素子の偏芯量が大きくなると、レンズとしての性能が低下する。具体的にはレンズを通して結像した画像の鮮明度を保つためには、成形する素子の偏芯量が存在しない(ゼロである)ことが理想である。図5は、上型と下型との断面がなす円形の中心と、胴型の断面がなす円形の中心とが一致した状態を示す概略図である。図5に示す状態においては、上型11と、図示しない下型12との断面がなす円形の中心と、胴型14の断面がなす円形の中心とが一致している。このため、素材13を押圧するために上型11が下型12にセットされて上型11と下型12とが1対の型として配置された状態を考えても、1対の型の断面がなす円形の中心と、胴型14の断面がなす円形の中心とは一致する。この状態において成形加工を行なえば、成形する素子の偏芯量はゼロとなる。
  図6は、溝が存在しない胴型の内周面に上型の外周面が接触した状態を示す、概略図である。また、図7は、図6の丸点線で囲んだ要部「VII」を拡大した概略図である。光学シミュレーションの結果から決定することができる、当該レンズの偏芯の許容量は10μm程度である。しかし、たとえば偏芯量の設計値をゼロにして成形を行なうと、加工誤差や成型時の温度分布の影響を受けて、成形を行なった後にたとえば胴型内周面14b(溝14cを含む)の径が上型外周面11cの径よりも小さくなり、いわゆる焼き嵌め状態となる可能性がある。そこで、これを回避するためには図6に示すように、上型11(および図示しない下型12)の外周面の示す半径は、胴型14の内周面の示す半径よりも小さいことが好ましい。すると図6および図7に示すように、上型11(および図示しない下型12)の断面がなす円形の中心が、胴型14の断面がなす円形の中心に対して偏芯を生じる(図6および図7においては左側に偏芯を生じている)。しかし、ここでは胴型14には溝14c(図2~図4参照)が存在しないため、仮に胴型14に溝14cが存在する場合において、上型11の上型外周面11cが図6または図7に示すように胴型14の胴型内周面14bに接する位置に来るよう偏芯しても、先述した定義に基づくLの値はゼロとなる。すなわち、上述した数式によるLの値よりも、実際の上型11(下型12)の胴型14に対する偏芯量は大きいということである。
  以上の事実ならびに、上型11や下型12などの素子成形用部材10の各構成要素の加工精度や、上型11を下型12にセットする際のハンドリングの精度などを考慮すれば、溝14cに上型外周面11cが嵌挿することによる偏芯量の基準となるLに割ける余裕は、許容される偏芯量10μmのうちせいぜい1μmとなる。したがって、Lは1μm以下とすることが好ましいため、上述したようにL≦0.001(mm)とすることが好ましい。なお、L≦0.0005(mm)、すなわちLを0.5μm以下とすることがさらに好ましい。したがって、上述したように実際の偏芯量はLよりも大きいことが考えられる。
  成形を行なった後に胴型内周面14bが上型外周面11cに対して焼き嵌め状態になる可能性について上述したが、胴型14や1対の型など、素子成形用部材10の各構成要素の材質が有する熱膨張係数の差を有効に利用して、焼き嵌め状態の発生を抑制することができる。ここで、図8は、本発明の実施の形態に係る素子成形用部材のうち、室温における1対の型と胴型と枠型との配置や寸法、熱膨張係数を示す概略断面図である。また、図9は、本発明の実施の形態に係る素子成形用部材のうち、成形温度T(℃)における1対の型と胴型と枠型との配置や寸法、熱膨張係数を示す概略断面図である。
  図8に示すように、たとえば成形のための加熱を行なう前(素材13を押圧する際など)の室温における素子成形用部材10のうち、胴型14の長軸方向(図の上下方向)に交差する断面がなす円形の内側の径をD(mm)、上型11および下型12の、長軸方向に交差する断面がなす円形の外側の径をD(mm)、枠型16の長軸方向に交差する断面がなす円形の外側の径をD(mm)とし、室温からT(℃)における胴型14の平均熱膨張係数をα(/℃)、室温からT(℃)における上型11および下型12の平均熱膨張係数をα(/℃)、室温からT(℃)における枠型16の平均熱膨張係数をα(/℃)とする。このとき図8に示すように、先述した焼き嵌めの問題を回避するためには、D>D>Dであることが好ましい。
  ここで、図8の素子成形用部材10を、成形時の加熱温度T(℃)まで昇温した場合の素子成形用部材10の各構成要素の寸法について説明する。室温とT(℃)との温度差をΔT(℃)とすれば、たとえば胴型14の断面がなす円形の内側の径はD+αΔT(mm)となる。同様に、上型11および下型12の断面がなす円形の外側の径はD+αΔT(mm)、枠型16の断面がなす円形の外側の径はD+αΔT(mm)となる。成形時の加熱温度T(℃)において、図9に示すように、胴型14と上型11および下型12との間に一定の隙間が存在することが、上述した焼き嵌めの問題を回避するために好ましい。すなわち、(D+αΔT)>(D+αΔT)となる。さらに、当該隙間は
0.030≧(D+αΔT)-(D+αΔT)=(α-α)ΔT+(D-D)≧0.005(mm)、すなわち5μm以上30μm以下とすることが好ましい。このようにすれば、上述した焼き嵌めの問題や、素子の偏芯精度の悪化を抑制することができる。
  同様に胴型14と、リングである枠型16との間にも、一定の隙間が存在することが好ましい。しかも枠型16はその内周面の内部の領域に配置する、成形したい素材13の位置決めに用いるものであり、かつ高強度な材料を用いるため、成形時の加熱により焼き嵌め状態になると、胴型14の耐久性を著しく低下させる可能性がある。そこで、胴型14と枠型16との間には、胴型14と上型11(下型12)との間以上に広い隙間を設けることが好ましい。具体的には、
0.150≧(D+αΔT)-(D+αΔT)=(α-α)ΔT+(D-D)≧0.015(mm)、すなわち隙間を15μm以上150μm以下となるように設けることが好ましい。以上の寸法以上の隙間を設けることにより、成形時に焼き嵌め状態となることや、素子の位置決め精度の悪化を抑制することができる。
  またここで、胴型14と上型11(下型12)と枠型16とのそれぞれの材質を選定するにあたっては、α<α、α<αであることが好ましい。このようにすれば、熱膨張係数の差を利用して、たとえば室温においては胴型14と枠型16、胴型14と上型11(下型12)との間に適度に広い隙間を設けることにより、素材13を配置させる工程を容易にすることができる。同時にたとえば成形温度T(℃)においては胴型14と枠型16、胴型14と上型11(下型12)との間の隙間を適度に狭くすることにより、偏芯精度を高く保つことができる。
  ここで、素子成形用部材10の各構成要素を形成する具体的な材質について述べる。まず胴型14は、熱膨張係数が1.0×10-7(/℃)以上3.5×10-6(/℃)以下の材料を少なくとも90質量%以上含む材料を用いて形成することが好ましい。中でも特に、熱膨張係数が5.0×10-7(/℃)である石英ガラスを少なくとも90質量%以上含む材料を用いることが好ましい。ただし、上述した石英ガラスからなる(石英ガラスを100質量%含む)材料を、胴型14の材料として用いることがより好ましい。
  胴型14として石英ガラスを用いれば、石英ガラスは熱膨張係数が小さいため、たとえば室温においては胴型14と上型11(下型12)との間に適度に広い隙間を設けることにより、素材13を配置させる工程を容易にすることができる。また、加熱光または輻射光が石英ガラス内を透過するために型一式全体の温度制御が容易となるという効果を奏する。
  あるいは、胴型14として窒化珪素を少なくとも90質量%以上含む材質を用いてもよい。胴型14の材料として、窒化珪素を含むものを用いることにより、上述した石英ガラスを含むものを用いる場合よりも、形成される胴型14の強度を高くすることができる。
  また、胴型14の長軸方向の外周面を覆うように配置されたスリーブ15は、たとえばガラス状カーボン、グラファイト、窒化珪素、炭化珪素、アルミナ、炭化ボロン、ジルコニア、炭化タンタル、モリブデン及びタングステンからなる群から選択されるいずれか1つを材料として用いることが好ましい。スリーブ15としてこれらの材質を用いることにより、加熱光を遮断して輻射熱や伝熱を用いて上型11、下型12及び素材13を含む素子成形用部材10全体を加熱するという効果を奏する。
  また、上型11および下型12の1対の型については、炭素を含む材料にて形成されていることが好ましい。ここで、炭素を含む材料とは、グラファイト、ガラス状カーボン、DLC及びダイヤモンドからなる群から選択されるいずれか1つを含むことが好ましい。
  胴型内周面14bと対向する摺動面、たとえば上型外周面11c(下型外周面12c)のみでなく、1対の型全体が、上述したような炭素を含む材料で形成されていることが好ましい。炭素を含ませることにより、加熱を行なう構成要素である上型11および下型12が素材13を成形した後に、形成した素子を上型11(下型12)から外す脱型の程度(離型性)を高くすることができるためである。また、たとえばガラス状カーボンの熱膨張係数は2.8×10-6(/℃)、ダイヤモンドの熱膨張係数は1.1×10-6(/℃)であるため、1対の型の熱膨張係数を、上述したα<αにすることが容易となる。
  ただし、特に少なくとも胴型14の内周面と対向する摺動面、たとえば上型外周面11c(下型外周面12c)を優先的に炭素を含む材料にて形成することにより、当該1対の型と胴型14との摺動性を向上させ、上述した離型性をより高くすることができる。
なお、ここで、炭素の同素体として、黒鉛、ガラス状カーボン、DLC、ダイヤモンドを挙げることができる。上述した1対の型の、少なくとも胴型14の内周面と対向する摺動面である上型外周面11c(下型外周面12c)は、これら同素体を含む材料にて形成されていても、胴型14に対して充分な摺動性を確保することができる。
  リングである枠型16には、成形時に素材を押圧する工程において、上型11の下型12と対向する面が大きな側圧を加える。このため枠型16には強度、特に側方より大きな応力が加わった場合を想定して曲げ強度が高い材料を用いることが好ましい。具体的には、曲げ強度300MPa以上のセラミックスにて形成されていることが好ましく、少なくとも90質量%以上のセラミックスを含むことが好ましい。このような材料を用いて枠型16を形成させれば、成形時(押圧時)に大きな圧力が加わっても高い耐久性を維持することができる。
  具体的には、枠型16は、炭化珪素、窒化珪素、アルミナ、炭化ボロン、ジルコニア及び炭化タンタルからなる群から選択されるいずれか1つを含む材料にて構成されることが好ましい。
  図10は、R面が施された、上型の外周面と、上型の押圧面とが交差するエッジ部の状態を示す概略図である。また図11は、C面が施された、上型の外周面と、上型の押圧面とが交差するエッジ部の状態を示す概略図である。特に上型11および下型12と、胴型14との摺動性をさらに向上させるためには、図10および図11に示すように、たとえば上型11の、摺動面である上型外周面11cと、素材13を押圧する押圧面とが交差するエッジ部には、0.2mm以上1.0mm以下のR面17またはC面18を備えることがより好ましい。エッジ部がR面17やC面18のような加工がされていない鋭利な角部となっていれば、型が長軸方向に沿った方向に摺動する際に、エッジ部が胴型14の内周面と干渉したり、エッジ部が胴型14の内周面との間で異物を捕捉する結果、カジリやカミコミといわれる現象を誘発する可能性がある。この現象を抑制するため、R面17やC面18を施した構造とすることが好ましい。
  このようにすれば、たとえ上型外周面11cが胴型14の内周面と接触したとしても、エッジ部には胴型14の内周面に対して空間(逃げ)が発生するため、エッジ部が胴型14の内周面と干渉する可能性を小さくすることができる。また、たとえば成形加工を行なうために1対の型を加熱した際に上型11と下型12との間に発生する気体を、R面17やC面18の形成された部分に存在する空間(逃げ)を介して、溝14c(図2、図3参照)へ放出させることが容易となる。
  なお、図10に示すように、エッジ部のR部分の半径(図10における寸法A)は0.2mm以上が好ましい。図11に示すように、エッジ部のCカット部分の寸法(図11における寸法B)は0.2mm以上とすることが好ましい。
  ただし当該R部分の半径やCカット部分の寸法を大きくしすぎると、加工コストが高くなることがあるという問題がある。さらに、当該R部分の半径やCカット部分の寸法を大きくしすぎると、たとえば上型11のうち長軸に交差する断面がなす円形の外側の径(たとえば図8におけるD(mm))の値がDpよりも小さくなっている部分の割合が大きくなる。すなわち上型11の上述した径の値がDpとなっている部分の割合が小さくなる。このため、上型11の長軸方向が胴型14の長軸方向に対して傾きやすくなるという問題がある。以上より、当該R部分の半径は1.0mm以下が好ましい。また、当該Cカット部分の寸法は1.0mm以下とすることが好ましい。
  以上に述べた各構成により、素子成形用部材10は、胴型14に対する上型11や下型12の摺動性が良好で、かつ成形加工にて加熱を行なう際に上型11と下型12との間に滞留した気体を容易に放出することができる。上型11と下型12との間に滞留した気体を上型11ないし下型12の外部に放出した後、さらに容易に胴型14の外部に放出するために、胴型14の内周面の少なくとも一部の領域に対しては、凹部である溝14cが配置されている。
  図12は、長軸方向に沿った方向に溝が存在する胴型の展開図である。図12に示す胴型展開図24は、胴型14の内周面の展開図である。上下方向が胴型14の長軸方向、左右方向が胴型14の内周方向を示す。図12に示す溝14cは、先述した図2にて説明した溝14cと同様に、胴型14の長軸方向(図12の上下方向)に沿った方向に延在する構造となっている。そして内周方向に一定の幅を有することにより、先述した図4に示す幅2D(mm)を有する構造となっている。
  たとえば図2に示す上型11と下型12との間の、素材13が配置された領域が、素材13を成形加工するために加熱されると、加熱時にたとえば吸着ガスの脱離や揮発(蒸発)および化学反応を起こすことにより、空気などの気体が発生する。発生した気体は、図2に示す上型11の上型成形面11dと下型12の下型成形面12dとに挟まれた、素材13が配置された領域に滞留する。このように気体が滞留すれば、素材13を成形する際に素材13に応力が加わる。そのため、素子が成形される素材13の形状に歪みが発生したり、成形物(素子)内に気泡が残留したり、焼結を伴う成形の際には緻密に焼結されないことがある。その結果、成形物(素子)には形状不良などの成形不良を発生することがある。胴型14の内周面に配置された、一定の(胴型14の断面のなす円形の径方向の)深さを有する溝14cは、この滞留した気体を効率よく素子成形用部材10の外部へ放出する役割を有する。
  なお、図12に示すように、溝14cは、胴型14の長軸方向の全体(すなわち胴型14の上端から下端まで)にわたって形成されることが好ましい。このようにすれば、たとえば上型11と下型12とに挟まれた、気体の滞留する領域は長軸方向で見れば中央付近に存在するが、中央付近に存在する溝14cが長軸方向に沿った構造である溝14cに沿って胴型14の上端または下端まで移動し、その上端または下端から気体を放出させることが容易となる。気体が外部へ放出されるために、上方向への放出と、下方向への放出との2通りが存在するため、効率よく気体を外部に放出させることができる。
  図13は、胴型の上側半分にのみ長軸方向に沿った溝が存在する胴型の展開図である。
図13に示すように、胴型14の長軸方向の中央付近(すなわち上型11と下型12とに挟まれた領域)から上側(すなわち上型11の外周面である上型外周面11cと対向する領域)にのみ、一定の幅を有する溝14cが、胴型14の長軸方向に沿った方向に配置されている。このような構成にしても、上型11と下型12とに挟まれた領域に滞留している気体を、当該領域付近の溝部分(すなわち溝14cの下端付近)から溝14cを上方向に向かって通過させ、胴型14の上端部分から素子成形用部材10の外部へ放出させることができる。胴型14の上端部分には、気体の放出を遮るものが存在しないため、上型11の上端から効率よく気体を外部へ放出させることができる。
  また、胴型14の上側半分にのみ溝14cが配置されることにより、たとえば図12に示す、胴型14の上端から下端まで溝14cが配置されている場合に比べて、溝14cに対向する1対の型(上型11)が溝14cに嵌挿する量が少なくなる。上型11が溝14cに嵌挿しようとしても、溝14cが下方向に延在する部分には下型12が嵌挿するための溝14cが存在しないため、1対の型全体の溝14cへの嵌挿が遮られる。したがって、図13に示すように、溝14cを配置する延在方向の長さを短くすることにより、1対の型の溝14cへの嵌挿を抑制することができ、その結果、成形する素子の偏芯の量を少なくすることができる。
  図14は、胴型の下側半分にのみ長軸方向に沿った溝が存在する胴型の展開図である。
図14に示すように、胴型14の長軸方向の中央付近(すなわち上型11と下型12とに挟まれた領域)から下側(すなわち下型12の外周面である下型外周面12cと対向する領域)にのみ、一定の幅を有する溝14cが、胴型14の長軸方向に沿った方向に配置されている。このような構成にしても、上型11と下型12とに挟まれた領域に滞留している気体を、当該領域付近の溝部分(すなわち溝14cの上端付近)から溝14cを下方向に向かって通過させ、胴型14の下端部分から素子成形用部材10の外部へ放出させることができる。
  このようにすれば、溝14cに導入された気体は、効率よく素子成形用部材10の外部へ放出される。また、溝14cに導入された気体は溝14cを下方向へ流れるため、重力の作用によりスムーズに外部へ放出させることができる。
  また、この場合も図13に示す溝14cと同様に、たとえば図12に示す溝14cと比べて溝14cを配置する延在方向の長さが短くなっている。このため、1対の型の溝14cへの嵌挿を抑制することができ、その結果、成形する素子の偏芯の量を少なくすることができる。
  図15は、胴型の下側半分にのみ長軸方向に沿った溝が存在し、溝の下端に溝から外部へ通じる水平溝が存在する胴型の展開図である。先述した図14に示す、胴型14の長軸方向の中央付近から下側にのみ溝14cが配置された胴型14の場合、たとえば溝14cの上端付近から溝14cに導入された、上型11と下型12とに挟まれた領域に滞留する気体は、溝14cを下方向に向かって通過し、胴型14の下端部分に達する。しかし、胴型14を設置する床や台に遮られ、胴型14の下端部分に達した気体が胴型14の外部(素子成形用部材10の外部)に放出する効率が悪くなることがある。そこで図15に示すように、胴型14の下端付近から、溝14cを水平方向に沿った方向に配置させることにより、気体を胴型14およびスリーブ15を貫通させ、素子成形用部材10の外部へ放出させる構成としている。
  なお、先述した図12に示す、長軸方向に沿った方向に胴型14の上端から下端まで貫通する溝14cにおいても、図15に示す溝14cと同様に、胴型14の下端付近から、溝14cを水平方向に沿った方向に設けてもよい。このようにすれば、溝14cを下方向に流れる気体をより効率よく外部に放出させることができる。
  図16は、長軸方向に交差する方向に溝が存在する胴型の展開図である。図16に示す胴型展開図24における溝14cは、先述した図12~図15に示す溝14cと異なり、溝14cは、長軸方向(図16の上下方向)に対して交差する方向に、すなわち長軸方向に対して斜めに延在する構成となっている。ただし胴型14における溝14cの幅は図12~図15における溝14cと同様に2D(mm)である。図16における溝14cは、上述したように長軸方向に対して斜めに延在している点に関してのみ、図12における溝14cと異なる。
  このように溝14cが長軸方向に対して斜めに延在していても、溝14cが長軸方向に沿った方向に延在している場合と同様に、上型11と下型12との間に滞留する気体を放出する機能を有する。また、たとえば図16における溝14cの幅が、図12における溝14cの幅と同様に2D(mm)であったとしても、図16における溝14cのように長軸方向に対して斜めに延在している方が、図12における溝14cのように長軸方向に沿った方向に延在している場合よりも、溝14cに対向する1対の型(上型11および下型12)が溝14cに嵌挿する量が少なくなる。1対の型は長軸方向に沿った方向に延在する形状を有する。そのため、1対の型が長軸方向に交差する形状を有する溝14cに嵌挿しようとしても、長軸方向に沿った方向に見れば溝14cの長さは短いため、溝14cの存在しない部分が、1対の型が溝14cに嵌挿することに対して機械的に干渉する。したがって、溝14cが長軸方向に対して大きな角度を有するほど、溝14cに対する1対の型の干渉が起こりやすくなるため、1対の型の溝14cへの干渉を抑制することができる。
  図17は、胴型の上側半分にのみ長軸方向に交差する方向に溝が存在する胴型の展開図である。図17に示すように、胴型14の長軸方向の中央付近(すなわち上型11と下型12とに挟まれた領域)から上側(すなわち上型11の外周面である上型外周面11cと対向する領域)にのみ、一定の幅を有する溝14cが、胴型14の長軸方向に交差する方向に配置されている。このような構成にしても、上型11と下型12とに挟まれた領域に滞留している気体を、当該領域付近の溝部分(すなわち溝14cの下端付近)から溝14cを上方向に向かって通過させ、胴型14の上端部分から素子成形用部材10の外部へ放出することができる。胴型14の上端部分には、気体の放出を遮るものが存在しないため、上型11の上端から効率よく気体を外部へ放出させることができる。
  図17における溝14cは、上述した図13における溝14cと同様に、溝14cの延在方向の長さが短くなっていることにより、1対の型が溝14cに嵌挿することを抑制することができる。さらに、上述した図16における溝14cと同様に、溝14cが長軸方向に交差する方向に延在することにより、1対の型が溝14cに嵌挿することを抑制することができる。両者の効果により、図17における溝14cは、先述した溝14cよりもさらに、1対の型が溝14cに嵌挿することを抑制することができる。その結果、成形する素子の偏芯の量をさらに少なくすることができる。
  図18は、胴型の下側半分にのみ長軸方向に交差する方向に溝が存在する胴型の展開図である。図18に示すように、胴型14の長軸方向の中央付近(すなわち上型11と下型12とに挟まれた領域)から下側(すなわち下型12の外周面である下型外周面12cと対向する領域)にのみ、一定の幅を有する溝14cが、胴型14の長軸方向に交差する方向に配置されている。このような構成にしても、上型11と下型12とに挟まれた領域に滞留している気体を、当該領域付近の溝部分(すなわち溝14cの上端付近)から溝14cを下方向に向かって通過させ、胴型14の下端部分から素子成形用部材10の外部へ放出させることができる。また、このようにすれば、溝14cに導入された気体は溝14cを下方向へ流れるため、重力の作用によりスムーズに外部へ放出させることができる。
  図18における溝14cは、上述した図14における溝14cと同様に、溝14cの延在方向の長さが短くなっていることにより、1対の型が溝14cに嵌挿することを抑制することができる。さらに、上述した図16における溝14cと同様に、溝14cが長軸方向に交差する方向に延在することにより、1対の型が溝14cに嵌挿することを抑制することができる。両者の効果により、図18における溝14cは、図17における溝14cと同様に、1対の型が溝14cに嵌挿することを抑制することができる。その結果、成形する素子の偏芯の量をさらに少なくすることができる。
  図19は、胴型の下側半分にのみ長軸方向に交差する溝が存在し、溝の下端に溝から外部へ通じる水平溝が存在する胴型の展開図である。図19における溝14cは、先述した図15に示す溝14cと同様に、図18における溝14cに対して、胴型14の下端付近から、溝14cを水平方向に沿った方向に配置させることにより、気体を胴型14およびスリーブ15を貫通させ、素子成形用部材10の外部へ放出させる構成としている。
  なお、先述した図16に示す、長軸方向に交差する方向に胴型14の上端から下端まで貫通する溝14cにおいても、図19に示す溝14cと同様に、胴型14の下端付近から、溝14cを水平方向に沿った方向に設けてもよい。このようにすれば、溝14cを下方向に流れる気体をより効率よく外部に放出させることができる。
  図20は、胴型の内周面上において螺旋形状を描くように溝が配置される胴型の展開図である。図20における溝14cは、胴型14の内周面上において螺旋形状を描く構成となっている。図20における螺旋形状を描く2本の溝14cの場合、それぞれは胴型14の長軸方向の上側半分、および下側半分に配置される。このため、たとえば胴型14の長軸方向の上側半分に存在する溝14cの下端付近(胴型14の長軸方向の中央付近)から溝14cに導入された、上型11と下型12とに挟まれた領域に滞留する気体は、胴型14の長軸方向の上側半分に存在する溝14cに沿って胴型14の上端に達し、そこから素子成形用部材10の外部へ放出される。また同様に、たとえば胴型14の長軸奉公の下側半分に存在する溝14cの上端付近(胴型14の長軸方向の中央付近)から溝14cに導入された、上型11と下型12とに挟まれた領域に滞留する気体は、胴型14の長軸方向の下側半分に存在する溝14cに沿って胴型14の下端に達し、そこから素子成形用部材10の外部へ放出される。このように気体が外部へ放出されるために、上方向への放出と、下方向への放出との2通りが存在するため、効率よく気体を外部に放出させることができる。
  また、図20における溝14cが描く螺旋形状は、先述した図16~図19における溝14cと同様に、溝14cが長軸方向に交差する方向に延在する。しかも図16~図19における溝14c以上に、胴型14の長軸方向に対する溝14cの延在方向の角度が大きい。このため、図16~図19における溝14c以上に、溝14cが胴型14の長軸方向に交差していることに起因して、1対の型が溝14cに嵌挿することを抑制することができる。また、長軸方向に関する各溝14cの長さが、図20における溝14cの場合、胴型14の長軸方向の長さの半分と短くなっている。このため、上述した図13~図15、図17~図19における溝14cと同様に、溝14cの延在方向の長さが短くなっていることにより、1対の型が溝14cに嵌挿することを抑制することができる。両者の効果により、図20における溝14cは、1対の型が溝14cに嵌挿することを抑制することができる。その結果、成形する素子の偏芯の量をさらに少なくすることができる。
  図21は、胴型の内周面上において溝が複数本配置される胴型の展開図である。図21に示すように、溝14cが、胴型14の内周面上に複数本配置されていてもよい。このようにすれば、溝14cが1本の場合に比べて、より効率よく、外部への気体の放出を行なうことができる。
  図21に示すように、溝14cが、胴型14の内周面上に複数本配置される場合には、胴型14の内周方向に関して、それぞれの溝14cが等間隔に配置されることが好ましい。ここでいう等間隔とは、完全に等間隔の場合のみならず、たとえば間隔の誤差が間隔の平均値の15%以内など、ほぼ等間隔である場合も含む。このように溝14cを等間隔に配置すれば、1対の型と素材13との間に滞留する気体を放出する作用を、1対の型、ひいては素子成形用部材10全体においてほぼ均等に行なうことができる。その結果、成形加工を行なう際に素子成形用部材10全体に加わる応力をほぼ均一にすることができるため、成形させる素子に対する形状不良などの成形不良を抑制させることができる。
  なお、図21においては先述した図12に示したような、胴型14の長軸方向に延在する溝14cが複数本存在する場合の胴型展開図24を示している。しかし、たとえば図13~図19に示したような溝14cが複数本存在してもよい。また、図13~図19に示したような溝14cを適宜組み合わせた構成を有する胴型14としてもよい。このようにすれば、たとえば1対の型が溝14cに嵌挿することを抑制させることができる。
  本発明の実施の形態に係る、胴型14の内周面上の少なくとも一部に、先述した凹部である溝14cを配置させた素子成形用部材10と、溝14cを配置させない素子成形用部材10とを用いて形成させた素子の成形状態を確認する試験を行なった。
  先述した図2、図3に示す、胴型14の長軸方向に延在する溝14cが有る素子成形用部材10と、当該溝14cが無い素子成形用部材とを準備した。以下の表1は、実施例1におけるそれぞれの素子成形用部材の各構成要素の材質と寸法を示す表である。表1に示すように、溝14cが有る素子成形用部材10と、溝14cが無い素子成形用部材のいずれも、図2~図4を参照して、上型11および下型12については、それらが胴型14と対向する面である上型外周面11cおよび下型外周面12cを含めて、ガラス状カーボンを用いて形成した。この上型11および下型12の、長軸方向に交差する断面がなす円形の外径(図8におけるD参照)は19.944mmである。また、胴型14は石英ガラスで形成されており、その長軸方向に交差する断面がなす円形の内径(図8におけるD参照)は20.01mmであり、胴型の断面がなす円形の肉厚は10.00mmである。
また、溝14cが有る素子成形用部材10について、胴型14の内表面に形成させた溝14cの幅2D(図4参照)は2.0mmである。そして、枠型16は窒化珪素(Si)で形成されており、その断面がなす円形の外径(図8におけるD参照)は19.915mmである。また、1対の型および胴型14の長軸方向の長さ(すなわち上下方向の高さ)は40mmである。
Figure JPOXMLDOC01-appb-T000001
  なお、表1中、たとえば上型11および下型12の内径(mm)については、上型11や下型12の構造上、内径が存在しないため、記載を割愛している。さらに、たとえば枠型16の内径(mm)や胴型14の外径(mm)などは、本発明に係る実施例を実施するにあたりポイントとなる要件ではないため、記載を割愛している。
  上述したそれぞれの素子成形用部材を用いて、実際に素子の成形を行なった。図22は、本発明に係る素子成形用部材を用いた素子の製造方法を示すフローチャートである。図22に示すように、まず素材を準備する工程(S10)を実施する。本実施例1において具体的には、表1に示すように、素材13として、ZnS(硫化亜鉛)を準備した。そして図22に示すように、素材を型に配置する工程(S20)を実施する。本実施例1において具体的には、下型12のうち、上型11と対向する面である上面に配置させた枠型16の断面をなす円形の内部の領域に、上述した素材13を配置させた。次に型を加熱する工程(S30)を実施した。実施例1において具体的には、1対の型を1000℃に加熱した。続いて図22に示すように、素材を押圧する工程(S40)を実施する。本実施例1において具体的には、先の工程(S30)にて1対の型を1000℃に加熱した状態で、図2に示すように上型11を下型12にセットし、上下1対の型が噛み合うように配置した上で、上型11の上面の上側から、図2において図示しない装置の加圧軸を用いて上型11側から下型12側へ圧力を50MPa印加した。このようにして、先の工程(S20)にて下型12の上面に配置させた素材13(ZnS)に圧力を50MPa印加した。
  以上の各工程により形成させた素子の状態を、アルキメデス法で相対密度を測定することにより評価した。表2は溝14cの存在する素子成形用部材10と溝14cの存在しない素子成形用部材とを用いて形成した素子のサンプルの測定結果を示す表である。「有り」は溝14cの有る素子成形用部材10を用いて形成させた素子のサンプルにおける測定結果を示し、「無し」は溝14cの無い素子成形用部材を用いて形成した素子のサンプルにおける測定結果を示す。表2に示すように、それぞれの素子成形用部材を用いて100個ずつ形成した合計200個の素子のサンプルの全てに対して素材の相対密度を測定し、相対密度が99%以上であるサンプルを合格とした。相対密度が99%以上で合格となったサンプルの個数を表2に示している。
Figure JPOXMLDOC01-appb-T000002
  表2に示すとおり、溝14cの有る素子成形用部材10を用いて形成した素子のサンプルは、100個中100個すべてが相対密度が99%以上の「合格」サンプルであった。これに対し、溝14cの無い素子成形用部材を用いて形成させた素子のサンプルは、100個中0個が相対密度が99%以上の「合格」サンプル、すなわちサンプル100個中100個すべてが相対密度が99%未満であった。
  以上の結果から、本発明に係る、胴型14の内周面の少なくとも一部の領域に対して溝14cを配置させた素子成形用部材10を用いて素子を形成させた方が、素子を成形する過程において1対の型に挟まれた領域に発生する気体を、溝14cを介して効率よく外部に放出することができる。そのため、形成される素子中に気体が含有される割合が少なくなるといえる。したがって、本発明に係る素子成形用部材10を用いて素子を形成した方が、胴型に溝の存在しない素子成形用部材を用いて素子を形成した場合よりも、相対密度の大きい、高品質な素子を形成させることができるといえる。
  実施例2においては、胴型14に溝14cが有る素子成形用部材10を用いて形成した素子における偏芯量を評価する試験を行なった。
  実施例2においては、先述した図2~図4に示す、胴型14の長軸方向に延在する溝14cが有る素子成形用部材10を準備した。以下の表3は、実施例2において準備した素子成形用部材の各構成要素の材質と寸法とを示す表である。表3に示すように、実施例2において準備した素子成形用部材10は、溝14cが有るものであり、その材質は、先の実施例1において使用した、溝14cが有る素子成形用部材10とほぼ同様であるが、寸法は先の実施例1において使用した素子成形用部材10の約半分の大きさである。そして、胴型14の内周面に形成した溝14cの幅2D(図4参照)の大きさが、1.5mm、2mm、3mm、4mmという、4種類の胴型14を準備した。
Figure JPOXMLDOC01-appb-T000003
  そして、先の実施例1と同様に、図22のフローチャートの手順に基づき、溝14cの幅が異なるそれぞれの胴型14を用いて、素材13としてZnSを用いた素子のサンプルを100個ずつ形成した。形成した各サンプルの偏芯量(素子であるレンズ両面の中心のズレの量)を、非接触三次元形状測定装置(三鷹光器)を用いて測定した。使用した胴型14ごとの、測定した偏芯量の平均値を算出し、評価を行なった。評価結果は、溝14cがない素子成形用部材を用いて形成した素子の偏芯量の平均値と比較して、実施例2にて形成した各サンプルの偏芯量の増加量の平均値が0.5μm以下であれば◎(最良)、当該偏芯量の増加量の平均値が0.5μmを超え1.0μm以下であれば○(良)、1.0μmを超えれば×(不良)という方法で表記した。表4は、実施例2における、溝14cの幅が異なる各胴型を用いて形成した素子の偏芯量の増加量の平均値を評価した結果を示す表である。
Figure JPOXMLDOC01-appb-T000004
  表4に示すように、溝14cの幅が1.5mmまたは2mmの胴型14を有する素子成形用部材10を用いて形成した素子については、サンプル100個の偏芯量の増加量の平均値がそれぞれ0.2μm、0.3μmと最良の結果となった。また、溝14cの幅が3mmの胴型14を有する素子成形用部材10を用いて形成した素子においては、サンプル100個の偏芯量の増加量の平均値が0.7μmであり、偏芯量の増加量の許容量である1μm以下に収まった。それに対し、溝14cの幅を4mmとした胴型14を用いて形成した素子においては、サンプル100個の偏芯量の増加量の平均値が1μmを超える結果となった。
  以上より、本発明に係る素子成形用部材10を用いて素子を形成すれば、胴型14の溝14cの幅が3mm以下、より好ましくは2mm以下であれば、形成される素子の偏芯量の増加量を許容範囲内に収めた、高品質な素子を形成することができるといえる。
  実施例3においては、1対の型や胴型、枠型の材質や寸法を実施例2に対して変更した素子成形用部材10を用いて、実施例2と同様の試験を実施した。以下の表5は、実施例3において準備した素子成形用部材の各構成要素の材質と寸法とを示す表である。表5に示すように、実施例3において準備した素子成形用部材10は、溝14cが有るものであり、図2~図4を参照して、上型11および下型12については、炭化珪素を用いて形成した。ただし上型11、下型12ともに、その外周面であるそれぞれ上型外周面11cおよび下型外周面12cとしては、これらが胴型14と対向する摺動面となることから、DLCを成膜した。当該DLCの薄膜は、その厚みを3μmとした。なお、摺動面として成膜させる薄膜は、その厚みを1μm以上5μm以下とすることが好ましく、2μm以上4μm以下とすることがさらに好ましい。このように、上型11と下型12との外周面に薄膜を形成することにより、たとえば図22に示す素材を押圧する工程(S40)において上型11や下型12を移動させる際に、胴型14に対する摺動抵抗が低減される。このため、上型11や下型12の胴型14に対するカジリやカミコミを抑制するという効果を奏する。
  また、この上型11および下型12の、長軸方向に交差する断面がなす円形の外径(図8におけるD参照)は11.947mmである。また、胴型14はガラス状カーボンで形成させており、その長軸方向に交差する断面がなす円形の内径(図8におけるD参照)は11.996mmである。なお、胴型14は、その内表面の溝14cの幅2D(図2参照)の大きさが2mm、3mm、4mm、5mmである、4種類の胴型14を準備した。そして、枠型16は炭化珪素(SiC)で形成されており、その断面がなす円形の外径(図8におけるD参照)は11.853mmである。また、1対の型および胴型14の長軸方向の長さ(すなわち上下方向の高さ)は40mmである。
Figure JPOXMLDOC01-appb-T000005
  そして、先の実施例2と同様に、図22のフローチャートの手順に基づき、溝14cの幅が異なるそれぞれの胴型14を用いて、素材13としてZnSを用いた素子のサンプルを100個ずつ形成した。形成した各サンプルの偏芯量を、非接触三次元形状測定装置(三鷹光器)を用いて測定した。そして使用した胴型14ごとの、偏芯量の平均値を算出し、評価を行なった。評価結果は、先の実施例2と同様の方法で表記している。表6は、実施例3における、溝の幅が異なる各胴型を用いて形成した素子の偏芯量の増加量の平均値を評価した結果を示す表である。
Figure JPOXMLDOC01-appb-T000006
  表6に示すように、溝14cの幅が2mmまたは3mmの胴型14を有する素子成形用部材10を用いて形成した素子については、サンプル100個の偏芯量の増加量の平均値がそれぞれ0.2μm、0.5μmと最良の結果となった。また、溝14cの幅が4mmの胴型14を有する素子成形用部材10を用いて形成した素子においては、サンプル100個の偏芯量の増加量の平均値が0.9μmであり、偏芯量の増加量の許容量である1μm以下に収まった。それに対し、溝14cの幅を5mmとした胴型14を用いて形成した素子においては、サンプル100個の偏芯量の平均値が1μmを超える結果となった。
  以上より、本発明に係る素子成形用部材10を用いて素子を形成すれば、胴型14の溝14cの幅が4mm以下、より好ましくは3mm以下であれば、形成される素子の偏芯量の増加量を許容範囲内に収めた、高品質な素子を形成することができるといえる。
  実施例4は、素子成形用部材10を構成する各構成要素に用いることができる材質の範囲を検証するために行なった試験である。表7は、本発明の実施例4の一の局面において準備した素子成形用部材の各構成要素の材質と寸法、および評価結果を示す表である。表7に示すように、本発明の実施例4の一の局面において準備した素子成形用部材10は、上型11および下型12については、超硬を用いて形成した。ただし上型11、下型12ともに、その外周面であるそれぞれ上型外周面11cおよび下型外周面12cとしては、これらが胴型14と対向する摺動面となることから、ダイヤモンドの薄膜を成膜した。当該ダイヤモンドの薄膜は、その厚みを3μmとした。また、この上型11および下型12の、長軸方向に交差する断面がなす円形の外径(図8におけるD参照)は19.901mmである。また、胴型14は窒化珪素で形成されており、その長軸方向に交差する断面がなす円形の内径(図8におけるD参照)は19.930mmである。なお、胴型14は、その内表面の溝14cの幅2D(図2参照)の大きさが5mmのものを用いた。そして、枠型16はBC(炭化ボロン)で形成されており、その断面がなす円形の外径(図8におけるD参照)は19.895mmである。また、1対の型および胴型14の長軸方向の長さ(すなわち上下方向の高さ)は40mmである。
  そして、先の実施例3と同様に、図22のフローチャートの手順に基づき、上述した素子成形用部材10を用いて、素材13としてZnSを用いた素子のサンプルを100個形成し、形成した各サンプルの偏芯量を、非接触三次元形状測定装置(三鷹光器)を用いて測定した。そして使用した胴型14ごとの、測定した偏芯量の平均値を算出し、評価を行なった。評価結果は、先の実施例2および3と同様の方法で表記している。
Figure JPOXMLDOC01-appb-T000007
  表7に示すように、偏芯量の増加量の平均値は0.1μmであり、これは0.5μm以下であるため、評価結果は◎(最良)であった。すなわち、1対の型としてはガラス状カーボンのほかにたとえば超硬を用い、1対の型の外周面にダイヤモンドの薄膜を成膜させることによっても、型の本体および外周面には炭素を含む材料を用いている。そのため、上述した本発明の実施例4の一の局面における各構成要素の材質を用いて素子成形用部材10を構成しても、当該素子成形用部材10は、偏芯量の増加量の少ない、良好な素子を形成することができる。
  表8は、本発明の実施例4の第二の局面において準備した素子成形用部材の各構成要素の材質と寸法、および評価結果を示す表である。表8に示すように、本発明の実施例4の一の局面において準備した素子成形用部材10は、上型11および下型12については、上型外周面11cおよび下型外周面12cを含めて、グラファイトを用いて形成した。この上型11および下型12の、長軸方向に交差する断面がなす円形の外径(図8におけるD)は7.956mmである。また、胴型14は石英で形成されており、その長軸方向に交差する断面がなす円形の内径(図8におけるD)は8.016mmである。なお、胴型14は、その内表面の溝14cの幅2Dの大きさが2mmのものを用いた。そして、枠型16はAl(アルミナ)で形成されており、その断面がなす円形の外径(図8におけるD参照)は7.908mmである。その他の条件は先述した本発明の実施例4の一の局面と同様である。また、素子の製造方法や評価方法についても、先述した本発明の実施例4の一の局面と同様である。
Figure JPOXMLDOC01-appb-T000008
  表8に示すように、偏芯量の増加量の平均値は0.3μmであり、これは0.5μm以下であるため、評価結果は◎(最良)であった。1対の型としてはガラス状カーボンや超硬の代わりにグラファイトを用いても、型の本体および外周面には炭素を含む材料を用いている。このため、上述した本発明の実施例4の第二の局面における各構成要素の材質を用いて素子成形用部材10を構成しても、当該素子成形用部材10は、偏芯量の増加量の少ない、良好な素子を形成することができる。
  表9は、本発明の実施例4の第三の局面において準備した素子成形用部材の各構成要素の材質と寸法、および評価結果を示す表である。表9に示すように、本発明の実施例4の一の局面において準備した素子成形用部材10は、上型11および下型12については、超硬を用いて形成した。ただし、上型外周面11cおよび下型外周面12cには、厚みが3μmのDLCを形成した。上型11および下型12の、長軸方向に交差する断面がなす円形の外径(図8におけるD)は24.876mmである。また、胴型14はガラス状カーボンで形成されており、その長軸方向に交差する断面がなす円形の内径(図8におけるD)は24.96mmである。なお、胴型14は、その内表面の溝14cの幅2Dの大きさが6.5mmのものを用いた。そして、枠型16はジルコニアで形成されており、その断面がなす円形の外径(図8におけるD参照)は24.676mmである。その他の条件は先述した本発明の実施例4の一の局面と同様である。また、素子の製造方法や評価方法についても、先述した本発明の実施例4の一の局面と同様である。
Figure JPOXMLDOC01-appb-T000009
  表9に示すように、偏芯量の増加量の平均値は0.6μmであり、これは1.0μm以下であるため、評価結果は○(良)であった。1対の型としてはガラス状カーボンのほかにたとえば超硬を用い、1対の型の外周面にDLCの薄膜を成膜させることによっても、型の本体および外周面には炭素を含む材料を用いている。このため、上述した本発明の実施例4の第三の局面における各構成要素の材質を用いて素子成形用部材10を構成しても、当該素子成形用部材10は、偏芯量の増加量の少ない、良好な素子を形成することができる。
  実施例5は、胴型14に形成する溝14cの形状、本数を様々に変更させたときの効果を試験したものである。表10は、実施例5において準備した素子成形用部材の各構成要素の材質と寸法とを示す表である。表10に示すように、本発明の実施例5において素子を形成するために準備した素子成形用部材10は、各構成要素の材質や寸法は全て同じとし、溝14cの形状のみを様々に変更した形態としている。具体的には、表10に示すように、各構成要素の材質や寸法(外径、内径)はすべて、先述した実施例2において準備した素子成形用部材10と同様である。また、実施例5において形成した素子の素材13も、先述した実施例1~4と同じくZnSである。ただし、形成した溝14cの幅についてはすべて2mmとしている。また、先述した実施例1~4と同様に、図22に示すフローチャートの手順に基づき、素子を形成した。
Figure JPOXMLDOC01-appb-T000010
  表11は、実施例5における各胴型の溝の形状や本数、およびそれぞれを用いて形成した素子の偏芯の評価結果を示す表である。溝の形状は表11に示すように、先述した図12~図20の胴型展開図24のそれぞれの溝14cの形状のいずれかである。また、溝14cを胴型14に設けた本数を示しているが、複数本存在する場合はいずれも、内周面の周方向に関してほぼ等間隔になるよう配置させている。
  それぞれの溝14c形状を有する胴型14を用いて、素子のサンプルを100個ずつ形成し、形成した各サンプルの偏芯量を、非接触三次元形状測定装置(三鷹光器)を用いて測定した。そして使用した胴型14ごとの、測定した偏芯量の平均値を算出し、評価を行なった。評価結果は、先の実施例2~4と同様の方法で表記している。
  なお、表11に示すように、図16、17、19、20のように溝14cの延在方向が胴型14の長軸方向(図の上下方向)に対して交差方向(斜め方向)となっている場合においては、鉛直に対する溝傾斜角度(すなわち長軸方向に対する溝傾斜角度)を示している。
Figure JPOXMLDOC01-appb-T000011
  表11に示すように、図12~図20に示したいずれの形状を用いて、幅が2mmの溝14cを形成した胴型14を用いても、当該胴型14を用いた素子成形用部材10にて形成した素子は、その偏芯量の増加量の平均値が0.3μm以下となり(評価結果は◎)、偏芯量の増加量の少ない、良好な素子を形成することができた。また、図16、図17、図19、図20に示す、溝14cの延在方向が胴型14の長軸方向に対して交差方向(斜め方向)となっている場合には、先述したように溝14cへの1対の型の嵌挿が発生しにくくなるため、偏芯量の増加量の平均値が0.1μm以下となり、さらに偏芯量の増加量を減少させた良好な素子が形成できた。特に図20に示す、溝14cが螺旋形状を描く構成とした胴型14を用いた場合においては、偏芯量の増加量の平均値をほぼゼロとすることができた。
  今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
  本発明は、相対密度が高く高品質で、偏芯の量が少ない良好な素子を形成する技術として、特に優れている。
  10  素子成形用部材、11  上型、11c  上型外周面、11d  上型成形面、12  下型、12c  下型外周面、12d  下型成形面、13  素材、14  胴型、14a  胴型外周面、14b  胴型内周面、14c  溝、15  スリーブ、16  枠型、17  R面、18  C面、24  胴型展開図。

Claims (19)

  1.   素子を成形する素子成形用部材であり、
      成形を行なうための1対の型と、
      前記型の外周面を囲むように配置された中空の胴型と、
      前記1対の型の間において、前記素子を構成する素材の位置を調整する枠型とを備えており、
    前記胴型の、前記型の外周面と対向する内周面の少なくとも一部の領域に、凹部が形成される、素子成形用部材。
  2.   前記型と前記胴型と前記枠型との長軸方向に交差する断面の外形は円形状である、請求項1に記載の素子成形用部材。
  3.   前記型の長軸方向に交差する方向に広がる前記凹部の幅を2D(mm)、前記型の前記断面がなす円形の中心から、前記型の外周面までの半径をR(mm)、前記胴型の前記断面がなす円形の中心から、前記胴型の内周面までの半径をR(mm)とすれば、前記胴型および前記型の前記断面がなす円形の径方向に関して、前記型が前記凹部に嵌挿する距離L(mm)として、
    L=R-√(R -D)-{R-√(R -D)}≦0.001
    が成立する、請求項2に記載の素子成形用部材。
  4.   前記素材を成形する際に焼結する温度をT(℃)、前記胴型の前記長軸方向に交差する断面がなす円形の内側の径をD(mm)、前記型の、前記長軸方向に交差する断面がなす円形の外側の径をD(mm)、前記枠型の前記長軸方向に交差する断面がなす円形の外側の径をD(mm)とし、前記素材を前記1対の型の間に配置した室温からT(℃)における前記胴型の平均熱膨張係数をα(/℃)、室温からT(℃)における前記型の平均熱膨張係数をα(/℃)、室温からT(℃)における前記枠型の平均熱膨張係数をα(/℃)、前記焼結する温度であるT(℃)と前記室温との差をΔT(℃)とすれば、
      α<α
      α<αであり、かつ、
      0.030≧(α-α)ΔT+(D-D)≧0.005
      0.150≧(α-α)ΔT+(D-D)≧0.015
    の関係を満たす、請求項2または3に記載の素子成形用部材。
  5.   前記凹部は、前記胴型の長軸方向に沿った方向に延在する、請求項1~4のいずれか1項に記載の素子成形用部材。
  6.   前記凹部は、前記胴型の長軸方向に対して交差する方向に延在する、請求項1~4のいずれか1項に記載の素子成形用部材。
  7.   前記凹部は、前記胴型の内周面上において螺旋形状を描くように配置される、請求項1~4のいずれか1項に記載の素子成形用部材。
  8.   前記凹部は、前記胴型の内周面上において複数本形成されている、請求項1~7のいずれか1項に記載の素子成形用部材。
  9.   前記複数本形成された凹部は、前記胴型の内周面の周方向において等間隔に配置される、請求項8に記載の素子成形用部材。
  10.   前記胴型は、熱膨張係数が1.0×10-7(/℃)以上3.5×10-6(/℃)以下の材料を少なくとも90質量%以上含む、請求項1~9のいずれか1項に記載の素子成形用部材。
  11.   前記胴型は、石英ガラスを少なくとも90質量%以上含む、請求項1~10のいずれか1項に記載の素子成形用部材。
  12.   前記胴型は、窒化珪素を少なくとも90質量%以上含む、請求項1~10のいずれか1項に記載の素子成形用部材。
  13.   前記型の、少なくとも前記胴型の内周面と対向する摺動面は、炭素を含む材料にて形成されている、請求項1~12のいずれか1項に記載の素子成形用部材。
  14.   前記炭素を含む材料は、グラファイト、ガラス状カーボン、DLC及びダイヤモンドからなる群から選択されるいずれか1つを含む、請求項13に記載の素子成形用部材。
  15.   前記型の、前記摺動面と、前記素材を押圧する押圧面とが交差するエッジ部は、0.2mm以上1.0mm以下のR面またはC面を備える、請求項13または14に記載の素子成形用部材。
  16.   前記枠型は、曲げ強度300MPa以上のセラミックスにて構成される、請求項1~15のいずれか1項に記載の素子成形用部材。
  17.   前記枠型は、炭化珪素、窒化珪素、アルミナ、炭化ボロン、ジルコニア及び炭化タンタルからなる群から選択されるいずれか1つを含む材料にて構成される、請求項1~16のいずれか1項に記載の素子成形用部材。
  18.   請求項1~17のいずれか1項に記載の素子成形用部材を用いた素子の製造方法。
  19.   請求項1~17のいずれか1項に記載の素子成形用部材を用いて形成した素子。
PCT/JP2009/068336 2008-11-13 2009-10-26 素子成形用部材、素子の製造方法、および素子 WO2010055763A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/059,609 US20110135865A1 (en) 2008-11-13 2009-10-26 Member for forming element, method of manufacturing element, and element
EP09826013A EP2345625A1 (en) 2008-11-13 2009-10-26 Member for forming element, method of manufacturing element, and element
JP2010508651A JPWO2010055763A1 (ja) 2008-11-13 2009-10-26 素子成形用部材、素子の製造方法、および素子
CN2009801312775A CN102119130A (zh) 2008-11-13 2009-10-26 器件成形用部件、制造器件的方法和器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-291279 2008-11-13
JP2008291279 2008-11-13

Publications (1)

Publication Number Publication Date
WO2010055763A1 true WO2010055763A1 (ja) 2010-05-20

Family

ID=42169899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068336 WO2010055763A1 (ja) 2008-11-13 2009-10-26 素子成形用部材、素子の製造方法、および素子

Country Status (5)

Country Link
US (1) US20110135865A1 (ja)
EP (1) EP2345625A1 (ja)
JP (1) JPWO2010055763A1 (ja)
CN (1) CN102119130A (ja)
WO (1) WO2010055763A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182244A1 (ja) * 2014-05-27 2015-12-03 オリンパス株式会社 光学素子の製造装置、及び、光学素子成形用型セット

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570155A (ja) * 1991-09-11 1993-03-23 Matsushita Electric Ind Co Ltd ガラスレンズ成形用型
JPH06263462A (ja) * 1993-03-05 1994-09-20 Olympus Optical Co Ltd ガラスレンズ成形型
JPH08337428A (ja) 1995-06-08 1996-12-24 Olympus Optical Co Ltd ガラスレンズ成形型
JP2001097727A (ja) * 1999-09-28 2001-04-10 Fuji Photo Optical Co Ltd レンズの製造方法及びレンズの製造装置
JP2002114529A (ja) * 2000-10-03 2002-04-16 Matsushita Electric Ind Co Ltd 光学素子の成形金型および光学素子の製造方法
JP2002234742A (ja) * 2001-02-01 2002-08-23 Matsushita Electric Ind Co Ltd 光学素子の成形金型
JP2003112931A (ja) * 2001-09-28 2003-04-18 Olympus Optical Co Ltd 光学ガラス素子の成形型
JP2004137125A (ja) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd 光学素子成形用金型および光学素子の製造方法
JP2005145777A (ja) 2003-11-18 2005-06-09 Nippon Pillar Packing Co Ltd ガラスレンズ成形用金型
JP2006045038A (ja) * 2004-08-09 2006-02-16 Sumitomo Electric Ind Ltd 成形型およびそれを用いた成形方法
JP2007070215A (ja) * 2005-09-05 2007-03-22 Ashu Kogaku Kofun Yugenkoshi 光学レンズの成形金型
JP2007176707A (ja) 2005-12-26 2007-07-12 Asahi Glass Co Ltd 光学素子の成型金型及び成型方法
JP2007314385A (ja) 2006-05-26 2007-12-06 Olympus Corp 光学素子の成形方法
JP2007332005A (ja) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd 光学素子成形用金型

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442333A (en) * 1987-08-06 1989-02-14 Hoya Corp Molding tool for glass molded body
EP0367513B1 (en) * 1988-11-02 1995-07-05 Btg International Limited Contact lens cast moulding
JPH072534A (ja) * 1993-06-15 1995-01-06 Canon Inc 光学素子の成形用型
JP3793268B2 (ja) * 1996-01-26 2006-07-05 オリンパス株式会社 光学素子の成形方法とその装置
JP2005206430A (ja) * 2004-01-23 2005-08-04 Hoya Corp モールドプレス成形装置及び光学素子の製造方法
DE602004015240D1 (de) * 2004-02-27 2008-09-04 Insa Inst Nat Des Sciences App Verfahren und Vorrichtung zur Herstellung von einer optischen Linse
JP5155579B2 (ja) * 2007-03-13 2013-03-06 Hoya株式会社 モールドプレス成形型の製造方法、並びにガラス光学素子の製造方法
JP2008244394A (ja) * 2007-03-29 2008-10-09 Sumitomo Electric Ind Ltd 半導体装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570155A (ja) * 1991-09-11 1993-03-23 Matsushita Electric Ind Co Ltd ガラスレンズ成形用型
JPH06263462A (ja) * 1993-03-05 1994-09-20 Olympus Optical Co Ltd ガラスレンズ成形型
JPH08337428A (ja) 1995-06-08 1996-12-24 Olympus Optical Co Ltd ガラスレンズ成形型
JP2001097727A (ja) * 1999-09-28 2001-04-10 Fuji Photo Optical Co Ltd レンズの製造方法及びレンズの製造装置
JP2002114529A (ja) * 2000-10-03 2002-04-16 Matsushita Electric Ind Co Ltd 光学素子の成形金型および光学素子の製造方法
JP2002234742A (ja) * 2001-02-01 2002-08-23 Matsushita Electric Ind Co Ltd 光学素子の成形金型
JP2003112931A (ja) * 2001-09-28 2003-04-18 Olympus Optical Co Ltd 光学ガラス素子の成形型
JP2004137125A (ja) * 2002-10-18 2004-05-13 Matsushita Electric Ind Co Ltd 光学素子成形用金型および光学素子の製造方法
JP2005145777A (ja) 2003-11-18 2005-06-09 Nippon Pillar Packing Co Ltd ガラスレンズ成形用金型
JP2006045038A (ja) * 2004-08-09 2006-02-16 Sumitomo Electric Ind Ltd 成形型およびそれを用いた成形方法
JP2007070215A (ja) * 2005-09-05 2007-03-22 Ashu Kogaku Kofun Yugenkoshi 光学レンズの成形金型
JP2007176707A (ja) 2005-12-26 2007-07-12 Asahi Glass Co Ltd 光学素子の成型金型及び成型方法
JP2007314385A (ja) 2006-05-26 2007-12-06 Olympus Corp 光学素子の成形方法
JP2007332005A (ja) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd 光学素子成形用金型

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182244A1 (ja) * 2014-05-27 2015-12-03 オリンパス株式会社 光学素子の製造装置、及び、光学素子成形用型セット
JP2015224154A (ja) * 2014-05-27 2015-12-14 オリンパス株式会社 光学素子の製造装置、及び、光学素子成形用型セット
US10077201B2 (en) 2014-05-27 2018-09-18 Olympus Corporation Optical element manufacturing device and optical element shaping mold set

Also Published As

Publication number Publication date
CN102119130A (zh) 2011-07-06
US20110135865A1 (en) 2011-06-09
JPWO2010055763A1 (ja) 2012-04-12
EP2345625A1 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
TWI710531B (zh) 壓製成型用玻璃素材、壓製成型用玻璃素材之製造方法及光學元件之製造方法
WO2010055763A1 (ja) 素子成形用部材、素子の製造方法、および素子
US20060112731A1 (en) Optical lens molding apparatus
JP6360355B2 (ja) 光学素子の製造装置、及び、光学素子成形用型セット
JP4786387B2 (ja) 複合光学素子の製造方法及びその成形用金型
CN112218832B (zh) 玻璃透镜成型模具
US20140097567A1 (en) Glass base material hanging mechanism
JP4777210B2 (ja) 光学素子の製造方法および光学素子
JP5233745B2 (ja) 素子成形用部材および素子の製造方法
JP5059540B2 (ja) 光学素子の成形装置
EP2388628A2 (en) Optical fiber manufacturing method, optical fiber and optical fiber preform
US20200132885A1 (en) Optical element with antireflection structure, mold for manufacturing, method of manufacturing optical element with antireflection structure, and imaging apparatus
KR101633874B1 (ko) 비구면 렌즈의 성형금형
JP6567303B2 (ja) 光ファイバ母材の製造方法
JP2005145777A (ja) ガラスレンズ成形用金型
JP6609422B2 (ja) 光学素子成形用型セット、及び、光学素子の製造方法
JPH11180721A (ja) モールド成形用金型
US9810876B2 (en) Manufacturing method for lightweight large-size telescope mirror blanks and mirror blanks fabricated according to same
US9477048B2 (en) Sleeve for optical communication and method of manufacturing the sleeve for optical communication
JPH02111635A (ja) プレスレンズの成形金型およびその成形方法
JP2010195653A (ja) 素子成形用型および素子成形品の成形方法
JP4934003B2 (ja) 光学素子の製造方法と光学素子の成形型
TWI633068B (zh) 玻璃模造鏡片的製造方法與用於製造玻璃模造鏡片的套筒
JP2009241407A (ja) 型アセンブリ
JP2006176393A (ja) モールドプレス成形型及び光学素子の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980131277.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010508651

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009826013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13059609

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE