RU2658908C2 - Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью - Google Patents

Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью Download PDF

Info

Publication number
RU2658908C2
RU2658908C2 RU2015150061A RU2015150061A RU2658908C2 RU 2658908 C2 RU2658908 C2 RU 2658908C2 RU 2015150061 A RU2015150061 A RU 2015150061A RU 2015150061 A RU2015150061 A RU 2015150061A RU 2658908 C2 RU2658908 C2 RU 2658908C2
Authority
RU
Russia
Prior art keywords
polymers
copolymers
styrene
mixture
formula
Prior art date
Application number
RU2015150061A
Other languages
English (en)
Other versions
RU2015150061A (ru
Inventor
Норберт ШТАЙНХАУЗЕР
Томас ГРОСС
Original Assignee
Арланксео Дойчланд Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арланксео Дойчланд Гмбх filed Critical Арланксео Дойчланд Гмбх
Publication of RU2015150061A publication Critical patent/RU2015150061A/ru
Application granted granted Critical
Publication of RU2658908C2 publication Critical patent/RU2658908C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/36Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with carboxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2347/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/045Fullerenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Изобретение относится к полимерам с функционализированными концевыми группами со сниженной текучестью на холоде и хорошей перерабатываемостью, их получению и применению. Предложена смесь полимеров для получения формованных изделий, содержащая полимеры с функционализированными концевыми группами, представляющие собой диеновые (со)полимеры, имеющие на концах полимерных цепей содержащие силаны карбоксильные группы формулы (I), и димеры, имеющие один или несколько структурных элементов, производных от силалактонов формулы (III), где R1 и R2 могут быть одинаковыми или отличными и представляют собой алкильную группу, R3 и R4 представляют собой водород, А представляет собой двухвалентный органический радикал, который наряду с атомами С и Н содержит атом S. Предложен также способ получения входящих в состав смеси полимеров, применение заявленной смеси полимеров для получения вулканизируемой композиции каучуков, впоследствии используемой для получения шин. Технический результат – предложенные смеси полимеров сочетают низкие значения текучести на холоде с хорошей перерабатываемостью получаемых из них композиций каучуков и позволяют получать протекторы шин с улучшенными эксплуатационными характеристиками. 8 н. и 5 з.п. ф-лы, 1 ил., 6 табл., 8 пр.

Description

Изобретение относится к полимерам с функционализированными концевыми группами со сниженной текучестью на холоде, имеющим хорошую перерабатываемость, к их получению и применению.
У протекторов шин важными свойствами считают хорошее сцепление c сухой и влажной поверхностью, низкое сопротивление качению, а также высокую стойкость к истиранию. При этом очень тяжело улучшить устойчивость против заноса шины, без того, чтобы одновременно не ухудшились сопротивление качению и стойкость к истиранию. Низкое сопротивление качению важно для низкого расхода топлива, а высокая стойкость к истиранию является решающим фактором для высокой длительности пробега шин.
Устойчивость против заноса на влажной дороге и сопротивление качению протектора шины в большой мере зависят от динамических механических свойства каучука, который используют для получения смеси. Для снижения сопротивления качению для протекторов шин применяют каучуки с высокой эластичностью по отскоку при высоких температурах (от 60°C до 100°C). С другой стороны, для улучшения устойчивости против заноса на влажной дороге предпочтительны каучуки с высоким коэффициентом затухания при низких температурах (от 0 до 23°C), или, соответственно, низкой эластичностью по отскоку в области от 0°C до 23°C. Для того чтобы удовлетворить этот комплекс требований, для протекторов применяют смеси из различных видов каучуков. Чаще всего применяют смеси из одного или нескольких каучуков с относительно высокой температурой стеклования, таких как стирол-бутадиеновый каучук, и одного или нескольких каучуков с относительно низкой температурой стеклования, таких как полибутадиен с высоким содержанием 1,4-цис-изомера, или стирол-бутадиеновый каучук с низким содержанием стирола и незначительным содержанием винила, или полученный в растворе полибутадиен со средним содержанием 1,4-цис-изомера и низким содержанием винила.
Содержащие двойные связи анионные полимеризованные каучуки, полученные в растворе, такие как полученные в растворе полибутадиеновый и стирол-бутадиеновый каучуки, по сравнению с соответствующими каучуками, полученными в эмульсии, обладают преимуществами при получении протекторов шин с низким сопротивлением качению. Преимущество среди прочего заключается в возможности регулировать содержание винила и связанную с ним температуру стеклования и разветвление молекул. В практическом приложении из этого следуют особые преимущества в отношении устойчивости против заноса на влажной дороге и сопротивления качению шин. Существенный вклад в рассеяние энергии и, тем самым, в сопротивление качению протекторов шин вносят свободные концы полимерных цепей и обратимое образование и разрушение сети наполнителя, которую образуют применяемые в смеси для протекторов шин наполнители (чаще всего кремниевая кислота и/или сажа).
Встраивание функциональных групп в концы полимерных цепей и/или в начала полимерных цепей позволяет физически или химически связать эти концы цепей или начала цепей с поверхностью наполнителя. Вследствие этого ограничивается подвижность наполнителя и, таким образом, снижается рассеяние энергии при динамической нагрузке на протекторы шин. Одновременно данные функциональные группы могут улучшить диспергирование наполнителя в протекторе шины, что приводит к ослаблению сети наполнителя и, наряду с этим, к дополнительному снижению сопротивления качению.
С этой целью были разработаны различные способы модификации концевых групп. Например, в EP 0180141 A1 описано применение 4,4'-бис(диметиламино)бензофенона или N-метилкапролактама в качестве реагентов для функционализации. Также из EP 0864606 A1 известно применение этиленоксида и N-винилпирролидона. Ряд других возможных реагентов для функционализации представлен в US 4417029. Способы введения функциональных группы в начало полимерной цепи с помощью функциональных анионных инициаторов полимеризации, например, описаны, например, в EP 0513217 A1 и EP 0675140 A1 (инициаторы с защищенной гидроксильной группой), US 20080308204 A1 (содержащие простые тиоэфиры инициаторы), а также в US 5792820, EP 0590490 A1 и EP 0594107 A1 (щелочные амиды вторичных аминов в качестве инициаторов полимеризации).
Карбоксильные группы как сильные полярные бидентатные лиганды особенно хорошо взаимодействуют с поверхностью содержащих диоксид кремния веществ в смеси каучуков. Способы введения карбоксильных групп вдоль полимерной цепи полученных в растворе диеновых каучуков известны и описаны, например в DE 2653144 A1, EP 1000971 A1, EP 1050545 A1, WO 2009034001 A1. Эти способы имеют несколько недостатков, например, требуется большое время реакции, чтобы происходило лишь неполное преобразование реагентов для функционализации и чтобы появилось изменение полимерной цепи благодаря побочным реакциям, таким как разветвление. Кроме того эти способы не позволяют проводить особенно эффективную функционализацию концов полимерных цепей.
Введение карбоксильных групп в концы цепей диеновых каучуков преобразованием анионных концов полимерных цепей с СО2 также описано, например, в US 3242129. Этот способ имеет недостаток, заключающийся в том, что раствор полимера необходимо приводить в контакт с газообразным СО2, что оказалось очень сложно из-за высокой вязкости и обусловленного этим плохого перемешивания. Дополнительно происходят сложно контролируемые реакции присоединения больше чем одного конца полимерной цепи к атому углерода CО2. Этого присоединения можно избежать с помощью последовательного преобразования карбанионных концов полимерных цепей сначала с этиленоксидом или пропиленоксидом и последующей реакцией уже алкоксидных концов полимерных цепей с циклическим ангидридом (US 4465809). Также существует недостаток, заключающийся в том, что необходимо вводить газообразный и, кроме того, очень токсичный этиленоксид или пропиленоксид в высоковязкий раствор каучука. Кроме того, в реакции алкоксидных концов цепей с циклическими ангидридами образуются склонные к гидролизу сложноэфирные связи, которые при переработке и при последующем применении могут разрушаться.
В частности, силаны и циклосилоксаны, содержащие в сумме по меньшей мере два заместителя галогена и/или алкокси-заместителя и/или арилокси-заместителя у кремния хорошо пригодны для функционализации концевых групп диеновых каучуков, так как один из упомянутых заместителей у атома Si может легко замещаться анионным концом цепи диенового полимера в быстрой реакции замещения, а другой или другие упомянутые заместители у Si могут служить функциональными группами, которые, необязательно после гидролиза, могут взаимодействовать с наполнителем смеси для протекторов шин. Примеры таких силанов можно найти в US 3244664, US 4185042, EP 0778311 A1 и US 20050203251 A1.
Данные силаны, как правило, имеют функциональные группы, которые связаны непосредственно с атомом Si или соединены с Si через спейсер, и которые могут взаимодействовать с поверхностью содержащих диоксид кремния веществ в смеси каучуков. В случае данных функциональных групп, как правило, речь идет об алкокси-группах или галогене, непосредственно связанным с Si, а также о третичном амино-заместителе, который связан с Si через спейсер. Недостатком данного силана является возможность реакции нескольких анионных концов полимерных цепей на молекулу силана, отщепление нежелательных компонентов и соединение их с образованием связи Si-O-Si при переработке и хранении. Введение карбоксильных групп с помощью данного силана не описано.
В WO2012/065908 A1 описаны 1-окса-2-силациклоалканы в качестве реагентов для функционализации для введения гидроксильных концевых групп в диеновые полимеры. Эти 1-окса-2-силациклоалканы не имеют таких недостатков, как описанные в предыдущем абзаце силаны, таких как реакции нескольких анионных концов полимерных цепей на молекулу силана, отщепление нежелательных компонентов и соединение их с образованием связи Si-O-Si при переработке и хранении. Также данные реагенты для функционализации не позволяют вводить карбоксильные группы в концы полимерных цепей.
Поэтому существует задача предоставить оканчивающиеся карбоксильными группами полимеры, которые не имеют недостатков уровня техники и, в частности, позволяют использовать хорошую реакционную способность силанов с анионными концами полимерных цепей.
Для решения данной задачи предлагаются полимеры с функционализированными концевыми группами, которые на концах полимерных цепей имеют содержащие силаны карбоксильные группы формулы (I),
Figure 00000001
при этом R1, R2 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, алкокси-, циклоалкил-, циклоалкокси-, арил-, арилокси-, алкарил-, алкарилокси-, аралкил- или аралкокси, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S, или Si,
R3, R4 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, циклоалкил-, арил-, алкарил- или аралкил, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,
A представляет собой двухвалентный органический радикал, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.
Предпочтительно полимеры с функционализированными концевыми группами по изобретению имеют вид карбоксилатов с концевыми группами формулы (II):
Figure 00000002
при этом R1, R2 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, алкокси-, циклоалкил-, циклоалкокси-, арил-, арилокси-, алкарил-, алкарилокси-, аралкил- или аралкокси, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,
R3, R4 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, циклоалкил-, арил-, алкарил- или аралкил, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,
A представляет собой двухвалентный органический радикал, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,
n представляет собой целой число от 1 до 4,
M представляет собой метал или полуметалл с валентностью от 1 до 4, предпочтительно Li, Na, K, Mg, Ca, Zn, Fe, Co, Ni, Al, Nd, Ti, Sn, Si, Zr, V, Mo или W.
Предпочтительными полимерами для получения полимеров по изобретению с функционализированными концевыми группами являются диеновые полимеры и полученные сополимеризацией диенов с винилароматическими мономерами диеновые сополимеры.
В качестве диенов предпочтительны 1,3-бутадиен, изопрен, 1,3-пентадиен, 2,3-диметилбутадиен, 1-фенил-1,3-бутадиен и/или 1,3-гексадиен. Особенно предпочтительно применять 1,3-бутадиен и/или изопрен.
В качестве винилароматических сомономеров можно применять, например, стирол, о-, м- и/или п-метилстирол, п-третбутилстирол, α-метилстирол, винилнафталин, дивинилбензол, тривинилбензол и/или дивинилнафталин. Особенно предпочтительно применять стирол.
Получение данных полимеров происходит предпочтительно посредством анионной полимеризации в растворе или посредством полимеризации с помощью координационного катализатора. Под координационным катализатором в контексте данного изобретения понимают катализаторы Циглера-Натта или системы монометаллических катализаторов. Предпочтительными координационными катализаторами являются катализаторы на основе Ni, Co, Ti, Zr, Nd, V, Cr, Mo, W или Fe.
Инициаторами для анионной полимеризации в растворе являются инициаторы на основе щелочных или щелочноземельных металлов, такие как, например, метиллитий, этиллитий, изопропиллитий, н-бутиллитий, втор-бутиллитий, пентиллитий, н-гексиллитий, циклогексиллитий, октиллитий, дециллитий, 2-(6-литий-н-гексокси)тетрагидропиран, 3-(третбутилдиметилсилокси)-1-пропиллитий, фениллитий, 4-бутилфениллитий, 1-нафтиллитий, п-толуиллитий, а также соединения аллиллития, производные третичных N-аллиламинов, такие как [1-диметиламино-2-пропенил]литий, [1-[бисфенилметиламино]-2-пропенил]литий, [1-дифениламино-2-пропенил]литий, [1-(1-пирролидинил)-2-пропенил]литий, литийамиды вторичных аминов, такие как литийпирролидид, литийпиперидид, литийгексаметиленимид, литий-1-метилимидазолидид, литий-1-метилпиперазид, литийморфолид, литийдициклогексиламид, литийдибензиламид, литийдифениламид. Данные аллиллитииевые соединения и данные литийамиды также можно получить на месте проведения реакции посредством реакции органолитиевых соединений с соответствующими третичными N-аллиламинами или с соответствующими вторичными аминами. Кроме того, также можно применять ди- и полифункциональные органолитиевые соединения, такие как, например, 1,4-дилитийбутан, дилитийпиперазид. Предпочтительно применять н-бутиллитий и вторбутиллитий.
Дополнительно можно применять известные рандомизаторы и контролирующие агенты для микроструктуры полимера, такие как, например, диэтиловый простой эфир, ди-н-пропиловый простой эфир, диизопропиловый простой эфир, ди-н-бутиловый простой эфир, диметиловый простой эфир этиленгликоля, диэтиловый простой эфир этиленгликоля, ди-н-бутиловый простой эфир этиленгликоля, ди-третбутиловый простой эфир этиленгликоля, диметиловый простой эфир диэтиленгликоля, диэтиловй простой эфир диэтиленгликоля, ди-н-бутиловый простой эфир диэтиленгликоля, ди-третбутиловый простой эфир диэтиленгликоля, 2-(2-этоксиэтокси)-2-метилпропан, диметиловый простой эфир триэтиленгликоля, тетрагидрофуран, простой эфир этилтетрагидрофурфурила, простой эфир гексилтетрагидрофурфурила, 2,2-бис(2-тетрагидрофурил)пропан, диоксан, триметиламин, триэтиламин, Ν,Ν,Ν',Ν'-тетрaметилэтилендиамин, N-метилморфолин, N-этилморфолин, 1,2-дипиперидиноэтан, 1,2-дипирролидиноэтан, 1,2-диморфолинoэтан, а также калиевые и натриевые соли спиртов, фенолов, карбоновых кислот, сульфоновых кислот.
Такие способы полимеризации в растворе известны и описаны, например, в I. Franta, Elastomers and Rubber Compounding Materials; Elsevier 1989, Seite 113-131, в Houben-Weyl, Methoden der Organischen Chemie, Thieme Verlag, Stuttgart, 1961, Band XIV/1 Seiten 645-673 или в Band E 20 (1987), Seiten 114 -134, Seiten 134-153, а также в Comprehensive Polymer Science, Vol. 4, Part II (Pergamon Press Ltd., Oxford 1989), Seiten 53-108.
Получение предпочтительных диеновых гомополимеров и диеновых сополимеров предпочтительно происходит в растворителе. В качестве растворителя для полимеризации предпочтительно применяют инертные апротонные растворители, такие как, например, парафиновые углеводороды, такие как изомеры бутана, пентана, гексана, гептана, октана, декана, циклопентана, метилциклопентана, циклогексана, метилциклогексана, этилциклогексана или 1,4-диметилциклогексан или алкены, такие как 1-бутен или ароматические углеводороды, такие как бензол, толуол, этилбензол, ксилол, диэтилбензол или пропилбензол. Эти растворители можно применять индивидуально или в комбинации. Предпочтительными являются циклогексан, метилциклопентан и н-гексан. Также возможно смешивание с полярными растворителями.
Количество растворителя в способе по изобретению обычно находится в области от 100 до 1000 г, предпочтительно в области от 200 до 700 г, по отношению к 100 г общего веса применяемого мономера. Также возможно полимеризовать применяемые мономеры в отсутствие растворителя.
Полимеризацию можно проводить таким образом, что сначала загружают мономеры и растворитель, а затем полимеризация начинается при добавлении инициатора или катализатора. Также возможен приточный способ полимеризации, при котором реактор для полимеризации наполняется добавлением мономеров и растворителя, при этом инициатор или катализатор загружаются заранее или добавляются вместе с мономерами и растворителем. Возможны варианты, когда растворитель предварительно загружают в реактор, а затем происходит добавление инициатора или катализатора и затем добавление мономера. Кроме того, полимеризация может происходить в непрерывном процессе. В любом случае возможно добавление мономера и растворителя во время или в конце полимеризации.
Время полимеризации может колебаться в широкой области от нескольких минут до нескольких часов. Обычно полимеризация проходит за промежуток времени от 10 минут до 8 часов, предпочтительно от 20 минут до 4 часов. Полимеризация может проходить как при нормальном, так и при повышенном давлении (от 1 до 10 бар).
Неожиданно было обнаружено, что с помощью применения одного или нескольких силалактонов в качестве реагентов для функционализации оканчивающихся карбоксильными группами полимеров, получаются полимеры, которые не имеют недостатков уровня техники. В случае силалактонов речь идет о соединениях формулы (III),
Figure 00000003
при этом
R1, R2 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, алкокси-, циклоалкил-, циклоалкокси-, арил-, арилокси-, алкарил-, алкарилокси-, аралкил- или аралкокси, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si,
R3, R4 могут быть одинаковыми или различаться и представляют собой группы H, алкил-, циклоалкил-, арил-, алкарил- или аралкил, которые могут включать один или несколько гетероатомов, предпочтительно O, N, S или Si,
А представляет собой двухвалентный органический радикал, который наряду с C и H может содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.
При этом предпочтительно
R1, R2 могут быть одинаковыми или различаться и представляют собой группы H, (C1-C24)-алкил-, (C1-C24)-алкокси-, (C3-C24)-циклоалкил-, (C3-C24)-циклоалкокси-, (C6-C24)-арил-, (C6-C24)-арилокси-, (C6-C24)-алкарил-, (C6-C24)-алкарилокси-, (C6-C24)-аралкил- или (C6-C24)-аралкокси, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si, и
R3, R4 могут быть одинаковыми или различаться и представляют собой группы H, (С1-C24)-алкил-, (C3-C24)-циклоалкил-, (C6-C24)-арил-, (C6-C24)-алкарил- или (C6-C24)-аралкил, которые могут содержать один или несколько гетероатомов, предпочтительно O, N, S или Si.
Примерами соединений формулы (III) являются: 2,2-диметил-1-окса-2-силациклогексан-6-он (1), 2,2,4-триметил-1-окса-2-силациклогексан-6-он (2), 2,2,5-триметил-1-окса-2-силациклогексан-6-он (3), 2,2,4,5-тетрaметил-1-окса-2-силациклогексан-6-он (4), 2,2-диэтил-1-окса-2-силациклогексан-6-он (5), 2,2-диэтокси-1-окса-2-силациклогексан-6-он (6), 2,2-диметил-1,4-диокса-2-силациклогексан-6-он (7), 2,2,5-триметил-1,4-диокса-2-силациклогексан-6-он (8), 2,2,3,3-тетрaметил-1,4-диокса-2-силациклогексан-6-он (9), 2,2-диметил-1-окса-4-тиа-2-силациклогексан-6-он (10), 2,2-диэтил-1-окса-4-тиа-2-силациклогексан-6-он (11), 2,2-дифенил-1-окса-4-тиа-2-силациклогексан-6-он (12), 2-метил-2-этенил-1-окса-4-тиа-2-силациклогексан-6-он (13), 2,2,5-триметил-1-окса-4-тиа-2-силациклогексан-6-он (14), 2,2-диметил-1-окса-4-аза-2-силациклогексан-6-он (15), 2,2,4-триметил-1-окса-4-аза-2-силациклогексан-6-он (16), 2,4-диметил-2-фенил-1-окса-4-аза-2-силациклогексан-6-он (17), 2,2-диметил-4-триметилсилил-1-окса-4-аза-2-силациклогексан-6-он (18), 2,2-диэтокси-4-метил-1-окса-4-аза-2-силациклогексан-6-он (19), 2,2,4,4-тетрaметил-1-окса-2,4-дисилациклогексан-6-он (20), 3,4-дигидро-3,3-диметил-1H-2,3-бензоксасилин-1-он (21), 2,2-диметил-1-окса-2-силациклопентан-5-он (22), 2,2,3-триметил-1-окса-2-силациклопентан-5-он (23), 2,2-диметил-4-фенил-1-окса-2-силациклопентан-5-он (24), 2,2-ди(третбутил)-1-окса-2-силациклопентан-5-он (25), 2-метил-2-(2-пропен-1-ил)-1-окса-2-силациклопентан-5-он (26), 1,1-диметил-2,1-бензоксасилол-3(1Η)-он (27), 2,2-диметил-1-окса-2-силациклогептан-7-он (28).
Figure 00000004
Figure 00000005
Синтез таких силалактонов описан, например, в US 2635109; M. Wieber, M. Schmidt, Chemische Berichte 1963, 96 (10), 2822-5; J.M. Wolcott, F.K. Cartledge, Journal of Organic Chemistry 1974, 39 (16), 2420-4; M.P. Sibi, J.W. Christensen, Tetrahedron Letters 1995, 36 (35), 6213-6; T. Linker, M. Maurer, F. Rebien, Tetrahedron Letters 1996, 37 (46), 8363-6; M. Shindo et al., Angewandte Chemie, International Edition 2004, 43 (1), 104-6.
Неожиданно оказалось, что полимеры о изобретению с функционализированными концевыми группами можно получить в ходе реакции реакционно-способных концов полимерных цепей с силалактонами и необязательно с последующим протонированием полученных при этом карбоксилaтных концевых групп с образованием карбоксильных концевых групп.
Таким образом, также применение силалактонов в качестве реагентов для функционализации для получения полимеров по изобретению с функционализированными концевыми группами с концевыми группами формул (I) или (II) являются объектом данного изобретения.
При преобразовании полимеров, которые имеют очень реакционно-способные нуклеофильные концы полимерных цепей, с силалактонами формулы (III) может происходить связывание полимерных цепей не только с атомами Si реагента для функционализации, а дополнительно может происходить связывание с карбонильным атомом C. Это приводит к линейному соединению полимерных цепей, которые не имеют функциональных концевых групп формул (I) или (II). Данные продукты соединения в рамках данной заявки обозначаются как "димеры". Пример линейного соединения полимерной цепи представлен на схеме 1, при этом в зависимости от раскрытия кольца силалактона также могут образовываться другие димеры. У всех образующихся димеров общее то, что они содержат один или несколько структурных элементов, производных от силалактонов формулы (III), предпочтительно структурные элементы формулы (IV).
Figure 00000006
При получении полимеров при добавлении реагентов для функционализации образуется смесь полимеров, содержащая полимер с функционализированными концевыми группами и димеры, содержащие один или несколько структурных элементов, производных от силалактонов формулы (III). Полимеры с очень реакционно-способными нуклеофильными концами полимерных цепей представляют собой, например, диеновые гомополимеры и диеновые сополимеры, которые получают с помощью анионной полимеризации или с применением координационного катализатора.
Figure 00000007
Polymer-: Полимерная цепь с реакционно-способным концом цепи
М+: противоион, например, Li
Схема 1
Содержание димеров в смеси полимеров находится в области от 10 до 90 масс.%, по отношению к общему содержанию полимера. Такие реакции присоединения в некоторых случаях могут быть желательны для того, чтобы повысить полидисперсность и таким образом влиять на реологические свойства полимерной смеси, такие как вязкость по Муни (Mooney), текучесть на холоде и перерабатываемость.
Полимерные смеси по изобретению предпочтительно имеют среднюю молекулярную массу (среднечисловую, Mn) от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль и температуру стеклования от -110°C до +20°C, предпочтительно от -110°C до 0°C, а также вязкость по Муни [ML 1+4 (100°C)] от 10 бис 200, предпочтительно от 30 до 150 единиц Муни.
Кроме того, объектом данного изобретения является способ получения полимеров по изобретению с функционализированными концевыми группами, согласно которому один или несколько соединений формулы (III) в виде чистого вещества, раствора или суспензии добавляют к полимеру с реакционно-способными концами полимерных цепей. Добавление происходит предпочтительно после окончания полимеризации; однако оно может происходить до полного преобразования мономеров. Реакция силалактонов формулы (III) с полимерами с реакционно-способными концами полимерных цепей происходит при обычно применяемых при полимеризации температурах. Продолжительность реакции преобразования силалактонов формулы (III) с реакционно-способными концами полимерных цепей может составлять от нескольких минут до нескольких часов.
Количество данных соединений выбирают таким образом, чтобы все реакционно-способные концы полимерных цепей реагировали с силалактонами формулы (III), или данные соединения применяют в недостатке. Применяемое количество соединений формулы (III) может находиться в широкой области. Предпочтительно данное количество находится в области от 0,005 до 2 масс.%, особенно предпочтительно в области от 0,01 до 1 масс.%, по отношению к количеству полимера.
Дополнительно к силалактонам формулы (III) для реакции с реакционно-способными концами полимерных цепей можно также применять типичные для анионной полимеризации диенов реагенты присоединения. Примерами таких реагентов присоединения являются тетрaхлорид кремния, метилтрихлорсилан, диметилдихлорсилан, тетрaхлорид олова, дибутилоловодихлорид, тетрaалкоксисилан, дидиглицидиловый простой эфир этиленгликоля, 1,2,4-трис(хлорметил)бензол. Такие реагенты присоединения можно добавлять перед силалактонами формулы (III), вместе с ними или после них.
После добавления силалактонов формулы (III) и необязательно реагентов присоединения перед или во время переработки содержащих силаны оканчивающихся карбоксилaтными группами полимеров по изобретению, предпочтительно добавляют средства, предотвращающие старение, такие как стерически затрудненные фенолы, ароматическийe амины, фосфиты, простые тиоэфиры. Кроме того, можно добавлять обычные, применяемые для диеновых каучуков масла-наполнители, такие как DAE (дистиллированный ароматический экстракт), TDAE (очищенный дистиллированный ароматический экстракт), MES (сольват слабой экстракции), RAE (остаточный ароматический экстракт), TRAE (очищенный остаточный ароматический экстракт), нафтеновые и тяжелые нафтеновые масла. Также возможно добавление наполнителей, таких как, сажа и кремниевая кислота, каучуков и вспомогательных добавок для каучуков.
Удаление растворителя из процесса полимеризации может происходить обычным способом, таким как перегонка, отгонка с водяным паром или приложение вакуума, при необходимости при повышенной температуре.
Следующим объектом данного изобретения является применение полимера по изобретению с функционализированными концевыми группами для получения способной к вулканизации композиции каучуков. Предпочтительно данная способная к вулканизации композиция каучуков содержит дополнительные каучуки, наполнители, химикаты для каучуков, вспомогательные добавки для переработки и масла-наполнители.
Дополнительные каучуки представляют собой, например, натуральные каучуки, а также синтетические каучуки. При наличии, их количество обычно находится в области от 0,5 до 95 масс.%, предпочтительно в области от 10 до 80 масс.%, по отношению к общему количеству полимера в смеси. Количество дополнительно добавляемых каучуков зависит от соответствующей цели применения смеси по изобретению. Примерами таких синтетических каучуков являются BR (полибутадиен), сополимеры акриловой кислоты и алкиловых сложных эфиров, IR (полиизопрен), E-SBR (сополимеризаты стирола и бутадиена, полученные способом эмульсионной полимеризации), S-SBR (полимеризаты стирола и бутадиена, полученные способом полимеризации в растворе), NR (сопилимеризаты изобутилена и изопрена), NBR (сополимеры бутадиена и акрилнитрила), HNBR (частично гидрированные или полностью гидрированные NBR-каучуки), EPDM (терполимеризаты этилена, пропилена и диена), а также смеси указанных каучуков. Для получения шин автомобилей в частности представляют интерес натуральный каучук, E-SBR, а также S-SBR с температурой стеклования выше -60°C, полибутадиеновый каучук с высоким содержанием цис-формы (>90%), который получен с катализаторами на основе Ni, Co, Ti или Nd, а также полибутадиеновый каучук с содержанием винила до 80%, а также их смеси.
В качестве наполнителей для композиции каучуков по изобретению принимают во внимание все известные применяемые в промышленности каучуков наполнители. Они включают как активные, так и неактивные наполнители.
Можно упомянуть, например следующие наполнители:
- высокодисперсная кремниевая кислота, полученная, например, осаждением из раствора силиката или пламенным гидролизом галогенидов кремния, с удельной поверхностью 5-1000, предпочтительно 20-400 м2/г (BET-поверхность) и с размером первичных частиц 10-400 нм. Кремниевая кислота при необходимости также может находиться в виде смешанного оксида с другими оксидами металлов, такими как оксиды Al, Mg, Ca, Ba, Zn, Zr, Ti;
- синтетические силикаты, такие как силикат алюминия, силикаты щелочных металлов, такие как силикат магния или силикат кальция, с поверхностью BET 20-400 м2/г и диаметром первичных частиц 10-400 нм;
- натуральные силикаты, такие как каолин, монтморрилонит и другая кремниевая кислота природного происхожения;
- стеклянные волокна и материалы из стеклянных волокон (маты, веревки) или стеклянные микрошарики;
- оксиды металлов, такие как оксид цинка, оксид кальция, оксид магния, оксид алюминия;
- карбонаты металлов, такие как карбонат магния, карбонат кальция, карбонат цинка; гидроксиды металлов, такие как, например, гидроксид алюминия, гидроксид магния;
- сульфаты металлов, такие как сульфат кальция, сульфат бария;
- сажа: при этом применяемая сажа представляет собой пламенную сажу, канальную сажу, печную сажу, газовую сажу, термическую сажу, ацетиленовую сужу или полученную способом электрической дуги сажу, и обладает поверхностью BET 9 - 200 м2/г, например, SAF-, ISAF- LS-, ISAF-HM-, ISAF-LM-, ISAF-HS-, CF-, SCF-, HAF-LS-, HAF-, HAF-HS-, FF-HS-, SPF-, XCF-, FEF-LS-, FEF-, FEF-HS-, GPF-HS-, GPF-, APF-, SRF-LS-, SRF-LM-, SRF-HS-, SRF-HM- и MT-сажа или сажа согласно ASTM N 110-, N 219-, N 220-, N 231-, N 234-, N 242-, N 294-, N 326-, N 327-, N 330-, N 332-, N 339-, N 347-, N 351-, N 356-, N 358-, N 375-, N 472-, N 539-, N 550-, N 568-, N 650-, N 660-, N 754-, N 762-, N 765-, N 774-, N 787- и N 990.
- гели каучуков, в частности гели на основе BR, E-SBR и/или полихлоропренов с размером частиц от 5 до 1000 нм.
Предпочтительно в качестве наполнителей применяют высокодисперсную кремниевую кислоту и/или сажу.
Упомянутые наполнители можно применять индивидуально или в смеси. В особенно предпочтительном варианте осуществления композиция каучуков в качестве наполнителей содержит смесь из светлых наполнителей, таких как высокодисперсная кремниевая кислота, и сажи, при этом отношение в смеси светлых наполнителей к саже составляет от 0,01:1 до 50:1 предпочтительно от 0,05:1 до 20:1.
При этом наполнители применяют в количестве в области от 10 до 500 массовых частей по отношению к 100 массовым частям каучука. Предпочтительно наполнитель применяют в количестве от 20 до 200 массовых частей.
В другом варианте осуществления данного изобретения композиция каучуков содержит еще вспомогательные средства для каучуков, которые, например, улучшают перерабатываемость композиции каучуков, служат для сшивания композиции каучуков, улучшают физические свойства полученных из композиции каучуков по изобретению вулканизатов для особых областей применения, улучшают взаимодействие между каучуком и наполнителем или служат для связывания каучука с наполнителем.
Вспомогательные средства для каучуков представляют собой, например, отвердитель, такой как, например, сера или предоставляющие серу соединения, а также ускоритель реакции, средство, предотвращающее старение, термостабилизатор, средство для защиты от воздействия света, средство для защиты от воздействия озона, технологические добавки, пластификатор, средство, придающее клейкость, вспенивающее средство, красящие вещества, пигменты, воска, мягчитель, органические кислоты, силаны, замедлитель, оксиды металлов, масла-наполнители, такие как, например, DAE (дистиллированный ароматический экстракт), TDAE (очищенный дистиллированный ароматический экстракт), MES (сольват слабой экстракции), RAE (остаточный ароматический экстракт), TRAE (очищенный остаточный ароматический экстракт), нафтеновые и тяжелые нафтеновые масла, а также активаторы.
Общее количество вспомогательных средств для каучуков находится в области от 1 до 300 массовых частей, по отношению к 100 массовым частям всего каучука. Предпочтительно применяют вспомогательное средство для каучуков в количестве в области от 5 до 150 массовых частей.
Получение способной к вулканизации композиции каучуков может происходить одностадийным или многостадийным способом, при этом предпочтительно от 2 до 3 стадий смешения. Так, например, добавление серы и ускорителя можно производить на отдельной стадии смешивания, например, на вальцы смесителя, при этом температура предпочтительно находится в области от 30 до 90°C. Предпочтительно добавление серы и ускорителя происходит на последней стадии смешивания.
Для получения способной к вулканизации композиции каучуков пригодными устройствами являются, например, вальцовый смеситель, месильная машина, закрытый смеситель или экструдер-смеситель.
Таким образом, способная к вулканизации композиция каучуков, содержащая полимеры с функционализированными концевыми группами, которые имеют формулы (I) или (II), является следующим объектом данного изобретения.
Полимеры по изобретению или, соответственно, смеси каучуков сочетают низкую текучесть на холоде, хорошие динамические свойства и хорошую перерабатываемость.
Другим объектом данного изобретения является применение способной к вулканизации композиции каучуков по изобретению для получения вулканизатов каучука, в частности для получения шин, в частности протекторов шин, которые имеют особенно низкое сопротивление качению при высокой устойчивости против заноса на влажной дороге и стойкости к истиранию.
Способная к вулканизации композиция каучуков по изобретению также пригодна для получения формованных изделий, например для получения оболочки кабелей, шлангов, приводных ремней, транспортерных лент, покрытия валов, подошв ботинок, уплотнительных колец и амортизирующих элементов.
Следующие примеры служат для разъяснения данного изобретение, не ограничивая его.
Примеры
Пример 1a: Синтез не функционализированного сополимера стирола и бутадиена (сравнительный пример)
В 20 л реактор после продувки инертным газом загружали 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 8,6 ммоль 2,2-бис(2-тетрагидрофурил)пропана, а также 11,3 ммоль бутиллития и содержимое нагревали до 60°C. При перемешивании полимеризовали 25 минут при 60°C. Затем добавляли 11,3 ммоль цетилового спирта для обрывания анионных концов полимерных цепей, раствор каучука выгружали, стабилизировали с помощью добавления 3 г Irganox® 1520 (2,4-бис(октилтиометил)-6-метилфенол) и удаляли растворитель отгонкой с водяным паром. Комки каучука сушили при 65°C в вакууме.
Пример 1b: Синтез оканчивающегося карбоксильными группами сополимера стирола и бутадиена посредством преобразования с силалактоном (по изобретению)
Применяли способ, как в примере 1a. Однако вместо цетилового спирта добавляли эквимолярное к бутиллитию количество 2,2-диметил-1-окса-4-тиа-2-силациклогексан-6-она (в виде раствора в толуоле) и затем содержимое реактора 20 минут нагревали до 60°C.
Пример 1c: Синтез оканчивающегося карбоксильными группами сополимера стирола и бутадиена с третичной аминогруппой в начале цепи путем преобразования с силалактоном (по изобретению)
Применяли способ, как в примере 1b. Однако перед добавлением бутиллития добавляли эквимолярное к бутиллитию количество пирролидина.
Пример 1d: Синтез оканчивающегося гидроксильными группами сополимера стирола и бутадиена преобразованием с капролактоном (сравнительный пример)
Применяли способ, как в примере 1b. Однако вместо силалактона добавляли эквимолярное к бутиллитию количество ε-капролактона.
Пример 1e: Синтез оканчивающегося гидроксильными группами сополимера стирола и бутадиена преобразованием с 1-окса-2-силациклоалканом (сравнительный пример)
Применяли способ, как в примере 1b. Однако вместо силалактона добавляли эквимолярное к бутиллитию количество 2,2,4-триметил-1-окса-4-аза-2-силациклогексана (в виде раствора в гексане).
Свойства сополимеров стирола и бутадиена из примеров 1 a-e представлены в таблице 1.
Примеры 2 a-e: Композиции каучуков
Получали композиции каучуков для протекторов шин, которые содержат сополимеры стирола и бутадиена из примеров 1 a-e. Компоненты указаны в таблице 2. Композиции каучуков (без серы и ускорителя) получали в 1,5 л смесителе. Компоненты серу и ускоритель добавляли затем на вальцы смесителя при 40°C.
Примеры 3 a-e: Экструдированный профиль
Для оценки перерабатываемости композиций каучуков из примеров 2 a-e с помощью лабораторного экструдера при 120°C изготавливали экструдированный профиль (профиль Garvey) (экструдер Brabender PV 301 (16 мм), диаметр сопла 14,5 мм, насадка S08, частота вращения шнека 50 оборотов в минуту). Данные профили Garvey представлены на изображениях l/3 a-e.
Таблица 1
Свойства сополимеров стирола и бутадиена из примеров 1 a-e
Сополимер из примера Реагент для функционализации Содержание винилаа) [масс.%] Содержание
сиролаа)
[масс.%]
Tgb)
[°C]
Mp1c)
[кг/моль]
Mp2c)
[кг/моль]
коэффициент связис)
[%]
ML1+4d) [ME] Текучесть на холодее) [мг/мин]
1а сравнительный - 51,5 20,9 -23 280 - 0 42 21
1b по изобретению силалактон 50,8 21,8 -23 298 620 44 84 2
1с по изобретению силалктон 50,9 20,4 -24 283 449 38 78 2
1d сравнительный капролактон 51,8 22,3 -20 264 560 28 56 8
1e сравнительный 1-окса-2-силациклогексан 50,9 21,5 -23 256 - 0 37 25
a) Определение содержания винила и стирола с помощью FTIR
b) Определение температуры стеклования с помощью DSC
c) Определение пиков молекулярных масс MP1 и MP2, а также коэффициента связи с помощью GPC (PS-калибровка)
d) Определение вязкости по Муни при 100°C
e) Определение текучести на холоде при 50°C
Таблица 2
Компоненты композиции каучуков для протекторов шин (данные указаны в массовых частях на 100 массовых частей каучука)
Сравнительный пример 2а Пример по изобретению 2b Пример по изобретению 2c Пример по изобретению 2d Сравнительный пример 2е
Сополимер стирола и бутадиена из примера 1а 70 0 0 0 0
Сополимер стирола и бутадиена из примера 1b 0 70 0 0 0
Сополимер стирола и бутадиена из примера 1c 0 0 70 0 0
Сополимер стирола и бутадиена из примера 1d 0 0 0 70 0
Сополимер стирола и бутадиена из примера 1e 0 0 0 0 70
Полибутадиен с высоким содержанием цис-изомера (BUNATM CB24 от Lanxess Deutschland GmbH) 30 30 30 30 30
Кремниевая кислота (Ultrasil® 7000) 90 90 90 90 90
Сажа (Vulcan® J/N 375) 7 7 7 7 7
TDAE-масло (Vivatec 500) 36,3 36,3 36,3 36,3 36,3
Технологическая добавка (Aflux 37) 3 3 3 3 3
Стеариновая кислота (Edenor C 18 98-100) 1 1 1 1 1
Средство против старения (Vulkanox® 4020/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
Средство против старения (Vulkanox® HS/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
Оксид цинка (Zinkweiß Rotsiegel) 3 3 3 3 3
Воск (Antiflux 654) 2 2 2 2 2
Силан (Si 69® от Evonik) 7,2 7,2 7,2 7,2 7,2
Дифенилгуанидин (Rhenogran DPG-80) 2,75 2,75 2,75 2,75 2,75
Сульфенамид (Vulkacit® NZ/EGC от Lanxess Deutschland GmbH) 1,6 1,6 1,6 1,6 1,6
Сера (Mahlschwefel 90/95 Chancel) 1,6 1,6 1,6 1,6 1,6
Сульфонамид (Vulkalent® E/C) 0,2 0,2 0,2 0,2 0,2
Примеры 4 a-e: Свойства вулканизатов
Композиции каучуков для протекторов шин из примеров 2 a-e согласно таблице 2, 20 минут вулканизировали при 160°C. Свойства соответствующих вулканизатов приведены в таблице 3 в качестве примеров 4 a-e. Свойства вулканизированных образцов из сравнительного примера 4a с нефункционализированным сополимером стирола и бутадиена обозначены индексом 100. Все значения больше 100 в таблице 3 означают соответствующее процентное улучшение соответствующих испытываемых свойств.
Таблица 3
Свойства вулканизатов
Сравнительный пример 4а Пример по изобретению 4b Пример по изобретению 4c Пример по изобретению 4d Сравнительный пример 4е
Сополимер бутадиена и стирола
в вулканизате
Сополимер стирола и бутадиена из примера 1а Х
Сополимер стирола и бутадиена из примера 1b Х
Сополимер стирола и бутадиена из примера 1c Х
Сополимер стирола и бутадиена из примера 1d Х
Сополимер стирола и бутадиена из примера 1e Х
Свойства вулканизатов
tan δ при 0°C (динамическое затухание при 10 Гц) 100 116 118 109 115
tan δ при 60°C(динамическое затухание при 10 Гц) 100 113 131 109 117
Максимум tan δ(MTS-амплитуда развертки при 1 Гц, 60°C) 100 115 122 110 117
ΔG* (ΔG@0,5%- ΔG@15% из MTS-амплитуды развертки)
[МПа]
100 134 167 116 189
Эластичность по отскоку при 60°C 100 110 109 113 114
Износ (DIN 53516) [мм3] 100 121 116 114 113
Значение текучести на холоде каучуков является критерием текучести каучуков во время хранения. Профиль Garvey невулканизированной смеси каучуков служит для оценки перерабатываемости смеси каучуков. У вулканизированной смеси для протекторов шин эластичность по отскоку при 60°C, динамическое затухание tan δ при 60°C, максимум tan δ в амплитуде развертки, а также модуль разности ΔG* между самым маленьким и самым большим удлинением в амплитуде развертки являются индикаторами для сопротивления качению шин. Динамическое затухание tan δ при 0°C является индикатором для устойчивости шин против заноса на влажной дороге. DIN-износ является индикатором для износостойкости протекторов шины.
Как показано на изображениях l/3 a-e, все композиции каучуков для протекторов шин 2 a-e демонстрируют хорошую перерабатываемость (гладкий профиль Garvey 3 a-e). Однако, как видно из таблицы 1, только полимеры по изобретению из примеров 1b и 1c отличаются очень низким значением текучести на холоде. Из таблицы 3 следует, что вулканизированные смеси для протекторов шин 4b и 4c, которые содержат полимеры по изобретению 1b и 1c, а также вулканизированная смесь для протекторов шин 4e, которая содержит сравнительный полимер 1e, к тому же имеют особенно выгодные испытательные значения для сопротивления качению, устойчивости против заноса на влажной дороге и стойкости к истиранию.
Пример 5a: Синтез нефункционализированного сополимера стирола и бутадиена (сравнительный пример)
В 20 л реактор после продувки инертным газом загружали 8,5 кг гексана, 1185 г 1,3-бутадиена, 315 г стирола, 8,6 ммоль 2,2-бис(2-тетрагидрофурил)пропана, а также 9,5 ммоль бутиллития и содержимое нагревали до 60°C. При перемешивании полимеризовали 25 минут при 60°C. Затем добавляли 9,5 ммоль цетилового спирта для обрывания анионных концов полимерных цепей, раствор каучука выгружали, стабилизировали с помощью добавления 3 г Irganox® 1520 (2,4-бис(октилтиометил)-6-метилфенол) и удаляли растворитель отгонкой с водяным паром. Комки каучука сушили при 65°C в вакууме.
Пример 5b: Синтез оканчивающегося карбоксильными группами сополимера стирола и бутадиена преобразованием с силалактоном (по изобретению)
Применяли способ, как в примере 1b.
Пример 5c: Синтез оканчивающегося гидроксильными группами сополимера стирола и бутадиена преобразованием с капролактоном (сравнительный пример)
Применяли способ, как в примере 1d. Однако применяли 10 ммоль бутиллития и эквимолярное количество ε-капролактона.
Пример 5d: Синтез оканчивающегося гидроксильными группами сополимера стирола и бутадиена преобразованием с 1-окса-2-силациклоалканом (сравнительный пример)
Применяли способ, как в примере 1e. Однако применяли 9,5 ммоль бутиллития и эквимолярное количество 2,2,4-триметил-1-окса-4-аза-2-силациклогексана.
Пример 5e: Синтез оканчивающегося силанoм сополимера стирола и бутадиена преобразованием с гексаметилциклотрисилоксаном (сравнительный пример)
Применяли способ, как в примере 5d. Однако вместо 2,2,4-триметил-1-окса-4-аза-2-силациклогексана применяли эквимолярное к бутиллитию количество гексаметилциклотрисилоксана.
Свойства сополимеров стирола и бутадиена из примеров 5 a-e представлены в таблице 4.
Примеры 6 a-e: Композиции каучуков
Получали композиции каучуков для протекторов шин, которые содержат сополимеры стирола и бутадиена из примеров 5 a-e. Компоненты указаны в таблице 5. Композиции каучуков (без серы и ускорителя) получали в 1,5 л смесителе. Затем добавляли компоненты серу и ускоритель на вальцы смесителя при 40°C.
Примеры 7 a-e: Экструдированный профиль
Для оценки перерабатываемости композиций каучуков из примеров 6 a-e получали, как описано выше, с помощью лабораторного экструдера при 120°C экструдированный профиль (профиль Garvey). Изображения данных профилей Garvey представлены на изображениях l/7 a-e.
Таблица 4
Свойства сополимеров стирола и бутадиена из примеров 5 a-d
Сополимер из примера Реагент для функционализации Содержание винилаа) [масс.%] Содержание сиролаа) [масс.%] Tgb) [°C] Mp1c) [кг/моль] Mp2c) [кг/моль] коэффициент
связис) [%]
ML1+4d) [ME] Текучесть на холодее) [мг/мин]
5а сравнительный - 50,1 20,0 -26 397 - 0 78 9
5b по изобретению силалактон 50,7 21,2 -22 260 534 61 88 0
5с сравнительный кпролактон 50,4 21,9 -22 366 791 27 87 2
5d сравнительный 1-окса-2-силациклогексан 50,1 20,8 -25 364 - 0 81 6
5e сравнительный Гексаметилциклотрисилоксан 51,6 21,7 -21 368 - 0 80 6
a) Определение содержания винила и стирола с помощью FTIR
b) Определение температуры стеклования с помощью DSC
c) Определение пиков молекулярных масс MP1 и MP2, а также коэффициента связи с помощью GPC (PS-калибровка)
d) Определение вязкости по Муни при 100°C
e) Определение текучести на холоде при 5°C
Таблица 5
Компоненты композиции каучуков для протекторов шин (данные указаны в массовых частях на 100 массовых частей каучука)
Сравнительный пример 6а Пример по изобретению 6b Сравнительный пример 6c Сравнительный пример 6d Сравнительный пример 6е
Сополимер стирола и бутадиена из примера 5а 70 0 0 0 0
Сополимер стирола и бутадиена из примера 5b 0 70 0 0 0
Сополимер стирола и бутадиена из примера 5c 0 0 70 0 0
Сополимер стирола и бутадиена из примера 5d 0 0 0 70 0
Сополимер стирола и бутадиена из примера 5e 0 0 0 0 70
Полибутадиен с высоким содержанием цис-изомера (BUNATM CB24 от Lanxess Deutschland GmbH) 30 30 30 30 30
Кремниевая кислота (Ultrasil® 7000) 90 90 90 90 90
Сажа (Vulcan® J/N 375) 7 7 7 7 7
TDAE-масло (Vivatec 500) 36,3 36,3 36,3 36,3 36,3
Технологическая добавка (Aflux 37) 3 3 3 3 3
Стеариновая кислота (Edenor C 18 98-100) 1 1 1 1 1
Средство против старения (Vulkanox® 4020/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
Средство против старения (Vulkanox® HS/LG от Lanxess Deutschland GmbH) 2 2 2 2 2
Оксид цинка (Zinkweiß Rotsiegel) 3 3 3 3 3
Воск (Antiflux 654) 2 2 2 2 2
Силан (Si 69® от Evonik) 7,2 7,2 7,2 7,2 7,2
Дифенилгуанидин (Rhenogran DPG-80) 2,75 2,75 2,75 2,75 2,75
Сульфенамид (Vulkacit® NZ/EGC от Lanxess Deutschland GmbH) 1,6 1,6 1,6 1,6 1,6
Сера (Mahlschwefel 90/95 Chancel) 1,6 1,6 1,6 1,6 1,6
Сульфонамид (Vulkalent® E/C) 0,2 0,2 0,2 0,2 0,2
Примеры 8 a-d: Свойства вулканизатов
Композиции каучуков для протекторов шин из примеров 6 a-e согласно таблице 5 20 минут вулканизировали при 160°C. Свойства соответствующих вулканизатов представлены в таблице 6 в качестве примеров 8 a-e. Свойства вулканизированных образцов из сравнительного примера 6a с нефункционализированным сополимером стирола и бутадиена обозначены индексом 100. Все значения больше 100 в таблице 6 означают соответствующее процентное улучшение соответствующих испытываемых свойств.
Таблица 6
Свойства вулканизатов
Сравнительный пример 8а Пример по изобретению 8b Сравнительный пример 8c Сравнительный пример 8d Сравнительный пример 8е
Сополимер бутадиена и стирола
в вулканизате
Сополимер стирола и бутадиена из примера 5а Х
Сополимер стирола и бутадиена из примера 5b Х
Сополимер стирола и бутадиена из примера 5c Х
Сополимер стирола и бутадиена из примера 5d Х
Сополимер стирола и бутадиена из примера 5e Х
Свойства вулканизатов
tan δ при 0°C (динамическое затухание при 10 Гц) 100 120 109 102 111
tan δ при 60°C(динамическое затухание при 10 Гц) 100 113 115 122 112
Максимум tan δ(MTS-амплитуда развертки при 1 Гц, 60°C) 100 108 100 110 112
ΔG* (ΔG@0,5%- ΔG@15% из MTS-амплитуды развертки) [МПа] 100 125 107 150 136
Эластичность по отскоку при 60°C 100 107 110 109 105
Износ (DIN 53516) [мм3] 100 117 103 120 110
Как видно из таблицы 4, все полимеры из примеров 5 a-e отличаются низкими значениями текучести на холоде. Как видно из изображений l/7 a-e, композиции каучуков для протекторов шин 6a, 6b и 6c, которые содержат полимеры из примеров 5a (сравнительный), 5b (по изобретению) и 5c (сравнительный), имеют хорошую перерабатываемость (гладкий профиль Garvey 7a, 7b, 7c). Композиции каучуков для протекторов шин 6d и 6e, которые содержат сравнительные полимеры 5d и 5e, напротив, обладают плохой перерабатываемостью (шероховатый профиль Garvey 7d, 7e). Из таблицы 6 следует, что вулканизированная смесь для протекторов шин 8b, которая содержит полимер 5b, а также вулканизированные смеси для протекторов шин 8d и 8e, содержащие сравнительные полимеры 5d и 5e, имеют особенно выгодные испытательные значения для сопротивления качению, устойчивости против заноса на влажной дороге и стойкости к истиранию.
Примеры показывают, что только полимеры по изобретению сочетают низкие значения текучести на холоде, хорошую перерабатываемость соответствующих композиций для протекторов шин и хорошие свойства протекторов шин из соответствующих вулканизатов.
Полимеры по изобретению 1b и 1c в серии испытаний 1 a-e показали значительно более высокое значение ML по сравнению со сравнительными полимерами из этой серии. Также сравнительные полимеры серии испытаний 5a, 5c, 5d и 5e имеют высокие значения ML и, таким образом, низкие значения текучести на холоде. Однако данные каучуков с данными сравнительными полимерами в серии испытаний 5 a-e показали худшие динамические свойства (5a, 5c) или плохую перерабатываемость (5d, 5e). Таким образом, только полимеры по изобретению или, соответственно, смеси каучуков смеси сочетают низкую текучесть на холоде, хорошие динамические свойства и хорошую перерабатываемость.
Эктрудированные профили 3 a-e и 7 a-e из композиций каучуков для протекторов шин 2 a-e и 6 a-e представлены на фиг. 1.

Claims (53)

1. Смесь полимеров для получения формованных изделий, содержащая:
a) полимеры с функционализированными концевыми группами, и
b) димеры, имеющие один или несколько структурных элементов, производных от силалактонов формулы (III)
Figure 00000008
,
предпочтительно имеющие структурный элемент формулы (IV),
Figure 00000009
,
где данные полимеры с функционализированными концевыми группами на концах полимерных цепей имеют содержащие силаны карбоксильные группы формулы (I),
Figure 00000010
при этом
R1, R2 могут быть одинаковыми или различаться и представляют собой группы алкил-,
R3, R4 представляют собой H,
A представляет собой двухвалентный органический радикал, который наряду с C и H содержит атом S,
причем данные полимеры представляют собой диеновые полимеры, предпочтительно полибутадиен или полиизопрен, или диеновые сополимеры, полученные с помощью сoполимеризации диенов с винилароматическими мономерами, предпочтительно сополимеры бутадиена и изопрена, сополимеры бутадиена и стирола, сополимеры изопрена и стирола или тройные сополимеры бутадиена, изопрена и стирола.
2. Смесь полимеров для получения формованных изделий, содержащая:
a) полимеры с функционализированными концевыми группами, и
b) димеры, имеющие один или несколько структурных элементов, производных от силалактонов формулы (III)
Figure 00000008
,
предпочтительно имеющие структурный элемент формулы (IV),
Figure 00000009
,
где данные концевые группы полимеров имеют вид карбоксилaтов формулы (II):
Figure 00000011
при этом R1, R2 могут быть одинаковыми или различаться и представляют собой группы алкил-,
R3, R4 представляют собой H,
A представляет собой двухвалентный органический радикал, который наряду с C и H содержит один или несколько атом S,
n представляет собой целой число от 1 до 4,
M представляет собой метал или полуметалл с валентностью от 1 до 4, предпочтительно Li, Na, K, Mg, Ca, Zn, Fe, Co, Ni, Al, Nd, Ti, Sn, Si, Zr, V, Mo или W,
причем данные полимеры представляют собой диеновые полимеры, предпочтительно полибутадиен или полиизопрен, или диеновые сополимеры, полученные с помощью сoполимеризации диенов с винилароматическими мономерами, предпочтительно сополимеры бутадиена и изопрена, сополимеры бутадиена и стирола, сополимеры изопрена и стирола или тройные сополимеры бутадиена, изопрена и стирола.
3. Смесь полимеров по п. 1 или 2, отличающаяся тем, что полимер получают преобразованием реакционно-способных концов полимерных цепей с одним или несколькими функционализирующими реагентами в форме силалактонов.
4. Смесь полимеров по п. 3, отличающаяся тем, что силалактоны представляют собой соединения формулы (III),
Figure 00000008
где R1, R2 могут быть одинаковыми или различаться и представляют собой группы алкил-,
R3, R4 представляют собой H,
А представляет собой двухвалентный органический радикал, который наряду с C и H содержит атом S.
5. Смесь полимеров по любому из пп. 1-4, отличающаяся тем, что полимеры имеют среднюю молекулярную массу (среднечисловую, Mn) от 10000 до 2000000 г/моль, предпочтительно от 100000 до 1000000 г/моль.
6. Смесь полимеров по п. 5, отличающаяся тем, что полимеры имеют температуру стеклования от -110°C до +20°C, предпочтительно от -110°C до 0°C.
7. Применение силалактонов в качестве функционализирующих реагентов для получения полимеров с функционализированными концевыми группами для полимерных смесей по любому из пп. 1-6, где силалактоны представляют собой соединения формулы (III):
Figure 00000008
где R1, R2 могут быть одинаковыми или различаться и представляют собой группы алкил-,
R3, R4 представляют собой H,
А представляет собой двухвалентный органический радикал, который наряду с C и H содержит атом S.
8. Способ получения полимеров с функционализированными концевыми группами для полимерных смесей по любому из пп. 1-6, отличающийся тем, что один или несколько силалактонов добавляют в стехиометрическом количестве, в избытке или в недостатке, чтобы получить полимеры, в частности после окончания полимеризации, с образованными из силалактонов реакционно-способными концами полимерных цепей, где полимеры представляют собой диеновые полимеры, предпочтительно полибутадиен или полиизопрен, или диеновые сополимеры, полученные с помощью сoполимеризации диенов с винилароматическими мономерами, предпочтительно сополимеры бутадиена и изопрена, сополимеры бутадиена и стирола, сополимеры изопрена и стирола или тройные сополимеры бутадиена, изопрена и стирола, причем
силалактоны представляют собой соединения формулы (III):
Figure 00000008
где R1, R2 могут быть одинаковыми или различаться и представляют собой группы алкил-,
R3, R4 представляют собой H,
А представляет собой двухвалентный органический радикал, который наряду с C и H содержит атом S.
9. Способ по п. 8, отличающийся тем, что количество реагентов для функционализации составляет от 0,005 до 2 масс.%, предпочтительно от 0,01 до 1 масс.%, по отношению к количеству полимера.
10. Применение смеси полимеров по любому из пп. 1-6 для получения способной к вулканизации композиции каучуков.
11. Способная к вулканизации композиция каучуков, содержащая
a) смесь полимеров по любому из пп. 1-6, а также
b) средства, предотвращающее старение, масла, наполнители, каучуки и/или другие вспомогательные средства для каучуков.
12. Применение способной к вулканизации композиции каучуков по п. 11 для получения шин, в частности протекторов шин.
13. Формованные изделия, которые представляют собой шины, полученные из способной к вулканизации композиции каучуков по п. 11.
RU2015150061A 2013-04-24 2014-04-11 Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью RU2658908C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13165215.8 2013-04-24
EP13165215.8A EP2796485A1 (de) 2013-04-24 2013-04-24 Cold Flow reduzierte Polymere mit gutem Verarbeitungsverhalten
PCT/EP2014/057426 WO2014173707A1 (de) 2013-04-24 2014-04-11 Cold flow reduzierte polymere mit gutem verarbeitungsverhalten

Publications (2)

Publication Number Publication Date
RU2015150061A RU2015150061A (ru) 2017-05-29
RU2658908C2 true RU2658908C2 (ru) 2018-06-26

Family

ID=48143214

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015150061A RU2658908C2 (ru) 2013-04-24 2014-04-11 Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью

Country Status (16)

Country Link
US (1) US9969833B2 (ru)
EP (2) EP2796485A1 (ru)
JP (1) JP6212202B2 (ru)
KR (1) KR102170842B1 (ru)
CN (1) CN105143315B (ru)
BR (1) BR112015026744B1 (ru)
ES (1) ES2758749T3 (ru)
HK (1) HK1222188A1 (ru)
HU (1) HUE046634T2 (ru)
MX (1) MX366116B (ru)
PL (1) PL2989145T3 (ru)
RU (1) RU2658908C2 (ru)
SA (1) SA515370031B1 (ru)
SG (1) SG11201508456PA (ru)
TW (1) TWI659999B (ru)
WO (1) WO2014173707A1 (ru)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2796471A1 (de) * 2013-04-24 2014-10-29 LANXESS Deutschland GmbH Silanhaltige carboxyterminierte Polymere
US10730985B2 (en) 2016-12-19 2020-08-04 Bridgestone Corporation Functionalized polymer, process for preparing and rubber compositions containing the functionalized polymer
EP3724244B1 (en) 2017-12-15 2024-02-21 Bridgestone Corporation Functionalized polymer, process for preparing and rubber compositions containing the functionalized polymer
WO2022064031A1 (en) 2020-09-28 2022-03-31 Arlanxeo Deutschland Gmbh Partially hydrogenated diene polymers
CN112285048A (zh) * 2020-10-29 2021-01-29 广东电网有限责任公司电力科学研究院 一种交联聚乙烯电缆绝缘老化状态表征方法及系统
KR20240042433A (ko) 2021-08-17 2024-04-02 아란세오 도이치란드 게엠베하 관능화된 중합체
CN117897280A (zh) 2021-08-27 2024-04-16 阿朗新科德国有限责任公司 包含有机酸和用包含羧酸基团的单元官能化的二烯橡胶的稳定聚合物组合物
WO2023104784A1 (en) 2021-12-07 2023-06-15 Arlanxeo Deutschland Gmbh Diene rubbers prepared with unsaturated siloxane-based coupling agents
WO2023152146A1 (en) 2022-02-11 2023-08-17 Arlanxeo Deutschland Gmbh Modified diene rubbers
JP2023129249A (ja) * 2022-03-04 2023-09-14 住友ゴム工業株式会社 タイヤ
WO2023193943A1 (en) 2022-04-08 2023-10-12 Arlanxeo Deutschland Gmbh Branched modified diene rubbers
WO2023217604A1 (en) 2022-05-12 2023-11-16 Arlanxeo Deutschland Gmbh Tire compositions comprising functionalized rubbers based on ethylene-copolymers
WO2023227763A1 (en) 2022-05-27 2023-11-30 Arlanxeo Deutschland Gmbh Rubber compounds of functionalized conjugated diene rubbers and silica fillers
WO2023247719A1 (en) * 2022-06-23 2023-12-28 Arlanxeo Deutschland Gmbh Alpha-omega-functionalized polymers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU200158A1 (ru) *
US4033731A (en) * 1973-06-13 1977-07-05 Rhone Poulenc S.A. Partially crosslinked silalactone polymers, their preparation and their use
US4788313A (en) * 1983-12-23 1988-11-29 Dow Corning Corporation Silalactones and methods for their preparation and use
RU2299894C2 (ru) * 2002-05-09 2007-05-27 Родиа Шими Кремнийорганическое соединение с дикарбоксигруппой и их применение
JP2008069274A (ja) * 2006-09-14 2008-03-27 Tosoh Corp ポリアリーレンスルフィド組成物

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635109A (en) 1949-06-30 1953-04-14 Dow Corning Production of silalactones
US3244664A (en) 1960-10-24 1966-04-05 Phillips Petroleum Co Silicon-containing polymers
US3242129A (en) 1963-03-11 1966-03-22 Phillips Petroleum Co Carboxy terminated polymers as processing aids for polybutadiene
DE2653144C2 (de) 1976-11-23 1984-12-20 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung von modifiziertem Polybutadien
GB1597500A (en) 1977-12-29 1981-09-09 Shell Int Research Polymers
US4417029A (en) 1981-08-03 1983-11-22 Atlantic Richfield Company Derivatization of star-block copolymers
US4465809A (en) 1982-11-05 1984-08-14 Phillips Petroleum Company Conversion of polymer lithium to polymer carboxylate
US4616069A (en) 1984-10-26 1986-10-07 Nippon Zeon Co., Ltd. Process for making diene polymer rubbers
US4604478A (en) * 1985-05-17 1986-08-05 Dow Corning Corporation Method for silalactone preparation and use
JPS6210137A (ja) * 1985-07-09 1987-01-19 Nippon Oil & Fats Co Ltd 分子の両末端にペルオキシエステル基を有するポリシロキサン化合物
GB9002804D0 (en) 1990-02-08 1990-04-04 Secr Defence Anionic polymerisation
US5665829A (en) 1990-02-08 1997-09-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Gt. Britain & Northern Ireland Process for the polymerization of olefinic-containing monomers employing anionic initiators
JPH05230216A (ja) * 1992-02-24 1993-09-07 Tomoegawa Paper Co Ltd ブロック共重合体およびその製造方法
US5332810A (en) 1992-10-02 1994-07-26 Bridgestone Corporation Solubilized anionic polymerization initiator and preparation thereof
US6025450A (en) 1992-10-02 2000-02-15 Bridgestone Corporation Amine containing polymers and products therefrom
US5625017A (en) 1992-10-19 1997-04-29 Bridgestone Corporation Process for preparing a polymer using lithium initiator prepared by in situ preparation
CA2108594C (en) 1992-10-19 2000-10-17 Koichi Morita Process for preparing a polymer using lithium initiator prepared by in situ preparation
DE4240274B4 (de) * 1992-12-01 2004-02-12 Minnesota Mining And Manufacturing Co., Saint Paul Polysiloxane mit fluoraliphaten- und carboxylhaltigen terminalen Gruppen, ihre Herstellung und ihre Verwendung bei der Behandlung von Fasersubstraten
DE4244951C2 (de) * 1992-12-01 1998-08-06 Minnesota Mining & Mfg Fasersubstrat mit Wasser-, Öl-, Schmutzabweisungsvermögen und Weichgriffigkeit
US5416168A (en) 1994-03-31 1995-05-16 Shell Oil Company Protected functional initiators for making terminally functionalized polymers
US5496940A (en) 1995-02-01 1996-03-05 Bridgestone Corporation Alkyllithium compounds containing cyclic amines and their use in polymerization
FR2740778A1 (fr) 1995-11-07 1997-05-09 Michelin & Cie Composition de caoutchouc a base de silice et de polymere dienique fonctionalise ayant une fonction silanol terminale
JP3622803B2 (ja) 1995-11-28 2005-02-23 日本ゼオン株式会社 ゴム組成物
EP1000971B1 (de) 1998-11-16 2003-10-15 Bayer Aktiengesellschaft Carboxylgruppen-haltige Lösungskautschuke enthaltende Kautschukmischungen
ATE281473T1 (de) 1999-05-05 2004-11-15 Michelin Soc Tech Verfahren zur herstellung von polymeren mit mindestens einer doppelbindung und carbonylgruppen entlang der kette
DE602004013672D1 (de) * 2003-05-22 2008-06-26 Jsr Corp Verfahren zur Herstellung eines modifizierten, konjugierten Dienpolymers und dieses enthaltende Elastomerzusammensetzung
US20050203251A1 (en) 2004-03-11 2005-09-15 Sumitomo Chemical Company, Limited Process for producing modified diene polymer rubber
JP5037244B2 (ja) * 2006-07-10 2012-09-26 ハイデルベルガー ドルツクマシーネン アクチエンゲゼルシヤフト 機械における電気駆動装置の、制御されたエネルギー消費
JP5306586B2 (ja) 2006-09-07 2013-10-02 旭化成ケミカルズ株式会社 シクロヘキセンの製造方法
US8063165B2 (en) 2007-06-18 2011-11-22 Bridgestone Corporation Functional polymers prepared with sulfur-containing initiators
DE102007044175A1 (de) 2007-09-15 2009-03-19 Lanxess Deutschland Gmbh Funktionalisierte Hochvinyl-Dienkautschuke
EP2452951A1 (de) 2010-11-16 2012-05-16 LANXESS Deutschland GmbH Silanhaltige carbinolterminierte Polymere
EP2796471A1 (de) * 2013-04-24 2014-10-29 LANXESS Deutschland GmbH Silanhaltige carboxyterminierte Polymere

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU200158A1 (ru) *
US4033731A (en) * 1973-06-13 1977-07-05 Rhone Poulenc S.A. Partially crosslinked silalactone polymers, their preparation and their use
US4788313A (en) * 1983-12-23 1988-11-29 Dow Corning Corporation Silalactones and methods for their preparation and use
RU2299894C2 (ru) * 2002-05-09 2007-05-27 Родиа Шими Кремнийорганическое соединение с дикарбоксигруппой и их применение
JP2008069274A (ja) * 2006-09-14 2008-03-27 Tosoh Corp ポリアリーレンスルフィド組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Meijerink J.I. et al. The influence of siloxane modifiers on the thermal expansion coefficient of epoxy resins. Polymer, 1994, vol.35, No.1, pp.179-186. *

Also Published As

Publication number Publication date
SG11201508456PA (en) 2015-11-27
ES2758749T3 (es) 2020-05-06
PL2989145T3 (pl) 2020-04-30
JP2016518493A (ja) 2016-06-23
RU2015150061A (ru) 2017-05-29
EP2989145A1 (de) 2016-03-02
MX366116B (es) 2019-06-27
TWI659999B (zh) 2019-05-21
TW201504321A (zh) 2015-02-01
HUE046634T2 (hu) 2020-03-30
CN105143315B (zh) 2018-01-09
MX2015014854A (es) 2016-03-09
HK1222188A1 (zh) 2017-06-23
SA515370031B1 (ar) 2017-11-22
WO2014173707A1 (de) 2014-10-30
BR112015026744B1 (pt) 2020-07-21
US9969833B2 (en) 2018-05-15
JP6212202B2 (ja) 2017-10-11
EP2989145B1 (de) 2019-10-09
BR112015026744A2 (pt) 2017-07-25
KR102170842B1 (ko) 2020-10-27
CN105143315A (zh) 2015-12-09
US20160083495A1 (en) 2016-03-24
EP2796485A1 (de) 2014-10-29
KR20160004336A (ko) 2016-01-12

Similar Documents

Publication Publication Date Title
RU2658908C2 (ru) Полимеры со сниженной текучестью на холоде с хорошей перерабатываемостью
RU2661898C2 (ru) Силансодержащие полимеры с карбоксильными концевыми группами
KR101716539B1 (ko) 실란을 함유하는 메탄올-말단 중합체
RU2632425C2 (ru) Аминосодержащие полимеры с концевыми карбинольными группами
JP6321630B2 (ja) アリルアミン含有カルビノール末端ポリマー
US10421825B2 (en) Methanol-terminated polymers containing ether
CN114008087B (zh) 改性剂和使用该改性剂制备的改性共轭二烯聚合物
US20020045699A1 (en) Solution rubbers having nonpolar side groups
JPWO2014088092A1 (ja) ジエン系ゴム組成物
KR102039128B1 (ko) 변성제, 이의 제조방법 및 이를 포함하는 변성 공액디엔계 중합체
RU2596231C2 (ru) Триалкилсилилокси-терминированные полимеры
KR20230092893A (ko) 황-함유 말단기를 갖는 중합체
KR101784692B1 (ko) 말단 변성 폴리머의 제조법
JP3972656B2 (ja) 変性ジエン系重合体ゴム、その製造方法及びゴム組成物
JP2015086307A (ja) 共役ジエン系ゴム組成物およびゴム架橋物
JP3972672B2 (ja) 変性ジエン系重合体ゴム、その製造方法及びゴム組成物
KR20220071737A (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물