WO2010052816A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2010052816A1
WO2010052816A1 PCT/JP2009/004099 JP2009004099W WO2010052816A1 WO 2010052816 A1 WO2010052816 A1 WO 2010052816A1 JP 2009004099 W JP2009004099 W JP 2009004099W WO 2010052816 A1 WO2010052816 A1 WO 2010052816A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffusion layer
electrode
semiconductor substrate
hole
insulating film
Prior art date
Application number
PCT/JP2009/004099
Other languages
English (en)
French (fr)
Inventor
南尾匡紀
藤井恭子
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/711,660 priority Critical patent/US8125041B2/en
Publication of WO2010052816A1 publication Critical patent/WO2010052816A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13021Disposition the bump connector being disposed in a recess of the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the technology disclosed in this specification relates to a semiconductor device and an electronic device using the semiconductor device.
  • Semiconductor devices used in various electronic devices generally have the following configuration. That is, a semiconductor substrate, an impurity diffusion layer provided on one upper surface (referred to as an upper surface) of the semiconductor substrate, and from one main surface of the semiconductor substrate to the other main surface (referred to as a lower surface). And a through electrode embedded in the through hole. Further, a low-resistance first diffusion layer containing a high concentration of impurities and a first diffusion layer are provided on the upper surface of the semiconductor substrate so as to separate the first diffusion layer and the semiconductor substrate. In addition, a second diffusion layer containing a low-concentration impurity is provided.
  • the through electrode has a conductor provided in the through hole, and is electrically connected to a connection electrode provided on the upper surface of the semiconductor substrate. The through electrode is provided on the lower surface of the semiconductor substrate and is electrically connected to the external connection terminal, and an insulating film covering the side surface of the through electrode is provided on the side surface of the through hole (for example, the following patent) Reference 1).
  • the problem of the conventional example is that between the second diffusion layer in which a potential difference is generated with respect to the through electrode and the conductor of the through electrode in the vicinity of the second diffusion layer in the upper part of the semiconductor substrate adjacent to the through electrode. Leakage current is generated, resulting in a decrease in current transport efficiency.
  • an insulating film is formed between the second diffusion layer in which a potential difference is generated with respect to the through electrode and the conductor of the through electrode adjacent to the second diffusion layer in the upper part of the semiconductor substrate adjacent to the through electrode.
  • the distance between the second diffusion layer and the conductor of the through electrode is extremely small. For example, even if the potential difference between the conductor and the second diffusion layer is about 5 V, it is extremely affected and the leakage current Will occur.
  • the leakage current between the opposing and adjacent diffusion layers and the through electrode can be suppressed, and the current transport efficiency can be improved.
  • a first semiconductor device includes a semiconductor substrate in which a through hole penetrating from an upper surface to a lower surface is formed, and penetrates the semiconductor substrate and is embedded in the through hole.
  • An impurity provided in a region located on the side of the through electrode, and an insulating film provided on an inner wall of the through hole and surrounding a side surface of the through electrode; and an upper portion of the semiconductor substrate
  • a first diffusion layer that covers the first diffusion layer contains impurities at a lower concentration than the first diffusion layer, and has a higher electrical resistance than the first diffusion layer. 2 diffusion layers and a connection electrode provided on the upper surface of the semiconductor substrate and connected to the through electrode, and a portion of the side surface of the through electrode facing the second diffusion layer is inside the through hole Curved to
  • the distance between the through electrode and the second diffusion layer can be increased as compared with the case where the through electrode is not curved. For this reason, since the electric field between the through electrode and the second diffusion layer can be relaxed, the withstand voltage is improved, and when the distance between the through electrode and the second diffusion layer is reduced due to miniaturization or the insulating film is thinned However, it is possible to suppress a leakage current from flowing between the through electrode and the semiconductor layer.
  • a second semiconductor device includes a semiconductor substrate in which a through-hole penetrating from the upper surface to the lower surface is formed, a through-electrode penetrating the semiconductor substrate and embedded in the through-hole, and the through-hole An insulating film provided on an inner wall of the hole and surrounding a side surface of the through electrode; and a first diffusion layer including an impurity provided in a region located on a side of the through electrode on the semiconductor substrate. , Provided to surround the first diffusion layer to separate the first diffusion layer and the semiconductor substrate, and contains impurities at a lower concentration than the first diffusion layer.
  • a second diffusion layer having a large electric resistance and a connection electrode provided on the upper surface of the semiconductor substrate and connected to the through electrode, and facing the through electrode of the surface of the second diffusion layer The part to be curved is curved.
  • the electric field concentration can be reduced as compared with the case where the second diffusion layer is not curved. For this reason, generation of a tunnel current due to electrolytic concentration can be suppressed, and even when the distance between the through electrode and the second diffusion layer is reduced due to miniaturization and the insulating film is thinned, the through electrode and the second diffusion layer are reduced. It is possible to suppress leakage current from flowing between
  • the distance from the adjacent impurity diffusion layer through electrode is increased, Leakage current generated between the semiconductor layer and the through electrode can be suppressed and current transport efficiency can be improved.
  • the second semiconductor device of the example of the present invention since the surface of the impurity diffusion layer facing the through electrode is curved, generation of a tunnel current due to electric field concentration can be suppressed, and the impurity diffusion layer And leakage current generated between the through electrodes can be suppressed, current transport efficiency can be improved, and an increase in power consumption can be prevented.
  • FIG. 1 is a perspective view showing a solid-state imaging device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the solid-state imaging device according to the embodiment of the present invention.
  • FIG. 3 is an enlarged cross-sectional view illustrating a configuration example of the portion A illustrated in FIG. 4 is an enlarged cross-sectional view showing a configuration of a portion B shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing a configuration of a portion C shown in FIG.
  • FIG. 1 is a perspective view illustrating a solid-state imaging device according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating the solid-state imaging device according to the present embodiment.
  • the solid-state imaging device includes a p-type semiconductor substrate 1 made of silicon or the like and having a quadrilateral planar outer shape, and one of the main surfaces of the semiconductor substrate 1 (hereinafter referred to as “the following”). In the description, it is formed in a region including the center of the upper surface), and an imaging region in which a plurality of light receiving elements (light receiving portions) 2 are arranged in a matrix, and on the upper surface of the semiconductor substrate 1 and around the imaging region Alternatively, the peripheral circuit 6 provided outside, the microlens 3 provided for each light receiving element 2 and provided above the light receiving element 2, and bonded to the upper surface of the semiconductor substrate 1, and disposed above the microlens 3.
  • the peripheral circuit 6 is a circuit for driving and controlling the light receiving element 2.
  • the light receiving element 2 such as a photodiode and the peripheral circuit 6 including a MOS transistor and the like are both manufactured by a known semiconductor process.
  • the solid-state imaging device includes a plurality of connection electrodes 10 provided on a top surface of the semiconductor substrate 1 and in a position surrounding the peripheral circuit 6 in plan view, and the other main surface of the semiconductor substrate 1.
  • An external connection terminal 11 provided on the upper surface (hereinafter referred to as “lower surface”), a ball-shaped external connection electrode 17 provided below the semiconductor substrate 1 and connected to the external connection terminal 11, and the semiconductor substrate 1.
  • the through electrode 7 that penetrates and is embedded in the through hole 8 extending from the lower surface of the connection electrode 10 to the upper surface of the external connection terminal 11 and connected to the connection electrode 10 and the external connection terminal 11, and provided on the inner wall of the through hole 8.
  • the first insulating film 12, the second insulating film 15 provided on the lower surface of the semiconductor substrate 1, and the lower surface of the second insulating film 15 are provided on the lower surface of the external connection terminal 11.
  • a third insulating film 16 is formed to cover except forThe through electrode 7 has a substantially cylindrical conductor 9.
  • the first insulating film 12 provided in the through hole 8 surrounds the conductor 9 (through electrode 7) in a substantially circular tube shape.
  • FIG. 3 is an enlarged cross-sectional view showing a configuration example of the portion A shown in FIG. 2
  • FIG. 4 is an enlarged cross-sectional view showing the configuration of the portion B shown in FIG.
  • FIG. 5 is an enlarged cross-sectional view showing a configuration of a portion C shown in FIG.
  • the through electrode 7 includes a conductor 9 made of Cu or the like, a conductor film 14 made of Cu or the like covering the upper surface and side surfaces of the conductor 9, and an upper surface of the conductor film 14. And a barrier metal 13 made of Ti covering the side surface.
  • the barrier metal 13 is provided to prevent the metal material constituting the conductor 9 from diffusing into the semiconductor substrate 1.
  • FIG. 3 shows an example in which an electrostatic protection circuit 18A on the input circuit side is provided on the left side of the through electrode 7 (conductor 9), and a control circuit 18B for driving the light receiving element 2 is provided on the right side of the through electrode 7. ing.
  • the control circuit 18B is a part of the peripheral circuit 6.
  • the left electrostatic protection circuit 18A is provided on the upper portion of the semiconductor substrate 1, and is provided on the upper portion of the n-type diffusion layer 20 containing phosphorus and the like at about 10 18 cm ⁇ 3 , B, etc.
  • the element isolation insulating film 26 may be a LOCOS (LoCal Oxidation of Silicon) film or STI (Shallow Trench Isolation).
  • the diffusion layer 19 and the connection electrode 10 are connected via the wiring layer 21.
  • the diffusion layer 19 is formed by diffusing impurities introduced by ion implantation or the like from the upper surface side of the semiconductor substrate 1.
  • the diffusion layer 19 constitutes a part of a circuit that protects circuit elements from static electricity and the like.
  • the electrostatic protection circuit 18A including the resistance instantaneously generates a non-destructive discharge (punch through), and the overvoltage is dropped to the ground potential to protect it. Therefore, the electrostatic protection circuit 18A is arranged on the leading side of the power supply circuit, and is directly connected to the connection electrode 10 of the through electrode 7 as shown in FIG.
  • control circuit 18B for driving the light receiving element 2 disposed on the right side of the through electrode 7 in FIG. 3 is not directly connected to the connection electrode 10, and is a circuit subsequent to the electrostatic protection circuit 18A. It is connected to the.
  • the control circuit 18 ⁇ / b> B is provided on the upper portion of the semiconductor substrate 1, and has a diffusion layer (second diffusion layer) 24 containing impurities of the first conductivity type, and an upper portion of the diffusion layer 24.
  • a diffusion layer (second diffusion layer) 24 containing impurities of the first conductivity type, and an upper portion of the diffusion layer 24.
  • the device isolation insulating film 26 formed on the semiconductor substrate 1 including the gate electrode and the diffusion layers 22 and 23 and the diffusion layer 24 is provided.
  • the impurity concentration of the diffusion layers 22 and 23 is higher than the impurity concentration of the diffusion layer 24, and the diffusion layers 22 and 23 are low resistance regions.
  • the diffusion layers 22 and 23 are separated from other portions of the semiconductor substrate 1 by the diffusion layer 24.
  • a lower interlayer insulating film 27 and an upper interlayer insulating film 28 are provided on the element isolation insulating film 26 except for the region where the wiring layer 25 is provided.
  • the diffusion layers 22 and 23 constitute the MOS transistor of the control circuit 18B together with the gate electrode.
  • the diffusion layers 22 and 23 are directly connected to the adjacent connection electrodes 10. Are not connected, and are connected to the subsequent circuit of the electrostatic protection circuit 18A as described above.
  • the wiring layer 25 and the connection electrode 10 are not electrically connected, and an insulating surface protective layer 29 is provided between them and on the wiring layer 25. .
  • the diffusion layer 24 in contact with the diffusion layers 22 and 23 and the through electrode 7 often do not have the same voltage value (there may be the same voltage value at a certain operation timing). A potential difference is generated between the diffusion layer 24 and the barrier metal 13 of the through electrode 7.
  • the distance between the diffusion layer 24 adjacent via the semiconductor substrate 1 and the barrier metal 13 of the through electrode 7 is a minimum distance of only a few ⁇ m, for example, even with a potential difference of 5 V, 3 ⁇ 10 4 . An electric field of 5 ⁇ 10 4 V / cm is applied. Furthermore, since the film thickness of the first insulating film 12 is thin, there is a possibility that a leakage current may be generated through a minute defect or the like of the first insulating film 12 as it is.
  • a portion of the side surface of the through electrode 7 (side surface of the barrier metal 13) facing the diffusion layer 24 of the control circuit 18B adjacent to the through electrode 7 is curved, and the diffusion layer 24 is curved.
  • a portion of the surface facing the through electrode 7 is also curved. That is, the portion of the through electrode 7 facing the diffusion layer 24 is not only curved with a curvature in the horizontal direction (horizontal direction) on the substrate surface, but also in the vertical direction as shown in FIG. Curved with a certain curvature. Further, the portion of the inner wall of the through hole 8 that faces the diffusion layer 24 is also curved in accordance with the through electrode 7.
  • the distance between the portion of the through electrode 7 facing the semiconductor layer (diffusion layer 24) provided in the vicinity of the through electrode 7 and the diffusion layer 24 can be made longer than the conventional configuration. Further, since the side surface of the through electrode 7 facing the diffusion layer 24 is curved, electric field concentration occurs between the surface of the diffusion layer 24 facing the through electrode 7 and the side surface of the through electrode 7 (or the barrier metal 13). As a result, it is possible to suppress the occurrence of leakage current through the first insulating film 12 between the diffusion layer 24 and the through electrode 7 (barrier metal 13).
  • the state in which leakage current is generated between the diffusion layer 24 and the barrier metal 13 is the first between the diffusion layers 22 and 23 and the diffusion layer 24 and the barrier metal 13, the conductor film 14, and the conductor 9. In this state, a leakage current is generated through the insulating film 12.
  • the solid-state imaging device according to the present embodiment since the generation of leakage current flowing between the through electrode 7 and the diffusion layer 24 is suppressed, the current transport efficiency is prevented from being lowered and the malfunction is prevented. The reliability is improved as compared with the conventional solid-state imaging device.
  • the surfaces facing each other are curved surfaces as shown in FIGS.
  • a mask that opens the lower end of the through hole 8 is formed on the lower surface of the semiconductor substrate 1, and wet etching and dry etching are performed using this mask.
  • the opening area of the through hole 8 can be increased to a predetermined position (for example, a position deeper than the bottom surface of the diffusion layer 24) from the lower surface to the upper surface side of the semiconductor substrate 1, and the inner wall of the through hole 8 can be increased.
  • Surface can be curved vertically and horizontally).
  • an overhang 30 is formed on the lower surface side portion of the through-hole 8 of the semiconductor substrate 1 by the above-described process.
  • This overhang 30 is formed in the first insulating film 12, Since it is covered with the barrier metal 13 and the conductor film 14, no damage or the like occurs.
  • the curved surface is formed in the through hole 8
  • the curved surface is also transferred to the first insulating film 12 and the barrier metal 13 which are formed along the inner wall of the through hole 8 after that.
  • conductive impurities are divided into a predetermined region in the upper part of the semiconductor substrate 1 and introduced by ion implantation or the like by dividing it into the depth direction, and then the impurities are diffused and activated by heat treatment.
  • the surface facing the through electrode 7 can be curved by changing the opening size of the mask so that the depth increases as the depth increases. According to this method, the curvature of the diffusion layer can be made stronger than when the diffusion layer is formed by a single ion implantation and thermal diffusion.
  • the thickness of the semiconductor substrate 1 provided with the semiconductor layer is preferably less than 50 ⁇ m, and particularly preferably in the range of 5 ⁇ m to 30 ⁇ m. This is because when the thickness of the semiconductor substrate 1 is sufficiently thin, the diffusion layer 24 and the overhang 30 of the through electrode 7 are close to each other. Even if the distance between the through electrode 7 and the diffusion layer 24 is, for example, about 10 ⁇ m, the leakage current is sufficiently suppressed.
  • the semiconductor layer is not limited to the diffusion layer 24 in the control circuit 18B, and the diffusion layer formed inside is directly electrically connected to the through electrode 7 and the connection electrode 10. It is possible to effectively suppress the occurrence of leakage current by curving the side surface of the through electrode 7 facing the non-semiconductor layer.
  • the same effect can be obtained by applying the same configuration as the semiconductor layer and the through electrode 7 of the solid-state imaging device of the present embodiment to the semiconductor device of the solid-state imaging device.
  • the present invention is preferably used for a semiconductor device used in various electronic devices in addition to a solid-state imaging device used in an imaging device such as a camera.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 半導体装置は、半導体基板1と、半導体基板1を貫通する貫通電極7と、半導体基板1の上部であって、貫通電極7の側方に位置する領域に設けられた拡散層24と、拡散層24の上部に設けられた拡散層22とを備えている。貫通電極7の側面のうち拡散層24に対向する部分は湾曲しており、拡散層24の表面のうち貫通電極7に対向する部分は湾曲している。

Description

半導体装置
 本明細書に開示された技術は、半導体装置とそれを用いた電子機器に関するものである。
 各種電子機器に活用されている半導体装置は、概ね次のような構成となっている。すなわち、半導体基板と、この半導体基板の主面の一方(上面と称する)の上部に設けられた不純物拡散層と、この半導体基板の一方の主面から他方の主面(下面と称する)へと貫通する貫通孔に埋め込まれた貫通電極とを備える。また、半導体基板上面には、高濃度の不純物を含む低抵抗の第1の拡散層と、この第1の拡散層と半導体基板とを分離するために第1の拡散層を囲むように設けられた、低濃度の不純物を含む第2の拡散層とが設けられる。貫通電極は、貫通孔内に設けられた導体を有しており、半導体基板の上面上に設けられた接続電極に電気的に接続される。また、貫通電極は、半導体基板の下面上に設けられ外部接続端子と電気的に接続されており、貫通孔の側面には、貫通電極の側面を覆う絶縁膜が設けられている(例えば下記特許文献1)。
特開2006-41450号公報
 上記従来例の課題は、貫通電極に近接する半導体基板の上部において、この貫通電極に対して電位差が生ずる第2の拡散層と、この第2の拡散層に近接した貫通電極の導体との間で漏れ電流が発生し、その結果として電流輸送効率が低下するということであった。
 すなわち、貫通電極に近接する半導体基板の上部において、この貫通電極に対して電位差が生ずる第2の拡散層と、この第2の拡散層に近接した貫通電極の導体との間には絶縁膜が介在するものの、第2の拡散層と貫通電極の導体との距離は極めて微小であるので、例えば導体と第2の拡散層との電位差が5V程度であっても極めて大きな影響を受け、漏れ電流が発生してしまうのである。
 本発明の実施形態に係る半導体装置では、対向、近接する拡散層と貫通電極との間の漏れ電流を抑制し、電流輸送効率の向上が図られうる。
  
 上述の目的を達成するために本発明の一例に係る第1の半導体装置は、上面から下面まで貫通する貫通孔が形成された半導体基板と、前記半導体基板を貫通し、前記貫通孔内に埋め込まれた貫通電極と、前記貫通孔の内壁に設けられ、前記貫通電極の側面を囲む絶縁膜と、前記半導体基板の上部であって、前記貫通電極の側方に位置する領域に設けられた不純物を含む第1の拡散層と、前記第1の拡散層を覆うように設けられ、前記第1の拡散層よりも低濃度の不純物を含み、前記第1の拡散層よりも電気抵抗が大きい第2の拡散層と、前記半導体基板の上面上に設けられ、前記貫通電極に接続された接続電極とを備え、前記貫通電極の側面のうち前記第2の拡散層に対向する部分が貫通孔内側へ湾曲している。
 この構成によれば、貫通電極の側面が貫通孔内側に湾曲しているので、湾曲しない場合に比べて貫通電極と第2の拡散層との距離を離すことができる。
このため、貫通電極と第2の拡散層間の電界を緩和できるために耐圧が向上し、微細化により貫通電極と第2の拡散層との距離が近づいた場合や、絶縁膜が薄くなった場合でも貫通電極と半導体層との間に漏れ電流が流れるのを抑えることができる。
 本発明の一例に係る第2の半導体装置は、上面から下面まで貫通する貫通孔が形成された半導体基板と、前記半導体基板を貫通し、前記貫通孔内に埋め込まれた貫通電極と、前記貫通孔の内壁に設けられ、前記貫通電極の側面を囲む絶縁膜と、前記半導体基板の上部であって、前記貫通電極の側方に位置する領域に設けられた不純物を含む第1の拡散層と、前記第1の拡散層と半導体基板を分離するために前記第1の拡散層を囲むように設けられ、前記第1の拡散層よりも低濃度の不純物を含み、前記第1の拡散層よりも電気抵抗が大きい第2の拡散層と、前記半導体基板の上面上に設けられ、前記貫通電極に接続された接続電極とを備え、前記第2の拡散層の表面のうち前記貫通電極に対向する部分は湾曲している。
 この構成によれば、第2の拡散層において、前記貫通電極に対向する部分は湾曲しているので、湾曲しない場合に比べて電界集中を緩和することができる。このため、電解集中によるトンネル電流の発生を抑制することができ、微細化により貫通電極と第2の拡散層との距離が近づき、絶縁膜が薄くなった場合でも貫通電極と第2の拡散層との間に漏れ電流が流れるのを抑えることができる。
 以上のように本発明の一例に係る第1の半導体装置によれば、貫通電極の不純物拡散層に対向する面が湾曲しているので、近接する不純物拡散層貫通電極との距離が大きくなり、半導体層と貫通電極間に生じる漏れ電流を抑制し、電流輸送効率を向上することができる。
 また、本発明の一例に係る第2の半導体装置によれば、不純物拡散層の貫通電極に対向する面が湾曲しているので、電界集中によるトンネル電流発生を抑制することができ、不純物拡散層と貫通電極間に生じる漏れ電流を抑制し、電流輸送効率を向上させ、消費電力の増大を防ぐことができる。
図1は、本発明の実施形態に係る固体撮像装置を示す斜視図である。 図2は、本発明の実施形態に係る固体撮像装置を示す断面図である。 図3は、図2に示す部分Aの構成例を示す拡大断面図である。 図4は、図3に示す部分Bの構成を示す拡大断面図である。 図5は、図4に示す部分Cの構成を示す拡大断面図である。
 以下、本発明の実施形態に係る半導体装置の一例として、電子機器、例えばデジタルカメラ用の固体撮像装置について、図面を参照しながら説明する。
 図1は、本発明の実施形態に係る固体撮像装置を示す斜視図であり、図2は、本実施形態に係る固体撮像装置を示す断面図である。
 図1及び図2に示すように、本実施形態の固体撮像装置は、シリコン等からなり、平面外形が四辺形であるp型の半導体基板1と、半導体基板1の主面の一方(以下の説明では「上面」と称す)の中央を含む領域に形成され、複数の受光素子(受光部)2がマトリクス状に配置された撮像領域と、半導体基板1の上面上であって撮像領域の周囲あるいは外側に設けられた周辺回路6と、受光素子2ごとに設けられ、受光素子2の上方に設けられたマイクロレンズ3と、半導体基板1の上面に接着され、マイクロレンズ3の上方に配置されたガラス基板4と、半導体基板1の撮像領域を除く領域上に設けられ、半導体基板1とガラス基板4とを接着する接着剤5とを備えている。周辺回路6は、受光素子2の駆動や制御を行うための回路である。例えばフォトダイオード等である受光素子2、及びMOSトランジスタ等で構成される周辺回路6は共に公知の半導体プロセスで製造される。
 また、本実施形態の固体撮像装置は、半導体基板1の上面上であって平面的に見て周辺回路6を囲む位置に設けられた複数の接続電極10と、半導体基板1の他方の主面(以下、「下面」と称する)上に設けられた外部接続端子11と、半導体基板1の下方に設けられ、外部接続端子11に接続されたボール状の外部接続電極17と、半導体基板1を貫通し、接続電極10の下面から外部接続端子11の上面に至る貫通孔8内に埋め込まれ、接続電極10及び外部接続端子11に接続された貫通電極7と、貫通孔8の内壁に設けられた第1の絶縁膜12と、半導体基板1の下面に設けられた第2の絶縁膜15と、第2の絶縁膜15の下面上に設けられ、且つ外部接続端子11の下面を所定の領域を除いて覆う第3の絶縁膜16を備えている。貫通電極7は、略円柱状の導体9を有している。貫通孔8内に設けられた第1の絶縁膜12は略円管状に導体9(貫通電極7)を囲んでいる。
 図3は、図2に示す部分Aの構成例を示す拡大断面図であり、図4は、図3に示す部分Bの構成を示す拡大断面図である。また、図5は、図4に示す部分Cの構成を示す拡大断面図である。
 図3、図4に示すように、貫通電極7は、より詳細には、Cuなどからなる導体9と、導体9の上面及び側面を覆うCuなどからなる導体膜14と、導体膜14の上面及び側面を覆うTiからなるバリアメタル13とで構成されている。バリアメタル13は、導体9を構成する金属材料が半導体基板1内に拡散するのを防ぐために設けられる。
 次に、半導体基板1の上面に設けた周辺回路6について、図3を用いて説明する。図3は、貫通電極7(導体9)の左側に入力回路側の静電保護回路18Aが、貫通電極7の右側に受光素子2を駆動するための制御回路18Bがそれぞれ設けられた例を示している。制御回路18Bは周辺回路6の一部である。
 このうち、左側の静電保護回路18Aは、半導体基板1の上部に設けられ、燐などを1018cm-3程度で含むn型拡散層20と、拡散層20の上部に設けられ、Bなどを1020cm-3程度で含むp型拡散層19と、拡散層19及び拡散層20を含む半導体基板1上に形成された素子分離用絶縁膜26とを有している。素子分離用絶縁膜26はLOCOS(LoCal Oxidation of Silicon)膜であってもよいし、STI(Shallow Trench Isolation)であってもよい。拡散層19と接続電極10は配線層21を介して接続されている。拡散層19は半導体基板1の上面側からイオン注入等により導入された不純物を拡散させることで形成する。
 拡散層19は、本実施形態では、静電気等から回路素子を保護する回路の一部を構成する。過電圧が加わると瞬時に抵抗を含む静電保護回路18Aが非破壊の放電(パンチスルー)を生じ、過電圧をグランド電位に落とすことにより、保護するものである。したがって、この静電保護回路18Aは、電源回路の先頭側に配置されており、図3に示すように貫通電極7の接続電極10に直接的に接続されているものである。
 これに対し、図3において貫通電極7の右側に配置された受光素子2を駆動するための制御回路18Bは接続電極10に直接的には接続されておらず、静電保護回路18Aの後続回路に接続されている。
 図3及び図4に示すように、制御回路18Bは、半導体基板1の上部に設けられ、第1導電型の不純物を含む拡散層(第2の拡散層)24と、拡散層24の上部に設けられ、第2導電型の不純物を含む拡散層22、23と、平面的に見て拡散層(第1の拡散層)22、23の間の拡散層24上にゲート絶縁膜を挟んで設けられたゲート電極と、拡散層22、23及び拡散層24を含む半導体基板1上に形成された素子分離用絶縁膜26を備えている。拡散層22、23の不純物濃度は拡散層24の不純物濃度よりも高く、拡散層22、23は低抵抗な領域となっている。拡散層22、23は、拡散層24によって半導体基板1の他の部分から分離されている。
 静電保護回路18A及び制御回路18Bの両方において、素子分離用絶縁膜26上には配線層25が設けられた領域を除いて下層層間絶縁膜27及び上層層間絶縁膜28が設けられている。
 制御回路18Bにおいて、拡散層22、23はゲート電極とともに制御回路18BのMOSトランジスタを構成しており、図3、図4からも理解されるように、近接している接続電極10に直接的には接続されておらず、上述のごとく静電保護回路18Aの後続回路に接続されている。具体的には図4に示すように、配線層25と接続電極10間は電気的に接続されておらず、絶縁性の表面保護層29が両者の間及び配線層25上に設けられている。
 このため、拡散層22、23に接する拡散層24と貫通電極7とは、同じ電圧値になっていないことが多く(ある動作タイミングでは、同じ電圧値になっていることもある)、この場合、拡散層24と貫通電極7のバリアメタル13との間で電位差が発生することになる。
 また、半導体基板1を介して近接する拡散層24と、貫通電極7のバリアメタル13との間の距離はわずか数μmと極小距離となっているので、例えば5Vの電位差でも3×10~5×10V/cmの電界が印加される。さらに、第1の絶縁膜12の膜厚は薄いので、このままでは第1の絶縁膜12の微小欠陥等を介して漏れ電流が発生するおそれがある。
 そこで、本実施形態の固体撮像装置は、貫通電極7の側面(バリアメタル13の側面)のうち、貫通電極7に近接する制御回路18Bの拡散層24に対向する部分が湾曲し、拡散層24の表面のうち貫通電極7に対向する部分も湾曲していることを特徴としている。すなわち、貫通電極7の拡散層24に対向する部分は、基板面に水平な方向(水平方向)にある曲率を持って湾曲しているだけでなく、図4に示すように、垂直方向にもある曲率を持って湾曲している。また、貫通電極7に合わせて、貫通孔8の内壁のうち拡散層24に対向する部分も湾曲している。
 この構成により、貫通電極7のうち、貫通電極7の近傍に設けられた半導体層(拡散層24)に対向する部分と拡散層24との距離を従来の構成よりも遠くすることができる。また、貫通電極7が拡散層24と対向する側面が湾曲しているので、拡散層24の貫通電極7への対向面と貫通電極7(あるいはバリアメタル13)の当該側面とに電界集中が発生しにくく、結果として拡散層24と貫通電極7(バリアメタル13)間に、第1の絶縁膜12を介して漏れ電流が発生するのを抑制することができる。
 なお、拡散層24とバリアメタル13との間で漏れ電流が発生する状態とは、拡散層22、23、拡散層24と、バリアメタル13、導体膜14、導体9との間に、第1の絶縁膜12を介して漏れ電流が発生している状態である。これに対し、本実施形態の固体撮像装置では、貫通電極7と拡散層24との間に流れる漏れ電流の発生が抑制されているので、電流輸送効率の低下や動作不良の発生が防がれ、従来の固体撮像装置に比べて信頼性が向上している。
 本実施形態の固体撮像装置では、上述のごとく拡散層24とそれに近接した貫通電極7(バリアメタル13)において、それぞれが対向する面を図3~図5に示すごとく湾曲面としたが、そのためにはまず貫通孔8の内壁のうち拡散層24に対向する部分を湾曲させる必要がある。そのため、本実施形態では、半導体基板1の下面上に貫通孔8の下端を開口するマスクを形成し、このマスクを利用してウエットエッチングとドライエッチングを行う。これにより、貫通孔8の開口面積を、半導体基板1の下面から上面側に向かうにつれて所定の位置(例えば拡散層24の底面よりも深い位置)まで大きくすることができ、貫通孔8の内壁を垂直方向及び水平方向に湾曲する面とすることができる)。
 なお、図5に示すように、上述の工程により、貫通孔8の半導体基板1下面側部分にはオーバーハング30が形成された状態となるが、このオーバーハング30は第1の絶縁膜12、バリアメタル13、導体膜14で覆われた状態となるので、破損などは発生しない。
 また、貫通孔8に湾曲面を形成するので、その後に貫通孔8の内壁に沿って形成する第1の絶縁膜12及びバリアメタル13にも湾曲面が転写される。
 一方、拡散層24については、半導体基板1の上部のうち所定の領域に、導電性の不純物を深さ方向に複数回分割してイオン注入等により導入し、その後熱処理により不純物を拡散及び活性化させる。深さ方向に分割注入するときに、深くなるほど貫通孔から離すようにマスクの開口寸法を変化させることにより、貫通電極7に対向する面を湾曲させることができる。この方法によれば、一度のイオン注入及び熱拡散で拡散層を形成する場合に比べて拡散層の湾曲をより強くすることができる。
 なお、本実施形態の固体撮像装置において、半導体層(拡散層24)が設けられた半導体基板1の厚みは、50μm未満であれば好ましく、5μm以上30μm以下の範囲であれば特に好ましい。これは、半導体基板1の厚みが充分薄くなると拡散層24と貫通電極7のオーバーハング30が近接するためである。貫通電極7と拡散層24との距離を例えば10μm程度にしてもリーク電流は十分に抑えられる。
 なお、本実施形態の固体撮像装置においては、半導体層は制御回路18B内の拡散層24に限られず、内部に形成された拡散層が貫通電極7及び接続電極10に直接電気的に接続されていない半導体層に対向する貫通電極7の側面を湾曲させることで漏れ電流の発生を効果的に抑えることが可能となる。
 また、本実施形態の固体撮像装置の半導体層及び貫通電極7と同様の構成を固体撮像装置の半導体装置に適用しても同様の効果を得ることができる。
 以上のように本発明は、カメラ等の撮像装置に用いられる固体撮像装置の他、種々の電子機器に用いられる半導体装置に好ましく利用される。
1   半導体基板
2   受光素子
3   マイクロレンズ
4   ガラス基板
5   接着剤
6   周辺回路
7   貫通電極
8   貫通孔
9   導体
10   接続電極
11   外部接続端子
12   第1の絶縁膜
13   バリアメタル
14   導体膜
15   第2の絶縁膜
16   第3の絶縁膜
17   外部接続電極
18A  静電保護回路
18B  制御回路
19、22、23   拡散層
20、24   拡散層
21、25   配線層
26   素子分離用絶縁膜
27   下層層間絶縁膜
28   上層層間絶縁膜
29   表面保護層
30   オーバーハング

Claims (5)

  1.  上面から下面まで貫通する貫通孔が形成された半導体基板と、
     前記半導体基板を貫通し、前記貫通孔内に埋め込まれた貫通電極と、
     前記貫通孔の内壁に設けられ、前記貫通電極の側面を囲む絶縁膜と、
     前記半導体基板の上部であって、前記貫通電極の側方に位置する領域に設けられた不純物を含む第1の拡散層と、
     前記第1の拡散層を覆うように設けられ、前記第1の拡散層よりも低濃度の不純物を含み、前記第1の拡散層よりも電気抵抗が大きい第2の拡散層と、
     前記半導体基板の上面上に設けられ、前記貫通電極に接続された接続電極とを備え、
     前記貫通電極の側面のうち前記第2の拡散層に対向する部分が貫通孔内側へ湾曲している半導体装置。
  2.  上面から下面まで貫通する貫通孔が形成された半導体基板と、
     前記半導体基板を貫通し、前記貫通孔内に埋め込まれた貫通電極と、
     前記貫通孔の内壁に設けられ、前記貫通電極の側面を囲む絶縁膜と、
     前記半導体基板の上部であって、前記貫通電極の側方に位置する領域に設けられた不純物を含む第1の拡散層と、
     前記第1の拡散層を覆うように設けられ、前記第1の拡散層よりも低濃度の不純物を含み、前記第1の拡散層よりも電気抵抗が大きい第2の拡散層と、
     前記半導体基板の上面上に設けられ、前記貫通電極に接続された接続電極とを備え、
     前記第2の拡散層の表面のうち前記貫通電極に対向する部分は湾曲している半導体装置。
  3.  前記第2の拡散層は、動作時に貫通電極との間で電位差を生じることを特徴とする請求項1に記載の半導体装置。
  4.  前記貫通孔の開口面積が、前記半導体基板の下面から上面側に向かうにつれて所定の位置まで大きくなっていることによって前記貫通孔の内壁が湾曲していることを特徴とする請求項1に記載の半導体装置。
  5.  前記半導体基板の上面には複数の受光部が配置されてなる撮像領域が設けられ、
     前記半導体基板の上面上であって、前記撮像領域の外側の領域には周辺回路が設けられ、
     前記第1の拡散層および前記第2の拡散層は前記周辺回路の一部を構成することを特徴とする請求項1に記載の半導体装置。
PCT/JP2009/004099 2008-11-07 2009-08-25 半導体装置 WO2010052816A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/711,660 US8125041B2 (en) 2008-11-07 2010-02-24 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-286893 2008-11-07
JP2008286893A JP2010114320A (ja) 2008-11-07 2008-11-07 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/711,660 Continuation US8125041B2 (en) 2008-11-07 2010-02-24 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2010052816A1 true WO2010052816A1 (ja) 2010-05-14

Family

ID=42152630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004099 WO2010052816A1 (ja) 2008-11-07 2009-08-25 半導体装置

Country Status (3)

Country Link
US (1) US8125041B2 (ja)
JP (1) JP2010114320A (ja)
WO (1) WO2010052816A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455538B2 (ja) * 2008-10-21 2014-03-26 キヤノン株式会社 半導体装置及びその製造方法
JP5197436B2 (ja) * 2009-02-26 2013-05-15 株式会社東芝 センサーチップ及びその製造方法。
JP5684157B2 (ja) * 2012-01-04 2015-03-11 株式会社東芝 半導体装置
KR20150057148A (ko) * 2013-11-18 2015-05-28 삼성전자주식회사 반도체 장치
US20150189204A1 (en) * 2013-12-27 2015-07-02 Optiz, Inc. Semiconductor Device On Cover Substrate And Method Of Making Same
JP6905040B2 (ja) * 2018-08-08 2021-07-21 キヤノン株式会社 半導体デバイスの製造方法
US11804561B2 (en) * 2019-03-20 2023-10-31 Sony Semiconductor Solutions Corporation Light receiving element, method of manufacturing light receiving element, and imaging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246475A (ja) * 1999-02-25 2000-09-12 Seiko Epson Corp レーザ光による加工方法
JP2004128063A (ja) * 2002-09-30 2004-04-22 Toshiba Corp 半導体装置及びその製造方法
JP2007067216A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 半導体装置およびその製造方法、回路基板およびその製造方法
JP2007214360A (ja) * 2006-02-09 2007-08-23 Fujitsu Ltd 半導体装置及びその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773338A (en) * 1995-11-21 1998-06-30 Lucent Technologies Inc. Bipolar transistor with MOS-controlled protection for reverse-biased emitter-based junction
WO2000050198A1 (fr) * 1999-02-25 2000-08-31 Seiko Epson Corporation Procede d'usinage de pieces par faisceau laser
JP4247017B2 (ja) * 2003-03-10 2009-04-02 浜松ホトニクス株式会社 放射線検出器の製造方法
JP3990347B2 (ja) * 2003-12-04 2007-10-10 ローム株式会社 半導体チップおよびその製造方法、ならびに半導体装置
JP4850392B2 (ja) * 2004-02-17 2012-01-11 三洋電機株式会社 半導体装置の製造方法
JP2005303258A (ja) * 2004-03-16 2005-10-27 Fujikura Ltd デバイス及びその製造方法
JP3897036B2 (ja) 2004-07-27 2007-03-22 株式会社ザイキューブ 半導体集積回路装置およびその製造方法
JP4626254B2 (ja) * 2004-10-12 2011-02-02 パナソニック電工株式会社 貫通孔へのメッキ埋め込み方法及びメッキ装置
JP4803993B2 (ja) * 2004-11-09 2011-10-26 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
KR100877028B1 (ko) * 2005-01-04 2009-01-07 가부시키가이샤 아이스퀘어리서치 고체촬상장치 및 그 제조방법
JP2007184311A (ja) * 2005-12-29 2007-07-19 Sony Corp 固体撮像装置およびその製造方法
JP2008053568A (ja) * 2006-08-25 2008-03-06 Nec Electronics Corp 半導体装置および半導体装置の製造方法
US8013350B2 (en) * 2007-02-05 2011-09-06 Panasonic Corporation Optical device and method for manufacturing optical device, and camera module and endoscope module equipped with optical device
JP2008270668A (ja) * 2007-04-24 2008-11-06 Sharp Corp 固体撮像素子及びその製造方法
JP2008305972A (ja) * 2007-06-07 2008-12-18 Panasonic Corp 光学デバイス及びその製造方法、並びに、光学デバイスを用いたカメラモジュール及び該カメラモジュールを搭載した電子機器
US7791159B2 (en) * 2007-10-30 2010-09-07 Panasonic Corporation Solid-state imaging device and method for fabricating the same
JP4987748B2 (ja) * 2008-02-08 2012-07-25 ソニー株式会社 X−yアドレス型固体撮像素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246475A (ja) * 1999-02-25 2000-09-12 Seiko Epson Corp レーザ光による加工方法
JP2004128063A (ja) * 2002-09-30 2004-04-22 Toshiba Corp 半導体装置及びその製造方法
JP2007067216A (ja) * 2005-08-31 2007-03-15 Sanyo Electric Co Ltd 半導体装置およびその製造方法、回路基板およびその製造方法
JP2007214360A (ja) * 2006-02-09 2007-08-23 Fujitsu Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
US20100148292A1 (en) 2010-06-17
JP2010114320A (ja) 2010-05-20
US8125041B2 (en) 2012-02-28

Similar Documents

Publication Publication Date Title
TWI524512B (zh) Solid state image sensing device and solid state image sensing device
JP5132977B2 (ja) 半導体装置およびその製造方法
WO2010052816A1 (ja) 半導体装置
US7952137B2 (en) Trench semiconductor device and method of making the same
US20130181349A1 (en) Semiconductor device having through-substrate via
TW201106457A (en) Semiconductor device
US9324744B2 (en) Solid-state image sensor having a trench and method of manufacturing the same
JP2008205145A (ja) 半導体装置およびその製造方法
US8928101B2 (en) Semiconductor device
CN103985722B (zh) 半导体装置及其制造方法、以及搭载了半导体装置的系统
US20200343280A1 (en) Semiconductor apparatus and equipment
JP6445799B2 (ja) 光電変換装置
US20160156817A1 (en) Manufacturing method of imaging apparatus, imaging apparatus, and imaging system
US20100207228A1 (en) Solid-state imaging device and method for fabricating the same
JP4017573B2 (ja) ダイオード
JP2007294765A (ja) 半導体装置
JP5925445B2 (ja) 半導体装置
JP2011044622A (ja) 半導体装置
KR20070073235A (ko) 고전압 소자 및 그의 제조방법
JP2004363136A (ja) 半導体回路装置
JP2017120851A (ja) 半導体装置および半導体装置の製造方法
JP2008034503A (ja) 半導体保護素子及び半導体保護素子の製造方法
JP2007305854A (ja) 半導体集積回路装置
JP2016103614A (ja) 半導体装置の製造方法
JP5163212B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824517

Country of ref document: EP

Kind code of ref document: A1