WO2010035808A1 - 熱硬化性組成物 - Google Patents

熱硬化性組成物 Download PDF

Info

Publication number
WO2010035808A1
WO2010035808A1 PCT/JP2009/066694 JP2009066694W WO2010035808A1 WO 2010035808 A1 WO2010035808 A1 WO 2010035808A1 JP 2009066694 W JP2009066694 W JP 2009066694W WO 2010035808 A1 WO2010035808 A1 WO 2010035808A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting composition
diene polymer
liquid
polythiol
composition according
Prior art date
Application number
PCT/JP2009/066694
Other languages
English (en)
French (fr)
Inventor
北野 創
秀洋 赤間
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN200980147013.9A priority Critical patent/CN102224193B/zh
Priority to JP2010530881A priority patent/JP5647000B2/ja
Priority to US13/120,834 priority patent/US8541510B2/en
Priority to EP09816222.5A priority patent/EP2341100B1/en
Publication of WO2010035808A1 publication Critical patent/WO2010035808A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/20Incorporating sulfur atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the present invention relates to a thermosetting composition, in particular, a thermosetting composition having excellent thermosetting properties.
  • liquid thermosetting compositions are used.
  • a composition obtained by adding an organic peroxide to a liquid rubber such as liquid styrene-butadiene copolymer rubber or liquid polyisoprene rubber is generally used.
  • Japanese Patent Application Laid-Open No. 2007-131665 discloses liquid rubber such as liquid butadiene rubber and liquid isoprene rubber and organic peroxidation such as 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane. And a cured product obtained from the liquid rubber composition has a feature that it has a low compression set despite being low in hardness. It is suitable as rollers such as a roller and a transfer roller, and blades such as a developing blade and a cleaning blade.
  • thermosetting in a composition composed of a diene polymer such as a liquid rubber and an organic peroxide, the reactivity of peroxy radicals derived from the organic peroxide is low, so that thermosetting It was found that some reactions were very slow or did not proceed at all. For this reason, some highly reactive organic peroxides must be used in combination with highly reactive diene polymers, and the degree of freedom in material selection is low. Moreover, in order to accelerate
  • an object of the present invention is to solve the above-mentioned problems of the prior art and provide a thermosetting composition having excellent thermosetting properties.
  • thermosetting reaction a composition containing a diene polymer and a thermal radical generator, but having a very slow thermosetting reaction.
  • thermosetting reaction does not proceed at all even though it includes a diene polymer and a thermal radical generator
  • thermosetting composition of the present invention is A diene polymer (A) having two or more unsaturated bonds; A polythiol (B) derived from mercaptocarboxylic acid; And a thermal radical generator (C).
  • the diene polymer (A) is liquid at 25 ° C.
  • the compatibility of the diene polymer (A), the polythiol (B), and the thermal radical generator (C) is high, mixing becomes easy.
  • the diene polymer (A) is a polymer synthesized from a diene monomer, or a diene monomer and maleic anhydride and / or a styrene monomer. It is a synthesized copolymer.
  • the diene polymer (A) preferably has a number average molecular weight (Mn) of 1500 to 40000.
  • the diene polymer (A) is preferably a liquid styrene-butadiene copolymer having a bound styrene content of 15 to 90% by mass and a vinyl bond content of the butadiene portion of 20 to 90%.
  • the liquid styrene-butadiene copolymer further preferably has a hydroxyl group at both ends or one end.
  • the number average molecular weight (Mn) is a value measured by polystyrene conversion and gel permeation chromatography (GPC)
  • the bound styrene content is a value measured by nuclear magnetic resonance spectroscopy (NMR).
  • the vinyl bond content is a value measured by nuclear magnetic resonance spectroscopy (NMR).
  • the diene polymer (A) is preferably liquid polyisoprene having a number average molecular weight (Mn) of 1500 to 40,000 and having hydroxyl groups at both ends or one end.
  • the polythiol (B) includes tetraethylene glycol bis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), tris [(3-mercapto Propionyloxy) -ethyl] isocyanurate, pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), 1,4-bis (3-mercaptobutyryloxy) butane , Pentaerythritol tetrakis (3-mercaptobutyrate), and 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H)- Trion is preferred.
  • the thermal radical generator (C) is preferably an organic peroxide or an azobis compound.
  • thermosetting composition of the present invention is preferably liquid at 25 ° C.
  • the processing is easy, and it is possible to combine with various liquid monomers, and it is possible to extrude from a thin syringe.
  • Application to fine processing of materials and the like is also possible.
  • thermosetting reaction can be accelerated very quickly by adding a specific polythiol to a composition having a very slow thermosetting reaction. can do.
  • thermosetting reaction proceeds by adding a specific polythiol to the composition containing the diene polymer and the thermal radical generator, but the thermosetting reaction does not proceed at all. Can be made possible.
  • thermosetting composition of the present invention contains a diene polymer (A) having two or more unsaturated bonds, a polythiol (B) derived from mercaptocarboxylic acid, and a thermal radical generator (C). It can be characterized and can contain additives that can be generally used in thermosetting compositions as required.
  • the polythiol (B) derived from mercaptocarboxylic acid is further added to the composition comprising the diene polymer (A) and the thermal radical generator (C).
  • the addition of polythiol (B) For a system in which the thermosetting of the composition is greatly improved and the thermosetting reaction proceeds only with the diene polymer (A) and the thermal radical generator (C), the addition of polythiol (B)
  • the addition of the polythiol (B) It turns out that progress can be made possible.
  • the radical derived from the thermal radical generator (C) acts on the polythiol (B) to generate a thiyl radical, and the reactivity of the thiyl radical is higher than the reactivity of the radical derived from the thermal radical generator (C). Since it is high, it is considered that it can be added to the unsaturated bond of the diene polymer (A) to accelerate the curing (crosslinking) reaction.
  • thermosetting composition of the present invention since the curing rate is very high, it is not necessary to cure at high temperature, and curing at a relatively low temperature is possible.
  • thermosetting composition suitable for the application is designed. Can do.
  • the diene polymer (A) used in the thermosetting composition of the present invention has two or more unsaturated bonds.
  • the unsaturated bond include carbon-carbon unsaturated bonds such as a carbon-carbon double bond and a carbon-carbon triple bond.
  • diene polymer (A) various polymers can be used. Specifically, natural rubber, styrene-butadiene copolymer, polyisoprene, polybutadiene, butadiene-isoprene copolymer, isobutylene- Examples include isoprene copolymer, butadiene-acrylonitrile copolymer, styrene-isoprene copolymer, and polychloroprene. The terminal of these diene polymers may be modified or may not be modified. In addition, these diene polymer (A) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the diene polymer (A) is preferably liquid at 25 ° C. (room temperature).
  • the diene polymer (A), which is the main component of the thermosetting composition is liquid at 25 ° C., mixing of each component becomes easy.
  • the production method of the diene polymer (A) is not particularly limited.
  • a diene monomer such as 1,3-butadiene, isoprene, chloroprene, 1,3-pentadiene, or 2,3-dimethylbutadiene is polymerized.
  • it can be obtained by copolymerizing these diene monomers with other monomers such as maleic anhydride and styrene.
  • a lithium-based polymerization initiator can be used, and a randomizer or the like may be used as necessary.
  • a diene polymer is produced by anionic polymerization using a lithium polymerization initiator, it is possible to optionally modify the living end of the polymer chain with various modifiers.
  • an alkylene oxide such as ethylene oxide or propylene oxide as a modifier, a diene polymer having hydroxyl groups at both ends or one end can be obtained.
  • the diene polymer (A) preferably has a number average molecular weight (Mn) of 1500 to 40000. If the number average molecular weight (Mn) of the diene polymer (A) to be used is 1500 or more, the amount of the unsaturated group contained is satisfactory, and physical properties such as high elongation are good, and if it is 40000 or less. Also, compatibility with polythiol or processability at the time of molding is good.
  • the diene polymer (A) is preferably a liquid styrene-butadiene copolymer having a bound styrene content of 15 to 90% by mass and a vinyl bond content of the butadiene portion of 20 to 90%.
  • a liquid styrene-butadiene copolymer having a bound styrene content in such a range and a vinyl bond content in the butadiene portion curability and compatibility with polythiol are improved.
  • the liquid styrene-butadiene copolymer preferably has hydroxyl groups at both ends or one end.
  • a liquid styrene-butadiene copolymer having hydroxyl groups at both ends or one end as the diene polymer (A), the compatibility with polythiol is further improved.
  • liquid polyisoprene having hydroxyl groups at both ends or one end is also preferable.
  • liquid polyisoprene having hydroxyl groups at both ends or one end compatibility with polythiol will be improved.
  • the polythiol (B) used in the thermosetting composition of the present invention is a polythiol derived from mercaptocarboxylic acid, and preferably a polythiol derived from 3-mercaptopropionic acid.
  • the polythiol (B) preferably has a plurality of mercaptoacyloxy groups in the molecule, more preferably 2-6.
  • the mercaptoacyloxy group specifically, 3-mercaptopropionyloxy group [HS— (CH 2 ) 2 —COO—], 3-mercaptobutyloxy group [HS—CH (CH 3 ) —CH 2- COO-] and the like, and a 3-mercaptopropionyloxy group is preferable.
  • the mercaptocarboxylic acid-derived polythiol (B) generates a thiyl radical by a radical derived from the thermal radical generator (C), and the thiyl radical is added to the unsaturated bond of the diene polymer (A) to be cured (crosslinked). Promote the reaction.
  • polythiol (B) examples include tetraethylene glycol bis (3-mercaptopropionate) represented by the following chemical formula (I) and trimethylolpropane tris (3-mercaptoprote represented by the following chemical formula (II).
  • the polythiol (B) has a high compatibility with the diene polymer (A), and a uniform and stable composition can be obtained.
  • these polythiol (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the blending amount of the polythiol (B) is not particularly limited, but is preferably in the range of 0.5 to 50 parts by mass with respect to 100 parts by mass of the diene polymer (A). The range is more preferable, and the range of 5 to 30 parts by mass is even more preferable. If the amount of the polythiol (B) is 5 parts by mass or more, the thermosetting property of the composition can be sufficiently improved, and if it is 30 parts by mass or less, good compatibility with the liquid rubber is obtained. Can be maintained.
  • the radical generator (C) used in the thermosetting composition of the present invention has a function of generating radicals by heat and initiating (promoting) thermosetting of the composition.
  • the thermal radical generator (C) organic peroxides and azobis compounds are preferable. These thermal radical generators (C) may be used alone or in combination of two or more.
  • organic peroxide examples include 1,1-di (t-hexylperoxy) -3,3,5-trimethylcyclohexane, t-amylperoxy-2-ethylhexanoate, di (2-t -Butylperoxyisopropyl) benzene, benzoyl peroxide, 1,1'-di (t-butylperoxy) cyclohexane, di (3,5,5-trimethylhexanoyl) peroxide, t-butylperoxyneodecano And t-hexylperoxyneodecanoate, dicumyl peroxide and the like.
  • azobis compounds examples include 2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4- Dimethylvaleronitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, dimethyl 2,2'-azobis (2 -Methyl propionate) and the like.
  • the blending amount of the radical generator (C) is not particularly limited, but is preferably in the range of 0.05 to 30 parts by mass with respect to 100 parts by mass of the diene polymer (A), and 0.2 to The range of 20 parts by mass is still more preferable, and the range of 0.5 to 15 parts by mass is even more preferable. If the amount of the radical generator (C) is 0.05 parts by mass or more, the thermosetting reaction of the composition can be started, and if it is 30 parts by mass or less, gas generation due to the radical generator is generated. In addition, bleed-out and outgas generation of the residual radical generator can be suppressed.
  • thermosetting composition of the present invention is preferably liquid at 25 ° C. If the composition is liquid, there is no need for heating or kneading work, it is easy to process, it can be combined with various liquid monomers, and since it is liquid, it can be extruded from a thin syringe. Therefore, it can also be applied to microfabrication of gasket members, display sealing materials, and the like.
  • thermosetting composition of the present invention Since the thermosetting composition of the present invention described above has high thermosetting property, it can be used for various applications in which thermosetting compositions are conventionally used.
  • the thermosetting composition of the present invention can be used for developing rollers, charging rollers, transfer rollers, and the like used in printers and copiers, developing blades, blades such as cleaning blades, gasket members, and sealing for displays. It is useful in materials and sealing materials for construction.
  • Polymerization was carried out for 1.5 hours while raising the temperature of the polymerization reactor to 50 ° C., 254 ml of a 1 mol / liter ethylene oxide cyclohexane solution was added, and further stirred for 2 hours, and then 50 ml of isopropyl alcohol was added. A hexane solution of the polymer was precipitated in isopropyl alcohol and sufficiently dried to obtain a liquid SBR polyol which is a hydroxyl group SBR at both terminals.
  • the liquid SBR polyol obtained as described above was a hydroxyl group styrene-butadiene copolymer A at both terminals, had a bound styrene content of 35% by mass, and a vinyl bond content in the butadiene portion of 65%. Further, the number average molecular weight was 5,200, the weight average molecular weight was 6,700, and the molecular weight distribution was 1.28.
  • Polymerization was carried out for 1.5 hours while raising the temperature of the polymerization reactor to 50 ° C., 254 ml of a 1 mol / liter ethylene oxide cyclohexane solution was added, and further stirred for 2 hours, and then 50 ml of isopropyl alcohol was added. A hexane solution of the polymer was precipitated in isopropyl alcohol and sufficiently dried to obtain a liquid SBR polyol which is a hydroxyl group SBR at both terminals.
  • the liquid SBR polyol obtained as described above was a hydroxyl group styrene-butadiene copolymer B at both terminals, had a bound styrene content of 55% by mass, and a vinyl bond content of the butadiene portion of 65%.
  • the number average molecular weight was 4000, the weight average molecular weight was 4800, and the molecular weight distribution was 1.20.
  • Polymerization was carried out for 1.5 hours while raising the temperature of the polymerization reactor to 50 ° C., 254 ml of a 1 mol / liter ethylene oxide cyclohexane solution was added, and further stirred for 2 hours, and then 50 ml of isopropyl alcohol was added. A hexane solution of the polymer was precipitated in isopropyl alcohol and sufficiently dried to obtain a liquid SBR polyol which is a hydroxyl group SBR at both terminals.
  • the liquid SBR polyol obtained as described above was a hydroxyl-terminated styrene-butadiene copolymer C at both terminals, had a bound styrene content of 23% by mass, and a vinyl bond content of the butadiene portion of 65%.
  • the number average molecular weight was 4,900, the weight average molecular weight was 6,200, and the molecular weight distribution was 1.26.
  • thermosetting composition Using the styrene-butadiene copolymer synthesized as described above or a commercially available diene polymer, a thermosetting composition having the composition shown in Tables 1 to 3 was prepared, and the curability and compatibility were as follows. Evaluated.
  • the composition of Example 1 containing a diene polymer (A), a polythiol (B), and a thermal radical generator (C) is a diene polymer.
  • the composition of Comparative Example 1 which contains (A) and a thermal radical generator (C) but does not contain polythiol (B), and the thermal radical generator which contains a diene polymer (A) and polythiol (B) ( It can be seen that the curing rate is much faster than the composition of Comparative Example 2 which does not contain C).
  • thermosetting reaction can proceed. From the results of Comparative Example 4, it can be seen that the thermosetting reaction cannot proceed even if a compound not derived from mercaptocarboxylic acid is blended as polythiol.
  • Comparative Example 6 and Example 6 Comparative Example 8 and Example 8, and Comparative Example 9 and Example 9 in Table 2, even if various polymers are used as the diene polymer (A), It can be seen that the curing rate is improved by adding the polythiol (B) and the thermal radical generator (C).
  • Comparative Example 10 and Example 10 in Table 3 when an azobis compound was used as the thermal radical generator (C), the composition of Comparative Example 10 containing no polythiol (B) was completely cured. In contrast, since the composition of Example 10 to which polythiol (B) was added was cured, it was effective to add polythiol (B) to various thermal radical generators (C). I understand. In addition, it can be seen from the results of Comparative Example 11 that the thermosetting reaction cannot proceed even if a compound not derived from mercaptocarboxylic acid is blended as polythiol.
  • Comparative Example 12 and Example 11 when polyisoprene was used as the diene polymer (A), the composition of Comparative Example 12 containing no polythiol (B) was not cured at all. Since the composition of Example 11 to which polythiol (B) was added was cured, it can be seen that the addition of polythiol (B) is effective for various diene polymers (A).
  • the composition of the present invention containing the diene polymer (A), the polythiol (B), and the thermal radical generator (C) contains the polythiol (B) and / or the thermal radical generator (C). It was confirmed that the curability was greatly improved as compared with the composition having no composition.

Abstract

 本発明は、熱硬化性に優れた熱硬化性組成物に関し、より詳しくは、不飽和結合を2つ以上有するジエン系ポリマー(A)と、メルカプトカルボン酸由来のポリチオール(B)と、熱ラジカル発生剤(C)とを含むことを特徴とする熱硬化性組成物に関するものである。

Description

熱硬化性組成物
 本発明は、熱硬化性組成物、特には、熱硬化性に優れた熱硬化性組成物に関するものである。
 昨今、プリンターや複写機等に用いられる現像ローラ、帯電ローラ、転写ローラ等のローラ類、現像ブレード、クリーニングブレード等のブレード類、ガスケット部材、ディスプレイ用封止材、建築用シーリング材等の様々な用途において、液状の熱硬化性組成物が使用されている。そして、かかる液状の熱硬化性組成物としては、液状スチレン-ブタジエン共重合体ゴムや液状ポリイソプレンゴム等の液状ゴムに、有機過酸化物を添加した組成物が一般的に使用されている。
 例えば、特開2007-131665号には、液状ブタジエンゴム、液状イソプレンゴム、等の液状ゴムと、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン等の有機過酸化物とを含む液状ゴム組成物が開示されており、該液状ゴム組成物から得た硬化物は、低硬度であるにもかかわらず、圧縮永久歪みが小さいという特徴を有し、現像ローラ、帯電ローラ、転写ローラ等のローラ類、現像ブレード、クリーニングブレード等のブレード類として好適とのことである。
特開2007-131665号公報
 しかしながら、本発明者らが検討したところ、液状ゴム等のジエン系ポリマーと有機過酸化物とから構成した組成物においては、有機過酸化物由来のパーオキシラジカルの反応性が低いため、熱硬化反応が非常に遅い、或いは全く進行しないものがあることが分かった。このため、一部の反応性の高い有機過酸化物と反応性の高いジエン系ポリマーとを組み合わせて使用しなけばならず、材料選択における自由度が低かった。また、熱硬化反応を促進するために、高温にするなどの必要もあり、使い勝手の点でも課題が有った。
 そこで、本発明の目的は、上記従来技術の問題を解決し、熱硬化性に優れた熱硬化性組成物を提供することにある。
 本発明者らは、上記目的を達成するために鋭意検討した結果、(1)ジエン系ポリマーと熱ラジカル発生剤とを含むものの、熱硬化反応が非常に遅い組成物に対して、更に、特定のポリチオールを添加することで、熱硬化反応が非常に速くなり、また、(2)ジエン系ポリマーと熱ラジカル発生剤とを含むものの、熱硬化反応が全く進行しない組成物に対して、更に、特定のポリチオールを添加することで、熱硬化反応の進行を可能にできることを見出し、本発明を完成させるに至った。
 即ち、本発明の熱硬化性組成物は、
 不飽和結合を2つ以上有するジエン系ポリマー(A)と、
 メルカプトカルボン酸由来のポリチオール(B)と、
 熱ラジカル発生剤(C)と
 を含むことを特徴とする。
 本発明の熱硬化性組成物の好適例においては、前記ジエン系ポリマー(A)が25℃において液状である。この場合、ジエン系ポリマー(A)とポリチオール(B)と熱ラジカル発生剤(C)との相溶性が高いため、混合が容易になる。
 本発明の熱硬化性組成物の他の好適例においては、前記ジエン系ポリマー(A)がジエン系モノマーから合成された重合体、或いは、ジエン系モノマーと無水マレイン酸及び/又はスチレンモノマーとから合成された共重合体である。
 本発明の熱硬化性組成物において、前記ジエン系ポリマー(A)は、数平均分子量(Mn)が1500~40000であることが好ましい。ここで、該ジエン系ポリマー(A)としては、結合スチレン含量が15~90質量%で、ブタジエン部分のビニル結合含量が20~90%の液状スチレン-ブタジエン共重合体が好ましい。また、該液状スチレン-ブタジエン共重合体は、両末端又は片末端に水酸基を有することが更に好ましい。なお、本発明において、数平均分子量(Mn)はポリスチレン換算、ゲルパーミエーションクロマトグラフィー(GPC)で測定される値であり、結合スチレン含量は核磁気共鳴法分光法(NMR)で測定される値であり、ビニル結合含量は核磁気共鳴法分光法(NMR)で測定される値である。
 また、前記ジエン系ポリマー(A)としては、数平均分子量(Mn)が1500~40000で、両末端又は片末端に水酸基を有する液状ポリイソプレンも好ましい。
 本発明の熱硬化性組成物において、前記ポリチオール(B)としては、テトラエチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、及び1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンが好ましい。この場合、ジエン系ポリマー(A)とポリチオール(B)と熱ラジカル発生剤(C)との相溶性が高いため、均一で性能の安定した組成物を得ることができる。更に、上記ポリチオールを用いることにより、より高い硬化性を発現できる。
 本発明の熱硬化性組成物において、前記熱ラジカル発生剤(C)としては、有機過酸化物及びアゾビス系化合物が好ましい。
 また、本発明の熱硬化性組成物は、25℃において液状であることが好ましい。この場合、加熱や混練作業の必要が無く、加工が容易となり、また、様々な液状モノマーとの組み合わせが可能となる上、細いシリンジからの押し出しが可能であるため、ガスケット部材、ディスプレイ用封止材等の微細加工への適用も可能となる。
 本発明によれば、ジエン系ポリマーと熱ラジカル発生剤とを含むものの、熱硬化反応が非常に遅い組成物に対して、更に、特定のポリチオールを添加することで、熱硬化反応を非常に速くすることができる。また、本発明によれば、ジエン系ポリマーと熱ラジカル発生剤とを含むものの、熱硬化反応が全く進行しない組成物に対して、更に、特定のポリチオールを添加することで、熱硬化反応の進行を可能にできる。
 以下に、本発明を詳細に説明する。本発明の熱硬化性組成物は、不飽和結合を2つ以上有するジエン系ポリマー(A)と、メルカプトカルボン酸由来のポリチオール(B)と、熱ラジカル発生剤(C)とを含有することを特徴とし、必要に応じて熱硬化性組成物に一般に使用できる添加剤を含有することができる。
 本発明者らは、種々のジエン系ポリマー(A)と種々の熱ラジカル発生剤(C)とからなる組成物について検討したところ、ジエン系ポリマー(A)と熱ラジカル発生剤(C)との各組み合わせによって熱硬化性が異なり、また、総じて熱硬化反応が非常に遅く、中には、熱硬化反応が全く進行しない組み合わせがあることが分かった。これは、熱ラジカル発生剤(C)由来のラジカルの反応性が低いことに起因すると考えられる。
 これに対して、本発明者らが更に検討を進めたところ、ジエン系ポリマー(A)と熱ラジカル発生剤(C)とからなる組成物に更にメルカプトカルボン酸由来のポリチオール(B)を添加することで、組成物の熱硬化性が大幅に向上し、ジエン系ポリマー(A)と熱ラジカル発生剤(C)とだけでも熱硬化反応が進行する系については、ポリチオール(B)の添加によって熱硬化反応速度が大幅に向上し、また、ジエン系ポリマー(A)と熱ラジカル発生剤(C)とだけでは熱硬化反応が全く進行しない系については、ポリチオール(B)の添加によって熱硬化反応の進行を可能にできることが分かった。これは、熱ラジカル発生剤(C)由来のラジカルがポリチオール(B)に作用して、チイルラジカルが発生し、このチイルラジカルの反応性が、熱ラジカル発生剤(C)由来のラジカルの反応性よりも高いため、ジエン系ポリマー(A)の不飽和結合に付加して、硬化(架橋)反応を促進できることによるものと考えられる。
 このため、本発明の熱硬化性組成物によれば、硬化速度が非常に高いため、高温で硬化させる必要が無く、比較的低温での硬化が可能となる。また、種々のジエン系ポリマー(A)と熱ラジカル発生剤(C)との組み合わせが可能になり、材料選択の自由度が大幅に向上し、用途に適した熱硬化性組成物を設計することができる。
 本発明の熱硬化性組成物に用いるジエン系ポリマー(A)は、不飽和結合を2つ以上有する。ここで、不飽和結合としては、炭素-炭素二重結合、炭素-炭素三重結合等の炭素-炭素不飽和結合等が挙げられる。
 また、上記ジエン系ポリマー(A)としては、種々のポリマーを使用することができ、具体的には、天然ゴム、スチレン-ブタジエン共重合体、ポリイソプレン、ポリブタジエン、ブタジエン-イソプレン共重合、イソブチレン-イソプレン共重合、ブタジエン-アクリロニトリル共重合体、スチレン-イソプレン共重合体、ポリクロロプレン等が挙げられる。これらジエン系ポリマーの末端は、変性されていてもよいし、変性されていなくてもよい。なお、これらジエン系ポリマー(A)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記ジエン系ポリマー(A)は、25℃(室温)において液状であることが好ましい。熱硬化性組成物の主成分であるジエン系ポリマー(A)が25℃において液状の場合、各成分の混合が容易となる。
 上記ジエン系ポリマー(A)の製造方法は、特に限定されず、例えば、1,3-ブタジエン、イソプレン、クロロプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン等のジエン系モノマーを重合したり、或いは、これらジエン系モノマーと、無水マレイン酸やスチレン等の他のモノマーとを共重合体したりして得ることができる。ここで、(共)重合には、リチウム系の重合開始剤を使用することができ、更に必要に応じてランダマイザー等を使用してもよい。また、リチウム系の重合開始剤を用いてアニオン重合でジエン系ポリマーを製造する際には、更に、任意に各種変性剤でポリマー鎖のリビング末端を変性することも可能である。例えば、変性剤としてエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを使用することで、両末端又は片末端に水酸基を有するジエン系ポリマーを得ることができる。
 上記ジエン系ポリマー(A)は、数平均分子量(Mn)が1500~40000であることが好ましい。使用するジエン系ポリマー(A)の数平均分子量(Mn)が1500以上であれば、含有不飽和基の量も問題なく、強伸度等の物性も良好であり、また、40000以下であれば、ポリチオールとの相溶性、或いは成型時の加工性も良好である。
 上記ジエン系ポリマー(A)としては、結合スチレン含量が15~90質量%で、ブタジエン部分のビニル結合含量が20~90%の液状スチレン-ブタジエン共重合体が好ましい。かかる範囲の結合スチレン含量及びブタジエン部分のビニル結合含量を有する液状スチレン-ブタジエン共重合体を使用することで、硬化性、ポリチオールとの相溶性が良好となる。
 また、上記液状スチレン-ブタジエン共重合体は、両末端又は片末端に水酸基を有することが好ましい。ジエン系ポリマー(A)として、両末端又は片末端に水酸基を有する液状スチレン-ブタジエン共重合体を使用することで、ポリチオールとの相溶性が更に向上することとなる。
 上記ジエン系ポリマー(A)としては、両末端又は片末端に水酸基を有する液状ポリイソプレンも好ましい。両末端又は片末端に水酸基を有する液状ポリイソプレンを使用することで、ポリチオールとの相溶性が向上することとなる。
 本発明の熱硬化性組成物に用いるポリチオール(B)は、メルカプトカルボン酸由来のポリチオールであり、好ましくは3-メルカプトプロピオン酸由来のポリチオールである。該ポリチオール(B)は、好ましくは分子中にメルカプトアシロキシ基を複数有し、より好ましくは2~6個有する。ここで、メルカプトアシロキシ基として、具体的には、3-メルカプトプロピオニロキシ基[HS-(CH2)2-COO-]、3-メルカプトブチルオキシ基[HS-CH(CH3)-CH2-COO-]等が挙げられ、3-メルカプトプロピオニロキシ基が好ましい。該メルカプトカルボン酸由来のポリチオール(B)は、熱ラジカル発生剤(C)由来のラジカルによってチイルラジカルを発生し、該チイルラジカルがジエン系ポリマー(A)の不飽和結合に付加して、硬化(架橋)反応を促進する。
 上記ポリチオール(B)として、具体的には、下記化学式(I)で表わされるテトラエチレングリコールビス(3-メルカプトプロピオネート)、下記化学式(II)で表わされるトリメチロールプロパントリス(3-メルカプトプロピオネート)、下記化学式(III)で表わされるトリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート、下記化学式(IV)で表わされるペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、下記化学式(V)で表わされるジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、下記化学式(VI)で表わされる1,4-ビス(3-メルカプトブチリルオキシ)ブタン、下記化学式(VII)で表わされるペンタエリスリトールテトラキス(3-メルカプトブチレート)、及び下記化学式(VIII)で表わされる1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンが好ましい。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
 上記ポリチオール(B)は、ジエン系ポリマー(A)との相溶性が高く、均一で性能の安定した組成物を得ることができる。なお、これらポリチオール(B)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記ポリチオール(B)の配合量は、特に限定されるものではないが、上記ジエン系ポリマー(A)100質量部に対して0.5~50質量部の範囲が好ましく、2~40質量部の範囲が更に好ましく、5~30質量部の範囲がより一層好ましい。ポリチオール(B)の配合量が5質量部以上であれば、組成物の熱硬化性を充分に向上させることができ、また、30質量部以下であれば、液状ゴムとの良好な相溶性を維持できる。
 本発明の熱硬化性組成物に用いるラジカル発生剤(C)は、熱によりラジカルを発生して、組成物の熱硬化を開始させる(促進する)作用を担う。かかる熱ラジカル発生剤(C)としては、有機過酸化物及びアゾビス系化合物が好ましい。これら熱ラジカル発生剤(C)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 上記有機過酸化物としては、例えば、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-アミルパーオキシ-2-エチルヘキサノエート、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、過酸化ベンゾイル、1,1'-ジ(t-ブチルパーオキシ)シクロヘキサン、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、ジクミルパーオキサイド等が挙げられる。
 上記アゾビス系化合物としては、例えば、2,2'-アゾビス(2-メチルプロピオニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、ジメチル2,2'-アゾビス(2-メチルプロピオネート)等が挙げられる。
 上記ラジカル発生剤(C)の配合量は、特に限定されるものではないが、上記ジエン系ポリマー(A)100質量部に対して0.05~30質量部の範囲が好ましく、0.2~20質量部の範囲が更に好ましく、0.5~15質量部の範囲がより一層好ましい。ラジカル発生剤(C)の配合量が0.05質量部以上であれば、組成物の熱硬化反応を開始させることができ、また、30質量部以下であれば、ラジカル発生剤起因のガス発生、残留ラジカル発生剤のブリードアウト、アウトガス発生を抑制できる。
 本発明の熱硬化性組成物は、25℃において液状であることが好ましい。組成物が液状であれば、加熱や混練作業の必要が無く、加工が容易であり、また、様々な液状モノマーとの組み合わせが可能となり、更に、液状であるため、細いシリンジからの押し出しが可能で、ガスケット部材、ディスプレイ用封止材等の微細加工にも適用できる。
 上述した本発明の熱硬化性組成物は、熱硬化性が高いため、従来、熱硬化性組成物が使用されている種々の用途に使用できる。特に、本発明の熱硬化性組成物は、プリンターや複写機等に用いられる現像ローラ、帯電ローラ、転写ローラ等のローラ類、現像ブレード、クリーニングブレード等のブレード類、ガスケット部材、ディスプレイ用封止材、建築用シーリング材等において有用である。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
(SB共重合体Aの合成例)
 充分に脱水精製したシクロヘキサン溶媒中に、1,3-(ジイソプロペニル)ベンゼン 1モルを添加した後、トリエチルアミン 2モル、sec-ブチルリチウム 2モルを順次添加し、50℃で2時間撹拌して、ジリチウム系重合開始剤を調製した。
 アルゴン置換した7リットルの重合リアクターに、脱水精製したシクロヘキサンを1.5kg、22.9質量%の1,3-ブタジエンモノマーのヘキサン溶液を1.65kg、20.0質量%のスチレンモノマーのシクロヘキサン溶液を1.00kg、1.15モル/リットルの2,2-ビス(テトラヒドロフリル)プロパンのヘキサン溶液を200ml添加した後、0.5モル/リットルの上記ジリチウム系重合開始剤を230ml添加して重合を開始させた。
 重合リアクターを50℃に昇温しながら、1.5時間重合を行った後、1モル/リットルのエチレンオキシドのシクロヘキサン溶液を254ml添加し、更に2時間撹拌した後、50mlのイソプロピルアルコールを添加した。重合体のヘキサン溶液をイソプロピルアルコール中に沈殿させ、十分に乾燥させて、両末端水酸基SBRである液状SBRポリオールを得た。
 以上のようにして得られた液状SBRポリオールは両末端ヒドロキシル基スチレン-ブタジエン共重合体Aであり、結合スチレン含量が35質量%であり、ブタジエン部分のビニル結合含量が65%であった。また、数平均分子量が5200、重量平均分子量が6700、分子量分布が1.28であった。
(SB共重合体Bの合成例)
 充分に脱水精製したシクロヘキサン溶媒中に、1,3-(ジイソプロペニル)ベンゼン 1モルを添加した後、トリエチルアミン 2モル、sec-ブチルリチウム 2モルを順次添加し、50℃で2時間撹拌して、ジリチウム系重合開始剤を調製した。
 アルゴン置換した7リットルの重合リアクターに、脱水精製したシクロヘキサンを1.45kg、22.9質量%の1,3-ブタジエンモノマーのヘキサン溶液を1.15kg、20.0質量%のスチレンモノマーのシクロヘキサン溶液を1.65kg、1.15モル/リットルの2,2-ビス(テトラヒドロフリル)プロパンのヘキサン溶液を200ml添加した後、0.5モル/リットルの上記ジリチウム系重合開始剤を230ml添加して重合を開始させた。
 重合リアクターを50℃に昇温しながら、1.5時間重合を行った後、1モル/リットルのエチレンオキシドのシクロヘキサン溶液を254ml添加し、更に2時間撹拌した後、50mlのイソプロピルアルコールを添加した。重合体のヘキサン溶液をイソプロピルアルコール中に沈殿させ、十分に乾燥させて、両末端水酸基SBRである液状SBRポリオールを得た。
 以上のようにして得られた液状SBRポリオールは両末端ヒドロキシル基スチレン-ブタジエン共重合体Bであり、結合スチレン含量が55質量%であり、ブタジエン部分のビニル結合含量が65%であった。また、数平均分子量が4000、重量平均分子量が4800、分子量分布が1.20であった。
(SB共重合体Cの合成例)
 充分に脱水精製したシクロヘキサン溶媒中に、1,3-(ジイソプロペニル)ベンゼン 1モルを添加した後、トリエチルアミン 2モル、sec-ブチルリチウム 2モルを順次添加し、50℃で2時間撹拌して、ジリチウム系重合開始剤を調製した。
 アルゴン置換した7リットルの重合リアクターに、脱水精製したシクロヘキサンを1.45kg、22.9質量%の1,3-ブタジエンモノマーのヘキサン溶液を2.00kg、20.0質量%のスチレンモノマーのシクロヘキサン溶液を0.765kg、1.15モル/リットルの2,2-ビス(テトラヒドロフリル)プロパンのヘキサン溶液を200ml添加した後、0.5モル/リットルの上記ジリチウム系重合開始剤を224ml添加して重合を開始させた。
 重合リアクターを50℃に昇温しながら、1.5時間重合を行った後、1モル/リットルのエチレンオキシドのシクロヘキサン溶液を254ml添加し、更に2時間撹拌した後、50mlのイソプロピルアルコールを添加した。重合体のヘキサン溶液をイソプロピルアルコール中に沈殿させ、十分に乾燥させて、両末端水酸基SBRである液状SBRポリオールを得た。
 以上のようにして得られた液状SBRポリオールは両末端ヒドロキシル基スチレン-ブタジエン共重合体Cであり、結合スチレン含量が23質量%であり、ブタジエン部分のビニル結合含量が65%であった。また、数平均分子量が4900、重量平均分子量が6200、分子量分布が1.26であった。
<熱硬化性組成物の調製及び評価>
 上記のようにして合成したスチレン-ブタジエン共重合体又は市販のジエン系ポリマーを用いて、表1~3に示す配合の熱硬化性組成物を調製し、下記の方法で、硬化性及び相溶性を評価した。
(硬化性の評価)
 キュラストメーターを用いて、150℃又は170℃において、組成物によって生じるトルクを測定し、最大トルクの90%のトルクに達するまでの時間(T90)を測定した。この際、組成物の硬化性を目視でも観察し、硬化した場合を○、若干硬化した場合を△、全くしなかった場合を×とした。結果を表1~3に示す。
(相溶性の評価)
 各成分を配合した後、得られた組成物を目視にて評価した。評価基準を以下に示す。
   ○:  透明
   ○△: 若干白濁
   △:  白濁
   △×: やや相分離
   ×:  完全に相分離或いは溶解せず
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
*1 Ricon100、サートマー社製、数平均分子量=4200、結合スチレン含量=25質量%、ブタジエン部分のビニル結合含量=60%、末端官能基:無し、25℃において液状
*2 Ricon181、サートマー社製、数平均分子量=3200、結合スチレン含量=25質量%、ブタジエン部分のビニル結合含量=30%、末端官能基:無し、25℃において液状
*3 SB共重合体A、上記の方法で合成、数平均分子量=5200、結合スチレン含量=35質量%、ブタジエン部分のビニル結合含量=65%、末端官能基:OH、25℃において液状
*4 SB共重合体B、上記の方法で合成、数平均分子量=4000、結合スチレン含量=55質量%、ブタジエン部分のビニル結合含量=65%、末端官能基:OH、25℃において液状
*5 SB共重合体C、上記の方法で合成、数平均分子量=4900、結合スチレン含量=23質量%、ブタジエン部分のビニル結合含量=65%、末端官能基:OH、25℃において液状
*6 Poly-IP、出光興産製、数平均分子量=2500、末端官能基:OH、25℃において液状
*7 TMMP、トリメチロールプロパントリス(3-メルカプトプロピオネート)
*8 PEMP、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
*9 DPMP、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)
*10 2,4,6-トリメルカプト-s-トリアジン、三協化成製、ジスネットF
*11 パーヘキサTMH、日本油脂社製、1,1-ジ(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン
*12 トリゴノックス121、アクゾ社製、t-アミルパーオキシ-2-エチルヘキサノエート
*13 パーブチルP、日本油脂社製、ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン
*14 AIBN、和光純薬製、2,2'-アゾビス(2-メチルプロピオニトリル)
 表1中の比較例1及び2と実施例1の結果から、ジエン系ポリマー(A)とポリチオール(B)と熱ラジカル発生剤(C)とを含む実施例1の組成物は、ジエン系ポリマー(A)と熱ラジカル発生剤(C)とを含むもののポリチオール(B)を含まない比較例1の組成物や、ジエン系ポリマー(A)とポリチオール(B)とを含むものの熱ラジカル発生剤(C)を含まない比較例2の組成物よりも、硬化速度が非常に速いことが分かる。
 また、実施例2及び3の結果から、種々のポリチオール(B)を用いて硬化速度を向上させられることが分かる。
 更に、比較例3と実施例4の結果から、ジエン系ポリマー(A)と熱ラジカル発生剤(C)を含むものの熱硬化反応が全く進行しない組成物に対して、ポリチオール(B)を添加することで、熱硬化反応の進行を可能にできることが分かる。なお、比較例4の結果から、ポリチオールとしてメルカプトカルボン酸に由来しない化合物を配合しても、熱硬化反応を進行させられないことが分かる。
 更に、比較例5と実施例5の結果から、種々の有機過酸化物を用いた場合において、ポリチオール(B)の添加によって硬化速度が向上することが分かる。
 また、表2中の比較例6と実施例6、比較例8と実施例8、並びに比較例9と実施例9の結果から、ジエン系ポリマー(A)として種々のポリマーを使用しても、ポリチオール(B)と熱ラジカル発生剤(C)とを添加することで、硬化速度が向上することが分かる。
 更に、比較例7と実施例7の結果から、ジエン系ポリマー(A)と熱ラジカル発生剤(C)との組み合わせによっては、全く硬化しない場合があるものの(比較例7)、ポリチオール(B)を添加することで熱硬化が可能になる(実施例7)ことが分かる。
 また、表3中の比較例10と実施例10に示すように、熱ラジカル発生剤(C)としてアゾビス系化合物を用いた場合、ポリチオール(B)を含まない比較例10の組成物は全く硬化しなかったのに対し、ポリチオール(B)を加えた実施例10の組成物は硬化したことから、種々の熱ラジカル発生剤(C)に対して、ポリチオール(B)の添加が有効であることが分かる。なお、比較例11の結果からも、ポリチオールとしてメルカプトカルボン酸に由来しない化合物を配合しても、熱硬化反応を進行させられないことが分かる。
 更に、比較例12と実施例11に示すように、ジエン系ポリマー(A)としてポリイソプレンを用いた場合、ポリチオール(B)を含まない比較例12の組成物は全く硬化しなかったのに対し、ポリチオール(B)を加えた実施例11の組成物は硬化したことから、種々のジエン系ポリマー(A)に対して、ポリチオール(B)の添加が有効であることが分かる。
 以上の結果から、ジエン系ポリマー(A)とポリチオール(B)と熱ラジカル発生剤(C)とを含む本発明の組成物は、ポリチオール(B)及び/又は熱ラジカル発生剤(C)を含まない組成物に比べて、硬化性が大幅に改善されることが確認された。

Claims (10)

  1.  不飽和結合を2つ以上有するジエン系ポリマー(A)と、
     メルカプトカルボン酸由来のポリチオール(B)と、
     熱ラジカル発生剤(C)と
     を含むことを特徴とする熱硬化性組成物。
  2.  前記ジエン系ポリマー(A)が25℃において液状であることを特徴とする請求項1に記載の熱硬化性組成物。
  3.  前記ジエン系ポリマー(A)がジエン系モノマーから合成された重合体、或いは、ジエン系モノマーと無水マレイン酸及び/又はスチレンモノマーとから合成された共重合体であることを特徴とする請求項1又は2に記載の熱硬化性組成物。
  4.  前記ジエン系ポリマー(A)は、数平均分子量(Mn)が1500~40000であることを特徴とする請求項1~3のいずれかに記載の熱硬化性組成物。
  5.  前記ジエン系ポリマー(A)は、結合スチレン含量が15~90質量%で、ブタジエン部分のビニル結合含量が20~90%の液状スチレン-ブタジエン共重合体であることを特徴とする請求項1~4のいずれかに記載の熱硬化性組成物。
  6.  前記液状スチレン-ブタジエン共重合体が両末端又は片末端に水酸基を有することを特徴とする請求項5に記載の熱硬化性組成物。
  7.  前記ジエン系ポリマー(A)は、両末端又は片末端に水酸基を有する液状ポリイソプレンであることを特徴とする請求項1~4のいずれかに記載の熱硬化性組成物。
  8.  前記ポリチオール(B)が、テトラエチレングリコールビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、及び1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンからなる群から選択される少なくとも一種であることを特徴とする請求項1~7のいずれかに記載の熱硬化性組成物。
  9.  前記熱ラジカル発生剤(C)が、有機過酸化物及びアゾビス系化合物からなる群から選択される少なくとも一種であることを特徴とする請求項1~8のいずれかに記載の熱硬化性組成物。
  10.  25℃において液状であることを特徴とする請求項1~9のいずれかに記載の熱硬化性組成物。
PCT/JP2009/066694 2008-09-25 2009-09-25 熱硬化性組成物 WO2010035808A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980147013.9A CN102224193B (zh) 2008-09-25 2009-09-25 热固性组合物
JP2010530881A JP5647000B2 (ja) 2008-09-25 2009-09-25 熱硬化性組成物
US13/120,834 US8541510B2 (en) 2008-09-25 2009-09-25 Thermosetting composition
EP09816222.5A EP2341100B1 (en) 2008-09-25 2009-09-25 Thermosetting composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-245922 2008-09-25
JP2008245922 2008-09-25

Publications (1)

Publication Number Publication Date
WO2010035808A1 true WO2010035808A1 (ja) 2010-04-01

Family

ID=42059803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066694 WO2010035808A1 (ja) 2008-09-25 2009-09-25 熱硬化性組成物

Country Status (5)

Country Link
US (1) US8541510B2 (ja)
EP (1) EP2341100B1 (ja)
JP (1) JP5647000B2 (ja)
CN (1) CN102224193B (ja)
WO (1) WO2010035808A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420535A4 (en) * 2009-04-16 2015-02-18 Bridgestone Corp THIOLIC LIQUID RUBBER COMPOSITION
JP2015063648A (ja) * 2013-08-26 2015-04-09 横浜ゴム株式会社 ゴム組成物およびこれを用いる空気入りタイヤ
JP2015524492A (ja) * 2012-07-09 2015-08-24 ランクセス・ドイチュランド・ゲーエムベーハー 多価アルコールのω−メルカプトカルボン酸エステルを含むシリカ含有ゴム混合物
JP2015168781A (ja) * 2014-03-07 2015-09-28 東ソー株式会社 ジエン系重合体及びその製造方法
JP2020189915A (ja) * 2019-05-21 2020-11-26 日本曹達株式会社 ポリチオール化合物を含む熱硬化性組成物
US10882969B2 (en) 2012-04-27 2021-01-05 Nichias Corporation Method for producing rubber molding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327042B1 (en) * 2015-09-01 2019-06-05 Bridgestone Corporation Emulsion-polymerized styrene-butadiene rubber, rubber composition, and tire
CN111434705B (zh) * 2019-01-14 2022-03-15 中国石油化工股份有限公司 改性液体橡胶及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506606A (ja) * 1992-05-13 1995-07-20 アクゾ ノーベル ナムローゼ フェンノートシャップ 硫黄加硫されたゴム組成物
WO1998018860A1 (fr) * 1996-10-25 1998-05-07 Nippon Zeon Co., Ltd. Latex de caoutchouc dienique conjugue, composition de latex de caoutchouc, et caoutchouc cellulaire
JP2000129037A (ja) * 1998-10-27 2000-05-09 Bridgestone Corp ゴム組成物、これをトレッドに用いた空気入りタイヤおよび競技用タイヤ
JP2007131665A (ja) 2005-11-08 2007-05-31 Bridgestone Corp ゴム架橋物
JP2007138030A (ja) * 2005-11-18 2007-06-07 Auto Kagaku Kogyo Kk 硬化性組成物及びシーリング材組成物
JP2008081713A (ja) * 2006-08-29 2008-04-10 Hitachi Chem Co Ltd 接着剤組成物、回路接続材料、回路部材の接続構造及び半導体装置
JP2009086291A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676440A (en) * 1970-02-26 1972-07-11 Grace W R & Co Isocyanurate-containing polythiols
US4083834A (en) * 1973-02-12 1978-04-11 Japan Synthetic Rubber Co., Ltd. Process for producing polymer having functional groups at its chain terminals
DE2653144C2 (de) * 1976-11-23 1984-12-20 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von modifiziertem Polybutadien
DE3368275D1 (en) * 1982-11-04 1987-01-22 Borg Warner Chemicals Inc Stabilized graft copolymers
CN1194997C (zh) * 2002-07-17 2005-03-30 中国石油天然气集团公司 端羟基丁苯液体橡胶的合成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07506606A (ja) * 1992-05-13 1995-07-20 アクゾ ノーベル ナムローゼ フェンノートシャップ 硫黄加硫されたゴム組成物
WO1998018860A1 (fr) * 1996-10-25 1998-05-07 Nippon Zeon Co., Ltd. Latex de caoutchouc dienique conjugue, composition de latex de caoutchouc, et caoutchouc cellulaire
JP2000129037A (ja) * 1998-10-27 2000-05-09 Bridgestone Corp ゴム組成物、これをトレッドに用いた空気入りタイヤおよび競技用タイヤ
JP2007131665A (ja) 2005-11-08 2007-05-31 Bridgestone Corp ゴム架橋物
JP2007138030A (ja) * 2005-11-18 2007-06-07 Auto Kagaku Kogyo Kk 硬化性組成物及びシーリング材組成物
JP2008081713A (ja) * 2006-08-29 2008-04-10 Hitachi Chem Co Ltd 接着剤組成物、回路接続材料、回路部材の接続構造及び半導体装置
JP2009086291A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2341100A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2420535A4 (en) * 2009-04-16 2015-02-18 Bridgestone Corp THIOLIC LIQUID RUBBER COMPOSITION
US10882969B2 (en) 2012-04-27 2021-01-05 Nichias Corporation Method for producing rubber molding
JP2015524492A (ja) * 2012-07-09 2015-08-24 ランクセス・ドイチュランド・ゲーエムベーハー 多価アルコールのω−メルカプトカルボン酸エステルを含むシリカ含有ゴム混合物
JP2015063648A (ja) * 2013-08-26 2015-04-09 横浜ゴム株式会社 ゴム組成物およびこれを用いる空気入りタイヤ
JP2015168781A (ja) * 2014-03-07 2015-09-28 東ソー株式会社 ジエン系重合体及びその製造方法
JP2020189915A (ja) * 2019-05-21 2020-11-26 日本曹達株式会社 ポリチオール化合物を含む熱硬化性組成物
JP7250616B2 (ja) 2019-05-21 2023-04-03 日本曹達株式会社 ポリチオール化合物を含む熱硬化性組成物

Also Published As

Publication number Publication date
EP2341100B1 (en) 2017-06-28
EP2341100A1 (en) 2011-07-06
JP5647000B2 (ja) 2014-12-24
JPWO2010035808A1 (ja) 2012-02-23
CN102224193A (zh) 2011-10-19
EP2341100A4 (en) 2015-01-07
CN102224193B (zh) 2014-04-02
US8541510B2 (en) 2013-09-24
US20110224382A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5647000B2 (ja) 熱硬化性組成物
JP5653344B2 (ja) チオール含有液状ゴム組成物
KR101872550B1 (ko) 탄성중합체 조성물용 신전유로서의 식물유 유도체
RU2658908C2 (ru) Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью
EP3947546B1 (en) Polyenes for curable liquid rubber-based compositions
JPH04139219A (ja) 架橋ゴム組成物
JP2008195790A (ja) 光硬化性液状ゴム組成物
KR20150023784A (ko) 탄성중합체성 조성물 중 신전유 및 바이오필러로서의 식물 유도체
JP4057123B2 (ja) 重合体の製造方法、重合体及びその重合体を用いたゴム組成物
EP3341422A1 (en) Biomimetic synthetic rubber and methods for controlling its physical properties through backbone double bond stereochemistry
JP3125798B2 (ja) 熱安定性及び長期貯蔵時の耐変色性に優れたブロック共重合体組成物
JP2007326964A (ja) 芳香族ビニル化合物系樹脂組成物及びその製造方法
JP2013177579A (ja) 変性ポリマーの製造方法及びジエン系ポリマー
WO2012086711A1 (ja) ゴム組成物及びそれを用いたタイヤ
JP7458204B2 (ja) マクロモノマーの製造方法、マクロモノマー、それを用いたグラフト共重合体の製造方法、重合体組成物および成形品
JP7250616B2 (ja) ポリチオール化合物を含む熱硬化性組成物
JP2003313395A (ja) 動架橋ブロック共重合体組成物
CN114539493A (zh) 共聚物、共聚物组合物以及橡胶组合物
JP2023108911A (ja) 硬化性組成物および硬化物
JP2023175496A (ja) スチレン系樹脂組成物及びその成形品
CN117836340A (zh) 氯丁二烯系嵌段共聚物、胶乳、胶乳组合物、以及橡胶组合物
JPH0714983B2 (ja) スチレン−共役ジエン共重合体ゴム
JPS5956438A (ja) 難燃化された開環重合体組成物
JPH0711093A (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147013.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09816222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009816222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009816222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13120834

Country of ref document: US