WO2010052951A1 - 射出成形装置の金型温度調節回路及び熱媒体の排出方法 - Google Patents

射出成形装置の金型温度調節回路及び熱媒体の排出方法 Download PDF

Info

Publication number
WO2010052951A1
WO2010052951A1 PCT/JP2009/061870 JP2009061870W WO2010052951A1 WO 2010052951 A1 WO2010052951 A1 WO 2010052951A1 JP 2009061870 W JP2009061870 W JP 2009061870W WO 2010052951 A1 WO2010052951 A1 WO 2010052951A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
medium
heat medium
supply
heating
Prior art date
Application number
PCT/JP2009/061870
Other languages
English (en)
French (fr)
Inventor
充孝 服部
智 今枝
俊彦 苅谷
Original Assignee
三菱重工プラスチックテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工プラスチックテクノロジー株式会社 filed Critical 三菱重工プラスチックテクノロジー株式会社
Priority to CN2009801295661A priority Critical patent/CN102105285B/zh
Priority to US13/001,912 priority patent/US8318061B2/en
Publication of WO2010052951A1 publication Critical patent/WO2010052951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7306Control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling

Definitions

  • the present invention relates to temperature control of a mold capable of performing heating and cooling by switching the heat medium used in an injection molding machine or the like, and in particular, processing the heat medium remaining in the heat medium supply piping to perform heating / cooling
  • the present invention relates to a mold temperature control circuit and a heat medium discharge method capable of reducing switching loss time.
  • the mold of the conventional example shown in Patent Document 1 includes a temperature sensor disposed in each part of the mold, a heating medium supplied from a heating unit, a cooling medium supplied from a cooling unit, and compressed air for scavenging air. And a control valve unit provided in the switching valve unit provided with a timer, a temperature determination program, and a temperature sensor according to the temperature determination program. Determine the detected temperature, start the timer, and control the supply of heating medium, cooling medium, scavenging compressed air and molding operation control of the molding machine according to the time set in the timer. is there.
  • the mixer appropriately mixes the steam as the heating medium and the water as the cooling medium to prevent steam explosion, noise and vibration, and lowers the temperature of the steam flowing into the heat medium return circuit.
  • a mixer with high inflow resistance of heat medium when all the heat medium flowing out of the mold is passed through, the heat medium discharge from the mold takes time and high pressure It must be discharged and energy efficiency is poor.
  • the steam pressure inside the mold drops at the time of heating and the heating efficiency decreases, so it is necessary to attach a throttle to the steam inflow piping to the mixer As a result, the inflow resistance is increased.
  • the present invention shortens the heat medium switching time by accelerating the discharge of the heat medium remaining in the heat medium supply piping between the heat medium supply source and the mold and the heat medium circuit in the mold.
  • Mold temperature control circuit of the injection molding apparatus having a simple structure capable of shortening the molding cycle and reducing the mixture of the heating heat medium and the cooling heat medium discharged from the mold to improve the energy efficiency of heat exchange
  • An object of the present invention is to provide a heat medium discharge method.
  • compressed air for scavenging air used in the present invention means “compressed air for discharging the heating medium and the cooling medium from the inside of the pipe and the mold”
  • the term “heat medium” means “heating medium”.
  • medium or cooling medium or scavenging compressed air is meant.
  • the term “and / or” means either or both.
  • a mold temperature control circuit is a supply that connects a fixed mold and / or a movable mold, and the mold and a supply pipe for a heating medium, a cooling medium, and a scavenging compressed air.
  • a side manifold, an outlet side manifold connecting the mold to a heating medium, a cooling medium, and a discharge pipe for compressed air for scavenging, and a plurality of heating and cooling units incorporated in the mold and coupled to the manifold In an injection process including a common capillary and a mold temperature sensor provided in the mold, and closing the mold and performing mold clamping and then injecting a resin, the heating medium is used as the mold before the resin is injected. The heating medium is switched from the heating medium to the cooling medium after resin injection, and the cooling medium is circulated to the mold and cooled to the solidification temperature or less of the resin. Repeat the molding cycle A mold temperature control circuit of the molding apparatus.
  • the heating medium for the mold, the cooling medium, and the compressed air for scavenging are provided by providing a joining pipe in which the valves and the supply pipes for the heating medium, the cooling medium, and the compressed air for scavenging merge into one.
  • the respective supply piping and the respective discharge piping are shared by the combined piping.
  • a mold bypass pipe connecting the heat medium supply side joining pipe and the discharge side joining pipe, a mold bypass on-off valve installed in the mold bypass pipe, a heat medium supply pipe and / or an exhaust pipe And the passing heat medium sensor for detecting the passage of the heating medium, the cooling medium, and the compressed air for scavenging provided in the device, the mold target temperature preset as a control program and the mold temperature detected by the mold temperature sensor
  • the mold bypass is determined by the mold temperature determination program to be determined, the time-up of a timer for adjusting the opening / closing timing of the mold bypass on-off valve, and / or the detection signal of the passing heat medium sensor.
  • the mold heat regulation control device storing the passing heat medium determination program for adjusting the opening / closing timing of the on-off valve, or the passing heat medium sensor Not only in the supply piping, but also in the discharge piping of the heat medium near the mold, the heating medium, the cooling medium, and the compressed air for scavenging air are located closer to the mold than the connection position to the mold bypass piping.
  • a passage heat medium sensor for detecting passage is provided.
  • the mold temperature control circuit according to the second aspect is characterized in that, in the mold temperature control circuit according to the above (1), the mold bypass piping and the mold bypass on-off valve comprise the fixed mold and / or the It is characterized by being provided in a movable mold.
  • the mold temperature control circuit according to the third aspect is the mold temperature control circuit according to (1), wherein the mold bypass circuit includes the mold bypass pipe and the mold bypass on-off valve. Connecting the supply port and the discharge port of both the fixed mold and the movable mold in the vicinity of the fixed mold and / or the movable mold, and the fixed mold and the movable mold Are common to the mold bypass circuit.
  • the heat transfer medium sensor is a pressure sensor or a temperature sensor. I assume.
  • the mold temperature control circuit comprises the fixed mold and / or the movable mold, and the mold and the heating medium, the cooling medium and the supply pipe for compressed air for scavenging.
  • a mold temperature sensor provided in the mold, the mold is closed and the mold is closed, and then the resin is injected in the injection step, wherein the heating medium is added before the injection of the resin.
  • the mold is circulated and heated to a temperature suitable for resin injection, and after injection of the resin, the heating medium is switched to a cooling medium, and the cooling medium is circulated through the mold to a temperature below the solidification temperature of the resin Repeat the molding cycle to cool A mold temperature control circuit of an injection molding device to return.
  • a mixer for mixing the heating medium discharged from the mold and a cooling medium for cooling the heating medium on the downstream side of the discharge pipe of the mold;
  • a discharge pipe on-off valve located in the vicinity of the mixer for opening and closing a communication flow path between the mold and the mixer, and a discharge pipe for bypassing the discharge pipe on-off valve and communicating with the mixer
  • An on-off valve bypass pipe and a variable throttle valve located on the discharge pipe on-off valve bypass pipe and capable of adjusting the flow rate of the heating medium are provided.
  • the method of discharging the pre-process heat medium of the sixth aspect is a method of discharging the heat medium of the pre-process using the mold temperature control circuit according to any one of (1) to (4) above;
  • the heat medium switching delay timer is started at the same time as the supply of the heat medium in the previous process is stopped, and the heat medium supply delay signal in the subsequent process is used according to the time up of the heat medium switching delay timer or the progress of the injection process.
  • the opening operation of the mold bypass circuit and the mold bypass circuit closing delay timer are started, and the time of the mold bypass circuit closing delay timer is up, or the mold supply side
  • the mold bypass circuit is closed when the passing heat medium sensor provided in the piping portion detects the heat medium in the next step.
  • the term "progress of injection process" used in the present invention means the progress of processes including not only the injection filling process but also the process of cooling and solidifying the resin in the mold cavity.
  • the method of discharging the pre-process heat medium of (6) includes stopping supply of the heat medium of the pre-process and start of supply of the heat medium of the pre-process. It is characterized in that the timer is started when the timer is up and / or the mold temperature reaches a predetermined temperature.
  • the eighth method for discharging the pre-process heat medium is the method for discharging the pre-process heat medium of (6) or (7), wherein the heat medium of the pre-process is a heating medium and the heat medium of the post-process is cooled It is characterized by being a medium for use.
  • the ninth method for discharging the pre-process heat medium is the method for discharging the pre-process heat medium according to (6) or (7), wherein the heat medium for the pre-process is a cooling medium and the heat medium for the post-process is heated It is characterized by being a medium for use.
  • the supply of the heating medium is stopped and the heat medium switching is simultaneously performed.
  • the delay timer is started, the supply of compressed air for scavenging is started by the heat medium switching start signal according to the time-up of the heat medium switching delay timer or the progress of the injection process, the opening operation of the mold bypass circuit, and the mold
  • the bypass circuit blockage delay timer is started, and when the mold bypass circuit blockage delay timer expires, or when the passing heat medium sensor provided in the mold supply side piping portion detects scavenging compressed air,
  • the mold bypass circuit is closed and, at the same time, the supply stop delay timer for scavenging compressed air is started, and this scavenging compressed air supply stop delay timer is started.
  • the supply of the heating medium is stopped and the delay timer for the heat medium switching simultaneously.
  • the stop delay timer is started and this scavenging compressed air supply stop timer is up, or when the passing heat medium sensor provided in the mold supply side piping section detects the scavenging compressed air, for scavenging Stop the supply of compressed air and start the cooling operation start delay timer.
  • the supply of the heating medium is stopped from the supply start of the heating medium. It is characterized in that time-up of a timer to start and / or performed when the mold temperature reaches a predetermined temperature.
  • the supply of the cooling medium is stopped and the delay timer for the heat medium switching simultaneously.
  • the heat medium switching delay timer is timed up or the heat medium switching start signal according to the progress of the injection process starts the supply of compressed air for scavenging air and performs the opening operation of the mold bypass circuit, and a predetermined timer Or when the passing heat medium sensor provided in the mold supply side piping portion detects scavenging compressed air, the mold bypass circuit is closed and a predetermined timer has timed out, Alternatively, it is characterized in that the supply of the scavenging compressed air is stopped when the passing heat medium sensor provided in the mold discharge side piping portion detects the scavenging compressed air.
  • a delay timer for heat medium switching is started at the same time as the cooling step is completed.
  • the supply start of the compressed air for scavenging air and the opening operation of the mold bypass circuit are performed by the heat medium switching start signal according to the time-up of the heat medium switching delay timer or the progress of the injection process, and the predetermined timer time up
  • the supply of the scavenging compressed air is stopped and the heating operation start delay timer is started to perform the heating operation.
  • Start-up operation is started by heating-up signal according to time-up of start delay timer or progress of injection process, and predetermined timer time Tsu or time was up, when the passed heating medium sensor installed on the mold supply-side piping section detects the heating medium, characterized in that to close the mold bypass circuit.
  • a control method of a mold temperature control circuit is a method for discharging a heating medium from a mold in the mold temperature control circuit according to (5), wherein the first half of the heating in the heating step is The discharge pipe on-off valve provided on the pipe between the heat medium discharge pipe from the mold and the mixer is opened, and the discharge pipe on-off valve is closed in the latter half of heating to bypass the drain pipe on-off valve The flow rate and pressure of the heating medium are adjusted by a variable throttling valve provided in the discharge piping on-off valve bypass piping, and the pressure of the heating medium at the end of heating is raised to a high pressure with respect to the first half of heating. Do.
  • a control method of a mold temperature control circuit is a method for discharging a heating medium from the mold in the mold temperature control circuit according to (5), which comprises heat from the mold While the heat medium entering the mixer from the medium discharge pipe is at a high temperature, the discharge pipe on-off valve provided on the pipe between the discharge pipe and the mixer is opened, and the discharge pipe from the mold is externally Close the heat medium discharge valve connected to the return pipe to the cooling equipment, introduce the heat medium into the mixer, and while the heat medium entering the mixer from the discharge pipe is not hot, keep the discharge pipe from the mold open A heat medium discharge valve connected to a return pipe to the external cooling facility is opened to discharge the heat medium discharged from the mold through the discharge pipe to the external cooling facility.
  • the method of treating a heating medium of the eighteenth aspect is the method of discharging a heat medium using any one of the sixth to fifteenth aspects, which is carried out in the sixteenth aspect and / or the seventeenth aspect. It is characterized by
  • the mold temperature control circuit according to any one of the first to fifth aspects, and the heat medium discharging method according to any one of the sixth to eighteenth aspects using the mold temperature control circuit, for heating or cooling the mold.
  • the type of passing heating medium was determined from the detection signal of the passing heating medium sensor, or it was left in the supply piping by the signal of the timer allowing for the arrival time of the heating medium to the mold of the next step.
  • the heat medium of the previous step is discharged to the discharge pipe through the bypass pipe without passing through the inside of the mold with large flow resistance, and then the heat medium of the next step is supplied to the mold. It can be shortened.
  • the flow resistance of each capillary is equal to that of the bypass pipe if heat exchange of the mold is to be carried out uniformly as quickly as possible. 2 to 100 times the flow resistance.
  • the heat medium switching time is particularly large. It is effective to reduce heat energy loss at the same time.
  • the arrangement of the bypass piping of the second aspect is provided with a mold bypass circuit in the fixed mold and / or the movable mold, the arrangement of the mold bypass circuit is the same as the fixed mold and the movable mold. Since it is not related to the relative distance of the movable mold, there is no need to consider the piping movement area, which is effective when the movement distance at the time of mold opening of the movable mold is large.
  • the mold bypass circuit and the pipe length can be reduced compared to the second aspect when the moving distance at the time of mold opening of the movable mold is small, so that the cost is reduced. Can be reduced. Installation of either mold bypass piping is easy to attach to existing molds.
  • the invention according to the fourth aspect detects the difference between the heating medium and the cooling medium even when using a heat medium such as a gas or a liquid having different state characteristics with respect to pressure change and temperature change.
  • a heat medium such as a gas or a liquid having different state characteristics with respect to pressure change and temperature change.
  • an easy and appropriate detection method can be selected.
  • the heating medium in the first half of the heating process, a large flow rate is supplied to the mold in a state where the flow resistance is small while discharging the heating medium, and in the second half of the heating process, the heating medium
  • the pressure of the heating medium in the mold can be a static high pressure and uniform high pressure, and the heating pressure accompanied by fluid pressure loss generated in the heat medium flow path in the mold having a narrow and complex shape.
  • the flow pressure of the heat medium flow path in the mold is difficult to propagate regardless of the medium flow path in the mold, and the portion of the heating medium is not easily pushed out. Since static pressure is applied at the start of discharge, the pressure for discharging the heating medium is sufficient, so retention of the heating medium can be suppressed, and the discharge efficiency of the heating medium can be improved. In addition, since the time for increasing the pressure in the piping is only required in the latter half of the heating process, it is a short time and is effective for energy saving.
  • the pressure of the heating medium in the mold is maintained at a high pressure in the latter half of the heating step, the temperature of the heating medium can be maintained at a high temperature. Even when the temperature rise rate of the mold temperature is low, it is effective to shorten the heating time and to improve the energy efficiency of heat exchange.
  • the mold may be switched from the first half of the heating process to the second half of the heating process when the mold temperature reaches a preset switching temperature or when a timer such as a timer starting from the start of heating times out. It is possible to obtain high reproducibility in the pressure of the heating medium and to perform stable control.
  • the invention according to the fifth and seventeenth aspects relates to the heat medium discharged to the heat medium discharge pipe from the mold to the temperature controller, and the temperature of the heat medium when the temperature of the heat medium is high. If the temperature of the heat medium discharged into the heat medium discharge pipe is not high, the heat medium is introduced into a mixer that mixes the heat medium with a cooling medium supplied from an external cooling facility in order to lower the temperature. By discharging the medium directly to the cooling water return pipe connected to the external cooling facility, the heat medium can be discharged without passing through the mixer whose flow resistance is large and the discharge time is long when the heat medium is not high temperature. Therefore, the time required for discharging the heat medium can be reduced and high energy efficiency can be realized.
  • the supply of the heat medium in the next step is started and then the supply of the heat medium in the next step is started, and at the same time,
  • the mold bypass on-off valve installed in the mold bypass piping to be connected is opened, and the heat medium of the previous process remaining in the supply side merging pipe from the supply source of heat medium to the mold bypass on-off valve is After being expelled to the discharge side merging pipe through the mold bypass pipe, the heat medium of the next process is supplied, and when the heat medium of the next process reaches the vicinity of the mold, the mold bypass on-off valve is closed and the inside of the mold is closed. It is the discharge method of the heat carrier of the front process of sending in the heat carrier of the next process.
  • the heat medium of the previous process remaining in the heat medium supply side merging pipe is pushed by the cooling medium of the next process at the time of process switching and flows into the mold. It is possible to prevent the mold temperature from overshooting or undershooting the target temperature as if the previous process had been continued, and heating the mold in the mold with high flow resistance Since the heat medium can be discharged without passing through a large number of thin pipes involved in cooling, the time for the heat medium to reach the mold from the heat medium supply source is reduced, and the mold temperature is adjusted promptly. The accuracy of the adjustment of the mold temperature can also be improved.
  • the supply pipe of the heat medium and the discharge pipe of the heat medium are removed after the supply of the heating medium in the previous step is cut off at the timing of process switching of the mold temperature controller.
  • the heating medium remaining in the heat medium supply side joining pipe is pushed by the heat medium of the next process at the time of process switching and flows into the mold, as if the heating process It is possible to prevent the mold temperature from being excessively heated beyond the target heating completion temperature in a state where the heat treatment has continued, and for heating and cooling the mold in the mold with high flow resistance Not only can the heat medium be discharged without passing through a large number of fine pipes involved, but also air with a smaller flow pressure loss than liquid is used to scavenge the heat medium of the previous process, so the heat medium circuit of the mold and the inside of the supply pipe The time required for discharging the heating medium can be reduced. Moreover, after the mold bypass on-off valve is closed, the scavenging compressed air is forcibly supplied to the mold inner flow path, so that the heating medium in the mold is supplied before the heat medium of the next step is supplied. Can be discharged reliably.
  • the supply pipe of the heat medium and the discharge pipe of the heat medium are cut after the supply of the heating medium in the previous step is cut off at the timing of process switching of the mold temperature controller.
  • the heating medium remaining in the heat medium supply side joining pipe is pushed by the heat medium of the next process at the time of process switching and flows into the mold, as if the heating process It is possible to prevent the mold temperature from being excessively heated beyond the target heating completion temperature in a state where the heat treatment has continued, and for heating and cooling the mold in the mold with high flow resistance
  • the scavenging compressed air in the supply piping up to the scavenging compressed air supply source and the mold bypass on-off valve can be discharged without passing through a large number of thin piping involved. The time required for the cooling medium to reach the mold from the cooling medium supply source can be reduced, and the mold temperature can be adjusted promptly.
  • the invention according to the thirteenth and fifteenth aspects relates to the mold installed in the mold bypass pipe connecting the heat medium supply pipe and the discharge pipe after stopping the supply of the cooling medium in the previous step.
  • the supply of the scavenging compressed air is started by opening the bypass on-off valve, and the cooling medium remaining in the cooling medium supply side merging pipe is made to pass through the mold bypass piping by the scavenging compressed air.
  • the mold bypass on-off valve is closed while the supply of the scavenging compressed air is continued, the scavenging compressed air is sent into the mold, and the heating medium circuit inside the mold is This is a method of discharging the cooling medium, which stops the supply of the scavenging compressed air when the remaining cooling medium is discharged to the drainage pipe.
  • the cooling medium remaining in the heat medium supply side merging pipe is pushed by the heat medium of the next process at the time of process switching and flows into the mold, as if the cooling process It is possible to prevent the mold temperature from being excessively cooled below the target cooling completion temperature in a state in which the mold has been continued, and for heating and cooling the mold in the mold with large flow resistance Not only can the heat medium be discharged without passing through a large number of fine pipes involved, but also air with a smaller flow pressure loss than liquid is used to scavenge the heat medium of the previous process, so the heat medium circuit of the mold and the inside of the supply pipe The time required for the discharge of the cooling medium can be reduced. Moreover, after the mold bypass on-off valve is closed, the scavenging compressed air is forcedly supplied to the mold inner flow path, so that the heating medium in the mold is heated before the heat medium of the next step is supplied. The medium can be discharged reliably.
  • the invention connects the heat medium supply pipe and the discharge pipe after stopping the supply of the cooling medium in the previous step at the timing of the process switching of the mold temperature controller.
  • the mold bypass on-off valve installed in the mold bypass pipe is opened and at the same time the supply of the scavenging compressed air is started to scavenge the cooling medium remaining in the cooling medium supply side merging pipe.
  • the on-off valve of the scavenging compressed air is closed and the mold bypass on-off valve is kept open to supply the heating medium in the next step.
  • the mold bypass on-off valve is closed to feed the heating medium into the mold.
  • the cooling medium remaining in the heat medium supply side merging pipe is pushed by the heat medium of the next process at the time of process switching and flows into the mold, as if the cooling process It is possible to prevent the mold temperature from being excessively cooled below the target cooling completion temperature in a state in which the mold has been continued, and for heating and cooling the mold in the mold with large flow resistance
  • the scavenging compressed air in the supply piping up to the scavenging compressed air supply source and the mold bypass on-off valve can be discharged without passing through a large number of thin piping involved. The time to reach the mold from the supply source of the heating medium can be reduced, and the mold temperature can be adjusted promptly.
  • the invention according to the eighteenth aspect is effective for further shortening the time required for discharging the preceding process heat medium of the sixth to fifteenth aspects.
  • FIG. 1 is a schematic view of a mold heating circuit according to an embodiment of the present invention.
  • FIG. 2 is a side layout view of the injection molding apparatus of the first embodiment provided with the mold heating circuit of FIG.
  • FIG. 3 is a side layout view of the injection molding apparatus of the second embodiment.
  • FIG. 4 is a side view showing an example of a mold applied to the mold heating circuit of FIG.
  • FIG. 5 is a front view of a nest showing the mold of FIG. 4 in an AA cross section.
  • 6 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 7 is a block diagram showing the configuration of the control panel of FIG. FIG.
  • FIG. 8 is a diagram showing the mold temperature and the timing of opening of each on-off valve corresponding to the molding process of the injection molding apparatus provided with the mold heating circuit of FIGS. 2 and 3.
  • FIG. 9 is a schematic view of a mold heating circuit according to the second embodiment.
  • FIG. 10 is a diagram showing the mold temperature and the timing of opening of each on-off valve corresponding to the molding process according to the first embodiment.
  • FIG. 11 is a diagram showing the mold temperature and the opening timing of each on-off valve corresponding to the molding process according to the third embodiment.
  • the heating and cooling medium supply and discharge circuit configuration of the mold capable of performing rapid heating and cooling in the heating control of the mold used in the injection molding apparatus and the like, and the heating and cooling medium supply and discharge circuit
  • the temperature control method of heating and cooling the mold using In the schematic view of the heating and cooling medium circuit of the mold of this embodiment, the drawings of the resin injection passage, the injection unit and the like are omitted.
  • the fixed mold of the injection molding apparatus and the movable mold both use steam as the heating medium and cooling water as the cooling medium, and supply side manifolds connected to the supply piping for scavenging compressed air, and discharge piping
  • a mold temperature sensor is provided, with a discharge side manifold leading to the insert, and a nest in which a large number of combined heating and cooling common capillaries are built in both manifolds, and a mold temperature sensor.
  • a high temperature fluid such as high temperature pressurized water other than steam may be used as a heating medium, or a low temperature fluid other than cooling water may be used as a cooling medium.
  • the heating and cooling medium circuit closes the fixed mold and the movable mold in the injection molding process, clamps the mold, circulates the heating medium through the mold before injecting the resin, and is suitable for resin injection.
  • the mold is heated to the end, the resin is injected, and after injection, the molding medium is controlled to repeat a molding cycle in which the cooling medium is switched and circulated to the mold to cool the mold to the solidification temperature or less of the resin.
  • the above configuration and mold temperature control are known techniques applied to conventional injection molding machines.
  • the heating and cooling medium circuit of the mold is applied to both the fixed side and the movable side, it is only the fixed side or the movable side of the mold because of the quality required for injection molded products. Also good.
  • a mold temperature sensor and a bypass pipe inherently associated with the other movable mold or fixed mold for which the heating and cooling control is not performed can be omitted.
  • the mold temperature determination and the passing heat medium determination are applied to both the fixed side and the movable side
  • determination such as reaching the heating target temperature at the heating step or reaching the cooling target temperature at the cooling step
  • passing The determination of the completion of the replacement of the heat medium by the heat medium sensor may be made based on the state of only one side of the fixed side mold or the movable side mold, and the process may be advanced, or both the fixed side and the movable side determination established The process may be advanced by Furthermore, the process may be advanced by the determination of either the fixed side or the movable side.
  • FIG. 1 is a schematic view of a mold heating circuit according to an embodiment of the present invention
  • FIG. 2 is a side layout view of an injection molding apparatus according to a first embodiment provided with the mold heating circuit of FIG.
  • FIG. 5 is a side view showing an example of a mold applied to the mold heating circuit of FIG. 1
  • FIG. 5 is a front view of a nest showing the mold of FIG. 4 in an AA cross section
  • FIG. 6 is a CC cross section
  • FIG. 7 is a block diagram showing the configuration of the control panel of FIG. 1
  • FIG. 8 is a mold temperature corresponding to the molding process of the injection molding apparatus provided with the mold heating circuit of FIG.
  • FIG. 8 is a mold temperature corresponding to the molding process of the injection molding apparatus provided with the mold heating circuit of FIG.
  • the injection molding apparatus 1 is provided with an injection unit 13 and a fixed mold 2 mounted on a fixed mold plate 14 and a movable mold 3 mounted on a movable mold plate 15.
  • the boiler 17 for steam generation which is an attached heating facility
  • the cooling equipment 18 such as a cooling tower which is a cooling equipment
  • the valve controller unit (mold temperature control device) 19 are located away from the injection molding apparatus 1 There is.
  • the valve controller unit (mold temperature control device) 19 includes a steam supply pipe 23, a steam supply on-off valve 36, a scavenging compressed air supply pipe 28, an air filter 29, and scavenging compressed air pressure reduction.
  • compressed air supply on-off valve 37 for scavenging cooling water supply piping 24A, on-off valve 38 for cooling water supply, on-off valve 47 for discharging the used heat medium, discharge side merging piping 25B from the mold
  • a discharge piping on-off valve 48 for sending the heat medium of the above to the mixer 30 in parallel with the variable throttle valve 49, a switching valve 51 on the piping for flowing the cooling water to the mixer 30, and others are accommodated.
  • 34 is a cooling water pump. As the injection molding equipment becomes larger, these incidental equipment also becomes larger, and the installation place is located at a distance from the injection molding apparatus.
  • Flexible pipes 22A and 22B are connected to the joining pipes 25A and 25B to the nest 5 of the movable mold 3, and correspond to the mold opening and closing movement of the movable mold 3.
  • mold bypass pipes 21A and 21B for bypassing the inlet and outlet of the heat medium are provided, and mold bypass on-off valves 45A and 45B are installed on the mold bypass pipes 21A and 21B.
  • a passing heat medium sensor (temperature sensor or the like) 41 for detecting the passage of steam, scavenging compressed air, and cooling water is installed on the heat medium supply side merging pipe 25A near the fixed mold 2. Further, a temperature sensor 42 a for detecting the temperature of the cavity surface of the insert 4 of the fixed mold 2 is installed in the mold, and a temperature sensor 42 for detecting the temperature of the cavity surface of the insert 5 of the movable mold 3 is installed. In addition, a passing heat medium sensor (temperature sensor or the like) 43 for detecting the passage of the steam, the compressed air for scavenging air, and the cooling water is installed in the heat medium discharge pipe from the movable mold 3.
  • Arbitrary number of temperature sensors 42a and 42 of cavity faces of nests 4 and 5 may be provided plurally, the temperature distribution of nests 4 and 5 may be checked, and an average temperature may be selected for control or selectively controlled by a temperature judgment program. Alternatively, representative sensors may be determined and used for control.
  • a mixer 30 for mixing steam discharged from the mold and cooling water in parallel with the on-off valve 47 and the on-off valve 47 is provided in the discharge side junction piping 25B of the molds 2 and 3 to cool the mixer 30 and the cooling tower etc.
  • the connection pipe 44 connecting the cooling water supply pipe 24A of the facility 18 is provided, the on-off valve 51 is installed on the connection pipe 44, and the passing heat medium sensor 43 detects a high temperature heat medium, or the control panel 40
  • the inflow control of the heat medium to the mixer 30 is performed by opening and closing the on-off valves 47, 48, and 51 by control of a timer or the like that predicts the flow state of the vapor contained in the.
  • the discharge piping 46 between the discharge side merging piping 25B and the mixer 30 is provided with a discharge piping bypass piping 50 parallel to the discharge piping on-off valve 48, and the discharge piping bypass piping 50 is provided with a variable throttling valve 49 capable of adjusting the throttling amount.
  • a variable throttling valve 49 capable of adjusting the throttling amount.
  • a control panel 40 is installed in association with the injection molding apparatus 1 or the valve control unit (mold temperature control apparatus) 19 or these facilities.
  • the control board 40 has a program storage unit 52 storing a temperature determination program including a mold temperature determination program and a passing heat medium determination program, a timer control unit 54 outputting a time setting signal, and a temperature Control signal for switching supply control of steam, cooling water, scavenging compressed air to molds 2 and 3 by valve control unit (mold temperature control device) 19 based on judgment result by judgment program and time setting signal
  • the molds 2 and 3 have a control signal generation unit 53 that generates control signals for performing molding operations such as mold closing, mold opening, injection filling and the like.
  • the insert 4 with the heat medium passage 4b is fitted into the fixed mold 2, and the four sides are held by the holding plates 6A, 6B, 6C, 6D and fixed to the fixed mold 2, and the movable medium 3 is heated by the heat medium
  • the nest 5 having the passage 5b is fitted, and the four sides are held by the holding plates 6E, 6F, 6G, 6H and fixed to the movable mold 3.
  • a cavity for molding the molded product 7 is formed on the mating surface.
  • the nest 4 forms manifolds 4a and 4e which are cylindrical holes on both sides, and a plurality of heat medium passages 4b penetrate between both the manifolds 4a and 4e.
  • the inlet pipe 11a is connected to the inlet side manifold 4a of the heat medium
  • the outlet pipe 12a is connected to the outlet side manifold 4e of the heat medium
  • the inlet pipe 11a and the outlet pipe 12a are communicated by the mold bypass pipe 21A.
  • An on-off valve 45A is installed in the pipe 21A.
  • the insert 5 forms manifolds 5a and 5e on both sides, and a plurality of heat medium passages 5b penetrate between the manifolds 5a and 5e.
  • the inlet pipe 11b is connected to the inlet side manifold 5a of the heat medium
  • the outlet pipe 12b is connected to the outlet side manifold 5e of the heat medium
  • the inlet pipe 11b and the outlet pipe 12b are communicated by the bypass pipe 21B.
  • the on-off valve 45B is installed on the
  • the distance from the valve control unit 19 for switching the heat medium supply to the molds 2 and 3 is long, and the volume in the pipe connecting between them is large such that the volume in the piping connecting the molds is larger than the flow path volume
  • the switching control of the mold bypass on-off valves 45A and 45B passing the mold bypass piping 21A and 21B shortens the switching time of the heat medium and simultaneously reduces the loss of heat energy. It is effective.
  • the mold temperature and the opening timing of each on-off valve corresponding to the molding process of the injection molding apparatus will be described with reference to FIGS. 1 and 8.
  • the control method of the mold temperature control circuit repeats the heating step and the cooling step in the mold temperature control circuit, and supplies the scavenging compressed air therebetween.
  • the steam supply on-off valve 36 of the steam supply pipe 23 is opened, steam is supplied to the fixed mold 2 and the movable mold 3 via the supply side joining pipe 25A, and the inserts 4 and 5 are heated.
  • TMS set mold upper limit temperature
  • the introduction of the heat medium to the mixer 30 is controlled, and the discharge pipe opening / closing valve 48 is opened until the middle of the heating step, and the heat medium is mixed through the discharge pipe opening / closing valve 48 and the variable throttle valve 49
  • the discharge pipe opening / closing valve 48 is closed, and only the variable throttle valve 49 is passed to flow the heat medium into the mixer 30.
  • the opening time of the discharge piping on-off valve 48 is determined by the timer T18, and the heating time is adjusted to be shortest by adjusting the opening degree of the variable throttle valve 19 and setting the timer T18.
  • the steam in the supply pipe is discharged.
  • the heat medium switching delay timer T3 is started.
  • the mold bypass on-off valves 45A and 45B are opened by the time-up of the heat medium switching delay timer T3 to pass through the mold bypass piping 21A and 21B, and the on / off valve 37 for supplying scavenging compressed air is set for the timer T5 for a short time.
  • the steam in the supply side merging pipe 25A is directly bypassed to the discharge side merging pipe 25B.
  • the mold bypass on-off valve 45 is opened and the timer T8 is started.
  • the mold bypass on-off valve 45 is closed once by the time-up of the timer 8.
  • the closing operation of the mold bypass on-off valve 45 may be performed at time a when the passing heat medium sensor 41 detects air regardless of time-up of the timer 8.
  • the cooling water supply on-off valve 38 is opened in response to the time-up signal of the cooling start delay timer T7, and simultaneously the mold bypass on-off valve 45 is opened again and the timer T9 is started.
  • the scavenging compressed air is forcibly fed into the mold, and the heating medium remaining in the mold can be discharged.
  • the mold bypass on-off valves 45A and 45B are closed at time b when the passing heat medium sensor 41 formed of a temperature sensor provided in the supply side pipe detects cooling water or when the time of the timer T9 is up.
  • the passing heat carrier sensor 41 is shown by a temperature sensor in FIG. 8, the passing heat carrier sensor 41 may be a pressure sensor.
  • the closing operation of the scavenging compressed air supply on-off valve 37 may be performed at time a when the passing heat medium sensor 41 detects air regardless of T5.
  • the mold bypass on-off valve 45 is once closed and reopened before stopping the scavenging compressed air, but the mold bypass on-off valve 45 is not opened once but is opened for shortening the time.
  • the scavenging compressed air may be discharged by the heat medium of the next step.
  • a diagram showing the mold temperature and the opening timing of each on-off valve corresponding to the molding process in this case is shown in FIG.
  • the mold bypass on-off valves 45A and 45B are simultaneously closed.
  • the mold bypass on-off valves 45A and 45B are time-delayed by a timer or the like, and the on-off operations are independently performed. You may go. Piping with different pipe lengths from the branch point to the fixed mold 2 of the joint pipe 25 and the movable mold 3 to the mold by performing closing operation with a time difference between the mold bypass on-off valves 45A and 45B Even if the heat medium of the previous process with a different amount remains inside, the time appropriate for discharging the remaining amount can be independently applied as the opening time of each bypass on-off valve 45A, 45B. The heat medium of the process can be reliably discharged to the discharge pipe through the bypass circuit without passing through the respective molds.
  • the timing of the opening and closing of the mold bypass on-off valves 45A and 45B and the opening and closing of the on-off valve 47 of the discharge pipe in the cooling step is as follows. After opening the on-off valve 38 for cooling water supply of the cooling medium, the mold heat on / off valve 45A, 45B is closed by the signal of detecting the cooling medium by the passing heat medium sensor 41 or the timer T9 time up. The bypass pipes 21A and 21B are closed. At the same time as closing the steam supply on-off valve 36, the timer T19 is started, and the on-off valve 47 is opened by the signal counted up by the timer T19 to direct the discharge side merging pipe 25B to the cooling water discharge pipe 24B.
  • timer T19 it is assumed that the temperature of the heating medium flowing into the mixer 30 from the discharge pipe 46 is assumed to be a temperature that does not cause a problem even if the temperature is discharged directly to the cooling water discharge pipe 24B via the on-off valve 47 Then, at the timing when the timer T 19 has timed out, the on-off valve 47 is opened to promote circulation of the cooling water at the inserts 4 and 5.
  • Cooling water is discharged as follows from the end of the mold cooling process to the start of the next standby process and the supply piping and the heat medium flow path in the mold.
  • the cooling water supply on-off valve 38 is closed to stop the cooling water, and the mold heat medium switching delay timer Start T11.
  • the mold bypass on-off valves 45A and 45B are opened to pass through the mold bypass piping 21A and 21B, and the scavenging compressed air supply on-off valve 37 is opened to supply side merging pipe
  • the cooling medium (cooling water) in 25A is discharged to the discharge side merging pipe 25B.
  • a timer T12 is started which is set on the assumption that the discharge of the cooling water in the supply pipe is completed.
  • the mold bypass on-off valves 45A and 45B are closed, and it is assumed that the cooling water in the nests 4 and 5 is completely discharged into the discharge side merging pipe 25B.
  • the scavenging compressed air is stopped by the timer T14 set.
  • the heating start delay timer T17 is started simultaneously with the time-up of the timer T14.
  • the steam supply on-off valve 36 is opened by the time-up signal of the timer T17, and the mold bypass on-off valve 45 is reopened at the same time as the vapor is sent to discharge scavenging compressed air through the mold bypass circuit.
  • the mold bypass on-off valve 45 is closed after the time set in the timer T13.
  • the timing of passing steam to the mixer 30 is adjusted by the timer T17 from the completion of the discharge of cooling water in the mold to the start of the next mold heating process.
  • the steam is condensed to water and drained or recovered to the cooling facility 18 such as a cooling tower or the boiler 17.
  • the cooling facility 18 such as a cooling tower or the boiler 17.
  • the steam condenses in the piping and the mold, so it takes time for the high temperature steam to reach the discharge piping.
  • the temperature of the heat medium discharged from the mold to the drainage side merging pipe 25B is low, so the on-off valve 47 may be opened.
  • the mold bypass on-off valves 45A and 45B may be opened for a short time from the start of the supply of steam to prompt the steam to reach the mold.
  • the timing for supplying the cooling water to the mixer 30 is as follows.
  • the supply of cooling water from the connecting pipe 44 to the mixer 30 may be continued by always opening the on-off valve 51, but the temperature of the mixer 30 itself or the mixer 30 to reduce the amount of cooling water used.
  • the on-off valve 51 may be opened to supply cooling water only when the temperature becomes high by the temperature sensor 42b (TM5) that detects the internal temperature.
  • the cooling water may be supplied by opening the on-off valve 51 while the temperature of the heat medium sensor 43 (TM2) for detecting the temperature in the drainage side merging pipe 25B is equal to or higher than the set temperature.
  • the timer T5 sets the time for feeding the scavenging compressed air between the high temperature steam supplied to the previous process and the cooling water supplied to the next process.
  • the timer T5 is started by a time-up of the timer T3 which starts from the time when the temperature of the mold reaches the set heating mold upper limit temperature TMS which is the target heating temperature or the progress of the injection process.
  • a signal according to the progress of the injection process an external signal of an injection start signal output from the control device of the injection molding machine main body or a time-up signal such as a preset pressure holding time timer may be used.
  • the scavenging compressed air supply on-off valve 37 and the mold bypass on-off valves 45A and 45B are opened to pass the steam, which is the heat medium of the previous step remaining in the supply piping, through the mold. It discharges to the discharge piping without doing so and prevents the mold temperature from being excessively heated above the target heating completion temperature.
  • the main purpose of supplying the scavenging compressed air is to prevent shock and vibration generated by direct contact between the heating medium and the cooling medium in the piping or in the mold.
  • the scavenging compressed air supply on-off valve 37 is closed. Further, the closing operation of the scavenging compressed air supply on-off valve 37 may be performed at time a when the passing heat medium sensor 41 detects air regardless of T5.
  • the timer T7 sets the start timing of the cooling process.
  • the scavenging compressed air supply on-off valve 37 after closing the heating process is closed at the same time and started, and the cooling water supply on-off valve 38 is opened with the time-up of the timer T7.
  • the cooling start timing is determined by a signal corresponding to the progress of the injection process, the cooling start may be performed by this external signal without using the timer T7.
  • an external signal of an injection start signal output from the control device of the injection molding machine main body or a time-up signal such as a preset pressure holding time timer may be used as a signal according to the progress of the injection process.
  • the timer T12 sets the bypass passage time of the scavenging compressed air after the end of the cooling process.
  • the timer T12 is started when the timer T11, which starts from the time when the temperature of the mold reaches the target cooling lower limit temperature TMC, is timed up. That is, simultaneously with the start of the timer T11, the cooling water supply on-off valve 38 is closed, the timer T11 is timed up, and the scavenging compressed air supply on-off valve 37 and the mold bypass on-off valves 45A and 45B are opened. Most of the cooling water remaining inside the supply side piping is discharged to the discharge side piping via the mold bypass on-off valves 45A and 45B.
  • the timer T12 preferably sets the time when it is assumed that the scavenging compressed air reaches the vicinity of the mold, and when the mold bypass on-off valves 45A and 45B are closed simultaneously with the time-up of the timer T12, Since the entire amount is sent to the heat medium circuits 4b and 5b of the mold, even a mold having a heat medium circuit having a large inflow resistance can discharge the cooling water remaining in the mold in a short time to the discharge pipe. At the same time, since the amount of cooling water passing through the inside of the mold can be reduced upon discharging the cooling water, it is possible to reduce the phenomenon of unnecessarily lowering the temperature of the mold upon discharging the cooling water.
  • mold bypass pipes 21A and 21B connected to the mold bypass on-off valves 45A and 45B are on the way to the supply side joint pipe 25A in the middle of the heat medium supply pipe to the mold.
  • the closing operation of the mold bypass on-off valve 45A, 45B is the heat medium supply piping near the mold regardless of the time-up of the timer T12, and the mold bypass piping 21A connected to the mold bypass on-off valve 45A, 45B.
  • the passing heat medium sensor (not shown) is provided at a position closer to the valve control unit 19 by detecting the arrival of scavenging compressed air at that sensor.
  • the mold bypass on-off valve 45A, 45B may be closed.
  • the timer T14 is assumed to close the mold bypass on / off valves 45A and 45B after the completion of the cooling process, and then assume that the coolant remaining in the heat medium circuit inside the mold is discharged to the discharge pipe by the scavenging compressed air. It is preferable to set Simultaneously with the opening operation of the mold bypass on-off valves 45A and 45B, the timer T14 starts. With the time-up of the timer T14, the scavenging compressed air supply on-off valve 37 is closed, and the on-off valve 47 located between the exhaust pipe from the mold and the cooling water exhaust pipe 24B to the cooling facility 18 such as a cooling tower is closed.
  • the closing operation of the scavenging compressed air supply on-off valve 37 for discharging the cooling water from the mold is not performed by the timer T14, but is connected to the mold bypass pipings 21A and 21B connected to the mold bypass on-off valves 45A and 45B.
  • the passing heat medium sensor 43 provided in the heat medium discharge pipe at a position close to the mold detects the arrival of the scavenging compressed air from the position where the heat medium discharge side merging pipe 25A is connected, and the scavenging compressed air is detected.
  • the air supply on-off valve 37 may be closed.
  • the timer T17 sets a standby time until the start of heating of the mold.
  • the timer T17 starts simultaneously with the closing operation of the scavenging compressed air supply on-off valve 37 at the time of discharge of the cooling heat medium.
  • the steam supply on-off valve 36 for heating the mold is opened for the next injection operation, and the heating process is started.
  • the opening operation of the on-off valve 36 of the heating medium is not based on the timer T17, but a signal corresponding to the progress of the injection step or the interval of the start timing of the heating step mounted on the valve controller unit (mold temperature control device) 19 It may be defined by a timer etc.
  • an external signal of an injection start signal output from the control device of the injection molding machine main body or a time-up signal such as a preset pressure holding time timer may be used.
  • the pressure value detected by the pressure sensor provided in the supply pipe or the discharge pipe falls below the predetermined value until the timer with a predetermined time is up or the time is up.
  • a residual pressure release step may be performed to return the pressure in the circuit to normal pressure.
  • the timer T18 shown in the diagram of FIG. 8 sets the timing of the closing operation of the discharge piping on-off valve 48 located between the heat medium discharge piping from the mold and the mixer 30.
  • the timer T18 starts simultaneously with the opening operation of the steam supply on-off valve 36.
  • the closing operation of the discharge piping on-off valve 48 located between the heat medium discharge side merging piping 25B from the mold and the mixer 30 is performed.
  • the variable throttle valve 49 can be bypassed and the heat medium discharged from the mold can be flowed into the mixer 30. Instead, the flow rate of steam can be increased. For this reason, a large amount of steam can be supplied compared to the case where the heating process is performed with the discharge pipe opening / closing valve 48 closed in the latter half of the heating process, so that the temperature rising rate of the mold can be increased.
  • the discharge pipe opening / closing valve 48 By closing the discharge pipe opening / closing valve 48 when the timer T18 is up, the steam passes through the variable throttle valve 49, so the pressure of the steam rises, and the steam discharge speed at the start of steam discharge described later can be increased.
  • the discharge pipe opening / closing valve 48 even when the temperature of the mold approaches the temperature of the mold and the temperature rise rate of the mold decreases. Compared to when you are open, you can get a large heating rate.
  • the throttling amount of the variable throttle valve 49 may be adjusted to squeeze the variable throttle valve 49 until the flow rate of steam disappears.
  • the time to reach the heating target temperature of the mold is minimized. It is preferable to set the time to be done. If the heating target temperature of the mold is sufficiently lower than the temperature of the steam supplied from the boiler 17, the timer T18 is ignored, and the discharge piping on-off valve 48 is closed while the steam supply on-off valve 36 is open. If the pressure of the steam in the mold is adjusted by the variable throttle valve 49, the mold temperature as the heating target can be obtained in substantially the same heating time as when the discharge on / off valve 48 is operated. Thus, it is possible to save the trouble of examining the set value of the timer T18.
  • the timer T19 shown in the diagram of FIG. 8 sets the opening timing of the on-off valve 47 located between the discharge pipe from the mold and the cooling water discharge pipe 24B to the cooling equipment 18 such as a cooling tower.
  • the timer T19 is started when the timer T3 which is started simultaneously with the closing operation of the steam supply on-off valve 36 is up, and the on-off valve 47 is opened due to the time up of the timer T19.
  • the temperature of the heat medium returned from the drainage pipe from the mold to the valve control unit (mold temperature control device) 19 is gradually reduced by replacing the heating medium with the cooling medium, and the mixer 30 is not passed.
  • the timer T19 It is preferable to set, for the timer T19, a time that is assumed to be a temperature that does not cause a problem even if it is returned directly to the cooling equipment 18 such as a cooling tower.
  • the closing operation of the on-off valve 47 is performed by the time-up of the timer T20 which is started together with the opening operation of the on-off valve 47.
  • the open / close operation of the on-off valve 47 in this mold cooling step is performed by the heat medium sensor 43 passing through the drain pipe from the mold, regardless of the timers T19 and T20. It may be done when it becomes.
  • FIG. 3 is a side layout view of the injection molding apparatus of the second embodiment
  • FIG. 9 is a schematic view of its mold heating circuit.
  • the injection molding apparatus of the second embodiment differs from the injection molding apparatus of the first embodiment in the installation configuration of the bypass piping.
  • the mold bypass piping 31 and the mold bypass on-off valve 45 are installed at a position not far from either the fixed mold 2 or the movable mold 3 or in the vicinity of the fixed mold 2 and the movable mold 3
  • the mold bypass pipe 31 and the inlet pipe 11a of the insert 4 of the fixed mold 2 are connected, and the inlet pipe 11b of the insert 5 of the movable mold 3 are connected by the flexible pipe 32A.
  • the outlet pipe 12 a of the insert 4 of the mold 2 is connected, and the outlet pipe 12 b of the insert 5 of the movable mold 3 is connected by a flexible pipe 32 B.
  • the flexible piping 32A and the flexible piping 32B correspond to the mold opening and closing movement of the movable mold 3.
  • the arrangement of the mold bypass piping 31 is advantageous when the moving distance of the mold opening of the movable mold 3 is small, and the cost can be reduced. Moreover, it is easy to apply to the existing mold.
  • FIG. 10 is a diagram showing the mold temperature and the timing of opening and closing of each on-off valve corresponding to the molding process of the injection molding apparatus provided with the mold heating circuit of FIG.
  • the injection molding apparatus according to the third embodiment differs from the injection molding apparatus according to the first embodiment in that in the first embodiment, the end of the heating process is determined by the mold temperature being the set mold upper limit temperature TMS.
  • the end of the heating step is the time when the timer T2 starting from the start of the supply of steam has timed up, and in the first embodiment, The end of the cooling process is when the mold temperature reaches the cooling lower limit temperature TMC, whereas in the third embodiment, the end of the cooling process starts from the start of the supply of the cooling water in timer T10.
  • the only difference is that the time is up, and the other configurations are completely the same, so the description of the same configurations will be omitted.
  • the mold temperature and the opening timing of each on-off valve corresponding to the molding process of the injection molding apparatus will be described with reference to FIGS. 1 and 11.
  • the control method of the mold temperature control circuit repeats the heating step and the cooling step in the mold temperature control circuit, and supplies the scavenging compressed air therebetween.
  • the steam supply on-off valve 36 of the steam supply pipe 23 is opened, steam is supplied to the fixed mold 2 and the movable mold 3 through the supply side joining pipe 25A, and heating of the inserts 4 and 5 is performed.
  • the heating end timer T2 is started.
  • the steam supply on-off valve 36 is closed to complete the mold heating process.
  • the steam in the supply pipe is discharged.
  • the mold bypass on-off valves 45A and 45B are opened to pass the mold bypass piping 21A and 21B, and the scavenging compressed air supply on-off valve 37 is set to the timer T5.
  • the steam in the supply side merging pipe 25A is bypassed directly to the discharge side merging pipe 25B. Steam can be discharged in a very short time because it has low flow resistance.
  • the cooling water supply on / off valve 38 is opened by the time up signal of the timer T7 for delaying the cooling start to send cooling water and start the cooling of the die, and the timer T21 for cooling completion is started.
  • the mold bypass on-off valves 45A and 45B are opened to allow the mold bypass piping 21A and 21B to pass, and the cooling water supply on-off valve 38 is closed to stop the cooling water, thereby cooling the mold Finish the process.
  • the closing operation of the scavenging compressed air supply on-off valve 37 may be performed at time a when the passing heat medium sensor 41 detects air without using the timer T5.
  • the mold temperature control circuit and the heat medium discharging method of the injection molding apparatus include the heat remaining in the heat medium supply piping between the heat medium supply source and the mold and the heat medium circuit in the mold.
  • the heat medium switching time is shortened to shorten the molding cycle, and the mixture of the heating heat medium and the cooling heat medium discharged from the mold is reduced, and the energy of heat exchange is reduced.
  • the efficiency can be improved and the structure of the mold temperature control circuit of the injection molding apparatus can be simplified.

Abstract

 樹脂の射出前に、加熱用媒体を前記金型に回流させて樹脂射出に好適な温度に加熱して、樹脂の射出後に、加熱用媒体から冷却用媒体に切り換えて、この冷却用媒体を金型に回流させて樹脂の固化温度以下まで冷却する成形サイクルを繰り返す射出成形装置の金型温度調節回路であって、前記金型への加熱用媒体、冷却用媒体および掃気用圧縮空気の前記各供給配管及び前記各排出配管が合流配管で共用され、熱媒体の供給側合流配管と排出側合流配管とを連結する金型バイパス配管と、金型バイパス開閉弁と、通過熱媒体センサと、金型温度判定プログラムおよび通過熱媒体判定プログラムを格納した金型温調制御装置とを備える射出成形装置の金型温度調節回路。

Description

射出成形装置の金型温度調節回路及び熱媒体の排出方法
 本発明は、射出成形機等に使用される熱媒体を切換えて加熱と冷却を行うことができる金型の温度制御に関し、特に熱媒体供給配管に残存する熱媒体を処理して加熱・冷却の切換のロスタイムを減少させることができる金型の温度調節回路及び熱媒体の排出方法に関する。
 本願は、2008年11月06日に日本出願された特願2008-285685に基づいて優先権を主張し、その内容をここに援用する。
 特許文献1に示す従来例の金型は、金型の各部に配置された温度センサと、加熱用ユニットから供給される加熱用媒体、冷却用ユニットから供給される冷却用媒体、掃気用圧縮空気とを切り換えて供給し、回収可能な熱媒体通路に通じている切換バルブユニットと、温度判定用プログラム、タイマーを具備する切換バルブユニットに設けた制御手段を有し、温度判定用プログラムにより温度センサの検出温度を判定して、タイマーを起動しタイマーに設定された時間により、金型への加熱用媒体、冷却用媒体、掃気用圧縮空気の供給制御と成形機の成形動作制御を行うものである。
特開2007-83502号公報(図1)
 金型加熱冷却成形において、加熱と冷却を互いに切り換える際、切り換える直前に金型及び熱媒体供給配管に残っている熱媒体を、熱媒体排出配管から外部へ排出する必要がある。このとき、熱媒体の供給源を切り換えても、供給源と金型の間の熱媒体供給配管内に残っている熱媒体と金型内部の熱媒体回路に残っている熱媒体を、金型内部の熱媒体回路を通して排出した後、次の熱媒体が金型に到達するまでの期間は、実質上の金型の昇温、又は、降温は始まらないため、無駄な時間となる。加えて、金型内の金型加熱、冷却に携わる多数の細配管は流動抵抗が大きいため、熱媒体を排出するのに時間が掛かり、且つ高圧で排出しなければならず、金型内部の熱媒体回路のみを通じての熱媒体の入れ換え作業は、エネルギー効率が悪い。
 混合器は、加熱用媒体である蒸気と冷却用媒体である水を適切に混合することで、水蒸気爆発や、騒音、振動を防止し、熱媒体戻り回路に流れ込んでくる蒸気の温度を下げ、水に凝縮する目的で装備されているが、熱媒体の流入抵抗の大きい混合器では、金型から流出する全ての熱媒体を通すと金型からの熱媒体排出に時間がかかり、且つ高圧で排出しなければならず、エネルギー効率が悪い。また、熱媒体の流入抵抗の小さい混合器においては、加熱時に金型内部での蒸気圧力が下がってしまい加熱効率が低下してしまうため、混合器への蒸気流入配管に絞りを取付けることが必要となり、結果的に流入抵抗は大きくなってしまう。
 本発明は、熱媒体の供給源と金型の間の熱媒体供給配管内と金型内の熱媒体回路に残っている熱媒体の排出を早くすることにより、熱媒体切換の時間を短縮して成形サイクルを短くし、金型から排出された加熱用熱媒体と冷却用熱媒体の混在を減少させて熱交換のエネルギー効率を向上できる構造が簡単な射出成形装置の金型温度調節回路及び熱媒体の排出方法を提供することを目的とする。なお本発明において用いる「掃気用圧縮空気」の語は「加熱用媒体や冷却用媒体を配管内や金型から排出するための圧縮空気」を意味し、「熱媒体」の語は「加熱用媒体または冷却用媒体または掃気用圧縮空気」を意味する。また「および/もしくは」の語は、どちらか一方または両方を意味する。
(1)第1の態様の金型温度調節回路は、固定金型および/もしくは可動金型と、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の供給配管とを繋ぐ供給側マニホールドと、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の排出配管とを繋ぐ排出側マニホールドと、前記金型に内蔵され、これらマニホールドに結合された複数の加熱、冷却共用細管と、前記金型に備わる金型温度センサとを備え、前記金型を閉じて型締めを行ってから樹脂を射出する射出工程において、樹脂の射出前に、加熱用媒体を前記金型に回流させて樹脂射出に好適な温度に加熱して、樹脂の射出後に、加熱用媒体から冷却用媒体に切り換えて、この冷却用媒体を金型に回流させて樹脂の固化温度以下まで冷却する成形サイクルを繰り返す射出成形装置の金型温度調節回路である。
 加熱用媒体の供給配管の開閉弁と、冷却用媒体の供給配管の開閉弁と、加熱用媒体や冷却用媒体を配管内や前記金型から排出するための掃気用圧縮空気の供給配管の開閉弁と、加熱用媒体、冷却用媒体および掃気用圧縮空気の各供給配管が一つに合流する合流配管とを設けることにより、前記金型への加熱用媒体、冷却用媒体および掃気用圧縮空気の前記各供給配管及び前記各排出配管が前記合流配管で共用されている。
 このとき、熱媒体の供給側合流配管と排出側合流配管とを連結する金型バイパス配管と、この金型バイパス配管に設置した金型バイパス開閉弁と、熱媒体供給配管および/もしくは排出配管とに設けた加熱用媒体、冷却用媒体および掃気用圧縮空気の通過を検知する通過熱媒体センサと、制御プログラムとして予め設定した金型目標温度と前記金型温度センサにより検知した金型温度を比較判定する金型温度判定プログラムと、前記金型バイパス開閉弁の開閉のタイミングを調整するタイマーのタイムアップおよび/もしくは前記通過熱媒体センサの検出信号により通過熱媒体の種類を判定して金型バイパス開閉弁の開閉タイミングを調整する通過熱媒体判定プログラムとを格納した金型温調制御装置を備え、もしくは通過熱媒体センサは供給配管だけでなく、更に金型の近くの熱媒体の排出配管においてこの金型バイパス配管への接続位置よりも金型の近くに位置し、加熱用媒体と冷却用媒体と掃気用圧縮空気の通過を検知する通過熱媒体センサ備えたことを特徴とする。
(2)第2の態様の金型温度調節回路は、上記(1)の金型温度調節回路において、前記金型バイパス配管と前記金型バイパス開閉弁とが、前記固定金型および/もしくは前記可動金型に設けられていることを特徴とする。
(3)第3の態様の金型温度調節回路は、上記(1)の金型温度調節回路において、前記金型バイパス配管と前記金型バイパス開閉弁とを含む一組の金型バイパス回路が、前記固定金型および/もしくは前記可動金型の近傍で前記固定金型と前記可動金型との両方の金型の供給口と排出口と連結し、前記固定金型と前記可動金型とが、前記金型バイパス回路を共用していることを特徴とする。
(4)第4の態様の金型温度調節回路は、上記(1)~(3)の金型温度調節回路において、前記通過熱媒体センサが、圧力センサ、又は、温度センサであることを特徴とする。
(5)第5の態様の金型温度調節回路は、前記固定金型および/もしくは前記可動金型と、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の供給配管とを繋ぐ供給側マニホールドと、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の排出配管とを繋ぐ排出側マニホールドと、前記金型に内蔵され、これらマニホールドに結合された複数の加熱、冷却共用細管と、前記金型に備わる金型温度センサとを備え、前記金型を閉じて型締めを行ってから樹脂を射出する射出工程において、樹脂の射出前に、加熱用媒体を前記金型に回流させて樹脂射出に好適な温度に加熱して、樹脂の射出後に、加熱用媒体から冷却用媒体に切り替えて、この冷却用媒体を金型に回流させて樹脂の固化温度以下まで冷却する成形サイクルを繰り返す射出成形装置の金型温度調節回路である。
 この金型温度調節回路において、前記金型の排出配管の下流側に、前記金型から排出した前記加熱用媒体とこの加熱用媒体を冷却するための冷却用媒体とを混合する混合器と、この混合器の近傍に位置して前記金型の排出配管と前記混合器との連通流路を開閉する排出配管開閉弁と、この排出配管開閉弁を迂回して前記混合器に連通する排出配管開閉弁バイパス配管と、この排出配管開閉弁バイパス配管上に位置して加熱用媒体の流量を調整可能な可変絞り弁とを備えたことを特徴とする。
(6)第6の態様の前工程熱媒体の排出方法は、上記(1)~(4)のいずれかに記載する金型温度調節回路を用いた前工程の熱媒体の排出方法であって、前工程の熱媒体の供給を停止すると同時に、熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた後工程の熱媒体供給開始信号により、後工程の熱媒体供給を開始と、前記金型バイパス回路の開動作と、金型バイパス回路閉塞遅延タイマーのスタートを行い、この金型バイパス回路閉塞遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが次工程の熱媒体を検知した時点で、前記金型バイパス回路を閉塞させることを特徴とする。なお本発明で用いる「射出工程進捗」なる語は、単に射出充填工程のみでなく金型キャビティ内での樹脂の冷却固化工程も含む工程の進捗を意味する。
(7)第7の態様の前工程熱媒体の排出方法は、上記(6)の前工程熱媒体の排出方法において、前工程の熱媒体の供給の停止を、前工程の熱媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行うことを特徴とする。
(8)第8の前工程熱媒体の排出方法は、上記(6)または(7)の前工程熱媒体の排出方法において、前工程の熱媒体が加熱用媒体、後工程の熱媒体が冷却用媒体であることを特徴とする。
(9)第9の前工程熱媒体の排出方法は、上記(6)または(7)の前工程熱媒体の排出方法において、前工程の熱媒体が冷却用媒体、後工程の熱媒体が加熱用媒体であることを特徴とする。
(10)第10の態様の金型温度調節回路の制御方法は、上記(1)~(4)のいずれかの金型温度調節回路において、加熱用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り替え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作と、金型バイパス回路閉塞遅延タイマーのスタートを行い、この金型バイパス回路閉塞遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、前記金型バイパス回路を閉塞させ、同時に掃気用圧縮空気の供給停止遅延タイマーをスタートさせ、この掃気用圧縮空気供給停止遅延タイマーがタイムアップした時点で、もしくは金型排出側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で掃気用圧縮空気の供給を停止することを特徴とする。
(11)第11の態様の金型温度調節回路の制御方法は、上記(1)~(4)の金型温度調節回路において、加熱用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作と、掃気用圧縮空気供給停止遅延タイマーのスタートを行い、この掃気用圧縮空気供給停止遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、掃気用圧縮空気の供給停止を行うとともに冷却動作開始遅延タイマーのスタートを行い、冷却動作開始遅延タイマーのタイムアップもしくは射出工程進捗に応じた冷却開始信号により、冷却用媒体の供給開始と前記金型バイパス回路閉塞遅延タイマーのスタートを行い、前記金型バイパス回路閉塞遅延タイマーのタイムアップした時点もしくは金型供給側配管部に設けた通過熱媒体センサが冷却用媒体を検知した時点で前記金型バイパス回路を閉塞させることを特徴とする。
(12)第12の態様の前工程熱媒体の排出方法は、上記(10)~(11)の加熱用媒体の排出方法において、加熱用媒体の供給の停止を、加熱用媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行うことを特徴とする。
(13)第13の態様の金型温度調節回路の制御方法は、上記(1)~(4)の金型温度調節回路において、冷却用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作とを行い、所定のタイマーのタイムアップした時点、もしくは金型供給側配管部に設けた前記通過熱媒体センサが掃気用圧縮空気を検知した時点で、前記金型バイパス回路を閉塞させ、所定のタイマーがタイムアップした時点、もしくは金型排出側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で掃気用圧縮空気の供給を停止することを特徴とする。
(14)第14の態様の金型温度調節回路の制御方法は、上記(1)~(4)の金型温度調節回路において、冷却工程を終了すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作とを行い、所定のタイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、掃気用圧縮空気の供給停止を行うとともに加熱動作開始遅延タイマーのスタートを行い、加熱動作開始遅延タイマーのタイムアップもしくは射出工程進捗に応じた加熱開始信号により、加熱動作の開始を行い、所定のタイマーのタイムアップした時点もしくは、金型供給側配管部に設けた通過熱媒体センサが加熱用媒体を検知した時点で、前記金型バイパス回路を閉塞させることを特徴とする。
(15)第15の態様の前工程熱媒体の排出方法は、上記(13)~(14)の冷却用媒体の排出方法において、冷却用媒体の供給の停止を、冷却用媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行うことを特徴とする。
(16)第16の態様の金型温度調節回路の制御方法は、上記(5)の金型温度調節回路における金型からの加熱用媒体の排出方法であって、加熱工程において加熱の前半は前記金型からの熱媒体排出配管と前記混合器との間の配管に設けた前記排出配管開閉弁を開き、加熱の後半は前記排出配管開閉弁を閉じて、前記排水配管開閉弁をバイパスする前記排出配管開閉弁バイパス配管に設けた可変絞り弁により、加熱用媒体の流量と圧力を調整して、加熱終了時の加熱用媒体の圧力を加熱の前半に対し高圧に昇圧することを特徴とする。
(17)第17の態様の金型温度調節回路の制御方法は、上記(5)の金型温度調節回路における前記金型からの加熱用媒体の排出方法であって、前記金型からの熱媒体排出配管から前記混合器に入る熱媒体が高温である間は前記排出配管と前記混合器との間の配管に設けた排出配管開閉弁を開くとともに、金型からの前記排出配管を外部の冷却設備への戻り配管につなぐ熱媒体排出弁を閉じ、熱媒体を前記混合器に導入し、前記排出配管から前記混合器に入る熱媒体が高温でない間は、前記金型からの排出配管を外部の冷却設備への戻り配管につなぐ熱媒体排出弁を開いて、金型から排出配管を通して排出される熱媒体を外部の冷却設備へと排出することを特徴とする。
(18)第18の態様の加熱用媒体の処理方法は、上記第6~15の態様のいずれかを用いる熱媒体の排出方法において、上記第16の態様および/もしくは17の態様にて行うことを特徴とする。
 上記第1~第5の態様の金型温度調節回路及び、該金型温度調節回路を用いた上記第6~第18の態様の熱媒体排出方法であり、金型を加熱又は冷却するための熱媒体切換時、通過熱媒体センサの検出信号により通過熱媒体の種類を判定するか、もしくは次工程の熱媒体の金型への到達時間を見込んだタイマーの信号により、供給配管内に残った前工程の熱媒体を流動抵抗の大きな金型内部を経由させることなくバイパス配管を通して排出配管に排出した後、次工程の熱媒体を金型へ供給するようにしたので、熱媒体の切換時間を短縮することができる。
 因みに、上記第1~第18の態様に係わる発明は、成形品が薄く面積が大きいとき、金型の熱交換を均等にできるだけ急速に行おうとすれば、各々の細管の流動抵抗はバイパス配管の流動抵抗の2~100倍となる。また、熱媒体供給源から金型までの距離が長く、その配管内容量が金型内の流路容積よりも大きいような大型の熱媒体供給排出回路においては、特に、熱媒体の切換時間の短縮と同時に熱エネルギーの損失を減らすのに有効である。
 特に、上記第2の態様のバイパス配管の配置は、前記固定金型および/もしくは前記可動金型に金型バイパス回路を設けているので、前記金型バイパス回路の配置は前記固定金型と前記可動金型の相対距離に関係ない為、配管移動領域を考慮する必要が無く、可動金型の型開きのときの移動距離が大きい場合に有効である。また、上記第3の態様のバイパス配管の配置は、可動金型の型開きのときの移動距離が小さい場合に前記金型バイパス回路および配管長を上記第2の態様に比べて縮減できるのでコストを少なくすることができる。どちらの金型バイパス配管の設置とも、既設の金型へ取り付けることが容易である。
 上記第4の態様に係わる発明は、加熱用媒体と冷却用媒体で気体と液体などの、圧力変化、温度変化に対する状態特性の異なった熱媒体を使用する場合でも、熱媒体の差異を検出するのに容易且つ適正な検知方法を選択できる。
 上記第5および第16の態様に係わる発明は、加熱工程の前半では前記加熱用媒体の排出を流動抵抗が少ない状態で大流量を金型に供給し、加熱工程の後半で、前記加熱用媒体の排出工程に先立って、加熱終了時の金型内圧力を高圧に保持しておくことにより、加熱開始時の金型内の前記加熱用媒体の流出速度を高速にすることが出来るので、金型内の前記加熱用媒体の排出時間を短縮できる。更に、加熱終了時は金型内の前記加熱用媒体の圧力は静圧で均一な高圧にでき、細く複雑な形状である金型内熱媒体流路で発生する流動圧力損失に伴う前記加熱用媒体の圧力ムラを発生させない為、金型内媒体流路形状に関係なく、金型内熱媒体流路の流動圧力が伝搬しにくく、前記加熱媒体が押し出されにくい部分でも、前記加熱用媒体の排出開始時には静圧が負荷されているので、前記加熱用媒体の排出させる為の圧力が十分あることから、前記加熱用媒体の滞留を抑制でき前記加熱用媒体の排出効率を向上できる。また、配管内を高圧にする時間も加熱工程の後半のみで良い為、短時間であり省エネに有効である。
 また、加熱工程後半に金型内の前記加熱用媒体の圧力を高圧に保つことから、前記加熱用媒体の温度を高温に保つことが出来るので、前記加熱用媒体と金型温度が近似して金型温度の昇温速度が低い状態に対しても加熱時間の短縮化、および熱交換のエネルギー効率の向上に有効である。また前記加熱工程前半から前記加熱工程後半への切り換えを、金型温度が予め設定した切替え温度に到達した時点、または加熱開始からスタートするタイマー等のタイマーがタイムアップした時点で行えば、金型内の前記加熱用媒体の圧力において高い再現性を得ることが出来、安定制御が可能である。
 上記第5および第17の態様に係わる発明は、金型から温調器への熱媒体排出配管に排出された熱媒体を、該熱媒体の温度が高温のときは、該熱媒体の温度を下げる為に前記熱媒体と外部の冷却設備より供給される冷却用媒体とを混合する混合器に導入し、更に前記熱媒体排出配管に排出された熱媒体の温度が高温でないときは、前記熱媒体を外部の冷却設備につながる冷却水戻り配管に直接排出することで、前記熱媒体が高温でない時に流動抵抗の大きく排出時間が長い混合器を経由することなく、前記熱媒体を排出させることができるので熱媒体の排出に要する時間を短縮し高いエネルギー効率を実現できる。
 上記第6~第8の態様に係わる発明は、前工程の熱媒体の供給を停止した後、次工程の熱媒体を供給開始すると同時に、熱媒体の供給側供給配管と排出側合流配管とを連結する金型バイパス配管に設置した金型バイパス開閉弁を開いて、熱媒体の供給源から金型バイパス開閉弁までの間の供給側合流配管内に残っている前工程の熱媒体を、金型バイパス配管を通して排出側合流配管に追い出した後、次工程の熱媒体を供給し、該次工程の熱媒体が金型近傍に到達した時点で前記金型バイパス開閉弁を閉じ、金型内に次工程の熱媒体を送り込む前工程の熱媒体の排出方法である。
 当該前工程の熱媒体の排出方法によれば、熱媒体の供給側合流配管内に残っている前工程の熱媒体が、工程切り換え時に次工程の冷却用媒体に押されて金型に流入して、あたかも前工程が継続してしまっているような状態で金型温度が目的とする温度をオーバーシュートあるいはアンダーシュートしてしまうことを防止できるとともに、流動抵抗の大きい金型内の金型加熱、冷却に携わる多数の細配管を経由することなく熱媒体を排出できるので、熱媒体が熱媒体の供給源から金型に到達するまでの時間を低減し金型温度の調整を速やかに行い、金型温度の調整の精度も向上させることができる。
 上記第10および第12の態様に係わる発明は、金型温度調節器の工程切替のタイミングで前工程の加熱用媒体の供給を断った後、熱媒体の供給配管と熱媒体の排出配管とを連結する金型バイパス配管に設置した金型バイパス開閉弁を開き、同時に掃気用圧縮空気の開閉弁を開くことで、熱媒体の供給側合流配管内に残っている前工程の熱媒体を、掃気用圧縮空気により金型バイパス配管を経由させて排出側合流配管に追い出した後、掃気用圧縮空気の供給を継続したままで、該金型バイパス開閉弁を閉じて、金型内に掃気用圧縮空気を送り込み、金型内部の熱媒体回路に残っている加熱用媒体が排水配管に排出された時点で掃気用圧縮空気の供給を停止する加熱用媒体の排出方法である。
 当該加熱用媒体の排出方法によれば、熱媒体の供給側合流配管内に残っている加熱用媒体が、工程切り換え時に次工程の熱媒体に押されて金型に流入して、あたかも加熱工程が継続してしまっているような状態で金型温度が目的とする加熱完了温度を上回って過度に加熱されてしまうことを防止できるとともに、流動抵抗の大きい金型内の金型加熱、冷却に携わる多数の細配管を経由することなく熱媒体を排出できるだけでなく、液体よりも流動圧損の小さい空気を前工程の熱媒体の掃気に使用するので、更に金型の熱媒体回路及び供給配管内部の加熱用媒体の排出に要する時間を低減することができる。また前記金型バイパス開閉弁を閉じた後、前記掃気用圧縮空気を前記金型内流路に強制的に供給することから、次工程の熱媒体を供給する前に金型内の加熱用媒体を確実に排出できる。
 上記第11および第12の態様に係わる発明は、金型温度調節器の工程切替のタイミングで前工程の加熱用媒体の供給を断った後、熱媒体の供給配管と熱媒体の排出配管とを連結する金型バイパス配管に設置した金型バイパス開閉弁を開き、同時に掃気用圧縮空気の開閉弁を開くことで、熱媒体の供給側合流配管内に残っている前工程の熱媒体を、掃気用圧縮空気により金型バイパス配管を経由させて排出側合流配管に追い出した後、掃気用圧縮空気の供給停止を行うとともに、前記金型バイパス開閉弁は開いたままで更に次工程の冷却用媒体の供給を開始し、該冷却用媒体が金型近傍に到達した時点で該金型バイパス開閉弁を閉じて、前記金型内に前記冷却用媒体を送り込む加熱用媒体の排出方法である。
 当該加熱用媒体の排出方法によれば、熱媒体の供給側合流配管内に残っている加熱用媒体が、工程切り換え時に次工程の熱媒体に押されて金型に流入して、あたかも加熱工程が継続してしまっているような状態で金型温度が目的とする加熱完了温度を上回って過度に加熱されてしまうことを防止できるとともに、流動抵抗の大きい金型内の金型加熱、冷却に携わる多数の細配管を経由することなく、前記熱媒体に加えて前記掃気用圧縮空気の供給源と前記金型バイパス開閉弁までの前記供給配管内の前記掃気用圧縮空気も排出できるので、更に冷却用媒体が冷却用媒体の供給源から前記金型に到達するまでの時間を低減し金型温度の調整を速やかに行うことができる。
 上記第13および第15の態様に係わる発明は、前工程の冷却用媒体の供給を停止した後、前記熱媒体の供給配管と排出配管とを連結する前記金型バイパス配管に設置した前記金型バイパス開閉弁を開き、同時に前記掃気用圧縮空気の供給を開始して、冷却用媒体の供給側合流配管内に残っている冷却用媒体を、掃気用圧縮空気により金型バイパス配管を経由させて排出側合流配管に追い出した後、掃気用圧縮空気の供給を継続したままで、前記金型バイパス開閉弁を閉じて、金型内に掃気用圧縮空気を送り込み、金型内部の熱媒体回路に残っている冷却用媒体が排水配管に排出された時点で掃気用圧縮空気の供給を停止する冷却用媒体の排出方法である。
 当該冷却用媒体の排出方法によれば、熱媒体の供給側合流配管内に残っている冷却用媒体が、工程切り換え時に次工程の熱媒体に押されて金型に流入して、あたかも冷却工程が継続してしまっているような状態で金型温度が目的とする冷却完了温度を下回って過度に冷却されてしまうことを防止できるとともに、流動抵抗の大きい金型内の金型加熱、冷却に携わる多数の細配管を経由することなく熱媒体を排出できるだけでなく、液体よりも流動圧損の小さい空気を前工程の熱媒体の掃気に使用するので、更に金型の熱媒体回路及び供給配管内部の冷却用媒体の排出に要する時間を低減することができる。また、前記金型バイパス開閉弁を閉じた後、前記掃気用圧縮空気を前記金型内流路に強制的に供給することから、次工程の熱媒体を供給する前に金型内の加熱用媒体を確実に排出できる。
 上記第14および第15の態様に係わる発明は、金型温度調節器の工程切替のタイミングで前工程の冷却用媒体の供給を停止した後、前記熱媒体の供給配管と排出配管とを連結する前記金型バイパス配管に設置した前記金型バイパス開閉弁を開き、同時に前記掃気用圧縮空気の供給を開始して、冷却用媒体の供給側合流配管内に残っている冷却用媒体を、掃気用圧縮空気により金型バイパス配管を経由させて排出側合流配管に追い出した後、前記掃気用圧縮空気の開閉弁を閉じるとともに、前記金型バイパス開閉弁は開いたままで次工程の加熱用媒体の供給を開始し、この加熱用媒体が供給配管から金型近傍に到達した時点で前記金型バイパス開閉弁を閉じて、金型内に加熱用媒体を送り込む冷却用媒体の排出方法である。
 当該冷却用媒体の排出方法によれば、熱媒体の供給側合流配管内に残っている冷却用媒体が、工程切り換え時に次工程の熱媒体に押されて金型に流入して、あたかも冷却工程が継続してしまっているような状態で金型温度が目的とする冷却完了温度を下回って過度に冷却されてしまうことを防止できるとともに、流動抵抗の大きい金型内の金型加熱、冷却に携わる多数の細配管を経由することなく、前記熱媒体に加えて前記掃気用圧縮空気の供給源と前記金型バイパス開閉弁までの前記供給配管内の前記掃気用圧縮空気も排出できるので、更に前記加熱用媒体の供給源から前記金型への到達時間を低減し金型温度の調整を速やかに行うことができる。
 上記第18の態様に係わる発明は、上記第6~第15の態様の前工程熱媒体の排出に要する時間を更に短縮するのに有効である。
図1は、本発明の実施の形態に係わる金型加熱回路の模式図である。 図2は、図1の金型加熱回路を備えた第1の実施の形態の射出成形装置の側面レイアウト図である。 図3は、第2の実施の形態の射出成形装置の側面レイアウト図である。 図4は、図1の金型加熱回路に適用される金型の例を示す側面図である。 図5は、図4の金型をA-A断面で示す入れ子の正面図である。 図6は、図5のC-C断面図である。 図7は、図1の制御盤の構成を示すブロック図である。 図8は、図2及び図3の金型加熱回路を備えた射出成形装置の成形工程に対応する金型温度と各開閉弁の開のタイミングを示す線図である。 図9は、第2の実施の形態に係わる金型加熱回路の模式図である。 図10は、第1の実施の形態に係わる成形工程に対応する金型温度と各開閉弁の開のタイミングを示す線図である。 図11は、第3の実施の形態に係わる成形工程に対応する金型温度と各開閉弁の開のタイミングを示す線図である。
 射出成形装置等に使用される金型の加熱制御において、急速に加熱と冷却を行うことができる金型の加熱冷却用媒体供給排出回路構成について2形態、また、この加熱冷却用媒体供給排出回路を用いて金型を加熱・冷却する温度制御方法についても説明する。この実施の形態の金型の加熱冷却用媒体回路の模式図には、樹脂注入通路、射出ユニット等の図は省いている。
 本実施形態では上記射出成形装置の固定金型、可動金型とも加熱用媒体として蒸気、冷却用媒体として冷却水を使用し、掃気用圧縮空気用の供給配管に繋がる供給側マニホールドと、排出配管に繋がる排出側マニホールドと、両マニホールドの結合された多数の加熱、冷却共用細管が内蔵された入れ子を備え、金型温度センサを有している。但し、加熱用媒体として蒸気以外の高温加圧水などの高温流体、もしくは冷却用媒体として冷却水以外の低温流体を使用しても良い。
 加熱冷却用媒体回路は、射出成形工程において、固定金型と可動金型を閉じ、型締めを行い、樹脂を射出する前に、加熱用媒体を金型に回流させて樹脂射出に好適な温度まで金型を加熱し、樹脂を射出し、射出後は、冷却用媒体に切り替えて金型へ回流させて樹脂の固化温度以下まで金型を冷却する成形サイクルを繰り返すように制御される。以上の構成及び金型の温度調整制御は今までの射出成形機に適用された既知の技術である。
 本発明の請求項により実施される制御の形態については、請求項の組み合わせによりさまざまな実施形態が存在するがその中で代表的な実施形態につき以降詳細を記す。
 本発明の実施形態において金型の加熱冷却用媒体回路は、固定側と可動側の両方に適用としているが、射出成形品に求められる品質等から金型の固定側のみ、もしくは可動側のみとしても良い。固定側のみ、もしくは可動側のみとした場合、加熱冷却制御を行わないもう一方の可動金型もしくは固定金型に固有に付随する金型温度センサやバイパス配管も省略できる。
 また、本実施形態において金型温度判定および通過熱媒体判定は、固定側と可動側の両方に適用としているが、加熱工程における加熱目標温度到達や冷却工程における冷却目標温度到達等の判定、通過熱媒体センサによる熱媒体入れ替え完了の判定は、固定側金型もしくは可動側金型のいずれか片側のみの状態により判定して工程を進めてもよく、もしくは固定側と可動側の両方の判定成立により工程を進めても良い。さらには固定側と可動側のいずれかの判定成立により工程を進めてもよい。
(第1の実施の形態)
 第1の実施の形態を図に基づいて説明する。
 図1は本発明の実施の形態に係わる金型加熱回路の模式図、図2は図1の金型加熱回路を備えた第1の実施の形態の射出成形装置の側面レイアウト図、図4は図1の金型加熱回路に適用される金型の例を示す側面図、図5は図4の金型をA-A断面で示す入れ子の正面図、図6は図5のC-C断面図、図7は図1の制御盤の構成を示すブロック図、図8は図1の金型加熱回路を備えた射出成形装置の成形工程に対応する金型温度と各開閉弁の開閉のタイミングを示す線図である。
 図2の射出成形装置の側面レイアウト図において、射出成形装置1には射出ユニット13と固定型盤14に取付けられた固定金型2、可動型盤15に取付けられた可動金型3とが設けられ、付属の加熱設備である蒸気生成用のボイラ17と冷却設備であるクーリングタワー等の冷却設備18とバルブコントローラユニット(金型温調装置)19が射出成形装置1から離れた場所に位置している。
 バルブコントローラユニット(金型温調装置)19は、図1に示したように、蒸気供給配管23、蒸気供給用開閉弁36、掃気用圧縮空気供給配管28、エアーフィルタ29、掃気用圧縮空気減圧弁27、掃気用圧縮空気供給用開閉弁37、冷却水供給配管24A、冷却水供給用開閉弁38、用済みの熱媒体排出のための開閉弁47、金型からの排出側合流配管25Bからの熱媒体を可変絞り弁49と並列に混合器30へ送るための排出配管開閉弁48、混合器30へ冷却水を流すための配管に開閉弁51、その他が収容されている。34は冷却水ポンプである。射出成形設備が大型になるほど、これらの付帯設備も大きくなり設置場所も射出成形装置から離れた場所に位置することになる。
 ボイラ17からバルブコントローラユニット(金型温調装置)19へは蒸気供給配管23で蒸気が送られ、クーリングタワー等の冷却設備18からバルブコントローラユニット(金型温調装置)19へは冷却水が冷却水供給配管24Aで送られ、使用済み冷却水は冷却水排出配管24Bを通してクーリングタワー等の冷却設備18に回収される。バルブコントローラユニット(金型温調装置)19から金型2,3の入れ子4,5への蒸気と冷却水と掃気用圧縮空気は共通の供給側合流配管25A及び排出側合流配管25Bで供給、排出される。可動金型3の入れ子5への合流配管25A,25Bには可撓配管22A,22Bが繋がれ可動金型3の型開閉移動に対応している。固定金型2、可動金型3とも熱媒体の出入り口をバイパスする金型バイパス配管21A,21Bが設けられ、この金型バイパス配管21A,21Bに金型バイパス開閉弁45A,45Bが設置される。
 固定金型2の近くの熱媒体の供給側合流配管25Aに蒸気と掃気用圧縮空気と冷却水の通過を検知する通過熱媒体センサ(温度センサ等)41が設置される。また金型には固定金型2の入れ子4のキャビティ面の温度を検出する温度センサ42aが設置され、可動金型3の入れ子5のキャビティ面の温度を検出する温度センサ42が設置される。また、可動金型3からの熱媒体排出配管に蒸気と掃気用圧縮空気と冷却水の通過を検知する通過熱媒体センサ(温度センサ等)43が設置される。入れ子4及び5のキャビティ面の温度センサ42a,42の配置個数は任意の複数設けて入れ子4,5の温度分布を調べ、平均温度を制御用に選択するか、温度判定プログラムで選択的に制御したり、代表的なセンサを決めて制御用としても良い。
 金型2,3の排出側合流配管25Bに開閉弁47とその開閉弁47と並列に金型から排出した蒸気と冷却水を混合する混合器30を設け、混合器30と前記クーリングタワー等の冷却設備18の冷却水供給配管24Aとを連結する連結配管44を設け、連結配管44に開閉弁51を設置し、通過熱媒体センサ43が高温の熱媒体を検知したことにより、又は、制御盤40に内蔵した蒸気の流れ状態を予想したタイマー等の制御により開閉弁47,48,51を開閉することにより混合器30への熱媒体の流入制御を行う。排出側合流配管25Bと混合器30との間の排出配管46に排出配管開閉弁48と並列の排出配管バイパス配管50を設け、排出配管バイパス配管50に絞り量を調整できる可変絞り弁49を備えることにより、蒸気の流量を抑え、大流量流通時に対し金型内の加熱用媒体の圧力の昇圧を可能とし、且つ蒸気の温度低下を抑制することができる。また、蒸気の排出流量を抑えて、適量の蒸気が金型内に入りバランスのとれた加熱ができ、混合器30の騒音や振動を抑えることもできる。
 射出成形装置1またはバルブコントロールユニット(金型温調装置)19もしくはこれらの設備に付随して制御盤40が設置される。制御盤40は図7に示すように、金型温度判定プログラムと通過熱媒体判定プログラムからなる温度判定用プログラムを格納したプログラム格納部52と、時間設定信号を出力するタイマー制御部54と、温度判定用プログラムによる判定結果と時間設定信号を基にバルブコントロールユニット(金型温調装置)19による金型2,3への蒸気、冷却水、掃気用圧縮空気の切り替え供給制御のための制御信号と金型2,3が型閉、型開、射出充填等の成形動作を行うための制御信号を生成する制御信号生成部53とを有している。
 次に、図4、図5、図6により金型の構成を説明する。固定金型2に熱媒体通路4bを備えた入れ子4が嵌め込まれ、四辺を押さえ板6A,6B,6C,6Dで押さえて固定金型2に固定され、また、可動金型3には熱媒体通路5bを備えた入れ子5が嵌め込まれ、四辺を押さえ板6E,6F,6G,6Hで押さえて可動金型3に固定される。可動金型3が固定金型2に近づき入れ子4と入れ子5が当接したとき、合わせ面に成形品7を成形するキャビティが形成される。
 入れ子4は両側に円筒形孔であるマニホールド4a,4eを形成し、両マニホールド4a,4eの間に複数の熱媒体通路4bが貫通する。熱媒体の入口側マニホールド4aに入口配管11aが連結され、熱媒体の出口側マニホールド4eに出口配管12aが連結され、入口配管11aと出口配管12aは金型バイパス配管21Aで連通され、金型バイパス配管21Aに開閉弁45Aが設置される。同様に、入れ子5は両側にマニホールド5a,5eを形成し、両マニホールド5a,5eの間に複数の熱媒体通路5bが貫通する。熱媒体の入口側マニホールド5aに入口配管11bが連結され、熱媒体の出口側マニホールド5eに出口配管12bが連結され、入口配管11bと出口配管12bはバイパス配管21Bで連通され、金型バイパス配管21Bに開閉弁45Bが設置される。
 成形品7が薄く面積が大きいとき、金型の入れ子4,5の熱交換を均等にできるだけ急速に行うとすれば、細管である熱媒体通路4b,5bは細く多数となり、同通路4b,5bのそれぞれの流動抵抗は金型バイパス配管21A,21Bの流動抵抗の2~100倍となる。また、熱媒体供給の切替を行うバルブコントロールユニット19から金型2,3までの距離が長く、その間をつなぐ配管内の容量が金型の入れ子4,5の流路容積よりも大きいような大型の熱媒体供給排出配管回路においては、特に、金型バイパス配管21A,21Bを通す前記金型バイパス開閉弁45A,45Bの開閉切換制御が熱媒体の切換時間の短縮となり同時に熱エネルギーの損失を減らすのに有効である。
 図1および図8により射出成形装置の成形工程に対応する金型温度と各開閉弁の開のタイミングを説明する。金型温度調節回路の制御方法は、金型温度調節回路において、加熱工程、冷却工程を繰返し、その間に掃気用圧縮空気を供給する。金型加熱工程では、蒸気供給配管23の蒸気供給用開閉弁36を開き、供給側合流配管25Aを介して蒸気を固定金型2、可動金型3へ供給し、入れ子4,5を加熱する。プログラム格納部52内の金型温度判定プログラムが、金型の温度センサ42もしくは42aもしくはその両方が検出した金型温度が設定金型上限温度(TMS)に到達したことを判定したとき、蒸気供給用開閉弁36を閉じる。
 金型加熱工程においては混合器30への熱媒体の導入が制御され、加熱工程の途中までは排出配管開閉弁48を開いておき、排出配管開閉弁48と可変絞り弁49を通して熱媒体を混合器30に流し込み、加熱工程の終盤では、排出配管開閉弁48を閉じて可変絞り弁49のみを通し、熱媒体を混合器30に流し込む。排出配管開閉弁48の開時間は、タイマーT18により定め、可変絞り弁19の開度調整とタイマーT18の設定により、加熱時間が最短になるよう調整する。
 金型加熱工程の終了から金型冷却工程の開始の時点で供給配管の蒸気の排出を行なう。前工程の蒸気供給用開閉弁36閉と同時に、熱媒体切替え遅延タイマーT3をスタートする。熱媒体切替え遅延タイマーT3のタイムアップにより金型バイパス開閉弁45A,45Bを開いて金型バイパス配管21A,21Bを通にし、掃気用圧縮空気供給用開閉弁37をタイマーT5の設定にて短時間開き、供給側合流配管25A内の蒸気を直接排出側合流配管25Bへバイパスする。
 掃気用圧縮空気供給用開閉弁37が開くのと同時に金型バイパス開閉弁45が開くとともにタイマーT8がスタートする。タイマー8のタイムアップにより金型バイパス開閉弁45を一旦閉じる。金型バイパス開閉弁45の閉動作は、タイマー8のタイムアップによらず通過熱媒体センサ41が空気を検知した時点aで行っても良い。
 タイマーT5がタイムアップしたのち冷却開始遅延タイマーT7のタイムアップ信号で冷却水供給用開閉弁38が開き冷却水が送られると同時に金型バイパス開閉弁45を再度開くとともにタイマーT9をスタートさせる。金型バイパス開閉弁45を一旦閉じることにより、掃気用圧縮空気が強制的に金型内に送られ、金型内に残った加熱用媒体を排出できる。供給側配管に設けた温度センサからなる通過熱媒体センサ41が冷却水を検知した時点bもしくはタイマーT9のタイムアップした時点で、金型バイパス開閉弁45A,45Bを閉じる。図8では通過熱媒体センサ41を温度センサで示したが、通過熱媒体センサ41は圧力センサであってもよい。また掃気用圧縮空気供給用開閉弁37の閉動作はT5によらず、通過熱媒体センサ41が空気を検知した時点aで行っても良い。
 図8において、金型バイパス開閉弁45を掃気用圧縮空気を停止する前に一旦閉じて再度開いているが、時間の短縮の為に金型バイパス開閉弁45を一旦閉じずに開いた状態のまま、次工程の熱媒体により掃気用圧縮空気の排出を行っても良い。この場合の成形工程に対応する金型温度と各開閉弁の開のタイミングを示す線図を図10に示す。
 また、第1の実施の形態では金型バイパス開閉弁45A,45Bの閉タイミングを同時に行っているが、タイマーなどにより金型バイパス開閉弁45A,45Bを時間差をつけて、それぞれ独立に開閉動作を行っても良い。金型バイパス開閉弁45A,45Bを時間差を付けて閉動作を行うことで、合流配管25の固定金型2、可動金型3への配管分岐部から金型までの、それぞれ配管長が異なる配管内に量の異なる前工程の熱媒体が残った場合でも、それぞれの残存量を排出するのに適正な時間を、それぞれのバイパス開閉弁45A,45Bの開時間としてそれぞれ独立に適用できるので、前工程の熱媒体をそれぞれの金型を経由させることなく確実にバイパス回路を通して排出配管に排出させることができる。
 冷却工程における金型バイパス開閉弁45A,45Bの開閉と排出配管の開閉弁47の開閉のタイミングは次のようになる。冷却用媒体の冷却水供給用開閉弁38を開いた後、通過熱媒体センサ41にて冷却用媒体を検出した信号またはタイマーT9のタイムアップで金型バイパス開閉弁45A,45Bを閉じて金型バイパス配管21A,21Bを閉塞する。蒸気供給用開閉弁36を閉じると同時にタイマーT19をスタートさせ、タイマーT19がカウントアップした信号で、開閉弁47を開いて排出側合流配管25Bを冷却水排出配管24Bへ直通させる。タイマーT19には混合器30に排出配管46から流れ込む加熱用媒体の温度が直接に開閉弁47を介し冷却水排出配管24Bに排出しても問題を生じない温度に下がったと想定される時間を設定し、タイマーT19がタイムアップしたタイミングで開閉弁47を開け入れ子4,5での冷却水の回流を促す。
 金型冷却工程の終了から次の待機工程開始の時点での供給配管、および金型内熱媒体流路の冷却水排出は次のように行う。入れ子4,5の温度センサ42aもしくは42もしくはその両方が設定冷却下限温度TMCに到達したことを検出したとき、冷却水供給用開閉弁38を閉じて冷却水を止め、金型熱媒体切り替え遅延タイマーT11をスタートする。該タイマーT11がタイムアップした時点で、金型バイパス開閉弁45A,45Bを開いて金型バイパス配管21A,21Bを通にするとともに、掃気用圧縮空気供給用開閉弁37を開いて供給側合流配管25A内の冷却用媒体(冷却水)を排出側合流配管25Bへ排出する。掃気用圧縮空気供給用開閉弁37を開くのと同時に供給配管内の冷却水の排出完了を想定して設定したタイマーT12をスタートさせる。タイマーT12のタイムアップにより、金型バイパス開閉弁45A,45Bを一旦閉じることで金型バイパス配管21A,21Bを閉じ、入れ子4,5内の冷却水が排出側合流配管25Bに排出完了を想定して設定したタイマーT14により掃気用圧縮空気を停止する。
 タイマーT14のタイムアップと同時に加熱開始遅延タイマーT17をスタートさせる。タイマーT17のタイムアップ信号で蒸気供給用開閉弁36が開き蒸気が送られると同時に金型バイパス開閉弁45を再度開き、掃気用圧縮空気を金型バイパス回路を通して掃気用圧縮空気を排出する。金型バイパス開閉弁45は、タイマーT13に設定された時間の後、閉塞する。
 待機工程の終了から金型加熱工程開始の時点で、蒸気を混合器30へ通すタイミングは金型内の冷却水排出完了から、次の金型加熱工程開始までのタイミングをタイマーT17で調整する。混合器30では、蒸気を水に凝縮させ、排水、又は、クーリングタワー等の冷却設備18、又は、ボイラ17へ回収する。蒸気の供給開始からしばらくは、配管内や金型内で蒸気が凝結するので、高温の蒸気が排出配管に達するには時間がかかる。この間においては排水側合流配管25Bに金型から排出される熱媒体の温度は低いので開閉弁47を開いてもよい。また、蒸気の供給開始から金型バイパス開閉弁45A,45Bを短時間開いて蒸気の金型への到達を促しても良い。
 混合器30へ冷却水を供給するタイミングについて次のようになる。混合器30への連結配管44からの冷却水の供給は常時、開閉弁51を開いて供給をつづけてもよいが、冷却水の使用量を低減するため混合器30自体の温度もしくは混合器30内部の温度を検知する温度センサ42b(TM5)により高温になったときだけ開閉弁51を開いて冷却水を供給しても良い。また、排水側合流配管25B内の温度を検知する通過熱媒体センサ43(TM2)にて設定温度以上になった間開閉弁51を開いて冷却水を供給しても良い。
 タイマーT5は、前工程に供給された高温の蒸気と次工程に供給する冷却水の間に掃気用圧縮空気を送り込む時間を設定する。加熱工程において、金型の温度が目標とする加熱温度である設定金型上限温度TMSに到達した時点からスタートするタイマーT3のタイムアップもしくは射出工程進捗に応じた信号によりタイマーT5がスタートする。射出工程進捗に応じた信号として、射出成形機本体の制御装置から出される射出開始信号や予め設定された保圧時間タイマー等のタイムアップ信号の外部信号を用いても良い。タイマーT5がスタートすると同時に、掃気用圧縮空気供給用開閉弁37と金型バイパス開閉弁45A,45Bを開いて、供給配管内に残っている前工程の熱媒体である蒸気を、金型を経由することなく排出配管に排出し、金型温度が目的とする加熱完了温度を上回って過度に加熱されてしまうことを防止する。掃気用圧縮空気を供給する主な目的は、配管内や金型内部で加熱用媒体と冷却用媒体が直接接触して発生するショックや振動を防ぐことである。タイマーT5のタイムアップと同時に掃気用圧縮空気供給用開閉弁37を閉じる。また掃気用圧縮空気供給用開閉弁37の閉動作はT5によらず、通過熱媒体センサ41が空気を検知した時点aで行っても良い。
 タイマーT7は、冷却工程の開始タイミングを設定する。加熱工程終了後の掃気用圧縮空気供給用開閉弁37を閉じると同時にスタートし、タイマーT7のタイムアップで冷却水供給用開閉弁38が開かれる。射出工程進捗に応じた信号により冷却開始タイミングを定める場合はタイマーT7によらずこの外部信号により冷却開始を行っても良い。タイマーT5と同様、射出工程進捗に応じた信号として射出成形機本体の制御装置から出される射出開始信号や予め設定された保圧時間タイマー等のタイムアップ信号の外部信号を用いても良い。
 タイマーT12は、冷却工程終了後の掃気用圧縮空気のバイパス通過時間を設定する。冷却工程において、金型の温度が目標とする冷却下限温度TMCに到達した時点からスタートするタイマーT11がタイムアップした時点でタイマーT12がスタートする。即ち、タイマーT11のスタートと同時に、冷却水供給用開閉弁38を閉じ、タイマーT11がタイムアップするとともに掃気用圧縮空気供給用開閉弁37と金型バイパス開閉弁45A,45Bを開く。掃気用圧縮空気が供給側配管の内部に残っている冷却水のほとんどは金型バイパス開閉弁45A,45Bを介して排出側配管に排出される。タイマーT12は、掃気用圧縮空気が金型近傍に到達すると想定される時間を設定することが好ましく、タイマーT12のタイムアップと同時に金型バイパス開閉弁45A,45Bを閉じると、掃気用圧縮空気の全量が金型の熱媒体回路4b,5bに送られるので流入抵抗の大きい熱媒体回路を有する金型でも短時間で金型内に残っていた冷却水を排出配管に排出できる。同時に冷却水の排出にあたり金型内部を通過する冷却水の量を低減できるのでこの冷却水排出時に不必要に金型の温度を下げてしまう現象を低減できる。
 これら2つの効果のうち後者については、金型への熱媒体供給配管の途上であって、金型バイパス開閉弁45A,45Bと接続される金型バイパス配管21A,21Bが供給側合流配管25Aに接続される位置より、金型に近い側に開閉弁61A,61Bを設けて金型バイパス開閉弁45A,45Bが開のときは金型の熱媒体回路に冷却水が流入しないよう制御を行うことでさらに大きく効果を発揮する。なお金型バイパス開閉弁45A,45Bの閉動作はタイマーT12のタイムアップによらず、金型近傍の熱媒体供給配管であり、金型バイパス開閉弁45A,45Bと接続される金型バイパス配管21A,21Bと熱媒体の供給側合流配管25Aとが接続されている位置よりバルブコントロールユニット19に近い位置に、図示せぬ通過熱媒体センサを備え、そのセンサにおいて掃気用圧縮空気の到達の検知により、金型バイパス開閉弁45A,45Bの閉動作を行っても良い。
 タイマーT14は、冷却工程終了後に金型バイパス開閉弁45A,45Bを閉じてから掃気用圧縮空気によって金型内部の熱媒体回路に残っている冷却水が排出配管に排出されると想定される時間を設定することが好ましい。金型バイパス開閉弁45A,45Bの開動作と同時にタイマーT14はスタートする。タイマーT14のタイムアップによって掃気用圧縮空気供給用開閉弁37を閉じ、また金型からの排出配管とクーリングタワー等の冷却設備18への冷却水排出配管24Bの間に位置する開閉弁47を閉じる。冷却水を金型から排出するための、掃気用圧縮空気供給用開閉弁37の閉動作はタイマーT14によらず、金型バイパス開閉弁45A,45Bと接続される金型バイパス配管21A,21Bと熱媒体の排出側合流配管25Aとが接続されている位置より、金型に近い位置の熱媒体排出配管に備えた通過熱媒体センサ43において掃気用圧縮空気の到達を検知して、掃気用圧縮空気供給用開閉弁37の閉動作を行っても良い。
 タイマーT17は金型の加熱開始までの待機時間を設定する。冷却用熱媒体の排出の際の掃気用圧縮空気供給用開閉弁37の閉動作と同時にタイマーT17はスタートする。タイマーT17のタイムアップにより次の射出動作に向けて金型を加熱するための蒸気供給用開閉弁36を開き加熱工程を開始する。この加熱用媒体の前記開閉弁36の開動作はタイマーT17によらず、射出工程進捗に応じた信号やバルブコントローラユニット(金型温調装置)19に搭載されている加熱工程の開始タイミングの間隔を定めるタイマー等により定めても良い。射出工程進捗に応じた信号として射出成形機本体の制御装置から出される射出開始信号や予め設定された保圧時間タイマー等のタイムアップ信号の外部信号を用いても良い。
 また、更に加熱工程を開始する前に、所定の時間を設定したタイマーがタイムアップするまでの間、もしくは供給配管または排出配管に設けた圧力センサが検知した圧力値が、所定の値を下回わるまでの間、回路内の圧力を常圧に戻す残圧抜き工程を行っても良い。配管内の残圧抜くことによって、蒸気が供給しやすくなり加熱時間の短縮に更に有効である。
 図8の線図に示されるタイマーT18は、金型からの熱媒体排出配管から混合器30との間に位置する排出配管用開閉弁48の閉動作のタイミングを設定することが好ましい。加熱工程開始時は蒸気供給用開閉弁36の開動作と同時にタイマーT18はスタートする。タイマーT18のタイムアップにより、金型からの熱媒体の排出側合流配管25Bから混合器30との間に位置する排出配管開閉弁48の閉動作を行う。加熱工程前半で排出配管開閉弁48開いている状態では可変絞り弁49を迂回して金型から排出される熱媒体を混合器30に流し込むことができるので、可変絞り弁49の絞り加減に関係なく、蒸気の流量を多くすることができる。このため、加熱工程後半の排出配管開閉弁48を閉じたまま加熱工程を行うときに比べ、大量の蒸気を供給することが出来るので金型の昇温速度を高くすることができる。
 タイマーT18のタイムアップにより排出配管開閉弁48を閉じることで蒸気は可変絞り弁49を経由するので蒸気の圧力が上昇し、後述の蒸気排出開始時の蒸気排出速度を高速にすることが出来る。また、加熱工程後半の蒸気の圧力を上昇することによって、蒸気の温度が上昇するので、金型温度が蒸気の温度に近づいて金型の昇温速度が低下する場合でも、排出配管開閉弁48を開いているときに比べて、大きい昇温速度を得ることができる。尚、昇温速度を最大とするために、可変絞り弁49の絞り量を調整して、蒸気の流量が無くなるまで、可変絞り弁49を絞っても良い。
 タイマーT18には排出配管開閉弁48を開いているときの昇温曲線と排出配管開閉弁48を閉じているときの昇温曲線から、金型の加熱目標温度に到達する時間を最短にすると推測される時間を設定することが好ましい。金型の加熱目標温度がボイラ17から供給される蒸気の温度よりも十分に低い場合は、タイマーT18を無視し、蒸気供給用開閉弁36が開いている間は、排出配管開閉弁48を閉じたままとし、可変絞り弁49により金型内の蒸気の圧力を調整すれば、排出開閉弁48の開閉動作を行うのとほぼ同等な加熱時間で加熱目標とする金型温度を得ることも可能であり、タイマーT18の設定値の検討を行う手間を省くことができる。
 図8の線図に示されるタイマーT19は、金型からの排出配管とクーリングタワー等の冷却設備18への冷却水排出配管24Bの間に位置する開閉弁47の開くタイミングを設定することが好ましい。蒸気供給用開閉弁36の閉動作と同時にスタートするタイマーT3がタイムアップした時点でタイマーT19はスタートし、タイマーT19のタイムアップにより開閉弁47を開く。金型からの排水配管からバルブコントロールユニット(金型温調装置)19に戻ってくる熱媒体は加熱用媒体から冷却用媒体に入れ替わることで温度が徐々に下がって、混合器30を通さずに直接にクーリングタワー等の冷却設備18に戻しても支障の無い温度になると想定される時間をタイマーT19には設定することが好ましい。開閉弁47の閉動作は開閉弁47の開動作と共にスタートするタイマーT20のタイムアップにより行う。この金型冷却工程における開閉弁47の開閉動作は、タイマーT19、T20によらず、金型からの排水配管の通過熱媒体センサ43にて、熱媒体の温度が予め設定した所定の温度以下となった時点で行っても良い。
(第2の実施の形態)
 第2の実施の形態を図に基づいて説明する。
 図3は第2の実施の形態の射出成形装置の側面レイアウト図で、図9はその金型加熱回路の模式図である。第2の実施の形態の射出成形装置が第1の実施の形態の射出成形装置と異なる点は、バイパス配管の設置構成である。
 図3の射出成形装置の側面レイアウト図において、ボイラ17からバルブコントローラユニット(金型温調装置)19へは蒸気供給配管23で蒸気が送られ、クーリングタワー等の冷却設備18からバルブコントローラユニット(金型温調装置)19へは冷却水は冷却水供給配管24Aで送られ、金型から排出された冷却水は冷却水排出配管24Bを通してクーリングタワー等の冷却設備18に回収される。バルブコントローラユニット(金型温調装置)19から固定金型2の入れ子4への蒸気と冷却水と掃気用圧縮空気は供給配管35A及び排出配管35Bで供給、排出される。
 金型バイパス配管31と金型バイパス開閉弁45は固定金型2もしくは可動金型3のいずれか一方、もしくは固定金型2と可動金型3の近傍で両者から遠くない位置に設置され、金型バイパス配管31と固定金型2の入れ子4の入口配管11aとが接続され且つ、可動金型3の入れ子5の入口配管11bとは可撓配管32Aで連結され、金型バイパス配管31と固定金型2の入れ子4の出口配管12aとが接続され且つ、可動金型3の入れ子5の出口配管12bとは可撓配管32Bで連結されている。可撓配管32Aと可撓配管32Bは可動金型3の型開閉移動に対応している。この金型バイパス配管31の配置は、可動金型3の型開きの移動距離が小さい場合に有利であり、かつ、コストを少なくすることができる。また、既設の金型に適用することが容易である。
(第3の実施の形態)
 第3の実施の形態を図に基づいて説明する。
 図10は図1の金型加熱回路を備えた射出成形装置の成形工程に対応する金型温度と各開閉弁の開閉のタイミングを示す線図である。第3の実施の形態の射出成形装置が第1の実施の形態の射出成形装置と異なる点は、第1の実施の形態では、加熱工程の終了が、金型温度が設定金型上限温度TMSに到達した時点であることに対し、第3の実施の形態では、加熱工程の終了が、蒸気の供給開始からスタートするタイマーT2のタイムアップした時点であること、及び第1の実施の形態では、冷却工程の終了が、金型温度が冷却下限温度TMCに到達した時点であることに対し、第3の実施の形態では、冷却工程の終了が、冷却水の供給開始からスタートするタイマーT10のタイムアップした時点であることのみ異なり、その他の構成は両者全く同じであるので、同一構成については説明を省略する。
 図1および図11により射出成形装置の成形工程に対応する金型温度と各開閉弁の開のタイミングを説明する。金型温度調節回路の制御方法は、金型温度調節回路において、加熱工程、冷却工程を繰返し、その間に掃気用圧縮空気を供給する。金型加熱工程では、蒸気供給配管23の蒸気供給用開閉弁36を開き、供給側合流配管25Aを介して蒸気を固定金型2、可動金型3へ供給し、入れ子4,5の加熱を開始すると共に、加熱終了のタイマーT2をスタートする。タイマーT2がタイムアップした時点で、蒸気供給用開閉弁36を閉じて金型の加熱工程を終了する。
 金型加熱工程の終了から金型冷却工程の開始の時点で供給配管の蒸気の排出を行なう。前工程の蒸気供給用開閉弁36閉と同時に、金型バイパス開閉弁45A,45Bを開いて金型バイパス配管21A,21Bを通にし、掃気用圧縮空気供給用開閉弁37をタイマーT5の設定にて短時間開き、供給側合流配管25A内の蒸気を直接、排出側合流配管25Bへバイパスする。蒸気は流動抵抗が小さいことから、ごく短時間で排出することができる。
 タイマーT5がタイムアップしたのち冷却開始遅延用のタイマーT7のタイムアップ信号で冷却水供給用開閉弁38が開き冷却水を送り金型の冷却を開始すると共に、冷却終了のタイマーT21をスタートする。タイマーT21がタイムアップした時点で、金型バイパス開閉弁45A,45Bを開いて金型バイパス配管21A,21Bを通にし、冷却水供給用開閉弁38を閉じて冷却水を止め、金型の冷却工程を終了する。掃気用圧縮空気供給用開閉弁37の閉動作は、タイマーT5によらず、通過熱媒体センサ41が空気を検知した時点aで行っても良い。
 加熱工程の終了と冷却工程の終了を、バラツキの発生しやすい金型温度による制御にて行うのではなく、タイマーのタイムアップにより制御することにより、一定の切り替えタイミングで成形を進めることが出来るので、安定した成形サイクルを得ることが出来、成形品質の安定化と生産性の向上に有効である。本発明は、本発明の意図を逸脱しない限り、上記実施の形態に挙げた構成を取捨選択したり他の構成に適宜変更したりすることが可能である。
 本発明の射出成形装置の金型温度調節回路及び熱媒体の排出方法は、熱媒体の供給源と金型の間の熱媒体供給配管内と金型内の熱媒体回路とに残っている熱媒体の排出を早くすることにより、熱媒体切換の時間を短縮して成形サイクルを短くし、金型から排出された加熱用熱媒体と冷却用熱媒体との混在を減少させて熱交換のエネルギー効率を向上でき、且つ射出成形装置の金型温度調節回路の構造を簡単にすることができる。
1…射出成形装置
2…固定金型
3…可動金型
4,5…入れ子
13…射出ユニット
17…ボイラ
18…冷却設備
19…バルブコントロールユニット(金型温調装置)
21,31…金型バイパス配管
23…蒸気供給配管
24A…冷却水供給配管
24B…冷却水排出配管
25A…供給側合流配管
25B…排出側合流配管
30…混合器
36…蒸気供給用開閉弁
37…掃気用圧縮空気供給用開閉弁
38…冷却水供給用開閉弁
40…制御盤
41,43…通過熱媒体センサ
42,42a,42b…温度センサ
45…金型バイパス開閉弁
47,51,61…開閉弁
48…排出配管開閉弁
49…可変絞り弁
50…排出配管バイパス配管
T3,T5,T7,T8,T9,T10…タイマー
T11,T12,T14,T17,T18,T19,T20…タイマー

Claims (18)

  1.  固定金型および/もしくは可動金型と、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の供給配管とを繋ぐ供給側マニホールドと、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の排出配管とを繋ぐ排出側マニホールドと、前記金型に内蔵され、これらマニホールドに結合された複数の加熱、冷却共用細管と、前記金型に備わる金型温度センサとを備え、前記金型を閉じて型締めを行ってから樹脂を射出する射出工程において、樹脂の射出前に、加熱用媒体を前記金型に回流させて樹脂射出に好適な温度に加熱して、樹脂の射出後に、加熱用媒体から冷却用媒体に切り換えて、この冷却用媒体を前記金型に回流させて樹脂の固化温度以下まで冷却する成形サイクルを繰り返す射出成形装置の金型温度調節回路であって、
     加熱用媒体の供給配管の開閉弁と、冷却用媒体の供給配管の開閉弁と、加熱用媒体や冷却用媒体を配管内や前記金型から排出するための掃気用圧縮空気の供給配管の開閉弁と、加熱用媒体、冷却用媒体および掃気用圧縮空気の各供給配管が一つに合流する合流配管とを設けることにより、前記金型への加熱用媒体、冷却用媒体および掃気用圧縮空気の前記各供給配管及び前記各排出配管が前記合流配管で共用され、
     熱媒体の供給側合流配管と排出側合流配管とを連結する金型バイパス配管と、
     この金型バイパス配管に設置した金型バイパス開閉弁と、熱媒体供給配管および/もしくは排出配管とに設けた加熱用媒体、冷却用媒体および掃気用圧縮空気の通過を検知する通過熱媒体センサと、
     制御プログラムとして予め設定した金型目標温度と前記金型温度センサにより検知した金型温度を比較判定する金型温度判定プログラムと、前記金型バイパス開閉弁の開閉のタイミングを調整するタイマーのタイムアップおよび/もしくは前記通過熱媒体センサの検出信号により通過熱媒体の種類を判定して前記金型バイパス開閉弁の開閉タイミングを調整する通過熱媒体判定プログラムとを格納した金型温調制御装置と、
    を備える射出成形装置の金型温度調節回路。
  2.  請求項1に記載する射出成形装置の金型温度調節回路において、
     前記金型バイパス配管と前記金型バイパス開閉弁とが、前記固定金型および/もしくは前記可動金型に設けられている射出成形装置の金型温度調節回路。
  3.  請求項1に記載する射出成形装置の金型温度調節回路において、
     前記金型バイパス配管と前記金型バイパス開閉弁とを含む一組の金型バイパス回路が、前記固定金型および/もしくは前記可動金型の近傍で前記固定金型と前記可動金型との両方の前記金型の供給口と排出口と連結し、
     前記固定金型と前記可動金型とが、前記金型バイパス回路を共用している射出成形装置の金型温度調節回路。
  4.  請求項1~3のいずれか一項に記載する射出成形装置の金型温度調節回路において、
     前記通過熱媒体センサが、圧力センサ、又は、温度センサである射出成形装置の金型温度調節回路。
  5.  前記固定金型および/もしくは前記可動金型と、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の供給配管とを繋ぐ供給側マニホールドと、前記金型と加熱用媒体、冷却用媒体および掃気用圧縮空気用の排出配管とを繋ぐ排出側マニホールドと、前記金型に内蔵され、これらマニホールドに結合された複数の加熱、冷却共用細管と、前記金型に備わる金型温度センサとを備え、前記金型を閉じて型締めを行ってから樹脂を射出する射出工程において、樹脂の射出前に、加熱用媒体を前記金型に回流させて樹脂射出に好適な温度に加熱して、樹脂の射出後に、加熱用媒体から冷却用媒体に切り替えて、この冷却用媒体を前記金型に回流させて樹脂の固化温度以下まで冷却する成形サイクルを繰り返す射出成形装置の金型温度調節回路であって、
     前記金型の排出配管の下流側に、前記金型から排出した前記加熱用媒体とこの加熱用媒体を冷却するための冷却用媒体とを混合する混合器と、
     この混合器の近傍に位置して前記金型の排出配管と前記混合器との連通流路を開閉する排出配管開閉弁と、
     この排出配管開閉弁を迂回して前記混合器に連通する排出配管開閉弁バイパス配管と、
     この排出配管開閉弁バイパス配管上に位置して加熱用媒体の流量を調整可能な可変絞り弁と、
    を備える射出成形装置の金型温度調節回路。
  6.  請求項1~4のいずれか一項に記載する射出成形装置の金型温度調節回路において、前工程の熱媒体の供給を停止すると同時に、熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた後工程の熱媒体供給開始信号により、後工程の熱媒体供給を開始と、前記金型バイパス回路の開動作と、金型バイパス回路閉塞遅延タイマーのスタートを行い、この金型バイパス回路閉塞遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが次工程の熱媒体を検知した時点で、前記金型バイパス回路を閉塞させる射出成形装置の熱媒体の排出方法。
  7.  請求項6の射出成形装置の熱媒体の排出方法において、前工程の熱媒体の供給の停止を、前工程の熱媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行う射出成形装置の熱媒体の排出方法。
  8.  請求項6または請求項7の射出成形装置の熱媒体の排出方法において、前工程の熱媒体が加熱用媒体、後工程の熱媒体が冷却用媒体である射出成形装置の熱媒体の排出方法。
  9.  請求項6または請求項7の射出成形装置の熱媒体の排出方法において、前工程の熱媒体が冷却用媒体、後工程の熱媒体が加熱用媒体である射出成形装置の熱媒体の排出方法。
  10.  請求項1から4のいずれか一項に記載する射出成形装置の金型温度調節回路において、加熱用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り替え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作と、金型バイパス回路閉塞遅延タイマーのスタートを行い、この金型バイパス回路閉塞遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、前記金型バイパス回路を閉塞させ、同時に掃気用圧縮空気の供給停止遅延タイマーをスタートさせ、この掃気用圧縮空気供給停止遅延タイマーがタイムアップした時点で、もしくは金型排出側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で掃気用圧縮空気の供給を停止する射出成形装置の熱媒体の排出方法。
  11.  請求項1から4のいずれか一項に記載する射出成形装置の金型温度調節回路において、加熱用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作と、掃気用圧縮空気供給停止遅延タイマーのスタートを行い、この掃気用圧縮空気供給停止遅延タイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、掃気用圧縮空気の供給停止を行うとともに冷却動作開始遅延タイマーのスタートを行い、冷却動作開始遅延タイマーのタイムアップもしくは射出工程進捗に応じた冷却開始信号により、冷却用媒体の供給開始と前記金型バイパス回路閉塞遅延タイマーのスタートを行い、前記金型バイパス回路閉塞遅延タイマーのタイムアップした時点もしくは金型供給側配管部に設けた通過熱媒体センサが冷却用媒体を検知した時点で前記金型バイパス回路を閉塞させる射出成形装置の熱媒体の排出方法。
  12.  請求項10~11のいずれか一項に記載する射出成形装置の熱媒体の排出方法において、加熱用媒体の供給の停止を、加熱用媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行うことを特徴とする射出成形装置の熱媒体の排出方法。
  13.  請求項1から4のいずれか一項に記載する射出成形装置の金型温度調節回路において、冷却用媒体の供給を停止すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作とを行い、所定のタイマーのタイムアップした時点、もしくは金型供給側配管部に設けた前記通過熱媒体センサが掃気用圧縮空気を検知した時点で、前記金型バイパス回路を閉塞させ、所定のタイマーがタイムアップした時点、もしくは金型排出側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で掃気用圧縮空気の供給を停止する射出成形装置の熱媒体の排出方法。
  14.  請求項1~4のいずれか一項に記載する射出成形装置の金型温度調節回路において、冷却工程を終了すると同時に熱媒体切り換えの遅延タイマーをスタートさせ、この熱媒体切り換え遅延タイマーのタイムアップもしくは射出工程進捗に応じた熱媒体切り替え開始信号により、掃気用圧縮空気の供給開始と、前記金型バイパス回路の開動作とを行い、所定のタイマーのタイムアップした時点、もしくは金型供給側配管部に設けた通過熱媒体センサが掃気用圧縮空気を検知した時点で、掃気用圧縮空気の供給停止を行うとともに加熱動作開始遅延タイマーのスタートを行い、加熱動作開始遅延タイマーのタイムアップもしくは射出工程進捗に応じた加熱開始信号により、加熱動作の開始を行い、所定のタイマーのタイムアップした時点もしくは、金型供給側配管部に設けた通過熱媒体センサが加熱用媒体を検知した時点で、前記金型バイパス回路を閉塞させる射出成形装置の熱媒体の排出方法。
  15.  請求項13~14のいずれか一項に記載する射出成形装置の熱媒体の排出方法において、冷却用媒体の供給の停止を、冷却用媒体の供給開始からスタートするタイマーのタイムアップおよび/もしくは金型温度が所定の温度に到達した時点で行う射出成形装置の熱媒体の排出方法。
  16.  請求項5に記載する射出成形装置の金型温調回路において、加熱工程において加熱の前半は前記金型からの熱媒体排出配管と前記混合器との間の配管に設けた前記排出配管開閉弁を開き、加熱の後半は前記排出配管開閉弁を閉じて、前記排水配管開閉弁をバイパスする前記排出配管開閉弁バイパス配管に設けた可変絞り弁により、加熱用媒体の流量と圧力を調整して、加熱終了時の加熱用媒体の圧力を加熱の前半に対し高圧に昇圧にする射出成形装置の熱媒体の排出方法。
  17.  請求項5に記載する射出成形装置の金型温調回路において、前記金型からの熱媒体排出配管から前記混合器に入る熱媒体が高温である間は前記排出配管と前記混合器との間の配管に設けた排出配管開閉弁を開くとともに、前記金型からの前記排出配管を外部の冷却設備への戻り配管につなぐ熱媒体排出弁を閉じ、熱媒体を前記混合器に導入し、前記排出配管から前記混合器に入る熱媒体が高温でない間は、前記金型からの前記排出配管を外部の冷却設備への戻り配管につなぐ熱媒体排出弁を開いて、前記金型から前記排出配管を通して排出される熱媒体を外部の冷却設備へと排出する射出成形装置の熱媒体の排出方法。
  18.  請求項6から15のいずれか一項に記載する射出成形装置の熱媒体の排出方法において、熱媒体の排出を、請求項16および/もしくは請求項17に記載の射出成形装置の熱媒体の排出方法にて行う射出成形装置の熱用媒体の排出方法。
PCT/JP2009/061870 2008-11-06 2009-06-29 射出成形装置の金型温度調節回路及び熱媒体の排出方法 WO2010052951A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801295661A CN102105285B (zh) 2008-11-06 2009-06-29 注射成形装置的模具温度调节回路及热介质的排出方法
US13/001,912 US8318061B2 (en) 2008-11-06 2009-06-29 Mold temperature control circuit of injection molding device and method for discharging heating medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-285685 2008-11-06
JP2008285685A JP4926156B2 (ja) 2008-11-06 2008-11-06 射出成形装置の金型温度調節回路及び熱媒体の排出方法

Publications (1)

Publication Number Publication Date
WO2010052951A1 true WO2010052951A1 (ja) 2010-05-14

Family

ID=42152762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061870 WO2010052951A1 (ja) 2008-11-06 2009-06-29 射出成形装置の金型温度調節回路及び熱媒体の排出方法

Country Status (5)

Country Link
US (1) US8318061B2 (ja)
JP (1) JP4926156B2 (ja)
CN (1) CN102105285B (ja)
TW (2) TWI461281B (ja)
WO (1) WO2010052951A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109130120A (zh) * 2017-06-15 2019-01-04 惠州市维尔康精密部件有限公司 蒸汽与冷水供应自动转换控制系统

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4926156B2 (ja) 2008-11-06 2012-05-09 三菱重工プラスチックテクノロジー株式会社 射出成形装置の金型温度調節回路及び熱媒体の排出方法
WO2011132220A1 (ja) * 2010-04-21 2011-10-27 三菱重工プラスチックテクノロジー株式会社 射出成形装置、及び射出成形装置の熱媒体の排出方法
US20130115399A1 (en) 2010-10-27 2013-05-09 Richard W. Roberts In-situ foam core articles
US9346237B2 (en) * 2010-10-27 2016-05-24 Richard W. Roberts Recyclable plastic structural articles and method of manufacture
US9010175B2 (en) * 2012-01-06 2015-04-21 GM Global Technology Operations LLC Die coolant system with an integral and automatic leak test
US9102086B2 (en) 2012-03-28 2015-08-11 Richard W. Roberts In-situ foam core structural articles and methods of manufacture of profiles
US10207606B2 (en) 2012-03-28 2019-02-19 Richard W. Roberts Recyclable plastic structural articles and method of manufacture
BR112015002192A2 (pt) * 2012-07-31 2017-07-04 3M Innovative Properties Co aparelho de moldagem por injeção e método que compreende uma superfície de cavidade de molde que compreende uma matriz termicamente controlável
US10328662B2 (en) 2012-11-01 2019-06-25 Richard W. Roberts In-situ foam core stress mitigation component and method of manufacture
CN103057096B (zh) * 2013-01-16 2015-04-29 洛阳市建园模具制造有限公司 一种塑料型材模具冷却装置
US9271610B2 (en) 2013-04-12 2016-03-01 Richard W. Roberts, JR. Bathtub/shower tray support
JP5698804B2 (ja) * 2013-07-02 2015-04-08 ファナック株式会社 温度調節機能を備えた射出成形機の型締装置
CN107139412A (zh) * 2016-01-28 2017-09-08 诸建芬 一种注塑质量高的汽车减震器外壳注塑模具
CN106827342A (zh) * 2016-01-28 2017-06-13 诸建芬 一种汽车减震器油封密封圈挤压模具
JP6190032B1 (ja) * 2016-11-16 2017-08-30 株式会社ソディック カセット金型式射出成形機
CN108454049B (zh) * 2017-02-17 2022-03-29 株式会社松井制作所 压力控制装置
JP7087485B2 (ja) * 2018-03-13 2022-06-21 富士フイルムビジネスイノベーション株式会社 乾燥装置および画像形成装置
CN109049591A (zh) * 2018-08-02 2018-12-21 太仓求精塑模有限公司 一种注塑模具温度控制器及其控制方法
TWI663036B (zh) * 2018-10-12 2019-06-21 新明油壓機械股份有限公司 橡、塑膠成型機之恒溫冷熱節能板
CN114074452B (zh) * 2020-08-21 2024-03-19 汉达精密电子(昆山)有限公司 一种蒸气压缩气联合急冷急热系统及方法
CN114559625A (zh) * 2020-11-27 2022-05-31 株式会社有信精机 成形品取出机及其作业监视方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145542A (ja) * 2001-11-07 2003-05-20 Fuji Photo Film Co Ltd 金型の熱交換装置
JP2005205876A (ja) * 2003-12-25 2005-08-04 Innotech Corp 加熱冷却装置
JP2007083502A (ja) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd 成形機システム
JP2009196088A (ja) * 2008-02-19 2009-09-03 Sony Corp 成形装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161512A (ja) 1986-01-10 1987-07-17 Osaka Reiken:Kk 金型温度調節機
JPS62179912A (ja) * 1986-02-04 1987-08-07 Beishin Kogyo Kk 合成樹脂成形品の成形装置
JPH01221205A (ja) * 1987-10-29 1989-09-04 Kyowa Gas Chem Ind Co Ltd プラスチック成形型温度調節法とその温度調節装置
JPH01259907A (ja) 1988-04-11 1989-10-17 Takeda Chem Ind Ltd 蒸気による金型の温度調整方法
JP2957139B2 (ja) 1997-02-10 1999-10-04 クリナップ株式会社 金型の温度調節装置
JP2000233411A (ja) 1999-02-17 2000-08-29 Matsui Mfg Co 金型用の温度調節装置
JP3977565B2 (ja) 1999-05-06 2007-09-19 小野産業株式会社 合成樹脂成形用金型並びに金型温度調整装置及び金型温度調整方法
JP2001009839A (ja) 1999-06-29 2001-01-16 Ube Ind Ltd プラスチック成形金型温調装置および金型温調方法
TWI248863B (en) * 2004-02-12 2006-02-11 Mitsubishi Heavy Ind Ltd Apparatus and method for mold temperature adjustment, and mold temperature control unit
JP2007196088A (ja) * 2006-01-24 2007-08-09 Kakigase Juki Kk 乗物における天井の清掃装置
KR20080043589A (ko) * 2006-11-14 2008-05-19 삼성전자주식회사 금형의 온도 조절 장치 및 그를 이용한 사출성형 방법
CN101157267A (zh) * 2007-11-02 2008-04-09 山东大学 一种高光无熔痕塑料模具温度控制系统
CN100558536C (zh) * 2008-02-26 2009-11-11 山东大学 高光无熔痕注塑工艺的多点模具温度控制系统
JP4963700B2 (ja) 2008-06-11 2012-06-27 株式会社サーモテック 金型温度制御装置
JP4926156B2 (ja) 2008-11-06 2012-05-09 三菱重工プラスチックテクノロジー株式会社 射出成形装置の金型温度調節回路及び熱媒体の排出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145542A (ja) * 2001-11-07 2003-05-20 Fuji Photo Film Co Ltd 金型の熱交換装置
JP2005205876A (ja) * 2003-12-25 2005-08-04 Innotech Corp 加熱冷却装置
JP2007083502A (ja) * 2005-09-21 2007-04-05 Mitsubishi Heavy Industries Plastic Technology Co Ltd 成形機システム
JP2009196088A (ja) * 2008-02-19 2009-09-03 Sony Corp 成形装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109130120A (zh) * 2017-06-15 2019-01-04 惠州市维尔康精密部件有限公司 蒸汽与冷水供应自动转换控制系统
CN109130120B (zh) * 2017-06-15 2021-04-02 惠州市维尔康精密部件有限公司 蒸汽与冷水供应自动转换控制系统

Also Published As

Publication number Publication date
CN102105285B (zh) 2013-09-18
TWI461281B (zh) 2014-11-21
JP2010111022A (ja) 2010-05-20
TW201018566A (en) 2010-05-16
CN102105285A (zh) 2011-06-22
JP4926156B2 (ja) 2012-05-09
TW201139110A (en) 2011-11-16
US20110115120A1 (en) 2011-05-19
US8318061B2 (en) 2012-11-27
TWI355996B (en) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2010052951A1 (ja) 射出成形装置の金型温度調節回路及び熱媒体の排出方法
JP5335994B2 (ja) 射出成形装置、及び射出成形装置の熱媒体の排出方法
JP4785479B2 (ja) 成形装置
KR20100004860A (ko) 금형의 멀티 가열냉각 시스템
JP2007083502A5 (ja)
JP2001018229A (ja) 合成樹脂成形用金型並びに金型温度調整装置及び金型温度調整方法
EP1859877B1 (en) Mold cooling device
JP2004155098A (ja) 金型の加熱冷却システム
KR100741568B1 (ko) 금형의 온도제어장치
JP4028711B2 (ja) 金型冷却装置
JP2004155099A (ja) 金型の加熱冷却システム
JP3116918U (ja) 成形機システム
JP2017060956A (ja) 蒸気を加熱媒体とする成形装置およびその被加熱部の流路のドレン除去方法
JP3128598U (ja) 過熱蒸気を利用した金型の加熱冷却システム
CN213291242U (zh) 一种注塑机的分水控制系统
JP3095250U (ja) 金型温度調節装置
JP2003053740A (ja) 蒸気加硫装置
JP3104023U (ja) 金型温度調節システム
JPH04351526A (ja) ブロー成形方法および成形装置
JP2004050409A (ja) 熱交換装置
JP2005254700A (ja) 金型温度調節システム及び金型温度調節方法
JPH0382517A (ja) 金型温度制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980129566.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13001912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824651

Country of ref document: EP

Kind code of ref document: A1