WO2010038472A1 - 溶融めっき鋼板の製造方法及び溶融めっき装置 - Google Patents

溶融めっき鋼板の製造方法及び溶融めっき装置 Download PDF

Info

Publication number
WO2010038472A1
WO2010038472A1 PCT/JP2009/005089 JP2009005089W WO2010038472A1 WO 2010038472 A1 WO2010038472 A1 WO 2010038472A1 JP 2009005089 W JP2009005089 W JP 2009005089W WO 2010038472 A1 WO2010038472 A1 WO 2010038472A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
gas
seal box
steel sheet
hot
Prior art date
Application number
PCT/JP2009/005089
Other languages
English (en)
French (fr)
Inventor
大橋徹
景山正人
内田智史
浜口勝洋
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to US12/998,218 priority Critical patent/US9598756B2/en
Priority to JP2010531757A priority patent/JP4988045B2/ja
Priority to NZ591730A priority patent/NZ591730A/xx
Priority to KR1020117007219A priority patent/KR101324836B1/ko
Priority to BRPI0920820-8A priority patent/BRPI0920820A2/pt
Priority to MX2011003399A priority patent/MX2011003399A/es
Priority to AU2009298988A priority patent/AU2009298988B2/en
Priority to CN2009801383499A priority patent/CN102171376B/zh
Publication of WO2010038472A1 publication Critical patent/WO2010038472A1/ja
Priority to ZA2011/02351A priority patent/ZA201102351B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present invention relates to a method for manufacturing a hot dip galvanized steel sheet and a hot dip plating apparatus used in the manufacturing method.
  • the steel plate (steel strip) is passed through and continuously immersed in the plating bath. After the steel plate is lifted from the plating bath, the plating metal adhering to the steel plate surface solidifies. In addition, a plating amount is adjusted by blowing a gas from a wiping nozzle to a steel plate. At this time, there is a problem that an oxide film (dross) is generated on the surface of the plated steel plate due to oxidation of the plated metal in the molten state, which causes a poor appearance.
  • an oxide film (dross) is generated on the surface of the plated steel plate due to oxidation of the plated metal in the molten state, which causes a poor appearance.
  • JP-A-11-140615 Japanese Patent Publication No. 61-34504 JP 62-30864 A JP-A-4-285148
  • the present invention has been made in view of such problems, and in the manufacturing method of a hot-dip galvanized steel sheet and the hot dip plating apparatus used in this manufacturing method, when adjusting the plating adhesion amount, the oxide film on the surface of the galvanized steel sheet
  • the purpose is to suppress the generation and to eliminate the disadvantages in operation and quality as described above.
  • the present inventors have found that the place where the oxide film is generated on the surface of the plated steel plate is the gas spray position at the steel plate edge (steel plate edge). Therefore, the present inventors installed a seal box smaller than the conventional one that covers at least the steel plate edge at the gas spraying position for adjusting the plating adhesion amount, and reduced the oxygen concentration in the seal box. The present inventors have found that this technique can suppress the formation of an oxide film on the surface of the plated steel sheet and can eliminate the above-mentioned operational and quality problems, and the present invention has been completed based on this finding. It came to do.
  • the gist of the present invention is as follows. (1) The amount of plating applied is adjusted by blowing a gas to the surface of the steel sheet after the steel sheet continuously immersed in the plating bath is pulled from the plating bath until the plated metal adhering to the surface of the steel sheet solidifies.
  • a method for producing a hot-dip galvanized steel sheet wherein when the gas is blown onto the surface of the steel sheet, an atmosphere in which the oxygen concentration of the bath surface of the plating bath is 0.05 vol% or more and 21 vol% or less; When the gas is blown onto the steel plate, the oxygen concentration in the space at the end of the steel plate at the position where the gas collides with the steel plate pulled up from the plating bath is set to 0.05 vol% or more and 3 vol% or less.
  • the oxygen concentration in the space may be 0.05% by volume or more and 1.5% by volume or less.
  • the space has a barrier to an air atmosphere so that the atmosphere can be controlled, and includes at least the end of the steel sheet. May be arranged.
  • the oxygen concentration on the bath surface of the plating bath may not be controlled.
  • the space is 5 mm or more from the position where the gas collides with the steel sheet to the downstream side in the sheet passing direction of the steel sheet, and Further, at least a region of 50 mm or more and 400 mm or less in the plate width direction from the end of the steel plate may be included.
  • a plurality of the spaces are provided in the sheet width direction of the steel sheet, and the width of the gap between the adjacent spaces is 10 mm or more. It is good.
  • the space has a smaller area covering the steel sheet from the end of the steel sheet toward the center in the width direction of the steel sheet. Also good.
  • the coating adhesion amount at a position from the end of the steel sheet to 10 mm in the sheet width direction is 50 to 380 g / m on one side. 2 may be sufficient.
  • the plating bath contains at least one or more of Zn, Al, Mg, Si, Sr, Cr, Sn, and Ca. May be.
  • the plating bath contains 0.1% by mass to 60% by mass of Al, and 0.2% by mass or more of Mg. A Zn plating bath containing 5% by mass or less may be used.
  • a hot dipping apparatus of the present invention comprises: a plating bath that continuously immerses a steel plate to be passed through; a gas wiping nozzle that blows gas onto the surface of the steel plate pulled up from the plating bath; A seal box provided at a position separated from the bath surface and covering a space at an end of the steel plate at a position where the gas collides with the steel plate pulled up from the plating bath; and introducing an inert gas into the seal box And a purge gas supply means for controlling the oxygen concentration in the seal box.
  • the purge gas supply means may control the oxygen concentration in the seal box to 0.05 vol% or more and 3 vol% or less.
  • the purge gas supply means may control the oxygen concentration in the seal box to 0.05 vol% or more and 1.5 vol% or less.
  • at least one set of the seal box is provided at a position facing each other via the steel plate, and a gas is injected toward the steel plate to face each other. The regions between the sealing boxes may be sealed with gas curtains.
  • the seal box may be provided so as to cover an auxiliary nozzle that is provided in the vicinity of the wiping nozzle and assists the blowing of gas by the wiping nozzle. .
  • the hot dipping apparatus according to (11) may further include a seal box moving mechanism that moves the seal box along the plate width direction according to the plate width of the steel plate.
  • the seal box is 5 mm or more downstream from the position where the gas collides with the steel plate in the sheet passing direction of the steel plate, and the end of the steel plate.
  • a space including at least a region of 50 mm or more and 400 mm or less in the plate width direction from the portion may be covered.
  • a plurality of the seal boxes may be provided in the plate width direction of the steel plate, and the width of the gap between the adjacent spaces may be 10 mm or more.
  • the seal box may reduce an area covering the steel plate from the end of the steel plate toward the center in the width direction of the steel plate.
  • the length in the plate width direction of the steel plate of the seal box may be equal to or greater than the plate width of the steel plate.
  • the seal box has a gas injection unit that injects a gas toward the steel plate, and the gas injection unit has a surface facing the steel plate of the seal box. It may be provided at the end.
  • the seal box includes a gas injection unit that injects gas toward the steel plate, and the shape of the gas injection unit is an L-shape. Also good.
  • a seal box smaller than the conventional one covering at least the steel plate edge is installed at the gas spray position for adjusting the amount of plating adhesion.
  • the oxygen concentration in the box is reduced.
  • the present invention since the generation of zinc fume is suppressed by the oxide film on the surface of the plating solution, adhesion of metallic zinc to equipment such as a wiping nozzle can be prevented and plating quality can be ensured. Therefore, according to the present invention, it is possible to put into practical use a plating adhesion amount adjustment technique that can suppress the formation of an oxide film at the end of a plated steel sheet without impairing operability and plating quality.
  • FIG. 1 is an explanatory view showing an example of the form of an oxide film formed on the surface of a plated steel sheet.
  • FIG. 2A, FIG. 2B, and FIG. 2C are explanatory views showing a generation mechanism of the oxide film of FIG.
  • FIG. 2A is a front view showing the state of the surface of the plated steel sheet while paying attention only to the left side of the center of the steel sheet.
  • FIG. 2A shows a state in which the plating solution accompanying the steel plate pulled up from the plating bath 4 is scraped off at the dotted line portion by the wiping gas collision pressure, focusing on the generation and flow of the oxide film 2.
  • 2B is a side view showing a state of the surface of the plated steel plate in the vicinity of the steel plate edge
  • FIG. 2C is a cross-sectional view showing a state of the steel plate after plating in the vicinity of the steel plate edge.
  • the oxide film 2 generated on the surface of the plated steel sheet 6 and remaining after plating is mainly generated in a beard shape at the end (edge) of the plated steel sheet 6.
  • Generation of such a beard-like oxide film 2 is not desirable because it causes a poor appearance when the product is produced.
  • the inventors of the present invention have determined the spraying position of the gas (wiping gas) blown from the wiping nozzle 3 that adjusts the plating adhesion amount from the bath surface of the plating bath (the wiping gas is the surface of the steel plate). The surface of the plated steel plate 6 up to the position where it collides with the wiping part) was observed in detail.
  • the oxide film 2 was generated in the entire width of the steel sheet 1 at the wiping gas spray position. This is considered due to the following reasons.
  • the wiping gas blown from the wiping nozzle 3 entrains the surrounding air due to its ejector effect. Therefore, even if an inert gas is used as the wiping gas, the wiping gas sprayed onto the plated steel sheet is a mixed gas with air containing O 2 . Since the mixed gas containing O 2 collides violently with the surface of the steel plate 1, vigorous oxygen supply is performed in this wiping portion, and the plating metal 5 is easily oxidized.
  • the plating solution is scraped off at the wiping portion, a new surface that is not always oxidized is continuously generated, and the plating metal 5 is easily oxidized. For these reasons, it is considered that the oxide film 2 is generated in the entire width of the steel sheet 1 at the wiping gas spray position.
  • a liquid flow as shown by arrows in FIG. 2A is generated on the surface of the steel sheet 1 on which the wiping gas is blown.
  • the oxide film 2 generated at the wiping portion is scraped off to the bath surface of the plating bath 4.
  • the oxide film 2 generated at the wiping portion remains on the surface of the steel plate 1 without being scraped off. This is because the plating solution has less downward flow at the end portion of the steel plate 1 than the central portion, the plating solution is not sufficiently scraped off, and the force for dropping the oxide film 2 to the bath surface of the plating bath is insufficient.
  • the plating adhesion amount at the end portion of the steel plate 1 is larger than that at the center portion as shown in FIG. 2C, so that it can be seen that the plating solution is not sufficiently scraped off at the steel plate edge 1a. Further, when the oxide film 2 staying in the vicinity of the steel plate edge 1a passes through the wiping gas spray position, the oxide film 2 is divided by the wiping gas, and the beard-like oxide film 2 is separated. It was also confirmed that As shown in FIG. 2C, the beard-like oxide film 2 is likely to be generated when the amount of plating adhesion is large.
  • the beard-like oxide film 2 is generated at the wiping gas spray position on the steel plate edge 1a. Therefore, the present inventors can suppress the generation of the beard-like oxide film 2 remaining at the end portion of the steel sheet 1 after plating by suppressing the generation of the oxide film 2 at the wiping gas spray position at the steel sheet edge 1a. It was thought that the appearance defect of the plated steel sheet 1 could be improved.
  • the generation of the oxide film 2 on the surface of the plated steel plate 6 is greatly influenced by the oxygen concentration in the vicinity of the generation position. Therefore, the relationship between the oxygen concentration at the wiping gas spray position on the steel plate edge 1a and the generation of the bearded oxide film 2 was examined. As a result, as will be described below, the inventors of the present invention significantly generated a beard-like oxide film by setting the oxygen concentration in the space including at least the steel plate edge 1a at the wiping gas spray position to a predetermined concentration range. The present invention has been completed. Hereinafter, preferred embodiments of the present invention will be described in detail.
  • the oxygen concentration in the space of the end portion (steel plate edge) of the steel plate at the position where the gas collides with the steel plate pulled up from the plating bath is 0.05 vol% or more and 3 vol% or less, preferably 0.05 vol% More than 1.5 volume%.
  • the bath surface of the plating bath is also isolated from the air atmosphere by covering it with a seal box or the like.
  • the technology that covers the entire area from the bath surface of the plating bath to the gas blowing position by the wiping nozzle with a seal box is effective in suppressing the formation of oxide film. It is difficult to visually recognize the position of the gas to be adjusted. In addition, it becomes difficult to scrape the surface oxide film formed on the plating bath surface and to clean the wiping nozzle. For this reason, there has been a problem that operational inconvenience occurs. Further, when the plating solution surface is not covered to some extent with an oxide film, zinc fume is generated from the surface.
  • the present invention as will be described later with respect to the condition (B), it is sufficient to cover the space of the end (steel plate edge) of the steel plate at the position where the gas collides with the steel plate pulled up from the plating bath with a seal box or the like. is there. Further, in the present invention, since the bath surface of the plating bath can be made into an air atmosphere, the seal box and the like can be greatly reduced in size. As a result, it becomes easy to visually recognize the spray position of the gas for adjusting the plating adhesion amount, and it becomes easy to scrape the surface oxide film formed on the plating bath surface and to clean the wiping nozzle.
  • the plating melt evaporates when the oxygen concentration is 0.05% by volume or less. Evaporation of this plating melt (plating melt on the surface of the plating bath) contaminates the peripheral equipment around the wiping portion. As a result, the wiping nozzle may be blocked, and the amount of plating adhesion may vary. Therefore, the oxygen concentration of the bath surface of the plating bath is set to 0.05% by volume or more and 21% by volume (oxygen concentration in the atmosphere).
  • the oxygen concentration in the space of the steel sheet edge is set to 3% by volume or less, preferably 1.5% by volume or less.
  • the plating melt is evaporated when the oxygen concentration is 0.05% by volume or less.
  • the wiping nozzle may be blocked, and the amount of plating adhesion may vary.
  • the oxygen concentration in the space of the steel plate edge is 0.05% by volume or more, the generation of zinc fume in the space of the steel plate edge (for example, in the seal box) is suppressed by the oxide film on the surface of the plated steel plate. Therefore, it is possible to prevent metal zinc from adhering to equipment such as a wiping nozzle, and to ensure plating quality. Accordingly, the oxygen concentration in the space of the steel plate edge is set to 0.05% by volume or more.
  • an oxygen sealing space is sealed using an edge seal box or the like, and an inert gas such as nitrogen or argon is introduced into the edge seal box.
  • an inert gas such as nitrogen or argon
  • the oxygen concentration in the edge seal box can be adjusted.
  • the space for adjusting the oxygen concentration has a barrier to the air atmosphere so that the atmosphere can be controlled.
  • the “barrier” in the present invention includes not only a barrier for physically preventing gas inflow such as a seal box but also a gas barrier due to a purge gas such as a gas flow from a gas curtain or a seal box described later toward the atmosphere.
  • the space for adjusting the oxygen concentration may move depending on the plating conditions and the presence or absence of operation, but is preferably arranged so as to include at least a steel plate edge.
  • the space where the oxygen concentration is 0.05 volume% or more and 3 volume% or less is 5 mm or more downstream from the collision position of the wiping gas in the sheet passing direction of the steel sheet and 50 mm from the edge of the steel sheet in the sheet width direction. It is preferable to include at least the above region. That is, the “space” at the end of the steel plate in the present invention is a space including at least a region of 50 mm or more in the plate width direction from the end of the steel plate. If the space for adjusting the oxygen concentration includes at least a region in the width direction of the beard-like oxide plus about 50 mm in length, generation of a beard-like oxide film on the surface of the plated steel plate is sufficiently suppressed. can do.
  • the space for adjusting the oxygen concentration includes at least a region of 50 mm or more in the plate width direction from the end of the steel plate.
  • the length of the beard-like oxide film generated in the horizontal direction is about 80 mm at the maximum. Therefore, it is more preferable that the space for adjusting the oxygen concentration includes at least a region of 200 mm or more, which is about twice the length of the beard-like oxide film.
  • the space for adjusting the oxygen concentration may be further widened on the premise that the condition (A) is satisfied.
  • the space for adjusting the oxygen concentration is as narrow as possible.
  • the space for adjusting the oxygen concentration is preferably 400 mm or less from the edge of the steel plate in the plate width direction.
  • the space for adjusting the oxygen concentration is preferably 200 mm or less from the collision position of the wiping gas to the downstream side in the sheet passing direction of the steel sheet.
  • the space for adjusting the oxygen concentration is preferably 200 mm or less in the direction perpendicular to the steel plate surface from the surface of the steel plate.
  • the space for adjusting the oxygen concentration is preferably 3 mm or more in the direction perpendicular to the steel plate surface from the surface of the steel plate.
  • region of the sheet passing direction of the steel plate of the space which adjusts oxygen concentration you may include not only the sheet passing direction downstream side but the sheet passing direction upstream side. However, since it is necessary to satisfy the above condition (A), the region on the upstream side in the sheet passing direction must be above the bath surface of the plating bath.
  • a plurality of spaces for adjusting the oxygen concentration may be provided in the plate width direction of the steel plate so that the gas blowing position can be visually recognized, and the width of the gap between adjacent spaces may be 10 mm or more.
  • the space for adjusting the oxygen concentration may reduce the area covering the steel plate from the steel plate edge toward the center in the width direction of the steel plate in order to prevent variation in the amount of adhesion of plating.
  • a beard-like oxide film is generated even in a general plating composition such as a Zn-based plating bath containing 0.2% by mass or less of Al.
  • a beard-like oxide film is generated by the oxidation of the plating metal, it is likely to be generated when the plating bath contains a lot of easily oxidizable elements such as Al and Mg.
  • the plating bath has an Al content of 0.1% by mass to 60% by mass and an Mg content of 0.2% by mass. More than 5 mass% can be contained.
  • the plating bath may contain at least one of Zn, Al, Mg, Sn, Si, Sr, Cr, and Ca.
  • a Zn plating bath may contain a plurality of the above elements.
  • the plating adhesion amount in the range from the steel plate edge to 10 mm in the plate width direction is 50 g / m 2 or more on one side.
  • the plating adhesion amount in the range from the steel plate edge to 10 mm in the plate width direction may be 50 g / m 2 or more on one side.
  • the plating adhesion amount in the range from the steel plate edge to 10 mm in the plate width direction is 380 g / m 2 or less on one side.
  • FIG. 4 is an explanatory diagram showing the overall configuration of the hot dipping apparatus 10 according to the first embodiment of the present invention.
  • the hot dipping apparatus 10 mainly includes a plating bath 11, a gas wiping nozzle 12, a seal box 13, and a purge gas supply means.
  • the purge gas supply means is, for example, a purge gas supply nozzle (see FIGS. 5A and 5B).
  • the steel plate (steel strip) 1 to be passed is continuously immersed in the plating bath 11. More specifically, the steel sheet 1 that has undergone a normal rolling process is continuously dipped in the plating bath 11 through the snout 16, the plate passing direction is changed by the roll 17 in the bath, and the steel plate 1 is pulled upward in the vertical direction.
  • the composition of this plating bath for example, when the plating bath is a Zn plating bath, the range of practically operable Al is 0.1 mass% or more and 60 mass% or less, and Mg is 0.1 mass%. 2 mass% or more and 5 mass% or less can be contained. Moreover, you may contain 0.1 mass% or more and 0.25 mass% or less of Si.
  • the gas wiping nozzle 12 sprays gas onto the surface of the steel plate 1 pulled up from the plating bath 11 as described above, and adjusts the amount of plating attached to the surface of the steel plate 1.
  • the gas wiping nozzle 12 is located above the plating bath 11 and below the position where the molten plated metal adhering to the surface of the steel plate 1 pulled up from the plating bath is solidified. It arrange
  • the wiping gas blown from the gas wiping nozzle 12 is preferably composed mainly of a non-oxidizing gas from the viewpoint of suppressing the oxidation of the plating metal.
  • the seal box 13 is provided at a position separated from the bath surface of the plating bath 11, and covers the space of the end portion (steel plate edge) of the steel plate 1 at the position where the wiping gas collides with the steel plate 1 pulled up from the plating bath 11.
  • the inside of the seal box 13 is made an atmosphere independent from the air atmosphere.
  • the “space” at the end of the steel plate in the present invention is a region having a predetermined length from the steel plate edge at a position where the wiping gas collides with the steel plate 1.
  • the seal box 13 can be significantly downsized compared to the conventional case. As a result, the spraying position of the wiping gas is easily visible, and the surface oxide film generated on the surface of the plating bath 11 is scraped off and the gas wiping nozzle 12 is easily cleaned. In addition, since the generation of zinc fume is suppressed by the oxide film on the plating solution surface, adhesion of metallic zinc to equipment such as a wiping nozzle can be prevented, and stable plating quality can be ensured.
  • the seal box 13 is 5 mm or more downstream from the collision position of the wiping gas in the sheet passing direction of the steel plate 1, and the length of the beard-like oxide film in the plate width direction from the end of the steel plate 1 (for example, 50 mm). It is preferable to cover a space including at least the above region. That is, the “space” at the end of the steel plate 1 in the first embodiment of the present invention has at least a region equal to or longer than the length of the bearded oxide film (for example, 50 mm) in the plate width direction from the end of the steel plate 1. It is preferable to include. If the seal box 13 covers at least the space, generation of a bearded oxide film during plating can be sufficiently suppressed.
  • the size of the seal box 13 may be further increased on the premise that the condition of being separated from the bath surface of the plating bath 11 is satisfied.
  • the size of the seal box 13 is preferably as small as possible from the viewpoint of preventing the inconvenience in operation.
  • the minimum horizontal length may be a length obtained by adding about 50 mm to the length of the beard-like oxide. Therefore, in consideration of the case where no beard-like oxide film is generated, the seal box 13 preferably covers a space including at least a region of 50 mm or more in the plate width direction from the end of the steel plate. More preferably, the seal box 13 covers a space including at least a region of 200 mm or more in the plate width direction from the end of the steel plate.
  • the region in the plate passing direction of the steel plate 1 covered by the seal box 13 may include not only the downstream side in the plate passing direction but also the upstream side in the plate passing direction.
  • the seal box 13 needs to be separated from the bath surface of the plating bath 11, the region on the upstream side in the sheet passing direction must be above the bath surface of the plating bath 11.
  • the length of the seal box 13 in the plate width direction is preferably 400 mm or less.
  • the seal box 13 covers an area of 200 mm or less (that is, the height in the vertical direction of the seal box 13 is 200 mm or less) downstream from the collision position of the wiping gas in the sheet passing direction of the steel plate 1. Furthermore, in order to ensure the mobility of the seal box, the seal box 13 preferably covers an area of 200 mm or less in the direction perpendicular to the steel plate surface from the surface of the steel plate. In order to prevent contact between the seal box and the steel plate, the seal box 13 preferably covers an area of 3 mm or more in the direction perpendicular to the steel plate surface from the surface of the steel plate.
  • a purge gas supply means (for example, a purge gas supply nozzle) introduces an inert gas such as nitrogen or argon into the seal box 13, and the oxygen concentration in the seal box 13 is 0.05 volume% or more and 3 volume% or less, preferably It is controlled to 0.05 volume% or more and 1.5 volume% or less.
  • FIG. 5A is an explanatory diagram showing the configuration of the seal box 13 and the purge gas supply nozzle 14 according to the first embodiment of the present invention.
  • FIG. 5B is an explanatory diagram showing a gas seal mechanism of the seal box according to the first embodiment of the present invention.
  • the gas wiping nozzles 12 are provided at positions facing each other on both surface sides of the steel plate 1.
  • the gas wiping nozzle 12 has a substantially pentagonal column shape, and the height (the height of the pentagonal column) is parallel to the plate width direction of the steel plate 1.
  • the seal box 13 is installed on each of the pair of gas wiping nozzles 12 so as to cover at least the edge portion of the steel plate 1.
  • the seal box 13 can be reduced in size by configuring the hot dipping apparatus 10 so that the seal box 13 does not cover the entire width of the steel plate 1 but covers only the edge portion of the steel plate 1. Therefore, the above-mentioned operational inconvenience can be solved.
  • the width of the steel sheet 1 plated by the hot dipping apparatus 10 is not constant. Whatever the width of the steel sheet 1 is passed through the hot dipping apparatus 10, it is always necessary to reliably cover the space including the edge (see above) of the steel sheet 1 in order to suppress the formation of a beard-like oxide film. There is. Therefore, in the first embodiment of the present invention, a seal box moving mechanism that moves the seal box 13 in the plate width direction of the steel plate 1 according to the plate width of the steel plate 1 to be passed is provided.
  • the seal box moving mechanism is a mechanism that horizontally moves the seal box 13 in the plate width direction of the steel plate 1, and examples thereof include a moving mechanism using an air cylinder, a screw, or the like. It should be noted that such a seal box is also used in a modified example of the first embodiment of the present invention (excluding a part of the fifth modified example) described later, and in the hot dipping apparatus according to the second embodiment and the modified example.
  • a moving mechanism is provided.
  • FIG. 6 is an explanatory diagram showing an example of the configuration of the seal box moving mechanism according to the present embodiment.
  • the seal box moving mechanism mainly includes a drive motor 51, a screw shaft 53, and steel plate edge detection sensors 55A and 55B.
  • the drive motor 51 is connected to one end of the screw shaft 53 and rotates the screw shaft 53. Further, the screw shaft 53 is provided such that its length direction (axial direction) coincides with the plate width direction of the steel plate 1. In the present embodiment, two parallel screw shafts 53 corresponding to the seal box 13 are provided. Furthermore, the end (hereinafter referred to as “the other end”) on the opposite side of the end (one end) connected to the drive motor 51 of the screw shaft 53 is screwed into the seal box 13.
  • Steel plate edge detection sensors 55A and 55B are installed on the seal box 13 and detect the position of the end portion (steel plate edge) of the steel plate 1.
  • the steel plate edge detection sensors 55A and 55B are configured by sensors such as photo sensors.
  • the steel plate edge detection sensor 55B having a light receiving element receives light emitted from the steel plate edge detection sensor 55A having a light emitting element.
  • the edge position of the steel plate 1 is detected from the output of the light receiving element that changes when the light from the light emitting element is blocked.
  • the steel plate edge detection sensor is not limited to such a transmission type photosensor.
  • the steel plate edge detection sensor may be, for example, a reflective photosensor having a light emitting element and a light receiving element, or another sensor.
  • the seal box moving mechanism having the above configuration, when the drive motor 51 rotates the screw shaft 53, the seal box 13 screwed to the screw shaft 53 is moved in the length direction of the screw shaft 53 (that is, the plate of the steel plate 1). Move in the width direction. At this time, the edge position of the steel plate 1 is detected by the steel plate edge detection sensors 55A and 55B. When these steel plate edge detection sensors 55A and 55B detect the edge of the steel plate 1, it is determined that the seal box 13 is in an appropriate position, and the drive of the drive motor 51 is controlled so that the seal box 13 moves. Stop.
  • the hot dipping apparatus moves the seal box 13 to the appropriate position described above according to the plate width of the steel plate 1 by the seal box moving mechanism.
  • the configuration of the seal box moving mechanism described above is merely an example, and any configuration can be used as long as it has a function of moving the seal box 13 in the plate width direction of the steel plate 1.
  • the drive motor 51 is used as the drive device
  • the screw shaft 53 is used as the drive shaft.
  • a cylinder may be used as the drive device
  • an air cylinder may be used as the drive shaft.
  • One set of the seal box 13 has a surface on the steel plate 1 side (a surface facing the steel plate 1) opened, and a surface not on the steel plate 1 side or the wiping nozzle 12 side (a surface not facing the steel plate 1 or the wiping nozzle 12) is closed. Yes.
  • the seal box 13 according to the first embodiment of the present invention injects gas to the end of the opened surface on the steel plate 1 side (the thick line portion and the frame portion in FIG. 5B).
  • a nozzle 13a is provided.
  • At least one set of seal boxes is provided at positions facing each other with the steel plate 1 interposed therebetween.
  • the shape of the sealing gas injection hole of the nozzle 13a can be freely selected as required, such as a slit shape or a porous shape.
  • the shape of the seal box 13 can be freely selected as required, such as a hexahedral shape or a triangular prism shape.
  • a tubular purge gas supply nozzle 14 is provided so as to communicate with the end of the seal box 13 on the steel plate edge side.
  • the length direction (pipe axis direction) of the purge gas supply nozzle 14 is parallel to the plate width direction of the steel plate 1.
  • FIG. 7A shows a gas seal mechanism of a seal box according to a first modification of the first embodiment.
  • the wiping gas spray position that is, the wiping gas collides with the steel sheet 1.
  • the region where the oxygen concentration around the position is adjusted becomes wider. Therefore, the effect of suppressing the generation of the beard-like oxide film is higher than that in the case of the first embodiment of the present invention.
  • the inventors install the seal box 13 at least at the upper portion of the gas wiping nozzle 12, that is, only on the downstream side in the sheet passing direction of the steel plate 1, like the seal box 13 according to the first embodiment.
  • the seal box only needs to be installed at least above the gas wiping nozzle 12, that is, only on the downstream side in the sheet passing direction of the steel plate 1.
  • a plurality of seal boxes may be provided in the plate width direction of the steel plate. In this case, in order to make it easy to visually recognize the collision position of the wiping gas, it is preferable that the width of the gap between adjacent seal boxes is 10 mm or more.
  • the second modification of the first embodiment of the present invention shown in FIGS. 8A and 8B is an example in which the shape of the seal box is different from that of the first embodiment.
  • the seal box 132 according to this modification is not provided separately on both sides of the steel plate 1 independently, but the steel plate edge is disposed outside the steel plate edge. It is integrally formed with a shape (for example, a substantially U-shape) that wraps around. That is, the seal box 132 is provided so that the steel plate 1 is sandwiched between the substantially U-shaped opening portions.
  • a nozzle 132a for ejecting a gas for curtain sealing is provided at a portion (end portion of the opening surface) facing the steel plate 1 of the opening portion.
  • the purge gas supply nozzle 142 has a vertical direction in the upper part of the portion adjacent to the opening of the seal box 132 (U-shaped bottom). It is provided so that it may become parallel.
  • the seal box 132 can be further downsized.
  • the distance between the two opening surfaces facing the steel plate 1 of the seal box 132 is fixed. Therefore, the gap control of the wiping nozzle may be more difficult than in the case of the first embodiment of the present invention.
  • the structure of the seal box 133, the curtain seal nozzle 133a, the purge gas supply nozzle 143, and the like are the same as in the case of the second modified example described above, and a description thereof will be omitted.
  • a fourth modification of the first embodiment shown in FIGS. 10A and 10B is an example in which the seal boxes 132 of the second modification are separately installed on the upper and lower sides of the gas wiping nozzle 12. Since the structures and functions of the two seal boxes 134 according to this modification are the same as those of the second modification described above, description thereof is omitted. As in the case of the first modified example described above, in this modified example, the seal box 134 below the gas wiping nozzle 12 may be somewhat difficult to construct.
  • the structure of the curtain seal nozzle 134a and the purge gas supply nozzle 144 according to this modification is the same as that of the first embodiment of the present invention.
  • the fifth modification of the first embodiment shown in FIGS. 11A and 11B is a modification in which the length of the seal box in the plate width direction is extended to a size that covers the entire width of the steel plate.
  • the length in the plate width direction of the steel plate 1 of the seal box 135 is equal to or longer than the length of the gas wiping nozzle 12 in the plate width direction of the steel plate 1. .
  • the length of the gas wiping nozzle 12 in the plate width direction of the steel plate 1 is substantially the same as the plate width of the steel plate 1 or longer than the plate width of the steel plate 1. Accordingly, when the seal box 135 is installed on the upper side of the gas wiping nozzle 12, the seal box 135 also moves following the movement of the gas wiping nozzle 12. Therefore, according to the seal box 135 according to the present modification, when the seal gas is injected toward the steel plate 1 from the nozzle 135a as shown in FIG.
  • a gap of 10 mm or more may be provided in this modification, and the seal box may be divided into a plurality.
  • purge gas supply nozzles 145 are required according to the number of seal boxes. However, the visibility of the wiping gas collision position can be ensured.
  • the modification shown in FIGS. 12A and 12B is a modification in which the shape of the nozzle 136a for injecting the seal gas according to the first embodiment is an L-shape.
  • the L-shaped shape refers to the side closest to the collision position of the wiping gas to the steel plate 1 among the three sides of the triangular opening of the seal box 136 facing the steel plate 1.
  • the shape is composed of two sides (two sides sandwiching the vertex farthest from the position where the wiping gas collides with the steel plate 1). Therefore, the angle between these two sides is not particularly specified.
  • the length (width) that the seal box 136 covers the gas wiping nozzle 12 in the plate width direction of the steel plate 1 is preferably 200 mm or more and 400 mm or less. If the minimum width of the seal box 136 is 200 mm or more, the beard-like oxide film can be completely covered. Further, if the maximum width of the seal box 136 is 400 mm or less, the movement (operation) of the seal box 136 following the steel plate edge can be improved.
  • the range of the length (height) of the seal box 136 in the vertical direction is 5 mm or more and 200 mm or less. If the maximum height of the seal box 136 is 200 mm or less, it becomes easy to visually recognize the collision position of the wiping gas in operation, and the risk that the steel plate 1 contacts the seal box 136 can be suppressed. If the minimum height of the seal box 136 is 5 mm or more, it becomes longer than the length (width) of the beard-like oxide film in the plate-passing direction, so that the beard-like oxide film can be completely covered.
  • the purge gas supply nozzle 146 for blowing the purge gas is preferably positioned in a direction perpendicular to the seal gas injection direction (a direction parallel to the steel plate 1). The reason for this is to reduce non-uniformity in the injection distribution of the seal gas.
  • the amount of seal gas that collides with the steel plate 1 can be made more uniform in the plate width direction.
  • This L-shaped nozzle 136a can prevent a trouble that the plating is scraped by the sealing gas and the variation in the amount of plating is generated.
  • a simple triangular prism-shaped seal box 136 is used in order to use the L-shaped nozzle 136a.
  • the seal box 136 reduces the area covering the steel sheet from the edge of the steel sheet toward the center in the width direction of the steel sheet 1 in order to prevent variations in the amount of adhesion of plating according to the flow of fluid (plating melt and gas). Such a shape may be used.
  • the nozzle 136a which injects gas is provided in the edge part (the thick line part of FIG. 12B, a frame part) of the surface by which the steel plate 1 side was open
  • FIG. 13A is an explanatory diagram illustrating the configuration of the seal box 23 and the purge gas supply nozzle 24 as an example of the purge gas supply means according to the second embodiment of the present invention.
  • FIG. 13B is an explanatory diagram showing a gas seal mechanism of the seal box according to the second embodiment. The description of the same configuration as that of the first embodiment is omitted.
  • the seal box 23 is provided so as to cover the auxiliary nozzle 25.
  • the auxiliary nozzle 25 is installed in the vicinity of the gas wiping nozzle 12.
  • the auxiliary nozzle 25 is installed above the gas wiping nozzle 12, is supplied with gas from the auxiliary nozzle gas supply nozzle 26, and injects this gas toward the steel plate 1. In this way, the auxiliary nozzle 25 assists the blowing of gas by the wiping nozzle 12. Since the seal box 23 is provided so as to cover the auxiliary nozzle 25, not only the gas for curtain sealing from the nozzle 23a provided in the seal box 23 as shown in FIG. 13B but also gas is supplied from the auxiliary nozzle 25.
  • the lower side of the seal box 23 (for example, the gap between the seal box 23 and the gas wiping nozzle 12) is also sealed. Therefore, the space including the edge of the steel plate 1 can be more reliably sealed. Accordingly, since the inflow of air from the outside (atmosphere) of the seal box is more reliably suppressed, the supply amount of the purge gas by the purge gas supply nozzle 24 is reduced as compared with the case of the first embodiment. In addition, the oxygen concentration in the seal box 23 can be efficiently reduced.
  • the beard-like oxide film at the end of the steel sheet that can be suppressed by the present invention is more easily suppressed as the amount of plating attached to the edge of the steel sheet is smaller. Therefore, the suppression effect of a higher beard-like oxide film can be acquired by reducing the amount of plating adhesion of a steel plate edge part with an auxiliary nozzle.
  • the modification shown in FIGS. 14A and 14B is a modification in which the shape of the nozzle 231a for injecting the seal gas according to the second embodiment is an L-shape.
  • the L-shaped shape refers to the side closest to the collision position of the wiping gas to the steel plate 1 among the three sides of the triangular opening of the seal box 231 facing the steel plate 1.
  • the shape is composed of two sides (two sides sandwiching the vertex farthest from the position where the wiping gas collides with the steel plate 1). Therefore, the angle between these two sides is not particularly specified.
  • the length (width) that the seal box 231 covers the gas wiping nozzle 22 in the plate width direction of the steel plate 1 is preferably 50 mm or more and 400 mm or less. If the minimum width of the seal box 231 is 50 mm or more, the beard-like oxide film can be completely covered. Further, if the maximum width of the seal box 231 is 400 mm or less, the movement (operation) of the seal box 231 following the steel plate edge can be improved, and the auxiliary nozzle 251 can be practically stored.
  • the range of the length (height) of the seal box 231 in the vertical direction is 5 mm or more and 200 mm or less. If the maximum height of the seal box 231 is 200 mm or less, it becomes easy to visually recognize the collision position of the wiping gas in operation, and the risk of the steel plate 1 coming into contact with the seal box 231 can be suppressed. If the minimum height of the seal box 231 is 5 mm or more, it becomes longer than the length (width) of the beard-like oxide film in the plate-passing direction, so that the beard-like oxide film can be completely covered.
  • the purge gas supply nozzle 241 for blowing the purge gas is positioned in a direction perpendicular to the injection direction of the seal gas (a direction parallel to the steel plate 1). The reason for this is to reduce non-uniformity in the injection distribution of the seal gas.
  • the amount of seal gas that collides with the steel plate 1 can be made more uniform in the plate width direction.
  • This L-shaped nozzle 231a can prevent a trouble that the plating is scraped by the sealing gas and the variation in the amount of plating is generated.
  • a simple triangular prism-shaped seal box 231 is used in order to use the L-shaped nozzle 231a.
  • the seal box 231 reduces the area covering the steel plate from the steel plate edge toward the center in the width direction of the steel plate 1 in order to prevent variation in the amount of adhesion of plating.
  • Such a shape may be used.
  • the nozzle 231a for injecting gas is provided at the end of the open surface on the steel plate 1 side (the thick line portion in FIG. 14B, the frame portion). With such a structure, it is possible to prevent variations in the amount of adhesion of plating similarly to the L-shaped nozzle 231a.
  • the hot-dip plating apparatus shown in FIG. 13 was used, and hot-dip Zn plating was performed on a steel sheet that was continuously passed under the conditions shown in Table 1, and then the steel sheet was pulled up from the plating bath.
  • the amount of plating adhesion was controlled to 150 g / m 2 on one side using a gas wiping nozzle.
  • the average oxygen concentration within a range of 5 mm above and below the collision position of the wiping gas at the steel plate edge and the maximum length of the beard-like oxide film generated at the steel plate edge were measured.
  • the average oxygen concentration was measured by measuring a range of 5 mm above and below at a 2 mm pitch centering on the position where the wiping gas collides at the edge of the steel plate, and using these measured values on average.
  • a Shimadzu portable oxygen meter POT-101 manufactured by Shimadzu Corporation is used for the measurement of the low oxygen concentration
  • Advanced Instruments Inc. is used for the measurement of the high oxygen concentration.
  • a portable ppm oximeter manufactured by GPR-12 (GPR-12) was used.
  • the low oxygen concentration is 1 ppm to 1% by volume (10000 ppm)
  • the high oxygen concentration is 0.5 to 21% by volume (corresponding to the atmospheric air).
  • FIG. 15 shows the relationship between the maximum length of the oxide film shown in Table 2 and the average oxygen concentration.
  • the length of the downstream side of the seal box of the present embodiment in the plate passing direction is 200 mm at the maximum, and may be shorter.
  • the data of Table 2 was plotted to obtain a calibration curve (curve in FIG. 15).
  • steel edges average oxygen concentration in the range of the upper and lower 5mm from the collision position of the wiping gas in the portion at 3% or less, it is 40mm or less than the maximum length of a whisker-like oxide film has been a (see arrow a 1 in FIG. 15).
  • 1.5% by volume or less see arrow B 2 in FIG. 15
  • the maximum length of a whisker-like oxide layer is rapidly lowered, has been a 40mm or less (the arrow A 2 in FIG. 15 reference). Therefore, by setting the oxygen concentration in the seal box to 3% by volume or less, generation of a beard-like oxide film is suppressed, and by making it 1.5% by volume or less, It was suggested that the production is greatly suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 めっき浴に連続的に浸漬される鋼板を前記めっき浴から引き上げてから前記鋼板表面に付着しためっき金属が凝固するまでの間に、前記鋼板表面にガスを吹き付けてめっき付着量を調整する溶融めっき鋼板の製造方法であって、前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴の浴面の酸素濃度を0.05体積%以上21体積%以下とする雰囲気とし;前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴から引き上げられた前記鋼板に前記ガスが衝突する位置における前記鋼板の端部の空間の酸素濃度を0.05体積%以上3体積%以下とする。

Description

溶融めっき鋼板の製造方法及び溶融めっき装置
 本発明は、溶融めっき鋼板の製造方法及びこの製造方法に用いる溶融めっき装置に関する。
 本願は、2008年10月01日に、日本に出願された特願2008-256208号に基づき優先権を主張し、その内容をここに援用する。
 溶融めっき鋼板の製造プロセスにおいては、鋼板(鋼帯)を通板させて連続的にめっき浴に浸積させ、鋼板をめっき浴から引き上げてから鋼板表面に付着しためっき金属が凝固するまでの間に、鋼板に対してワイピングノズルからガスを吹き付けて、めっき付着量を調整することが行われている。この際、溶融状態のめっき金属の酸化により、めっきされた鋼板表面に酸化膜(ドロス)が生成され、外観不良の原因となる、という問題があった。
 このようなめっき金属の酸化を防止するために、めっき浴の浴面からワイピングノズルによるガスの吹き付け位置までの全体をシールボックスで覆い、シールボックス内に不活性ガスを導入して、シールボックス内の雰囲気全体の酸素濃度を低下させる技術が提案されている(例えば、特許文献1~4を参照)。このような技術によれば、鋼板がめっき浴から引き上げられてから溶融状態のめっき金属が凝固するまでの間の酸素濃度を大気中よりも低くすることができるので、めっき金属の酸化が防止される。
特開平11-140615号公報 特公昭61-34504号公報 特開昭62-30864号公報 特開平4-285148号公報
 しかしながら、上記特許文献1~4に記載された技術のように、めっき浴の浴面からワイピングノズルによるガスの吹き付け位置までの全体をシールボックスで覆う技術では、酸化膜の生成を抑制する効果は認められるが、溶融めっきの操業上重要なめっき付着量を調整するガスの吹き付け位置が視認しにくい。加えて、めっき浴表面に生成した表層酸化膜の掻き取り作業や、ワイピングノズルの手入れ作業も困難になる。そのため、操業上の不都合が生じるという問題があった。また、めっき液表面が酸化膜で或る程度覆われていない場合には、表面から亜鉛ヒュームが生じる。この亜鉛ヒュームによりワイピングノズルなどの機器に金属亜鉛が付着するとワイピングが正常に行われない。そのため、品質上の不都合が生じるという問題もあった。従って、このような技術を実用化する際には、操業性及びめっき品質を悪化させてしまうという課題があった。
 本発明は、このような問題に鑑みてなされたもので、溶融めっき鋼板の製造方法及びこの製造方法に用いる溶融めっき装置において、めっき付着量を調整する際に、めっき鋼板表面での酸化膜の生成を抑制するとともに、上記のような操業上および品質上の不都合を解消することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、めっき鋼板表面の酸化膜の発生場所が鋼板エッジ(鋼板端部)におけるガス吹き付け位置であることを見出した。そこで、本発明者らは、めっき付着量を調整するガス吹き付け位置において、少なくとも鋼板エッジを覆う従来よりも小型のシールボックスを設置し、このシールボックス内の酸素濃度を低下させた。本発明者らは、この技術により、めっき鋼板表面での酸化膜の生成を抑制できるとともに、上記のような操業上および品質上の不都合を解消できることを見出し、この知見に基づいて本発明を完成するに至った。
 すなわち、本発明の要旨とするところは、以下の通りである。
(1)めっき浴に連続的に浸漬される鋼板を前記めっき浴から引き上げてから前記鋼板表面に付着しためっき金属が凝固するまでの間に、前記鋼板表面にガスを吹き付けてめっき付着量を調整する溶融めっき鋼板の製造方法であって、前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴の浴面の酸素濃度を0.05体積%以上21体積%以下とする雰囲気とし;前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴から引き上げられた前記鋼板に前記ガスが衝突する位置における前記鋼板の端部の空間の酸素濃度を0.05体積%以上3体積%以下とする。
(2)上記(1)に記載の溶融めっき鋼板の製造方法では、前記空間の酸素濃度を0.05体積%以上1.5体積%以下としてもよい。
(3)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記空間は、雰囲気制御可能なように大気雰囲気に対する障壁を有し、前記鋼板の前記端部を少なくとも含むように配置されてもよい。
(4)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記めっき浴の前記浴面の酸素濃度を制御しなくてもよい。
(5)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記空間は、前記鋼板に前記ガスが衝突する位置から前記鋼板の通板方向の下流側に5mm以上、かつ、前記鋼板の前記端部から板幅方向に50mm以上400mm以下の領域を少なくとも含んでもよい。
(6)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記空間は、前記鋼板の板幅方向に複数設けられ、隣り合う前記空間の間の隙間の幅を10mm以上としてもよい。
(7)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記空間は、前記鋼板の前記端部から前記鋼板の幅方向中心に向けて鋼板を覆う面積を小さくしてもよい。
(8)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記鋼板の前記端部から板幅方向に10mmまでの位置におけるめっき付着量が、片面で50~380g/mであってもよい。
(9)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記めっき浴は、Zn、Al、Mg、Si、Sr、Cr、Sn、Caから少なくとも1つ以上を含有してもよい。
(10)上記(1)または(2)に記載の溶融めっき鋼板の製造方法では、前記めっき浴は、Alを0.1質量%以上60質量%以下含有し、Mgを0.2質量%以上5質量%以下含有するZnめっき浴であってもよい。
(11)本発明の溶融めっき装置は、通板される鋼板を連続的に浸漬するめっき浴と;前記めっき浴から引き上げられた前記鋼板の表面にガスを吹き付けるガスワイピングノズルと;前記めっき浴の浴面から離隔した位置に設けられ、前記めっき浴から引き上げられた前記鋼板に前記ガスが衝突する位置における前記鋼板の端部の空間を覆うシールボックスと;前記シールボックス内に不活性ガスを導入し、前記シールボックス内の酸素濃度を制御するパージガス供給手段と;を備える。
(12)上記(11)に記載の溶融めっき装置では、前記パージガス供給手段は、前記シールボックス内の酸素濃度を0.05体積%以上3体積%以下に制御してもよい。
(13)上記(11)に記載の溶融めっき装置では、前記パージガス供給手段は、前記シールボックス内の酸素濃度を0.05体積%以上1.5体積%以下に制御してもよい。
(14)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板を介して互いに対向する位置に少なくとも1組以上設けられ、前記鋼板に向かってガスを噴射して、互いに対向する前記シールボックス間の領域をそれぞれガスカーテンによりシールしてもよい。
(15)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記ワイピングノズルの近傍に設けられて前記ワイピングノズルによるガスの吹き付けを補助する補助ノズルを覆うように設けられてもよい。
(16)上記(11)に記載の溶融めっき装置では、前記シールボックスを、前記鋼板の板幅に応じて、当該板幅方向に沿って移動させるシールボックス移動機構をさらに備えてもよい。
(17)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板に前記ガスが衝突する位置から前記鋼板の通板方向の下流側に5mm以上、かつ、前記鋼板の前記端部から板幅方向に50mm以上400mm以下の領域を少なくとも含む空間を覆ってもよい。
(18)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板の板幅方向に複数設けられ、隣り合う前記空間の間の隙間の幅を10mm以上としてもよい。
(19)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板の前記端部から前記鋼板の幅方向中心に向けて鋼板を覆う面積を小さくしてもよい。
(20)上記(11)に記載の溶融めっき装置では、前記シールボックスの前記鋼板の板幅方向の長さが、前記鋼板の板幅以上であってもよい。
(21)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板に向けてガスを噴射するガス噴射部を有し、前記ガス噴射部が前記シールボックスの鋼板に向かい合う面の端部に設けられていてもよい。
(22)上記(11)に記載の溶融めっき装置では、前記シールボックスは、前記鋼板に向けてガスを噴射するガス噴射部を有し、前記ガス噴射部の形状がL字型形状であってもよい。
 本発明では、溶融めっき鋼板の製造方法及びこの製造方法に用いる溶融めっき装置において、めっき付着量を調整するガス吹き付け位置に、少なくとも鋼板エッジを覆う従来よりも小型のシールボックスを設置し、このシールボックス内の酸素濃度を低下させている。本発明によれば、この技術により、めっき鋼板表面での酸化膜の生成を抑制できるとともに、めっき付着量を調整するガスの吹き付け位置が視認しやすくなる。また、めっき浴表面に生成した表層酸化膜の掻き取り作業や、ワイピングノズルの手入れ作業も容易になる。さらに、本発明によれば、めっき液表面の酸化膜によって亜鉛ヒュームの発生が抑制されるため、ワイピングノズルなどの機器への金属亜鉛の付着を防止して、めっき品質も確保できる。従って、本発明によれば、操業性およびめっき品質を損なわずに、めっき鋼板端部の酸化膜の生成を抑制できるめっき付着量の調整技術を実用化することが可能となる。
めっき鋼板表面に生成した酸化膜の形態の一例を示す説明図である。 図1の酸化膜の生成機構を示す説明図であって、めっき鋼板表面の状態を示す正面図(鋼板の左半面)である。 図1の酸化膜の生成機構を示す説明図であって、鋼板エッジ近傍におけるめっき鋼板表面の状態を示す側面図である。 図1の酸化膜の生成機構を示す説明図であって、鋼板エッジ近傍におけるめっき後の鋼板の状態を示す断面図である。 鋼板エッジ近傍におけるめっき付着量を変化させて、生成したヒゲ状の酸化膜の最大長さを測定した結果の一例を示すグラフである。 本発明の第1の実施形態に係る溶融めっき装置の全体構成を示す説明図である。 同実施形態に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態に係るシールボックスのガスシール機構を示す説明図である。 同実施形態に係るシールボックス移動機構の構成の一例を示す説明図である。 同実施形態の第1の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第1の変形例に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第2の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第2の変形例に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第3の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第3の変形例に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第4の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第4の変形例に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第5の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第5の変形例に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第6の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第6の変形例に係るシールボックスのガスシール機構を示す説明図である。 本発明の第2の実施形態に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態に係るシールボックスのガスシール機構を示す説明図である。 同実施形態の第2の変形例に係るシールボックス及びパージガス供給手段の構成を示す説明図である。 同実施形態の第2の変形例に係るシールボックスのガスシール機構を示す説明図である。 本発明の実施例における鋼板エッジ部における平均酸素濃度とヒゲ状の酸化膜の最大長さとの関係を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(酸化膜の生成機構)
 本発明について説明する前に、図1及び図2A、図2B、図2Cを参照しながら、めっき鋼板表面に生成する酸化膜(ドロス)の生成機構について説明する。図1は、めっき鋼板表面に生成した酸化膜の形態の一例を示す説明図である。また、図2Aおよび図2B、図2Cは、図1の酸化膜の生成機構を示す説明図である。図2Aは、めっき鋼板表面の状態を鋼板の中心より左側のみに注目して示す正面図である。図2Aには、めっき浴4から引き上げられる鋼板に随伴されるめっき液がワイピングガスの衝突圧によって点線部分で掻き落とされる様子を酸化膜2の発生・流動に着目して示している。図2Bは、鋼板エッジ近傍におけるめっき鋼板表面の状態を示す側面図であり、図2Cは、鋼板エッジ近傍におけるめっき後の鋼板の状態を示す断面図である。
 図1に示すように、めっき鋼板6の表面に生成し、めっき後に残存する酸化膜2は、主に、めっき鋼板6の端部(エッジ)にヒゲ状に生成する。このようなヒゲ状の酸化膜2が生成すると、製品となった際に外観不良となるので望ましくない。本発明者らは、この酸化膜2の発生機構を解明するために、めっき浴の浴面からめっき付着量を調整するワイピングノズル3から吹き出すガス(ワイピングガス)の吹き付け位置(ワイピングガスが鋼板表面に衝突する位置、ワイピング部分)までのめっき鋼板6の表面を詳細に観察した。その結果、図2A及び図2Bに示すように、酸化膜2は、ワイピングガスの吹き付け位置における鋼板1の全幅で発生していることがわかった。これは、以下のような理由によると考えられる。図2Bに示すようにワイピングノズル3から吹き出すワイピングガスは、そのエジェクター効果によって周囲の空気を巻き込む。そのため、ワイピングガスに不活性ガスを使用したとしても、めっき鋼板に吹き付けられるワイピングガスは、Oを含む空気との混合ガスになる。このOを含む混合ガスが、鋼板1の表面に激しく衝突するため、このワイピング部分では激しい酸素供給が行われ、めっき金属5の酸化が進みやすい。さらに、ワイピング部分ではめっき液が掻き落とされるため、常に酸化されていない新生面が連続的に生成し、めっき金属5の酸化が進みやすい。これらの理由により、ワイピングガスの吹き付け位置における鋼板1の全幅において酸化膜2が発生していると考えられる。
 また、本発明者らは、以下の知見も得た。図2Aに示すように、ワイピングガスが吹き付けられている鋼板1の表面では、図2Aの矢印で示すような液流が発生している。鋼板1の中央部では、ワイピング部分で発生した酸化膜2は、めっき浴4の浴面まで掻き落とされていく。しかしながら、鋼板1の端部(鋼板エッジ1a)では、ワイピング部分で発生した酸化膜2は、掻き落とされずに鋼板1の表面に滞留している。この理由は、鋼板1の端部では中央部と比べてめっき液の下降流が少なく、めっき液が十分に掻き落とされず、酸化膜2をめっき浴の浴面まで落下させる力が不足しているためと考えられる。事実、一般的に知られるように、鋼板1の端部でのめっき付着量は、図2Cのように中央部よりも多いため、鋼板エッジ1aにおいてめっき液が十分に掻き落とされないことが分かる。さらに、本発明者らは、この鋼板エッジ1a近傍に滞留した酸化膜2がワイピングガスの吹き付け位置を通過してしまうと、この酸化膜2は、ワイピングガスによって分断されてヒゲ状の酸化膜2となることも確認した。図2Cに示すように、このヒゲ状の酸化膜2は、めっき付着量の多い際に発生し易い。
 このように、ヒゲ状の酸化膜2は、鋼板エッジ1aにおけるワイピングガス吹き付け位置で発生している。そのため、本発明者らは、鋼板エッジ1aにおけるワイピングガス吹き付け位置での酸化膜2の発生を抑制すれば、めっき後の鋼板1の端部に残存するヒゲ状の酸化膜2の生成を抑制でき、めっき鋼板1の外観不良を改善できると考えた。
 ここで、めっき鋼板6の表面での酸化膜2の生成は、生成位置付近の酸素濃度に大きく影響を受けると考えられる。そのため、鋼板エッジ1aにおけるワイピングガス吹き付け位置の酸素濃度とヒゲ状の酸化膜2の生成との関係を検討した。その結果、本発明者らは、以下に説明するように、ワイピングガス吹き付け位置における鋼板エッジ1aを少なくとも含む空間の酸素濃度を所定の濃度範囲とすることにより、ヒゲ状の酸化膜の生成が大幅に抑制されることを見出し、本発明を完成した。以下、本発明の好適な実施形態について、詳細に説明する。
 (めっき鋼板の製造方法について)
 まず、本発明に係るめっき鋼板の製造方法について詳細に説明する。本発明に係るめっき鋼板の製造方法では、めっき浴に連続的に浸漬される鋼板をめっき浴から引き上げてから鋼板表面に付着しためっき金属が凝固するまでの間に、鋼板表面にガスを吹き付けてめっき付着量を調整する際に、以下の(A)及び(B)の条件でめっきを行う。
 (A)酸素濃度を0.05体積%以上21体積%以下とする。めっき浴の浴面の酸素濃度を制御しなくてもよい。
 (B)めっき浴から引き上げられた鋼板にガスが衝突する位置における鋼板の端部(鋼板エッジ)の空間の酸素濃度を0.05体積%以上3体積%以下、好ましくは、0.05体積%以上1.5体積%以下とする。
 (めっき浴の浴面の状態について)
 条件(A)については、上述したように、従来技術では、めっき浴の浴面もシールボックス等で覆うことにより、大気雰囲気から隔離されていた。しかし、めっき浴の浴面からワイピングノズルによるガスの吹き付け位置までの全体をシールボックスで覆う技術では、酸化膜の生成を抑制する効果は認められるが、溶融めっきの操業上重要なめっき付着量を調整するガスの吹き付け位置が視認しにくい。加えて、めっき浴表面に生成した表層酸化膜の掻き取り作業や、ワイピングノズルの手入れ作業も困難になる。そのため、操業上の不都合が生じるという問題があった。また、めっき液表面が酸化膜で或る程度覆われていない場合には、表面から亜鉛ヒュームを生じる。この亜鉛ヒュームによりワイピングノズルなどの機器に金属亜鉛が付着するとワイピングが正常に行われない。そのため、品質上の不都合が生じるという問題もあった。さらに、めっき浴の浴面の酸素濃度を制御しなくてもよいため、不活性ガスの使用量を減らすことができ、操業コストを削減することができる。
 一方、本発明では、(B)の条件について後述するように、めっき浴から引き上げられた鋼板にガスが衝突する位置における鋼板の端部(鋼板エッジ)の空間をシールボックス等により覆えば十分である。また、本発明では、めっき浴の浴面を大気雰囲気にすることができるので、シールボックス等を大幅に小型化することができる。その結果、めっき付着量を調整するガスの吹き付け位置が視認しやすくなり、めっき浴表面に生成した表層酸化膜の掻き取り作業や、ワイピングノズルの手入れ作業も容易になる。さらに、めっき浴表面の酸化膜によって亜鉛ヒュームの発生が抑制されるため、ワイピングノズルなどの機器への金属亜鉛の付着を防止して、めっき品質も確保できる。また、発明者らは、酸素濃度が0.05体積%以下であると、めっき融液が蒸発することを見出した。このめっき融液(めっき浴表面のめっき融液)の蒸発により、ワイピング部分の周辺設備が汚染される。その結果、ワイピングノズルが閉塞し、めっき付着量にばらつきが出ることがある。したがって、めっき浴の浴面の酸素濃度を0.05体積%以上21体積%(大気雰囲気の酸素濃度)以下とする。
 (酸素濃度の調整について)
 条件(B)については、本発明者らの検討結果から、めっき浴から引き上げられた鋼板にガスが衝突する位置における鋼板の端部(鋼板エッジ)の空間の酸素濃度を所定範囲にすれば良いという知見が得られている。具体的には、後述する実施例で得られた知見から、本発明者らは、めっき浴から引き上げられた鋼板にガスが衝突する位置における鋼板エッジの空間の酸素濃度が3体積%以下のときに、ヒゲ状の酸化膜の生成が抑制され、さらに、鋼板エッジの空間の酸素濃度が1.5体積%以下のときに、ヒゲ状の酸化膜の生成が大幅に抑制されることを見出した。そこで、本発明に係るめっき鋼板の製造方法では、この鋼板エッジの空間の酸素濃度を3体積%以下、好ましくは1.5体積%以下とする。また、前述したように発明者らは、酸素濃度が0.05体積%以下であると、めっき融液が蒸発することを見出した。このめっき融液(めっき鋼板表面のめっき融液)の蒸発により、ワイピング部分の周辺設備が汚染される。その結果、ワイピングノズルが閉塞し、めっき付着量にばらつきが出ることがある。鋼板エッジの空間の酸素濃度を0.05体積%以上にすれば、めっき鋼板表面の酸化膜によって鋼板エッジの空間(例えば、シールボックス内)における亜鉛ヒュームの発生が抑制される。そのため、ワイピングノズルなどの機器への金属亜鉛の付着を防止して、めっき品質も確保できる。したがって、この鋼板エッジの空間の酸素濃度を0.05体積%以上とする。
 酸素濃度を調整する方法としては、詳しくは後述するが、例えば、エッジシールボックス等を用いて酸素濃度を調整する空間をシールし、このエッジシールボックス内に窒素やアルゴンなどの不活性ガスを導入することにより、エッジシールボックス内の酸素濃度を調整することができる。前述したように、ヒゲ状の酸化膜を抑制するためには、ワイピングガスのエジェクター効果による酸素の巻き込みを防ぐ必要がある。したがって、酸素濃度を調整する空間は、雰囲気制御可能なように大気雰囲気に対する障壁を有することが好ましい。本発明における「障壁」とは、シールボックス等のガス流入を物理的に防ぐ障壁だけでなく、後述するガスカーテンやシールボックスから大気雰囲気に向かうガス流れ等のパージガスによるガス障壁も含む。この酸素濃度を調整する空間は、めっき条件や操業の有無に応じて移動してもよいが、鋼板エッジを少なくとも含むように配置することが好ましい。
 また、酸素濃度を0.05体積%以上3体積%以下にする空間は、ワイピングガスの衝突位置から鋼板の通板方向の下流側に5mm以上、かつ、鋼板の端部から板幅方向に50mm以上の領域を少なくとも含むことが好ましい。すなわち、本発明における鋼板の端部の「空間」とは、例えば、鋼板の端部から板幅方向に50mm以上の領域を少なくとも含む空間である。酸素濃度を調整する空間が、ヒゲ状の酸化物の長さに50mm程度を加えた板幅方向の領域を少なくとも含んでいれば、めっき鋼板表面でのヒゲ状の酸化膜の生成を十分に抑制することができる。したがって、ヒゲ状の酸化膜が発生しない場合を考慮すると、酸素濃度を調整する空間が鋼板の端部から板幅方向に50mm以上の領域を少なくとも含むことが好ましい。また、図2Aに示すように、酸素濃度を調整しない場合には、水平方向に発生するヒゲ状の酸化膜の長さは、最大80mm程度である。そのため、酸素濃度を調整する空間がヒゲ状の酸化膜の長さの2倍程度である200mm以上の領域を少なくとも含むことがより好ましい。もちろん、上記(A)の条件を満たしている前提で、酸素濃度を調整する空間をさらに広くしてもよい。しかしながら、広い空間をシールボックス等により覆う場合にはシールボックス等が大型化する。そのため、上記操業上の不都合を防止する観点からは、酸素濃度を調整する空間は極力狭い方が好ましい。例えば、後述するような可動式のシールボックスを用いる場合には、酸素濃度を調整する空間が鋼板の端部から板幅方向に400mm以下であることが好ましい。また、ガスの吹き付け位置を視認しやすくするため、酸素濃度を調整する空間がワイピングガスの衝突位置から鋼板の通板方向の下流側に200mm以下であることが好ましい。さらに、シールボックスの可動性を確保するために、酸素濃度を調整する空間が前記鋼板の表面から鋼板面に垂直な方向に200mm以下であることが好ましい。また、後述するシールボックスと鋼板との接触を防止するために、酸素濃度を調整する空間が前記鋼板の表面から鋼板面に垂直な方向に3mm以上であることが好ましい。なお、酸素濃度を調整する空間の鋼板の通板方向の領域としては、通板方向下流側だけでなく通板方向上流側を含んでもよい。ただし、上記(A)の条件を満たす必要があるため、通板方向上流側の領域は、めっき浴の浴面よりも上方になければならない。
 また、酸素濃度を調整する空間は、ガスの吹き付け位置が視認できるように、鋼板の板幅方向に複数設けられ、隣り合う空間の間の隙間の幅を10mm以上としてもよい。酸素濃度を調整する空間は、めっきの付着量のばらつきを防ぐために、鋼板エッジから鋼板の幅方向中心に向けて鋼板を覆う面積を小さくしてもよい。
 (めっき浴の組成について)
 ヒゲ状の酸化膜は、0.2質量%以下のAlを含むZn系めっき浴などの一般的なめっき組成でも発生する。しかしながら、ヒゲ状の酸化膜は、めっき金属の酸化によって発生するため、めっき浴中にAlやMgなどの酸化しやすい元素が多く含まれる場合に発生しやすい。具体的には、例えば、めっき浴がZnめっき浴である場合には、実用上操業可能な範囲として、めっき浴にAlを0.1質量%以上60質量%以下、Mgを0.2質量%以上5質量%以下含有させることができる。特に、AlやMgが上記範囲の上限に近い場合には、ヒゲ状の酸化膜が発生しやすい。本発明のめっき鋼板の製造方法によれば、このようにヒゲ状の酸化膜が発生しやすいめっき浴組成においても、大幅にヒゲ状の酸化膜の発生を抑制する効果が得られる。また、Siを0.1質量%以上0.25質量%以下含有していてもよい。本発明では酸化膜の発生源である酸素の濃度を低減させるため、ヒゲ状の酸化膜が発生しやすいその他のめっき浴組成(Zn、Al、Mg、Sn、Si、Sr、Cr、Caなどの元素を含むめっき)においても、ヒゲ状の酸化膜を抑制する効果が得られる。すなわち、めっき浴は、Zn、Al、Mg、Sn、Si、Sr、Cr、Caから少なくとも1つ以上を含有していてもよい。例えば、Znめっき浴が、上記元素を複数含有していてもよい。
 (めっき付着量について)
 また、めっきの掻き取り量(ワイピングガスにより掻き落とされるめっきの量)が少ないときに、ヒゲ状の酸化膜が生成しやすい。本発明者らは、ヒゲ状の酸化膜が生成しやすい付着量の範囲について検討した。具体的には、酸素濃度を制御しない条件で、ワイピングノズルによるガス供給量を制御して、鋼板エッジから板幅方向に10mmまでの範囲におけるめっき付着量を変化させて、生成したヒゲ状の酸化膜の最大長さを測定した。その結果を図3に示す。なお、図3の縦軸は、ヒゲ状の酸化膜の最大長さを、横軸は、鋼板エッジから板幅方向に10mmまでの範囲におけるめっき付着量を示している。
 図3に示すように、鋼板エッジから板幅方向に10mmまでの範囲におけるめっき付着量を片面で50g/m以上とした場合にヒゲ状の酸化膜を生成しやすいことがわかる。本発明のめっき鋼板の製造方法によれば、このようにヒゲ状の酸化膜が発生しやすいめっき付着量範囲においても、大幅にヒゲ状の酸化膜の発生を抑制する効果が得られる。したがって、鋼板エッジから板幅方向に10mmまでの範囲におけるめっき付着量を片面で50g/m以上としてもよい。
 しかしながら、めっき付着量が多すぎると、得られためっき鋼板が良好な外観を確保できなくなる。そのため、鋼板エッジから板幅方向に10mmまでの範囲におけるめっき付着量を片面で380g/m以下とすることが好ましい。
 以上、本発明に係るめっき鋼板の製造方法について詳細に説明した。以下に、このようなめっき鋼板の製造方法に利用される本発明の実施形態に係る溶融めっき装置について詳細に説明する。
 (本発明の第1の実施形態に係る溶融めっき装置について)
 まず、図4を参照しながら、本発明の第1の実施形態に係る溶融めっき装置の全体構成について説明する。図4は、本発明の第1の実施形態に係る溶融めっき装置10の全体構成を示す説明図である。
 図4に示すように、本発明の第1の実施形態に係る溶融めっき装置10は、主にめっき浴11と、ガスワイピングノズル12と、シールボックス13と、パージガス供給手段と、を備える。パージガス供給手段は、例えば、パージガス供給ノズル(図5A及び図5B参照)である。
 めっき浴11には、通板する鋼板(鋼帯)1が連続的に浸漬される。より詳細には、通常の圧延工程を経た鋼板1は、スナウト16を通じて連続的にめっき浴11に浸漬され、浴中ロール17で通板方向を変えられ、鉛直方向上方に引き上げられる。このめっき浴の組成としては、例えば、めっき浴がZnめっき浴である場合には、実用上操業可能な範囲として、めっき浴にAlを0.1質量%以上60質量%以下、Mgを0.2質量%以上5質量%以下含有させることができる。また、Siを0.1質量%以上0.25質量%以下含有していてもよい。ここで、上述したように、めっき浴にAlやMgが多く含まれていると、ヒゲ状の酸化膜が生成しやすい。しかしながら、本発明の第1の実施形態に係る溶融めっき装置10によれば、このようなめっき浴組成でもヒゲ状の酸化膜の生成を大幅に抑制することができる。
 ガスワイピングノズル12は、上記のようにしてめっき浴11から引き上げられた鋼板1の表面にガスを吹き付けて、鋼板1表面へのめっき付着量を調整する。このガスワイピングノズル12は、めっき浴11の上方で、かつ、めっき浴から引き上げられた鋼板1の表面に付着している溶融状態のめっき金属が凝固する位置より下方となるように、鋼板1の双方の面側に互いに対向する位置に配置される。また、ガスワイピングノズル12から吹き付けられるワイピングガスとして、めっき金属の酸化を抑制する観点から、非酸化性のガスを主成分とすることが好ましい。
 シールボックス13は、めっき浴11の浴面から離隔した位置に設けられ、めっき浴11から引き上げられた鋼板1にワイピングガスが衝突する位置における鋼板1の端部(鋼板エッジ)の空間を覆い、シールボックス13内を大気雰囲気から独立した雰囲気にする。なお、本発明における鋼板の端部の「空間」とは、鋼板1にワイピングガスが衝突する位置における鋼板エッジから所定長さの領域である。このように、本発明の第1の実施形態に係る溶融めっき装置10では、めっき浴11から引き上げられた鋼板1にワイピングガスが衝突する位置における鋼板1の端部(鋼板エッジ)の空間をシールボックス13により覆えば十分である。そのため、めっき浴11の浴面を大気雰囲気にできるので、シールボックス13を従来よりも大幅に小型化することができる。その結果、ワイピングガスの吹き付け位置が視認しやすくなり、めっき浴11表面に生成した表層酸化膜の掻き取り作業や、ガスワイピングノズル12の手入れ作業も容易になる。また、めっき液表面の酸化膜によって亜鉛ヒュームの発生が抑制されるため、ワイピングノズルなどの機器への金属亜鉛の付着を防止して、安定しためっき品質も確保できる。
 このシールボックス13は、ワイピングガスの衝突位置から鋼板1の通板方向の下流側に5mm以上、かつ、鋼板1の端部から板幅方向にヒゲ状の酸化膜の長さ(例えば、50mm)以上の領域を少なくとも含む空間を覆うことが好ましい。すなわち、本発明の第1の実施形態における鋼板1の端部の「空間」は、鋼板1の端部から板幅方向にヒゲ状の酸化膜の長さ(例えば、50mm)以上の領域を少なくとも含むことが好ましい。シールボックス13が少なくとも上記空間を覆っていれば、めっき中のヒゲ状の酸化膜の生成を十分に抑制することができる。もちろん、めっき浴11の浴面から離隔している条件を満たしている前提で、シールボックス13の大きさをさらに大きくしてもよい。しかしながら、シールボックス13が大型化するため、上記操業上の不都合を防止する観点からは、シールボックス13は、極力小さい方が好ましい。最小の水平方向の長さは、ヒゲ状の酸化物の長さに50mm程度を加えた長さであっても良い。したがって、ヒゲ状の酸化膜が発生しない場合を考慮すると、シールボックス13は、鋼板の端部から板幅方向に50mm以上の領域を少なくとも含む空間を覆うことが好ましい。シールボックス13は、鋼板の端部から板幅方向に200mm以上の領域を少なくとも含む空間を覆うことがより好ましい。なお、シールボックス13が覆う鋼板1の通板方向の領域としては、通板方向下流側だけでなく通板方向上流側を含んでもよい。ただし、シールボックス13は、めっき浴11の浴面から離隔している必要があるため、通板方向上流側の領域は、めっき浴11の浴面よりも上方になければならない。なお、後述するような可動式のシールボックスを用いる場合には、鋼板エッジに追随するシールボックス13の動き(稼動)を良好にする必要がある。そのため、シールボックス13の板幅方向の長さは、400mm以下であることが好ましい。また、操業上、ガスの吹き付け位置を視認しやすくし、鋼板1がシールボックス13に接触するリスクを抑える必要がある。そのため、シールボックス13は、ワイピングガスの衝突位置から鋼板1の通板方向の下流側に200mm以下(すなわち、シールボックス13の鉛直方向の高さが200mm以下)の領域を覆うことが好ましい。さらに、シールボックスの可動性を確保するために、シールボックス13は、前記鋼板の表面から鋼板面に垂直な方向に200mm以下の領域を覆うことが好ましい。また、シールボックスと鋼板との接触を防止するために、シールボックス13は、前記鋼板の表面から鋼板面に垂直な方向に3mm以上の領域を覆うことが好ましい。
 パージガス供給手段(例えば、パージガス供給ノズル)は、シールボックス13内に窒素やアルゴンなどの不活性ガスを導入し、シールボックス13内の酸素濃度を0.05体積%以上3体積%以下、好ましくは0.05体積%以上1.5体積%以下に制御する。
 次に、図5A及び図5Bを参照しながら、本発明の第1の実施形態に係るシールボックス13及びパージガス供給ノズル14の構成について詳細に説明する。なお、図5Aは、本発明の第1の実施形態に係るシールボックス13及びパージガス供給ノズル14の構成を示す説明図である。図5Bは、本発明の第1の実施形態に係るシールボックスのガスシール機構を示す説明図である。
 図5Aに示すように、ガスワイピングノズル12は、鋼板1の双方の面側に互いに対向する位置に設けられる。このガスワイピングノズル12は、略五角柱状で、その高さ(五角柱の高さ)方向が鋼板1の板幅方向に平行になっている。
 また、図5Aに示すように、シールボックス13は、鋼板1のエッジ部分を少なくとも覆うように、1組のガスワイピングノズル12のそれぞれの上部に設置されている。このように、シールボックス13が、鋼板1の全幅を覆わず、鋼板1のエッジ部分のみを覆うように溶融めっき装置10を構成することにより、シールボックス13を小型化することができる。したがって、上述した操業上の不都合を解消することができる。
 ただし、通常、溶融めっき装置10によりめっきされる鋼板1の幅は一定ではない。どのような幅の鋼板1が溶融めっき装置10に通板されたとしても、常に、ヒゲ状の酸化膜の生成を抑制するために鋼板1のエッジ(上述参照)を含む空間を確実に覆う必要がある。そのため、本発明の第1の実施形態では、通板される鋼板1の板幅に応じて、シールボックス13を鋼板1の板幅方向に移動させるシールボックス移動機構を設けている。シールボックス移動機構は、シールボックス13を鋼板1の板幅方向に水平移動させる機構であって、例えば、エアシリンダやスクリュー等を用いた移動機構が挙げられる。なお、後述する本発明の第1の実施形態の変形例(第5の変形例の一部を除く)、第2の実施形態とその変形例に係る溶融めっき装置においても、このようなシールボックス移動機構が設けられている。
 ここで、図6を参照しながら、本実施形態に係るシールボックス移動機構の構成の一例について説明する。図6は、本実施形態に係るシールボックス移動機構の構成の一例を示す説明図である。
 図6に示すように、本実施形態に係るシールボックス移動機構は、主に、駆動モータ51と、スクリュー軸53と、鋼板エッジ検出センサ55A、55Bと、を有する。
 駆動モータ51は、スクリュー軸53の一端と接続され、スクリュー軸53を回転駆動させる。また、スクリュー軸53は、その長さ方向(軸方向)と鋼板1の板幅方向が一致するように設けられている。また、本実施形態では、シールボックス13に対応する互いに平行な2本のスクリュー軸53が設けられている。さらに、スクリュー軸53の駆動モータ51に接続されている端部(一端)の反対側にある端部(以下、「他端」という。)は、シールボックス13と螺合している。
 鋼板エッジ検出センサ55A、55Bは、シールボックス13上に設置され、鋼板1の端部(鋼板エッジ)の位置を検出する。例えば、鋼板エッジ検出センサ55A、55Bは、フォトセンサなどのセンサで構成される。具体的には、例えば、発光素子を有する鋼板エッジ検出センサ55Aからの発光を、受光素子を有する鋼板エッジ検出センサ55Bが受光する。この発光素子からの光が遮光されることにより変化する受光素子の出力から、鋼板1のエッジ位置を検出する。ただし、鋼板エッジ検出センサは、このような透過型のフォトセンサに限られない。鋼板エッジ検出センサは、例えば、発光素子及び受光素子を有する反射型フォトセンサや、他のセンサでもよい。
 上記構成を有するシールボックス移動機構によれば、駆動モータ51がスクリュー軸53を回転させると、スクリュー軸53に螺合したシールボックス13が、スクリュー軸53の長さ方向(すなわち、鋼板1の板幅方向)に移動する。この際、鋼板エッジ検出センサ55A、55Bにより鋼板1のエッジ位置が検出される。これらの鋼板エッジ検出センサ55A、55Bが鋼板1のエッジを検出すると、シールボックス13は、適正位置にあると判断され、駆動モータ51の駆動を停止するように制御され、シールボックス13は移動を停止する。
 以上のようにして、本実施形態に係る溶融めっき装置は、シールボックス移動機構により、鋼板1の板幅に応じて、シールボックス13を上述した適正位置まで移動させる。なお、以上説明したシールボックス移動機構の構成は、あくまでも一例であり、シールボックス13を鋼板1の板幅方向に移動させる機能を有する構成であれば、任意の構成とすることができる。ここでは、一例として、駆動装置として、駆動モータ51を、駆動軸として、スクリュー軸53を用いている。しかしながら、例えば、駆動装置としてシリンダ、駆動軸としてエアシリンダを用いてもよい。
 1組のシールボックス13は、鋼板1側の面(鋼板1に向かい合う面)が開放され、鋼板1側やワイピングノズル12側でない面(鋼板1やワイピングノズル12に向かい合わない面)が閉塞されている。本発明の第1の実施形態に係るシールボックス13には、図5Bに示すように、鋼板1側の開放された面の端部(図5Bの太線部分、枠部)に、ガスを噴射するノズル13aが設けられている。1組のシールボックスは、鋼板1を介して互いに対向する位置に少なくとも1組以上設けられている。そのため、1組のシールボックス13のそれぞれのノズル13aから鋼板1に向けてガス(シールガス)を噴射すると、互いに対向する1組のシールボックス13間の領域(空間)がガスカーテンによりシールされる。したがって、1組のシールボックス13の間の距離が離れていても、また、この距離が変わったとしても、ガスカーテンにより確実に鋼板1のエッジ部分をシールすることが可能になる。この場合、シールボックス13をガスワイピングノズル12上に設置すると、めっき付着量や鋼板1の厚みに応じて、1組のガスワイピングノズル12を鋼板1に対して近づけたり遠ざけたりするいわゆるワイピングノズルのギャップ(ワイピングノズルGAP)の制御が容易となる。すなわち、ワイピングノズルのギャップ制御によって1組のガスワイピングノズル12間の距離が変更されたとしても、ガスワイピングノズル12上に設置されているシールボックス13及びガスカーテンにより、容易に鋼板1エッジを含む空間を確実にシールすることができる。ノズル13aのシールガス噴射孔の形状は、スリット形状や多孔形状など、必要に応じて自由に選択できる。また、シールボックス13の形状も、六面体形状や三角柱形状など、必要に応じて自由に選択できる。
 また、本発明の第1の実施形態では、シールボックス13の鋼板エッジ側の端部と連通するように、管状のパージガス供給ノズル14が設けられている。このパージガス供給ノズル14の長さ方向(管軸方向)は、鋼板1の板幅方向と平行になっている。このパージガス供給ノズル14から、シールボックス13内に不活性ガスなどのパージガスを導入することにより、シールボックス13内の酸素濃度を0.05体積%以上3体積%以下(好ましくは、0.05体積%以上1.5体積%以下)に制御する。シールボックス13内の酸素濃度は、パージガス供給ノズル14によるパージガスの供給量を調整することにより制御可能である。
 (第1の実施形態の第1の変形例について)
 なお、本発明の第1の実施形態では、シールボックス13及びパージガス供給ノズル14は、ガスワイピングノズル12の上部の鋼板の双方の端部に1組ずつしか設けられていないが、2組ずつ以上設けても差し支えない。例えば、本発明の第1の実施形態の第1の変形例においては、図7Aに示すように、シールボックス131及びパージガス供給ノズル141が、ガスワイピングノズル12の上部と下部にそれぞれ1組ずつ(合計2組)設けられている。また、図7Bには、第1の実施形態の第1の変形例に係るシールボックスのガスシール機構を示している。
 本変形例に係るシールボックス131のように、ガスワイピングノズル12の上部と下部の双方にシールボックス131を1組ずつ設けることにより、ワイピングガスの吹き付け位置、すなわち、ワイピングガスが鋼板1と衝突する位置の周囲の酸素濃度が調整される領域が広くなる。そのため、ヒゲ状の酸化膜の生成を抑制する効果は、本発明の第1の実施形態の場合よりも高くなる。一方、本変形例のように、ガスワイピングノズル12の下部にシールボックス131を設けることは施工上困難な場合もある。加えて、本発明者らは、第1の実施形態に係るシールボックス13のように、少なくともガスワイピングノズル12の上部、すなわち、鋼板1の通板方向の下流側のみにシールボックス13を設置すれば、ヒゲ状の酸化膜の生成を抑制する効果が十分に認められることを確認している。従って、本発明の実施形態のように、シールボックスを、少なくともガスワイピングノズル12の上部、すなわち、鋼板1の通板方向の下流側のみに設置すればよい。また、シールボックスは、鋼板の板幅方向に複数設けてもよい。この場合、ワイピングガスの衝突位置を視認しやすくするために、隣り合うシールボックスの間の隙間の幅を10mm以上にすることが好ましい。
 (第1の実施形態の第2の変形例について)
 図8A及び図8Bに示す本発明の第1の実施形態の第2変形例は、シールボックスの形状が第1の実施形態と異なる例である。本変形例に係るシールボックス132は、本発明の第1の実施形態のように、鋼板1の双方の面側に独立して別個に設けられているのではなく、鋼板エッジを鋼板エッジの外側から包み込む形状(例えば、略U字型)で一体的に形成されている。すなわち、シールボックス132は、略U字型形状の開口部分で鋼板1を挟むように設けられている。また、図8Bに示すように、この開口部分の鋼板1に向かい合う部分(開口面の端部)にカーテンシール用のガスを噴出するノズル132aが設けられている。
 また、パージガス供給ノズル142は、本発明の第1の実施形態の場合と異なり、シールボックス132の開口部に隣接した部分(U字型の底)の上部に、その長さ方向が鉛直方向と平行になるように設けられている。
 本変形例の場合、シールボックス132をより小型化することができる。しかしながら、シールボックス132の鋼板1に向かい合う2つの開口面の間の距離は、固定される。そのため、本発明の第1の実施形態の場合よりも、ワイピングノズルのギャップ制御は困難になる可能性がある。
 (第1の実施形態の第3の変形例について)
 図9A及び図9Bに示す本発明の第1の実施形態の第3変形例は、ガスワイピングノズル12の上部と下部を覆うように第2変形例のシールボックス132を2つ組み合わせて一体化したような構造にした例である。本変形例に係るシールボックス133は、第1変形例の場合と同様に、ガスワイピングノズル12の上部と下部の双方に存在するため、ワイピングガスが鋼板1と衝突する位置の周囲の酸素濃度が調整される領域が広くなる。そのため、ヒゲ状の酸化膜の生成を抑制する効果は、本発明の第1の実施形態の場合よりも高くなる。また、本変形例に係るシールボックス133は、第1の変形例に係るシールボックス131よりも施工はやや容易になると考えられる。
 なお、シールボックス133およびカーテンシール用のノズル133a、パージガス供給ノズル143などの構造に関しては、上述した第2変形例の場合と同様であるので、説明を省略する。
 (第1の実施形態の第4の変形例について)
 図10A及び図10Bに示す第1の実施形態の第4変形例は、第2変形例のシールボックス132を、ガスワイピングノズル12の上下に独立して別個に設置した例である。本変形例に係る2つのシールボックス134のそれぞれの構造や機能は、上述した第2変形例の場合と同様であるので、説明を省略する。上述した第1変形例の場合と同様に、本変形例においても、ガスワイピングノズル12の下部のシールボックス134は、施工がやや困難な場合もある。
 また、本変形例に係るカーテンシール用のノズル134a及びパージガス供給ノズル144の構造は、本発明の第1の実施形態と同様である。
 (第1の実施形態の第5の変形例について)
 図11A及び図11Bに示す第1の実施形態の第5変形例は、シールボックスの板幅方向の長さを鋼板の全幅を覆うサイズまで拡張した変形例である。この変形例では、シールボックスの移動機構を設ける必要がなく、駆動設備の削減が可能であるため、シールボックスの移動不良によるトラブルも回避できる。
 図11Aに示すように、本変形例に係る溶融めっき装置においては、シールボックス135の鋼板1の板幅方向の長さは、ガスワイピングノズル12の鋼板1の板幅方向の長さ以上である。通常は、ガスワイピングノズル12の鋼板1の板幅方向の長さは、鋼板1の板幅と略同一、もしくは、鋼板1の板幅よりも長い。従って、シールボックス135がガスワイピングノズル12の上部に設置されることにより、ガスワイピングノズル12の移動に追随してシールボックス135も移動する。そのため、本変形例に係るシールボックス135によれば、図11Bに示すようなノズル135aから鋼板1に向けてシールガスが噴射されると、酸化膜の発生場所となる鋼板1の表面へのワイピングガスの衝突位置を常に鋼板1の全幅にわたってシールすることができる。そのため、本変形例では、ヒゲ状の酸化膜の生成を抑制する効果が特に優れている。また、シールボックス135は、鋼板1表面へのワイピングガスの衝突位置を常に鋼板1の全幅にわたってシールするので、上述した第1の実施形態及びその変形例のように、シールボックス移動機構を設ける必要が無い。そのため、溶融めっき装置が省スペース化されるとともに、シールボックス135の移動不良によるトラブルも回避できる。なお、第1の実施形態およびその変形例と同様の構成(パージガス供給ノズル145等)については説明を省略する。さらに、本変形例に10mm以上の隙間を設け、シールボックスを複数に分割してもよい。この場合には、パージガス供給ノズル145がシールボックスの数に応じて必要となる。しかしながら、ワイピングガスの衝突位置の視認性を確保することができる。
 (第1の実施形態の第6の変形例について)
 図12A及び図12Bに示す変形例は、第1の実施形態によるシールガスを噴射するノズル136aの形状が、L字型形状となっている変形例である。ここで、L字型形状とは、図12Bに示すように、鋼板1に向かい合うシールボックス136の三角形状の開口部の三辺のうち、鋼板1へのワイピングガスの衝突位置から最も近い辺を除く二辺(鋼板1へのワイピングガスの衝突位置から最も遠い頂点を挟む二辺)で構成される形状である。そのため、この二辺に挟まれる角度は、特に、規定しない。例えば、直角三角形状の開口部において、短辺を鋼板エッジに平行に配置した場合に、45°よりも大きい角度をはさむ二辺である。本変形例において、シールボックス136がガスワイピングノズル12を鋼板1の板幅方向に覆う長さ(幅)は、200mm以上400mm以下が好ましい。シールボックス136の最小の幅が200mm以上であれば、ヒゲ状の酸化膜を完全に覆うことができる。また、シールボックス136の最大の幅を400mm以下にすれば、鋼板エッジに追随するシールボックス136の動き(稼動)を良好にできる。さらに、このシールボックス136の鉛直方向の長さ(高さ)の範囲は、5mm以上200mm以下であることが好ましい。シールボックス136の最大の高さが200mm以下であれば、操業上ワイピングガスの衝突位置を視認しやすくなり、鋼板1がシールボックス136に接触するリスクを抑えることができる。シールボックス136の最小の高さが5mm以上であれば、通板方向のヒゲ状の酸化膜の長さ(幅)以上となるため、ヒゲ状の酸化膜を完全に覆うことができる。
 また、パージガスを吹き込むパージガス供給ノズル146は、シールガスの噴射方向に対して垂直な方向(鋼板1に平行な方向)に位置させることが好ましい。この理由は、シールガスの噴射分布の不均一を軽減させるためである。
 このようなL字型形状のノズル136aを設けると、鋼板1に衝突するシールガスの量を板幅方向でより均一にすることが可能である。このL字型形状のノズル136aにより、シールガスによってめっきが掻き分けられて、めっきの付着量のばらつきが発生するトラブルを防ぐことができる。なお、本発明例では、L字型形状のノズル136aを使用するために、シンプルな三角柱状のシールボックス136を使用している。しかしながら、流体(めっき融液およびガス)の流れに応じて、めっきの付着量のばらつきを防ぐために、シールボックス136は、鋼板エッジから鋼板1の幅方向中心に向けて鋼板を覆う面積を小さくするような形状であってもよい。この場合には、ガスを噴射するノズル136aは、鋼板1側の開放された面の端部(図12Bの太線部分、枠部)に設けられている。このような構造により、L字型形状のノズル136aと同様にめっきの付着量のばらつきを防ぐことができる。
 (本発明の第2の実施形態に係る溶融めっき装置について)
 続いて、図13A及び図13Bを参照しながら、本発明の第2の実施形態に係る溶融めっき装置におけるシールボックスやパージガス供給ノズル等の構造について説明する。なお、図13Aは、本発明の第2の実施形態に係るシールボックス23及びパージガス供給手段の一例としてのパージガス供給ノズル24の構成を示す説明図である。また、図13Bは、第2の実施形態に係るシールボックスのガスシール機構を示す説明図である。第1の実施形態と同様の構成については説明を省略する。
 図13Aに示すように、本発明の第2の実施形態に係る溶融めっき装置においては、シールボックス23は、補助ノズル25を覆うように設けられている。補助ノズル25は、ガスワイピングノズル12の近傍に設置される。本発明の第2の実施形態では、補助ノズル25は、ガスワイピングノズル12の上部に設置され、補助ノズル用ガス供給ノズル26からガスを供給されて、このガスを鋼板1に向けて噴射する。このようにして、補助ノズル25は、ワイピングノズル12によるガスの吹き付けを補助する。シールボックス23が補助ノズル25を覆うように設けられるため、図13Bに示すようなシールボックス23に設けられたノズル23aからのカーテンシール用のガスだけでなく、補助ノズル25からもガスが供給される。そのため、本発明の第2の実施形態では、上述した第1の実施形態の場合と異なり、シールボックス23の下側(例えば、シールボックス23とガスワイピングノズル12との隙間)もシールされる。そのため、より確実に鋼板1エッジを含む空間をシールすることができる。従って、シールボックスの外部(大気雰囲気)からの大気の流入がより確実に抑止されるので、パージガス供給ノズル24によるパージガスの供給量を、第1の実施形態の場合よりも減らした場合であっても、シールボックス23内の酸素濃度を効率的に低減させることができる。また、本発明によって抑制できる鋼板の端部のヒゲ状の酸化膜は、上述の通り鋼板エッジ部のめっき付着量が少ないほど抑制しやすい。そのため、補助ノズルによって、鋼板エッジ部のめっき付着量を低減させることにより、より高いヒゲ状の酸化膜の抑制効果を得ることができる。
 (第2の実施形態の第1の変形例について)
 図14A及び図14Bに示す変形例は、第2の実施形態によるシールガスを噴射するノズル231aの形状が、L字型形状となっている変形例である。ここで、L字型形状とは、図14Bに示すように、鋼板1に向かい合うシールボックス231の三角形状の開口部の三辺のうち、鋼板1へのワイピングガスの衝突位置から最も近い辺を除く二辺(鋼板1へのワイピングガスの衝突位置から最も遠い頂点を挟む二辺)で構成される形状である。そのため、この二辺に挟まれる角度は、特に、規定しない。例えば、直角三角形状の開口部において、短辺を鋼板エッジに平行に配置した場合に、45°よりも大きい角度をはさむ二辺である。本変形例において、シールボックス231がガスワイピングノズル22を鋼板1の板幅方向に覆う長さ(幅)は、50mm以上400mm以下が好ましい。シールボックス231の最小の幅が50mm以上であれば、ヒゲ状の酸化膜を完全に覆うことができる。また、シールボックス231の最大の幅を400mm以下にすれば、鋼板エッジに追随するシールボックス231の動き(稼動)を良好にでき、補助ノズル251を実用上収納することができる。さらに、このシールボックス231の鉛直方向の長さ(高さ)の範囲は、5mm以上200mm以下であることが好ましい。シールボックス231の最大の高さが200mm以下であれば、操業上ワイピングガスの衝突位置を視認しやすくなり、鋼板1がシールボックス231に接触するリスクを抑えることができる。シールボックス231の最小の高さが5mm以上であれば、通板方向のヒゲ状の酸化膜の長さ(幅)以上となるため、ヒゲ状の酸化膜を完全に覆うことができる。
 また、パージガスを吹き込むパージガス供給ノズル241は、シールガスの噴射方向に対して垂直な方向(鋼板1に平行な方向)に位置させることが好ましい。この理由は、シールガスの噴射分布の不均一を軽減させるためである。
 このようなL字型形状のノズル231aを設けると、鋼板1に衝突するシールガスの量を板幅方向でより均一にすることが可能である。このL字型形状のノズル231aにより、シールガスによってめっきが掻き分けられて、めっきの付着量のばらつきが発生するトラブルを防ぐことができる。なお、本発明例では、L字型形状のノズル231aを使用するために、シンプルな三角柱状のシールボックス231を使用している。しかしながら、流体(めっき融液およびガス)の流れに応じて、めっきの付着量のばらつきを防ぐために、シールボックス231は、鋼板エッジから鋼板1の幅方向中心に向けて鋼板を覆う面積を小さくするような形状であってもよい。この場合には、ガスを噴射するノズル231aは、鋼板1側の開放された面の端部(図14Bの太線部分、枠部)に設けられている。このような構造により、L字型形状のノズル231aと同様にめっきの付着量のばらつきを防ぐことができる。
 以下、実施例を用いて本発明をさらに具体的に説明する。
 本実施例では、図13に示した溶融めっき装置を用いて、表1に示すような条件で、連続的に通板される鋼板に対して溶融Znめっきを行い、その後めっき浴から引き上げた鋼板に対してガスワイピングノズルを用いてめっき付着量が片面で150g/mとなるように制御した。めっき付着量を制御する際、鋼板エッジ部分におけるワイピングガスの衝突位置から上下5mmの範囲の平均酸素濃度と、鋼板エッジに生成するヒゲ状の酸化膜の最大長さとを測定した。平均酸素濃度は、鋼板エッジでワイピングガスが衝突する位置を中心に、上下5mmの範囲を2mmピッチで測定し、それらの測定値を平均して用いた。酸素濃度の測定精度を高めるために、低酸素濃度の測定には、島津製作所製の島津ポータブル酸素計(POT-101)を使用し、高酸素濃度の測定には、Advanced Instruments Inc.製のポータブルppm酸素計(GPR-12)を使用した。ここで、低酸素濃度とは、1ppm~1体積%(10000ppm)であり、高酸素濃度とは、0.5~21体積%(大気雰囲気に相当)である。なお、0.5~1体積%以下の酸素濃度を測定する場合には、精度をより高めるため、両方の酸素計を使用した。その結果を表2に示す。また、表2に示した酸化膜の最大長さと平均酸素濃度との関係を図15に示した。尚、本実施例のシールボックスの通板方向の下流側の長さは、最大で200mmも有れば十分であり、より短くても良い。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明のシールボックスを有し、かつ、酸素濃度が本発明の範囲内である実施例においては、シールボックスを有しない、あるいは、酸素濃度が本発明の範囲外である比較例と比べて、ヒゲ状の酸化膜の最大長さが顕著に低いことがわかった。
 また、図15に示すように、表2のデータをプロットし、検量線(図15の曲線)を求めた。その結果、鋼板エッジ部分におけるワイピングガスの衝突位置から上下5mmの範囲の平均酸素濃度が3体積%以下で(図15の矢印Bを参照)、ヒゲ状の酸化膜の最大長さが40mm以下となっていた(図15の矢印Aを参照)。さらには、1.5体積%以下で(図15の矢印Bを参照)、ヒゲ状の酸化膜の最大長さが急激に低下し、40mm以下となっていた(図15の矢印Aを参照)。このことから、シールボックス内の酸素濃度を3体積%以下とすることにより、ヒゲ状の酸化膜の生成が抑制され、さらに、1.5体積%以下とすることにより、ヒゲ状の酸化膜の生成が大幅に抑制されるということが示唆された。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 溶融めっき鋼板の製造方法及びこの製造方法に用いる溶融めっき装置において、めっき付着量を調整する際に、めっき鋼板表面での酸化膜の生成を抑制するとともに、操業上の不都合を解消する。
 1  鋼板
 5  めっき金属
 10  溶融めっき装置
 11  めっき浴
 12  ガスワイピングノズル
 13、23、131、132、133、134、135、136、231  シールボックス
 14、24、141、142、143、144、145、146、241  パージガス供給ノズル
 16  スナウト
 17  浴中ロール
 51  駆動モータ
 53  スクリュー軸
 55  鋼板エッジ検出センサ

Claims (22)

  1.  めっき浴に連続的に浸漬される鋼板を前記めっき浴から引き上げてから前記鋼板表面に付着しためっき金属が凝固するまでの間に、前記鋼板表面にガスを吹き付けてめっき付着量を調整する溶融めっき鋼板の製造方法であって、
     前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴の浴面の酸素濃度を0.05体積%以上21体積%以下とする雰囲気とし;
     前記鋼板表面に前記ガスを吹き付ける際に、前記めっき浴から引き上げられた前記鋼板に前記ガスが衝突する位置における前記鋼板の端部の空間の酸素濃度を0.05体積%以上3体積%以下とする;
    ことを特徴とする、溶融めっき鋼板の製造方法。
  2.  前記空間の酸素濃度を0.05体積%以上1.5体積%以下とすることを特徴とする請求項1に記載の溶融めっき鋼板の製造方法。
  3.  前記空間は、雰囲気制御可能なように大気雰囲気に対する障壁を有し、前記鋼板の前記端部を少なくとも含むように配置されることを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  4.  前記めっき浴の前記浴面の酸素濃度を制御しないことを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  5.  前記空間は、前記鋼板に前記ガスが衝突する位置から前記鋼板の通板方向の下流側に5mm以上、かつ、前記鋼板の前記端部から板幅方向に50mm以上400mm以下の領域を少なくとも含むことを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  6.  前記空間は、前記鋼板の板幅方向に複数設けられ、隣り合う前記空間の間の隙間の幅を10mm以上とすることを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  7.  前記空間は、前記鋼板の前記端部から前記鋼板の幅方向中心に向けて鋼板を覆う面積を小さくすることを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  8.  前記鋼板の前記端部から板幅方向に10mmまでの位置におけるめっき付着量が、片面で50~380g/mである請求項1または2に記載の溶融めっき鋼板の製造方法。
  9.  前記めっき浴は、Zn、Al、Mg、Si、Sr、Cr、Sn、Caから少なくとも1つ以上を含有することを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  10.  前記めっき浴は、Alを0.1質量%以上60質量%以下含有し、Mgを0.2質量%以上5質量%以下含有するZnめっき浴であることを特徴とする請求項1または2に記載の溶融めっき鋼板の製造方法。
  11.  通板される鋼板を連続的に浸漬するめっき浴と;
     前記めっき浴から引き上げられた前記鋼板の表面にガスを吹き付けるガスワイピングノズルと;
     前記めっき浴の浴面から離隔した位置に設けられ、前記めっき浴から引き上げられた前記鋼板に前記ガスが衝突する位置における前記鋼板の端部の空間を覆うシールボックスと;
     前記シールボックス内に不活性ガスを導入し、前記シールボックス内の酸素濃度を制御するパージガス供給手段と;
    を備えることを特徴とする溶融めっき装置。
  12.  前記パージガス供給手段は、前記シールボックス内の酸素濃度を0.05体積%以上3体積%以下に制御することを特徴とする請求項11に記載の溶融めっき装置。
  13.  前記パージガス供給手段は、前記シールボックス内の酸素濃度を0.05体積%以上1.5体積%以下に制御することを特徴とする請求項11に記載の溶融めっき装置。
  14.  前記シールボックスは、前記鋼板を介して互いに対向する位置に少なくとも1組以上設けられ、前記鋼板に向かってガスを噴射して、互いに対向する前記シールボックス間の領域をそれぞれガスカーテンによりシールすることを特徴とする請求項11に記載の溶融めっき装置。
  15.  前記シールボックスは、前記ワイピングノズルの近傍に設けられて前記ワイピングノズルによるガスの吹き付けを補助する補助ノズルを覆うように設けられることを特徴とする請求項11に記載の溶融めっき装置。
  16.  前記シールボックスを、前記鋼板の板幅に応じて、当該板幅方向に沿って移動させるシールボックス移動機構をさらに備えることを特徴とする請求項11に記載の溶融めっき装置。
  17.  前記シールボックスは、前記鋼板に前記ガスが衝突する位置から前記鋼板の通板方向の下流側に5mm以上、かつ、前記鋼板の前記端部から板幅方向に50mm以上400mm以下の領域を少なくとも含む空間を覆うことを特徴とする請求項11に記載の溶融めっき装置。
  18.  前記シールボックスは、前記鋼板の板幅方向に複数設けられ、隣り合う前記空間の間の隙間の幅を10mm以上とすることを特徴とする請求項11に記載の溶融めっき装置。
  19.  前記シールボックスは、前記鋼板の前記端部から前記鋼板の幅方向中心に向けて鋼板を覆う面積を小さくすることを特徴とする請求項11に記載の溶融めっき装置。
  20.  前記シールボックスの前記鋼板の板幅方向の長さが、前記鋼板の板幅以上であることを特徴とする、請求項11に記載の溶融めっき装置。
  21.  前記シールボックスは、前記鋼板に向けてガスを噴射するガス噴射部を有し、前記ガス噴射部が前記シールボックスの鋼板に向かい合う面の端部に設けられていることを特徴とする請求項11に記載の溶融めっき装置。
  22.  前記シールボックスは、前記鋼板に向けてガスを噴射するガス噴射部を有し、前記ガス噴射部の形状がL字型形状であることを特徴とする請求項11に記載の溶融めっき装置。
PCT/JP2009/005089 2008-10-01 2009-10-01 溶融めっき鋼板の製造方法及び溶融めっき装置 WO2010038472A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/998,218 US9598756B2 (en) 2008-10-01 2009-10-01 Method for producing hot dip plated steel sheet and apparatus for hot dip plating
JP2010531757A JP4988045B2 (ja) 2008-10-01 2009-10-01 溶融めっき鋼板の製造方法及び溶融めっき装置
NZ591730A NZ591730A (en) 2008-10-01 2009-10-01 Process and apparatus for producing dip coated steel sheets including controlling oxygen concentration above the bath
KR1020117007219A KR101324836B1 (ko) 2008-10-01 2009-10-01 용융 도금 강판의 제조 방법 및 용융 도금 장치
BRPI0920820-8A BRPI0920820A2 (pt) 2008-10-01 2009-10-01 método para produção de chapa de aço revestida por imersão a quente e aparelho para revestimento por imersão a quente
MX2011003399A MX2011003399A (es) 2008-10-01 2009-10-01 Metodo para producir laminas de acero enchapado por inmersion en caliente y aparato para enchapado por inmersion en caliente.
AU2009298988A AU2009298988B2 (en) 2008-10-01 2009-10-01 Method for producing hot dip plated steel sheet and apparatus for hot dip plating
CN2009801383499A CN102171376B (zh) 2008-10-01 2009-10-01 热浸镀钢板的制造方法及热浸镀装置
ZA2011/02351A ZA201102351B (en) 2008-10-01 2011-03-30 Method for producing hot dip plated steel and apparatus for hot dip plating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008256208 2008-10-01
JP2008-256208 2008-10-01

Publications (1)

Publication Number Publication Date
WO2010038472A1 true WO2010038472A1 (ja) 2010-04-08

Family

ID=42073250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005089 WO2010038472A1 (ja) 2008-10-01 2009-10-01 溶融めっき鋼板の製造方法及び溶融めっき装置

Country Status (12)

Country Link
US (1) US9598756B2 (ja)
JP (1) JP4988045B2 (ja)
KR (1) KR101324836B1 (ja)
CN (1) CN102171376B (ja)
AU (1) AU2009298988B2 (ja)
BR (1) BRPI0920820A2 (ja)
MX (1) MX2011003399A (ja)
MY (1) MY155838A (ja)
NZ (1) NZ591730A (ja)
TW (1) TWI399458B (ja)
WO (1) WO2010038472A1 (ja)
ZA (1) ZA201102351B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052206A1 (en) * 2009-05-14 2012-03-01 Arcelormittal Investigacion Y Desarrollo Sl Method for producing a coated metal strip with an improved appearance
JP2012526915A (ja) * 2009-05-14 2012-11-01 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 改善された外観を有する被覆金属バンドを製造する方法
JP2014031578A (ja) * 2012-08-01 2014-02-20 Union Steel Co Ltd 加工性及び耐食性に優れた亜鉛−アルミニウム系合金めっき鋼板の製造方法及びそのための装置
JP2018090869A (ja) * 2016-12-06 2018-06-14 日新製鋼株式会社 溶融めっき設備

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0920820A2 (pt) 2008-10-01 2020-09-01 Nippon Steel Corporation método para produção de chapa de aço revestida por imersão a quente e aparelho para revestimento por imersão a quente
WO2013080910A1 (ja) * 2011-11-28 2013-06-06 株式会社Neomaxマテリアル めっき膜厚制御用ガスノズルおよびこれを用いた溶融めっき装置
US9863029B2 (en) * 2012-08-01 2018-01-09 Dongkuk Steel Mill Co., Ltd. Apparatus for forming nitrogen cloud to produce hot dip coated steel sheet
WO2014199194A1 (en) * 2013-06-10 2014-12-18 Arcelormittal Investigacion Y Desarrollo, S.L. Installation for hot dip coating a metal strip comprising an adjustable confinement box
ES2676045T5 (es) 2013-12-20 2022-04-29 Arcelormittal Procedimiento de producción de una chapa con revestimiento ZnAlMg con un escurrimiento optimizado y chapa correspondiente
KR102075182B1 (ko) * 2015-12-24 2020-02-10 주식회사 포스코 도금성이 우수한 고강도 용융 아연계 도금 강재 및 그 제조방법
CN108018514B (zh) * 2016-10-28 2020-07-28 宝山钢铁股份有限公司 一种控制Zn-Al-Mg合金镀层板材表面缺陷的方法及Zn-Al-Mg合金镀层板材
JP6345223B2 (ja) * 2016-12-06 2018-06-20 日新製鋼株式会社 溶融めっき設備及びそれを用いためっき金属帯製造方法
KR102180798B1 (ko) 2018-10-19 2020-11-19 주식회사 포스코 용융도금강판의 냉각장치
EP3827903A1 (en) * 2019-11-29 2021-06-02 Cockerill Maintenance & Ingenierie S.A. Device and method for manufacturing a coated metal strip with improved appearance
KR20230081133A (ko) 2021-11-30 2023-06-07 주식회사 포스코 내식성 및 표면품질이 우수한 도금강판 및 이의 제조방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110770A (en) * 1979-02-20 1980-08-26 Nippon Steel Corp Gas wiping method in hot dipping process
JPH11140615A (ja) * 1997-11-04 1999-05-25 Nisshin Steel Co Ltd Mg含有溶融Zn基めっき鋼板

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2526731A (en) * 1945-02-13 1950-10-24 Armco Steel Corp Method of and apparatus for coating metallic strands with a metal coating
JPS5352549A (en) * 1976-10-26 1978-05-13 Nippon Steel Corp Method for wiping liquid materials from continous strips
JPS5395831A (en) 1977-02-02 1978-08-22 Nippon Steel Corp High speed wiping method by nonoxidizing gas
BR8102221A (pt) * 1980-04-11 1981-10-13 Bethlehem Steel Corp Cunho de limpeza a gas, aparelho para aplicar e controlar continuamente a espessura de um revestimento metalico aplicado a superficie de um material de arame e processo para controle da espessura de um revestimento sobre arame saindo de um banho de revestimento derretido
AU525668B2 (en) * 1980-04-25 1982-11-18 Nippon Steel Corporation Hot dip galvanizing steel strip with zinc based alloys
JPS6120027Y2 (ja) * 1981-05-29 1986-06-17
JPS57203764A (en) * 1981-06-11 1982-12-14 Nippon Steel Corp Hot-dipping device which is capable of controlling oxygen concentration in plating atmosphere
JPS6134504A (ja) 1984-07-26 1986-02-18 Hitachi Cable Ltd プラスチツク光伝送体
JPS6230864A (ja) * 1985-07-31 1987-02-09 Sumitomo Metal Ind Ltd 溶融金属めつき装置
JPH01177350A (ja) 1987-12-29 1989-07-13 Nkk Corp 表面平滑な溶融亜鉛鍍金鋼板の製造装置及び方法
JPH02285060A (ja) 1989-04-26 1990-11-22 Nkk Corp 気体絞り用ガイドプレート囲繞体及び囲繞方法
JPH04285148A (ja) * 1991-03-14 1992-10-09 Kawasaki Steel Corp 連続溶融金属めっき装置
US5201132A (en) * 1991-04-26 1993-04-13 Busch Co. Strip cooling, heating or drying apparatus and associated method
KR100324893B1 (ko) * 1996-12-13 2002-08-21 닛신 세이코 가부시키가이샤 내식성및표면외관이양호한융용아연-알루미늄-마그네슘도금강판및그제조법
JP3788122B2 (ja) * 1999-08-06 2006-06-21 Jfeスチール株式会社 ガスワイピング装置
JP2003277908A (ja) 2002-03-26 2003-10-02 Jfe Steel Kk 連続溶融亜鉛めっき方法
JP4451194B2 (ja) * 2004-04-13 2010-04-14 三菱日立製鉄機械株式会社 液体ワイピング装置
SE529060C2 (sv) * 2005-06-30 2007-04-24 Abb Ab Anordning samt förfarande för tjockleksstyrning
JP4786259B2 (ja) 2005-09-01 2011-10-05 日新製鋼株式会社 溶融めっき鋼板の製造方法
BRPI0920820A2 (pt) 2008-10-01 2020-09-01 Nippon Steel Corporation método para produção de chapa de aço revestida por imersão a quente e aparelho para revestimento por imersão a quente

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110770A (en) * 1979-02-20 1980-08-26 Nippon Steel Corp Gas wiping method in hot dipping process
JPH11140615A (ja) * 1997-11-04 1999-05-25 Nisshin Steel Co Ltd Mg含有溶融Zn基めっき鋼板

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120052206A1 (en) * 2009-05-14 2012-03-01 Arcelormittal Investigacion Y Desarrollo Sl Method for producing a coated metal strip with an improved appearance
JP2012526916A (ja) * 2009-05-14 2012-11-01 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 外観が改善された被覆金属ストリップを製造する方法
JP2012526915A (ja) * 2009-05-14 2012-11-01 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 改善された外観を有する被覆金属バンドを製造する方法
EP2430207B1 (fr) * 2009-05-14 2017-01-11 ArcelorMittal Procédé de fabrication d'une bande métallique revêtue présentant un aspect amélioré
US20180291493A1 (en) * 2009-05-14 2018-10-11 Arcelormittal Process for Manufacturing a Coated Metal Strip of Improved Appearance
US10344368B2 (en) 2009-05-14 2019-07-09 ArcelorMittal Investigación y Desarrollo, S.L. Coated metal strip having an improved appearance
US10724130B2 (en) 2009-05-14 2020-07-28 Arcelormittal Process for manufacturing a coated metal strip of improved appearance
US11098396B2 (en) 2009-05-14 2021-08-24 Arcelormittal Process for manufacturing a coated metal strip of improved appearance
US11371128B2 (en) 2009-05-14 2022-06-28 Arcelormittal Coated metal band having an improved appearance
US11597990B2 (en) 2009-05-14 2023-03-07 Arcelormittal Process for manufacturing a coated metal strip of improved appearance
JP2014031578A (ja) * 2012-08-01 2014-02-20 Union Steel Co Ltd 加工性及び耐食性に優れた亜鉛−アルミニウム系合金めっき鋼板の製造方法及びそのための装置
JP2018090869A (ja) * 2016-12-06 2018-06-14 日新製鋼株式会社 溶融めっき設備

Also Published As

Publication number Publication date
NZ591730A (en) 2012-08-31
TWI399458B (zh) 2013-06-21
CN102171376A (zh) 2011-08-31
US9598756B2 (en) 2017-03-21
JPWO2010038472A1 (ja) 2012-03-01
AU2009298988B2 (en) 2015-07-02
BRPI0920820A2 (pt) 2020-09-01
KR20110050699A (ko) 2011-05-16
ZA201102351B (en) 2011-12-28
JP4988045B2 (ja) 2012-08-01
US20110177253A1 (en) 2011-07-21
MY155838A (en) 2015-12-15
TW201026893A (en) 2010-07-16
AU2009298988A1 (en) 2010-04-08
MX2011003399A (es) 2011-04-26
KR101324836B1 (ko) 2013-11-01
CN102171376B (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
JP4988045B2 (ja) 溶融めっき鋼板の製造方法及び溶融めっき装置
US9021982B2 (en) Gas wiping device
KR101367290B1 (ko) 가스 와이핑 장치
US20220396861A1 (en) Device and method for manufacturing a coated metal strip with improved appearance
CN112840060A (zh) 热浸镀覆钢板的冷却装置
KR102219146B1 (ko) 조절가능한 구속 박스를 포함하는 금속 스트립의 핫 디프 코팅용 설비
WO2018012132A1 (ja) 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
JP2010215929A (ja) 溶融金属めっき鋼帯製造設備及び溶融金属めっき鋼帯の製造方法
JP6500846B2 (ja) 溶融金属めっき鋼帯の製造方法及び連続溶融金属めっき設備
KR101222346B1 (ko) 용융도금강판 제조장치
KR102175565B1 (ko) 용융도금강판의 산화방지장치
JP5386779B2 (ja) 溶融めっき鋼板の製造方法及び装置
KR101568506B1 (ko) 도금 장치
WO2023088625A1 (en) Method for manufacturing a coated metal strip with improved appearance and wiping device therefor
KR102175567B1 (ko) 강판 도금장치
JPS6134504B2 (ja)
KR101372705B1 (ko) 도금조 탕면 커버장치
JPH0730673Y2 (ja) 金属帯の表面処理設備のシールボックス
KR100641756B1 (ko) 도금강판의 표면품질 향상을 위한 도금층 조절장치
JPH07113154A (ja) 溶融金属めっき方法及び装置
JPH08356Y2 (ja) ガスワイピング装置
JP2018145527A (ja) 溶融金属めっき鋼帯の製造方法
JP2007204783A (ja) 溶融めっき金属帯の製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138349.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817511

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010531757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 591730

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2009298988

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12998218

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2248/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117007219

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/003399

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009298988

Country of ref document: AU

Date of ref document: 20091001

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09817511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0920820

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110330