WO2010026927A1 - 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物 - Google Patents

半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物 Download PDF

Info

Publication number
WO2010026927A1
WO2010026927A1 PCT/JP2009/065069 JP2009065069W WO2010026927A1 WO 2010026927 A1 WO2010026927 A1 WO 2010026927A1 JP 2009065069 W JP2009065069 W JP 2009065069W WO 2010026927 A1 WO2010026927 A1 WO 2010026927A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
photosensitive resin
epoxy resin
general formula
Prior art date
Application number
PCT/JP2009/065069
Other languages
English (en)
French (fr)
Inventor
蔵渕 和彦
吉野 利純
片木 秀行
大川 昌也
好章 布施
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to KR1020107028599A priority Critical patent/KR101323928B1/ko
Priority to CN200980134218.3A priority patent/CN102138104B/zh
Priority to JP2010527771A priority patent/JP4900510B2/ja
Priority to US13/062,038 priority patent/US9075307B2/en
Publication of WO2010026927A1 publication Critical patent/WO2010026927A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0385Macromolecular compounds which are rendered insoluble or differentially wettable using epoxidised novolak resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Definitions

  • the present invention relates to a photosensitive resin composition for a protective film of a printed wiring board for a semiconductor package.
  • a permanent mask resist (protective film) is formed on a printed wiring board.
  • This permanent mask resist has a role of preventing the solder from adhering to unnecessary portions of the conductor layer of the printed wiring board in the process of flip chip mounting the semiconductor element on the printed wiring board via solder. Further, the permanent mask resist has a role of preventing corrosion of the conductor layer and maintaining electrical insulation between the conductor layers when the printed wiring board is used.
  • thermosetting resin paste is screen printed except for a rigid wiring board, an IC chip, an electronic component, or an LCD panel and a connection wiring pattern portion,
  • a permanent mask resist is formed by thermosetting (see, for example, Patent Document 1).
  • a semiconductor element is flip-chip mounted on the semiconductor package substrate via solder.
  • Such a photosensitive resin composition that can be easily removed is used as a permanent mask resist (see, for example, Patent Document 2).
  • JP 2003-198105 A Japanese Patent Laid-Open No. 11-240930
  • the alkali development type photosensitive resin composition still has a problem in terms of durability. That is, chemical resistance, water resistance, heat resistance, moist heat resistance and the like are inferior to those of conventional thermosetting type and solvent developing type. This is because the alkali-developable photosensitive resin composition contains a hydrophilic group as a main component so that alkali development is possible, and chemicals, water, water vapor, and the like easily permeate. In particular, in semiconductor packages such as BGA and CSP, resistance to PCT (pressure cooker resistance), which should be referred to as moisture and heat resistance, is necessary. The problem is that the adhesion between the underfill material filled between the solder resist and the solder resist and the cured film as the permanent mask resist is greatly reduced.
  • PCT pressure cooker resistance
  • the present invention has been made in view of the above-described problems of the prior art, and has excellent adhesion between an underfill material and a cured film that is a permanent mask resist even after a long-time PCT resistance test. It aims at providing the photosensitive resin composition for protective films of the printed wiring board for packages.
  • the present invention provides (A) an acid-modified vinyl group-containing epoxy resin, (B) a phenolic compound, and (C) a compound having at least one ethylenically unsaturated group in the molecule;
  • the photosensitive resin composition for protective films of the printed wiring board for semiconductor packages containing (D) a photoinitiator and (E) inorganic fine particles is provided.
  • the photosensitive resin composition of the present invention is very useful as a photosensitive resin composition for a protective film of a printed wiring board for semiconductor packages.
  • the (B) phenol compound improves the adhesion between the underfill material and the cured film that is a permanent mask resist even after a long-time PCT resistance test.
  • a compound represented by the following general formula (1) is preferable.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 to 4
  • n represents an integer of 1 to 4
  • A represents an n-valent organic group.
  • m and / or n is 2 or more, a plurality of R 1 may be the same or different.
  • A is 2 to 4 from the viewpoint of further improving the adhesion between the underfill material and the cured film as the permanent mask resist even after a long-time PCT resistance test. It is preferably a monovalent hydrocarbon group having 1 to 5 carbon atoms, a trivalent organic group represented by the following general formula (2), or a trivalent organic group represented by the following general formula (3). . From the same viewpoint, in the general formula (1), at least one R 1 is preferably a tert-butyl group.
  • R 2 represents an alkyl group having 1 to 5 carbon atoms, and t represents an integer of 1 to 3.
  • the (A) acid-modified vinyl group-containing epoxy resin is represented by the following general formula (4) from the viewpoint of being capable of alkali development and being excellent in resolution and adhesiveness.
  • Novolak type epoxy resin bisphenol type epoxy resin represented by the following general formula (5), salicylaldehyde type epoxy resin represented by the following general formula (6), and the following general formula (7) or (8)
  • a resin obtained by reacting a saturated or unsaturated group-containing polybasic acid anhydride (c) is preferred.
  • R 11 represents a hydrogen atom or a methyl group
  • Y 1 represents a hydrogen atom or a glycidyl group
  • n 1 represents an integer of 1 or more.
  • a plurality of R 11 and Y 1 may be the same or different. However, at least one Y 1 represents a glycidyl group.
  • R 12 represents a hydrogen atom or a methyl group
  • Y 2 represents a hydrogen atom or a glycidyl group
  • n2 represents an integer of 1 or more.
  • a plurality of R 12 may be the same or different.
  • Y 2 existing in plural numbers may be the same or different.
  • Y 3 represents a hydrogen atom or a glycidyl group
  • n3 is an integer of 1 or more.
  • a plurality of Y 3 may be the same or different. However, at least one Y 3 represents a glycidyl group.
  • R 13 represents a hydrogen atom or a methyl group
  • Y 4 and Y 5 each independently represent a hydrogen atom or a glycidyl group.
  • Two R 13 may be the same or different. However, at least one of Y 4 and Y 5 represents a glycidyl group.
  • R 14 represents a hydrogen atom or a methyl group, respectively Y 6 and Y 7 are independently a hydrogen atom or a glycidyl group. Two R 14 may be the same or different. However, at least one of Y 6 and Y 7 represents a glycidyl group.
  • the content of the inorganic fine particles (E) is preferably 15 to 80% by mass based on the total solid content of the photosensitive resin composition.
  • the photosensitive resin composition of the present invention preferably further contains (F) a curing agent.
  • a curing agent By containing a hardening
  • the photosensitive resin composition of the present invention further contains (G) an elastomer.
  • G By containing an elastomer, the flexibility of the cured film formed from the photosensitive resin composition, the adhesiveness with the underfill material, and the like can be further improved.
  • a printed wiring board for a semiconductor package has excellent adhesion between an underfill material and a cured film that is a permanent mask resist and excellent solder heat resistance even after a long-time PCT resistance test.
  • a photosensitive resin composition for a protective film can be provided.
  • (meth) acryl means acryl and methacryl corresponding thereto
  • (meth) acrylate means acrylate and methacrylate corresponding thereto.
  • the photosensitive resin composition for a protective film of a printed wiring board for a semiconductor package includes (A) an acid-modified vinyl group-containing epoxy resin (hereinafter sometimes referred to as “component (A)”), and (B) a phenolic resin.
  • component (B) an acid-modified vinyl group-containing epoxy resin
  • component (C) a compound having at least one ethylenically unsaturated group in the molecule
  • component (D) A photopolymerization initiator (hereinafter, sometimes referred to as “component (D)”)
  • component (E) inorganic fine particles
  • A As an acid-modified vinyl group-containing epoxy resin, for example, a resin obtained by modifying an epoxy resin with a vinyl group-containing monocarboxylic acid can be used.
  • a novolac type epoxy represented by the following general formula (4) Resin, bisphenol type epoxy resin represented by the following general formula (5), salicylaldehyde type epoxy resin represented by the following general formula (6), and repetition represented by the following general formula (7) or (8)
  • a resin (A ′) obtained by reacting at least one epoxy resin (a) selected from the group consisting of bisphenol-type novolak resins having units with a vinyl group-containing monocarboxylic acid (b) Is preferred.
  • R 11 represents a hydrogen atom or a methyl group
  • Y 1 represents a hydrogen atom or a glycidyl group
  • n 1 represents an integer of 1 or more.
  • a plurality of R 11 and Y 1 may be the same or different. However, at least one Y 1 represents a glycidyl group.
  • R 12 represents a hydrogen atom or a methyl group
  • Y 2 represents a hydrogen atom or a glycidyl group
  • n2 represents an integer of 1 or more.
  • a plurality of R 12 may be the same or different.
  • Y 2 existing in plural numbers may be the same or different.
  • Y 3 represents a hydrogen atom or a glycidyl group
  • n3 is an integer of 1 or more.
  • a plurality of Y 3 may be the same or different. However, at least one Y 3 represents a glycidyl group.
  • R 13 represents a hydrogen atom or a methyl group
  • Y 4 and Y 5 each independently represent a hydrogen atom or a glycidyl group.
  • Two R 13 may be the same or different. However, at least one of Y 4 and Y 5 represents a glycidyl group.
  • R 14 represents a hydrogen atom or a methyl group, respectively Y 6 and Y 7 are independently a hydrogen atom or a glycidyl group. Two R 14 may be the same or different. However, at least one of Y 6 and Y 7 represents a glycidyl group.
  • the resin (A ′) has a hydroxyl group formed by an addition reaction between the epoxy group of the epoxy resin (a) and the carboxyl group of the vinyl group-containing monocarboxylic acid (b).
  • Examples of the novolak type epoxy resin represented by the general formula (4) include a phenol novolak type epoxy resin and a cresol novolak type epoxy resin. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol novolak resin, a cresol novolak resin and epichlorohydrin by a known method.
  • epoxy resin (a) a novolac type epoxy resin represented by the general formula (4) is preferable from the viewpoint of excellent process tolerance and improved solvent resistance.
  • Examples of the phenol novolak type epoxy resin or cresol novolak type epoxy resin represented by the general formula (4) include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638, and YDPN- 602 (above, manufactured by Toto Kasei Co., Ltd., trade name), DEN-431, DEN-439 (above, made by Dow Chemical Co., Ltd., trade name), EOCN-120, EOCN-102S, EOCN-103S, EOCN- 104S, EOCN-1012, EOCN-1025, EOCN-1027, BREN (above, Nippon Kayaku Co., Ltd., trade name), EPN-1138, EPN-1235, EPN-1299 (above, Ciba Specialty Chemicals ( Product name), N-730, N-770, N 865, N-665, N-673, VH-4150, VH-4240 (or more,
  • Y 2 is a glycidyl group
  • the bisphenol A type epoxy resin and the bisphenol F type epoxy resin can be obtained, for example, by reacting the hydroxyl group of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the following general formula (9) with epichlorohydrin. it can.
  • R 12 represents a hydrogen atom or a methyl group
  • n2 represents an integer of 1 or more.
  • the reaction is preferably carried out in a polar organic solvent such as dimethylformamide, dimethylacetamide or dimethylsulfoxide in the presence of an alkali metal hydroxide at a reaction temperature of 50 to 120 ° C.
  • a polar organic solvent such as dimethylformamide, dimethylacetamide or dimethylsulfoxide
  • an alkali metal hydroxide at a reaction temperature of 50 to 120 ° C.
  • Examples of the bisphenol A type epoxy resin or bisphenol F type epoxy resin represented by the general formula (5) include, for example, Epicoat 807, 815, 825, 827, 828, 834, 1001, 1004, 1007 and 1009 (above, Japan Epoxy Resin) (Trade name), DER-330, DER-301, DER-361 (above, trade name, manufactured by Dow Chemical Co., Ltd.), YD-8125, YDF-170, YDF-170, YDF-175S, YDF-2001, YDF-2004, YDF-8170 (manufactured by Toto Kasei Co., Ltd., trade name) and the like are commercially available.
  • salicylaldehyde type epoxy resin represented by the general formula (6) for example, FAE-2500, EPPN-501H, EPPN-502H (above, Nippon Kayaku Co., Ltd., trade name) are commercially available. It is.
  • the epoxy resin (a) is a repeating unit represented by the general formula (7) and / or the general formula (8) from the viewpoint of further reducing the warpage of the thin film substrate and further improving the thermal shock resistance. It is preferable to use an epoxy resin having
  • vinyl group-containing monocarboxylic acid (b) examples include acrylic acid, a dimer of acrylic acid, methacrylic acid, ⁇ -furfurylacrylic acid, ⁇ -styrylacrylic acid, cinnamic acid, crotonic acid, ⁇ - Acrylic acid derivatives such as cyanocinnamic acid, half-ester compounds which are reaction products of hydroxyl group-containing acrylates and dibasic acid anhydrides, vinyl group-containing monoglycidyl ethers or vinyl group-containing monoglycidyl esters and dibasic acid anhydrides The half-ester compound which is a reaction product of is mentioned.
  • the half ester compound is obtained by reacting a hydroxyl group-containing acrylate, a vinyl group-containing monoglycidyl ether or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride in an equimolar ratio.
  • vinyl group-containing monocarboxylic acids (b) can be used singly or in combination of two or more.
  • Examples of the hydroxyl group-containing acrylate, vinyl group-containing monoglycidyl ether, and vinyl group-containing monoglycidyl ester used in the synthesis of the half ester compound as an example of the vinyl group-containing monocarboxylic acid (b) include hydroxyethyl acrylate, hydroxyethyl Methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxybutyl methacrylate, polyethylene glycol monoacrylate, polyethylene glycol monomethacrylate, trimethylolpropane diacrylate, trimethylolpropane dimethacrylate, pentaerythritol triacrylate, pentaerythritol tris Methacrylate, dipentaerythritol pentaacrylate, Pentaerythritol penta methacrylate, glycidyl acrylate, glycidyl methacrylate and the like
  • dibasic acid anhydride used for the synthesis of the half ester compound one containing a saturated group or one containing an unsaturated group can be used.
  • dibasic acid anhydrides include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride.
  • examples include acid, ethylhexahydrophthalic anhydride, itaconic anhydride and the like.
  • the vinyl group-containing monocarboxylic acid (b) is 0.6 to 0.6 to 1 equivalent of the epoxy group of the epoxy resin (a).
  • the reaction is preferably carried out at a ratio of 1.05 equivalents, more preferably carried out at a ratio of 0.8 to 1.0 equivalents.
  • the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b) can be reacted by dissolving in an organic solvent.
  • organic solvent include ketones such as ethyl methyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, Glycol ethers such as dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether, esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate, aliphatic carbonization such as octane and decane
  • petroleum solvents such as hydrogen, petroleum ether, petroleum naphtha,
  • a catalyst in order to promote the reaction.
  • the catalyst for example, triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylmethylammonium iodide, triphenylphosphine, and the like can be used.
  • the amount of the catalyst used is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b).
  • a polymerization inhibitor for the purpose of preventing polymerization during the reaction.
  • the polymerization inhibitor include hydroquinone, methyl hydroquinone, hydroquinone monomethyl ether, catechol, pyrogallol and the like.
  • the amount of the polymerization inhibitor used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass in total of the epoxy resin (a) and the vinyl group-containing monocarboxylic acid (b).
  • the reaction temperature is preferably 60 to 150 ° C, more preferably 80 to 120 ° C.
  • a vinyl group-containing monocarboxylic acid (b) and a phenolic compound such as p-hydroxyphenethyl alcohol, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride, biphenyltetracarboxylic acid
  • a polybasic acid anhydride such as an anhydride can be used in combination.
  • the acid-modified vinyl group-containing epoxy resin is a resin (A ′′) obtained by reacting the above-mentioned resin (A ′) with a polybasic acid anhydride (c). Is also preferable.
  • the hydroxyl group in the resin (A ′) (including the original hydroxyl group in the epoxy resin (a)) and the acid anhydride group of the polybasic acid anhydride (c) are half-esterified. It is presumed that
  • polybasic acid anhydride (c) one containing a saturated group or one containing an unsaturated group can be used.
  • specific examples of the polybasic acid anhydride (c) include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexa Hydrophthalic anhydride, ethylhexahydrophthalic anhydride, itaconic anhydride and the like can be mentioned.
  • the polybasic acid anhydride (c) is 0.1 to 1.0 equivalent per 1 equivalent of the hydroxyl group in the resin (A ′). By reacting, the acid value of the acid-modified vinyl group-containing epoxy resin can be adjusted.
  • the acid value of the acid-modified vinyl group-containing epoxy resin is preferably 30 to 150 mgKOH / g, more preferably 40 to 120 mgKOH / g, and particularly preferably 50 to 100 mgKOH / g. If the acid value is less than 30 mg KOH / g, the solubility of the photosensitive resin composition in a dilute alkaline solution tends to be reduced, and if it exceeds 150 mg KOH / g, the electric properties of the cured film tend to be reduced.
  • the reaction temperature between the resin (A ′) and the polybasic acid anhydride (c) is preferably 60 to 120 ° C.
  • epoxy resin (a) for example, a hydrogenated bisphenol A type epoxy resin can be partially used together.
  • the content of the component (A) is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, based on the total solid content of the photosensitive resin composition.
  • the content is preferably 15 to 40% by mass.
  • (B) phenolic compound used in the present invention examples include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, 2,6- Dicyclohexyl-4-methylphenol, 2,6-di-t-amyl-4-methylphenol, 2,6-di-t-octyl-4-n-propylphenol, 2,6-dicyclohexyl-4 -N-octylphenol, 2-isopropyl-4-methyl-6-t-butylphenol, 2-t-butyl-2-ethyl-6-t-octylphenol, 2-isobutyl-4-ethyl-6-t-hexylphenol 2-cyclohexyl-4-n-butyl-6-isopropylphenol, dl- ⁇ -tocopherol, t-butylhydroquinone, 2,2′-methylenebis (4-methyl)
  • Examples of the (B) phenolic compound include Irganox 1010 (Irganox 1010, manufactured by Ciba Specialty Chemicals), Irganox 1076 (Irganox 1076, manufactured by Ciba Specialty Chemicals), Irganox 1330 (Irganox 1330).
  • the (B) phenolic compound can be used alone or in combination of two or more.
  • the phenolic compound represented by the following general formula (1) is used as the phenolic compound. It is preferable to use it.
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, and at least one R 1 is preferably a tert-butyl group.
  • M represents an integer of 1 to 4, and is preferably 2.
  • N represents an integer of 1 to 4, preferably 2 to 4, and more preferably 2 to 3.
  • A is an n-valent organic group, but from the viewpoint of further improving the solder heat resistance in addition to the adhesive strength between the underfill material after the PCT resistance test and the cured film, the number of divalent to tetravalent carbon atoms is 1 to 5
  • the number of divalent to tetravalent carbon atoms is 1 to 5
  • it is especially preferable that A in General formula (1) does not contain an ester bond.
  • R 2 represents an alkyl group having 1 to 5 carbon atoms, and t represents an integer of 1 to 3.
  • the compound represented by the following general formula (10) can be used as the (B) phenol compound. Most preferably, it is used.
  • R 3 , R 4 , R 5 and R 6 each independently represents an alkyl group having 1 to 5 carbon atoms, and Z represents a hydrogen atom or an organic group represented by the following general formula (11). Indicates a group.
  • R 7 and R 8 each independently represents an alkyl group having 1 to 5 carbon atoms.
  • Examples of (B) phenolic compounds that can further improve the solder heat resistance and the adhesive strength between the underfill material after the PCT resistance test and the cured film are 2,2′-methylenebis (4-methyl-6-t-butylphenol) ), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol), 4,4′-thiobis (3-methyl-6-tert-butylphenol), 2,2′-thiobis (4-methyl-6) -T-butylphenol), 4,4'-methylenebis (2,6-di-t-butylphenol), 2,2'-methylenebis "6- (methylcyclohexyl) -p-cresol", 2,2'-ethylidene Bis (4,6-di-tert-butylphenol), 2,2′-butylidenebis (2-tert-butyl-4-methylphenol), Tris (3,5-di-tert-butyl) 4-hydroxybenzyl) isocyanurate, 1,3,5-trimethyl
  • tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl- 4-hydroxybenzyl) benzene, tris (2,6-dimethyl-3-hydroxy-4-tert-butylbenzyl) isocyanurate, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butyl) Phenyl) butane, 4,4′-butylidenebis (3-methyl-6-tert-butylphenol) is particularly preferred.
  • the content of the component (B) is preferably 0.01 to 10% by mass, and preferably 0.1 to 5% by mass based on the total solid content of the photosensitive resin composition. More preferred is 0.5 to 3% by mass.
  • the content of the component (B) is less than 0.01% by mass, the effect of improving the adhesion between the cured film after the PCT resistance test and the underfill material tends to be difficult to obtain sufficiently, and 10% by mass. If it exceeds 1, the sensitivity tends to decrease.
  • the compound having at least one ethylenically unsaturated group in the molecule is preferably a compound having a molecular weight of 1000 or less, such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, etc. Hydroxyalkyl (meth) acrylates, mono- or di (meth) acrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, N, N-dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, etc.
  • (Meth) acrylamides aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate, hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, Polyhydric alcohols such as pentaerythritol and tris-hydroxyethyl isocyanurate, or poly (meth) acrylates of these ethylene oxide or propylene oxide adducts, phenoxyethyl (meth) acrylate, polyethoxydi (meth) acrylate of bisphenol A, etc.
  • aminoalkyl (meth) acrylates such as N, N-dimethylaminoethyl (meth) acrylate, hexanediol, trimethylolpropane, pentaerythritol, ditrimethylolpropane, Polyhydric alcohols such as pent
  • (Meth) acrylates of phenolic ethylene oxide or propylene oxide adducts glycidyl ether (meth) acrylates such as glycerin diglycidyl ether, trimethylolpropane triglycidyl ether, triglycidyl isocyanurate, and melamine (meth) acrylate Acrylamide, acrylonitrile, diacetone acrylamide, styrene, vinyltoluene and the like.
  • These (C) compounds having at least one ethylenically unsaturated group in the molecule are used singly or in combination of two or more.
  • the content of the component (C) is preferably 1 to 30% by mass, more preferably 2 to 20% by mass based on the total solid content of the photosensitive resin composition.
  • the content is preferably 3 to 10% by mass.
  • Photopolymerization initiator examples include benzoins such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] Acetophenones such as -2-morpholino-1-propanone and N, N-dimethylaminoacetophenone; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthr
  • (D) light such as tertiary amines such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine and the like.
  • the polymerization initiation assistants can be used alone or in combination of two or more.
  • the content of the component (D) is preferably 0.5 to 20% by mass, based on the total solid content of the photosensitive resin composition, and preferably 1 to 10% by mass. Is more preferable, and 2 to 6% by mass is particularly preferable.
  • the content of the component (D) is less than 0.5% by mass, the exposed part tends to be eluted during development, and when it exceeds 20% by mass, the heat resistance tends to decrease.
  • inorganic fine particles examples include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), and silicon nitride (Si 3 ).
  • the content of the component (E) is preferably 15 to 80% by mass, more preferably 20 to 70% by mass based on the total solid content of the photosensitive resin composition. 25 to 50% by mass is particularly preferable, and 30 to 45% by mass is most preferable.
  • the content of the component (E) is within the above range, film strength, heat resistance, insulation reliability, thermal shock resistance, resolution, and the like can be further improved.
  • the inorganic fine particles preferably have a maximum particle size of 0.1 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m, particularly preferably 0.1 to 5 ⁇ m, and preferably 0.1 to 1 ⁇ m. Most preferred. When the maximum particle diameter exceeds 20 ⁇ m, the insulation reliability tends to be impaired.
  • silica fine particles are preferably used from the viewpoint of improving heat resistance, solder heat resistance, HAST property (insulation reliability), crack resistance (heat shock resistance), and PCT resistance test.
  • barium sulfate fine particles it is preferable to use barium sulfate fine particles.
  • fine-particles are surface-treated with an alumina and / or an organosilane type compound from a viewpoint which can improve the aggregation prevention effect.
  • the elemental composition of aluminum on the surface of the barium sulfate fine particles surface-treated with alumina and / or an organic silane compound is preferably 0.5 to 10 atomic%, more preferably 1 to 5 atomic%. 1.5 to 3.5 atomic% is particularly preferable.
  • the elemental composition of silicon on the surface of the barium sulfate fine particles is preferably 0.5 to 10 atomic%, more preferably 1 to 5 atomic%, and more preferably 1.5 to 3.5 atomic%. It is particularly preferred.
  • the elemental composition of carbon on the surface of the barium sulfate fine particles is preferably 10 to 30 atomic%, more preferably 15 to 25 atomic%, and particularly preferably 18 to 23 atomic%. These elemental compositions can be measured using XPS.
  • the content is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, and more preferably 20 to 40% by mass based on the total solid content of the photosensitive resin composition. % Is particularly preferred, with 25 to 35 weight being most preferred.
  • the content of the barium sulfate fine particles is within the above range, the solder heat resistance and the adhesive strength between the underfill material after the PCT resistance test and the cured film can be further improved.
  • the barium sulfate fine particles surface-treated with alumina and / or an organosilane compound are commercially available, for example, as NanoFine BFN40DC (trade name, manufactured by Nippon Solvay Co., Ltd.).
  • the photosensitive resin composition of the present invention further contains (F) a curing agent, (H) an epoxy resin curing agent, and / or (G) an elastomer in addition to the components (A) to (E) described above. Also good.
  • a curing agent e.g., a curing agent for curing a curing agent for curing a curing agent for curing a curing a curing agent for curing a curing agent, and / or (G) an elastomer in addition to the components (A) to (E) described above. Also good.
  • each component will be described.
  • the curing agent is preferably a compound that cures itself by heat, ultraviolet rays or the like, or (A) a compound that cures by reacting with carboxyl groups, hydroxyl groups, heat, ultraviolet rays, etc. of the acid-modified vinyl group-containing epoxy resin. .
  • the curing agent By using a hardening
  • Examples of the curing agent include thermosetting compounds such as epoxy compounds, melamine compounds, urea compounds, oxazoline compounds, and block type isocyanates.
  • Examples of the epoxy compound include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, novolac type epoxy resin, bisphenol S type epoxy resin, and biphenyl type epoxy resin. , Naphthalene type epoxy resin, dicyclo type epoxy resin, hydantoin type epoxy resin, heterocyclic epoxy resin such as triglycidyl isocyanurate, and bixylenol type epoxy resin.
  • Examples of the melamine compound include triaminotriazine, hexamethoxymelamine, hexabutoxylated melamine and the like.
  • Examples of the urea compound include dimethylol urea.
  • curing agent contains an epoxy compound (epoxy resin) and / or block type isocyanate from a viewpoint which can improve the heat resistance of a cured film more, and an epoxy compound and block type isocyanate are included. It is more preferable to use together.
  • the block type isocyanate an addition reaction product of a polyisocyanate compound and an isocyanate blocking agent is used.
  • the polyisocyanate compound include tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, naphthylene diisocyanate, bis (isocyanate methyl) cyclohexane, tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, and isophorone diisocyanate.
  • isocyanate blocking agent examples include phenolic blocking agents such as phenol, cresol, xylenol, chlorophenol and ethylphenol; lactam blocking agents such as ⁇ -caprolactam, ⁇ -palerolactam, ⁇ -butyrolactam and ⁇ -propiolactam; Active methylene blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, benzyl Ether, methyl glycolate, butyl glycolate, diacetone alcohol, lactic acid Alcohol-based blocking agents such as chill and ethyl lactate; oxime-based blocking agents such as formaldehyde oxime, acetoaldoxime, acetoxi
  • the curing agent is used alone or in combination of two or more.
  • a curing agent When (F) a curing agent is used, its content is preferably 2 to 40% by mass, more preferably 3 to 30% by mass, based on the total solid content of the photosensitive resin composition, It is particularly preferably 5 to 20% by mass.
  • the content of the curing agent By setting the content of the curing agent in the range of 2 to 40% by mass, the heat resistance of the formed cured film can be further improved while maintaining good developability.
  • the elastomer can be suitably used when the photosensitive resin composition of the present invention is used for a semiconductor package substrate.
  • the crosslinking reaction proceeds by ultraviolet rays or heat, so that the (A) acid-modified vinyl group-containing epoxy resin is cured and contracted. Further, the problem that distortion (internal stress) is applied to the inside of the resin and flexibility and adhesiveness are lowered can be solved.
  • (G) elastomers examples include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, and silicone elastomers.
  • These (G) elastomers are composed of a hard segment component and a soft segment component. In general, the former contributes to heat resistance and strength, and the latter contributes to flexibility and toughness.
  • styrene elastomer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, 4-cyclohexylstyrene and the like can be used in addition to styrene.
  • the olefin elastomer is a copolymer of ⁇ -olefin having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-pentene.
  • ⁇ -olefin having 2 to 20 carbon atoms
  • specific examples thereof include ethylene-propylene copolymer (EPR), ethylene-propylene-diene copolymer (EPDM), dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene, butadiene
  • EPR ethylene-propylene copolymer
  • EPDM ethylene-propylene-diene copolymer
  • dicyclopentadiene 1,4-hexadiene
  • cyclooctadiene methylene norbornene
  • ethylidene norbornene butadiene
  • ethylene / ⁇ -olefin copolymer rubber More specifically, ethylene / ⁇ -olefin copolymer rubber, ethylene / ⁇ -olefin / non-conjugated diene copolymer rubber, propylene / ⁇ -olefin copolymer rubber, butene / ⁇ -olefin copolymer rubber, etc. Is mentioned.
  • Miralastoma Mitsubishi Chemical
  • EXACT Exxon Chemical
  • ENGAGE Low Chemical
  • hydrogenated styrene-butadiene rubber “DYNABON HSBR” (Nippon Synthetic Rubber Co., Ltd.)
  • butadiene -Acrylonitrile copolymer "NBR series” (manufactured by Nippon Synthetic Rubber Co., Ltd.)
  • carboxyl group-modified butadiene-acrylonitrile copolymer "XER series” manufactured by Nippon Synthetic Rubber Co., Ltd.
  • polybutadiene partially Epoxidized epoxidized polybudadiene such as BF-1000 (manufactured by Nippon Soda Co., Ltd.), PB-3600 (manufactured by Daicel Chemical Industries, Ltd.), etc.
  • Urethane elastomers are composed of structural units consisting of a hard segment composed of low-molecular glycol and diisocyanate, and a soft segment composed of high-molecular (long-chain) diol and diisocyanate.
  • low-molecular glycol for example, short-chain diols such as ethylene glycol, propylene glycol, 1,4-butanediol, bisphenol A and the like can be used.
  • the number average molecular weight of the short chain diol is preferably 48 to 500.
  • polymer (long chain) diol examples include polypropylene glycol, polytetramethylene oxide, poly (1,4-butylene adipate), poly (ethylene / 1,4-butylene adipate), polycaprolactone, and poly (1,6 -Hexylene carbonate), poly (1,6-hexylene neopentylene adipate) and the like.
  • the number average molecular weight of the polymer (long chain) diol is preferably 500 to 10,000.
  • urethane elastomers include PANDEX T-2185, T-2983N (manufactured by Dainippon Ink), sylactolan E790, and the like.
  • polyester elastomer examples include those obtained by polycondensation of a dicarboxylic acid or a derivative thereof and a diol compound or a derivative thereof.
  • dicarboxylic acid examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid, and aromatic dicarboxylic acids in which hydrogen atoms of these aromatic nuclei are substituted with methyl groups, ethyl groups, phenyl groups, and the like, Examples thereof include aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid and dodecanedicarboxylic acid, and alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • diol compound examples include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol, and 1,4-cyclohexanediol.
  • diol compound examples include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,10-decanediol, and 1,4-cyclohexanediol.
  • dihydric phenol represented by the following general formula (12).
  • Y 11 represents a single bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 4 to 8 carbon atoms, —O—, —S—, or —SO 2 —
  • R 21 and R 22 represents a halogen atom or an alkyl group having 1 to 12 carbon atoms
  • p and q represent an integer of 0 to 4
  • r represents 0 or 1.
  • dihydric phenol represented by the general formula (12) examples include bisphenol A, bis- (4-hydroxyphenyl) methane, bis- (4-hydroxy-3-methylphenyl) propane, and resorcin. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • a multi-block copolymer having an aromatic polyester (for example, polybutylene terephthalate) portion as a hard segment component and an aliphatic polyester (for example, polytetramethylene glycol) portion as a soft segment component can be used.
  • aromatic polyester for example, polybutylene terephthalate
  • aliphatic polyester for example, polytetramethylene glycol
  • Polyamide elastomers are broadly classified into two types: polyether block amide type and polyether ester block amide type using polyamide for the hard segment and polyether or polyester for the soft segment.
  • polyamide polyamide-6, 11, 12 or the like is used.
  • polyether polyoxyethylene, polyoxypropylene, polytetramethylene glycol or the like is used.
  • UBE polyamide elastomer manufactured by Ube Industries Co., Ltd.
  • Daiamide manufactured by Daicel Huls Co., Ltd.
  • PEBAX manufactured by Toray Industries, Inc.
  • Grilon ELY manufactured by MMS Japan Co., Ltd.
  • Nopamid Mitsubishi Chemical Co., Ltd.
  • Glais Dainippon Ink Co., Ltd.
  • the acrylic elastomer is mainly composed of acrylic acid ester, and ethyl acrylate, butyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, or the like is used. Moreover, glycidyl methacrylate, allyl glycidyl ether, etc. are used as a crosslinking point monomer. Furthermore, acrylonitrile and ethylene can be copolymerized.
  • an acrylonitrile-butyl acrylate copolymer an acrylonitrile-butyl acrylate-ethyl acrylate copolymer, an acrylonitrile-butyl acrylate-glycidyl methacrylate copolymer, or the like can be used.
  • Silicone elastomers are mainly composed of organopolysiloxane and are classified into polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. Some are modified with vinyl groups, alkoxy groups, and the like. Specific examples include the KE series (manufactured by Shin-Etsu Chemical Co., Ltd.), SE series, CY series, SH series (above, manufactured by Toray Dow Corning Silicone Co., Ltd.) and the like.
  • a rubber-modified epoxy resin can also be used.
  • the rubber-modified epoxy resin includes, for example, a part or all of the epoxy groups of the bisphenol F type epoxy resin, bisphenol A type epoxy resin, salicylaldehyde type epoxy resin, phenol novolac type epoxy resin or cresol novolac type epoxy resin. It can be obtained by modification with terminal carboxylic acid-modified butadiene-acrylonitrile rubber, terminal amino-modified silicone rubber or the like.
  • both terminal carboxyl group-modified butadiene-acrylonitrile copolymers Espel which is a polyester-based elastomer having a hydroxyl group (Espel 1612, 1620, manufactured by Hitachi Chemical Co., Ltd.), Epoxidized polybutadiene, etc. are preferred.
  • Espel 1612, 1620, manufactured by Hitachi Chemical Co., Ltd. Epoxidized polybutadiene, etc.
  • An elastomer that is liquid at room temperature is particularly preferred.
  • the elastomer (G) When the elastomer (G) is used, its content is preferably 1 to 20% by mass, more preferably 2 to 15% by mass, based on the total solid content of the photosensitive resin composition. It is particularly preferable that the content be ⁇ 10% by mass. (G) By making the elastomer content in the range of 1 to 20% by mass, the thermal shock resistance and the adhesive strength between the underfill material and the cured film can be further improved while maintaining good developability. it can. Moreover, when using for a thin film substrate, the curvature property of a thin film substrate can be reduced.
  • an epoxy resin curing agent can be added for the purpose of further improving various properties such as heat resistance, adhesion, and chemical resistance of the cured film to be formed. .
  • (H) epoxy resin curing agent examples include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, 2-phenyl-4- Imidazole derivatives such as methyl-5-hydroxymethylimidazole; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, polybasic hydrazide
  • organic acid salts and / or epoxy adducts amine complexes of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-xylyl -S Tri
  • an epoxy resin curing agent When (H) an epoxy resin curing agent is used, its content is preferably 0.01 to 20% by mass, based on the total solid content of the photosensitive resin composition, and preferably 0.1 to 10% by mass. More preferably.
  • thermoplastic resin can be added to the photosensitive resin composition of the present invention in order to further improve the flexibility of the cured film.
  • thermoplastic resin examples include acrylic resin and urethane resin.
  • the content when the thermoplastic resin is contained is preferably 1 to 30% by mass, preferably 5 to 20% by mass, based on the total solid content of the photosensitive resin composition. More preferred.
  • the photosensitive resin composition of the present invention includes, as necessary, organic fine particles such as melamine and organic bentonite, phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black, naphthalene.
  • organic fine particles such as melamine and organic bentonite
  • phthalocyanine blue such as a melamine and organic bentonite
  • phthalocyanine green such as phthalocyanine green
  • iodine green diazo yellow
  • crystal violet titanium oxide
  • carbon black naphthalene
  • Known colorants such as black
  • polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol and pyrogallol
  • thickeners such as benton and montmorillonite
  • silicone-based such as fluorine-based and vinyl resin-based antifoaming agents
  • silane Various commonly known additives such as coupling agents and
  • flame retardants such as brominated epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds of phosphorous compounds, aromatic condensed phosphate esters, and halogen-containing condensed phosphate esters can also be added.
  • an organic solvent can be used as the diluent.
  • the organic solvent include ketones such as ethyl methyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene, methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, Glycol ethers such as dipropylene glycol monoethyl ether, dipropylene glycol diethyl ether and triethylene glycol monoethyl ether, esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate and carbitol acetate, aliphatic carbonization such as octane and decane
  • Examples thereof include petroleum solvents such as hydrogen, petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha.
  • the photosensitive resin composition of the present invention can be obtained by uniformly kneading and mixing the above-described components with a roll mill, a bead mill or the like.
  • the photosensitive resin composition of the present invention can be used, for example, to form an image and produce a cured film as follows.
  • the negative film is directly contacted (or non-contacted through a transparent film) and irradiated with active light (eg, ultraviolet light) with an exposure dose of preferably 10 to 1,000 mJ / cm 2 , Thereafter, the unexposed portion is dissolved and removed (developed) with a dilute alkaline aqueous solution or an organic solvent. Next, the exposed portion is sufficiently cured by post-exposure (ultraviolet exposure) and / or post-heating to obtain a cured film.
  • the post-exposure is preferably performed at an exposure amount of 1 to 5 J / cm 2 , for example, and the post-heating is preferably performed at 100 to 200 ° C. for 30 minutes to 12 hours.
  • the photosensitive resin composition of the present invention can be laminated on a support to form a photosensitive element.
  • the thickness of the layer made of the photosensitive resin composition is preferably 10 to 100 ⁇ m.
  • As the support a film having a thickness of 5 to 100 ⁇ m such as polyethylene terephthalate is preferably used.
  • the layer made of the photosensitive resin composition is preferably formed by applying and drying a solution of the photosensitive resin composition on a support film.
  • THPAC tetrahydrophthalic anhydride
  • carbitol acetate 100 parts by mass of tetrahydrophthalic anhydride (THPAC) and 85 parts by mass of carbitol acetate are added, heated to 80 ° C. and reacted for about 6 hours, and then cooled to obtain a solid content concentration of 75. % Of a THPAC-modified cresol novolac epoxy acrylate (hereinafter referred to as “acid-modified vinyl group-containing epoxy resin (A-2)”) as a component (A).
  • A-2 THPAC-modified cresol novolac epoxy acrylate
  • Examples 1 to 10, Comparative Examples 1 to 11 The materials shown in Tables 1 and 2 below were blended in the blending amounts (unit: parts by mass) shown in the same table, then kneaded with a three-roll mill, and carbitol acetate was added so that the solid content concentration would be 70% by weight. In addition, a photosensitive resin composition was obtained. In addition, the compounding quantity of each material in following Table 1 and 2 shows the compounding quantity of solid content.
  • the photosensitive resin compositions of Examples and Comparative Examples were applied to a copper-clad laminate (MCL-E-67, manufactured by Hitachi Chemical Co., Ltd.) by screen printing so that the film thickness after drying was 25 ⁇ m. Then, it was dried using a hot air circulation dryer at 75 ° C. for 30 minutes.
  • the density region is 0.00 to 2.00
  • the density step is 0.05
  • the size of the tablet (rectangle) is 20 mm ⁇ 187 mm
  • the size of each step (rectangle) is 3 mm ⁇ 12 mm.
  • a phototool (Stofer) having a 41-step tablet is closely attached, irradiated with ultraviolet rays with an integrated exposure amount of 600 mJ / cm 2 , developed with a 1% by weight aqueous sodium carbonate solution for 60 seconds, and the number of remaining step steps is set.
  • the sensitivity was evaluated. The greater the number of remaining step steps, the higher the sensitivity, and it is preferable that 18 steps or more remain.
  • the evaluation results are shown in Tables 3 and 4.
  • the obtained coating film was irradiated with ultraviolet rays having an accumulated exposure amount of 600 mJ / cm 2 through a negative film in which light non-transmission portions of ⁇ 80 ⁇ m and ⁇ 110 ⁇ m were scattered in an area of 1 ⁇ 1 cm square, and 1% by mass of sodium carbonate Spray development was performed with an aqueous solution for 60 seconds at a pressure of 1.8 kgf / cm 2 , and an unexposed portion was dissolved and developed to form an image. Thereafter, the opening diameter was measured using a microscope (manufactured by HIROX, model number: KH-3000), and evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4.
  • A Opening diameter of 80% or more (64 ⁇ m or more for ⁇ 80 ⁇ m negative film, 88 ⁇ m or more for ⁇ 110 ⁇ m negative film).
  • B Opening diameter of 70% or more and less than 80% (56 ⁇ m or more and less than 64 ⁇ m for ⁇ 80 ⁇ m negative film, 77 ⁇ m or more and less than 88 ⁇ m for ⁇ 110 ⁇ m negative film).
  • C Opening diameter is less than 70% (less than 56 ⁇ m for ⁇ 80 ⁇ m negative film, less than 77 ⁇ m for ⁇ 110 ⁇ m negative film).
  • Thermal shock resistance The test piece was subjected to thermal history with one cycle of ⁇ 55 ° C./30 minutes and 125 ° C./30 minutes, and after 1,000 cycles, the test piece was visually observed and observed with a microscope, and evaluated according to the following criteria. The evaluation results are shown in Tables 3 and 4. A: No crack occurred B: Crack occurred
  • the shear strength at room temperature was measured using a bond tester (Dage 4000, manufactured by Dage), and the unit per unit area was measured. The adhesive strength was determined. Each material was measured with 5 samples, and the average values were compared. The unit is MPa. At this time, the height of the test head was 100 ⁇ m from the top of the coating film, and the speed of the test head was 100 ⁇ m / second.
  • the composition of the underfill material is CEL-C-3801 (trade name, manufactured by Hitachi Chemical Co., Ltd.) composed of bisphenol F type epoxy resin, acid anhydride as a curing agent, and silica fine particles (67% by mass). Was used. The evaluation results are shown in Tables 3 and 4.
  • a photosensitive resin composition for a protective film of a printed wiring board for a semiconductor package can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 本発明の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物は、(A)酸変性ビニル基含有エポキシ樹脂と、(B)フェノール系化合物と、(C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物と、(D)光重合開始剤と、(E)無機微粒子と、を含有するものである。

Description

半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物
 本発明は、半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物に関する。
 プリント配線板分野では、従来から、プリント配線板上に永久マスクレジスト(保護膜)を形成することが行われている。この永久マスクレジストは、半導体素子をプリント配線板上にはんだを介してフリップチップ実装する工程において、プリント配線板の導体層の不要な部分にはんだが付着することを防ぐ役割を有している。さらに、永久マスクレジストは、プリント配線板の使用時において、導体層の腐食を防止したり、導体層間の電気絶縁性を保持したりする役割も有している。
 従来、プリント配線板製造における永久マスクレジストは、熱硬化性あるいは感光性樹脂組成物をスクリーン印刷する方法等で作製されている。
 例えば、FC、TAB及びCOFといった実装方式を用いたフレキシブル配線板においては、リジッド配線板、ICチップ、電子部品又はLCDパネルと接続配線パターン部分を除いて、熱硬化性樹脂ペーストをスクリーン印刷し、熱硬化して永久マスクレジストを形成している(例えば特許文献1参照)。
 また、パーソナルコンピューターに搭載されているBGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)等の半導体パッケージ基板においては、(1)半導体パッケージ基板上にはんだを介して半導体素子をフリップチップ実装するために、(2)半導体素子と半導体パッケージ基板とをワイヤボンディング接合するために、(3)半導体パッケージ基板をマザーボード基板上にはんだ接合するために、その接合部分の永久マスクレジストを除去する必要があり、このような除去が容易な感光性樹脂組成物が永久マスクレジストとして用いられている(例えば特許文献2参照)。
特開2003-198105号公報 特開平11-240930号公報
 近年、配線パターンの高密度化に伴い、永久マスクレジストは高解像性が求められており、写真法でパターン形成する感光性樹脂組成物が盛んに用いられるようになっている。中でも炭酸ナトリウム水溶液等の弱アルカリ水溶液で現像可能なアルカリ現像型のものが、作業環境保全、地球環境保全の点から主流になっている。
 しかし、アルカリ現像型の感光性樹脂組成物は、耐久性の点ではまだ問題がある。すなわち、従来の熱硬化型、溶剤現像型のものに比べて耐薬品性、耐水性、耐熱性、耐湿熱性等が劣る。これは、アルカリ現像型の感光性樹脂組成物はアルカリ現像可能にするために親水性基を有するものが主成分となっており、薬液、水、水蒸気等が浸透し易くなるためである。特にBGAやCSP等の半導体パッケージにおいては、耐湿熱性ともいうべき耐PCT性(耐プレッシャークッカーテスト性)が必要であるが、このような厳しい条件下においては数時間から数十時間で、半導体素子とソルダレジストの間に充填されるアンダフィル材と、永久マスクレジストである硬化膜との接着性が大きく低下することが課題であった。
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、長時間の耐PCT試験後であっても、アンダフィル材と永久マスクレジストである硬化膜との接着性が優れる、半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物を提供することを目的とする。
 上記目的を達成するために、本発明は、(A)酸変性ビニル基含有エポキシ樹脂と、(B)フェノール系化合物と、(C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物と、(D)光重合開始剤と、(E)無機微粒子と、を含有する半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物を提供する。
 かかる感光性樹脂組成物によれば、上記構成を有することにより、長時間の耐PCT試験後であっても、アンダフィル材との接着性に優れた永久マスクレジストである硬化膜を形成することができる。また、かかる感光性樹脂組成物により形成される硬化膜は、はんだ耐熱性にも優れる。したがって、本発明の感光性樹脂組成物は、半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物として非常に有用である。
 本発明の感光性樹脂組成物において、上記(B)フェノール系化合物は、長時間の耐PCT試験後であっても、アンダフィル材と永久マスクレジストである硬化膜との接着性をより良好にできる観点から、下記一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 
[式(1)中、Rは炭素数1~5のアルキル基を示し、mは1~4の整数を示し、nは1~4の整数を示し、Aはn価の有機基を示す。なお、m及び/又はnが2以上の場合、複数存在するRは同一でも異なっていてもよい。]
 また、長時間の耐PCT試験後であっても、アンダフィル材と永久マスクレジストである硬化膜との接着性を更に良好にできる観点から、上記一般式(1)中、Aは2~4価の炭素数1~5の炭化水素基、下記一般式(2)で表される3価の有機基、又は、下記一般式(3)で表される3価の有機基であることが好ましい。同様の観点から、上記一般式(1)中、少なくとも一つのRがtert-ブチル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
[式(3)中、Rは炭素数1~5のアルキル基を示し、tは1~3の整数を示す。]
 本発明の感光性樹脂組成物において、上記(A)酸変性ビニル基含有エポキシ樹脂は、アルカリ現像が可能であり、且つ解像性、接着性に優れる観点から、下記一般式(4)で表されるノボラック型エポキシ樹脂、下記一般式(5)で表されるビスフェノール型エポキシ樹脂、下記一般式(6)で表されるサリチルアルデヒド型エポキシ樹脂、並びに、下記一般式(7)又は(8)で表される繰り返し単位を有するビスフェノール型ノボラック樹脂からなる群より選択される少なくとも1種のエポキシ樹脂(a)と、ビニル基含有モノカルボン酸(b)と、を反応させて得られる樹脂に、飽和若しくは不飽和基含有多塩基酸無水物(c)を反応させて得られる樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 
[式(4)中、R11は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n1は1以上の整数を示す。なお、複数存在するR11及びYはそれぞれ同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000013
 
[式(5)中、R12は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n2は1以上の整数を示す。なお、複数存在するR12は同一でも異なっていてもよい。また、n2が2以上の場合、複数存在するYは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000014
 
[式(6)中、Yは水素原子又はグリシジル基を示し、n3は1以上の整数を示す。なお、複数存在するYは同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000015
 
[式(7)中、R13は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR13は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000016
 
[式(8)中、R14は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR14は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
 また、本発明の感光性樹脂組成物において、上記(E)無機微粒子の含有量は、感光性樹脂組成物の固形分全量を基準として15~80質量%であることが好ましい。これにより、感光性樹脂組成物から形成される硬化膜の強度、耐熱性、絶縁信頼性、耐熱衝撃性、解像性等をより向上させることができる。
 本発明の感光性樹脂組成物は、(F)硬化剤を更に含有することが好ましい。(F)硬化剤を含有することにより、感光性樹脂組成物から形成される硬化膜の耐熱性、アンダフィル材との接着性、耐薬品性等をより向上させることができる。
 また、本発明の感光性樹脂組成物は、(G)エラストマーを更に含有することが好ましい。(G)エラストマーを含有することにより、感光性樹脂組成物から形成される硬化膜の可とう性、アンダフィル材との接着性等をより向上させることができる。
 本発明によれば、長時間の耐PCT試験後であっても、アンダフィル材と永久マスクレジストである硬化膜との接着性が優れ、且つ、はんだ耐熱性にも優れる半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物を提供することができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。なお、本発明における(メタ)アクリルとはアクリル及びそれに対応するメタクリルを意味し、(メタ)アクリレートとはアクリレート及びそれに対応するメタクリレートを意味する。
 本発明の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物は、(A)酸変性ビニル基含有エポキシ樹脂(以下、場合により「(A)成分」という)と、(B)フェノール系化合物(以下、場合により「(B)成分」という)と、(C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物(以下、場合により「(C)成分」という)と、(D)光重合開始剤(以下、場合により「(D)成分」という)と、(E)無機微粒子(以下、場合により「(E)成分」という)と、を含有するものである。以下、各成分について詳述する。
<(A)酸変性ビニル基含有エポキシ樹脂>
 (A)酸変性ビニル基含有エポキシ樹脂としては、例えば、エポキシ樹脂をビニル基含有モノカルボン酸で変性した樹脂を用いることができるが、特に、下記一般式(4)で表されるノボラック型エポキシ樹脂、下記一般式(5)で表されるビスフェノール型エポキシ樹脂、下記一般式(6)で表されるサリチルアルデヒド型エポキシ樹脂、並びに、下記一般式(7)又は(8)で表される繰り返し単位を有するビスフェノール型ノボラック樹脂からなる群より選択される少なくとも1種のエポキシ樹脂(a)と、ビニル基含有モノカルボン酸(b)と、を反応させて得られる樹脂(A’)を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 
[式(4)中、R11は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n1は1以上の整数を示す。なお、複数存在するR11及びYはそれぞれ同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000018
 
[式(5)中、R12は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n2は1以上の整数を示す。なお、複数存在するR12は同一でも異なっていてもよい。また、n2が2以上の場合、複数存在するYは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000019
 
[式(6)中、Yは水素原子又はグリシジル基を示し、n3は1以上の整数を示す。なお、複数存在するYは同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000020
 
[式(7)中、R13は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR13は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
Figure JPOXMLDOC01-appb-C000021
 
[式(8)中、R14は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR14は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
 樹脂(A’)は、エポキシ樹脂(a)のエポキシ基とビニル基含有モノカルボン酸(b)のカルボキシル基との付加反応により形成される水酸基を有しているものと推察される。
 一般式(4)で示されるノボラック型エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が挙げられる。これらのノボラック型エポキシ樹脂は、例えば、公知の方法でフェノールノボラック樹脂、クレゾールノボラック樹脂とエピクロルヒドリンとを反応させることにより得ることができる。
 エポキシ樹脂(a)としては、プロセス裕度が優れるとともに、耐溶剤性を向上できる観点からは、一般式(4)で表されるノボラック型エポキシ樹脂が好ましい。
 一般式(4)で示されるフェノールノボラック型エポキシ樹脂又はクレゾールノボラック型エポキシ樹脂としては、例えば、YDCN-701、YDCN-702、YDCN-703、YDCN-704、YDCN-704L、YDPN-638、YDPN-602(以上、東都化成(株)製、商品名)、DEN-431、DEN-439(以上、ダウケミカル(株)製、商品名)、EOCN-120、EOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、BREN(以上、日本化薬(株)製、商品名)、EPN-1138、EPN-1235、EPN-1299(以上、チバ・スペシャルティ・ケミカルズ(株)製、商品名)、N-730、N-770、N-865、N-665、N-673、VH-4150、VH-4240(以上、大日本インキ化学工業(株)製、商品名)等が商業的に入手可能である。
 また、一般式(5)で示され、Yがグリシジル基;
Figure JPOXMLDOC01-appb-C000022
 
であるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂は、例えば、下記一般式(9)で示されるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂の水酸基とエピクロルヒドリンとを反応させることにより得ることができる。
Figure JPOXMLDOC01-appb-C000023
 
[式中、R12は水素原子又はメチル基を示し、n2は1以上の整数を示す。]
 水酸基とエピクロルヒドリンとの反応を促進するためには、反応温度50~120℃でアルカリ金属水酸化物存在下、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤中で反応を行うことが好ましい。反応温度が50℃未満では反応が遅くなり、反応温度が120℃では副反応が多く生じる傾向にある。
 一般式(5)で示されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、エピコート807,815,825,827,828,834,1001,1004,1007及び1009(以上、ジャパンエポキシレジン(株)製、商品名)、DER-330、DER-301、DER-361(以上、ダウケミカル(株)製、商品名)、YD-8125、YDF-170、YDF-170、YDF-175S、YDF-2001、YDF-2004、YDF-8170(以上、東都化成(株)製、商品名)等が商業的に入手可能である。
 一般式(6)で示されるサリチルアルデヒド型エポキシ樹脂としては、例えば、FAE-2500、EPPN-501H、EPPN-502H(以上、日本化薬(株)製、商品名)等が商業的に入手可能である。
 また、エポキシ樹脂(a)としては、薄膜基板の反り性をより低減できるとともに、耐熱衝撃性をより向上できる観点から、一般式(7)及び/又は一般式(8)で表される繰り返し単位を有するエポキシ樹脂を用いることが好ましい。
 上記一般式(8)において、R14が水素原子であり、Y及びYがグリシジル基のものは、EXA-7376シリーズ(大日本インキ化学工業社製、商品名)として、また、R14がメチル基であり、Y及びYがグリシジル基のものは、EPON SU8シリーズ(ジャパンエポキシレジン社製、商品名)として商業的に入手可能である。
 上述のビニル基含有モノカルボン酸(b)としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体や、水酸基含有アクリレートと二塩基酸無水物との反応生成物である半エステル化合物、ビニル基含有モノグリシジルエーテル若しくはビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物が挙げられる。
 半エステル化合物は、水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル若しくはビニル基含有モノグリシジルエステルと二塩基酸無水物とを等モル比で反応させることで得られる。これらのビニル基含有モノカルボン酸(b)は、1種を単独で又は2種以上を組み合わせて用いることができる。
 ビニル基含有モノカルボン酸(b)の一例である上記半エステル化合物の合成に用いられる水酸基含有アクリレート、ビニル基含有モノグリシジルエーテル、ビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、ポリエチレングリコールモノアクリレート、ポリエチレングリコールモノメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパンジメタクリレート、ペンタエリスルトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールペンタメタクリレート、グリシジルアクリレート、グリシジルメタクリレート等が挙げられる。
 上記半エステル化合物の合成に用いられる二塩基酸無水物としては、飽和基を含有するもの、不飽和基を含有するものを用いることができる。二塩基酸無水物の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。
 上述のエポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との反応において、エポキシ樹脂(a)のエポキシ基1当量に対して、ビニル基含有モノカルボン酸(b)が0.6~1.05当量となる比率で反応させることが好ましく、0.8~1.0当量となる比率で反応させることがより好ましい。
 エポキシ樹脂(a)及びビニル基含有モノカルボン酸(b)は、有機溶剤に溶かして反応させることができる。有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。
 さらに、反応を促進させるために触媒を用いることが好ましい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルメチルアンモニウムアイオダイド、トリフェニルホスフィン等を用いることができる。触媒の使用量は、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)との合計100質量部に対して、好ましくは0.1~10質量部である。
 また、反応中の重合を防止する目的で、重合禁止剤を使用することが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等が挙げられる。重合禁止剤の使用量は、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)の合計100質量部に対して、好ましくは0.01~1質量部である。また、反応温度は、好ましくは60~150℃であり、さらに好ましくは80~120℃である。
 また、必要に応じて、ビニル基含有モノカルボン酸(b)と、p-ヒドロキシフェネチルアルコール等のフェノール系化合物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等の多塩基酸無水物とを併用することができる。
 また、本発明において、(A)酸変性ビニル基含有エポキシ樹脂としては、上述の樹脂(A’)に多塩基酸無水物(c)を反応させることにより得られる樹脂(A”)を用いることも好ましい。
 樹脂(A”)においては、樹脂(A’)における水酸基(エポキシ樹脂(a)中にある元来ある水酸基も含む)と多塩基酸無水物(c)の酸無水物基とが半エステル化されているものと推察される。
 多塩基酸無水物(c)としては、飽和基を含有するもの、不飽和基を含有するものを用いることができる。多塩基酸無水物(c)の具体例としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。
 樹脂(A’)と多塩基酸無水物(c)との反応において、樹脂(A’)中の水酸基1当量に対して、多塩基酸無水物(c)を0.1~1.0当量反応させることで、酸変性ビニル基含有エポキシ樹脂の酸価を調整することができる。
 (A)酸変性ビニル基含有エポキシ樹脂の酸価は30~150mgKOH/gであることが好ましく、40~120mgKOH/gであることがより好ましく、50~100mgKOH/gであることが特に好ましい。酸価が30mgKOH/g未満では感光性樹脂組成物の希アルカリ溶液への溶解性が低下する傾向があり、150mgKOH/gを超えると硬化膜の電気特性が低下する傾向がある。
 樹脂(A’)と多塩基酸無水物(c)との反応温度は、60~120℃とすることが好ましい。
 また、必要に応じて、エポキシ樹脂(a)として、例えば、水添ビスフェノールA型エポキシ樹脂を一部併用することもできる。さらに、(A)酸変性ビニル基含有エポキシ樹脂として、スチレン-無水マレイン酸共重合体のヒドロキシエチルアクリレート変性物あるいはスチレン-無水マレイン酸共重合体のヒドロキシエチルアクリレート変性物等のスチレン-マレイン酸系樹脂を一部併用することもできる。
 感光性樹脂組成物において、(A)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、5~60質量%であることが好ましく、10~50質量%であることがより好ましく、15~40質量%であることが特に好ましい。(A)成分の含有量が上記範囲内であると、耐熱性、電気特性及び耐薬品性により優れた塗膜を得ることができる。
<(B)フェノール系化合物>
 本発明に用いられる(B)フェノール系化合物としては、例えば、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、2,6-ジシクロへキシル-4-メチルフェノール、2,6-ジ-t-アミル-4-メチルフェノール、2,6-ジ-t-オクチル-4-n-プロピルフェノール、2,6-ジシクロへキシル-4-n-オクチルフェノール、2-イソプロピル-4-メチル-6-t-ブチルフェノール、2-t-ブチル-2-エチル-6-t-オクチルフェノール、2-イソブチル-4-エチル-6-t-へキシルフェノール、2-シクロへキシル-4-n-ブチル-6-イソプロピルフェノール、dl-α-トコフェロール、t-ブチルヒドロキノン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4-4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス「6-(メチルシクロへキシル)-p-クレゾール」、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2’-ブチリデンビス(2-t-ブチル-4-メチルフェノール)、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシン-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシン-3,5-ジ-t-ベンチルフェニル)エチル]-4,6-ジ-t-ベンチルフェニルアクリレート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、トリエチレングリコールビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-へキサンジオールビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナミド)、3-5-ジ-t-ブチル-4-ヒドロキシベンジンホスホネートジエチルエステル、トリス(2,6-ジ-メチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、トリス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、トリス(4-t-ブチル-2,6-ジメチル-3-ヒドロキシベンジル)イソシアヌレート、2,4-ビス(n-オクチルオチ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、テトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)テレフタレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)ベンゼン、3,9-ビス[1,1-ジメチル2-{β-(3-t-ブチル-4ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ「5,5」ウンデカン、2,2-ビス「4-(2,3,5-ジ-t-ブチル-4-ヒドロキシヒドロシンナモイルオキシ)」エトキシフェニル]プロパン、β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリルエステルなどが挙げられる。
 上記(B)フェノール系化合物としては、例えば、イルガノックス1010(Irganox 1010、チバ・スペシャリティー・ケミカルズ製)、イルガノックス1076(Irganox 1076、チバ・スペシャリティー・ケミカルズ製)、イルガノックス1330(Irganox 1330、チバ・スペシャリティー・ケミカルズ製)、イルガノックス3114(Irganox 3114、チバ・スペシャリティー・ケミカルズ製)、イルガノックス3125(Irganox 3125、チバ・スペシャリティー・ケミカルズ製)、スミライザーBHT(Sumyizer BHT、住友化学製)、シアノックス1790(Cyanox 1790、サイテック製)、スミライザ-GA-80(Sumyizer GA-80、住友化学製)、ビタミンE(エーザイ製)、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-80、アデカスタブAO-330(以上、旭電化工業社製)などが、フェノール系抗酸化剤として商業的に入手可能である。
 上記(B)フェノール系化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
 これらの中でも特に、耐PCT試験後のアンダフィル材と硬化膜との接着強度をより向上できる観点から、(B)フェノール系化合物としては、下記一般式(1)で表されるフェノール系化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 
 一般式(1)中、Rは炭素数1~5のアルキル基を示し、少なくとも一つのRはtert-ブチル基であることが好ましい。また、mは1~4の整数を示し、2であることが好ましい。また、nは1~4の整数を示し、2~4であることが好ましく、2~3であることがより好ましい。Aはn価の有機基であるが、耐PCT試験後のアンダフィル材と硬化膜との接着強度に加え、はんだ耐熱性をもより向上できる観点から、2~4価の炭素数1~5の炭化水素基、下記一般式(2)で表される3価の有機基、又は下記一般式(3)で表される3価の有機基であることが好ましく、2~3価の炭素数1~5の炭化水素基であることがより好ましい。また、一般式(1)中のAが、エステル結合を含まないことが特に好ましい。
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
[式(3)中、Rは炭素数1~5のアルキル基を示し、tは1~3の整数を示す。]
 また、はんだ耐熱性、及び耐PCT試験後のアンダフィル材と硬化膜との接着強度をさらに向上できる観点から、(B)フェノール系化合物としては、下記一般式(10)で表される化合物を用いることが最も好ましい。
Figure JPOXMLDOC01-appb-C000027
 
[式(10)中、R、R、R及びRは、それぞれ独立に炭素数1~5のアルキル基を示し、Zは水素原子又は下記一般式(11)で表される有機基を示す。]
Figure JPOXMLDOC01-appb-C000028
 
[式(11)中、R及びRは、それぞれ独立に炭素数1~5のアルキル基を示す。]
 はんだ耐熱性、及び耐PCT試験後のアンダフィル材と硬化膜の接着強度をより向上できる(B)フェノール系化合物としては、例えば、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,2’-チオビス(4-メチル-6-t-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレンビス「6-(メチルシクロへキシル)-p-クレゾール」、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2’-ブチリデンビス(2-t-ブチル-4-メチルフェノール)、トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)ベンゼン、トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン等が挙げられる。これらの中でも、トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキベンジル)ベンゼン、トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)が特に好ましい。
 感光性樹脂組成物において、(B)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.01~10質量%であることが好ましく、0.1~5質量%であることがより好ましく、0.5~3質量%であることが特に好ましい。(B)成分の含有量が0.01質量%未満であると、耐PCT試験後の硬化膜とアンダフィル材との接着性の向上効果が十分に得られにくくなる傾向があり、10質量%を超えると、感度が低下する傾向がある。
<(C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物>
 (C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物としては、分子量が1000以下である化合物が好ましく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類、エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール等のグリコールのモノ又はジ(メタ)アクリレート類、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等の(メタ)アクリルアミド類、N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート類、ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレート等の多価アルコール又はこれらのエチレンオキサイドあるいはプロピレンオキサイド付加物の多価(メタ)アクリレート類、フェノキシエチル(メタ)アクリレート、ビスフェノールAのポリエトキシジ(メタ)アクリレート等のフェノール類のエチレンオキサイドあるいはプロピレンオキサイド付加物の(メタ)アクリレート類、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの(メタ)アクリレート類、及びメラミン(メタ)アクリレート、アクリルアミド、アクリロニトリル、ジアセトンアクリルアミド、スチレン、ビニルトルエン等が挙げられる。これらの(C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いられる。
 感光性樹脂組成物において、(C)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、1~30質量%であることが好ましく、2~20質量%であることがより好ましく、3~10質量%であることが特に好ましい。(C)成分の含有量が1質量%未満では、光感度が低く露光部が現像中に溶出する傾向にあり、30質量%を超えると耐熱性が低下する傾向にある。
<(D)光重合開始剤>
 (D)光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン類;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体類、9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルフォスフィンオキサイド類、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)、1-フェニル-1,2-プロパンジオン-2-[O-(エトキシカルボニル)オキシム]等のオキシムエステル類が挙げられる。これらの(D)光重合開始剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
 さらに、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン類のような(D)光重合開始助剤を、単独であるいは2種以上を組合せて用いることもできる。
 感光性樹脂組成物において、(D)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、0.5~20質量%であることが好ましく、1~10質量%であることがより好ましく、2~6質量%であることが特に好ましい。(D)成分の含有量が0.5質量%未満では、露光部が現像中に溶出する傾向があり、20質量%を超えると耐熱性が低下する傾向がある。
<(E)無機微粒子>
 (E)無機微粒子としては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化ケイ素(Si)、チタン酸バリウム(BaO・TiO)、炭酸バリウム(BaCO)、炭酸マグネシウム、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸鉛(PbO・TiO)、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン鉛(PLZT)、酸化ガリウム(Ga)、スピネル(MgO・Al)、ムライト(3Al・2SiO)、コーディエライト(2MgO・2Al/5SiO)、タルク(3MgO・4SiO・HO)、チタン酸アルミニウム(TiO-Al)、イットリア含有ジルコニア(Y-ZrO)、ケイ酸バリウム(BaO・8SiO)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸バリウム(BaSO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、ハイドロタルサイト、雲母、焼成カオリン、カーボン(C)等を使用することができる。これらの(E)無機微粒子は、1種を単独で又は2種以上を組み合わせて使用することができる。
 感光性樹脂組成物において、(E)成分の含有量は、感光性樹脂組成物の固形分全量を基準として15~80質量%であることが好ましく、20~70質量%であることがより好ましく、25~50質量%であることが特に好ましく、30~45質量%であることが最も好ましい。(E)成分の含有量が上記範囲内である場合には、膜強度、耐熱性、絶縁信頼性、耐熱衝撃性、解像性等をより向上させることができる。
 (E)無機微粒子は、その最大粒子径が0.1~20μmであると好ましく、0.1~10μmであるとより好ましく、0.1~5μmであると特に好ましく、0.1~1μmであると最も好ましい。最大粒子径が20μmを超えると、絶縁信頼性が損なわれる傾向にある。
 (E)無機微粒子の中でも、耐熱性を向上できる観点から、シリカ微粒子を使用することが好ましく、はんだ耐熱性、HAST性(絶縁信頼性)、耐クラック性(耐熱衝撃性)、及び耐PCT試験後のアンダフィル材と硬化膜との接着強度を向上できる観点から、硫酸バリウム微粒子を使用することが好ましい。また、上記硫酸バリウム微粒子は、凝集防止効果を向上できる観点から、アルミナ及び/又は有機シラン系化合物で表面処理しているものであることが好ましい。
 アルミナ及び/又は有機シラン系化合物で表面処理している硫酸バリウム微粒子の表面におけるアルミニウムの元素組成は、0.5~10原子%であることが好ましく、1~5原子%であることがより好ましく、1.5~3.5原子%であることが特に好ましい。また、硫酸バリウム微粒子の表面におけるケイ素の元素組成は、0.5~10原子%であることが好ましく、1~5原子%であることがより好ましく、1.5~3.5原子%であることが特に好ましい。さらに、硫酸バリウム微粒子の表面における炭素の元素組成は、10~30原子%であることが好ましく、15~25原子%であることがより好ましく、18~23原子%であることが特に好ましい。これらの元素組成は、XPSを用いて測定することができる。
 上記硫酸バリウムを用いる場合の含有量は、感光性樹脂組成物の固形分全量を基準として10~60質量%であることが好ましく、15~50質量%であることがより好ましく、20~40質量%であることが特に好ましく、25~35重量であることが最も好ましい。硫酸バリウム微粒子の含有量が上記範囲内である場合、はんだ耐熱性、及び耐PCT試験後のアンダフィル材と硬化膜の接着強度をより向上させることができる。
 アルミナ及び/又は有機シラン系化合物で表面処理している硫酸バリウム微粒子としては、例えば、NanoFine BFN40DC(日本ソルベイ(株)社製、商品名)として商業的に入手可能である。
 本発明の感光性樹脂組成物は、上述した(A)~(E)成分以外に、(F)硬化剤、(H)エポキシ樹脂硬化剤、及び/又は、(G)エラストマーをさらに含んでいてもよい。以下、各成分について説明する。
<(F)硬化剤>
 (F)硬化剤としては、それ自体が熱、紫外線等で硬化する化合物、あるいは(A)酸変性ビニル基含有エポキシ樹脂のカルボキシル基、水酸基と熱、紫外線等で反応して硬化する化合物が好ましい。(F)硬化剤を用いることで、感光性樹脂組成物から形成される硬化膜の耐熱性、接着性、耐薬品性等を向上させることができる。
 (F)硬化剤としては、例えば、エポキシ化合物、メラミン化合物、尿素化合物、オキサゾリン化合物、ブロック型イソシアネート等の熱硬化性化合物が挙げられる。エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロ型エポキシ樹脂、ヒダントイン型エポキシ樹脂あるいは、トリグリシジルイソシアヌレート等の複素環式エポキシ樹脂、ビキシレノール型エポキシ樹脂等が挙げられる。メラミン化合物としては、例えば、トリアミノトリアジン、ヘキサメトキシメラミン、ヘキサブトキシ化メラミン等が挙げられる。尿素化合物としては、例えば、ジメチロール尿素等が挙げられる。
 (F)硬化剤は、硬化膜の耐熱性をより向上させることができる観点から、エポキシ化合物(エポキシ樹脂)、及び/又は、ブロック型イソシアネートを含むことが好ましく、エポキシ化合物とブロック型イソシアネートとを併用することがより好ましい。
 ブロック型イソシアネートとしては、ポリイソシアネート化合物とイソシアネートブロック剤との付加反応生成物が用いられる。このポリイソシアネート化合物としては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ナフチレンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等のポリイソシアネート化合物、並びにこれらのアダクト体、ビューレット体及びイソシアヌレート体が挙げられる。
 イソシアネートブロック剤としては、例えば、フェノール、クレゾール、キシレノール、クロロフェノール及びエチルフェノール等のフェノール系ブロック剤;ε-カプロラクタム、δ-パレロラクタム、γ-ブチロラクタム及びβ-プロピオラクタム等のラクタム系ブロック剤;アセト酢酸エチル及びアセチルアセトンなどの活性メチレン系ブロック剤;メタノール、エタノール、プロパノール、ブタノール、アミルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルエーテル、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチル及び乳酸エチル等のアルコール系ブロック剤;ホルムアルデヒドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等のオキシム系ブロック剤;ブチルメルカプタン、ヘキシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等のメルカプタン系ブロック剤;酢酸アミド、ベンズアミド等の酸アミド系ブロック剤;コハク酸イミド及びマレイン酸イミド等のイミド系ブロック剤;キシリジン、アニリン、ブチルアミン、ジブチルアミン等のアミン系ブロック剤;イミダゾール、2-エチルイミダゾール等のイミダゾール系ブロック剤;メチレンイミン及びプロピレンイミン等のイミン系ブロック剤等が挙げられる。
 (F)硬化剤は、1種を単独で又は2種以上を組み合わせて用いられる。(F)硬化剤を用いる場合、その含有量は、感光性樹脂組成物の固形分全量を基準として、2~40質量%であることが好ましく、3~30質量%であることがより好ましく、5~20質量%であることが特に好ましい。(F)硬化剤の含有量を、2~40質量%の範囲内にすることにより、良好な現像性を維持しつつ、形成される硬化膜の耐熱性をより向上することができる。
<(G)エラストマー>
 (G)エラストマーは、本発明の感光性樹脂組成物を半導体パッケージ基板に用いる場合に好適に使用することができる。本発明の感光性樹脂組成物に(G)エラストマーを添加することにより、紫外線や熱により橋架け反応(硬化反応)が進行することで(A)酸変性ビニル基含有エポキシ樹脂が硬化収縮して、樹脂の内部に歪み(内部応力)が加わり、可とう性や接着性が低下するという問題を解消することができる。
 (G)エラストマーとしては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー及びシリコーン系エラストマーが挙げられる。これらの(G)エラストマーは、ハードセグメント成分とソフトセグメント成分からなり立っており、一般に前者が耐熱性及び強度に、後者が柔軟性及び強靭性にそれぞれ寄与している。
 スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー等が挙げられる。
 スチレン系エラストマーを構成する成分としては、スチレンのほかに、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。より具体的には、タフプレン、ソルプレンT、アサプレンT、タフテック(以上、旭化成工業(株)製)、エラストマーAR(アロン化成製)、クレイトンG、過リフレックス(以上、シェルジャパン製)、JSR-TR、TSR-SIS、ダイナロン(以上、日本合成ゴム(株)製)、デンカSTR(電気化学工業(株)製)、クインタック(日本ゼオン製)、TPE-SBシリーズ(住友化学工業(株)製)、ラバロン(三菱化学(株)製)、セプトン、ハイブラー(以上、クラレ製)、スミフレックス(住友ベークライト(株)製)、レオストマー、アクティマー(以上、理研ビニル工業製)等を用いることができる。
 オレフィン系エラストマーは、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-ペンテン等の炭素数2~20のα-オレフィンの共重合体である。その具体例としては、エチレン-プロピレン共重合体(EPR)、エチレン-プロピレン-ジエン共重合体(EPDM)、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の炭素数2~20の非共役ジエンとα-オレフィン共重合体、ブタジエン-アクリロニトリル共重合体にメタクリル酸を共重合したカルボキシ変性NBR等が挙げられる。より具体的には、エチレン・α-オレフィン共重合体ゴム、エチレン・α-オレフィン・非共役ジエン共重合体ゴム、プロピレン・α-オレフィン共重合体ゴム、ブテン・α-オレフィン共重合体ゴム等が挙げられる。さらに、具体的には、ミラストマ(三井石油化学製)、EXACT(エクソン化学製)、ENGAGE(ダウケミカル製)、水添スチレン-ブタジエンラバー“DYNABON HSBR”(日本合成ゴム(株)製)、ブタジエン-アクリロニトリル共重合体“NBRシリーズ”(日本合成ゴム(株)製)、あるいは両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体の“XERシリーズ”(日本合成ゴム(株)製)、ポリブタジエンを部分的にエポキシ化したエポキシ化ポリブダジエンのBF-1000(日本曹達社製)、PB-3600(ダイセル化学社製)等を用いることができる。
 ウレタン系エラストマーは、低分子のグリコールとジイソシアネートとからなるハードセグメントと、高分子(長鎖)ジオールとジイソシアネートとからなるソフトセグメントと、の構造単位からなる。
 低分子のグリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ビスフェノールA等の短鎖ジオールを用いることができる。短鎖ジオールの数平均分子量は、48~500が好ましい。
 高分子(長鎖)ジオールとしては、例えば、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン・1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、ポリ(1,6-ヘキシレン・ネオペンチレンアジペート)等が挙げられる。高分子(長鎖)ジオールの数平均分子量は、500~10,000が好ましい。
 ウレタン系エラストマーの具体例としては、PANDEX T-2185、T-2983N(大日本インキ製)、シラクトランE790等が挙げられる。
 ポリエステル系エラストマーとしては、ジカルボン酸又はその誘導体及びジオール化合物又はその誘導体を重縮合して得られるものが挙げられる。
 ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸及びこれらの芳香核の水素原子がメチル基、エチル基、フェニル基等で置換された芳香族ジカルボン酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸、及びシクロヘキサンジカルボン酸などの脂環式ジカルボン酸などが挙げられる。これらの化合物は1種を単独で又は2種以上を組み合わせて用いることができる。
 ジオール化合物の具体例としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール、1,4-シクロヘキサンジオール等の脂肪族ジオール及び脂環式ジオール、又は、下記一般式(12)で示される二価フェノールが挙げられる。
Figure JPOXMLDOC01-appb-C000029
 
[式中、Y11は単結合、炭素数1~10のアルキレン基、炭素数4~8のシクロアルキレン基、-O-、-S-、又は、-SO-を示し、R21及びR22はハロゲン原子又は炭素数1~12のアルキル基を示し、p及びqは0~4の整数を示し、rは0又は1を示す。]
 一般式(12)で示される二価フェノールの具体例としては、ビスフェノールA、ビス-(4-ヒドロキシフェニル)メタン、ビス-(4-ヒドロキシ-3-メチルフェニル)プロパン、レゾルシン等が挙げられる。これらの化合物は1種を単独で又は2種以上を組み合わせて用いることができる。
 また、芳香族ポリエステル(例えば、ポリブチレンテレフタレート)部分をハードセグメント成分に、脂肪族ポリエステル(例えば、ポリテトラメチレングリコール)部分をソフトセグメント成分にしたマルチブロック共重合体を用いることができる。ハードセグメントとソフトセグメントの種類、比率、分子量の違いによりさまざまなグレードのものがある。具体例として、ハイトレル(デュポン-東レ(株)製)、ペルプレン(東洋紡績(株)製)、エスペル(日立化成工業(株)製)等が挙げられる。
 ポリアミド系エラストマーは、ハードセグメントにポリアミドを、ソフトセグメントにポリエーテルやポリエステルを用いたポリエーテルブロックアミド型とポリエーテルエステルブロックアミド型の2種類に大別される。
 ポリアミドとしては、ポリアミド-6、11、12等が用いられる。ポリエーテルとしては、ポリオキシエチレン、ポリオキシプロピレン、ポリテトラメチレングリコール等が用いられる。具体的には、UBEポリアミドエラストマ(宇部興産(株)製)、ダイアミド(ダイセルヒュルス(株)製)、PEBAX(東レ(株)製)、グリロンELY(エムスジャパン(株)製)、ノパミッド(三菱化学(株)製)、グリラックス(大日本インキ(株)製)等を用いることができる。
 アクリル系エラストマーは、アクリル酸エステルを主成分とし、エチルアクリレート、ブチルアクリレート、メトキシエチルアクリレート、エトキシエチルアクリレート等が用いられる。また、架橋点モノマーとして、グリシジルメタクリレート、アリルグリシジルエーテル等が用いられる。さらに、アクリロニトリルやエチレンを共重合することもできる。具体的には、アクリロニトリル-ブチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-エチルアクリレート共重合体、アクリロニトリル-ブチルアクリレート-グリシジルメタクリレート共重合体等を用いることができる。
 シリコーン系エラストマーは、オルガノポリシロキサンを主成分としたもので、ポリジメチルシロキサン系、ポリメチルフェニルシロキサン系、ポリジフェニルシロキサン系に分けられる。一部をビニル基、アルコキシ基等で変性したものもある。具体例としては、KEシリーズ(信越化学工業(株)製)、SEシリーズ、CYシリーズ、SHシリーズ(以上、東レダウコーニングシリコーン(株)製)等が挙げられる。
 また、上述したエラストマー以外に、ゴム変性したエポキシ樹脂を用いることもできる。ゴム変性したエポキシ樹脂は、例えば、上述のビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、フェノールノボラック型エポキシ樹脂あるいはクレゾールノボラック型エポキシ樹脂の一部又は全部のエポキシ基を両末端カルボン酸変性型ブタジエン-アクリロニトリルゴム、末端アミノ変性シリコーンゴム等で変性することによって得られる。これらのエラストマーの中で、せん断接着性の点で、両末端カルボキシル基変性ブタジエン-アクリロニトリル共重合体、水酸基を有するポリエステル系エラストマーであるエスペル(日立化成工業(株)製、エスペル1612、1620)、エポキシ化ポリブダジエン等が好ましい。また、室温において液状であるエラストマーが特に好ましい。
 (G)エラストマーを用いる場合、その含有量は、感光性樹脂組成物の固形分全量を基準として、1~20質量%であることが好ましく、2~15質量%であることがより好ましく、3~10質量%であることが特に好ましい。(G)エラストマーの含有量を、1~20質量%の範囲内にすることにより、良好な現像性を維持しつつ耐熱衝撃性及びアンダフィル材と硬化膜との接着強度をより向上させることができる。また、薄膜基板に用いる場合には、薄膜基板の反り性を低減させることができる。
 本発明の感光性樹脂組成物には、形成される硬化膜の耐熱性、接着性、耐薬品性等の諸特性をさらに向上させる目的で、(H)エポキシ樹脂硬化剤を添加することもできる。
 このような(H)エポキシ樹脂硬化剤の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩及び/又はエポキシアダクト:三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等の三級アミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;上述の多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート等が挙げられる。これらの(H)エポキシ樹脂硬化剤は、1種を単独で又は2種以上を組み合わせて用いられる。
 (H)エポキシ樹脂硬化剤を用いる場合、その含有量は、感光性樹脂組成物の固形分全量を基準として、0.01~20質量%であることが好ましく、0.1~10質量%であることがより好ましい。
 また、本発明の感光性樹脂組成物には、硬化膜の可とう性をより向上させるために、(I)熱可塑性樹脂を加えることができる。
 (I)熱可塑性樹脂としては、例えば、アクリル樹脂、ウレタン樹脂等が挙げられる。(I)熱可塑性樹脂を含有させる場合の含有量は、感光性樹脂組成物の固形分全量を基準として、1~30質量%であることが好ましく、5~20質量%であるであることがより好ましい。
 更に、本発明の感光性樹脂組成物には、必要に応じて、メラミン、有機ベントナイト等の有機微粒子、フタロシアニンブルー、フタロシアニングリーン、アイオディン・グリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の公知の着色剤、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤、ベントン、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、ビニル樹脂系の消泡剤、シランカップリング剤、希釈剤等の公知慣用の各種添加剤を添加することができる。さらに、臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤を添加することもできる。
 希釈剤としては、例えば、有機溶剤が使用できる。有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等が挙げられる。希釈剤は、1種を単独で又は2種以上を組み合わせて用いられる。希釈剤を用いる場合の含有量は、感光性樹脂組成物の塗布性の観点から適宜調整することができる。
 本発明の感光性樹脂組成物は、上述の各成分をロールミル、ビーズミル等で均一に混練、混合することにより得ることができる。
 本発明の感光性樹脂組成物は、例えば、以下のようにして像形成し、硬化膜作製に使用することができる。
 すなわち、銅張り積層板に、スクリーン印刷法、スプレー法、ロールコート法、カーテンコート法、静電塗装法等の方法で10~200μmの膜厚で塗布し、次に塗膜を60~110℃で乾燥させた後、ネガフィルムを直接接触(あるいは透明なフィルムを介して非接触)させて、活性光(例、紫外線)を好ましくは10~1,000mJ/cmの露光量で照射し、その後、未露光部を希アルカリ水溶液あるいは有機溶剤で溶解除去(現像)する。次に、露光部分を後露光(紫外線露光)及び/又は後加熱によって十分硬化させて硬化膜を得る。後露光は例えば1~5J/cmの露光量で行うことが好ましく、後加熱は、100~200℃で30分~12時間行うことが好ましい。
 また、本発明の感光性樹脂組成物を支持体に積層して感光性エレメントとすることもできる。感光性樹脂組成物からなる層の厚さは10~100μmとすることが好ましい。支持体としてはポリエチレンテレフタレート等の厚さ5~100μmのフィルムが好適に用いられる。感光性樹脂組成物からなる層は、好ましくは支持体フィルム上に感光性樹脂組成物の溶液を塗布乾燥することにより形成される。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 [合成例1:酸変性ビニル基含有エポキシ樹脂(A-1)の製造]
 上記一般式(8)で表される繰り返し単位(R14=水素原子、Y及びY=グリシジル基)を有するビスフェノールFノボラック型エポキシ樹脂(EXA-7376、大日本インキ化学工業社製)350質量部、アクリル酸70質量部、メチルハイドロキノン0.5質量部、カルビトールアセテート120質量部を仕込み、90℃に加熱して攪拌することにより反応させ、混合物を完全に溶解した。次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃に加熱して、溶液の酸価が1mgKOH/gになるまで反応させた。反応後の溶液に、テトラヒドロ無水フタル酸(THPAC)98質量部とカルビトールアセテート85質量部とを加え、80℃に加熱して約6時間反応させた後に冷却し、固形分の濃度が73質量%である(A)成分としてのTHPAC変性ビスフェノールF型ノボラックエポキシアクリレート(以下、「酸変性ビニル基含有エポキシ樹脂(A-1)」という)の溶液を得た。
 [合成例2:酸変性ビニル基含有エポキシ樹脂(A-2)の製造例]
 上記一般式(4)で表される(R11=水素原子、Y=グリシジル基)クレゾールノボラック型エポキシ樹脂(ESCN-195、住友化学社製)382質量部、アクリル酸90質量部、メチルハイドロキノン0.5質量部、カルビトールアセテート120質量部を仕込み、90℃に加熱して攪拌することにより反応させ、混合物を完全に溶解した。次に、得られた溶液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃に加熱して、溶液の酸価が1mgKOH/g以下になるまで反応させた。反応後の溶液に、テトラヒドロ無水フタル酸(THPAC)100質量部とカルビトールアセテート85質量部とを加え、80℃に加熱して約6時間反応させた後に冷却して、固形分の濃度が75%である(A)成分としてのTHPAC変性クレゾールノボラック型エポキシアクリレート(以下、「酸変性ビニル基含有エポキシ樹脂(A-2)」という)の溶液を得た。
 (実施例1~10、比較例1~11)
 下記表1及び2に示す各材料を、同表に示す配合量(単位:質量部)で配合した後、3本ロールミルで混練し、固形分濃度が70質量%になるようにカルビトールアセテートを加えて、感光性樹脂組成物を得た。なお、下記表1及び2中の各材料の配合量は、固形分の配合量を示す。
Figure JPOXMLDOC01-appb-T000030
 
Figure JPOXMLDOC01-appb-T000031
 
 なお、表1及び2中の各材料の詳細は以下の通りである。
*1(酸変性ビニル基含有エポキシ樹脂(A-1)):合成例1で作製したTHPAC変性ビスフェノールF型ノボラックエポキシアクリレート、
*2(酸変性ビニル基含有エポキシ樹脂(A-2)):THPAC変性クレゾールノボラック型エポキシアクリレート、
*3(PB-3600):エポキシ化ポリブタジエン(ダイセル化学(株)製、商品名)、
*4(エピコート828):ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、商品名)、
*5(カヤラッドDPHA):ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製、商品名)、
*6(イルガキュア907):2-メチル-[4-(メチルチオ)フェニル]モルホリノ-1-プロパノン(チバ・スペシャルティ・ケミカルズ(株)製、商品名)、
*7(カヤキュアDETX-S):2,4-ジエチルチオキサントン(日本化薬(株)製、商品名)、
*8(AO-20):フェノール系抗酸化剤(アデカ社製、商品名)、下記式(I)で表される化合物、
*9(AO-30):フェノール系抗酸化剤(アデカ社製、商品名)、下記式(II)で表される1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、
*10(AO-40):フェノール系抗酸化剤(アデカ社製、商品名)、下記式(III)で表される4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、
*11(AO-50):フェノール系抗酸化剤(アデカ社製、商品名)、下記式(IV)で表されるステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、
*12(AO-80):フェノール系抗酸化剤(アデカ社製、商品名)、下記式(V)で表される化合物、
*13(ヨシノックスBHT):フェノール系抗酸化剤(吉冨製薬社製、商品名)、下記式(VI)で表されるジブチルヒドロキシトルエン、
*14(PEP-4C):リン系抗酸化剤(アデカ社製、商品名)、下記式(VII)で表される化合物、
*15(PEP-8):リン系抗酸化剤(アデカ社製、商品名)、下記式(VIII)で表されるジステアリルペンタエリスリトールジフォスファイト、
*16(PEP-24G):リン系抗酸化剤(アデカ社製、商品名)、下記式(IX)で表される化合物、
*17(HP-10):リン系抗酸化剤(アデカ社製、商品名)、下記式(X)で表される化合物、
*18(AO-23):イオウ系抗酸化剤(アデカ社製、商品名)、下記式(XI)で表される化合物、
*19(AO-412S):イオウ系抗酸化剤(アデカ社製、商品名)、下記式(XII)で表される化合物、
*20(AO-503A):イオウ系抗酸化剤(アデカ社製、商品名)、下記式(XIII)で表される化合物、
*21(FLB-1):シリカ微粒子(タツモリ(株)製、商品名)、
*22(NanoFine BFN40DC):硫酸バリウム微粒子(日本ソルベイ(株)製、商品名)。
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
 
Figure JPOXMLDOC01-appb-C000038
 
Figure JPOXMLDOC01-appb-C000039
 
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
[R:C12~C14のアルキル基]
Figure JPOXMLDOC01-appb-C000043
[R:C12のアルキル基]
Figure JPOXMLDOC01-appb-C000044
 [光感度]
 実施例及び比較例の感光性樹脂組成物を、銅張積層基板(MCL-E-67、日立化成工業(株)製)に、乾燥後の膜厚が25μmになるようにスクリーン印刷法で塗布した後、75℃で30分間熱風循環式乾燥機を用いて乾燥させた。得られた塗膜の表面に、濃度領域0.00~2.00、濃度ステップ0.05、タブレット(矩形)の大きさが20mm×187mmで、各ステップ(矩形)の大きさが3mm×12mmである41段ステップタブレットを有するフォトツール(ストーファー社製)を密着させ、積算露光量600mJ/cmの紫外線を照射し、1質量%の炭酸ナトリウム水溶液で60秒間現像し、残存ステップ段数を感度として評価した。残存ステップ段数が多いほど高感度であり、18段以上残存していることが好ましい。評価結果を表3及び表4に示す。
 [開口径]
 実施例及び比較例の感光性樹脂組成物を、銅張積層基板(MCL-E-67、日立化成工業(株)製)に、乾燥後の膜厚が25μmになるようにスクリーン印刷法で塗布した後、75℃で30分間熱風循環式乾燥機を用いて乾燥させた。得られた塗膜に、1×1cm四方の面積にφ80μm及びφ110μmの光非透過部が点在するネガフィルムを介して積算露光量600mJ/cmの紫外線を照射し、1質量%の炭酸ナトリウム水溶液で60秒間、1.8kgf/cmの圧力でスプレー現像し、未露光部を溶解現像して像形成した。その後、マイクロスコープ(HIROX社製、型番:KH-3000)を用いて開口径を測定し、以下の基準で評価した。評価結果を表3及び表4に示す。
A:開口径が80%以上(φ80μmネガフィルムで64μm以上、φ110μmネガフィルムで88μm以上)のもの。
B:開口径が70%以上80%未満(φ80μmネガフィルムで56μm以上64μm未満、φ110μmネガフィルムで77μm以上88μm未満)のもの。
C:開口径が70%未満(φ80μmネガフィルムで56μm未満、φ110μmネガフィルムで77μm未満)のもの。
 [試験片の作製]
 実施例及び比較例の感光性樹脂組成物を、厚さ0.6mmの銅張積層基板(MCL-E-67、日立化成工業(株)製)に、乾燥後の膜厚が25μmになるようにスクリーン印刷法で塗布した後、80℃で20分間熱風循環式乾燥機を用いて乾燥させた。次に、所定のパターンを有するネガマスクを塗膜に密着させ、紫外線露光装置を用いて600mJ/cmの露光量で露光した。その後、1質量%の炭酸ナトリウム水溶液で60秒間、1.8kgf/cmの圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置を用いて1000mJ/cmの露光量で露光し、150℃で1時間加熱して、試験片を作製した。
 [はんだ耐熱性]
 上記試験片に水溶性フラックスを塗布し、265℃のはんだ槽に10秒間浸漬した。これを1サイクルとして、6サイクル繰り返した後、塗膜外観を目視観察し、以下の基準で評価した。評価結果を表3及び表4に示す。
A:外観変化なし
B:塗膜50mm内に、塗膜のウキ又はフクレが1個~2個あり
C:塗膜50mm内に、塗膜のウキ又はフクレが3個~5個あり
D:塗膜50mm内に、塗膜のウキ又はフクレが6個以上あり
 [耐熱衝撃性]
 上記試験片を、-55℃/30分間、125℃/30分間を1サイクルとして熱履歴を加え、1,000サイクル経過後、試験片を目視観察及び顕微鏡観察し、以下の基準により評価した。評価結果を表3及び表4に示す。
A:クラック発生なし
B:クラック発生あり
 [耐PCT試験後のアンダフィル材と硬化膜との接着強度]
 上記試験片を15mm×15mmの大きさに切り出し、120℃、12時間乾燥させた。φ3.0mmの開口を設けた15mm×15mm×厚み1.0mmのシリコーンゴムを、試験片上に配置し、110℃のホットプレート上で開口部にアンダフィル材を注入した後、クリーンオーブンにて165℃で2時間硬化させた。室温に冷却した後、シリコーンゴムを取り外し、アンダフィル材との接着性評価用基板を得た。この接着性評価用基板を用いてPCT試験(121℃、2気圧、96時間)を行った後、ボンドテスタ(Dage4000、Dage社製)を用いて室温でのシェア強度を測定し、単位面積当たりの接着力を求めた。各材料ともに、試料数5個で測定し、平均値を比較した。単位はMPaである。このとき、テストヘッドの高さは塗膜上から100μm、テストヘッドの速度は100μm/秒とした。アンダフィル材の組成は、ビスフェノールF型エポキシ樹脂と、硬化剤である酸無水物、シリカ微粒子(67質量%)で構成されたCEL-C-3801(日立化成工業(株)製、商品名)を用いた。評価結果を表3及び表4に示す。
 [反り性]
 縦5cm、横5cm、厚さ18μmの銅箔に、実施例及び比較例の感光性樹脂組成物を、乾燥後の膜厚が25μmになるようにスクリーン印刷法で塗布した後、75℃で30分間熱風循環式乾燥機を用いて乾燥させ、紫外線露光装置を用いて600mJ/cmの露光量で露光した。その後、1質量%の炭酸ナトリウム水溶液で60秒間、1.8kgf/cmの圧力でスプレーした。次に、紫外線露光装置を用いて、1000mJ/cmの露光量で露光し、150℃で1時間加熱して、反り性評価用試験片を得た。得られた試験片について、塗布面を下にして定盤上に置き、反り高さを評価した。評価結果を表3及び表4に示す。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 以上説明したように、本発明によれば、長時間の耐PCT試験後であっても、アンダフィル材と永久マスクレジストである硬化膜との接着性が優れ、且つ、はんだ耐熱性にも優れる半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物を提供することができる。

Claims (8)

  1.  (A)酸変性ビニル基含有エポキシ樹脂と、
     (B)フェノール系化合物と、
     (C)分子内に少なくとも1つのエチレン性不飽和基を有する化合物と、
     (D)光重合開始剤と、
     (E)無機微粒子と、
    を含有する半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
  2.  前記(B)フェノール系化合物が、下記一般式(1)で表される化合物である、請求項1に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rは炭素数1~5のアルキル基を示し、mは1~4の整数を示し、nは1~4の整数を示し、Aはn価の有機基を示す。なお、m及び/又はnが2以上の場合、複数存在するRは同一でも異なっていてもよい。]
  3.  前記一般式(1)中、Aは2~4価の炭素数1~5の炭化水素基、下記一般式(2)で表される3価の有機基、又は、下記一般式(3)で表される3価の有機基である、請求項2に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、Rは炭素数1~5のアルキル基を示し、tは1~3の整数を示す。]
  4.  前記一般式(1)中、少なくとも一つのRがtert-ブチル基である、請求項2又は3に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
  5.  前記(A)酸変性ビニル基含有エポキシ樹脂が、下記一般式(4)で表されるノボラック型エポキシ樹脂、下記一般式(5)で表されるビスフェノール型エポキシ樹脂、下記一般式(6)で表されるサリチルアルデヒド型エポキシ樹脂、並びに、下記一般式(7)又は(8)で表される繰り返し単位を有するビスフェノール型ノボラック樹脂からなる群より選択される少なくとも1種のエポキシ樹脂(a)と、ビニル基含有モノカルボン酸(b)と、を反応させて得られる樹脂に、飽和若しくは不飽和基含有多塩基酸無水物(c)を反応させて得られる樹脂である、請求項1~4のいずれか一項に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R11は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n1は1以上の整数を示す。なお、複数存在するR11及びYはそれぞれ同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
    Figure JPOXMLDOC01-appb-C000005
    [式(5)中、R12は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示し、n2は1以上の整数を示す。なお、複数存在するR12は同一でも異なっていてもよい。また、n2が2以上の場合、複数存在するYは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000006
    [式(6)中、Yは水素原子又はグリシジル基を示し、n3は1以上の整数を示す。なお、複数存在するYは同一でも異なっていてもよい。但し、少なくとも一つのYはグリシジル基を示す。]
    Figure JPOXMLDOC01-appb-C000007
    [式(7)中、R13は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR13は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
    Figure JPOXMLDOC01-appb-C000008
    [式(8)中、R14は水素原子又はメチル基を示し、Y及びYはそれぞれ独立に水素原子又はグリシジル基を示す。なお、2つのR14は同一でも異なっていてもよい。但し、Y及びYの少なくとも一方はグリシジル基を示す。]
  6.  前記(E)無機微粒子の含有量が、感光性樹脂組成物の固形分全量を基準として15~80質量%である、請求項1~5のいずれか一項に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
  7.  (F)硬化剤を更に含有する、請求項1~6のいずれか一項に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
  8.  (G)エラストマーを更に含有する、請求項1~7のいずれか一項に記載の半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物。
PCT/JP2009/065069 2008-09-04 2009-08-28 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物 WO2010026927A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107028599A KR101323928B1 (ko) 2008-09-04 2009-08-28 반도체 패키지용 프린트 배선판의 보호막용 감광성 수지 조성물
CN200980134218.3A CN102138104B (zh) 2008-09-04 2009-08-28 半导体封装用印刷电路板的保护膜用感光性树脂组合物
JP2010527771A JP4900510B2 (ja) 2008-09-04 2009-08-28 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物
US13/062,038 US9075307B2 (en) 2008-09-04 2009-08-28 Photosensitive resin composition for protective film of printed wiring board for semiconductor package

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-227156 2008-09-04
JP2008227156 2008-09-04

Publications (1)

Publication Number Publication Date
WO2010026927A1 true WO2010026927A1 (ja) 2010-03-11

Family

ID=41797095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065069 WO2010026927A1 (ja) 2008-09-04 2009-08-28 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物

Country Status (6)

Country Link
US (1) US9075307B2 (ja)
JP (1) JP4900510B2 (ja)
KR (1) KR101323928B1 (ja)
CN (1) CN102138104B (ja)
TW (1) TWI396046B (ja)
WO (1) WO2010026927A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141387A (ja) * 2010-12-28 2012-07-26 Taiyo Ink Mfg Ltd 光硬化性樹脂組成物
JP2012236909A (ja) * 2011-05-11 2012-12-06 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板
WO2013022068A1 (ja) * 2011-08-10 2013-02-14 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、永久レジスト及び永久レジストの製造方法
JP2013168395A (ja) * 2012-02-14 2013-08-29 Taiyo Holdings Co Ltd めっきレジスト用樹脂組成物、多層プリント配線板及び多層プリント配線板の製造方法
CN103492950A (zh) * 2011-06-17 2014-01-01 太阳油墨制造株式会社 光固化性热固化性树脂组合物
JP2014010330A (ja) * 2012-06-29 2014-01-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物及び感光性樹脂積層体
CN103619960A (zh) * 2011-06-17 2014-03-05 太阳油墨制造株式会社 阻燃性固化性树脂组合物、使用其的干膜及印刷电路板
JP2014048340A (ja) * 2012-08-29 2014-03-17 Asahi Kasei E-Materials Corp 感光性樹脂組成物
JP2014074834A (ja) * 2012-10-05 2014-04-24 Asahi Kasei E-Materials Corp 感光性樹脂組成物及び感光性樹脂積層体
WO2014136897A1 (ja) * 2013-03-07 2014-09-12 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2014208647A1 (ja) * 2013-06-27 2014-12-31 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
WO2015002071A1 (ja) * 2013-07-04 2015-01-08 味の素株式会社 感光性樹脂組成物
JP2016106270A (ja) * 2012-03-28 2016-06-16 Jsr株式会社 カラーフィルタ、有機el表示素子及び着色組成物
JP2018120242A (ja) * 2013-12-26 2018-08-02 旭化成株式会社 感光性樹脂組成物及び感光性樹脂積層体
KR20180089286A (ko) 2017-01-31 2018-08-08 닛뽄 가야쿠 가부시키가이샤 반응성 폴리카본산 화합물, 그것을 이용한 활성 에너지선 경화형 수지 조성물, 그의 경화물 및 그의 용도

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361903B (zh) * 2009-03-26 2013-08-28 松下电器产业株式会社 环氧树脂组合物、预浸料、树脂涂覆的金属箔、树脂片、层压板和多层板
CN103270072B (zh) * 2010-12-21 2016-01-20 艾伦塔斯有限公司 包含环氧和乙烯基酯基的环氧树脂组合物
JP5875821B2 (ja) * 2011-09-30 2016-03-02 太陽インキ製造株式会社 感光性樹脂組成物、その硬化皮膜およびプリント配線板
TW201435495A (zh) * 2011-09-30 2014-09-16 Taiyo Ink Mfg Co Ltd 感光性樹脂組成物、其之硬化皮膜及印刷配線板
TWI541594B (zh) * 2011-09-30 2016-07-11 Taiyo Ink Mfg Co Ltd A photosensitive resin composition, a hardened film thereof, and a printed wiring board
JP6455432B2 (ja) * 2013-08-02 2019-01-23 日立化成株式会社 感光性樹脂組成物
WO2015016362A1 (ja) * 2013-08-02 2015-02-05 日立化成株式会社 感光性樹脂組成物
KR102171397B1 (ko) * 2013-12-30 2020-10-29 엘지디스플레이 주식회사 터치장치의 제조방법 및 그 수지 조성물
JP6274306B2 (ja) * 2014-03-31 2018-02-07 荒川化学工業株式会社 プリント配線板用接着剤組成物、積層板およびフレキシブルプリント配線板
CN106233205B (zh) * 2014-04-25 2020-06-23 日立化成株式会社 感光性元件、层叠体、永久掩模抗蚀剂及其制造方法以及半导体封装体的制造方法
CN104865791B (zh) * 2015-04-17 2019-08-30 京东方科技集团股份有限公司 掩膜板的制备方法和掩膜板
JP6742785B2 (ja) * 2015-08-13 2020-08-19 太陽インキ製造株式会社 感光性樹脂組成物、ドライフィルムおよびプリント配線板
JP7067140B2 (ja) * 2017-03-29 2022-05-16 味の素株式会社 樹脂組成物
JP6601634B2 (ja) * 2017-03-31 2019-11-06 協立化学産業株式会社 変性樹脂及びそれを含む硬化性樹脂組成物

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138835A (ja) * 2002-10-18 2004-05-13 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1127340A (en) * 1977-12-30 1982-07-06 Kohtaro Nagasawa Photocurable light-sensitive composition and material
US4390615A (en) * 1979-11-05 1983-06-28 Courtney Robert W Coating compositions
JPS573875A (en) * 1980-06-11 1982-01-09 Tamura Kaken Kk Photopolymerizable ink composition
JP2604173B2 (ja) * 1987-02-25 1997-04-30 東京応化工業株式会社 耐熱性感光性樹脂組成物
JP3281473B2 (ja) * 1994-01-17 2002-05-13 日本化薬株式会社 フレキシブルプリント配線板用レジストインキ組成物及びその硬化物
JP3496674B2 (ja) 1997-11-28 2004-02-16 日立化成工業株式会社 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP3496668B2 (ja) 1997-11-28 2004-02-16 日立化成工業株式会社 光硬化性樹脂組成物及びこれを用いた感光性エレメント
US6583198B2 (en) * 1997-11-28 2003-06-24 Hitachi Chemical Company, Ltd. Photo curable resin composition and photosensitive element
JP3247091B2 (ja) 1997-11-28 2002-01-15 日立化成工業株式会社 光硬化性樹脂組成物及びこれを用いた感光性エレメント
FR2782726B1 (fr) * 1998-08-28 2003-09-12 Basf Coatings Compositions de vernis acryliques photopolymerisables contenant un agent anti-oxydant de la famille des phenols encombres steriquement
JP3750101B2 (ja) * 1999-03-15 2006-03-01 タムラ化研株式会社 感光性樹脂組成物及びプリント配線板
JP4894093B2 (ja) 2001-03-30 2012-03-07 Dic株式会社 活性エネルギー線硬化型樹脂の製造方法
EP1494073A3 (en) * 2001-09-21 2005-04-06 Tamura Kaken Corporation Photosensitive resin composition and printed wiring board
JP3673967B2 (ja) * 2001-09-21 2005-07-20 タムラ化研株式会社 感光性樹脂組成物及びプリント配線板
JP2003140334A (ja) 2001-11-01 2003-05-14 Mitsubishi Chemicals Corp 光重合性画像形成材及び画像形成方法
JP4240885B2 (ja) 2001-12-28 2009-03-18 日立化成工業株式会社 フレキシブル配線板の保護膜を形成する方法
US8916335B2 (en) * 2003-10-07 2014-12-23 Bridgestone Corporation Photo-curable transfer sheet, process for the preparation of optical information recording medium using the sheet, and optical information recording medium
JP2007079120A (ja) 2005-09-14 2007-03-29 Fujifilm Corp 感光性組成物、パターン形成材料、感光性積層体、並びにパターン形成装置及びパターン形成方法
KR100791817B1 (ko) * 2005-09-30 2008-01-04 주식회사 동진쎄미켐 감광성 수지 조성물
JP2007171812A (ja) * 2005-12-26 2007-07-05 Showa Denko Kk ソルダーレジストインキ組成物、その組成物を硬化してなるソルダーレジスト及びソルダーレジストの製造方法
JP5355845B2 (ja) 2006-02-24 2013-11-27 太陽ホールディングス株式会社 光硬化性樹脂組成物、及びその硬化物。
JP2009014745A (ja) 2006-03-16 2009-01-22 Fujifilm Holdings Corp 感光性組成物、感光性フィルム、感光性積層体、永久パターン形成方法、及びプリント基板
JP2008189803A (ja) 2007-02-05 2008-08-21 Taiyo Ink Mfg Ltd 光硬化性・熱硬化性樹脂組成物、その硬化物、ドライフィルム及び薄型パッケージ基板
JP2008063572A (ja) 2006-08-11 2008-03-21 Nippon Kayaku Co Ltd 感光性樹脂及びそれを含有する活性エネルギー線硬化型樹脂組成物
US8877866B2 (en) * 2006-10-19 2014-11-04 Dow Global Technologies Llc Curable epoxy resin compositions having improved adhesion to metal substrates and processes for making and using the same
JP2009083482A (ja) 2007-09-13 2009-04-23 Asahi Kasei Electronics Co Ltd 感光性樹脂積層体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138835A (ja) * 2002-10-18 2004-05-13 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141387A (ja) * 2010-12-28 2012-07-26 Taiyo Ink Mfg Ltd 光硬化性樹脂組成物
JP2012236909A (ja) * 2011-05-11 2012-12-06 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、これを用いたプリプレグ、積層板及びプリント配線板
CN103492950A (zh) * 2011-06-17 2014-01-01 太阳油墨制造株式会社 光固化性热固化性树脂组合物
CN103619960A (zh) * 2011-06-17 2014-03-05 太阳油墨制造株式会社 阻燃性固化性树脂组合物、使用其的干膜及印刷电路板
US9235121B2 (en) 2011-08-10 2016-01-12 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive film, permanent resist and method for producing permanent resist
WO2013022068A1 (ja) * 2011-08-10 2013-02-14 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、永久レジスト及び永久レジストの製造方法
US20140154628A1 (en) * 2011-08-10 2014-06-05 Toshimasa Nagoshi Photosensitive resin composition, photosensitive film, permanent resist and method for producing permanent resist
JP2013168395A (ja) * 2012-02-14 2013-08-29 Taiyo Holdings Co Ltd めっきレジスト用樹脂組成物、多層プリント配線板及び多層プリント配線板の製造方法
JP2016106270A (ja) * 2012-03-28 2016-06-16 Jsr株式会社 カラーフィルタ、有機el表示素子及び着色組成物
JP2014010330A (ja) * 2012-06-29 2014-01-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物及び感光性樹脂積層体
JP2014048340A (ja) * 2012-08-29 2014-03-17 Asahi Kasei E-Materials Corp 感光性樹脂組成物
JP2014074834A (ja) * 2012-10-05 2014-04-24 Asahi Kasei E-Materials Corp 感光性樹脂組成物及び感光性樹脂積層体
WO2014136897A1 (ja) * 2013-03-07 2014-09-12 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JPWO2014136897A1 (ja) * 2013-03-07 2017-02-16 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
US10111328B2 (en) 2013-03-07 2018-10-23 Htachi Chemical Company, Ltd. Photosensitive resin composition, dry film using same, printed wiring board, and method for producing printed wiring board
WO2014208647A1 (ja) * 2013-06-27 2014-12-31 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
JPWO2014208647A1 (ja) * 2013-06-27 2017-02-23 富士フイルム株式会社 感光性樹脂組成物、硬化膜の製造方法、硬化膜、液晶表示装置および有機el表示装置
WO2015002071A1 (ja) * 2013-07-04 2015-01-08 味の素株式会社 感光性樹脂組成物
JPWO2015002071A1 (ja) * 2013-07-04 2017-02-23 味の素株式会社 感光性樹脂組成物
JP2018120242A (ja) * 2013-12-26 2018-08-02 旭化成株式会社 感光性樹脂組成物及び感光性樹脂積層体
KR20180089286A (ko) 2017-01-31 2018-08-08 닛뽄 가야쿠 가부시키가이샤 반응성 폴리카본산 화합물, 그것을 이용한 활성 에너지선 경화형 수지 조성물, 그의 경화물 및 그의 용도

Also Published As

Publication number Publication date
KR20110013495A (ko) 2011-02-09
TWI396046B (zh) 2013-05-11
US9075307B2 (en) 2015-07-07
JP4900510B2 (ja) 2012-03-21
TW201024918A (en) 2010-07-01
CN102138104A (zh) 2011-07-27
JPWO2010026927A1 (ja) 2012-02-02
CN102138104B (zh) 2013-01-23
US20110223539A1 (en) 2011-09-15
KR101323928B1 (ko) 2013-10-31

Similar Documents

Publication Publication Date Title
JP4900510B2 (ja) 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物
JP6402710B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP6003053B2 (ja) 半導体パッケージ用プリント配線板の保護膜用感光性樹脂組成物及び半導体パッケージ
JP2007256943A (ja) 感光性樹脂組成物、これを用いたレジストパターンの形成方法及びプリント配線板の製造方法
JP2013218146A (ja) 保護膜用感光性樹脂組成物
TW202112831A (zh) 感光性樹脂組成物、感光性樹脂薄膜、印刷線路板及半導體封裝體、以及印刷線路板的製造方法
JP2018097140A (ja) 感光性樹脂組成物、感光性エレメントとその製造方法及び半導体装置
JP7294389B2 (ja) 感光性樹脂組成物、並びにこれを用いた感光性フィルム、レジストパターンの形成方法及びプリント配線板
JP5131001B2 (ja) プリント配線板用硬化性樹脂組成物
JP7035304B2 (ja) 感光性樹脂組成物、並びにこれを用いた感光性フィルム、レジストパターンの形成方法及びプリント配線板
JP2004138979A (ja) 感光性樹脂組成物
JP7415443B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及び、プリント配線板の製造方法
WO2023139694A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
WO2023214540A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
JP2024036366A (ja) 感光性樹脂組成物、パターン硬化膜とその製造方法、感光性エレメント及びプリント配線板とその製造方法
JP4254699B2 (ja) 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP6988126B2 (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
KR20240024196A (ko) 감광성 수지 조성물, 감광성 엘리먼트, 프린트 배선판, 및 프린트 배선판의 제조 방법
WO2018179260A1 (ja) 感光性樹脂組成物、パターン硬化膜及びその製造方法、感光性エレメント、並びに、プリント配線板及びプリント配線板の製造方法
KR20230146063A (ko) 감광성 수지 조성물, 감광성 엘리먼트, 프린트 배선판, 및 프린트 배선판의 제조 방법
JP6175827B2 (ja) 液状光硬化性樹脂組成物の塗膜を基板上で平坦化する方法、プリント配線板の製造方法、及びプリント配線板
JP6175828B2 (ja) 液状光硬化性樹脂組成物の塗膜を基板上で平坦化する方法、プリント配線板の製造方法、及びプリント配線板
JP3795889B2 (ja) 光硬化性樹脂組成物及びこれを用いた感光性エレメント

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134218.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527771

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107028599

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13062038

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09811453

Country of ref document: EP

Kind code of ref document: A1