WO2010047077A1 - 薄膜トランジスタ及びその製造方法 - Google Patents

薄膜トランジスタ及びその製造方法 Download PDF

Info

Publication number
WO2010047077A1
WO2010047077A1 PCT/JP2009/005446 JP2009005446W WO2010047077A1 WO 2010047077 A1 WO2010047077 A1 WO 2010047077A1 JP 2009005446 W JP2009005446 W JP 2009005446W WO 2010047077 A1 WO2010047077 A1 WO 2010047077A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
semiconductor film
thin film
film transistor
film
Prior art date
Application number
PCT/JP2009/005446
Other languages
English (en)
French (fr)
Inventor
井上一吉
矢野公規
笘井重和
笠見雅司
川嶋浩和
宇都野太
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010534680A priority Critical patent/JPWO2010047077A1/ja
Priority to CN2009801414285A priority patent/CN102187467A/zh
Priority to US13/125,577 priority patent/US8445903B2/en
Publication of WO2010047077A1 publication Critical patent/WO2010047077A1/ja
Priority to US13/868,307 priority patent/US20130234134A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors

Definitions

  • the present invention relates to a thin film transistor having a crystalline semiconductor film made of indium oxide containing a hydrogen element and a method for manufacturing the same.
  • silicon-based semiconductor films are mainly used as switching elements such as thin film transistors (TFTs) for driving the above display devices. This is because, in addition to the stability and workability of the silicon-based thin film, the switching speed is fast.
  • This silicon-based thin film is generally produced by a chemical vapor deposition method (CVD) method.
  • the switching speed is relatively slow, and there is a problem that an image cannot be displayed when displaying a high-speed moving image or the like.
  • the switching speed is relatively fast, but a high temperature of 800 ° C. or higher, heating with a laser, etc. are necessary for crystallization. Cost.
  • the silicon-based thin film has excellent performance as a voltage element, a change in the characteristics with time is a problem when a current is passed.
  • An oxide semiconductor has attracted attention as a material for obtaining a transparent semiconductor film that is more stable than a silicon-based thin film and has a light transmittance equivalent to that of an ITO film.
  • a film containing indium oxide crystalline, particularly a polycrystalline film easily generates oxygen vacancies , and the carrier density is increased to 2 ⁇ 10 +17 even if the oxygen partial pressure during film formation is increased or oxidation treatment is performed. It was considered difficult to achieve cm ⁇ 3 . For this reason, almost no attempt has been made as a semiconductor film or TFT.
  • Patent Document 1 describes a thin film transistor having a semiconductor layer made of indium oxide. Specifically, a method for obtaining a thin film transistor by heat-treating an indium oxide film in an oxidizing atmosphere is described. However, in the case of a thin film made of indium oxide, the performance of the thin film transistor obtained may vary depending on the heat treatment conditions, the conditions of the oxidizing atmosphere, particularly the humidity conditions when heat treatment is performed in air, and the performance may not be stable.
  • Patent Documents 2 and 3 describe that an amorphous oxide semiconductor can be stably obtained when a hydrogen element or a deuterium element is present in an amorphous oxide semiconductor film.
  • the amorphous oxide semiconductor film is amorphous, hydrogen elements and deuterium elements that exist inside diffuse into the air, or water molecules newly enter from the air, As a result, the hydrogen element in the film becomes excessive, and the resulting device may become unstable.
  • the semiconductor film When crystalline indium oxide is used for the semiconductor film, the semiconductor film does not dissolve in oxalic acid, PAN, etc., and has etching resistance, so that a channel etch type TFT configuration can be easily manufactured. Benefits can be considered.
  • JP 2008-130814 A Japanese Patent Laid-Open No. 2007-73697 JP 2007-103918 A
  • An object of the present invention is to provide a thin film transistor having stable performance even when heat treatment conditions during manufacture, particularly humidity conditions in the case of heat treatment in air are different.
  • a thin film transistor having a gate electrode, a gate insulating film, an oxide semiconductor film in contact with the gate insulating film, and a source / drain electrode connected to the oxide semiconductor film and separated by a channel portion, the oxide semiconductor
  • the film is made of crystalline indium oxide containing hydrogen element, and the content of hydrogen element contained in the oxide semiconductor film is 0.1 at% to 5 at% with respect to all elements forming the oxide semiconductor film. %, A thin film transistor.
  • the thin film transistor according to 2 wherein a content of the positive trivalent metal element excluding the indium is 0.1 to 10 at% with respect to all metal elements contained in the oxide semiconductor film. 4).
  • the positive trivalent metal oxide excluding the indium oxide is boron oxide, aluminum oxide, gallium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, 4.
  • the thin film transistor according to 2 or 3 wherein the thin film transistor is one or more oxides selected from dyspronium oxide, holmium oxide, erbium oxide, ytterbium oxide, and lutetium oxide. 5).
  • a high-performance thin film transistor can be stably obtained even if the heat treatment conditions during manufacture vary.
  • FIG. 1 is a schematic cross-sectional view of a channel-etched thin film transistor manufactured in Example 1.
  • FIG. 6 is a schematic cross-sectional view of an etch stopper type thin film transistor fabricated in Example 2.
  • the thin film transistor (TFT) of the present invention includes a gate electrode, a gate insulating film, an oxide semiconductor film in contact with the gate insulating film, and a thin film transistor having a source / drain electrode connected to the oxide semiconductor film and separated by a channel portion It is.
  • the oxide semiconductor film includes a crystalline indium oxide semiconductor film containing a hydrogen element.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a thin film transistor of the present invention.
  • the thin film transistor 1 has a gate electrode 20 sandwiched between a substrate 10 and an insulating film 30, and a semiconductor film 40 is stacked on the gate insulating film 30 as an active layer. Further, a source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40. A channel portion 60 is formed in a portion surrounded by the semiconductor film 40, the source electrode 50 and the drain electrode 52. 1 is a so-called channel etch type thin film transistor.
  • the thin film transistor of the present invention is not limited to a channel etch type thin film transistor, and an element configuration known in this technical field can be adopted.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the thin film transistor of the present invention.
  • the thin film transistor 2 is an etch stopper type thin film transistor.
  • the thin film transistor 2 has the same configuration as the thin film transistor 1 described above except that an etch stopper 70 is formed so as to cover the channel portion 60.
  • a source electrode 50 and a drain electrode 52 are provided so as to cover the vicinity of the end of the semiconductor film 40 and the vicinity of the end of the etch stopper 70.
  • a crystalline indium oxide semiconductor film made of indium oxide containing a hydrogen element is used for the semiconductor film 40.
  • the crystalline indium oxide thin film contains a hydrogen element, the performance of the thin film transistor is stabilized.
  • Indium oxide is a compound that easily generates oxygen vacancies, and is therefore used as a material for transparent conductive films. Since a hydrogen element fills a defect caused by oxygen vacancies, generation of carriers can be suppressed, so that the semiconductor is considered to be stable.
  • the carrier concentration of the semiconductor film can be reduced, and it becomes possible to make it less than 2 ⁇ 10 +17 cm ⁇ 3 at a temperature near room temperature, so that good thin film transistor characteristics are exhibited.
  • the carrier density of the semiconductor film at a temperature around room temperature is preferably less than 2 ⁇ 10 +17 cm ⁇ 3 . If the carrier density is 2 ⁇ 10 +17 cm ⁇ 3 or more, the TFT may not be driven. Even when the TFT is driven, it may be normally on, the threshold voltage may be negatively increased, or the On-Off value may be small.
  • the content of hydrogen element in the semiconductor film is preferably from 0.1 to 5 at%, particularly preferably from 0.5 to 3 at%, based on all elements contained in the semiconductor film. If the content is less than 0.1 at%, the content is small, so that the indium oxide thin film tends to become a conductive film, and stable TFT characteristics may not be obtained. On the other hand, if it exceeds 5 at%, the thin film may become an insulating film.
  • the hydrogen element may exist in a molecular state or an atomic state. Further, it may be bonded to oxygen and exist as a hydroxyl group. Preferably, it exists as a hydroxyl group.
  • the content of hydrogen can be measured by Rutherford backscattering spectrometry (RBS) method, hydrogen forward scattering spectrometry (HFS) method, or thermal deposition spectrometry (TDS) method. In the present application, it refers to a value measured by hydrogen forward scattering spectrometry (HFS) method.
  • the content of the hydrogen element in the semiconductor film can be controlled, for example, by adjusting the hydrogen concentration in the film formation atmosphere of the semiconductor film or by adjusting the temperature and processing time of the dehydrogenation step after film formation.
  • a crystalline semiconductor film is used.
  • the mobility of TFT can be made high and durability can be made high.
  • the etching of the semiconductor film can be suppressed when the source electrode 50 and the drain electrode 52 are etched.
  • the “crystalline film” is a film whose crystal peak can be confirmed by X-ray diffraction.
  • the crystalline film may be any of a single crystal film, an epitaxial film, and a polycrystalline film, and is preferably an epitaxial film and a polycrystalline film because industrial production is easy and the area can be increased.
  • a polycrystalline film is preferred.
  • the polycrystalline film is preferably made of nanocrystals.
  • the average crystal grain size determined from X-ray diffraction using Scherrer's equation is usually 500 nm or less, preferably 300 nm or less, more preferably 150 nm or less, and even more preferably 80 nm or less. If it is larger than 500 nm, there is a possibility that variation when the transistor is miniaturized becomes large.
  • the semiconductor film further contains a positive trivalent metal oxide excluding indium oxide.
  • a positive trivalent metal oxide excluding indium oxide oxygen vacancies generated in crystalline indium oxide can be easily suppressed, and a thin film transistor that operates stably can be obtained.
  • positive trivalent metal oxides excluding indium oxide include boron oxide, aluminum oxide, gallium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, Dyspronium oxide, holmium oxide, erbium oxide, ytterbium oxide or lutetium oxide can be preferably used. These oxides may be used alone or in combination of two or more.
  • the ionic radius of the metal element of the added positive trivalent metal oxide is the ion of indium element. It is desirable to be closer to the radius. Specifically, those having a difference from the ion radius of indium element within ⁇ 30% can be more preferably used. When the difference in ionic radius with indium element exceeds 30%, the solid solution limit may be reduced or the solid solution may not be dissolved. In that case, it may be an interstitial solid solution between the lattices. Further, it may be segregated at the grain boundary. When segregating at these crystal grain boundaries, there is an effect of suppressing oxygen vacancies existing at the crystal grain boundaries.
  • gallium oxide except for indium oxide
  • scandium oxide yttrium oxide, neodymium oxide, samarium oxide
  • europium oxide gadolinium oxide, terbium oxide, dyspronium oxide
  • Holmium oxide, erbium oxide and ytterbium oxide are preferred.
  • the content of the positive trivalent metal oxide (excluding indium oxide) contained in the semiconductor film is preferably 0.1 to 10 at% as the amount of metal elements with respect to the total metal elements of the semiconductor film. It is preferably 0.5 to 8 at%.
  • the content of positive trivalent metal elements excluding indium is less than 0.1 at%, the amount of positive trivalent metal oxide excluding indium oxide to be added is small and the effect may be small.
  • the thin film transistor may not be obtained.
  • the amount of addition may be so large that a crystalline indium oxide film may not be obtained.
  • the carrier concentration may not be reduced, so that a normally-on thin film transistor may be obtained or the mobility of the obtained transistor may not be improved.
  • the ratio of the metal element can be obtained by measuring the abundance of each element by ICP-Mass (Inductively Coupled Plasma Mass) measurement.
  • the content of a metal element having a positive tetravalence or higher with respect to all the metal elements contained in the semiconductor film is 10 ppm (in the present application, “ppm” means atomic ppm) or less.
  • a positive tetravalent or higher-valent metal element exists as an oxide in the semiconductor film.
  • a positive tetravalent metal oxide is incorporated in an indium oxide crystal, carriers are generated in the indium oxide, which greatly affects the performance of the semiconductor film.
  • solid solution substitution is performed in indium oxide, and impurity levels are formed in the band structure of indium oxide, which affects the semiconductor characteristics.
  • the carrier density at temperatures near room temperature may not be controlled below 2 ⁇ 10 +17 cm ⁇ 3 . Therefore, the content of the positive tetravalent or higher metal element is better, preferably 5 ppm or less, more preferably 1 ppm or less.
  • Examples of the positive tetravalent or higher metal oxide contained in the semiconductor film include positive oxides such as titanium oxide, zirconium oxide, hafnium oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, molybdenum oxide, tungsten oxide, and manganese oxide. Heavy metal oxides having higher valences, and silicon oxide, germanium oxide, tin oxide, lead oxide, antimony oxide, bismuth oxide, and cerium oxide. Of the above metal oxides, it is particularly preferable to strictly manage titanium oxide, zirconium oxide and tin oxide.
  • the content of metal elements having a positive divalent value or less with respect to all metal elements contained in the semiconductor film is preferably 50 ppm or less.
  • a metal element having a positive divalent value or less is also present as an oxide in the semiconductor film.
  • a metal oxide having a positive divalent value or less is incorporated into the crystal of indium oxide, carrier traps are generated in the indium oxide, and as a result, the mobility may be lowered. The performance will be greatly affected.
  • impurity levels are formed in the band structure of indium oxide, which affects semiconductor characteristics. Accordingly, the content of the metal element having a positive divalent value or less is better, preferably 10 ppm or less, more preferably 5 ppm or less.
  • Examples of the metal oxide having a positive divalent or less included in the semiconductor film include alkali metal oxides such as lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide, and alkali Examples include earth metal oxides and zinc oxide.
  • alkali metal oxides such as lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, strontium oxide, and barium oxide
  • alkali Examples include earth metal oxides and zinc oxide.
  • sodium oxide, potassium oxide, magnesium oxide, calcium oxide and zinc oxide are particularly preferably managed strictly.
  • the substrate can be used for the substrate, gate electrode, gate insulating film, source / drain electrode, and the like, and are not particularly limited.
  • a metal thin film such as Al, Cu, or Au can be used for each electrode, and an oxide thin film such as a silicon oxide film or a hafnium oxide film can be used for the gate insulating film.
  • an insulating positive trivalent metal oxide film can be used for the etch stopper.
  • boron oxide, aluminum oxide, gallium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dyspronium oxide, holmium oxide, erbium oxide, ytterbium oxide or Lutetium oxide is preferred.
  • Silicon oxide, silicon nitride, or the like may be stacked on these films. In consideration of dry etching property and cost, aluminum oxide, yttrium oxide and the like are preferable.
  • the semiconductor film may be affected. Specifically, when a silicon oxide film is formed on amorphous indium oxide serving as a semiconductor film by sputtering, thermal CVD, plasma CVD, etc., and then heated and crystallized, silicon element diffuses into the indium oxide film. , May dissolve. In this case, carriers may be generated in the semiconductor film and become conductive, so that the off current increases and the on / off value may decrease. Therefore, it is preferable to use an insulating positive trivalent metal oxide film on the surface of the etch stopper that contacts the semiconductor film.
  • the manufacturing method of the present invention includes a film forming step of forming a semiconductor film made of indium oxide containing a hydrogen element, a step of patterning the semiconductor film, a step of dehydrogenating and crystallizing the semiconductor film, Forming a source / drain electrode so as to be connected.
  • a gate electrode, a gate insulating film, and a source / drain electrode can be formed by a known method.
  • a gate electrode made of a metal thin film such as Al, Cu, or Au is formed on a substrate, and an oxide thin film made of a silicon oxide film, a hafnium oxide film, or the like is formed thereon as a gate insulating film.
  • a metal mask is attached to form a semiconductor film made of an indium oxide film only in necessary portions.
  • a source / drain electrode is formed in a necessary portion using a metal mask, whereby a thin film transistor can be manufactured.
  • a semiconductor film made of indium oxide containing a hydrogen element can be formed by a method such as sputtering, vapor deposition, ion plating, or pulsed laser deposition (PLD).
  • a sputtering method is preferable.
  • a method using a sintered target is preferable.
  • a sintered target of high purity (for example, a purity of 99.99 at% or more) indium oxide is preferable.
  • a sintered target containing these metal oxides in indium oxide may be used.
  • the sintered target can be manufactured by a method known in this technical field.
  • the sputtering conditions can be appropriately adjusted according to the target to be used, the thickness of the semiconductor film, and the like.
  • an sputtering method an RF sputtering method, a DC sputtering method, or an AC sputtering method can be used.
  • the DC sputtering method and the AC sputtering method are preferable because the film forming speed is high.
  • An indium oxide semiconductor film containing a hydrogen element is obtained by injecting a hydrogen element into the film formation atmosphere by the above method.
  • the film formation may be performed in a state where hydrogen molecules (hydrogen gas) or water is injected into the film formation atmosphere.
  • the volume content of hydrogen molecules and / or water molecules in the film formation atmosphere is preferably 1% to 10%, particularly preferably 2% to 8%.
  • argon gas containing hydrogen gas is used as a film formation gas, or water is directly fed into the film formation chamber by a plunger pump or the like.
  • the volume content can be controlled by the partial pressure of each gas component.
  • oxygen be present during the formation of the semiconductor film.
  • dehydrogenation can be effectively performed in the dehydrogenation process.
  • Patterning includes methods such as wet etching and dry etching. Note that patterning is unnecessary if a method such as pattern formation using a mask or pattern formation using lift-off is used when forming the semiconductor film. In the present invention, pattern formation by wet etching or a mask is preferable.
  • the semiconductor film is dehydrogenated and crystallized.
  • the dehydrogenation and crystallization process has an effect of controlling the hydrogen element excessively added to indium oxide to a constant value in the film formation process. As a result, an oxide semiconductor film having always stable performance can be obtained. Further, the indium oxide film is crystallized by dehydrogenation treatment (oxidation treatment), and a thin film transistor with stable performance can be obtained.
  • a method of oxidizing hydrogen with oxygen there are a method of desorbing hydrogen molecules and water molecules by heat.
  • a method of heating in air, heating in a non-oxidizing atmosphere (in an inert gas such as nitrogen or argon atmosphere), or heating in a vacuum is used.
  • dehydrogenation treatment under vacuum or dehydrogenation treatment in a non-oxidizing atmosphere is preferable.
  • under vacuum refers to a state in which air is exhausted, and is 500 Pa or less, preferably 300 Pa or less, and more preferably 100 Pa or less.
  • a method of gradually increasing the degree of vacuum is also preferable.
  • oven heating contact with a heating plate (contact heating), lamp heating with an infrared lamp or the like, heating with light such as a laser, heating with thermal plasma, or the like is used.
  • the heating temperature in the dehydrogenation treatment step is preferably 150 to 450 ° C. If it is less than 150 ° C., the semiconductor film may not be sufficiently crystallized, and if it exceeds 450 ° C., the substrate and the semiconductor film may be damaged.
  • the heat treatment temperature is more preferably 180 ° C. to 350 ° C., and particularly preferably 200 ° C. to 300 ° C.
  • the heating time is preferably from 0.1 to 1200 minutes. If the heat treatment time is less than 0.1 minutes, the treatment time is too short and the crystallization of the film may be insufficient. If it exceeds 1200 minutes, it takes too much time and is not productive.
  • the heat treatment time is more preferably 0.5 minutes to 600 minutes.
  • the above temperature and time conditions are also preferable from the viewpoint of controlling the hydrogen concentration in the semiconductor film. If the above conditions are not satisfied, the hydrogen concentration in the semiconductor film may not satisfy the specified range of the present invention, and the mobility of the thin film transistor may be reduced.
  • the dehydrogenation treatment and crystallization of the semiconductor film may be performed immediately after the formation of the semiconductor film, or may be performed after the formation of other components such as the source / drain electrodes.
  • the stability of semiconductor characteristics is improved because the semiconductor film contains a hydrogen element. Therefore, a thin film transistor having stable performance can be manufactured even if heat treatment conditions at the time of manufacture, particularly humidity conditions in the case of heat treatment in air are different.
  • the manufacturing method of the present invention is particularly suitable for a manufacturing method of a channel etch type thin film transistor. Since the semiconductor film of the present invention is crystalline, an etching process using photolithography can be adopted as a method for forming the source / drain electrodes and the channel portion from a metal thin film such as Al. That is, the etching solution for removing the metal thin film can selectively etch the metal thin film without etching the semiconductor film. An etch stopper type thin film transistor manufacturing method may also be used.
  • Example 1 Production of Thin Film Transistor A channel etch type thin film transistor shown in FIG. 3 was produced. A conductive silicon substrate 10 with a 200 nm thick thermal oxide film (SiO 2 film) was used. The thermal oxide film functions as the gate insulating film 30 and the conductive silicon portion functions as the gate electrode 20.
  • SiO 2 film thermal oxide film
  • a target made of high-purity indium oxide manufactured by Shonan Electronic Materials Laboratory, positive tetravalent or higher metal oxide: Sn, Ti, Zr total as a representative example: 0.09 ppm, positive divalent on the gate insulating film 30
  • a semiconductor film 40 of 40 nm was formed by a sputtering method using the following metal oxides: a total of Na, K, Mg, and Zn as a representative example (0.8 ppm).
  • Sputtering is performed after evacuating until the back pressure becomes 5 ⁇ 10 ⁇ 4 Pa, and then flowing argon gas 9.0 sccm containing 8% by volume of hydrogen and oxygen 1.0 sccm (that is, the hydrogen concentration in the film-forming atmosphere is The pressure was adjusted to 0.6 Pa, the sputtering power was 100 W, and the substrate temperature was 150 ° C. Thereafter, in order to dehydrogenate and crystallize the semiconductor film, the pressure in the apparatus was set to 30 Pa with argon gas, and the temperature was maintained at 250 ° C. for 30 minutes.
  • a molybdenum metal film (200 nm) was formed on the semiconductor film 40.
  • a resist was applied to the molybdenum metal film, and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern having a desired source / drain electrode shape.
  • UV light light intensity: 300 mJ / cm 2
  • TMAH 3 wt% tetramethylammonium hydroxide
  • the molybdenum metal film was etched by treating the substrate with a resist pattern with a mixed acid of phosphoric acid, acetic acid and nitric acid. Thereafter, the resist is peeled off, washed with pure water, air blown and dried to form the source electrode 50 and the drain electrode 52, the thin film transistor (the gap (L) between the source and drain electrodes of the channel portion 60 is 10 ⁇ m, the width ( W) was 50 ⁇ m).
  • the pressure in the apparatus was set to 30 Pa with argon gas, and held at 250 ° C. for 30 minutes.
  • XRD X-ray diffraction
  • Example 2 The etch stopper type thin film transistor shown in FIG. 4 was manufactured by a photoresist method.
  • a semiconductor film 40 of 40 nm was formed by sputtering using a target made of high-purity indium oxide in the same manner as in Example 1.
  • the pressure is adjusted to 0.5 Pa while flowing 9.0 sccm of argon gas containing 3% by volume of hydrogen and 1.0 sccm of oxygen.
  • the sputtering power was 100 W and the substrate temperature was room temperature.
  • a film having a thickness of 10 nm was formed by RF sputtering using aluminum oxide as a target, and a film having a thickness of 190 nm was formed thereon by using a silicon oxide target.
  • a resist was applied on the aluminum oxide-silicon oxide film on the semiconductor film 40 and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern of an etch stopper having a desired shape.
  • UV light light intensity: 300 mJ / cm 2
  • TMAH 3 wt% tetramethylammonium hydroxide
  • the substrate with the resist pattern was transferred to a dry etching apparatus, dry etched with CF 4 gas, and the surface was cleaned and reduced with plasma using argon containing 9% hydrogen gas. Thereafter, the resist was peeled off, washed with pure water, dried by air blowing, and an etch stopper 70 was formed.
  • a molybdenum metal film was formed to 300 nm on the semiconductor film 40 and the etch stopper 70.
  • a resist was applied to the molybdenum metal film, and prebaked at 80 ° C. for 15 minutes. Thereafter, the resist film was irradiated with UV light (light intensity: 300 mJ / cm 2 ) through a mask, and then developed with 3 wt% tetramethylammonium hydroxide (TMAH). After washing with pure water, the resist film was post-baked at 130 ° C. for 15 minutes to form a resist pattern having a desired source / drain electrode shape.
  • UV light light intensity: 300 mJ / cm 2
  • TMAH 3 wt% tetramethylammonium hydroxide
  • the molybdenum metal film was etched by treating the substrate with a resist pattern with a mixed acid of phosphoric acid, acetic acid and nitric acid. At the same time, the indium oxide film was etched at the same time. Thereafter, the resist is peeled off, washed with pure water, air blown and dried to form the source electrode 50 and the drain electrode 52, the thin film transistor (the gap (L) between the source and drain electrodes of the channel portion 60 is 10 ⁇ m, the width ( W) was 50 ⁇ m). Thereafter, in order to dehydrogenate and crystallize the semiconductor film, the thin film transistor was heat-treated in air at 300 ° C. for 30 minutes in a hot air heating furnace.
  • the semiconductor film was heat-treated in air at 300 ° C. for 30 minutes in a hot air heating furnace.
  • XRD X-ray diffraction
  • Example 3 Instead of the target made of high purity indium oxide, boron oxide, aluminum oxide, gallium oxide, scandium oxide, yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dyspronium oxide, An indium oxide target containing holmium oxide, erbium oxide, ytterbium oxide or lutetium oxide in a total amount of 2 at% (positive tetravalent or higher metal oxide: representative example of Sn, Ti, Zr total sum ⁇ 0.1 ppm, A thin film transistor was fabricated in the same manner as in Example 2 except that a metal oxide having a positive divalent value or less was used (as a representative example, the total of Na, K, Mg, and Zn: 1 ppm).
  • the field effect mobility of the obtained thin film transistor is 60 cm 2 / V ⁇ sec or more, the On-Off ratio is about 10 8 , Vth is about 0.3 V, and the S value is 0.5 V / dec.
  • the thin film transistor showed normally-off characteristics.
  • the output characteristics showed a clear pinch-off.
  • the shift voltage (Vth) after applying a 20 V voltage to the gate electrode for 100 minutes was 0.2 V or less. All the semiconductor films were crystalline, and the hydrogen content was 1.2 at% to 3.7 at%.
  • Comparative Example 1 As a sputtering target, a target made of indium oxide having a purity of 99.9% (a positive tetravalent or higher metal oxide: representative examples of Sn, Ti, Zr total: 200 ppm, a positive divalent or lower metal oxide: representative examples
  • the target is composed of Na, K, Mg, and Zn (total: 60 ppm), and the sputtering atmosphere is argon with a purity of 100% and oxygen with a purity of 100%, and the oxygen concentration is 10% by volume.
  • a thin film transistor was produced in the same manner as in Example 1.
  • the thin film transistor of the present invention can be suitably used for sensors such as display panels, RFID tags, X-ray detector panels, fingerprint sensors, and photosensors.
  • the thin film transistor manufacturing method of the present invention is particularly suitable for a channel etch type thin film transistor manufacturing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

 ゲート電極、ゲート絶縁膜、ゲート絶縁膜に接する酸化物半導体膜、及び酸化物半導体膜に接続し、チャンネル部により隔てられているソース・ドレイン電極を有する薄膜トランジスタであって、酸化物半導体膜が、水素元素を含有する結晶質酸化インジウムからなり、酸化物半導体膜に含有される水素元素の含有量が、酸化物半導体膜を形成する全元素に対して、0.1at%~5at%であることを特徴とする薄膜トランジスタ。

Description

薄膜トランジスタ及びその製造方法
 本発明は、水素元素を含有する酸化インジウムからなる結晶質半導体膜を有する薄膜トランジスタ及びその製造方法に関する。
 近年、表示装置の発展は目覚ましく、液晶表示装置やEL表示装置等、種々の表示装置がパソコンやワ-プロ等のOA機器へ活発に導入されている。これらの表示装置は、いずれも表示素子を透明導電膜で挟み込んだサンドイッチ構造を有している。
 上記の表示装置を駆動させる薄膜トランジスタ(TFT)等のスイッチング素子には、現在、シリコン系の半導体膜が主に使用されている。それは、シリコン系薄膜の安定性、加工性の良さの他、スイッチング速度が速い等が良好なためである。このシリコン系薄膜は、一般に化学蒸気析出法(CVD)法により作製されている。
 しかしながら、シリコン系薄膜が非晶質の場合、スイッチング速度が比較的遅く、高速な動画等を表示する場合は画像を表示できないという難点を有している。また、結晶質のシリコン系薄膜の場合には、スイッチング速度は比較的速いが、結晶化するために800℃以上の高温や、レーザーによる加熱等が必要であり、製造時に多大なエネルギーと工程を要する。また、シリコン系の薄膜は、電圧素子としても性能は優れているものの、電流を流した場合、その特性の経時変化が問題となっている。
 シリコン系薄膜よりも安定性に優れるとともに、ITO膜と同等の光透過率を有する透明半導体膜を得るための材料等として、酸化物半導体が注目されている。
 しかしながら、酸化インジウムの結晶質を含む膜、特に多結晶膜は、酸素欠損を生成しやすく、成膜時の酸素分圧を上げたり、酸化処理等をしても、キャリヤー密度を2×10+17cm-3にすることが困難と考えられていた。そのために、半導体膜又はTFTとしての試みはほとんどなされていなかった。
 このような状況下、特許文献1には、酸化インジウムからなる半導体層を有する薄膜トランジスタが記載されている。具体的に、酸化インジウム膜を酸化雰囲気下で熱処理することにより、薄膜トランジスタを得る方法が記載されている。しかしながら、酸化インジウムからなる薄膜の場合、熱処理条件や、酸化雰囲気の条件、特に、空気中で熱処理した場合の湿度条件により、得られる薄膜トランジスタの性能が変化するため、性能が安定しない場合がある。
 一方、非晶質酸化物半導体膜中に水素元素や重水素元素を存在させることにより、安定的に非晶質酸化物半導体が得られることが、特許文献2、3に記載されている。しかしながら、非晶質酸化物半導体膜は非晶質であるため、内部に存在させた水素元素や重水素元素が空気中に拡散したり、また、新たに空気中から水分子が侵入して、その結果、膜中の水素元素が過剰となり、得られる素子が不安定になる場合があった。
 尚、結晶質の酸化インジウムを半導体膜に使用した場合、半導体膜が蓚酸、PAN等には溶解せず、エッチング耐性を持つことから、チャンネルエッチ型のTFT構成を容易に製造することができるという利点が考えられる。しかしながら、結晶質酸化インジウム膜のみでは、キャリヤー密度を十分に下げて半導体化することが非常に難しかった。即ち、単に酸化インジウム膜を結晶化させた場合、酸素欠損や、共存する不純物である正4価の金属酸化物により、キャリヤーが発生し、導電体になるおそれがあった。そのため、従来、結晶質の酸化インジウムを半導体膜に使用したTFTは作製されていなかった。
特開2008-130814号公報 特開2007-73697号公報 特開2007-103918号公報
 本発明の目的は、製造時における熱処理条件、特に、空気中で熱処理する場合の湿度条件等が異なっていても、安定した性能を有する薄膜トランジスタを提供することである。
 上記目的を達成するため、本発明者らが鋭意研究した結果、一定の水素元素を含む酸化インジウムを半導体膜に使用することにより、高性能な薄膜トランジスタが得られること、及び半導体膜の形成において、水素元素を含む非晶質酸化インジウム膜を形成し、その後、脱水素処理し含有水素量を制御することにより、所望の半導体膜を安定して得られることを見出し、本発明を完成させた。
 本発明によれば、以下の薄膜トランジスタ等が提供される。
1.ゲート電極、ゲート絶縁膜、前記ゲート絶縁膜に接する酸化物半導体膜、及び前記酸化物半導体膜に接続し、チャンネル部により隔てられているソース・ドレイン電極を有する薄膜トランジスタであって、前記酸化物半導体膜が、水素元素を含有する結晶質酸化インジウムからなり、前記酸化物半導体膜に含有される水素元素の含有量が、酸化物半導体膜を形成する全元素に対して、0.1at%~5at%であることを特徴とする薄膜トランジスタ。
2.前記酸化物半導体膜が、さらに酸化インジウムを除く正3価の金属酸化物を含有することを特徴とする1記載の薄膜トランジスタ。
3.前記酸化物半導体膜に含有される全金属元素に対する、前記インジウムを除く正3価の金属元素の含有量が0.1~10at%であることを特徴とする2に記載の薄膜トランジスタ。
4.前記酸化インジウムを除く正3価の金属酸化物が、酸化ホウ素、酸化アルミニウム、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム、酸化イッテリビウム及び酸化ルテチウムから選択される1種以上の酸化物であることを特徴とする2又は3に記載の薄膜トランジスタ。
5.水素元素を含有する酸化インジウムからなる半導体膜を成膜する成膜工程と、前記半導体膜をパターニングする工程と、前記半導体膜を脱水素及び結晶化する工程と、前記半導体膜に接続するようにソース・ドレイン電極を形成する工程を含む、1~4のいずれかに記載の薄膜トランジスタの製造方法。
6.前記半導体膜の成膜工程における成膜雰囲気中の水素分子、及び/又は水分子の体積含有量が、1%~10%であることを特徴とする5記載の薄膜トランジスタの製造方法。
7.前記半導体膜を脱水素及び結晶化する工程が、前記半導体膜を150~450℃で0.1~1200分間熱処理する工程であることを特徴とする5又は6に記載の薄膜トランジスタの製造方法。
8.チャンネルエッチ型の薄膜トランジスタの製造方法であることを特徴とする5~7のいずれかに記載の薄膜トランジスタの製造方法。
9.エッチストッパー型の薄膜トランジスタの製造方法であることを特徴とする5~7のいずれかに記載の薄膜トランジスタの製造方法。
 本発明によれば、製造時における熱処理条件が変動しても、高性能な薄膜トランジスタが安定して得られる。
本発明のチャンネルエッチ型薄膜トランジスタの実施形態を示す概略断面図である。 本発明のエッチストッパー型薄膜トランジスタの実施形態を示す概略断面図である。 実施例1で作製したチャンネルエッチ型薄膜トランジスタの概略断面図である。 実施例2で作製したエッチストッパー型薄膜トランジスタの概略断面図である。
 本発明の薄膜トランジスタ(TFT)は、ゲート電極、ゲート絶縁膜、前記ゲート絶縁膜に接する酸化物半導体膜、及び酸化物半導体膜に接続し、チャンネル部により隔てられているソース・ドレイン電極を有する薄膜トランジスタである。そして、酸化物半導体膜が、水素元素を含有する結晶質酸化インジウム半導体膜を有することを特徴とする。
 図1は、本発明の薄膜トランジスタの実施形態を示す概略断面図である。
 薄膜トランジスタ1は、基板10及び絶縁膜30の間にゲート電極20を挟持しており、ゲート絶縁膜30上には半導体膜40が活性層として積層されている。さらに、半導体膜40の端部付近を覆うようにしてソース電極50及びドレイン電極52がそれぞれ設けられている。半導体膜40、ソース電極50及びドレイン電極52で囲まれた部分にチャンネル部60を形成している。
 尚、図1の薄膜トランジスタ1はいわゆるチャンネルエッチ型薄膜トランジスタである。本発明の薄膜トランジスタは、チャンネルエッチ型薄膜トランジスタに限定されず、本技術分野で公知の素子構成を採用できる。
 図2は、本発明の薄膜トランジスタの他の実施形態を示す概略断面図である。尚、上述した薄膜トランジスタ1と同じ構成部材には同じ番号を付し、その説明を省略する。
 薄膜トランジスタ2は、エッチストッパー型の薄膜トランジスタである。薄膜トランジスタ2は、チャンネル部60を覆うようにエッチストッパー70が形成されている点を除き、上述した薄膜トランジスタ1と同じ構成である。半導体膜40の端部付近及びエッチストッパー70の端部付近を覆うようにしてソース電極50及びドレイン電極52がそれぞれ設けられている。
 本発明では半導体膜40に、水素元素を含有する酸化インジウムからなる、結晶質酸化インジウム半導体膜を使用する。結晶質酸化インジウム薄膜が水素元素を含むことにより、薄膜トランジスタの性能が安定化される。酸化インジウムは、酸素欠損を発生しやすい化合物であり、そのため、透明導電膜の素材として使用されている。水素元素は、酸素欠損で生じた欠陥を穴埋めするので、キャリヤー発生を抑えることができることから、半導体が安定すると考えられる。
 また、半導体膜のキャリヤー濃度を低減することができ、室温付近の温度において2×10+17cm-3未満にすることが可能となり、良好な薄膜トランジスタ特性を示すようになる。
 尚、室温付近の温度における半導体膜のキャリヤー密度は、2×10+17cm-3未満が好ましい。キャリヤー密度が2×10+17cm-3以上では、TFTとして駆動しないおそれがある。また、TFTとして駆動したとしてもノーマリーオンになったり、閾値電圧がマイナスに大きくなったり、On-Off値が小さくなる場合がある。
 半導体膜における水素元素の含有量は、半導体膜が含有する全元素に対して0.1~5at%であることが好ましく、特に、0.5~3at%であることが好ましい。0.1at%未満では含有量が少ないため、酸化インジウム薄膜が導電膜化しやすく、安定したTFT特性が得られない場合がある。一方、5at%超では、薄膜が絶縁膜化してしまう場合がある。
 半導体膜において水素元素は、分子状で存在しても原子状態で存在してもよい。また、酸素に結合して、水酸基として存在してもよい。好ましくは、水酸基として存在するのがよい。
 水素の含有量は、ラザフォード・バックスキャッタリング・スペクトロメトリー(RBS)法、水素前方スキャッタリング・スペクトロメトリー(HFS)法、サーマル・デポジション・スペクトロメトリー(TDS)法により測定することができる。本願では水素前方スキャッタリング・スペクトロメトリー(HFS)法で測定した値をいう。
 半導体膜における水素元素の含有量は、例えば、半導体膜の成膜雰囲気における水素濃度を調整したり、成膜後の脱水素工程の温度や処理時間を調整することにより制御できる。
 また、本発明では結晶質である半導体膜を使用する。これにより、TFTの移動度を高くでき、また、耐久性を高くできる。また、ソース電極50及びドレイン電極52のエッチングの際に、半導体膜がエッチングされることを抑制できる。
 ここで、「結晶質膜」とは、X線回折により、結晶ピークを確認できる膜である。結晶質膜は、単結晶膜、エピタキシャル膜及び多結晶膜のいずれであってもよく、工業生産が容易かつ大面積化が可能であることから、好ましくはエピタキシャル膜及び多結晶膜であり、特に好ましくは多結晶膜である。
 結晶質膜が多結晶膜の場合、当該多結晶膜がナノクリスタルからなることが好ましい。X線回折からScherrer’s equationを用いて求めた平均結晶粒径は通常500nm以下、好ましくは300nm以下、より好ましくは150nm以下、さらに好ましくは80nm以下である。500nmより大きいとトランジスタを微細化した際のばらつきが大きくなるおそれがある。
 本発明においては、半導体膜が、さらに酸化インジウムを除く正3価の金属酸化物を含有することが好ましい。これにより、結晶質酸化インジウムに発生する酸素欠損を容易に抑えることができるため、安定に作動する薄膜トランジスタが得られるようになる。
 酸化インジウムを除く正3価の金属酸化物としては、酸化ホウ素、酸化アルミニウム、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム、酸化イッテリビウム又は酸化ルテチウムが好適に使用できる。これらの酸化物は1種単独で用いても、また、2種以上組み合わせて用いてもよい。
 正3価の金属酸化物(酸化インジウムを除く)を含む酸化インジウムが、より簡便に結晶質化する観点から、添加される正3価の金属酸化物の金属元素のイオン半径はインジウム元素のイオン半径により近いことが望ましい。具体的に、インジウム元素のイオン半径との差が±30%以内のものが、より好ましく用いることができる。インジウム元素とのイオン半径の差が30%を超える場合、固溶限界が小さくなったり、固溶しない場合がある。その場合には、格子間に進入型固溶解していても良い。また、結晶粒界に偏析して存在していてもよい。これら結晶粒界に偏析した場合には、結晶粒界に存在する酸素欠損を抑える効果がある。
 上記の観点から、正3価の金属酸化物(酸化インジウムを除く)としては、特に、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム及び酸化イッテリビウムが好ましい。
 半導体膜に含有される正3価の金属酸化物(酸化インジウムを除く)の含有量は、半導体膜の全金属元素に対する金属元素量として、0.1~10at%であることが好ましく、特に、0.5~8at%であることが好ましい。インジウムを除く正3価の金属元素の含有量が0.1at%未満では、添加する酸化インジウムを除く正3価の金属酸化物の添加量が少なく、その効果が小さい場合があり、ノーマリーオフの薄膜トランジスタが得られない場合がある。一方、10at%超では添加量が多すぎて、結晶質の酸化インジウム膜が得られない場合がある。半導体膜が非晶質酸化インジウムの場合、キャリヤー濃度が低減せず、ノーマリーオン状態の薄膜トランジスタになったり、得られるトランジスタの移動度が向上しない場合がある。
 金属元素の比率は、ICP-Mass(Inductively Coupled Plasma Mass)測定により、各元素の存在量を測定することで求めることができる。
 本発明では、半導体膜が含有する全金属元素に対する、正4価以上の金属元素の含有量が10ppm(本願において、「ppm」は原子ppmを意味する)以下であることが好ましい。正4価以上の金属元素は、半導体膜内で酸化物として存在する。正4価の金属酸化物が酸化インジウムの結晶中に取り込まれた場合、酸化インジウム中でキャリヤーを発生させるため、半導体膜の性能に大きな影響を与える。また、半導体膜の熱処理の条件により、酸化インジウム中に固溶置換したりして、酸化インジウムのバンド構造中に不純物準位を形成し、半導体特性に影響を及ぼす。その結果、室温付近の温度においてのキャリヤー密度を、2×10+17cm-3未満に制御できない場合がある。従って、正4価以上の金属元素の含有量は少ない方がよく、好ましくは、5ppm以下であり、より好ましくは1ppm以下である。
 半導体膜に含まれる正4価以上の金属酸化物としては、酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、等の正4価以上の重金属酸化物、及び酸化ケイ素、酸化ゲルマニウム、酸化スズ、酸化鉛、酸化アンチモン、酸化ビスマス及び酸化セリウムが挙げられる。
 上記金属酸化物のうち、特に、酸化チタン、酸化ジルコニウム及び酸化スズは、厳密に管理するのが好ましい。
 また、本発明では半導体膜が含有する全金属元素に対する、正2価以下の金属元素の含有量は50ppm以下であることが好ましい。正2価以下の金属元素も、半導体膜内で酸化物として存在する。正2価以下の金属酸化物が酸化インジウムの結晶中に取り込まれた場合、酸化インジウム中で、キャリヤートラップを発生するようになり、その結果、移動度の低下をきたす場合があり、半導体膜の性能に大きな影響を与える。また、熱処理中の条件により酸化インジウム中に固溶置換したりして、酸化インジウムのバンド構造中に不純物準位を形成し、半導体特性に影響を及ぼす。従って、正2価以下の金属元素の含有量は少ない方がよく、好ましくは、10ppm以下であり、より好ましくは5ppm以下である。
 半導体膜に含まれる正2価以下の金属酸化物としては、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウム、酸化セシウム、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム及び酸化バリウム等のアルカリ金属酸化物やアルカリ土類金属酸化物、及び、酸化亜鉛が挙げられる。
 上記金属酸化物のうち、特に、酸化ナトリウム、酸化カリウム、酸化マグネシウム、酸化カルシウム及び酸化亜鉛は、厳密に管理するのが好ましい。
 本発明の薄膜トランジスタにおいて、基板、ゲート電極、ゲート絶縁膜、ソース・ドレイン電極等の構成部材は、公知のものが使用でき、特に限定されない。
 例えば、各電極にはAl、Cu、Au等の金属薄膜が使用でき、ゲート絶縁膜には、酸化シリコン膜、酸化ハフニウム膜等の酸化物薄膜を使用できる。
 また、エッチストッパーには、絶縁性の正3価の金属酸化物膜を用いることが出来る。例えば、酸化ホウ素、酸化アルミニウム、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム、酸化イッテリビウム又は酸化ルテチウムが好ましい。これらの膜の上に、酸化ケイ素や窒化珪素等を積層してよい。ドライエッチング性やコストを勘案すると、酸化アルミニウムや酸化イットリウム等が好ましい。
 尚、正3価の金属酸化物以外、例えば、酸化ケイ素等をエッチングストッパーに使用すると半導体膜に影響を与える場合がある。具体的に、半導体膜となる非晶質酸化インジウム上に、酸化ケイ素膜をスパッタや熱CVD、プラズマCVD等で成膜し、その後、加熱結晶化した場合、珪素元素が酸化インジウム膜に拡散し、固溶する場合がある。この場合、半導体膜にキャリヤーを発生し導電化することがあるため、off電流が大きくなり、on/off値が小さくなる場合がある。従って、エッチストッパーの半導体膜に接触する面には、絶縁性の正3価の金属酸化物膜を用いることが好ましい。
 続いて、本発明の薄膜トランジスタの製造方法を説明する。
 本発明の製造方法は、水素元素を含有する酸化インジウムからなる半導体膜を成膜する成膜工程と、半導体膜をパターニングする工程と、半導体膜を脱水素及び結晶化する工程と、半導体膜に接続するようにソース・ドレイン電極を形成する工程を含む。
 尚、ゲート電極、ゲート絶縁膜、ソース・ドレイン電極等の構成部材は、公知の方法により形成できる。
 例えば、基板上にAl、Cu、Au等の金属薄膜からなるゲート電極を形成し、その上に、酸化シリコン膜、酸化ハフニウム膜等からなる酸化物薄膜をゲート絶縁膜として形成する。その上に、金属マスクを装着して必要な部分だけに酸化インジウム膜からなる半導体膜を形成する。その後、金属マスクを用いて、必要部分にソース・ドレイン電極を形成することで、薄膜トランジスタを製造することができる。
 以下、本発明の特徴部分である半導体膜の成膜工程について説明する。
 水素元素を含有する酸化インジウムからなる半導体膜は、スパッタリング法、蒸着法、イオンプレーティ―ティング法、パルス・レーザー・デポジション(PLD)法等の方法で形成できる。好ましくは、スパッタリング法である。
 スパッタリングでは、焼結ターゲットを用いる方法が好ましい。特に、高純度(例えば、純度99.99at%以上)酸化インジウムの焼結ターゲットが好ましい。上述した正3価の金属酸化物(酸化インジウムを除く)を含有する半導体膜を形成するには、例えば、酸化インジウムにこれら金属酸化物を含有させた焼結ターゲットを使用すればよい。尚、焼結ターゲットは、本技術分野において公知の方法により製造できる。
 スパッタリングの条件は、使用するターゲットや、半導体膜の膜厚等にあわせて適宜調整することができる。スパッタリング方法は、RFスパッタ法、DCスパッタ法、ACスパッタ法が使用できる。中でも、DCスパッタ法、ACスパッタ法が、成膜速度も速く、好ましい。
 上記の方法による成膜の雰囲気中に水素元素を注入することにより、水素元素を含有する酸化インジウム半導体膜が得られる。具体的には、水素分子(水素ガス)や水を成膜雰囲気中に注入した状態で成膜すればよい。
 成膜雰囲気中の水素分子、及び/又は水分子の体積含有量は、1%~10%であることが好ましく、特に、2%~8%であることが好ましい。
 水素分子、及び/又は水分子を成膜雰囲気中に存在させる方法としては、水素ガスを含むアルゴンガスを成膜ガスとして用いたり、水をプランジャーポンプ等により成膜室に直接送り込む方法がある。尚、ガスの場合、体積含有量は、各ガス成分の分圧により制御することが出来る。
 本発明では、半導体膜の成膜中に酸素を存在させることが好ましい。スパッタ中に酸素を存在させることにより、脱水素処理工程にて、効果的に脱水素することが出来る。
 得られた半導体膜をパターニングする。パターニングは、ウエットエッチング、ドライエッチング等の方法がある。尚、半導体膜の形成時に、マスクによるパターン形成や、リフトオフによるパターン形成等の方法を用いた場合、パターニングは不要である。本発明においては、ウエットエッチングやマスクによるパターン形成が好ましい。
 半導体膜を脱水素処理及び結晶化する。
 脱水素及び結晶化工程は、成膜工程において、酸化インジウム中に余分に添加された水素元素を一定の値に制御する効果がある。これにより常に安定した性能の酸化物半導体膜を得ることができるようになる。また、脱水素処理(酸化処理)により、酸化インジウム膜は結晶化し、安定した性能の薄膜トランジスタを得ることができる。
 半導体膜を脱水素処理する工程、及び半導体膜を結晶化する工程としては、酸素による水素の酸化処理や、熱による水素分子、水分子の脱離による方法がある。具体的に、空気中で加熱したり、非酸化雰囲気(窒素中やアルゴン雰囲気等の不活性気体中)で加熱したり、真空下で加熱する等の方法が用いられる。
 本発明では、真空下での脱水素処理や、非酸化性雰囲気での脱水素処理が好ましい。
 尚、真空下とは、空気を排気した状態であり、500Pa以下、好ましくは、300Pa以下、より好ましくは、100Pa以下である。段階的に真空度を上げる方法も好ましい。
 熱処理の方法としては、オーブン加熱、加熱板への接触(接触加熱)、赤外線ランプ等によるランプ加熱、レーザー等の光による加熱、熱プラズマ等による加熱等が用いられる。
 脱水素処理工程における加熱温度は、150~450℃であることが好ましい。150℃未満では、半導体膜が十分に結晶化しない場合があり、450℃超では、基板や半導体膜にダメージを与える場合がある。熱処理温度は、180℃~350℃がさらに好ましく、特に200℃~300℃が好ましい。
 また、加熱時間は0.1~1200分が好ましい。熱処理時間が0.1分未満では、処理時間が短すぎて膜の結晶化が不十分となる場合があり、1200分超では時間が掛かりすぎ生産的ではない。熱処理時間は、0.5分~600分がさらに好ましい。
 半導体膜中の水素濃度を制御する点からも、上記の温度及び時間の条件が好ましい。上記条件から外れると、半導体膜中の水素濃度が本発明の規定範囲を満たさなくなる場合があり、薄膜トランジスタの移動度が減少するおそれがある。
 尚、半導体膜の脱水素処理及び結晶化は、半導体膜の形成後、すぐに実施してもよく、また、ソース・ドレイン電極等、他の構成部材の形成後に実施してもよい。
 本発明では、半導体膜が水素元素を含むことで、半導体特性の安定性が向上している。そのため、製造時における熱処理条件、特に、空気中で熱処理する場合の湿度条件等が異なっていても、安定した性能を有する薄膜トランジスタを製造することができる。
 本発明の製造方法は、特に、チャンネルエッチ型の薄膜トランジスタの製造方法に適している。本発明の半導体膜は結晶質であるため、Al等の金属薄膜からソース・ドレイン電極及びチャンネル部を形成する方法として、フォトリソグラフィを使用したエッチング工程を採用できる。即ち、金属薄膜を除去するエッチング液では、半導体膜はエッチングされず、金属薄膜を選択的にエッチングできる。尚、エッチストッパー型の薄膜トランジスタの製造方法であってもよい。
実施例1
(A)薄膜トランジスタの作製
 図3に示すチャンネルエッチ型の薄膜トランジスタを作製した。
 200nm厚みの熱酸化膜(SiO膜)付きの導電性シリコン基板10を使用した。熱酸化膜がゲート絶縁膜30として機能し、導電性シリコン部がゲート電極20として機能する。
 ゲート絶縁膜30上に、高純度酸化インジウムからなるターゲット(湘南電子材料研究所作製、正4価以上の金属酸化物:代表例としてSn,Ti,Zrの総合計:0.09ppm、正2価以下の金属酸化物:代表例としてNa,K,Mg,Znの総合計:0.8ppm)を用いて、スパッタリング法で40nmの半導体膜40を成膜した。スパッタリングは、背圧が5×10-4Paとなるまで真空排気したあと、水素を8体積%含むアルゴンガス9.0sccm、酸素1.0sccmを流しながら(即ち、成膜雰囲気中の水素濃度は7.2体積%である)、圧力を0.6Paに調整し、スパッタパワー100Wにて、基板温度150℃で行った。
 その後、半導体膜を脱水素処理及び結晶化するために、アルゴンガスにて、装置内の圧力を30Paに設定し、250℃で30分保持した。
 基板温度を室温の戻した後、半導体膜40の上に、モリブデン金属膜(200nm)を形成した。
 モリブデン金属膜にレジストを塗布し、80℃で15分間プレベークした。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、所望の形状のソース・ドレイン電極形状のレジストパターンを形成した。
 レジストパターン付き基板を、燐酸・酢酸・硝酸の混合酸で処理することで、モリブデン金属膜をエッチングした。その後レジストを剥離し、純水で洗浄しエアーブローして乾燥させて、ソース電極50、ドレイン電極52を形成し、薄膜トランジスタ(チャンネル部60のソース・ドレイン電極間間隙(L)が10μm、幅(W)が50μm)を作製した。
 この薄膜トランジスタの電界効果移動度は82cm/V・sec、On-Off比は10であり、閾値電圧(Vth)は0.5V、S値は0.7V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。
(B)半導体膜の評価
 石英ガラス基板上に、上記(A)のスパッタリングと同じ条件にて半導体膜を形成した。得られた半導体膜(脱水素処理及び結晶化前)をX線回折(XRD)測定したところ、酸化インジウムのビックスバイト構造のピークは観察されず、非晶質であった。また、半導体膜の水素の含有量を測定したところ、3.53at%であった。尚、水素の含有量は水素前方スキャッタリング・スペクトロメトリー法にて測定した。
 その後、アルゴンガスにて、装置内の圧力を30Paに設定し、250℃で30分保持した。得られた半導体膜のX線回折(XRD)測定をしたところ、酸化インジウムのビックスバイト構造のピークが観察された。また、水素の含有量は3.13at%であった。
実施例2
 図4に示すエッチストッパー型の薄膜トランジスタを、フォトレジスト法にて作製した。
 熱酸化膜(SiO膜)付きの導電性シリコン基板10上に、実施例1と同様にして、高純度酸化インジウムからなるターゲットを用いて、スパッタリング法で40nmの半導体膜40を成膜した。
 尚、スパッタリングは、背圧が5×10-4Paとなるまで真空排気したあと、水素を3体積%含むアルゴンガス9.0sccm、酸素1.0sccmを流しながら、圧力を0.5Paに調整し、スパッタパワー100W、基板温度を室温とした。
 その後、酸化アルミニウムをターゲットとして用いて、RFスパッタ法にて、10nmの厚みに成膜し、さらに、その上に酸化ケイ素ターゲットを用いて、190nmの厚みに成膜した。
 半導体膜40上の酸化アルミニウム-酸化ケイ素膜上にレジストを塗布し、80℃で15分間プレベークした。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、所望の形状のエッチストッパーのレジストパターンを形成した。
 レジストパターン付き基板を、ドライエッチング装置に移し、CFガスによりドライエッチングを行い、さらに、水素ガス9%を含むアルゴンを用いてプラズマにより表面を洗浄・還元処理した。その後レジストを剥離し、純水で洗浄しエアーブローして乾燥させ、エッチストッパー70を形成した。
 その後、半導体膜40とエッチストッパー70上に、モリブデン金属膜を300nm成膜した。
 モリブデン金属膜にレジストを塗布し、80℃で15分間プレベークした。その後、マスクを通してUV光(光強度:300mJ/cm)をレジスト膜に照射し、その後、3wt%のテトラメチルアンモニウムハイドロオキサイド(TMAH)にて現像した。純水で洗浄後、レジスト膜を130℃で15分ポストベークし、所望の形状のソース・ドレイン電極形状のレジストパターンを形成した。
 レジストパターン付き基板を、燐酸・酢酸・硝酸の混合酸で処理することで、モリブデン金属膜をエッチングした。同時に、酸化インジウム膜も同時にエッチングした。その後レジストを剥離し、純水で洗浄しエアーブローして乾燥させて、ソース電極50、ドレイン電極52を形成し、薄膜トランジスタ(チャンネル部60のソース・ドレイン電極間間隙(L)が10μm、幅(W)が50μm)を作製した。
 その後、半導体膜を脱水素処理及び結晶化するために、薄膜トランジスタを熱風加熱炉内で、空気中、300℃で30分間熱処理した。
 この薄膜トランジスタの電界効果移動度は86cm/V・sec、On-Off比は10であり、Vthは0.1V、S値は0.2V/dec.で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.1Vであった。
(B)半導体膜の評価
 石英ガラス基板上に、上記のスパッタリングと同じ条件にて半導体膜を形成した。得られた半導体膜(脱水素処理及び結晶化前)のX線回折(XRD)測定をしたところ、酸化インジウムのビックスバイト構造のピークは観察されず、非晶質であった。水素の含有量は1.34at%であった。
 その後、半導体膜を熱風加熱炉内で、空気中、300℃で30分間熱処理した。得られた半導体膜のX線回折(XRD)測定をしたところ、酸化インジウムのビックスバイト構造のピークが観察された。水素の含有量は0.11at%であった。
実施例3
 高純度酸化インジウムからなるターゲットに変えて、酸化ホウ素、酸化アルミニウム、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム、酸化イッテリビウム又は酸化ルテチウムを、それぞれ総合計で2at%含有する酸化インジウムターゲット(正4価以上の金属酸化物:代表例としてSn,Ti,Zrの総合計<0.1ppm、正2価以下の金属酸化物:代表例としてNa,K,Mg,Znの総合計:1ppm)を用いた他は、実施例2と同様にして薄膜トランジスタを作製した。
 得られた薄膜トランジスタの電界効果移動度は60cm/V・sec以上、On-Off比は10程度、Vthは0.3V程度、S値は0.5V/dec.以下で、ノーマリーオフの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、0.2V以下であった。
 また、いずれの半導体膜も結晶質であり、水素の含有量は1.2at%~3.7at%であった。
比較例1
 スパッタリングターゲットとして、純度99.9%の酸化インジウムからなるターゲット(正4価以上の金属酸化物:代表例としてSn,Ti,Zrの総合計:200ppm、正2価以下の金属酸化物:代表例としてNa,K,Mg,Znの総合計:60ppm)からなるターゲットを使用し、スパッタ雰囲気を純度100%のアルゴン及び純度100%の酸素を用い、酸素濃度10体積%にした他は、実施例1と同様にして薄膜トランジスタを作製した。
 この薄膜トランジスタの電界効果移動度は3.1cm/V・sec、On-Off比は10であり、Vthは-5.1V、S値は7.3V/dec.で、ノーマリーオンの特性を示す薄膜トランジスタであった。また、出力特性は明瞭なピンチオフを示した。ゲート電極に20V電圧を100分間印加した後のシフト電圧(Vth)は、1.4Vであった。
 半導体膜は結晶質であり、水素の含有量は0.01at%未満であった。
比較例2
 スパッタリングターゲットとして、純度99.9%の、酸化インジウム-酸化ガリウム-酸化亜鉛からなるターゲット(In:Ga:Zn=1:1:1(原子比))からなるターゲットを使用し、スパッタ雰囲気を1体積%の水素を含むアルゴン、及び純度100%の酸素を用い、水素濃度0.96体積%、酸素濃度4体積%に調整した他は、実施例1と同様にして薄膜トランジスタの作製を試みた。
 しかしながら、モリブデン金属膜をエッチングする段階で、半導体膜が溶解したため、薄膜トランジスタは得られなかった。
 比較例2で形成した半導体膜は、脱水素及び結晶化処理をした後も非晶質膜であった。そのため、モリブデン金属膜をエッチングする段階で、半導体膜が溶解した。
 本発明の薄膜トランジスタは、ディスプレイ用パネル、RFIDタグ、X線ディテクタパネル・指紋センサ・フォトセンサ等のセンサ等に好適に使用できる。
 本発明の薄膜トランジスタの製造方法は、特に、チャンネルエッチ型の薄膜トランジスタの製造方法に適している。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (9)

  1.  ゲート電極、ゲート絶縁膜、前記ゲート絶縁膜に接する酸化物半導体膜、及び前記酸化物半導体膜に接続し、チャンネル部により隔てられているソース・ドレイン電極を有する薄膜トランジスタであって、
     前記酸化物半導体膜が、水素元素を含有する結晶質酸化インジウムからなり、
     前記酸化物半導体膜に含有される水素元素の含有量が、酸化物半導体膜を形成する全元素に対して、0.1at%~5at%であることを特徴とする薄膜トランジスタ。
  2.  前記酸化物半導体膜が、さらに酸化インジウムを除く正3価の金属酸化物を含有することを特徴とする請求項1記載の薄膜トランジスタ。
  3.  前記酸化物半導体膜に含有される全金属元素に対する、前記インジウムを除く正3価の金属元素の含有量が0.1~10at%であることを特徴とする請求項2に記載の薄膜トランジスタ。
  4.  前記酸化インジウムを除く正3価の金属酸化物が、酸化ホウ素、酸化アルミニウム、酸化ガリウム、酸化スカンジウム、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユウロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロニウム、酸化ホルミウム、酸化エルビウム、酸化イッテリビウム及び酸化ルテチウムから選択される1種以上の酸化物であることを特徴とする請求項2又は3に記載の薄膜トランジスタ。
  5.  水素元素を含有する酸化インジウムからなる半導体膜を成膜する成膜工程と、
     前記半導体膜をパターニングする工程と、
     前記半導体膜を脱水素及び結晶化する工程と、
     前記半導体膜に接続するようにソース・ドレイン電極を形成する工程を含む、請求項1~4のいずれかに記載の薄膜トランジスタの製造方法。
  6.  前記半導体膜の成膜工程における成膜雰囲気中の水素分子、及び/又は水分子の体積含有量が、1%~10%であることを特徴とする請求項5記載の薄膜トランジスタの製造方法。
  7.  前記半導体膜を脱水素及び結晶化する工程が、前記半導体膜を150~450℃で0.1~1200分間熱処理する工程であることを特徴とする請求項5又は6に記載の薄膜トランジスタの製造方法。
  8.  チャンネルエッチ型の薄膜トランジスタの製造方法であることを特徴とする請求項5~7のいずれかに記載の薄膜トランジスタの製造方法。
  9.  エッチストッパー型の薄膜トランジスタの製造方法であることを特徴とする請求項5~7のいずれかに記載の薄膜トランジスタの製造方法。
PCT/JP2009/005446 2008-10-23 2009-10-19 薄膜トランジスタ及びその製造方法 WO2010047077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010534680A JPWO2010047077A1 (ja) 2008-10-23 2009-10-19 薄膜トランジスタ及びその製造方法
CN2009801414285A CN102187467A (zh) 2008-10-23 2009-10-19 薄膜晶体管及其制造方法
US13/125,577 US8445903B2 (en) 2008-10-23 2009-10-19 Thin film transistor having a crystalline semiconductor film including indium oxide which contains a hydrogen element and method for manufacturing same
US13/868,307 US20130234134A1 (en) 2008-10-23 2013-04-23 Thin film transistor and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008273421 2008-10-23
JP2008-273421 2008-10-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/868,307 Continuation US20130234134A1 (en) 2008-10-23 2013-04-23 Thin film transistor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2010047077A1 true WO2010047077A1 (ja) 2010-04-29

Family

ID=42119132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005446 WO2010047077A1 (ja) 2008-10-23 2009-10-19 薄膜トランジスタ及びその製造方法

Country Status (6)

Country Link
US (2) US8445903B2 (ja)
JP (1) JPWO2010047077A1 (ja)
KR (1) KR101612147B1 (ja)
CN (1) CN102187467A (ja)
TW (1) TWI475697B (ja)
WO (1) WO2010047077A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145634A1 (en) * 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145632A1 (en) * 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2011258939A (ja) * 2010-05-14 2011-12-22 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2012009844A (ja) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2012084860A (ja) * 2010-09-13 2012-04-26 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US20120104384A1 (en) * 2010-10-29 2012-05-03 Young-Joo Choi Thin-film transistor and method for manufacturing the same
JP2012256819A (ja) * 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
EP2273540A3 (en) * 2009-07-09 2013-05-29 Ricoh Company, Ltd. Field-effect transistor and method for fabricating field-effect transistor
JP2013214752A (ja) * 2009-09-24 2013-10-17 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
WO2014058019A1 (ja) * 2012-10-11 2014-04-17 住友金属鉱山株式会社 酸化物半導体薄膜および薄膜トランジスタ
JP2014183238A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 表示装置、薄膜トランジスタ、表示装置の製造方法及び薄膜トランジスタの製造方法
JP2015135989A (ja) * 2010-03-08 2015-07-27 株式会社半導体エネルギー研究所 半導体装置
JP2015164207A (ja) * 2009-12-08 2015-09-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2015207782A (ja) * 2010-07-02 2015-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2016034046A (ja) * 2010-05-21 2016-03-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2016075945A (ja) * 2010-03-31 2016-05-12 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
US9368639B2 (en) 2012-11-22 2016-06-14 Sumitomo Metal Mining Co., Ltd. Oxide semiconductor thin film, production method thereof, and thin film transistor
JP2016154253A (ja) * 2010-06-18 2016-08-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2016195260A (ja) * 2010-07-16 2016-11-17 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法
JP2016208060A (ja) * 2011-02-02 2016-12-08 株式会社半導体エネルギー研究所 半導体装置
JP2017041646A (ja) * 2013-05-09 2017-02-23 国立研究開発法人物質・材料研究機構 薄膜トランジスタおよびその製造方法
JP2017216476A (ja) * 2011-09-29 2017-12-07 株式会社半導体エネルギー研究所 半導体装置
JP2018050081A (ja) * 2011-10-14 2018-03-29 株式会社半導体エネルギー研究所 半導体装置
JP2018074176A (ja) * 2011-10-14 2018-05-10 株式会社半導体エネルギー研究所 半導体装置
JP2018121049A (ja) * 2016-12-23 2018-08-02 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP2022024000A (ja) * 2011-09-29 2022-02-08 株式会社半導体エネルギー研究所 半導体装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048996B1 (ko) * 2009-01-12 2011-07-12 삼성모바일디스플레이주식회사 박막 트랜지스터 및 그를 구비하는 평판 표시 장치
KR101147414B1 (ko) * 2009-09-22 2012-05-22 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101342343B1 (ko) 2009-09-24 2013-12-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 소자의 제작 방법
WO2011132556A1 (en) * 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011135987A1 (en) * 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101611418B1 (ko) * 2010-05-06 2016-04-12 삼성전자주식회사 광터치 패널 및 그 제조 방법
WO2011145633A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI491047B (zh) * 2011-03-31 2015-07-01 Chunghwa Picture Tubes Ltd 薄膜電晶體及其製造方法
KR101854197B1 (ko) * 2011-05-12 2018-06-21 삼성디스플레이 주식회사 표시 기판 및 이의 제조 방법
JP5740270B2 (ja) * 2011-09-27 2015-06-24 株式会社東芝 薄膜トランジスタ、その製造方法、および表示装置
CN103137701B (zh) 2011-11-30 2018-01-19 株式会社半导体能源研究所 晶体管及半导体装置
KR20140106977A (ko) * 2013-02-27 2014-09-04 삼성전자주식회사 고성능 금속 산화물 반도체 박막 트랜지스터 및 그 제조방법
CN104934482B (zh) 2015-05-11 2018-09-18 京东方科技集团股份有限公司 一种薄膜晶体管、阵列基板及其制备方法、显示装置
US20180026104A1 (en) * 2016-07-20 2018-01-25 Electronics And Telecommunications Research Institute P-type oxide semiconductor, method for forming p-type oxide semiconductor, and transistor with the p-type oxide semiconductor
US10205008B2 (en) 2016-08-03 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR102627305B1 (ko) * 2016-12-30 2024-01-18 한양대학교 산학협력단 박막 트랜지스터 기판 및 표시 장치
CN107195659B (zh) * 2017-05-27 2020-07-24 京东方科技集团股份有限公司 阵列基板的制作方法、阵列基板及显示装置
JP6834062B2 (ja) * 2018-08-01 2021-02-24 出光興産株式会社 結晶構造化合物、酸化物焼結体、及びスパッタリングターゲット
US20220199784A1 (en) * 2019-03-28 2022-06-23 Idemitsu Kosan Co., Ltd. Crystalline oxide thin film, multilayer body and thin film transistor
CN114163216A (zh) * 2021-12-15 2022-03-11 先导薄膜材料(广东)有限公司 一种氧化铟钛镱粉体及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114391A1 (ja) * 2003-06-20 2004-12-29 Sharp Kabushiki Kaisha 半導体装置およびその製造方法ならびに電子デバイス
WO2008096768A1 (ja) * 2007-02-09 2008-08-14 Idemitsu Kosan Co., Ltd. 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ基板及び画像表示装置と、画像表示装置と、半導体デバイス
WO2008117810A1 (ja) * 2007-03-26 2008-10-02 Idemitsu Kosan Co., Ltd. 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8138364B2 (en) * 2001-08-27 2012-03-20 Northwestern University Transparent conducting oxide thin films and related devices
CN1806322A (zh) * 2003-06-20 2006-07-19 夏普株式会社 半导体装置及其制造方法以及电子设备
JP4981282B2 (ja) 2005-09-06 2012-07-18 キヤノン株式会社 薄膜トランジスタの製造方法
JP4560502B2 (ja) * 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP5000290B2 (ja) * 2006-01-31 2012-08-15 出光興産株式会社 Tft基板及びtft基板の製造方法
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5116290B2 (ja) * 2006-11-21 2013-01-09 キヤノン株式会社 薄膜トランジスタの製造方法
KR101612130B1 (ko) * 2007-03-20 2016-04-12 이데미쓰 고산 가부시키가이샤 스퍼터링 타겟, 산화물 반도체막 및 반도체 디바이스
KR101614789B1 (ko) * 2008-01-31 2016-04-22 노오쓰웨스턴 유니버시티 용액-처리된 높은 이동도 무기 박막 트랜지스터
US8240270B2 (en) * 2008-09-01 2012-08-14 Ricoh Company, Limited Impact detecting apparatus and package device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004114391A1 (ja) * 2003-06-20 2004-12-29 Sharp Kabushiki Kaisha 半導体装置およびその製造方法ならびに電子デバイス
WO2008096768A1 (ja) * 2007-02-09 2008-08-14 Idemitsu Kosan Co., Ltd. 薄膜トランジスタの製造方法、薄膜トランジスタ、薄膜トランジスタ基板及び画像表示装置と、画像表示装置と、半導体デバイス
WO2008117810A1 (ja) * 2007-03-26 2008-10-02 Idemitsu Kosan Co., Ltd. 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2273540A3 (en) * 2009-07-09 2013-05-29 Ricoh Company, Ltd. Field-effect transistor and method for fabricating field-effect transistor
US8492761B2 (en) 2009-07-09 2013-07-23 Ricoh Company, Ltd. Field-effect transistor and method for fabricating field-effect transistor
US9520288B2 (en) 2009-09-24 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including IGZO layer and manufacturing method thereof
US9048094B2 (en) 2009-09-24 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising forming oxide semiconductor by sputtering
JP2013214752A (ja) * 2009-09-24 2013-10-17 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2015164207A (ja) * 2009-12-08 2015-09-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2015135989A (ja) * 2010-03-08 2015-07-27 株式会社半導体エネルギー研究所 半導体装置
US9646521B2 (en) 2010-03-31 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
JP2016075945A (ja) * 2010-03-31 2016-05-12 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
US10043424B2 (en) 2010-03-31 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device having an oxide semiconductor switching transistor
JP2016157959A (ja) * 2010-05-14 2016-09-01 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2011258939A (ja) * 2010-05-14 2011-12-22 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
KR101806271B1 (ko) * 2010-05-14 2017-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011145632A1 (en) * 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8476719B2 (en) 2010-05-21 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US8999811B2 (en) 2010-05-21 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2017228806A (ja) * 2010-05-21 2017-12-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2012009844A (ja) * 2010-05-21 2012-01-12 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
US8525304B2 (en) 2010-05-21 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2015179877A (ja) * 2010-05-21 2015-10-08 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9396939B2 (en) 2010-05-21 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9275875B2 (en) 2010-05-21 2016-03-01 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing semiconductor device
JP2016034046A (ja) * 2010-05-21 2016-03-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2011145634A1 (en) * 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9842939B2 (en) 2010-05-21 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2016154253A (ja) * 2010-06-18 2016-08-25 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9837544B2 (en) 2010-07-02 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor layer
JP2015207782A (ja) * 2010-07-02 2015-11-19 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2016195260A (ja) * 2010-07-16 2016-11-17 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の作製方法
JP2012256819A (ja) * 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
US10586869B2 (en) 2010-09-13 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2012084860A (ja) * 2010-09-13 2012-04-26 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2018061047A (ja) * 2010-09-13 2018-04-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
US20120104384A1 (en) * 2010-10-29 2012-05-03 Young-Joo Choi Thin-film transistor and method for manufacturing the same
JP2016208060A (ja) * 2011-02-02 2016-12-08 株式会社半導体エネルギー研究所 半導体装置
US10290744B2 (en) 2011-09-29 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2019110328A (ja) * 2011-09-29 2019-07-04 株式会社半導体エネルギー研究所 半導体装置
JP2017216476A (ja) * 2011-09-29 2017-12-07 株式会社半導体エネルギー研究所 半導体装置
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2022031840A (ja) * 2011-09-29 2022-02-22 株式会社半導体エネルギー研究所 半導体装置
JP2022024000A (ja) * 2011-09-29 2022-02-08 株式会社半導体エネルギー研究所 半導体装置
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2020184635A (ja) * 2011-09-29 2020-11-12 株式会社半導体エネルギー研究所 半導体装置
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2018074176A (ja) * 2011-10-14 2018-05-10 株式会社半導体エネルギー研究所 半導体装置
JP2018050081A (ja) * 2011-10-14 2018-03-29 株式会社半導体エネルギー研究所 半導体装置
JP7412493B2 (ja) 2011-10-14 2024-01-12 株式会社半導体エネルギー研究所 半導体装置
JP2020036025A (ja) * 2011-10-14 2020-03-05 株式会社半導体エネルギー研究所 半導体装置
JP2022171784A (ja) * 2011-10-14 2022-11-11 株式会社半導体エネルギー研究所 半導体装置
JP2022017577A (ja) * 2011-10-14 2022-01-25 株式会社半導体エネルギー研究所 半導体装置
JP2021044587A (ja) * 2011-10-14 2021-03-18 株式会社半導体エネルギー研究所 半導体装置
WO2014058019A1 (ja) * 2012-10-11 2014-04-17 住友金属鉱山株式会社 酸化物半導体薄膜および薄膜トランジスタ
US9299791B2 (en) 2012-10-11 2016-03-29 Sumitomo Metal Mining Co., Ltd. Oxide semiconductor thin film and thin film transistor
JP2014078645A (ja) * 2012-10-11 2014-05-01 Sumitomo Metal Mining Co Ltd 酸化物半導体薄膜および薄膜トランジスタ
US9368639B2 (en) 2012-11-22 2016-06-14 Sumitomo Metal Mining Co., Ltd. Oxide semiconductor thin film, production method thereof, and thin film transistor
JP2014183238A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 表示装置、薄膜トランジスタ、表示装置の製造方法及び薄膜トランジスタの製造方法
US9825180B2 (en) 2013-05-09 2017-11-21 National Institute For Materials Science Thin-film transistor and method for manufacturing same
JP2017041646A (ja) * 2013-05-09 2017-02-23 国立研究開発法人物質・材料研究機構 薄膜トランジスタおよびその製造方法
JP2018121049A (ja) * 2016-12-23 2018-08-02 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP7126823B2 (ja) 2016-12-23 2022-08-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
US11271098B2 (en) 2016-12-23 2022-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
KR20110073536A (ko) 2011-06-29
TWI475697B (zh) 2015-03-01
KR101612147B1 (ko) 2016-04-12
JPWO2010047077A1 (ja) 2012-03-22
US20110198586A1 (en) 2011-08-18
TW201027753A (en) 2010-07-16
CN102187467A (zh) 2011-09-14
US8445903B2 (en) 2013-05-21
US20130234134A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
WO2010047077A1 (ja) 薄膜トランジスタ及びその製造方法
JP5631213B2 (ja) 結晶質酸化インジウム半導体膜を有する薄膜トランジスタ
JP5966840B2 (ja) 酸化物半導体薄膜および薄膜トランジスタ
JP2010040552A (ja) 薄膜トランジスタ及びその製造方法
TWI482275B (zh) Thin film transistor having a high purity crystalline indium oxide semiconductor film, and a method for manufacturing the same
US8389996B2 (en) Method for forming semiconductor film, method for forming semiconductor device and semiconductor device
TW200908333A (en) Field-effect transistor and process for producing field-effect transistor
WO2007058248A1 (ja) 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ
WO2010079581A1 (ja) 薄膜トランジスタ及びその製造方法
JP6107085B2 (ja) 酸化物半導体薄膜および薄膜トランジスタ
TWI640492B (zh) 氧化物半導體薄膜、氧化物半導體薄膜之製造方法及使用其之薄膜電晶體
JP6036984B2 (ja) 酸窒化物半導体薄膜
JP2010123836A (ja) In−Sn−Ln系半導体膜を有する薄膜トランジスタ
JP2019024058A (ja) 酸化物半導体薄膜及び薄膜トランジスタの製造方法
JP2018135589A (ja) 酸化物半導体薄膜及び薄膜トランジスタの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980141428.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09821777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010534680

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117009117

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13125577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09821777

Country of ref document: EP

Kind code of ref document: A1