WO2010050330A1 - 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法 - Google Patents

燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法 Download PDF

Info

Publication number
WO2010050330A1
WO2010050330A1 PCT/JP2009/067029 JP2009067029W WO2010050330A1 WO 2010050330 A1 WO2010050330 A1 WO 2010050330A1 JP 2009067029 W JP2009067029 W JP 2009067029W WO 2010050330 A1 WO2010050330 A1 WO 2010050330A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
layer
fuel cell
electrode layer
conductive support
Prior art date
Application number
PCT/JP2009/067029
Other languages
English (en)
French (fr)
Inventor
大樹 村松
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US13/126,735 priority Critical patent/US8722281B2/en
Priority to EP09823443.8A priority patent/EP2355217B1/en
Priority to JP2010535736A priority patent/JP5295262B2/ja
Priority to CN200980142917.2A priority patent/CN102197526B/zh
Publication of WO2010050330A1 publication Critical patent/WO2010050330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1286Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fuel cell, a fuel cell module in which a fuel cell is accommodated in a storage container, a fuel cell device having the fuel cell module, and a method for manufacturing the fuel cell.
  • a cell stack is configured by fixing the cell stack to a manifold for supplying gas to the fuel cell, and the fuel cell module or fuel cell module in which the cell stack device is housed in the housing is placed in the outer case.
  • Various fuel cell devices housed in the container have been proposed.
  • power is generated by supplying fuel gas to the fuel electrode layer side of the fuel cell and supplying oxygen-containing gas (usually air) to the air electrode layer side. It can be carried out.
  • the fuel cell when one end of the fuel cell is covered with alumina, the fuel cell may be damaged due to the difference in thermal expansion coefficient.
  • the present invention provides a fuel battery cell capable of suppressing oxidation at one end of the fuel battery cell, a fuel battery module in which the fuel battery cell is stored in a storage container, and the fuel cell module in an outer case. It is an object of the present invention to provide a fuel cell device housed in a container and a method for producing a fuel cell.
  • the fuel cell according to the present invention is a fuel cell in which a fuel electrode layer is provided on one opposing main surface of the solid electrolyte layer and an air electrode layer is provided on the other main surface, and power is generated with a fuel gas and an oxygen-containing gas.
  • a main component of a silicate containing at least one of the Group 2 elements of the periodic table at least on the fuel electrode layer side of the solid electrolyte layer at one end of the fuel cell It is characterized in that an oxidation-suppressing layer contained as is provided.
  • a silicate containing at least one of group 2 elements of the periodic table is mainly present at one end of the fuel cell at least on the fuel electrode layer side of the solid electrolyte layer.
  • the fuel battery cell of the present invention has a pair of opposed flat portions, a fuel gas passage for circulating fuel gas penetrating the inside in the longitudinal direction, and Ni and Y 2 O 3 .
  • a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are stacked in this order on the flat portion on one side of the columnar conductive support, and an interconnector is stacked on the flat portion on the other side.
  • One end of the fuel battery cell is formed by laminating the fuel electrode layer and the solid electrolyte layer in this order on the conductive support, and the air electrode layer is formed.
  • a non-power generation part, and at least one of the Group 2 elements of the periodic table on at least the conductive support and the fuel electrode layer at one end of the non-power generation part An oxidation control layer containing salt as the main component is provided. It is characterized in that is.
  • At least one of the elements in Group 2 of the periodic table is included on the conductive support and the fuel electrode layer at one end portion of the non-power generation unit where the air electrode layer is not formed. Since the oxidation-suppressing layer containing silicate as a main component is provided, the oxygen-containing gas flowing outside the fuel cell flows backward to oxidize the conductive support and the fuel electrode layer. Can be suppressed (prevented).
  • the oxidation suppression layer is mainly composed of a silicate containing at least one of Group 2 elements of the periodic table, a conductive support containing Ni and Y 2 O 3 ;
  • the coefficient of thermal expansion of the oxidation-suppressing layer can be made closer, and the fuel cell can be prevented from being damaged.
  • an outer peripheral corner portion at one end of the fuel battery cell is chamfered from the outermost surface of the fuel battery cell excluding the oxidation suppression layer to the conductive support. preferable.
  • the end of the conductive support In some cases, thermal stress concentrates and cracks are generated in a part of the oxidation-suppressing layer. Furthermore, this crack extends, and in some cases, the fuel cell may be damaged. In addition, during operation of a fuel cell device that houses a fuel cell, the fuel cell may be damaged even in a fuel cell configured to burn excess fuel gas that has not been used for power generation on one end side. There is.
  • the oxidation suppression layer is provided on the solid electrolyte layer in the non-power generation part and on the interconnector at a position facing the non-power generation part.
  • the oxidation suppression layer is also provided on the solid electrolyte layer in the non-power generation unit and on the interconnector at a position facing the non-power generation unit, the strength at one end of the fuel cell is increased. Can be improved. Thereby, it can suppress that a fuel cell is damaged at the time of manufacture of a fuel cell, or electric power generation.
  • the silicate containing at least one of the Group 2 elements in the periodic table is 85 mol% or more.
  • the silicate containing at least one of Group 2 elements in the periodic table contained in the oxidation suppression layer is 85 mol% or more, the oxidation suppression layer is more dense. The oxidation of the one end part of the fuel cell can be further suppressed.
  • the silicate containing at least one of Group 2 elements of the periodic table is forsterite (Mg 2 SiO 4 ), steatite (MgSiO 3 ), and wallast. it is preferably made of any one of the night (CaSiO 3).
  • the thermal expansion coefficient of each layer constituting the fuel battery cell and the oxidation suppression layer can be brought close to each other, and the damage of the fuel battery cell can be suppressed.
  • the fuel cell module of the present invention is characterized in that a plurality of the fuel cells described above are housed in a housing container.
  • a plurality of fuel cells that can suppress oxidation at one end of the fuel cell as described above are housed in the housing container, so that the fuel with improved reliability can be obtained. It can be a battery module.
  • the fuel cell device includes the fuel cell module described above and an auxiliary machine for operating the fuel cell module in an outer case, so that the fuel cell device has improved reliability. It can be.
  • the method for producing a fuel cell according to the present invention includes a step of preparing a laminate in which at least a fuel electrode layer and a solid electrolyte layer are sequentially laminated, and one end of the laminate is arranged as a group 2 element in the periodic table.
  • a step of immersing in a solution containing a silicate containing at least one kind as a main component, and silicic acid containing at least one of the Group 2 elements of the periodic table on the solid electrolyte layer And a step of laminating and firing the air electrode layer molded body at a site where no salt is applied.
  • an oxidation suppression layer containing, as a main component, a silicate containing at least one of Group 2 elements of the periodic table is formed at one end of the fuel cell. Therefore, it is possible to easily manufacture a fuel cell with improved reliability.
  • a fuel gas flow path having a pair of opposed flat portions and flowing fuel gas penetrating the inside in the longitudinal direction
  • a columnar conductive support molded body comprising Ni and Y 2 O 3, and a fuel electrode layer molded body and a solid on a flat portion on one side of the conductive support molded body
  • At least one conductive portion at one end of a non-power generation portion in which a fuel electrode layer and a solid electrolyte layer are provided on one flat portion of the conductive support and no air electrode layer is provided.
  • An oxidation suppression layer containing, as a main component, a silicate containing at least one of Group 2 elements of the periodic table can be formed on the support and the fuel electrode layer, thereby improving reliability.
  • a fuel cell can be easily produced.
  • the fuel electrode layer and the solid electrolyte layer are laminated in this order on a flat portion on one side of the conductive support, and the other side of the conductive support.
  • chamfering is performed from the outermost surface of the laminate to the conductive support at the corner of the outer periphery at one end of the laminate. It is preferable to include the process to apply.
  • the fuel cell according to the present invention is a fuel cell in which a fuel electrode layer is provided on one opposing main surface of the solid electrolyte layer and an air electrode layer is provided on the other main surface, and power is generated with a fuel gas and an oxygen-containing gas.
  • the fuel battery cell of the present invention has a pair of opposed flat portions, a fuel gas passage for circulating fuel gas penetrating the inside in the longitudinal direction, and Ni and Y 2 O 3 .
  • a fuel electrode layer, a solid electrolyte layer, and an air electrode layer are stacked in this order on the flat portion on one side of the columnar conductive support, and an interconnector is stacked on the flat portion on the other side.
  • One end of the fuel battery cell is formed by laminating the fuel electrode layer and the solid electrolyte layer in this order on the conductive support, and the air electrode layer is formed.
  • a non-power generation part, and at least one of the Group 2 elements of the periodic table on at least the conductive support and the fuel electrode layer at one end of the non-power generation part An oxidation control layer containing salt as the main component is provided. Since being, it is possible to inhibit oxidation in one end of the fuel cell can be a improved fuel cell reliability.
  • the method for producing a fuel cell of the present invention includes a step of preparing a laminate in which at least a fuel electrode layer and a solid electrolyte layer are sequentially laminated, and one end of the laminate is provided as a Group 2 element in the periodic table.
  • the fuel cell which can be produced can be produced easily.
  • FIG. 1 It is a longitudinal cross-sectional view which shows the one end part in the fuel battery cell of this invention.
  • An example of the fuel cell of another example of this invention is shown, (a) is a cross-sectional view, (b) is a perspective view of (a). It is a perspective view in the one end part of the fuel battery cell shown in FIG. It is a longitudinal cross-sectional view in the one end part of the fuel battery cell shown in FIG. It is a longitudinal cross-sectional view which shows the one end part of the fuel cell of another example of this invention. It is a longitudinal cross-sectional view which shows the one end part in the fuel cell of another example of this invention. It is an external appearance perspective view which shows the fuel cell module of this invention. It is the schematic which shows the fuel cell apparatus of this invention roughly.
  • FIG. 1 is a cross-sectional view showing one end portion of the flat fuel cell 1a on the fuel gas discharge side.
  • the same members will be described using the same reference numerals.
  • the fuel electrode layer 3 is formed on one main surface (upper side in FIG. 1) of the solid electrolyte layer 4 and the air electrode layer is formed on the other main surface (lower side in FIG. 1). 4 is provided.
  • the portion of the fuel electrode layer 3 facing (facing) the air electrode layer 5 functions as a power generation unit. That is, an oxygen-containing gas such as air is allowed to flow outside the air electrode layer 5 (the outside of the fuel cell 1), and a fuel gas (hydrogen-containing gas) is allowed to flow to the fuel electrode layer 3 side to heat to a predetermined operating temperature. To generate electricity. The current generated by the power generation is collected via a current collecting member (not shown).
  • a current collecting member not shown.
  • the fuel electrode layer 3 causes an electrode reaction, and is preferably formed of a known porous conductive ceramic.
  • a known porous conductive ceramic For example, it can be formed of ZrO 2 in which a rare earth element is dissolved or CeO 2 in which a rare earth element is dissolved, and Ni and / or NiO.
  • the content of ZrO 2 in which the rare earth element is dissolved in the fuel electrode layer 3 or CeO 2 in which the rare earth element is dissolved is preferably in the range of 35 to 65% by volume, and the content of Ni or NiO is 65 to 65%. It is preferably 35% by volume.
  • the open porosity of the fuel electrode layer 3 is preferably 15% or more, particularly preferably in the range of 20 to 40%, and the thickness thereof is preferably 1 to 30 ⁇ m. For example, if the thickness of the fuel electrode layer 3 is too thin, the performance may be deteriorated, and if it is too thick, peeling due to a difference in thermal expansion may occur between the solid electrolyte layer 4 and the fuel electrode layer 3.
  • the solid electrolyte layer 4 uses a dense ceramic made of partially stabilized or stabilized ZrO 2 containing rare earth elements such as 3 to 15 mol% of Y (yttrium), Sc (scandium), Yb (ytterbium). Is preferred.
  • Y is preferable because it is inexpensive.
  • an LSGM-based solid electrolyte layer 4 containing La (lanthanum), Sr (strontium), Ga (gallium), and Mg (magnesium) may be used.
  • the solid electrolyte layer 4 is desirably a dense material having a relative density (according to Archimedes method) of 93% or more, particularly 95% or more, and a thickness of 1 to 50 ⁇ m. Preferably there is.
  • the air electrode layer 5 is preferably formed of a conductive ceramic made of a so-called ABO 3 type perovskite oxide.
  • a perovskite oxide is preferably a transition metal perovskite oxide, particularly at least one of LaMnO 3 oxide, LaFeO 3 oxide, and LaCoO 3 oxide in which La is present at the A site.
  • LaCoO 3 -based oxides are particularly preferred because of their high electrical conductivity at an operating temperature of about ° C.
  • Sr and Ca may be present together with La at the A site, and Sm (samarium) and Sr may be present instead of La.
  • Fe (iron) and Mn (manganese) may exist together with Co (cobalt) at the B site.
  • the air electrode layer 5 needs to have gas permeability. Therefore, the conductive ceramic (perovskite oxide) forming the air electrode layer 5 has an open porosity of 20% or more, particularly 30 to 50%. It is preferable that it exists in the range. Further, the thickness of the air electrode layer 5 is preferably 30 to 100 ⁇ m from the viewpoint of current collection.
  • an oxygen-containing gas (air or the like) flowing outside the fuel cell 1a is on the fuel electrode layer on one end side (right side in FIG. 1) of the fuel cell 1a.
  • the fuel cell 1a may be damaged by flowing to the side 3 and oxidizing one end of the fuel electrode layer 3.
  • a silicate containing at least one of the Group 2 elements of the periodic table is at least on the fuel electrode layer 3 side of the solid electrolyte layer 4 as a main component.
  • the oxidation suppression layer 10 contained as is provided.
  • the oxidation suppression layer 10 is provided also at the end of the solid electrolyte layer 4 and the end of the air electrode layer 5.
  • the oxygen-containing gas supplied to the air electrode layer 5 flows to the fuel electrode layer 3, the deterioration of the fuel electrode layer 3 can be suppressed, and a flat plate fuel with improved reliability. It can be set as the battery cell 1a.
  • silicate containing at least one of the Group 2 elements of the periodic table, which is the main component of the oxidation suppression layer 10 (hereinafter, may be simply referred to as “silicate”)
  • silicate for example, Forsterite (Mg 2 SiO 4 ), steatite (MgSiO 3 ), akermanite (Ca 2 MgSiO 7 ), diopsite (Ca 2 MgSiO 6 ) containing Mg as a Group 2 element of the periodic table, periodic table Wollastonite (CaSiO 3 ) containing Ca as a Group 2 element, anorsite (CaAl 2 Si 2 O 8 ), gehlenite (Ca 2 Al 2 SiO 7 ), and Ba as a Group 2 element in the periodic table Celsian (BaAl 2 Si 2 O 8 ) and the like can be exemplified, and are selected as appropriate in consideration of the thermal expansion coefficient with each component constituting the fuel cell 1a.
  • Forsterite Mg 2 Si
  • any one of forsterite (Mg 2 SiO 4 ), steatite (MgSiO 3 ), and wollastonite (CaSiO 3 ) is used. It is preferable to use forsterite (Mg 2 SiO 4 ).
  • the oxidation suppression layer 10 is preferably dense so as to efficiently suppress the oxidation of the fuel electrode layer 3. Therefore, the oxidation suppression layer 10 is preferably a dense material having a relative density (according to Archimedes method) of 85% or more, particularly 90% or more. Thereby, it can suppress that the fuel cell 1a (fuel electrode layer 3) oxidizes, and can suppress that the fuel cell 1a is damaged.
  • the oxidation suppression layer 10 preferably contains 85 mol% or more of silicate.
  • the above-mentioned relative density (according to Archimedes method) can be 85% or higher, particularly 90% or higher, and the fuel cell 1a can be prevented from being damaged.
  • Such a flat fuel cell 1a can be manufactured, for example, as follows.
  • a raw material of ZrO 2 (YSZ) in which NiO and Y 2 O 3 are dissolved is weighed and mixed according to a predetermined composition. Thereafter, the mixed powder is mixed with an organic binder and a solvent to prepare a slurry for the fuel electrode layer 3.
  • a slurry obtained by adding water, a binder, a commercially available dispersant, or the like to ZrO 2 powder in which a rare earth element is solid-solubilized is blown off by spray drying or the like, and then press-molded.
  • a slurry for the fuel electrode layer 3 is applied on one main surface of the obtained solid electrolyte layer 4 molded body to form a fuel electrode layer 3 molded body.
  • each of the above steps corresponds to a step of preparing a laminate in which the fuel electrode layer 3 and the solid electrolyte layer 4 are sequentially laminated.
  • an oxidation-inhibiting layer is added to a solution containing 95 wt% or more of a silicate (for example, forsterite) containing at least one of Group 2 elements of the periodic table, a glass component, a solvent, and the like. 10 is dipped to produce an oxidation suppression layer 10 molded body and sintered. In addition, immersion time can be suitably set so that the oxidation suppression layer 10 may become the target thickness.
  • a silicate for example, forsterite
  • a slurry containing a material for the air electrode layer 5 (for example, LaCoO 3 oxide powder), a solvent and a pore-forming agent is applied on the other main surface of the solid electrolyte 4 by dipping or the like, and 1000-1300
  • a flat plate type fuel cell 1a having the structure shown in FIG. 1 can be manufactured.
  • the flat plate type fuel cell 1a in which the oxidation suppression layer 10 is formed at one end on the fuel gas discharge side can be easily manufactured.
  • it can produce suitably by a well-known method based on each structure which comprises the flat type fuel cell 1a.
  • FIG. 2 (a) is a cross-sectional view of a hollow plate type fuel cell 1b
  • FIG. 2 (b) is a perspective view showing a part of the fuel cell 1b in a broken state.
  • (a) has shown the cross section in the electric power generation part mentioned later
  • (b) is a perspective view of the fuel cell 1b fractured
  • each structure of the fuel cell 1b is shown partially enlarged.
  • a fuel cell 1b shown in FIG. 2 has a pair of flat portions (indicated by n in FIG. 2 (a)), and a plurality of fuel gas passages 7 for circulating fuel gas penetrating in the longitudinal direction therein.
  • the fuel electrode layer 3, the solid electrolyte layer 4, and the air electrode layer 5 are laminated in this order on the flat portion n on one side of the conductive support 2.
  • the interconnector 6 is laminated on the flat portion n on the side.
  • the conductive support 2 is composed of a pair of flat portions n and arc-shaped portions m at both ends, and the fuel electrode layer 3 is laminated so as to cover one flat portion n and the arc-shaped portions m at both ends.
  • a dense solid electrolyte layer 4 is laminated so as to cover the fuel electrode layer 3.
  • an air electrode layer 5 is laminated so as to face the fuel electrode layer 3 with an intermediate layer 8 interposed therebetween.
  • An interconnector 6 is laminated on the surface of the other flat portion n where the fuel electrode layer 3 and the solid electrolyte layer 4 are not laminated.
  • the fuel electrode layer 3 and the solid electrolyte layer 4 extend to both sides of the interconnector 6 via arcuate portions m at both ends, and are configured so that the surface of the conductive support 2 is not exposed to the outside. Yes.
  • a portion of the fuel electrode layer 3 facing (opposing) the air electrode layer 5 functions as a power generation unit. That is, an oxygen-containing gas such as air is allowed to flow outside the air electrode layer 5 (outside the fuel battery cell 1b), and a fuel gas (hydrogen-containing gas) is allowed to flow through the fuel gas flow path 7 of the conductive support 2. Power is generated by heating up to the operating temperature. The current generated by the power generation is collected through the interconnector 6 stacked on the conductive support 2.
  • each member which comprises the fuel cell 1b shown in FIG. 2 is demonstrated.
  • Examples of the fuel electrode layer 3, the solid electrolyte layer 4, and the air electrode layer 5 include those shown in the above-described flat plate type fuel cell 1a.
  • the conductive support 2 is required to be gas permeable to allow the fuel gas to permeate to the fuel electrode layer 4 and to be conductive to collect current via the interconnector 6,
  • the conductive support 2 is preferably formed of an iron group metal component and a specific rare earth oxide.
  • the iron group metal component preferably contains Ni and / or NiO because it is inexpensive and stable in the fuel gas, and the rare earth oxide is used for the conductive support 2.
  • the coefficient of thermal expansion close to the coefficient of thermal expansion of the solid electrolyte layer 4, there is almost no solid solution or reaction with Ni and / or NiO, and the coefficient of thermal expansion is almost the same as that of the solid electrolyte layer 4.
  • Y 2 O 3 is preferable because it is inexpensive.
  • Ni: Y 2 O 3 35: 65 to 65:35 in a volume ratio in that the good conductivity of the conductive support 2 is maintained and the thermal expansion coefficient is approximated to that of the solid electrolyte layer 4.
  • the conductive support 2 may contain other metal components and oxide components as long as required characteristics are not impaired.
  • the conductive support 2 needs to have fuel gas permeability, it is usually preferable that the open porosity is 30% or more, particularly 35 to 50%. Further, the conductivity of the conductive support 2 is preferably 300 S / cm or more, particularly preferably 440 S / cm or more.
  • the length of the flat portion n of the conductive support 2 (length in the width direction of the conductive support 2) is usually 15 to 35 mm, and the length of the arc-shaped portion m (arc length) is 2
  • the thickness of the conductive support 2 (thickness between both surfaces of the flat portion n) is preferably 1.5 to 5 mm.
  • the fuel electrode layer 3 and the air electrode layer 5 may be a fuel cell that also serves as the conductive support 2.
  • the fuel electrode layer 3 As the fuel electrode layer 3, the same one as described above can be used. 2A and 2B, the fuel electrode layer 3 extends to both sides of the interconnector 6. However, the fuel electrode layer 3 exists at a position facing the air electrode layer 5 and is present. Therefore, for example, the fuel electrode layer 3 may be formed only in the flat portion n on the side where the air electrode layer 5 is provided.
  • the intermediate layer 8 is interposed between the solid electrolyte layer 4 and the air electrode layer 5 for the purpose of suppressing deterioration of the power generation performance of the fuel cell 1b during long-time power generation.
  • the first layer 8 a for improving the bonding strength with the solid electrolyte layer 4 and a high electric resistance due to the reaction of the components constituting the solid electrolyte layer 4 and the air electrode layer 5. It is preferable to form it from two layers with the 2nd layer 8b for suppressing that a reaction layer is formed.
  • the first layer 8a and the second layer 8b are preferably formed so as to contain the same rare earth element (excluding elements contained in the air electrode layer 5).
  • the thermal expansion coefficients of the first layer 8a and the second layer 8b can be made closer, and the bonding strength between the first layer 8a and the second layer 8b can be improved.
  • the element contained in the air electrode layer 5 is excluded because the component (for example, Zr) contained in the solid electrolyte layer 4 is diffused into the intermediate layer 8 by long-term power generation, This is to effectively suppress the reaction of the component with the component contained in the air electrode layer 5 to form a reaction layer having a high electrical resistance.
  • the raw material powder is, for example, the following formula (1 ): (CeO 2 ) 1-x (REO 1.5 ) x
  • RE is preferably at least one of Sm, Y, Yb, and Gd
  • x preferably has a composition represented by a number satisfying 0 ⁇ x ⁇ 0.3. .
  • CeO 2 in which Sm and Gd are dissolved is preferable, and the raw material powder is represented by the following formula (2): (CeO 2 ) 1-x (SmO 1.5 ) x (3): (CeO 2 ) 1-x (GdO 1.5 ) x
  • x preferably has a composition represented by a number satisfying 0 ⁇ x ⁇ 0.3.
  • the raw material powder contains other rare earth oxides (for example, Y 2 O 3 , Yb 2 O 3, etc.) in order to increase the effect of blocking or suppressing the diffusion of Zr in the solid electrolyte layer 4. You may do it.
  • the other flat portion n of the conductive support 2 has a layer 9 (with a composition similar to that of the fuel electrode layer 3) in order to reduce the difference in thermal expansion coefficient between the interconnector 6 and the conductive support 2.
  • the adhesion layer 9 shows a state in which an adhesion layer 9 is formed between the interconnector 6 and the conductive support 2. That is, the adhesion layer 9 can be composed of ZrO 2 in which a rare earth element is dissolved or CeO 2 in which a rare earth element is dissolved, and Ni and / or NiO. Can be the same or different.
  • the interconnector 6 provided on the conductive support 2 via the adhesion layer 9 at a position facing the air electrode layer 5 is preferably formed of conductive ceramics.
  • conductive ceramics In order to be in contact with a hydrogen-containing gas) and an oxygen-containing gas, it is necessary to have reduction resistance and oxidation resistance. For this reason, lanthanum chromite-based perovskite oxides (LaCrO 3 -based oxides) are generally used as conductive ceramics having reduction resistance and oxidation resistance.
  • Such conductive ceramics must be dense, for example 93% or more In particular, it is preferable to have a relative density of 95% or more.
  • the interconnector 6 can be made of metal in accordance with the shape of the fuel cell.
  • the thickness of the interconnector 6 is preferably 10 to 500 ⁇ m from the viewpoint of preventing gas leakage and electric resistance. If the thickness is smaller than this range, gas leakage is liable to occur. If the thickness is larger than this range, the electric resistance is large, and the current collecting function may be lowered due to a potential drop.
  • a P-type semiconductor layer can be provided on the outer surface (upper surface) of the interconnector 6. By connecting the current collecting member to the interconnector 6 via the P-type semiconductor layer, the contact between the two becomes an ohmic contact, the potential drop can be reduced, and the deterioration of the current collecting performance can be effectively avoided. . Similarly, it is preferable to provide a P-type semiconductor layer also on the upper surface of the air electrode layer 5.
  • a P-type semiconductor layer is a layer made of a perovskite oxide of a transition metal.
  • the thickness of such a P-type semiconductor layer is generally preferably in the range of 30 to 100 ⁇ m.
  • the fuel electrode layer 3 and the solid electrolyte layer 4 are laminated on the conductive support 2 in this order at one end of the fuel cell 1b.
  • 5 is configured as a non-power generation unit in which 5 is not formed.
  • oxygen-containing gas (air or the like) flowing outside the fuel cell 1b flows backward, and a part (one end part side) of the conductive support 2 or one end part side of the fuel electrode layer 3 is The fuel cell 1b may be damaged due to oxidation.
  • At least one of the Group 2 elements in the periodic table is included on at least the conductive support 2 and the fuel electrode layer 3 at one end of the non-power generation unit.
  • An oxidation-suppressing layer 10 containing a silicate as a main component is provided.
  • FIG. 3 is a perspective view of one end portion of the fuel battery cell 1b shown in FIG. 2
  • FIG. 4 is a view along the longitudinal direction of the fuel gas channel 7 at one end portion of the fuel battery cell 1b shown in FIG. It is sectional drawing.
  • the fuel electrode layer 3 and the solid electrolyte layer 4 are laminated in this order on the conductive support 2, and the air electrode layer 5 is not formed.
  • An oxidation suppression layer 10 is provided so as to cover the solid electrolyte layer 4 and the interconnector 6 (that is, the oxidation suppression layer 10 is provided at least on the conductive support 2 and the fuel electrode layer 3.
  • the oxidation suppression layer 10 is provided on the fuel electrode layer 3 side with respect to the solid electrolyte layer 4.
  • the conductive support 2 at the end of the conductive support 2, the conductive support 2.
  • An oxidation suppression layer 10 is provided so as to cover the outer surface.
  • At least one of the Group 2 elements of the periodic table which is the main component of the oxidation suppression layer 10 provided on at least the conductive support 2 and the fuel electrode layer 3 at one end of the non-power generation portion of the fuel cell 1b.
  • the silicate containing the seed the same silicate as described above can be used.
  • forsterite (Mg 2 SiO 4 ) considering the thermal expansion coefficient of the conductive support 2, Any one of steatite (MgSiO 3 ) and wollastonite (CaSiO 3 ) is preferably used, and forsterite (Mg 2 SiO 4 ) is particularly preferably used.
  • the oxidation suppression layer 10 is preferably dense with a relative density (according to Archimedes method) of 85% or more, particularly 90% or more. Thereby, it can suppress that the fuel battery cell 1b oxidizes, and can suppress that the fuel battery cell 1b is damaged.
  • the oxidation suppression layer 10 preferably contains 85 mol% or more of silicate.
  • the above-described relative density accordinging to Archimedes method
  • the fuel cell 1b can be prevented from being damaged.
  • FIG. 5 and FIG. 6 are longitudinal sectional views showing one end portion of another example of the fuel cell of the present invention, and the fuel gas flow path 7 in the longitudinal direction at one end portion of each fuel cell 1c, 1d.
  • FIG. 5 and FIG. 6 are longitudinal sectional views showing one end portion of another example of the fuel cell of the present invention, and the fuel gas flow path 7 in the longitudinal direction at one end portion of each fuel cell 1c, 1d.
  • the above-described hollow plate type fuel cell 1b has a silicate at one end of a laminate in which each layer (for example, fuel electrode layer 3) constituting the fuel cell 1b is laminated on the conductive support 2. This is produced by firing after forming the molded product of the oxidation-suppressing layer 10 comprising as a main component, and thermal stress may occur at one end of the fuel cell 1b due to the heat treatment by firing. Further, in the fuel battery cell 1b configured to burn the surplus fuel gas that has not been used for power generation on the one end side that is the fuel gas discharge side, one end of the fuel cell 1b is burned by burning the surplus fuel gas. Thermal stress may occur in the part. At this time, there is a possibility that a crack occurs in a part of the oxidation suppression layer 10 or the fuel cell 1b is damaged.
  • one end of the fuel cells 1c and 1d shown in FIGS. 5 and 6 is heated by firing or combustion of the fuel gas.
  • the outer peripheral corner portion at one end portion thereof is chamfered from the outermost surface of the fuel cell 1 excluding the oxidation suppression layer 10 to the conductive support 2.
  • the fuel cell 1c shown in FIG. 5 is chamfered from the outermost surface of the fuel cell 1c excluding the oxidation suppression layer 10 to the conductive support 2 at the corner of the outer periphery at one end of the fuel cell 1c.
  • the fuel cell 1d shown in FIG. 6 is a fuel cell excluding the oxidation suppression layer 10 at the corner of the outer periphery at one end of the fuel cell 1d.
  • Chamfering is performed from the outermost surface of 1d to the conductive support 2 so that the shape after chamfering becomes an R-surface shape.
  • an oxidation suppression layer 10 is formed on the outermost surface after chamfering.
  • the oxidation suppression layer 10 is provided so as to cover the solid electrolyte layer 4 and the interconnector 6 (that is, the oxidation suppression layer 10 is provided on at least the conductive support 2 and the fuel electrode layer 3. In other words, the oxidation suppression layer 10 is provided closer to the fuel electrode layer 3 than the solid electrolyte layer 4).
  • the size of the chamfering applied to the corner of the outer periphery at one end can be appropriately set within a range that does not affect the fuel gas flow path 7.
  • the conductive support 2 When the thickness of the conductive support 2 is 2 mm, considering the strength of one end of the conductive support 2 and the like, the end of the fuel gas flow path 7 of the conductive support 2 (the end of the hole of the fuel gas flow path 7) From) to a corner after chamfering is preferably at least 400 ⁇ m.
  • chamfered shape at the corner of the outer periphery at one end of the fuel cell 1b in addition to the above-described C surface shape and R surface shape, a combination of the C surface shape and the R surface shape is generally known.
  • the chamfer shape can be set as appropriate.
  • the fuel cell configured to burn the surplus fuel gas that has not been used for power generation on the one end side that is the fuel gas discharge side
  • power generation is performed on the one end side that is the fuel gas discharge side.
  • the thermal stress accompanying heating is particularly concentrated at one end of the fuel cell, and the fuel cell may be damaged.
  • the oxidation suppression layer 10 is provided on the solid electrolyte layer 4 in the non-power generation part and on the interconnector 6 at the position facing the non-power generation part. ing.
  • one end on the fuel gas discharge side is covered with an oxidation suppression layer 10 containing silicate as a main component.
  • an oxidation suppression layer 10 containing silicate as a main component.
  • the thickness of the oxidation suppression layer 10 can be set as appropriate.
  • the oxidation suppression layer 10 on the end face at one end on the fuel gas discharge side can have a thickness of 50 to 120 ⁇ m.
  • the thickness of the oxidation suppression layer 10 on the conductive support 2 in the fuel gas channel 7 at one end on the discharge side can be set to 30 to 60 ⁇ m.
  • the oxidation suppression layer 10 on the solid electrolyte layer 4 and the interconnector 6 can have a thickness of 20 to 50 ⁇ m.
  • a clay is prepared by mixing Ni or NiO powder, Y 2 O 3 powder, an organic binder, and a solvent, and using this clay, a pair of flat portions and both ends are formed by extrusion molding.
  • a conductive support 2 molded body having an arc-shaped portion is prepared and dried.
  • a calcined body obtained by calcining the conductive support 2 molded body at 900 to 1000 ° C. for 2 to 6 hours may be used.
  • the raw material of ZrO 2 (YSZ) in which NiO and Y 2 O 3 are dissolved, for example, is weighed and mixed according to a predetermined composition. Thereafter, the mixed powder is mixed with an organic binder and a solvent to prepare a slurry for the fuel electrode layer 3.
  • a slurry obtained by adding toluene, a binder, a commercially available dispersant, etc. to a ZrO 2 powder in which a rare earth element is solid-solubilized is molded to a thickness of 3 to 75 ⁇ m by a method such as a doctor blade or the like to form a sheet.
  • a solid electrolyte layer 4 compact is produced.
  • the fuel electrode layer 3 slurry is applied on the obtained sheet-shaped solid electrolyte layer 4 molded body to form a fuel electrode layer 3 molded body, and the surface on the fuel electrode layer 3 molded body side is formed into a conductive support 2.
  • CeO 2 powder in which GdO 1.5 is dissolved is heat-treated at 800 to 900 ° C. for 2 to 6 hours, and then wet pulverized to adjust the coagulation degree to 5 to 35.
  • the raw material powder for layer 8 compact is prepared. In wet crushing, it is desirable to ball mill for 10 to 20 hours using a solvent. The same applies when the intermediate layer 8 is formed of CeO 2 powder in which SmO 1.5 is dissolved.
  • Toluene is added as a solvent to the raw material powder of the intermediate layer 8 molded body whose cohesion degree is adjusted to produce a slurry for the intermediate layer 8, and this slurry is applied to a predetermined position on the solid electrolyte layer 4 molded body.
  • a coating film for the first intermediate layer 8a is formed to produce a molded body of the first layer 8a.
  • a sheet-like first layer 8a molded body may be produced and laminated on the solid electrolyte layer 4 molded body.
  • the raw material of ZrO 2 (YSZ) in which NiO and Y 2 O 3 are dissolved, for example, is weighed and mixed according to a predetermined composition. Thereafter, an organic binder and a solvent are mixed with the mixed powder to prepare a slurry for the adhesion layer 9.
  • a material for the interconnector 6 for example, LaCrO 3 oxide powder
  • an organic binder and a solvent mixed into a slurry is molded by a method such as a doctor blade to form a sheet-like interconnector 6 molded body. create.
  • the fuel electrode layer 3 molded body and the solid electrolyte layer 4 molded body are not formed on the surface on which the slurry for the adhesion layer 9 is applied to one surface of the interconnector 6 molded body and the slurry for the adhesion layer 9 is applied.
  • the conductive support 2 is laminated on the other flat portion of the molded body.
  • each of the above steps corresponds to a step of preparing a stacked body in which the fuel electrode layer 3 and the solid electrolyte layer 4 are sequentially stacked.
  • the slurry for the intermediate layer 8 is applied to the surface of the formed first layer 8a sintered body to produce a second layer 8b molded body.
  • an oxidation-inhibiting layer is added to a solution containing 95 wt% or more of a silicate (for example, forsterite) containing at least one of Group 2 elements of the periodic table, a glass component, a solvent, and the like.
  • a silicate for example, forsterite
  • immersion time can be suitably set so that the oxidation suppression layer 10 may become the target thickness.
  • it can provide by apply
  • the second layer 8b molded body and the oxidation suppression layer 10 molded body are sintered to produce the second layer 8b and the oxidation suppression layer 10.
  • the temperature is preferably 200 ° C. or more lower than the simultaneous sintering temperature of the solid electrolyte layer 4 and the first layer 8a, for example, 1200 ° C. It is preferable to carry out at ⁇ 1400 ° C.
  • the sintering time for fixing the first layer 8a and the second layer 8b can be 2 to 6 hours.
  • a slurry containing a material for the air electrode layer 5 for example, LaCoO 3 oxide powder
  • a solvent for example, a solvent
  • a pore expanding agent is applied onto the intermediate layer 8 (second layer 8b) by dipping or the like.
  • a slurry containing a P-type semiconductor layer material for example, LaCoO 3 oxide powder
  • a solvent if necessary, is applied to a predetermined position of the interconnector 6 by dipping or the like, and is applied at 1000 to 1300 ° C. for 2 to 6 By baking for a time, the fuel cell 1b having the structure shown in FIG. 2 can be manufactured.
  • the fuel cell 1b thereafter causes a hydrogen-containing gas to flow therein to reduce the conductive support 2 and the fuel electrode layer 3. At that time, it is preferable to perform the reduction treatment at 750 to 1000 ° C. for 5 to 20 hours, for example.
  • the conductive support 2 molded body A laminated body in which a fuel electrode layer 3 molded body, a solid electrolyte layer 4 molded body, and a first layer 8a are laminated on one flat portion, and an interconnector 6 molded body is laminated on the other flat portion.
  • chamfering for example, C chamfering, R chamfering, etc.
  • the chamfering can be performed using a leuter, sandpaper, a jig, a surface grinder, or the like.
  • the oxidation suppressing layer 10 is formed on one end portion of the conductive support 2 on the fuel gas discharge side, so that the oxidation of the conductive support 2 can be suppressed and the damage can be suppressed.
  • the fuel cell 1b with improved reliability can be easily manufactured.
  • FIG. 7 is an external perspective view showing an example of the fuel cell module of the present invention (hereinafter sometimes abbreviated as “module”), and the same reference numerals are used for the same components.
  • module the fuel cell module of the present invention
  • FIG. 7 demonstrates using the hollow flat plate type fuel cell 1b mentioned above.
  • the module 11 is arranged in a rectangular parallelepiped storage container 12 with a plurality of hollow flat plate fuel cells 1b as an example of the present invention standing at predetermined intervals, and adjacent fuel cells 1b.
  • a cell stack 14 is configured by being electrically connected in series via a current collecting member (not shown) therebetween, and an insulative bonding material (not shown) such as a glass sealing material is attached to the lower end of the fuel cell 1b.
  • the fuel cell stack device 17 fixed to the manifold 13 is housed in the housing container 12.
  • the reformer 18 for reforming the fuel such as natural gas or kerosene to generate the fuel gas is provided with the cell stack 14 (fuel It is arranged above the battery cell 1).
  • the reformer 18 shown in FIG. 7 includes a vaporization section 16 for vaporizing water and a reforming section 15 including a reforming catalyst, thereby performing efficient steam reforming. Can do.
  • the fuel gas generated by the reformer 18 is supplied to the manifold 13 through the gas flow pipe 19 and is supplied to the fuel gas flow path 7 provided inside the fuel battery cell 1 b via the manifold 13.
  • the fuel cell stack device 17 may include a reformer 18.
  • FIG. 7 shows a state in which a part (front and rear surfaces) of the storage container 12 is removed, and the fuel cell stack device 17 stored inside is taken out rearward.
  • the fuel cell stack device 17 can be slid and stored in the storage container 12.
  • the storage container 12 is disposed between the cell stacks 14 juxtaposed to the manifold 13, and an oxygen-containing gas (oxygen-containing gas) passes through the current collecting member to the side of the fuel cell 1 b.
  • the oxygen-containing gas introduction member 21 is disposed so as to flow from the lower end portion toward the upper end portion.
  • the module 11 since a plurality of the fuel cells 1b as described above are stored in the storage container 12, the module 11 can be improved in reliability.
  • FIG. 8 is an exploded perspective view showing an example of the fuel cell device 21 of the present invention. In FIG. 8, a part of the configuration is omitted.
  • the fuel cell device 21 shown in FIG. 8 divides the interior of the exterior case composed of the columns 22 and the exterior plate 23 by a partition plate 24 and forms a module housing chamber 25 for housing the above-described module 11 on the upper side.
  • the lower side is configured as an auxiliary equipment storage chamber 26 for storing auxiliary equipment for operating the module 11. It should be noted that auxiliary equipment stored in the auxiliary equipment storage chamber 26 is omitted.
  • the partition plate 24 is provided with an air circulation port 27 for allowing the air in the auxiliary machine storage chamber 26 to flow to the module storage chamber 25 side, and a module is formed in a part of the exterior plate 23 constituting the module storage chamber 25.
  • An exhaust port 28 for exhausting the air in the storage chamber 25 is provided.
  • the module 11 in which the fuel cell 1b with improved reliability is stored in the storage container 12 is stored in the module storage chamber 25.
  • the fuel cell device 21 with improved reliability can be obtained.
  • NiO powder having an average particle size of 0.5 ⁇ m and Y 2 O 3 powder having an average particle size of 0.9 ⁇ m were calcined and reduced to a volume ratio of 48% by volume for NiO and 52% by volume for Y 2 O 3.
  • the kneaded material prepared with an organic binder and a solvent was molded by extrusion molding, dried and degreased to prepare a conductive support molded body.
  • Sample No. In No. 1 the volume ratio of the Y 2 O 3 powder after calcination and reduction was 45% by volume for NiO and 55% by volume for Y 2 O 3 .
  • a sheet for a solid electrolyte layer having a thickness of 30 ⁇ m was prepared by a doctor blade method. This solid electrolyte layer sheet was applied onto the coating layer for the fuel electrode layer and dried.
  • Sample No. 2 the particle size of the ZrO 2 powder was 1.0 ⁇ m.
  • the thickness of the solid electrolyte layer sheet was 40 ⁇ m.
  • a slurry for a fuel electrode layer is prepared by mixing a Nir powder having an average particle size of 0.5 ⁇ m, a ZrO 2 powder in which 8 mol% of Y 2 O 3 is dissolved, an organic binder, and a solvent. It was applied to.
  • the solid electrolyte layer sheet coated with the fuel electrode layer slurry was laminated from one flat portion to the other flat portion with the surface coated with the fuel electrode layer slurry applied as the conductive support side.
  • the laminated molded body in which the molded bodies were laminated as described above was calcined at 1000 ° C. for 3 hours after drying.
  • the CeO 2 85 mol%, oxides of other rare earth elements (SmO 1.5 in sample No.1, GdO 1.5 in the samples No.2 ⁇ Sample No.7) one of the 15
  • the composite oxide containing mol% is pulverized with a vibration mill or ball mill using isopropyl alcohol (IPA) as a solvent, calcined at 900 ° C. for 4 hours, pulverized again with a ball mill, and ceramic particles.
  • the intermediate layer raw material powder was obtained.
  • An intermediate layer slurry prepared by adding and mixing an acrylic binder and toluene to this powder was applied on the solid electrolyte layer calcined body of the obtained laminated calcined body by a screen printing method.
  • the 1st layer molded object was produced.
  • a slurry for an adhesion layer in which a NiO powder having an average particle size of 0.5 ⁇ m, a ZrO 2 powder in which 8 mol% of Y 2 O 3 was dissolved, an organic binder, and a solvent were mixed was prepared.
  • an interconnector sheet having a thickness of 30 ⁇ m was prepared by a doctor blade method using an interconnector slurry obtained by mixing a LaCrO 3 oxide, an organic binder, and a solvent.
  • the surface of the interconnector sheet coated with the above-mentioned adhesion layer slurry is coated with the adhesion layer slurry, and the conductive electrode layer molded body and the solid electrolyte layer molded body are not formed. It laminated
  • the laminate in which these layers were laminated was simultaneously fired at 1510 ° C. in the atmosphere for 3 hours.
  • the intermediate layer slurry was applied to the surface of the formed first layer sintered body by a screen printing method to form a second layer film.
  • one end part (one end part of the non-power generation part) of this fuel cell molded body is dipped in a solution containing the main component, glass component and solvent shown in Table 1 to form an oxidation suppression layer molded body.
  • the second layer film and the oxidation suppression layer were sintered at 1300 ° C. for 3 hours.
  • the main components contained in the solution were appropriately adjusted in concentration so that each main component in the oxidation-suppressing layer had the amount shown in Table 1 when the fuel cell was produced.
  • Sample No. 1 the slurry containing the main components shown in Table 1 was applied to the ends of the conductive support 2 and the fuel electrode layer 3 and sintered.
  • a mixed liquid composed of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 powder having an average particle diameter of 2 ⁇ m and isopropyl alcohol was prepared, and an intermediate layer (second layer) of the laminated sintered body was prepared.
  • the air electrode layer formed body is formed and baked at 1100 ° C. for 4 hours to form the air electrode layer, and the fuel cell shown in FIGS. 2, 5, and 6 is manufactured. did.
  • the size of the produced fuel cell is 25 mm ⁇ 200 mm, the diameter of the fuel gas channel is 1 mm, the thickness of the conductive support (thickness between both surfaces of the flat portion n) is 2.5 mm, and the open porosity is 35%.
  • the thickness of the fuel electrode layer was 10 ⁇ m, the open porosity was 24%, the thickness of the air electrode layer was 50 ⁇ m, the open porosity was 40%, the relative density was 97%, and the thickness of the adhesion layer was 20 ⁇ m.
  • the oxidation suppression layer was ZrO 2 in which 8 mol% of Y 2 O 3 was dissolved (hereinafter abbreviated as YSZ and also shown in Table 1). 8 and Sample No. which does not form an oxidation suppression layer. 9 was used.
  • sample No. 1 is a silicate containing Mg as at least one of Group 2 elements of the periodic table on the end faces of the conductive support and the fuel electrode layer in one end portion (non-power generation portion) of the fuel cell.
  • Sample No. 1 provided with an oxidation-suppressing layer containing forsterite (Mg 2 SiO 4 ) as a main component (provided that at least an oxidation-suppressing layer was provided on the conductive support and the fuel electrode layer). 1.
  • Sample No. 1 provided with an oxidation suppression layer containing forsterite as a main component at the entire end portion (one end portion of the non-power generation portion) of the fuel cell 1. 2 and Sample No. 3. Sample No.
  • Sample No. No. 1 was chamfered at the outer peripheral corner at one end on the fuel gas discharge side so that the shape after chamfering was C-surface or R-surface. 6 and sample no. In No. 7, no crack is generated in any oxidation suppression layer, and by performing chamfering, the generation of cracks in the oxidation suppression layer can be effectively suppressed during the production of the fuel cell. all right.
  • a power generation test was carried out by electrically connecting 10 fuel cells thus produced in series via a current collecting member.
  • the fuel gas was circulated through the fuel gas flow path of the fuel cell, the oxygen-containing gas was circulated outside the fuel cell, and heated to 750 ° C. using an electric furnace to generate power for 3 hours.
  • a test was conducted. Thereafter, with a fuel utilization rate of 75%, power is first generated for 10 minutes under conditions of a current density of 0.3 A / cm 2 , the current is stopped for 1 minute after power generation is completed, and then power generation is continued for 10 minutes at a current density of 0.1 A / cm 2. Then, stopping the current for 1 minute after the end of power generation was repeated 1000 hours as one cycle.
  • surplus fuel gas that was not used for power generation was burned on the fuel gas outlet side.
  • the occurrence of peeling at one end is visually confirmed, and the one end is observed with a scanning electron microscope to confirm the occurrence of cracks and breakage. did.
  • sample No. 1 provided with an oxidation suppression layer containing YSZ as a main component was used.
  • No. 8 cracks occurred in 70% of the fuel cells after power generation.
  • Sample No. which does not have an oxidation suppression layer is provided.
  • No. 9 although no crack was generated at the time of manufacturing the fuel cell, it was found that all the fuel cells were cracked during power generation.
  • the silicic acid containing Mg as at least one of Group 2 elements of the periodic table on the conductive support and the fuel electrode layer at one end of the fuel cell (one end of the non-power generation unit) Sample No. provided with an oxidation inhibiting layer 10 containing forsterite (Mg 2 SiO 4 ), which is a salt, as a main component. 1. Sample No. 1 provided with an oxidation suppression layer 10 containing forsterite as a main component at the entire end portion (one end portion of the non-power generation portion) of the fuel cell 1. 2 and Sample No. 3. Sample No.
  • the crack which arises in a fuel battery cell can be suppressed, and the oxidation suppression layer which contains as a main component the silicate which contains at least 1 sort (s) among the periodic table group 2 element It was found that by providing the fuel cell, oxidation or breakage at one end of the fuel cell can be suppressed during power generation of the fuel cell.
  • an oxidation suppressing layer containing as a main component a silicate containing at least one of Group 2 elements of the periodic table was provided.
  • the fuel gas discharge side is chamfered at the outer peripheral corner of the one end so that the shape after chamfering becomes a C surface shape or an R surface shape. It turned out that it can suppress effectively that a crack arises in a battery cell or an oxidation suppression layer.
  • Fuel cell 2 Conductive support 3: Fuel electrode layer 4: Solid electrolyte layer 5: Air electrode layer 6: Interconnector 7: Fuel gas flow path 8: Intermediate layer 10: Oxidation suppression Layer 11: Fuel cell module 20: Fuel cell device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

燃料電池セルの先端部の破損を抑制することができる燃料電池セル、ならびにそれを具備する燃料電池モジュールおよび燃料電池装置を提供する。固体電解質層4の対向する一方の主面に燃料極層3を設けるとともに他方の主面に空気極層5を設けてなり、燃料ガスと酸素含有ガスとで発電する燃料電池セル1であって、燃料電池セル1の一端部における、すくなくとも固体電解質層4よりも燃料極層3側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層10が設けられていることから、一端部の破損や酸化を抑制することができる燃料電池セル1aとすることができる。

Description

燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法
 本発明は、燃料電池セル、収納容器内に燃料電池セルを収納してなる燃料電池モジュールおよびそれを具備する燃料電池装置、ならびに燃料電池セルの製造方法に関する。
 近年、次世代エネルギーとして、水素含有ガス(燃料ガス)と空気(酸素含有ガス)とを用いて電力を得ることができる燃料電池セルを複数個並設して電気的に直列に接続してなるセルスタックを、燃料電池セルにガスを供給するためのマニホールドに固定してセルスタック装置を構成し、そのセルスタック装置を収納容器内に収納してなる燃料電池モジュールや燃料電池モジュールを外装ケース内に収納してなる燃料電池装置が種々提案されている。
 このような燃料電池モジュールや燃料電池装置においては、燃料電池セルの燃料極層側に燃料ガスを供給し、空気極層側に酸素含有ガス(通常は空気である)を供給することにより発電を行うことができる。
 ところで、内側を空気極層とした構成の燃料電池セルにおいて、燃料電池セルの外側を流れる燃料ガスが逆流して、燃料電池セル(空気極層)が破損等するおそれがあることから、空気極層の破損を防止することを目的として、空気極層にジルコニアやアルミナ等のセラミックスからなる緻密質部材を被覆する構造とすることが提案されている(例えば、特許文献1参照)。
 また、燃料電池セルの一端部側で燃料電池セルの発電に用いられなかった余剰の燃料ガスを燃焼させる構成の燃料電池セルにおいて、燃焼熱による先端部の破損を抑制することを目的として、ガス排出口の周囲における多孔質導電性支持体にジルコニアを主成分とする無機成分を含浸させた燃料電池セルが提案されている(例えば、特許文献2参照)。
特開2001-236972号公報 特開2004-259604号公報
 ところで、特許文献1や特許文献2に記載されたように、燃料電池セルの一端部をジルコニアで被覆した場合や、燃料電池セルの一端部にジルコニアを含浸させた場合において、ジルコニアは酸素イオン伝導性を有することから、燃料電池セルの一端部が酸化するおそれがあった。
 また、燃料電池セルの一端部をアルミナで被覆した場合においては、熱膨張率の違いにより燃料電池セルが破損するおそれがあった。
 それゆえ、本発明は、燃料電池セルの一端部における酸化を抑制することが可能な燃料電池セル、その燃料電池セルを収納容器内に収納してなる燃料電池モジュールおよび燃料電池モジュールを外装ケース内に収納してなる燃料電池装置、ならびに燃料電池セルの製造方法を提供することを目的とする。
 本発明の燃料電池セルは、固体電解質層の対向する一方の主面に燃料極層を設けるとともに他方の主面に空気極層を設けてなり、燃料ガスと酸素含有ガスとで発電する燃料電池セルであって、該燃料電池セルの一端部における、少なくとも前記固体電解質層よりも前記燃料極層側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることを特徴とする。
 このような燃料電池セルにおいては、燃料電池セルの一端部における、少なくとも固体電解質層よりも燃料極層側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を設けることにより、燃料電池セルの一端部における酸化を抑制することができ、信頼性の向上した燃料電池セルとすることができる。
 また、本発明の燃料電池セルは、対向する一対の平坦部を有し、内部を長手方向に貫通する燃料ガスを流通させるための燃料ガス流路を有し、NiとYとを含んでなる柱状の導電性支持体の一方側の前記平坦部上に、燃料極層と固体電解質層と空気極層とがこの順に積層され、他方側の前記平坦部上にインターコネクタが積層されてなる燃料電池セルであって、該燃料電池セルの一端部が、前記導電性支持体上に前記燃料極層と前記固体電解質層とがこの順に積層されており前記空気極層が形成されていない非発電部として構成されており、該非発電部の一端部における少なくとも前記導電性支持体上および前記燃料極層上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることを特徴とする。
 このような燃料電池セルにおいては、空気極層が形成されていない非発電部の一端部における導電性支持体上および燃料極層上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることから、燃料電池セルの外側を流れる酸素含有ガスが逆流して、導電性支持体や燃料極層が酸化されることを抑制(防止)することができる。
 また、酸化抑制層が、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分としてなることから、NiとYとを含んでなる導電性支持体と酸化抑制層の熱膨張率を近づけることができ、燃料電池セルが破損することを抑制することができる。
 また、本発明の燃料電池セルは、前記燃料電池セルの一端部における外周の角部が、前記酸化抑制層を除く前記燃料電池セルの最外面から前記導電性支持体にかけて面取りされていることが好ましい。
 上述の燃料電池セルの製造時において、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分とする酸化抑制層を形成する際に、導電性支持体の端部に熱応力が集中し、酸化抑制層の一部にクラックが生じる場合がある。さらには、このクラックが伸展して、場合によっては、燃料電池セルが破損するおそれがある。また、燃料電池セルを収納してなる燃料電池装置の運転時において、一端部側で発電に用いられなかった余剰の燃料ガスを燃焼させる構成の燃料電池セルにおいても、燃料電池セルが破損するおそれがある。
 ここで、燃料電池セルの一端部における外周の角部を、酸化抑制層を除く燃料電池セルの最外面から導電性支持体にかけて面取りすることにより、燃料電池セルの一端部における外周の角部への熱応力集中を緩和することができ、酸化抑制層や燃料電池セルが破損することをさらに抑制することができる。
 また、本発明の燃料電池セルは、前記非発電部における固体電解質層上および前記非発電部と向かい合う位置におけるインターコネクタ上に、前記酸化抑制層が設けられていることが好ましい。
 このような燃料電池セルにおいては、非発電部における固体電解質層上および非発電部と向かい合う位置におけるインターコネクタ上にも酸化抑制層が設けられていることから、燃料電池セルの一端部における強度を向上することができる。それにより、燃料電池セルの製造時や発電時に燃料電池セルが破損することを抑制することができる。
 また、本発明の燃料電池セルは、前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が、85mol%以上であることが好ましい。
 このような燃料電池セルにおいては、酸化抑制層に含有される周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が85mol%以上であることから、酸化抑制層をより緻密質とすることができ、燃料電池セルの一端部の酸化をより抑制することができる。
 また、本発明の燃料電池セルは、前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が、フォルステライト(MgSiO)、ステアタイト(MgSiO)およびワラストナイト(CaSiO)のいずれか一種からなることが好ましい。
 このような燃料電池セルにおいては、燃料電池セルを構成する各層と酸化抑制層の熱膨張率を近づけることができ、燃料電池セルが破損することを抑制することができる。
 本発明の燃料電池モジュールは、収納容器内に、上記のうち何れかに記載の燃料電池セルを複数個収納してなることを特徴とする。
 このような燃料電池モジュールは、収納容器内に、上述したような燃料電池セルの一端部の酸化を抑制することができる燃料電池セルを複数個収納してなることから、信頼性の向上した燃料電池モジュールとすることができる。
 本発明の燃料電池装置は、上記に記載の燃料電池モジュールと、前記燃料電池モジュールを作動させるための補機とを、外装ケース内に収納してなることから、信頼性の向上した燃料電池装置とすることができる。
 本発明の燃料電池セルの製造方法は、少なくとも燃料極層と固体電解質層とが順次積層された積層体を準備する工程と、該積層体の一端部を、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する溶液中に浸漬する工程と、前記固体電解質層上のうち前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が塗布されていない部位に空気極層成形体を積層して焼成する工程とを含むことを特徴とする。
 このような燃料電池セルの製造方法により、燃料電池セルの一端部に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を形成することができ、信頼性の向上した燃料電池セルを容易に作製することができる。
 また、本発明の燃料電池セルの製造方法は、前記積層体を準備する工程として、対向する一対の平坦部を有し、内部を長手方向に貫通する燃料ガスを流通させるための燃料ガス流路を有し、NiとYとを含んでなる柱状の導電性支持体成形体を作製する工程と、該導電性支持体成形体の一方側の平坦部に燃料極層成形体と固体電解質層成形体とをこの順に積層し、前記導電性支持体形成体の他方側の平坦部にインターコネクタ成形体を積層して同時焼成することにより、前記導電性支持体の一方側の平坦部上に前記燃料極層と前記固体電解質層とがこの順に積層され、前記導電性支持体の他方側の平坦部上にインターコネクタが積層された積層体を作製する工程とを含むことを特徴とする。
 このような燃料電池セルの製造方法により、導電性支持体の一方の平坦部に燃料極層と固体電解質層が設けられ、空気極層が設けられていない非発電部の一端部における少なくとも導電性支持体上および燃料極層上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を形成することができ、信頼性の向上した燃料電池セルを容易に作製することができる。
 また、本発明の燃料電池セルの製造方法は、前記導電性支持体の一方側の平坦部上に前記燃料極層と前記固体電解質層とがこの順に積層され、前記導電性支持体の他方側の平坦部上に前記インターコネクタが積層された積層体を作製する工程に続いて、該積層体の一端部における外周の角部に、前記積層体の最外面から前記導電性支持体にかけて面取りを施す工程を含むことが好ましい。
 このような燃料電池セルの製造方法により、燃料電池セルの一端部における外周の角部への熱応力集中を緩和することができ、燃料電池セルの製造時に、酸化抑制層にクラックが生じることを抑制でき、あわせて燃料電池セルが破損することを抑制することができる。
 本発明の燃料電池セルは、固体電解質層の対向する一方の主面に燃料極層を設けるとともに他方の主面に空気極層を設けてなり、燃料ガスと酸素含有ガスとで発電する燃料電池セルであって、該燃料電池セルの一端部における、少なくとも固体電解質層よりも燃料極層側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることから、燃料電池セルの一端部における酸化を抑制することができ、信頼性の向上した燃料電池セルとすることができる。
 また、本発明の燃料電池セルは、対向する一対の平坦部を有し、内部を長手方向に貫通する燃料ガスを流通させるための燃料ガス流路を有し、NiとYとを含んでなる柱状の導電性支持体の一方側の前記平坦部上に、燃料極層と固体電解質層と空気極層とがこの順に積層され、他方側の前記平坦部上にインターコネクタが積層されてなる燃料電池セルであって、該燃料電池セルの一端部が、前記導電性支持体上に前記燃料極層と前記固体電解質層とがこの順に積層されており前記空気極層が形成されていない非発電部として構成されており、該非発電部の一端部における少なくとも前記導電性支持体上および前記燃料極層上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることから、燃料電池セルの一端部における酸化を抑制することができ、信頼性の向上した燃料電池セルとすることができる。
 あわせて、このような燃料電池セルを収納することにより、信頼性の向上した燃料電池モジュールおよび燃料電池装置とすることができる。
 また、本発明の燃料電池セルの製造方法は、少なくとも燃料極層と固体電解質層とが順次積層された積層体を準備する工程と、該積層体の一端部を、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する溶液中に浸漬する工程と、前記固体電解質層上のうち前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が塗布されていない部位に空気極層成形体を積層して焼成する工程とを含むことより、燃料電池セルの一端部の酸化を抑制することができるとともに、破損を抑制することができる燃料電池セルを容易に作製することができる。
本発明の燃料電池セルにおける一端部を示す縦断面図である。 本発明の他の一例の燃料電池セルの一例を示したものであり、(a)は横断面図、(b)は(a)の斜視図である。 図2に示す燃料電池セルの一端部における斜視図である。 図2に示す燃料電池セルの一端部における縦断面図である。 本発明の他の一例の燃料電池セルの一端部を示す縦断面図である。 本発明のさらに他の一例の燃料電池セルにおける一端部を示す縦断面図である。 本発明の燃料電池モジュールを示す外観斜視図である。 本発明の燃料電池装置を概略的に示す概略図である。
 図1は、平板型の燃料電池セル1aにおける燃料ガス排出側の一端部を示す断面図である。なお、以降の説明において、同一の部材については同一の符号を用いて説明するものとする。
 平板型の燃料電池セル1aにおいては、固体電解質層4の対向する一方の主面(図1においては上側)に燃料極層3、他方の主面(図1においては下側)に空気極層4が設けられている。ここで、燃料電池セル1aは、燃料極層3の空気極層5と対面(対向)している部分が発電部として機能する。すなわち、空気極層5の外側(燃料電池セル1の外側)に空気等の酸素含有ガスを流し、かつ燃料極層3側に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。そして、かかる発電によって生じた電流は、集電部材(図示せず)を介して集電される。以下、図1に示す燃料電池セル1を構成する各部材について説明する。
 燃料極層3は、電極反応を生じさせるものであり、それ自体公知の多孔質の導電性セラミックスにより形成されるのが好ましい。例えば、希土類元素が固溶したZrOまたは希土類元素が固溶したCeOと、Niおよび/またはNiOとから形成することができる。
 燃料極層3中の希土類元素が固溶したZrOまたは希土類元素が固溶したCeOの含量は、35~65体積%の範囲にあるのが好ましく、またNiあるいはNiOの含量は、65~35体積%であるのが好ましい。さらに、この燃料極層3の開気孔率は、15%以上、特に20~40%の範囲にあるのが好ましく、その厚みは、1~30μmであるのが好ましい。例えば、燃料極層3の厚みがあまり薄いと性能が低下するおそれがあり、またあまり厚いと固体電解質層4と燃料極層3との間で熱膨張差による剥離等を生じるおそれがある。
 固体電解質層4は、3~15モル%のY(イットリウム)、Sc(スカンジウム)、Yb(イッテルビウム)等の希土類元素を含有した部分安定化あるいは安定化ZrOからなる緻密質なセラミックスを用いるのが好ましい。また、希土類元素としては、安価であるという点からYが好ましい。また、La(ランタン)、Sr(ストロンチウム)、Ga(ガリウム),Mg(マグネシウム)を含んでなるLSGM系の固体電解質層4とすることもできる。さらに、固体電解質層4は、ガス透過を防止するという点から、相対密度(アルキメデス法による)が93%以上、特に95%以上の緻密質であることが望ましく、かつその厚みが1~50μmであることが好ましい。
 空気極層5は、いわゆるABO型のペロブスカイト型酸化物からなる導電性セラミックスにより形成されるのが好ましい。かかるペロブスカイト型酸化物としては、遷移金属ペロブスカイト型酸化物、特にAサイトにLaが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物の少なくとも1種が好ましく、600~1000℃程度の作動温度での電気伝導性が高いという点からLaCoO系酸化物が特に好ましい。なお、上記ペロブスカイト型酸化物においては、AサイトにLaとともにSrやCa(カルシウム)が存在してもよく、またLaに代わって、Sm(サマリウム)やSrが存在しても良い。さらに、Bサイトに、Co(コバルト)とともにFe(鉄)やMn(マンガン)が存在しても良い。
 また、空気極層5は、ガス透過性を有する必要があり、従って、空気極層5を形成する導電性セラミックス(ペロブスカイト型酸化物)は、開気孔率が20%以上、特に30~50%の範囲にあることが好ましい。さらに、空気極層5の厚みは、集電性という点から30~100μmであることが好ましい。
 ところで、このような平板型の燃料電池セル1aにおいては、燃料電池セル1aの一端部側(図1において右側)において、燃料電池セル1aの外側を流れる酸素含有ガス(空気等)が燃料極層3側に流れ、燃料極層3の一端部側が酸化して、燃料電池セル1aが破損するおそれがある。
 それゆえ、図1に示す燃料電池セル1aにおいては、少なくとも固体電解質層4よりも燃料極層3側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層10が設けられている。なお、図1に示す燃料電池セル1aにおいては固体電解質層4の端部と空気極層5の端部側にも酸化抑制層10が設けられている。
 それにより、空気極層5側に供給される酸素含有ガスが燃料極層3に流れた場合であっても、燃料極層3が劣化することを抑制でき、信頼性の向上した平板型の燃料電池セル1aとすることができる。
 ここで、酸化抑制層10の主成分である周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩(以下、単にケイ酸塩と略す場合がある。)としては、例えば、周期律表第2族元素としてMgを含有するフォルステライト(MgSiO)、ステアタイト(MgSiO)、アケルマナイト(CaMgSiO)、ディオプサイト(CaMgSiO)や、周期律表第2族元素としてCaを含有するワラストナイト(CaSiO)、アノーサイト(CaAlSi)、ゲーレナイト(CaAlSiO)、周期律表第2族元素としてBaを含有するセルシアン(BaAlSi)等を例示することができ、燃料電池セル1aを構成する各構成との熱膨張係数等を考慮して適宜選択して用いることが好ましい。特には、燃料極層3や固体電解質層4の熱膨張係数を考慮して、フォルステライト(MgSiO)、ステアタイト(MgSiO)およびワラストナイト(CaSiO)のいずれか一種を用いることが好ましく、特にはフォルステライト(MgSiO)を用いることが好ましい。
 また、酸化抑制層10は、燃料極層3の酸化を効率よく抑制すべく、緻密質とすることが好ましい。それゆえ、酸化抑制層10は、相対密度(アルキメデス法による)が85%以上、特に90%以上の緻密質であることが好ましい。それにより、燃料電池セル1a(燃料極層3)が酸化することを抑制でき、燃料電池セル1aが破損することを抑制できる。
 具体的には、酸化抑制層10はケイ酸塩を85mol%以上含有することが好ましい。それにより、上述した相対密度(アルキメデス法による)が85%以上、特に90%以上の緻密質とすることができ、燃料電池セル1aが破損することを抑制できる。
 このような平板型の燃料電池セル1aは、例えば、以下のようにして作製することができる。
 まず、例えば所定の調合組成に従いNiO、Yが固溶したZrO(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して燃料極層3用スラリーを調製する。
 次に、希土類元素が固溶したZrO粉末に、水、バインダー、市販の分散剤等を加えてスラリー化したものを、スプレードライ法等にて水をとばした後、プレス成形する。得られた固体電解質層4成形体の一方の主面上に燃料極層3用スラリーを塗布して燃料極層3成形体を形成する。
 次いで、上記の積層成形体を脱バインダー処理し、酸素含有雰囲気中、1400~1600℃にて2~6時間、同時焼結(同時焼成)する。このような燃料電池セル1aの作製方法においては、上述の各工程が、燃料極層3と固体電解質層4とが順次積層された積層体を準備する工程に相当する。
 続いて、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩(例えば、フォルステライト等)95wt%以上と、ガラス成分と、溶媒等とを含有する溶液に、酸化抑制層10を設ける部位を浸漬して、酸化抑制層10成形体を作製し、焼結する。なお、浸漬時間は酸化抑制層10が目的とする厚みとなるように適宜設定することができる。
 続いて、空気極層5用材料(例えば、LaCoO系酸化物粉末)、溶媒及び増孔剤を含有するスラリーをディッピング等により固体電解質4の他方の主面上に塗布して、1000~1300℃で、2~6時間焼き付けることにより、図1に示す構造の平板型の燃料電池セル1aを製造できる。
 上述の方法により、燃料ガス排出側の一端部に酸化抑制層10が形成された平板型の燃料電池セル1aを容易に作製することができる。なお、平板型の燃料電池セル1aを構成する各構成に基づき、適宜公知の方法にて作製することができる。
 図2(a)は中空平板型の燃料電池セル1bの横断面を示し、(b)は燃料電池セル1bの一部を破断して示す斜視図である。なお、(a)は後述する発電部での横断面を示しており、(b)は発電部で破断した燃料電池セル1bの斜視図である。また、両図面において、燃料電池セル1bの各構成を一部拡大等して示している。
 図2に示す燃料電池セル1bは、一対の平坦部(図2(a)においてnで示す)を有し、内部に長手方向に貫通する燃料ガスを流通させるための複数の燃料ガス流路7を有する柱状の導電性支持体2を備え、この導電性支持体2の一方側の平坦部n上に、燃料極層3と固体電解質層4と空気極層5とがこの順に積層され、他方側の平坦部n上にインターコネクタ6が積層されて構成されている。
 より詳細には、導電性支持体2は一対の平坦部nと両端の弧状部mとから構成され、一方の平坦部nと両端の弧状部mを覆うように燃料極層3が積層され、この燃料極層3を覆うように、緻密質な固体電解質層4が積層されている。また、固体電解質層4の上には、中間層8を介して、燃料極層3と対面するように空気極層5が積層されている。また、燃料極層3および固体電解質層4が積層されていない他方の平坦部nの表面には、インターコネクタ6が積層されている。なお燃料極層3および固体電解質層4は、両端の弧状部mを経由してインターコネクタ6の両サイドにまで延びており、導電性支持体2の表面が外部に露出しないように構成されている。
 ここで、図2に示す燃料電池セル1bは、燃料極層3の空気極層5と対面(対向)している部分が発電部として機能する。すなわち、空気極層5の外側(燃料電池セル1bの外側)に空気等の酸素含有ガスを流し、かつ導電性支持体2の燃料ガス流路7に燃料ガス(水素含有ガス)を流し、所定の作動温度まで加熱することにより発電する。そして、かかる発電によって生じた電流は、導電性支持体2上に積層されたインターコネクタ6を介して集電される。以下、図2に示す燃料電池セル1bを構成する各部材について説明する。なお、燃料極層3、固体電解質層4および空気極層5については、上述の平板型の燃料電池セル1aで示したものを例示できる。
 導電性支持体2は、燃料ガスを燃料極層4まで透過させるためにガス透過性であること、インターコネクタ6を介して集電を行なうために導電性であることが要求されることから、例えば、鉄族金属成分と特定の希土類酸化物とにより形成されることが好ましい。具体的には、鉄族金属成分としては、安価であることおよび燃料ガス中で安定であることから、Niおよび/またはNiOを含有することが好ましく、希土類酸化物は、導電性支持体2の熱膨張係数を固体電解質層4の熱膨張係数に近づけるために用いられ、Niおよび/またはNiOとの固溶、反応が殆どなく、また、熱膨張係数が固体電解質層4と殆ど同程度であり、かつ安価であるという点から、Yが好ましい。
 また、導電性支持体2の良好な導電率を維持し、かつ熱膨張係数を固体電解質層4と近似させるという点で、Ni:Y=35:65~65:35の体積比で存在することが好ましい。なお、導電性支持体2中には、要求される特性が損なわれない限りの範囲で、他の金属成分や酸化物成分を含有していてもよい。
 また、導電性支持体2は、燃料ガス透過性を有していることが必要であるため、通常、開気孔率が30%以上、特に35~50%の範囲にあることが好ましい。また、導電性支持体2の導電率は、300S/cm以上、特に440S/cm以上であることが好ましい。
 なお、導電性支持体2の平坦部nの長さ(導電性支持体2の幅方向の長さ)は、通常、15~35mm、弧状部mの長さ(弧の長さ)は、2~8mmであり、導電性支持体2の厚み(平坦部nの両面間の厚み)は1.5~5mmであることが好ましい。
 また、燃料電池セルの形状によっては、燃料極層3や空気極層5が導電性支持体2を兼ねる燃料電池セルとしてもよい。
 燃料極層3としては、上述と同じものを用いることができる。なお、図2(a)および(b)の例では、燃料極層3は、インターコネクタ6の両サイドにまで延びているが、空気極層5に対面する位置に存在して燃料極層3が形成されていればよいため、例えば空気極層5が設けられている側の平坦部nにのみ燃料極層3が形成されていてもよい。
 図2に示す燃料電池セル1bにおいては、固体電解質層4と空気極層5との間に、長時間の発電における燃料電池セル1bの発電性能の劣化を抑制することを目的として、中間層8を設けることもできる。なお、中間層8を設けるにあたっては、固体電解質層4との接合強度を向上させるための第1の層8aと、固体電解質層4や空気極層5を構成する成分の反応により電気抵抗の高い反応層が形成されることを抑制するための第2の層8bとの2層から形成することが好ましい。
 具体的には、第1の層8aと第2の層8bとは、同一の希土類元素(空気極層5に含有される元素を除く)を含有するように形成することが好ましく、それにより、第1の層8aと第2の層8bとの熱膨張係数を近づけることができ、第1の層8aと第2の層8bとの接合強度を向上することができる。なお、ここで、空気極層5に含有される元素を除くこととしたのは、長期間の発電により固体電解質層4中に含有される成分(例えばZr等)が中間層8に拡散し、その成分が空気極層5に含有される成分と反応して、電気抵抗の高い反応層が形成されることを有効に抑制するためである。
 そして、そのような同一希土類元素としては、例えばCe(セリウム)が挙げられ、特には、第1の層8aおよび第2の層8bを作製するにあたり、その原料粉末は、例えば、下記式
(1):(CeO1-x(REO1.5
(1)式中、REはSm、Y、Yb、Gdの少なくとも1種であり、xは0<x≦0.3を満足する数である
で表される組成を有していることが好ましい。さらには、SmやGdが固溶したCeOであることが好ましく、その原料粉末は、下記式
(2):(CeO1-x(SmO1.5
(3):(CeO1-x(GdO1.5
(2)、(3)式中xは0<x≦0.3を満足する数である
で表される組成を有していることが好ましい。
 またさらに、電気抵抗を低減するという点から、10~20モル%のSmO1.5またはGdO1.5が固溶したCeOからなることが好ましい。なお、この原料粉末に、固体電解質層4のZrの拡散を遮断または抑制する効果を高くするために、他の希土類元素の酸化物(例えば、Y、Yb等)を含有しても良い。
 一方、導電性支持体2の他方の平坦部nには、インターコネクタ6と導電性支持体2との間の熱膨張係数差を軽減するために燃料極層3と類似する組成の層9(以下、密着層9という場合がある)。を設けることができ、図2においてはインターコネクタ6と導電性支持体2との間に、密着層9を形成した状態を示している。すなわち、密着層9は、希土類元素が固溶したZrOまたは希土類元素が固溶したCeOと、Niおよび/またはNiOとから構成することができ、Niおよび/またはNiO量を燃料極層3と同じ割合とするほか、異なる割合とすることもできる。
 そして、上記の空気極層5と向かい合う位置において、密着層9を介して導電性支持体2上に設けられているインターコネクタ6は、導電性セラミックスにより形成されるのが好ましいが、燃料ガス(水素含有ガス)および酸素含有ガスと接触するため、耐還元性、耐酸化性を有していることが必要である。このため、耐還元性、耐酸化性を有する導電性セラミックスとしては、一般に、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が使用される。また、導電性支持体2の内部を通る燃料ガスおよび導電性支持体2の外部を通る酸素含有ガスのリークを防止するため、かかる導電性セラミックスは緻密質でなければならず、例えば93%以上、特に95%以上の相対密度を有していることが好適である。なお、インターコネクタ6は燃料電池セルの形状にあわせて、金属製とすることもできる。
 また、インターコネクタ6の厚みは、ガスのリーク防止と電気抵抗という点から、10~500μmであることが好ましい。この範囲よりも厚みが薄いと、ガスのリークを生じやすく、またこの範囲よりも厚みが大きいと、電気抵抗が大きく、電位降下により集電機能が低下してしまうおそれがある。
 なお、図には示していないが、インターコネクタ6の外面(上面)には、P型半導体層を設けることもできる。集電部材を、P型半導体層を介してインターコネクタ6に接続させることにより、両者の接触がオーム接触となり、電位降下を少なくでき、集電性能の低下を有効に回避することが可能となる。なお、同様に空気極層5の上面にもP型半導体層を設けることが好ましい。
 このようなP型半導体層としては、遷移金属のペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ6を構成するランタンクロマイト系のペロブスカイト酸化物(LaCrO)よりも電子伝導性の高いもの、例えばAサイトにSrとLaが共存するLaSrCoFeO系酸化物(例えばLaSrCoFeO)、LaMnO系酸化物(例えばLaSrMnO)、LaFeO系酸化物(例えばLaSrFeO)、LaCoO系酸化物(例えばLaSrCoO)の少なくとも1種から構成することが好ましく、特に600~1000℃程度の作動温度での電気伝導性が高いという点からLaSrCoFeO系酸化物から構成することが特に好ましい。このようなP型半導体層の厚みは、一般に、30~100μmの範囲にあることが好ましい。
 ところで、図2に示した燃料電池セル1bにおいては、燃料電池セル1bの一端部が、導電性支持体2上に燃料極層3と固体電解質層4とがこの順に積層されており空気極層5が形成されていない非発電部として構成されている。
 このような非発電部においては、燃料電池セル1bの外側を流れる酸素含有ガス(空気等)が逆流し、導電性支持体2の一部(一端部側)や燃料極層3の一端部側が酸化して、燃料電池セル1bが破損するおそれがある。
 それゆえ、図2に示す燃料電池セル1bにおいては、非発電部の一端部における少なくとも導電性支持体2上および燃料極層3上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層10が設けられている。
 図3は、図2で示した燃料電池セル1bの一端部における斜視図であり、図4は、図2で示した燃料電池セル1bの一端部において燃料ガス流路7で長手方向に沿った断面図である。
 図3に示した燃料電池セル1bにおいては、導電性支持体2上に燃料極層3と固体電解質層4とがこの順に積層されており空気極層5が形成されていない非発電部において、固体電解質層4とインターコネクタ6とを覆うように酸化抑制層10が設けられており(すなわち、少なくとも導電性支持体2上および燃料極層3上に酸化抑制層10が設けられている。言い換えれば、固体電解質層4よりも燃料極層3側に酸化抑制層10が設けられている。)、また図4に示すように、導電性支持体2の端部においては、導電性支持体2の外面を覆うように酸化抑制層10が設けられている。
 なお、燃料電池セル1bの非発電部の一端部における少なくとも導電性支持体2上および燃料極層3上に設けられる酸化抑制層10の主成分である周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩としては、上述と同じものを用いることができる。特に、NiとYとを含んでなる導電性支持体2を有する燃料電池セル1bにおいては、導電性支持体2の熱膨張係数を考慮して、フォルステライト(MgSiO)、ステアタイト(MgSiO)およびワラストナイト(CaSiO)のいずれか一種を用いることが好ましく、特にはフォルステライト(MgSiO)を用いることが好ましい。また、同様に酸化抑制層10は、相対密度(アルキメデス法による)が85%以上、特に90%以上の緻密質であることが好ましい。それにより、燃料電池セル1bが酸化することを抑制でき、燃料電池セル1bが破損することを抑制できる。
 具体的には、酸化抑制層10はケイ酸塩を85mol%以上含有することが好ましい。それにより、上述した相対密度(アルキメデス法による)が85%以上、特に90%以上の緻密質とすることができ、燃料電池セル1bが破損することを抑制できる。
 図5および図6は、それぞれ本発明の他の一例の燃料電池セルの一端部を示す縦断面図であり、それぞれの燃料電池セル1c,1dの一端部において燃料ガス流路7で長手方向に沿った断面図である。
 上述した中空平板型の燃料電池セル1bは、導電性支持体2上に、燃料電池セル1bを構成する各層(例えば、燃料極層3等)を積層した積層体の一端部に、ケイ酸塩を主成分としてなる酸化抑制層10成形体を設けた後、焼成することにより作製されるが、この焼成による熱処理により、燃料電池セル1bの一端部に熱応力が生じる場合がある。また、燃料ガス排出側である一端部側で発電に用いられなかった余剰の燃料ガスを燃焼させる構成の燃料電池セル1bにおいては、余剰の燃料ガスを燃焼させることにより、燃料電池セル1bの一端部に熱応力が生じる場合がある。この際、酸化抑制層10の一部にクラックが生じる場合や、燃料電池セル1bが破損するおそれがある。
 それゆえ、図5および図6に示す燃料電池セル1c,1dにおいては、燃料電池セル1c,1dの一端部、特には燃料ガス排出側である一端部は、焼成や燃料ガスの燃焼等による熱応力を緩和することができるよう、その一端部における外周の角部が、酸化抑制層10を除く燃料電池セル1の最外面から導電性支持体2にかけて面取りされている形状とすることが好ましい。
 ここで、図5に示す燃料電池セル1cは、燃料電池セル1cの一端部における外周の角部に、酸化抑制層10を除く燃料電池セル1cの最外面から導電性支持体2にかけて、面取り後の形状がC面形状となるような面取りが施されており、図6に示す燃料電池セル1dは、燃料電池セル1dの一端部における外周の角部に、酸化抑制層10を除く燃料電池セル1dの最外面から導電性支持体2にかけて、面取り後の形状がR面形状となるような面取りが施されている。なお、図5および図6に示しているように、それぞれの面取り後の最外面には、酸化抑制層10が形成されている。すなわち酸化抑制層10は、固体電解質層4とインターコネクタ6を覆うように設けられている(すなわち、少なくとも導電性支持体2上および燃料極層3上に酸化抑制層10が設けられている。言い換えれば、固体電解質層4よりも燃料極層3側に酸化抑制層10が設けられている。)。
 それにより、燃料ガス排出側である一端部における外周の角部への熱応力集中を緩和することができ、燃料電池セル1c、1dの製造時において、酸化抑制層10にクラックが生じることを抑制できる。それにより、燃料電池セル1c、1dの作製時や燃料電池セル1c、1dを収納してなる燃料電池装置の運転時に、燃料電池セル1c、1dが破損することをさらに抑制することができる。
 なお、燃料電池セル1cまたは1dにおいて、一端部における外周の角部に施す面取りの大きさとしては、燃料ガス流路7にかからない範囲で適宜設定することができるが、例えば、導電性支持体2の厚みが2mmの場合においては、導電性支持体2の一端部の強度等を考慮して、導電性支持体2の燃料ガス流路7の端部から(燃料ガス流路7の孔の端から)面取りの後の角部までの長さが少なくとも400μm以上となる大きさとすることが好ましい。
 また、燃料電池セル1bの一端部における外周の角部における面取り形状としては、上述のC面形状、R面形状の他、C面形状とR面形状の組み合わせ等、一般的に知られている面取り形状を、適宜設定することができる。
 さらに、上述したように、燃料ガス排出側である一端部側で発電に用いられなかった余剰の燃料ガスを燃焼させる構成の燃料電池セルにおいては、燃料ガス排出側である一端部側で発電に用いられなかった余剰の燃料ガスを燃焼させることにより、燃料電池セルの一端部に加熱に伴う熱応力が特に集中し、燃料電池セルが破損するおそれがある。
 それゆえ、図3~図6に示した中空平板型の燃料電池セルにおいては、非発電部における固体電解質層4上および非発電部と向かい合う位置におけるインターコネクタ6上に、酸化抑制層10を設けている。
 すなわち、燃料ガス排出側である一端部がケイ酸塩を主成分として含有する酸化抑制層10により被覆されている。それにより、燃料ガス排出側である一端部の厚みを厚くすることができ、それに伴い燃料ガス排出側である一端部の強度を向上することができ、余剰の燃料ガスを燃焼させて生じる燃焼熱による燃料電池セルの破損を抑制することができる。
 なお、酸化抑制層10は、その厚みを適宜設定することができ、例えば、燃料ガス排出側である一端部における端面の酸化抑制層10はその厚みを50~120μmとすることができ、燃料ガス排出側である一端部における燃料ガス流路7内における導電性支持体2上の酸化抑制層10は、その厚みを30~60μmとすることができる。なお、この場合においては、固体電解質層4上およびインターコネクタ6上の酸化抑制層10は、その厚みを20~50μmとすることができる。それにより、燃料ガス排出側である一端部における導電性支持体2の酸化を抑制することができるとともに、燃料ガス排出側である一端部の強度を向上することができ、燃料電池セルの破損を抑制することができる。
 以上説明した本発明の一例である中空平板型の燃料電池セル1bの製法について説明する。なお、説明において中間層8を第1の層8aと第2の層8bの2層にて形成する場合を示す。
 先ず、NiまたはNiOの粉末と、Yの粉末と、有機バインダーと、溶媒とを混合して坏土を調製し、この坏土を用いて押出成形により、一対の平坦部と両端の弧状部を有する導電性支持体2成形体を作製し、これを乾燥する。なお、導電性支持体2成形体として、導電性支持体2成形体を900~1000℃にて2~6時間仮焼した仮焼体を用いてもよい。
 次に、例えば所定の調合組成に従いNiO、Yが固溶したZrO(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して燃料極層3用スラリーを調製する。
 さらに、希土類元素が固溶したZrO粉末に、トルエン、バインダー、市販の分散剤等を加えてスラリー化したものをドクターブレード等の方法により、3~75μmの厚さに成形してシート状の固体電解質層4成形体を作製する。得られたシート状の固体電解質層4成形体上に燃料極層3用スラリーを塗布して燃料極層3成形体を形成し、この燃料極層3成形体側の面を導電性支持体2成形体の一方側の平坦部から両方の弧状部にかけて積層する。なお、他方側の平坦部の一部にまで積層してもよい。
 続いて、例えば、GdO1.5が固溶したCeO粉末を800~900℃にて2~6時間、熱処理を行い、その後、湿式解砕して凝集度を5~35に調整し、中間層8成形体用の原料粉末を調整する。湿式解砕は溶媒を用いて10~20時間ボールミルすることが望ましい。なお、中間層8をSmO1.5が固溶したCeO粉末より形成する場合も同様である。
 凝集度が調製された中間層8成形体の原料粉末に、溶媒としてトルエンを添加し、中間層8用スラリーを作製し、このスラリーを固体電解質層4成形体上の所定の位置に塗布して第1の中間層8aの塗布膜を形成し、第1の層8a成形体を作製する。なお、シート状の第1の層8a成形体を作製し、これを固体電解質層4成形体上に積層してもよい。
 次に、例えば所定の調合組成に従いNiO、Yが固溶したZrO(YSZ)の素原料を秤量、混合する。この後、混合した粉体に、有機バインダーおよび溶媒を混合して密着層9用スラリーを調製する。
 続いて、インターコネクタ6用材料(例えば、LaCrO系酸化物粉末)、有機バインダーおよび溶媒を混合してスラリー化したものをドクターブレード等の方法により成形してシート状のインターコネクタ6成形体を作成する。
 インターコネクタ6成形体の一方側表面に、密着層9用スラリーを塗布し、その密着層9用スラリーを塗布した面を、燃料極層3成形体および固体電解質層4成形体が形成されていない導電性支持体2成形体の他方側の平坦部に積層する。
 次いで、上記の積層成形体を脱バインダー処理し、酸素含有雰囲気中、1400~1600℃にて2~6時間、同時焼結(同時焼成)する。このような燃料電池セル1bの作製方法においては、上述の各工程が、燃料極層3と固体電解質層4とが順次積層された積層体を準備する工程に相当する。
 その後、形成された第1の層8a焼結体の表面に上記中間層8用スラリーを塗布して第2の層8b成形体を作製する。
 続いて、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩(例えば、フォルステライト等)95wt%以上と、ガラス成分と、溶媒等とを含有する溶液に、酸化抑制層10を設ける部位を浸漬して、酸化抑制層10成形体を作製する。なお、浸漬時間は酸化抑制層10が目的とする厚みとなるように適宜設定することができる。なお、導電性支持体2の端部にのみ酸化抑制層10を設ける場合には、酸化抑制層10の原料(スラリー)を導電性支持体2の端部にのみ塗布することにより設けることができる。
 次いで、第2の層8b成形体と酸化抑制層10成形体とを焼結して、第2の層8bと酸化抑制層10とを作製する。なお、第2の層8b成形体と酸化抑制層10とを焼結するにあたって、固体電解質層4と第1の層8aとの同時焼結温度より、200℃以上低いことが好ましく、例えば1200℃~1400℃で行うことが好ましい。なお、第1の層8aと第2の層8bとを固着させるための焼結時間としては、2~6時間とすることができる。
 続いて、空気極層5用材料(例えば、LaCoO系酸化物粉末)、溶媒及び増孔剤を含有するスラリーをディッピング等により中間層8(第2の層8b)上に塗布する。また、インターコネクタ6の所定の位置に、必要によりP型半導体層材料(例えば、LaCoO系酸化物粉末)と溶媒を含むスラリーを、ディッピング等により塗布し、1000~1300℃で、2~6時間焼き付けることにより、図2に示す構造の燃料電池セル1bを製造できる。なお、燃料電池セル1bは、その後、内部に水素含有ガスを流し、導電性支持体2および燃料極層3の還元処理を行なうのが好ましい。その際、たとえば750~1000℃にて5~20時間還元処理を行なうのが好ましい。
 なお、燃料電池セル1bの燃料ガス排出側である一端部における外周の角部に、酸化抑制層10を除く最外面から導電性支持体2にかけて面取りを施すにあたっては、導電性支持体2成形体の一方側の平坦部上に、燃料極層3成形体、固体電解質層4成形体、第1の層8aを積層し、他方側の平坦部上にインターコネクタ6成形体が積層された積層体を焼結した後に、積層体の最外面から導電性支持体2にかけて面取り加工(例えば、C面取り加工、R面取り加工等)することができる。なお、面取り加工は、リューターや、サンドペーパー、あるいは治具や、平面研削機などを用いて加工することができる。
 以上のような製造方法により、導電性支持体2の燃料ガス排出側である一端部に酸化抑制層10を形成し、導電性支持体2の酸化を抑制するとともに、破損を抑制できすることができ、信頼性の向上した燃料電池セル1bを容易に作製することができる。
 図7は、本発明の燃料電池モジュールの一例を示す(以下、モジュールと略す場合がある)の外観斜視図であり、同一の構成については同一の符号を用いるものとする。なお、燃料電池セルとしては、上述した中空平板型の燃料電池セル1bを用いて説明する。
 モジュール11は、直方体状の収納容器12の内部に、本発明の一例である中空平板型の燃料電池セル1bを複数立設させた状態で所定間隔をおいて配列し、隣接する燃料電池セル1b間に集電部材(図示せず)を介して電気的に直列に接続してセルスタック14を構成するとともに、燃料電池セル1bの下端をガラスシール材等の絶縁性接合材(図示せず)でマニホールド13に固定してなる燃料電池セルスタック装置17を収納容器12に収納して構成されている。
 図7においては、燃料電池セル1bの発電で使用する燃料ガスを得るために、天然ガスや灯油等の燃料を改質して燃料ガスを生成するための改質器18をセルスタック14(燃料電池セル1)の上方に配置している。なお、図7に示した改質器18は、水を気化するための気化部16と改質触媒を備える改質部15とを具備しており、それにより効率の良い水蒸気改質を行うことができる。そして、改質器18で生成された燃料ガスは、ガス流通管19によりマニホールド13に供給され、マニホールド13を介して燃料電池セル1bの内部に設けられた燃料ガス流路7に供給される。なお、燃料電池セルスタック装置17は改質器18を含むものとしてもよい。
 なお、図7においては、収納容器12の一部(前後面)を取り外し、内部に収納される燃料電池セルスタック装置17を後方に取り出した状態を示している。ここで、図7に示したモジュール11においては、燃料電池セルスタック装置17を、収納容器12内にスライドして収納することが可能である。
 なお、収納容器12の内部には、マニホールド13に並置されたセルスタック14の間に配置され、酸素含有ガス(酸素含有ガス)が集電部材の内部を介して燃料電池セル1bの側方を下端部から上端部に向けて流れるように、酸素含有ガス導入部材21が配置されている。
 このようなモジュール11においては、収納容器12内に、上述したような燃料電池セル1bを複数個収納してなることから、信頼性の向上したモジュール11とすることができる。
 図8は、本発明の燃料電池装置21の一例を示す分解斜視図である。なお、図8においては一部構成を省略して示している。
 図8に示す燃料電池装置21は、支柱22と外装板23から構成される外装ケース内を仕切板24により上下に区画し、その上方側を上述したモジュール11を収納するモジュール収納室25とし、下方側をモジュール11を動作させるための補機類を収納する補機収納室26として構成されている。なお、補機収納室26に収納する補機類を省略して示している。
 また、仕切板24は、補機収納室26の空気をモジュール収納室25側に流すための空気流通口27が設けられており、モジュール収納室25を構成する外装板23の一部に、モジュール収納室25内の空気を排気するための排気口28が設けられている。
 このような燃料電池装置21においては、上述したように、信頼性の向上した燃料電池セル1bを収納容器12内に収納してなるモジュール11をモジュール収納室25内に収納して構成されることにより、信頼性の向上した燃料電池装置21とすることができる。
 中空平板型の燃料電池セルを用いて、下記の実験を行なった。
 先ず、平均粒径0.5μmのNiO粉末と、平均粒径0.9μmのY粉末を焼成-還元後における体積比率が、NiOが48体積%、Yが52体積%になるように混合し、有機バインダーと溶媒にて作製した坏土を押出成形法にて成形し、乾燥、脱脂して導電性支持体成形体を作製した。なお、試料No.1においては、Y粉末の焼成-還元後における体積比率が、NiOが45体積%、Yが55体積%となるようにした。
 次に、8mol%のYが固溶したマイクロトラック法による粒径が0.8μmのZrO粉末(固体電解質層原料粉末)と有機バインダーと溶媒とを混合して得られたスラリーを用いて、ドクターブレード法にて厚み30μmの固体電解質層用シートを作製した。この固体電解質層用シートを、燃料極層用のコーティング層上に貼り付け、乾燥した。なお、試料No.2においてはZrO粉末の粒径を1.0μmとし、試料No.3においては固体電解質層用シートの厚みを40μmとした。
 次に平均粒径0.5μmのNiO粉末と8mol%のYが固溶したZrO粉末と有機バインダーと溶媒とを混合した燃料極層用スラリーを作製し、固体電解質層用シート上に塗布した。
 この、燃料極層用スラリーが塗布された固体電解質層用シートを、燃料極層用スラリーを塗布した面を導電性支持体側として、一方の平坦部から他方の平坦部にかけて積層した。
 続いて、上記のように成形体を積層した積層成形体を、乾燥後に1000℃にて3時間仮焼処理した。
 次に、CeOを85モル%、他の希土類元素の酸化物(試料No.1においてはSmO1.5、試料No.2~試料No.7においてはGdO1.5)のいずれかを15モル%含む複合酸化物を、溶媒としてイソプロピルアルコール(IPA)を用いて振動ミル又はボールミルにて粉砕し、900℃にて4時間仮焼処理を行い、再度ボールミルにて解砕処理し、セラミック粒子の凝集度を調製し、中間層原料粉末を得た。この粉体にアクリル系バインダーとトルエンとを添加し、混合して作製した中間層用のスラリーを、得られた積層仮焼体の固体電解質層仮焼体上に、スクリーン印刷法にて塗布し、第1の層成形体を作製した。
 次に平均粒径0.5μmのNiO粉末と8mol%のYが固溶したZrO粉末と有機バインダーと溶媒とを混合した密着層用スラリーを作製した。
 続いて、LaCrO系酸化物と、有機バインダーと溶媒とを混合したインターコネクタ用スラリーを用いて、ドクターブレード法にて厚み30μmのインターコネクタ用シートを作製した。このインターコネクタ用シートの一方側表面に、上述の密着層用スラリーを塗布し、その密着層用スラリーを塗布した面を、燃料極層成形体および固体電解質層成形体が形成されていない導電性支持体成形体の他方側の平坦部上に積層した。
 そして、これらの各層が積層された積層体を、大気中1510℃にて3時間同時焼成した。
 なお、試料No.6および試料No.7については、この後引き続いて、燃料ガス排出側である一端部における外周の角部に、面取り後の形状がC面形状またはR面形状となるように、C面加工とR面加工をそれぞれ施した。なお、C面およびR面は、ともに燃料ガス流路の端部からC面加工後またはR面加工後の角部までの長さが500μmとなるように加工した。
 次に、形成された第1の層焼結体の表面に、上記中間層用スラリーをスクリーン印刷法にて塗布して第2の層膜を形成した。
 続いて、この燃料電池セル成形体の一端部(非発電部の一端部)を、表1に示す主成分とガラス成分と溶媒とを含有する溶液中に浸漬し、酸化抑制層成形体を形成し、第2の層膜と酸化抑制層とを1300℃にて3時間焼結処理を行なった。なお、溶液中に含有する各主成分は、燃料電池セルの作製時に酸化抑制層における各主成分が表1に示す量となるように適宜濃度を調整して行なった。なお、試料No.1においては、表1に示す主成分を含有するスラリーを導電性支持体2と燃料極層3の端部に塗布して焼結した。
 次に、平均粒径2μmのLa0.6Sr0.4Co0.2Fe0.8粉末と、イソプロピルアルコールとからなる混合液を作製し、積層焼結体の中間層(第2の層)の表面に噴霧塗布し、空気極層成形体を形成し、1100℃にて4時間で焼き付け、空気極層を形成し、図2、図5、図6に示す燃料電池セルを作製した。
 なお、作製した燃料電池セルの寸法は25mm×200mmで、燃料ガス流路の直径は1mm、導電性支持体の厚み(平坦部nの両面間の厚み)は2.5mm、開気孔率35%、燃料極層の厚さは10μm、開気孔率24%、空気極層の厚みは50μm、開気孔率40%、相対密度は97%、密着層の厚みは20μmであった。
 ここで、各試料につき10個の燃料電池セルを作製し、作製後の燃料電池セルの先端部を走査型電子顕微鏡にて観察し、クラックの発生について確認した。
 なお、比較例として酸化抑制層を、8mol%のYが固溶したZrO(以下、YSZと略し、表1においても同様に示す。)とした試料No.8と、酸化抑制層を形成しない試料No.9を用いた。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、YSZを主成分として含有する酸化抑制層を設けた試料No.8においては、70%以上の燃料電池セルにおける酸化抑制層にクラックが生じていた。
 一方、燃料電池セルの一端部(非発電部)における導電性支持体および燃料極層の端面上に、周期律表第2族元素のうち少なくとも1種としてMgを含んでなるケイ酸塩であるフォルステライト(MgSiO)を主成分として含有する酸化抑制層を設けた(少なくとも導電性支持体上および燃料極層上に酸化抑制層を設けた)試料No.1、燃料電池セル1の一端部(非発電部の一端部)全体をフォルステライトを主成分として含有する酸化抑制層を設けた試料No.2および試料No.3、周期律表第2族元素のうち少なくとも1種としてMgを含んでなるケイ酸塩であるステアタイト(MgSiO)を主成分として含有する酸化抑制層を設けた試料No.4、周期律表第2族元素のうち少なくとも1種としてCaを含んでなるケイ酸塩であるワラストナイト(CaSiO)を主成分として含有する酸化抑制層を設けた試料No.5においては、試料No.8に示す燃料電池セルに比べて、酸化抑制層にクラックが生じた燃料電池セルの数が少なかったことから、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を設けることにより、燃料電池セルの作製時において、酸化抑制層でのクラック発生を抑制することができることがわかった。
 さらに、燃料ガス排出側である一端部における外周の角部に、面取り後の形状がC面形状またはR面形状となるように面取り加工を施した試料No.6および試料No.7においては、いずれの酸化抑制層においてもクラックは生じておらず、面取り加工を施すことで、燃料電池セルの作製時において、酸化抑制層におけるクラックの発生を効果的に抑制することができることがわかった。
 次に、上述の試料No.1~試料No.9の燃料電池セルを用いて、以下の発電試験を行った。
 まず、各試料の燃料電池セルを10本作製し、それぞれの燃料電池セルのガス流路に水素含有ガス(燃料ガス)を流し、850℃で10時間、導電性支持体および燃料極層の還元処理を施した。
 このようにしてできた燃料電池セルの10本を、間に集電部材を介して電気的に直列に接続して発電試験を行った。なお、発電試験は、燃料電池セルの燃料ガス流路に燃料ガスを流通させ、燃料電池セルの外側に酸素含有ガスを流通させるとともに、電気炉を用いて750℃まで加熱し、3時間の発電試験を行った。その後、燃料利用率75%として、まず電流密度0.3A/cmの条件にて10分発電し、発電終了後に1分間電流をとめて、引き続き電流密度0.1A/cmで10分発電し、発電終了後に1分間電流をとめることを1サイクルとして1000時間繰り返した。なお発電試験の期間中、発電に用いられなかった余剰の燃料ガスを、燃料ガス排出口側で燃焼させた。
 試験終了後の燃料電池セルについて、一端部(非発電部の位置端部)の剥離の発生について目視で確認するととともに、一端部を走査型電子顕微鏡にて観察し、クラックや破損の発生について確認した。
 表1の結果より、YSZを主成分として含有する酸化抑制層を設けた試料No.8においては、発電後の燃料電池セルの70%にクラックが生じていた。また、酸化抑制層を設けていない試料No.9においては、燃料電池セルの製造時にはクラックは生じていなかったものの、発電時において全ての燃料電池セルにクラックが生じていることが分かった。
 これに対し、燃料電池セルの一端部(非発電部の一端部)における導電性支持体上および燃料極層上に周期律表第2族元素のうち少なくとも1種としてMgを含んでなるケイ酸塩であるフォルステライト(MgSiO)を主成分として含有する酸化抑制層10を設けた試料No.1、燃料電池セル1の一端部(非発電部の一端部)全体をフォルステライトを主成分として含有する酸化抑制層10を設けた試料No.2および試料No.3、周期律表第2族元素のうち少なくとも1種としてMgを含んでなるケイ酸塩であるステアタイト(MgSiO)を主成分として含有する酸化抑制層を設けた試料No.4、周期律表第2族元素のうち少なくとも1種としてCaを含んでなるケイ酸塩であるワラストナイト(CaSiO)を主成分として含有する酸化抑制層を設けた試料No.5においては、試料No.8および試料No.9における燃料電池セルに比べて、燃料電池セルに生じるクラックを抑制することができ、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を設けることにより、燃料電池セルの発電時において、燃料電池セルの一端部における酸化や破損を抑制することができることがわかった。
 さらに、燃料ガス排出側である一端部における外周の角部にC面またはR面を施した試料No.6および試料No.7においては、一端部における剥離、クラック、破損を生じなかったことから、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層を設けるとともに、燃料ガス排出側である一端部における外周の角部に、面取り後の形状がC面形状またはR面形状となるように面取りを施すことにより、燃料電池セルの作製時および発電時において、燃料電池セルや酸化抑制層にクラックか生じることを効果的に抑制することができることが分かった。
1a,1b,1c,1d:燃料電池セル
2:導電性支持体
3:燃料極層
4:固体電解質層
5:空気極層
6:インターコネクタ
7:燃料ガス流路
8:中間層
10:酸化抑制層
11:燃料電池モジュール
20:燃料電池装置

Claims (11)

  1.  固体電解質層の対向する一方の主面に燃料極層を設けるとともに他方の主面に空気極層を設けてなり、燃料ガスと酸素含有ガスとで発電する燃料電池セルであって、該燃料電池セルの一端部における、少なくとも前記固体電解質層よりも前記燃料極層側に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることを特徴とする燃料電池セル。
  2.  対向する一対の平坦部を有し、内部を長手方向に貫通する燃料ガスを流通させるための燃料ガス流路を有し、NiとYとを含んでなる柱状の導電性支持体の一方側の前記平坦部上に、燃料極層と固体電解質層と空気極層とがこの順に積層され、他方側の前記平坦部上にインターコネクタが積層されてなる燃料電池セルであって、該燃料電池セルの一端部が、前記導電性支持体上に前記燃料極層と前記固体電解質層とがこの順に積層されており前記空気極層が形成されていない非発電部として構成されており、該非発電部の一端部における少なくとも前記導電性支持体上および前記燃料極層上に、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する酸化抑制層が設けられていることを特徴とする燃料電池セル。
  3.  前記燃料電池セルの一端部における外周の角部が、前記酸化抑制層を除く前記燃料電池セルの最外面から前記導電性支持体にかけて面取りされていることを特徴とする請求項2に記載の燃料電池セル。
  4.  前記非発電部における固体電解質層上および前記非発電部と向かい合う位置におけるインターコネクタ上に、前記酸化抑制層が設けられていることを特徴とする請求項2または請求項3に記載の燃料電池セル。
  5.  前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が、85mol%以上であることを特徴とする請求項1乃至請求項4のうちいずれかに記載の燃料電池セル。
  6.  前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が、フォルステライト(MgSiO)、ステアタイト(MgSiO)およびワラストナイト(CaSiO)のいずれか一種からなることを特徴とする請求項1乃至請求項5のうちいずれかに記載の燃料電池セル。
  7.  収納容器内に、請求項1乃至請求項6のうち何れかに記載の燃料電池セルを複数個収納してなることを特徴とする燃料電池モジュール。
  8.  請求項7に記載の燃料電池モジュールと、前記燃料電池モジュールを作動させるための補機とを、外装ケース内に収納してなることを特徴とする燃料電池装置。
  9.  少なくとも燃料極層と固体電解質層とが順次積層された積層体を準備する工程と、該積層体の一端部を、周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩を主成分として含有する溶液中に浸漬する工程と、前記固体電解質層上のうち前記周期律表第2族元素のうち少なくとも1種を含んでなるケイ酸塩が塗布されていない部位に空気極層成形体を積層して焼成する工程とを含むことを特徴とする燃料電池セルの製造方法。
  10.  前記積層体を準備する工程として、対向する一対の平坦部を有し、内部を長手方向に貫通する燃料ガスを流通させるための燃料ガス流路を有し、NiとYとを含んでなる柱状の導電性支持体成形体を作製する工程と、該導電性支持体成形体の一方側の平坦部に燃料極層成形体と固体電解質層成形体とをこの順に積層し、前記導電性支持体形成体の他方側の平坦部にインターコネクタ成形体を積層して同時焼成することにより、前記導電性支持体の一方側の平坦部上に前記燃料極層と前記固体電解質層とがこの順に積層され、前記導電性支持体の他方側の平坦部上にインターコネクタが積層された積層体を作製する工程とを含むことを特徴とする請求項9に記載の燃料電池セルの製造方法。
  11.  前記導電性支持体の一方側の平坦部上に前記燃料極層と前記固体電解質層とがこの順に積層され、前記導電性支持体の他方側の平坦部上に前記インターコネクタが積層された積層体を作製する工程に続いて、該積層体の一端部における外周の角部に、該積層体の最外面から前記導電性支持体にかけて面取りを施す工程を含むことを特徴とする請求項10に記載の燃料電池セルの製造方法。
     
PCT/JP2009/067029 2008-10-29 2009-09-30 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法 WO2010050330A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/126,735 US8722281B2 (en) 2008-10-29 2009-09-30 Fuel cell, fuel cell module, and fuel cell device
EP09823443.8A EP2355217B1 (en) 2008-10-29 2009-09-30 Fuel battery cell, fuel battery module, fuel battery device and method for manufacturing fuel battery cell
JP2010535736A JP5295262B2 (ja) 2008-10-29 2009-09-30 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法
CN200980142917.2A CN102197526B (zh) 2008-10-29 2009-09-30 燃料电池单元、燃料电池模块、燃料电池装置及燃料电池单元的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-278111 2008-10-29
JP2008278111 2008-10-29
JP2009-075739 2009-03-26
JP2009075739 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010050330A1 true WO2010050330A1 (ja) 2010-05-06

Family

ID=42128696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067029 WO2010050330A1 (ja) 2008-10-29 2009-09-30 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法

Country Status (5)

Country Link
US (1) US8722281B2 (ja)
EP (1) EP2355217B1 (ja)
JP (1) JP5295262B2 (ja)
CN (1) CN102197526B (ja)
WO (1) WO2010050330A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009226A (ja) * 2010-06-23 2012-01-12 Kyocera Corp 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池
JP2012182069A (ja) * 2011-03-02 2012-09-20 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2013532364A (ja) * 2010-06-25 2013-08-15 コリア インスティテュート オブ インダストリアル テクノロジー 固体酸化物形燃料電池単位セルの製造方法
JP2013157132A (ja) * 2012-01-27 2013-08-15 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP2013157190A (ja) * 2012-01-30 2013-08-15 Kyocera Corp 固体酸化物形燃料電池セル、セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP2013161574A (ja) * 2012-02-02 2013-08-19 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP2013182678A (ja) * 2012-02-29 2013-09-12 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP5485444B1 (ja) * 2013-04-04 2014-05-07 日本碍子株式会社 燃料電池
WO2014156830A1 (ja) * 2013-03-28 2014-10-02 京セラ株式会社 固体酸化物形電解セル、セルスタック装置および電解モジュールならびに電解装置
JP5600819B1 (ja) * 2013-04-19 2014-10-08 日本碍子株式会社 燃料電池
JP2014225447A (ja) * 2013-04-26 2014-12-04 京セラ株式会社 電解セルおよび電解モジュールならびに電解装置
JP2015022892A (ja) * 2013-07-18 2015-02-02 日本特殊陶業株式会社 セパレータ付燃料電池セル及びその製造方法、燃料電池スタック
JP2017174676A (ja) * 2016-03-24 2017-09-28 京セラ株式会社 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP6257721B1 (ja) * 2016-09-05 2018-01-10 日本碍子株式会社 燃料電池セル
KR101869305B1 (ko) * 2013-06-27 2018-06-20 쿄세라 코포레이션 셀, 셀 스택 장치, 모듈 및 모듈 수납 장치
JP2021195288A (ja) * 2020-06-16 2021-12-27 共立エレックス株式会社 セラミックスシートコーティング方法
JP2022041028A (ja) * 2020-08-31 2022-03-11 堺化学工業株式会社 セリウム系複合酸化物粒子およびその製造方法、ならびに燃料電池用の反応防止層
US11450859B2 (en) * 2012-05-31 2022-09-20 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8618810B2 (en) * 2011-03-04 2013-12-31 Teradyne, Inc. Identifying fuel cell defects
DE102011081553A1 (de) * 2011-08-25 2013-02-28 Robert Bosch Gmbh Inert geträgerte tubulare Brennstoffzelle
KR20130042868A (ko) * 2011-10-19 2013-04-29 삼성전기주식회사 고체산화물 연료 전지
DE102012221427A1 (de) 2011-11-30 2013-06-06 Robert Bosch Gmbh Brennstoffzellensystem
KR20130075529A (ko) * 2011-12-27 2013-07-05 삼성전자주식회사 고체산화물 전극, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
DE102012219104A1 (de) * 2012-10-19 2014-05-08 Robert Bosch Gmbh Elektrochemische Zelle mit tubularem Trägergitter
JP2014209477A (ja) * 2013-03-28 2014-11-06 Toto株式会社 固体酸化物形燃料電池セル及びその製造方法
JP6502726B2 (ja) * 2015-03-31 2019-04-17 日本特殊陶業株式会社 平板型燃料電池
WO2017018455A1 (ja) * 2015-07-29 2017-02-02 京セラ株式会社 セルスタック装置、モジュールおよびモジュール収容装置
US10700365B2 (en) * 2016-02-25 2020-06-30 Kyocera Corporation Cell, cell stack device, module and module containing device
CN110088965B (zh) * 2016-12-20 2023-01-10 京瓷株式会社 单电池、单电池堆装置、模块以及模块收纳装置
CN116409937B (zh) * 2023-04-23 2024-08-27 广东省先进陶瓷材料科技有限公司 一种封接材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236972A (ja) 2000-02-25 2001-08-31 Toto Ltd 固体電解質型燃料電池
JP2004234969A (ja) * 2003-01-29 2004-08-19 Kyocera Corp 固体電解質型燃料電池セル及び燃料電池
JP2004259604A (ja) 2003-02-26 2004-09-16 Kyocera Corp 燃料電池セル及び燃料電池
JP2005135877A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 燃料電池セル及び燃料電池
JP2006127826A (ja) * 2004-10-27 2006-05-18 Kyocera Corp 燃料電池セル及び燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051330A (en) * 1998-01-15 2000-04-18 International Business Machines Corporation Solid oxide fuel cell having vias and a composite interconnect
US7785725B2 (en) * 2004-12-03 2010-08-31 Delphi Technologies, Inc. Compound for a solid oxide fuel cell stack gasket
US20070160886A1 (en) * 2006-01-06 2007-07-12 Siemens Power Generation, Inc. Seamless solid oxide fuel cell
JP5063126B2 (ja) * 2007-02-01 2012-10-31 京セラ株式会社 燃料電池装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236972A (ja) 2000-02-25 2001-08-31 Toto Ltd 固体電解質型燃料電池
JP2004234969A (ja) * 2003-01-29 2004-08-19 Kyocera Corp 固体電解質型燃料電池セル及び燃料電池
JP2004259604A (ja) 2003-02-26 2004-09-16 Kyocera Corp 燃料電池セル及び燃料電池
JP2005135877A (ja) * 2003-10-31 2005-05-26 Kyocera Corp 燃料電池セル及び燃料電池
JP2006127826A (ja) * 2004-10-27 2006-05-18 Kyocera Corp 燃料電池セル及び燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2355217A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009226A (ja) * 2010-06-23 2012-01-12 Kyocera Corp 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池
JP2013532364A (ja) * 2010-06-25 2013-08-15 コリア インスティテュート オブ インダストリアル テクノロジー 固体酸化物形燃料電池単位セルの製造方法
JP2012182069A (ja) * 2011-03-02 2012-09-20 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池
JP2013157132A (ja) * 2012-01-27 2013-08-15 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP2013157190A (ja) * 2012-01-30 2013-08-15 Kyocera Corp 固体酸化物形燃料電池セル、セルスタック装置および燃料電池モジュールならびに燃料電池装置
JP2013161574A (ja) * 2012-02-02 2013-08-19 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP2013182678A (ja) * 2012-02-29 2013-09-12 Kyocera Corp 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
US11909051B2 (en) 2012-05-31 2024-02-20 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus
US11450859B2 (en) * 2012-05-31 2022-09-20 Kyocera Corporation Cell, cell stack unit, electrochemical module, and electrochemical apparatus
WO2014156830A1 (ja) * 2013-03-28 2014-10-02 京セラ株式会社 固体酸化物形電解セル、セルスタック装置および電解モジュールならびに電解装置
KR101812533B1 (ko) 2013-03-28 2017-12-27 쿄세라 코포레이션 고체 산화물형 셀, 셀 스택 장치와 모듈 및 모듈 수납 장치
JP5677632B1 (ja) * 2013-03-28 2015-02-25 京セラ株式会社 固体酸化物形セル、セルスタック装置およびモジュールならびにモジュール収納装置
JP5485444B1 (ja) * 2013-04-04 2014-05-07 日本碍子株式会社 燃料電池
JP5600819B1 (ja) * 2013-04-19 2014-10-08 日本碍子株式会社 燃料電池
JP2014225447A (ja) * 2013-04-26 2014-12-04 京セラ株式会社 電解セルおよび電解モジュールならびに電解装置
KR101869305B1 (ko) * 2013-06-27 2018-06-20 쿄세라 코포레이션 셀, 셀 스택 장치, 모듈 및 모듈 수납 장치
JP2015022892A (ja) * 2013-07-18 2015-02-02 日本特殊陶業株式会社 セパレータ付燃料電池セル及びその製造方法、燃料電池スタック
JP2017174676A (ja) * 2016-03-24 2017-09-28 京セラ株式会社 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP6257721B1 (ja) * 2016-09-05 2018-01-10 日本碍子株式会社 燃料電池セル
JP2018041558A (ja) * 2016-09-05 2018-03-15 日本碍子株式会社 燃料電池セル
JP2021195288A (ja) * 2020-06-16 2021-12-27 共立エレックス株式会社 セラミックスシートコーティング方法
JP2022041028A (ja) * 2020-08-31 2022-03-11 堺化学工業株式会社 セリウム系複合酸化物粒子およびその製造方法、ならびに燃料電池用の反応防止層
JP7476729B2 (ja) 2020-08-31 2024-05-01 堺化学工業株式会社 セリウム系複合酸化物粒子およびその製造方法、ならびに燃料電池用の反応防止層

Also Published As

Publication number Publication date
CN102197526B (zh) 2014-05-07
JP5295262B2 (ja) 2013-09-18
EP2355217B1 (en) 2016-10-26
EP2355217A4 (en) 2014-06-18
US8722281B2 (en) 2014-05-13
JPWO2010050330A1 (ja) 2012-03-29
CN102197526A (zh) 2011-09-21
US20110256464A1 (en) 2011-10-20
EP2355217A1 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5295262B2 (ja) 燃料電池セル、燃料電池モジュール、燃料電池装置および燃料電池セルの製造方法
JP5882857B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP2010080151A (ja) セルスタックおよびそれを具備する燃料電池モジュールならびに燃料電池装置
JP5328439B2 (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5405590B2 (ja) 電極のガス流路支持体および内部流路の形成方法
JP5247051B2 (ja) 燃料電池セルおよび燃料電池セルスタック、ならびに燃料電池
JP5566405B2 (ja) 燃料電池セル、燃料電池セル装置および燃料電池モジュールならびに燃料電池装置
WO2014156830A1 (ja) 固体酸化物形電解セル、セルスタック装置および電解モジュールならびに電解装置
JP5777535B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP2004253376A (ja) 燃料電池セル及びその製法並びに燃料電池
WO2019240297A1 (ja) セル、セルスタック装置、モジュール及びモジュール収納装置
JP5574891B2 (ja) 固体酸化物形燃料電池セル
JP5743915B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP6121895B2 (ja) 電解セル、電解セルスタック装置および電解モジュールならびに電解装置
JP5404973B1 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
JP5328317B2 (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2011113690A (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5855975B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置
CN110088965B (zh) 单电池、单电池堆装置、模块以及模块收纳装置
JP5289010B2 (ja) 固体酸化物形燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP6585774B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP5328316B2 (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2005216619A (ja) 燃料電池セル及び燃料電池
JP6356852B2 (ja) 固体酸化物形燃料電池セルおよびセルスタック装置ならびに燃料電池モジュール
JP6622635B2 (ja) 固体酸化物形燃料電池セルおよび燃料電池モジュールならびに燃料電池装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142917.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010535736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13126735

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009823443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009823443

Country of ref document: EP