WO2023214540A1 - 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法 - Google Patents

感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法 Download PDF

Info

Publication number
WO2023214540A1
WO2023214540A1 PCT/JP2023/016740 JP2023016740W WO2023214540A1 WO 2023214540 A1 WO2023214540 A1 WO 2023214540A1 JP 2023016740 W JP2023016740 W JP 2023016740W WO 2023214540 A1 WO2023214540 A1 WO 2023214540A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
component
photosensitive
photosensitive resin
group
Prior art date
Application number
PCT/JP2023/016740
Other languages
English (en)
French (fr)
Inventor
彰宏 中村
直光 小森
周司 野本
雄汰 代島
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023214540A1 publication Critical patent/WO2023214540A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present disclosure relates to a photosensitive resin composition, a photosensitive element, a printed wiring board, and a method for manufacturing a printed wiring board.
  • Permanent resists are formed on printed wiring boards. Permanent resists have the role of preventing corrosion of conductor layers and maintaining electrical insulation between conductor layers when printed wiring boards are used. In recent years, permanent resists have been used to prevent solder from adhering to unnecessary parts of the conductor layer of a printed wiring board, even during processes such as flip-chip mounting and wire bonding mounting of semiconductor elements on a printed wiring board via solder. , also has a role as a solder resist film.
  • thermosetting resin composition a thermosetting resin composition
  • photographic method using a photosensitive resin composition a photographic method using a photosensitive resin composition.
  • FC Flexible wiring boards using mounting methods such as FC (Flip Chip), TAB (Tape Automated Bonding), and COF (Chip On Film), IC chips, electronic components, or LCD (liquid crystal display) panels and connection wiring patterns are used.
  • a permanent resist is formed by screen printing a thermosetting resin paste and thermally curing except for the portions (see, for example, Patent Document 1).
  • the present disclosure relates to a photosensitive resin composition capable of forming a permanent resist having excellent resolution and pattern forming properties, and excellent heat resistance and thermal shock resistance, a photosensitive element using the photosensitive resin composition, and a print.
  • the present invention aims to provide a wiring board and a method for manufacturing a printed wiring board.
  • thermosetting resin includes a bisphenol-type epoxy compound having an average molecular weight of 360 or less
  • elastomer includes an acrylic elastomer
  • Another aspect of the present disclosure relates to a photosensitive element comprising a support film and a photosensitive layer formed on the support film, the photosensitive layer containing the above-described photosensitive resin composition.
  • Another aspect of the present disclosure relates to a printed wiring board that includes a permanent resist containing a cured product of the above-described photosensitive resin composition.
  • Another aspect of the present disclosure includes a step of forming a photosensitive layer on a substrate using the above-described photosensitive resin composition or photosensitive element, and a step of exposing and developing the photosensitive layer to form a resist pattern. and curing a resist pattern to form a permanent resist.
  • a photosensitive resin composition capable of forming a permanent resist having excellent resolution and pattern forming properties and excellent heat resistance and thermal shock resistance, and a photosensitive element using the photosensitive resin composition.
  • a printed wiring board and a method for manufacturing a printed wiring board.
  • FIG. 1 is a cross-sectional view schematically showing a photosensitive element according to the present embodiment.
  • thermosetting resin a photopolymerization initiator, (D) photopolymerizable compound, and (E) elastomer, and contains the thermosetting resin
  • the resin includes a bisphenol-type epoxy compound having an average molecular weight of 360 or less, and the elastomer includes an acrylic elastomer.
  • a photosensitive material comprising a support film and a photosensitive layer formed on the support film, wherein the photosensitive layer contains the photosensitive resin composition according to any one of [1] to [7] above. element.
  • a printed wiring board comprising a permanent resist containing a cured product of the photosensitive resin composition according to any one of [1] to [7] above.
  • the term “step” includes not only independent steps but also steps that cannot be clearly distinguished from other steps as long as the intended effect of the step is achieved.
  • the term “layer” includes a structure having a shape formed on the entire surface as well as a structure having a shape formed in a part of the layer.
  • a numerical range indicated using “ ⁇ ” indicates a range that includes the numerical values written before and after " ⁇ " as the minimum and maximum values, respectively.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step.
  • the upper limit or lower limit of the numerical range may be replaced with the value shown in the Examples.
  • (meth)acrylate means at least one of “acrylate” and the corresponding “methacrylate”, and the same applies to other similar expressions such as (meth)acrylic acid and (meth)acryloyl. It is.
  • solid content refers to non-volatile content excluding volatile substances (water, solvent, etc.) contained in the photosensitive resin composition, and is liquid, starch syrup-like, or Also contains waxy components.
  • the photosensitive resin composition according to the present embodiment includes (A) an acid-modified vinyl group-containing resin, (B) a thermosetting resin, (C) a photopolymerization initiator, (D) a photopolymerizable compound, and (E) Contains elastomer as an essential component.
  • the photosensitive resin composition according to this embodiment is a negative photosensitive resin composition, and a cured film of the photosensitive resin composition can be suitably used as a permanent resist.
  • Each component used in the photosensitive resin composition of this embodiment will be explained in more detail below.
  • the photosensitive resin composition according to this embodiment contains an acid-modified vinyl group-containing resin as component (A).
  • the acid-modified vinyl group-containing resin is not particularly limited as long as it has a photopolymerizable ethylenically unsaturated vinyl bond and an alkali-soluble acidic group.
  • Examples of the group having an ethylenically unsaturated bond in component (A) include a vinyl group, an allyl group, a propargyl group, a butenyl group, an ethynyl group, a phenylethynyl group, a maleimide group, a nadimide group, and a (meth)acryloyl group. can be mentioned. Among these, a (meth)acryloyl group is preferred from the viewpoint of reactivity and resolution.
  • Examples of the acidic group contained in component (A) include a carboxy group, a sulfo group, and a phenolic hydroxyl group. Among these, a carboxy group is preferred from the viewpoint of resolution.
  • Component (A) consists of (a) an epoxy resin (hereinafter sometimes referred to as “component (a)”) and (b) an organic acid containing an ethylenically unsaturated group (hereinafter referred to as “component (b)”). ) and (c) a saturated or unsaturated group-containing polybasic acid anhydride (hereinafter sometimes referred to as “component (c)”). ) is preferably an acid-modified vinyl group-containing epoxy derivative.
  • acid-modified vinyl group-containing epoxy derivatives examples include acid-modified epoxy (meth)acrylates.
  • Acid-modified epoxy (meth)acrylate is a resin obtained by acid-modifying epoxy (meth)acrylate, which is a reaction product of components (a) and (b), with component (c).
  • As the acid-modified epoxy (meth)acrylate for example, an addition reaction product obtained by adding a saturated or unsaturated polybasic acid anhydride to an esterified product obtained by reacting an epoxy resin and a vinyl group-containing monocarboxylic acid can be used. can.
  • an acid-modified vinyl group-containing resin (hereinafter sometimes referred to as "epoxy resin (a1)") using a bisphenol novolac type epoxy resin (a1) (hereinafter sometimes referred to as “epoxy resin (a1)”) as the component (a).
  • A1) hereinafter sometimes referred to as “component (A1)”
  • epoxy resin (a2) other than epoxy resin (a1) as component (a)
  • Examples include acid-modified vinyl group-containing resin (A2) (hereinafter sometimes referred to as "(A2) component").
  • Examples of the epoxy resin (a1) include epoxy resins having a structural unit represented by the following formula (I) or (II).
  • R 11 represents a hydrogen atom or a methyl group, and a plurality of R 11s may be the same or different.
  • Y 1 and Y 2 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 1 and Y 2 is a glycidyl group.
  • R 11 is preferably a hydrogen atom, and from the viewpoint of further improving thermal shock resistance, Y 1 and Y 2 is preferably a glycidyl group.
  • the number of structural units represented by formula (I) in the epoxy resin (a1) is 1 or more, and may be 10 to 100, 12 to 80, or 15 to 70.
  • the number of structural units is within the above range, the linearity of the resist pattern outline, adhesion to the copper substrate, heat resistance, and electrical insulation can be easily improved.
  • the number of structural units indicates an integer value in a single molecule, and indicates a rational number, which is an average value, in an aggregate of multiple types of molecules. The same applies to the number of structural units below.
  • R 12 represents a hydrogen atom or a methyl group, and multiple R 12s may be the same or different.
  • Y 3 and Y 4 each independently represent a hydrogen atom or a glycidyl group, and at least one of Y 3 and Y 4 is a glycidyl group.
  • R 12 is preferably a hydrogen atom, and from the viewpoint of further improving thermal shock resistance, Y 3 and Y 4 is preferably a glycidyl group.
  • the number of structural units represented by formula (II) in the epoxy resin (a1) is 1 or more, and may be 10 to 100, 12 to 80, or 15 to 70. When the number of structural units is within the above range, the linearity of the resist pattern outline, the adhesion to the copper substrate, and the heat resistance can be easily improved.
  • the epoxy resin in which R 12 is a hydrogen atom and Y 3 and Y 4 are glycidyl groups is referred to as EXA-7376 series (manufactured by DIC Corporation, trade name), and in which R 12 is a methyl group.
  • the epoxy resin in which Y 3 and Y 4 are glycidyl groups is commercially available as EPON SU8 series (manufactured by Mitsubishi Chemical Corporation, trade name).
  • the epoxy resin (a2) is not particularly limited as long as it is an epoxy resin different from the epoxy resin (a1), but it suppresses the occurrence of undercuts, improves the linearity of the resist pattern outline, the adhesion to the copper substrate, and the resolution. From the viewpoint of improving properties, it is preferably at least one selected from the group consisting of novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, triphenolmethane type epoxy resin, and biphenyl type epoxy resin. .
  • Examples of novolak-type epoxy resins include epoxy resins having a structural unit represented by the following formula (III).
  • Examples of the bisphenol A epoxy resin or the bisphenol F epoxy resin include an epoxy resin having a structural unit represented by the following formula (IV).
  • Examples of triphenolmethane type epoxy resins include epoxy resins having a structural unit represented by the following formula (V).
  • Examples of biphenyl-type epoxy resins include epoxy resins having a structural unit represented by the following formula (VI).
  • a novolac type epoxy resin having a structural unit represented by the following formula (III) is preferable.
  • novolak-type epoxy resins having such structural units include novolak-type epoxy resins represented by the following formula (III').
  • R 13 represents a hydrogen atom or a methyl group
  • Y 5 represents a hydrogen atom or a glycidyl group
  • at least one of Y 5 is a glycidyl group.
  • n 1 is a number of 1 or more, and a plurality of R 13 and Y 5 may be the same or different. From the viewpoint of suppressing the occurrence of undercuts and improving the linearity and resolution of the resist pattern outline, R 13 is preferably a hydrogen atom.
  • the molar ratio of Y5 which is a hydrogen atom, and Y5 , which is a glycidyl group, suppresses the occurrence of undercuts and improves the linearity and resolution of the resist pattern contour, It may be 0/100 to 30/70 or 0/100 to 10/90.
  • n 1 is 1 or more, but may be 10-200, 20-150, or 30-100. When n1 is within the above range, the linearity of the resist pattern outline, the adhesion to the copper substrate, and the heat resistance are likely to be improved.
  • novolak epoxy resin represented by formula (III') examples include phenol novolak epoxy resins and cresol novolak epoxy resins. These novolak-type epoxy resins can be obtained, for example, by reacting a phenol novolac resin or a cresol novolak resin with epichlorohydrin by a known method.
  • Examples of the phenol novolac type epoxy resin or cresol novolac type epoxy resin represented by formula (III') include YDCN-701, YDCN-702, YDCN-703, YDCN-704, YDCN-704L, YDPN-638, YDPN.
  • epoxy resin (a2) bisphenol A epoxy resin or bisphenol F epoxy resin having a structural unit represented by the following formula (IV) is preferably mentioned.
  • epoxy resins having such structural units include bisphenol A epoxy resins and bisphenol F epoxy resins represented by the following formula (IV').
  • R 14 represents a hydrogen atom or a methyl group, multiple R 14s may be the same or different, and Y 6 represents a hydrogen atom or a glycidyl group.
  • n 2 represents a number of 1 or more, and when n 2 is 2 or more, a plurality of Y 6 may be the same or different, and at least one Y 6 is a glycidyl group.
  • R 14 is preferably a hydrogen atom, and from the viewpoint of further improving thermal shock resistance, Y 6 is a glycidyl group. It is preferable that n 2 represents 1 or more, but may be 10-100, 12-80, or 15-60. When n2 is within the above range, the linearity of the resist pattern outline, the adhesion to the copper substrate, and the heat resistance are likely to be improved.
  • Bisphenol A epoxy resin or bisphenol F epoxy resin in which Y 6 in formula (IV) is a glycidyl group is, for example, bisphenol A epoxy resin or bisphenol F epoxy resin in which Y 6 in formula (IV) is a hydrogen atom. It can be obtained by reacting the hydroxyl group (-OY 6 ) of an epoxy resin with epichlorohydrin.
  • reaction temperature is within the above range, the reaction does not become too slow and side reactions can be suppressed.
  • Examples of the bisphenol A epoxy resin or bisphenol F epoxy resin represented by formula (IV') include jER807, jER815, jER825, jER827, jER828, jER834, jER1001, jER1004, jER1007 and jER1.
  • 009 hereinafter referred to as Mitsubishi Chemical Stock
  • DER-330, DER-301, DER-361 manufactured by Dow Chemical Company, product name
  • YD-8125, YDF-170, YDF-175S, YDF-2001, YDF-2004 , YDF-8170 (trade name, manufactured by Nippon Steel Chemical & Materials Co., Ltd.), etc. are commercially available.
  • a triphenolmethane type epoxy resin having a structural unit represented by the following formula (V) is preferably mentioned.
  • the triphenolmethane type epoxy resin having such a structural unit include a triphenolmethane type epoxy resin represented by the following formula (V').
  • Y 7 represents a hydrogen atom or a glycidyl group, a plurality of Y 7s may be the same or different, and at least one Y 7 is a glycidyl group.
  • n3 represents a number of 1 or more.
  • the molar ratio of Y 7 which is a hydrogen atom and Y 7 which is a glycidyl group in Y 7 is as follows. It may be 0/100 to 30/70. As can be seen from this molar ratio, at least one of Y7 is a glycidyl group.
  • n 3 is 1 or more, but may be 10-100, 12-80, or 15-70. When n3 is within the above range, the linearity of the resist pattern outline, the adhesion to the copper substrate, and the heat resistance are likely to be improved.
  • triphenolmethane type epoxy resin represented by formula (V') for example, FAE-2500, EPPN-501H, EPPN-502H (trade names, manufactured by Nippon Kayaku Co., Ltd.), etc. are commercially available. It is possible.
  • biphenyl type epoxy resin having a structural unit represented by the following formula (VI) is preferably mentioned.
  • biphenyl-type epoxy resins having such structural units include biphenyl-type epoxy resins represented by the following formula (VI').
  • Y 8 represents a hydrogen atom or a glycidyl group, a plurality of Y 8 may be the same or different, and at least one Y 8 is a glycidyl group.
  • n 4 represents a number of 1 or more.
  • Examples of the biphenyl-type epoxy resin represented by formula (VI') include NC-3000, NC-3000-L, NC-3000-H, NC-3000-FH-75M, NC-3100, and CER-3000- L (trade name, manufactured by Nippon Kayaku Co., Ltd.) and the like are commercially available.
  • epoxy resin (a2) a novolac type epoxy resin having a structural unit represented by formula (III), a bisphenol A type epoxy resin having a structural unit represented by formula (IV), and a bisphenol A type epoxy resin having a structural unit represented by formula (IV) are used. At least one type selected from the group consisting of bisphenol F-type epoxy resins having a structural unit represented by formula (IV) is preferable, and a bisphenol F-type epoxy resin having a structural unit represented by formula (IV) is more preferable.
  • a component (A2) using a bisphenol A epoxy resin or a bisphenol F epoxy resin having a structural unit represented by formula (IV) may be used in combination.
  • Component (b) includes, for example, acrylic acid, acrylic acid dimer, methacrylic acid, ⁇ -furfurylacrylic acid, ⁇ -styrylacrylic acid, cinnamic acid, crotonic acid, ⁇ -cyanocinnamic acid, etc. Derivatives; half-ester compounds that are reaction products of hydroxyl group-containing (meth)acrylates and dibasic acid anhydrides; and reaction products of vinyl group-containing monoglycidyl ethers or vinyl group-containing monoglycidyl esters and dibasic acid anhydrides. Examples include half ester compounds. Component (b) may be used alone or in combination of two or more.
  • the half-ester compound can be obtained, for example, by reacting a hydroxyl group-containing (meth)acrylate, a vinyl group-containing monoglycidyl ether, or a vinyl group-containing monoglycidyl ester with a dibasic acid anhydride.
  • hydroxyl group-containing (meth)acrylates examples include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, polyethylene glycol mono (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and glycidyl(meth)acrylate.
  • dibasic acid anhydrides examples include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. , ethylhexahydrophthalic anhydride, and itaconic anhydride.
  • component (a) and component (b) it is preferable to react at a ratio of 0.6 to 1.05 equivalents of component (b) to 1 equivalent of the epoxy group of component (a). , it is more preferable to react at a ratio of 0.8 to 1.0 equivalents. By reacting at such a ratio, the photosensitivity increases and the linearity of the resist pattern outline tends to be excellent.
  • Component (a) and component (b) can be dissolved in an organic solvent and reacted.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, and dipropylene glycol.
  • Glycol ethers such as monoethyl ether, dipropylene glycol diethyl ether, and triethylene glycol monoethyl ether; Esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, and carbitol acetate; Aliphatic hydrocarbons such as octane and decane; Petroleum Examples include petroleum solvents such as ether, petroleum naphtha, hydrogenated petroleum naphtha, and solvent naphtha. The organic solvents may be used alone or in combination of two or more.
  • a catalyst may be used to promote the reaction between component (a) and component (b).
  • the catalyst include triethylamine, benzylmethylamine, methyltriethylammonium chloride, benzyltrimethylammonium chloride, benzyltrimethylammonium bromide, benzyltrimethylammonium iodide, and triphenylphosphine.
  • One type of catalyst may be used alone or two or more types may be used in combination.
  • the amount of the catalyst used is 0.01 to 10 parts by mass, based on a total of 100 parts by mass of components (a) and (b). It may be 0.05 to 2 parts by weight, or 0.1 to 1 part by weight.
  • a polymerization inhibitor may be used in the reaction between component (a) and component (b) in order to prevent polymerization during the reaction.
  • the polymerization inhibitor include hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol.
  • the polymerization inhibitors may be used alone or in combination of two or more.
  • the amount of polymerization inhibitor used is 0.01 to 1 part by mass, 0.02 to 0.8 parts by mass, based on a total of 100 parts by mass of components (a) and (b). part, or 0.04 to 0.5 part by mass.
  • the reaction temperature between component (a) and component (b) may be 60 to 150°C, 80 to 120°C, or 90 to 110°C from the viewpoint of productivity.
  • Component (A') obtained by reacting component (a) with component (b) has a hydroxyl group formed by a ring-opening addition reaction between the epoxy group of component (a) and the carboxy group of component (b). are doing.
  • component (A') with component (c) By further reacting component (A') with component (c), the hydroxyl group of component (A') (including the hydroxyl group originally present in component (a)) and the acid anhydride group of component (c) An acid-modified vinyl group-containing resin in which is half-esterified with is obtained.
  • Component (c) includes, for example, succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, Ethylhexahydrophthalic anhydride and itaconic anhydride are mentioned. Among these, tetrahydrophthalic anhydride is preferred from the viewpoint of resolution. Component (c) may be used alone or in combination of two or more.
  • component (A) In the reaction between component (A') and component (c), for example, by reacting 0.1 to 1.0 equivalent of component (c) with respect to 1 equivalent of hydroxyl group in component (A'), The acid value of component (A) can be adjusted.
  • the reaction temperature between component (A') and component (c) may be 50 to 150°C, 60 to 120°C, or 70 to 100°C from the viewpoint of productivity.
  • a hydrogenated bisphenol A type epoxy resin may be partially used as component (a), and styrene-maleic acid such as hydroxyethyl (meth)acrylate modified product of styrene-maleic anhydride copolymer may be used in combination. Some of the resins may also be used together.
  • Component (A) preferably contains component (A1) from the viewpoint of suppressing the occurrence of undercuts and further improving adhesion with the copper substrate, thermal shock resistance, and resolution, and particularly improves adhesion strength. From this viewpoint, it is more preferable that the component (A1) and the component (A2) are included.
  • the mass ratio of (A1)/(A2) is not particularly limited, but the linearity of the resist pattern contour and the resistance to electroless plating are And from the viewpoint of improving heat resistance, it may be 20/80 to 90/10, 30/70 to 80/20, 40/60 to 75/25, or 50/50 to 70/30.
  • the acid value of component (A) is not particularly limited.
  • the acid value of component (A) may be 30 mgKOH/g or more, 40 mgKOH/g or more, or 50 mgKOH/g or more from the viewpoint of improving the solubility of the unexposed area in an alkaline aqueous solution.
  • the acid value of component (A) may be 150 mgKOH/g or less, 120 mgKOH/g or less, or 100 mgKOH/g or less from the viewpoint of improving the electrical properties of the cured film.
  • the weight average molecular weight (Mw) of component (A) is not particularly limited.
  • the Mw of component (A) may be 3000 or more, 4000 or more, or 5000 or more from the viewpoint of improving the adhesiveness of the cured film.
  • the Mw of the component (A) may be 30,000 or less, 25,000 or less, or 18,000 or less from the viewpoint of improving the resolution of the photosensitive layer.
  • Mw can be measured by gel permeation chromatography (GPC). Mw can be measured, for example, under the following GPC conditions and converted using a standard polystyrene calibration curve. To create a calibration curve, a set of 5 samples (“PStQuick MP-H" and "PStQuick B", manufactured by Tosoh Corporation) can be used as standard polystyrene.
  • GPC gel permeation chromatography
  • GPC device High-speed GPC device “HCL-8320GPC” (manufactured by Tosoh Corporation) Detector: Differential refractometer or UV detector (manufactured by Tosoh Corporation) Column: Column TSKgel SuperMultipore HZ-H (column length: 15 cm, column inner diameter: 4.6 mm) (manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran (THF) Measurement temperature: 40°C Flow rate: 0.35mL/min Sample concentration: 10mg/THF5mL Injection volume: 20 ⁇ L
  • the content of component (A) in the photosensitive resin composition is from 20 to 70% based on the total solid content of the photosensitive resin composition, from the viewpoint of improving the heat resistance, electrical properties, and chemical resistance of the permanent resist. % by weight, 25-60% by weight, or 30-50% by weight.
  • thermosetting resin The photosensitive resin composition according to the present embodiment contains a thermosetting resin as the component (B), and the component (B) is a bisphenol-type epoxy compound having an average molecular weight of 360 or less (hereinafter referred to as "component (B1)"). ).
  • component (B1) a bisphenol-type epoxy compound having an average molecular weight of 360 or less.
  • Component (B1) is an epoxy compound synthesized by a condensation reaction between a bisphenol compound and epichlorohydrin.
  • bisphenol compounds include bisphenol A, bisphenol F, and bisphenol S.
  • Component (B1) mainly contains diglycidyl ether having a bisphenol skeleton (diglycidyl ether represented by the following formula (1)), in which 2 moles of epichlorohydrin are bonded to 1 mole of the bisphenol compound. do.
  • X is a methylene group (CH 2 ), an ethylene group (CH 2 CH 2 ), an ethylidene group (CH(CH 3 )), a 1-methylethylidene group (C(CH 3 ) 2 ), or Indicates a sulfo group. From the viewpoint of improving developability, X is preferably a methylene group or a 1-methylethylidene group.
  • a typical bisphenol-type epoxy compound contains a polymer of a bisphenol compound and epichlorohydrin (for example, an oligomer component such as a dimer or trimer).
  • component (B1) has a low content of oligomer components.
  • the content of diglycidyl ether represented by formula (1) in component (B1) is 94% by mass or more, 96% by mass or more, or 98% by mass or more from the viewpoint of further improving developability and thermal shock resistance. There may be.
  • the average molecular weight of component (B1) may be 310 to 360, 315 to 359, 320 to 358, 325 to 357, or 330 to 356 from the viewpoint of further improving heat resistance and thermal shock resistance.
  • the average molecular weight can be calculated, for example, by the GPC method (see “Measurement of degree of polymerization of epoxy oligomers by GPC, NMR, etc.”, Central Customs Laboratory Bulletin, No. 21, 1980, pp. 85-90). .
  • the epoxy equivalent of component (B1) is 150 to 182 g/eq, 154 to 181 g/eq, 160 to 180 g/eq, 162 to 179 g/eq, or 166 to 178 g from the viewpoint of further improving heat resistance and thermal shock resistance. /eq may be used. Epoxy equivalent can be measured according to JIS K 7236.
  • Component (B) may contain thermosetting resins other than component (B1).
  • thermosetting resins include epoxy resins that do not have a bisphenol skeleton, phenol resins, unsaturated imide resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, and allyl resins. , dicyclopentadiene resin, silicone resin, triazine resin, and melamine resin.
  • epoxy resins without a bisphenol skeleton are preferred from the viewpoint of further improving the heat resistance of the cured film.
  • epoxy resins without a bisphenol skeleton examples include novolak epoxy resins, dicyclopentadiene epoxy resins, hydrogenated bisphenol A epoxy resins, biphenyl epoxy resins, hydantoin epoxy resins, triglycidyl isocyanurate, and bixylenol.
  • examples include molded epoxy resins.
  • the content of component (B1) in component (B) may be 30% by mass or more, 50% by mass or more, or 60% by mass or more, based on the total amount of component (B). When this content is 30% by mass or more, better thermal shock resistance tends to be obtained.
  • the content of component (B) in the photosensitive resin composition is 2 to 30% by mass, 5 to 25% by mass, 8 to 20% by mass, or 10 to 20% by mass, based on the total solid content of the photosensitive resin composition. It may be 18% by mass. When the content of component (B) is within the above range, the adhesiveness and heat resistance of the cured film to be formed can be further improved while maintaining good developability.
  • ((C) component photopolymerization initiator
  • the photopolymerization initiator as component (C) is not particularly limited as long as it can polymerize component (A) and component (D).
  • Component (C) may be used alone or in combination of two or more.
  • Component (C) includes, for example, benzoin compounds such as benzoin, benzoin methyl ether, and benzoin isopropyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1 -dichloroacetophenone, 1-hydroxycyclohexylphenylketone, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone-1,2-methyl-[4-(methylthio)phenyl]-2-morpholino- Acetophenone compounds such as 1-propane and N,N-dimethylaminoacetophenone; anthraquinones such as 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone, and 2-aminoanth
  • Acridine compounds such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 1,2-octanedione-1-[4-(phenylthio)phenyl]-2-(O-benzoyloxime), 1- [9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone 1-(O-acetyloxime), 1-phenyl-1,2-propanedione-2-[O-(ethoxy oxime ester compounds such as N,N-dimethylaminobenzoic acid ethyl ester, N,N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, triethanolamine, etc.
  • Examples include amine compounds.
  • the content of component (C) in the photosensitive resin composition is not particularly limited, but is 0.2 to 15% by mass, 0.4 to 5% by mass, based on the total solid content of the photosensitive resin composition. Or it may be 0.6 to 1.5% by mass.
  • the photosensitive resin composition according to the present embodiment contains a photopolymerizable compound as the component (D) from the viewpoint of increasing the chemical resistance of the exposed area and increasing the difference in developer resistance between the exposed area and the unexposed area.
  • Component (D) is not particularly limited as long as it is a photopolymerizable compound having a photopolymerizable functional group and no acidic group.
  • photopolymerizable functional groups include those having an ethylenically unsaturated bond such as a vinyl group, an allyl group, a propargyl group, a butenyl group, an ethynyl group, a phenylethynyl group, a maleimide group, a nadimide group, and a (meth)acryloyl group.
  • ethylenically unsaturated bond such as a vinyl group, an allyl group, a propargyl group, a butenyl group, an ethynyl group, a phenylethynyl group, a maleimide group, a nadimide group, and a (meth)acryloyl group.
  • examples include groups.
  • Component (D) includes, for example, a photopolymerizable compound having one ethylenically unsaturated bond, a photopolymerizable compound having two ethylenically unsaturated bonds, and a photopolymerizable compound having three or more ethylenically unsaturated bonds. Examples include sexual compounds.
  • Examples of the photopolymerizable compound having one ethylenically unsaturated bond include (meth)acrylic acid and (meth)acrylic acid alkyl ester.
  • Examples of the (meth)acrylic acid alkyl ester include (meth)acrylic acid methyl ester, (meth)acrylic acid ethyl ester, (meth)acrylic acid butyl ester, (meth)acrylic acid 2-ethylhexyl ester, and (meth)acrylic acid 2-ethylhexyl ester.
  • Acrylic acid hydroxyethyl ester is mentioned.
  • photopolymerizable compounds having two ethylenically unsaturated bond groups include polyethylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, polypropylene glycol di(meth)acrylate, and 2,2-bis( 4-(meth)acryloxypolyethoxypolypropoxyphenyl)propane, and bisphenol A diglycidyl ether di(meth)acrylate.
  • photopolymerizable compounds having three or more ethylenically unsaturated bonds include (meth)acrylate compounds having a skeleton derived from trimethylolpropane such as trimethylolpropane tri(meth)acrylate; tetramethylolmethane tri(meth) (Meth)acrylate compounds having a skeleton derived from tetramethylolmethane such as acrylate and tetramethylolmethanetetra(meth)acrylate; having a skeleton derived from pentaerythritol such as pentaerythritol tri(meth)acrylate and pentaerythritol tetra(meth)acrylate (meth)acrylate compounds; (meth)acrylate compounds having a skeleton derived from dipentaerythritol, such as dipentaerythritol penta(meth)acrylate and dipentaerythritol hex
  • (meth)acrylate compounds having a skeleton derived from dipentaerythritol are preferred from the viewpoint of increasing the chemical resistance of the exposed area and increasing the difference in developer resistance between the exposed area and the unexposed area. More preferred are pentaerythritol penta(meth)acrylate and dipentaerythritol hexa(meth)acrylate.
  • the content of component (D) may be 1 to 20% by mass, 2 to 15% by mass, or 3 to 10% by mass based on the total solid content of the photosensitive resin composition.
  • the photosensitive resin composition according to the present embodiment has reduced flexibility and adhesive strength due to distortion (internal stress) inside the resin due to curing shrinkage of the (A) component. The decline can be suppressed.
  • component (E) can improve the heat resistance and impact resistance of the cured film formed from the photosensitive resin composition.
  • Acrylic elastomers can be synthesized by polymerizing (meth)acrylic compounds.
  • the (meth)acrylic compound include (meth)acrylic acid, (meth)acrylic acid ester, and acrylonitrile.
  • Examples of (meth)acrylic esters include methyl (meth)acrylate, (meth)acrylic acid, n-butyl (meth)acrylate, isobutyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, Examples include 2-methoxyethyl (meth)acrylate and 2-ethoxyethyl (meth)acrylate.
  • the acrylic elastomer preferably has a carboxy group from the viewpoint of further improving developability.
  • Carboxy groups can be introduced by polymerizing (meth)acrylic acid.
  • the content of structural units based on (meth)acrylic acid in the acrylic resin may be 2 to 50% by mass, 5 to 30% by mass, 8 to 25% by mass, or 10 to 20% by mass. When the content of the structural unit based on (meth)acrylic acid is within the above range, developability and resolution tend to be improved.
  • the acrylic elastomer preferably has an n-butyl group from the viewpoint of further improving impact resistance.
  • the n-butyl group can be introduced by polymerizing n-butyl (meth)acrylate.
  • the content of the structural unit based on n-butyl (meth)acrylate in the acrylic elastomer may be 30 to 90% by mass, 40 to 85% by mass, 45 to 80% by mass, or 50 to 75% by mass.
  • resolution and impact resistance tend to be improved.
  • the weight average molecular weight (Mw) of the acrylic elastomer may be 1000 to 50000, 2000 to 40000, 3000 to 30000, 5000 to 20000, or 8000 to 18000.
  • Mw weight average molecular weight
  • the Mw of the acrylic elastomer can be measured by the GPC method described above.
  • Component (E) may further contain an elastomer other than the acrylic elastomer.
  • elastomer other than acrylic elastomer include styrene elastomer, olefin elastomer, urethane elastomer, polyester elastomer, polyamide elastomer, and silicone elastomer.
  • styrenic elastomer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, and styrene-ethylene-propylene-styrene block copolymer.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene can be used as components constituting the styrene-based elastomer.
  • olefin elastomers examples include ethylene-propylene copolymer, ethylene- ⁇ -olefin copolymer, ethylene- ⁇ -olefin-nonconjugated diene copolymer, propylene- ⁇ -olefin copolymer, and butene- ⁇ - Copolymerization of non-conjugated dienes such as olefin copolymers, ethylene-propylene-diene copolymers, dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene, butadiene, isoprene, etc., and ⁇ -olefins. epoxy-modified polybutadiene, and carboxylic acid-modified butadiene-acrylonitrile copolymer.
  • the epoxy-modified polybutadiene preferably has a hydroxyl group at the end of the molecule, more preferably has a hydroxyl group at both ends of the molecule, and even more preferably has a hydroxyl group only at both ends of the molecule.
  • the number of hydroxyl groups that the epoxy-modified polybutadiene has may be 1 or more, preferably 1 to 5, more preferably 1 or 2, and even more preferably 2.
  • the urethane-based elastomer it is possible to use a compound composed of a hard segment consisting of a low molecular weight (short chain) diol and a diisocyanate, and a soft segment consisting of a high molecular weight (long chain) diol and diisocyanate.
  • short chain diols examples include ethylene glycol, propylene glycol, 1,4-butanediol, and bisphenol A.
  • the number average molecular weight of the short chain diol is preferably 48 to 500.
  • long-chain diols examples include polypropylene glycol, polytetramethylene oxide, poly(1,4-butylene adipate), poly(ethylene-1,4-butylene adipate), polycaprolactone, and poly(1,6-hexylene carbonate). ), and poly(1,6-hexylene-neopentylene adipate).
  • the number average molecular weight of the long chain diol is preferably 500 to 10,000.
  • polyester elastomer a compound obtained by polycondensing a dicarboxylic acid or its derivative with a diol compound or its derivative can be used.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid; aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as adipic acid, sebacic acid, and dodecanedicarboxylic acid; and cyclohexanedicarboxylic acid. Examples include alicyclic dicarboxylic acids. One type of dicarboxylic acid can be used alone or two or more types can be used in combination.
  • diol compounds include aliphatic diols such as ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,10-decanediol; 1,4-cyclohexanediol, etc. and aromatic diols such as bisphenol A, bis-(4-hydroxyphenyl)methane, bis-(4-hydroxy-3-methylphenyl)propane, and resorcinol.
  • aromatic diols such as bisphenol A, bis-(4-hydroxyphenyl)methane, bis-(4-hydroxy-3-methylphenyl)propane, and resorcinol.
  • polyester elastomer a multi-block copolymer in which an aromatic polyester (for example, polybutylene terephthalate) is used as a hard segment component and an aliphatic polyester (for example, polytetramethylene glycol) is used as a soft segment component can be used.
  • aromatic polyester for example, polybutylene terephthalate
  • aliphatic polyester for example, polytetramethylene glycol
  • polyester elastomers There are various grades of polyester elastomers depending on the type, ratio, and molecular weight of hard and soft segments.
  • Polyamide-based elastomers are roughly divided into two types: polyether block amide type and polyether ester block amide type, which use polyamide for the hard segment and polyether or polyester for the soft segment.
  • polyamides include polyamide-6, polyamide-11, and polyamide-12.
  • polyethers include polyoxyethylene glycol, polyoxypropylene glycol, and polytetramethylene glycol.
  • a silicone elastomer is a compound whose main component is organopolysiloxane.
  • organopolysiloxane examples include polydimethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane.
  • the silicone elastomer may be a compound obtained by partially modifying an organopolysiloxane with a vinyl group, an alkoxy group, or the like.
  • the content of component (E) is 1 to 40 parts by weight, 2 to 35 parts by weight, 3 to 30 parts by weight, or 4 to 15 parts by weight per 100 parts by weight of component (A). It's okay.
  • the content of component (E) may be 5 parts by mass or more, 8 parts by mass or more, or 10 parts by mass or more, and 40 parts by mass or less, based on 100 parts by mass of component (A). It may be 35 parts by mass or less, 30 parts by mass or less, or 25 parts by mass or less.
  • the content of component (E) is within the above range, the cured film has a low elastic modulus in a high temperature region, and unexposed areas are more likely to be eluted with a developer.
  • the photosensitive resin composition according to this embodiment may further contain an inorganic filler as component (F).
  • component (F) By containing component (F), the adhesive strength and hardness of the permanent resist can be improved.
  • Component (F) may be used alone or in combination of two or more.
  • inorganic fillers include silica, alumina, titania, tantalum oxide, zirconia, silicon nitride, barium titanate, barium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, lead titanate, lead zirconate titanate, and titanium.
  • Component (F) may contain silica from the viewpoint of improving the heat resistance of the permanent resist, and may contain barium sulfate from the viewpoint of improving the heat resistance and adhesive strength of the permanent resist, and may contain silica and barium sulfate. May include. From the viewpoint of improving the dispersibility of the inorganic filler, an inorganic filler whose surface has been previously treated with alumina or an organic silane compound may be used.
  • the average particle size of the inorganic filler is 0.01 to 5.0 ⁇ m, 0.05 to 3.0 ⁇ m, 0.1 to 2.0 ⁇ m, or 0.15 to 1.0 ⁇ m. Good too.
  • the average particle size of component (F) is the average particle size of the inorganic filler in a state dispersed in the photosensitive resin composition, and is a value obtained by measuring as follows. First, after diluting the photosensitive resin composition 1000 times with methyl ethyl ketone, using a submicron particle analyzer (manufactured by Beckman Coulter Co., Ltd., product name: N5), a refractive index of 1 is measured in accordance with the international standard ISO13321. At .38, the particles dispersed in the solvent are measured, and the particle diameter at an integrated value of 50% (volume basis) in the particle size distribution is defined as the average particle diameter.
  • the content of component (F) may be 10 to 70% by mass, 15 to 60% by mass, or 20 to 50% by mass based on the total solid content of the photosensitive resin composition.
  • the content of component (E) is within the above range, the low coefficient of thermal expansion, heat resistance, and film strength can be further improved.
  • the content of silica is 5 to 60% by mass, 10 to 40% by mass, or 15 to 30% by mass, based on the total solid content of the photosensitive resin composition. Good too.
  • the content of barium sulfate is 5 to 30% by mass, 8 to 25% by mass, or 10 to 20% by mass based on the total solid content of the photosensitive resin composition. It's good.
  • the content of silica and barium sulfate is within the above range, low thermal expansion coefficient, soldering heat resistance, and adhesive strength tend to be excellent.
  • the photosensitive resin composition according to the present embodiment may further contain a pigment as the component (G) from the viewpoint of improving the identifiability or appearance of the manufacturing device.
  • a coloring agent that develops a desired color when hiding wiring (conductor pattern), etc. can be used as component (G).
  • Component (G) may be used alone or in combination of two or more.
  • component (G) examples include phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black.
  • the content of component (G) is 0.01 to 5.0% by mass, based on the total solid content in the photosensitive resin composition, from the viewpoint of making it easier to identify the manufacturing equipment and concealing the wiring. It may be .03 to 3.0% by weight, or 0.05 to 2.0% by weight.
  • the photosensitive resin composition according to the present embodiment may further contain an ion scavenger as the component (H) from the viewpoint of improving resist shape, adhesion, fluidity, and reliability.
  • the component (H) is not particularly limited as long as it can trap ions in the ion trapping agent and has the function of trapping at least one of cations and anions.
  • the ions to be captured in this embodiment include, for example, sodium ions (Na + ), chloride ions (Cl - ), and bromine ions, which are incorporated into a composition that reacts with irradiation with light, electron beams, etc. and changes its solubility in solvents.
  • These ions include ions (Br ⁇ ), copper ions (Cu + , Cu 2+ ), and the like. By capturing these ions, electrical insulation properties, electrolytic corrosion resistance, etc. are improved.
  • the component (H) is preferably an ion scavenger containing at least one selected from the group consisting of Zr (zirconium), Bi (bismuth), Mg (magnesium), and Al (aluminum). Component (H) may be used alone or in combination of two or more.
  • component (H) examples include cation trapping agents that trap cations, anion trapping agents that trap anions, and amphoteric trapping agents that trap cations and anions.
  • Examples of the cation scavenger include zirconium phosphate, zirconium tungstate, zirconium molybdate, zirconium tungstate, zirconium antimonate, zirconium selenate, zirconium tellurate, zirconium silicate, zirconium phosphosilicate, and zirconium polyphosphate. Mention may be made of inorganic ion exchangers of metal oxides.
  • anion scavenger examples include inorganic ion exchangers such as bismuth oxide hydrate and hydrotalcites.
  • amphoteric ion scavenger examples include inorganic ion exchangers of metal hydrated oxides such as aluminum oxide hydrate and zirconium oxide hydrate.
  • inorganic ion exchangers of metal hydrated oxides such as aluminum oxide hydrate and zirconium oxide hydrate.
  • IXE-1320 Mg, Al-containing compound
  • IXE-600 Bi-containing compound
  • IXE-633 Bi-containing compound
  • IXE-680 Bi-containing compound
  • IXE-6107 Zr, Bi-containing compound
  • IXE-6136 Zr, Bi-containing compound
  • IXEPLAS-A1 Zr, Mg, Al-containing compound
  • IXEPLAS-A2 Zr, Mg, Al-containing compound
  • IXEPLAS- B1 Zr, Bi-containing compound etc.
  • Component (H) may be in the form of particles, and from the viewpoint of improving insulation, the average particle size of component (H) may be 5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less, and may be 0.5 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less. It may be 1 ⁇ m or more.
  • the average particle size of component (H) is the particle size of particles dispersed in the photosensitive resin composition, and can be measured by the same method as the method for measuring the average particle size of component (F).
  • the photosensitive resin composition contains component (H), its content is not particularly limited, but from the viewpoint of improving electrical insulation and electrolytic corrosion resistance, based on the total solid content of the photosensitive resin composition, It may be 0.05-10% by weight, 0.1-5% by weight, or 0.2-1% by weight.
  • the photosensitive resin composition according to this embodiment may further contain a silane coupling agent as component (I).
  • a silane coupling agent as component (I).
  • component (I) a known silane coupling agent can be used.
  • Component (I) can improve the adhesion of electronic components to a substrate, especially when the substrate contains silicon (for example, a glass substrate, a silicon wafer, an epoxy resin-impregnated glass cloth substrate, etc.) is valid.
  • silane coupling agents include alkoxysilanes such as methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane; (meth)acryloxypropyltrimethoxysilane, (meth)acryloxypropylmethyldimethoxysilane (meth)acryloyl group-containing alkoxysilanes such as; ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1, Amine-based alkoxysilanes such as 3-dimethylbutylidene) propylamine; ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, glycidoxypropy
  • component (I) contains a silane coupling agent having a (meth)acryloyl group from the viewpoint of further improving adhesiveness.
  • a silane coupling agent having a (meth)acryloyl group By using a silane coupling agent having a (meth)acryloyl group, the heat resistance of the permanent resist can be maintained and bleeding from the composition can be suppressed.
  • a silane coupling agent having a (meth)acryloyl group is not included in component (D).
  • Examples of commercially available silane coupling agents having a (meth)acryloyl group include KBM-502, KBM-503, KBE-502, KBE-503, and KBM-5103 (manufactured by Shin-Etsu Silicone Co., Ltd.).
  • the content of component (I) may be 0.1 to 10% by mass, 0.5 to 5% by mass, or 1 to 3% by mass based on the total solid content in the photosensitive resin composition. . When the content of component (I) is within the above range, it tends to have excellent adhesion to silicon wafers and excellent resolution.
  • the photosensitive resin composition according to the present embodiment may contain a curing agent for the purpose of further improving properties such as heat resistance, adhesion, and chemical resistance of the cured film.
  • a curing agent for the purpose of further improving properties such as heat resistance, adhesion, and chemical resistance of the cured film.
  • One type of curing agent may be used alone or two or more types may be used in combination.
  • Examples of the curing agent include imidazole compounds, guanamine compounds, amine compounds, and triazine compounds.
  • Examples of imidazole compounds include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methyl-5-hydroxymethylimidazole.
  • Examples of guanamine compounds include acetoguanamine and benzoguanamine.
  • Examples of the amine compound include diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulfone, dicyandiamide, urea, urea derivatives, melamine, and polybasic hydrazide.
  • Examples of the triazine compound include ethyldiamino-s-triazine, 2,4-diamino-s-triazine, and 2,4-diamino-6-xylyl-s-triazine.
  • the content of the curing agent is 0.01 to 20% by mass, 0.05 to 10% by mass, or 0.05% by mass, based on the total solid content of the photosensitive resin composition. It may be 1 to 5% by mass.
  • the photosensitive resin composition according to this embodiment may further contain various additives, if necessary.
  • additives include polymerization inhibitors such as hydroquinone, methylhydroquinone, hydroquinone monomethyl ether, catechol, and pyrogallol; thickeners such as bentone and montmorillonite; silicone-based, fluorine-based, and vinyl resin-based antifoaming agents; and bromine.
  • Flame retardants such as chemically modified epoxy compounds, acid-modified brominated epoxy compounds, antimony compounds, phosphate compounds, aromatic condensed phosphoric esters, and halogen-containing condensed phosphoric esters can be mentioned.
  • the photosensitive resin composition according to the present embodiment contains a solvent to dissolve and disperse each component, thereby making it easy to apply onto a substrate and forming a coating film with a uniform thickness.
  • solvents examples include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; methyl cellosolve, butyl cellosolve, methyl carbitol, butyl carbitol, propylene glycol monomethyl ether, dipropylene glycol monoethyl Ethers, glycol ethers such as dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; esters such as ethyl acetate, butyl acetate, butyl cellosolve acetate, carbitol acetate; aliphatic hydrocarbons such as octane, decane; and petroleum ether, petroleum Examples include petroleum solvents such as naphtha, hydrogenated petroleum naphtha, and solvent naphtha. One type of solvent may be used alone or two or more types may be used in combination.
  • the amount of the solvent blended is not particularly limited, but the proportion of the solvent in the photosensitive resin composition may be 10 to 50% by mass, 20 to 40% by mass, or 25 to 35% by mass.
  • the photosensitive resin composition according to this embodiment can be prepared by uniformly mixing the above-mentioned components using a roll mill, bead mill, etc.
  • the photosensitive element according to this embodiment includes a support film and a photosensitive layer containing the above-described photosensitive resin composition.
  • FIG. 1 is a cross-sectional view schematically showing a photosensitive element according to this embodiment. As shown in FIG. 1, the photosensitive element 1 includes a support film 10 and a photosensitive layer 20 formed on the support film 10.
  • the photosensitive element 1 is prepared by applying the photosensitive resin composition according to the present embodiment onto a support film 10 by a known method such as reverse roll coating, gravure roll coating, comma coating, curtain coating, etc., and then drying the coating film.
  • the photosensitive layer 20 can be manufactured by forming the photosensitive layer 20 in the following manner.
  • the support film examples include polyester films such as polyethylene terephthalate and polybutylene terephthalate, and polyolefin films such as polypropylene and polyethylene.
  • the thickness of the support film may be, for example, 5 to 100 ⁇ m.
  • the thickness of the photosensitive layer may be, for example, 5-50 ⁇ m, 5-40 ⁇ m, or 10-30 ⁇ m.
  • the surface roughness of the support film is not particularly limited, the arithmetic mean roughness (Ra) may be 1000 nm or less, 500 nm or less, or 250 nm or less.
  • drying temperature may be 60-120°C, 70-110°C, or 80-100°C.
  • Drying time may be 1-60 minutes, 2-30 minutes, or 5-20 minutes.
  • a protective film 30 may be further provided on the photosensitive layer 20 to cover the photosensitive layer 20.
  • a protective film 30 can also be laminated on the surface of the photosensitive layer 20 opposite to the surface in contact with the support film 10.
  • a polymer film such as polyethylene or polypropylene may be used.
  • the printed wiring board according to this embodiment includes a permanent resist containing a cured product of the photosensitive resin composition according to this embodiment.
  • the method for manufacturing a printed wiring board according to the present embodiment includes the steps of forming a photosensitive layer on a substrate using the above-described photosensitive resin composition or photosensitive element, and exposing and developing the photosensitive layer to form a resist pattern. and curing the resist pattern to form a permanent resist. An example of each step will be described below.
  • a substrate such as a copper-clad laminate is prepared, and a photosensitive layer is formed on the substrate.
  • the photosensitive layer may be formed by applying a photosensitive resin composition onto the substrate and drying it. Examples of methods for applying the photosensitive resin composition include screen printing, spraying, roll coating, curtain coating, and electrostatic coating.
  • the drying temperature may be 60-120°C, 70-110°C, or 80-100°C. Drying times may be 1-7 minutes, 1-6 minutes, or 2-5 minutes.
  • the thickness of the photosensitive layer is preferably 5 ⁇ m or more, and may be 10 to 200 ⁇ m, 15 to 150 ⁇ m, 20 to 100 ⁇ m, or 23 to 50 ⁇ m.
  • the photosensitive layer may be formed on the substrate by peeling off the protective film from the photosensitive element and laminating the photosensitive layer.
  • Examples of methods for laminating the photosensitive layer include thermal lamination using a laminator.
  • a negative film is brought into contact with the photosensitive layer either directly or through a support film, and exposed to actinic light.
  • actinic rays include electron beams, ultraviolet rays, and X-rays, with ultraviolet rays being preferred.
  • a light source a low-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a halogen lamp, etc. can be used.
  • the exposure amount may be 10 to 2000 mJ/cm 2 , 100 to 1500 mJ/cm 2 , or 300 to 1000 mJ/cm 2 .
  • a resist pattern is formed by removing the unexposed areas with a developer.
  • the developing method include a dipping method and a spray method.
  • aqueous alkaline solutions such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, and tetramethylammonium hydroxide can be used.
  • a patterned cured film can be formed by subjecting the resist pattern to at least one of post-exposure and post-heating.
  • the exposure amount of the post-exposure may be 100 to 5000 mJ/cm 2 , 500 to 2000 mJ/cm 2 , or 700 to 1500 J/cm 2 .
  • the heating temperature for post-heating may be 100 to 200°C, 120 to 180°C, or 135 to 165°C.
  • the heating time for post-heating may be 5 minutes to 12 hours, 10 minutes to 6 hours, or 30 minutes to 2 hours.
  • the permanent resist according to this embodiment can be used as an interlayer insulating layer or a surface protective layer of a semiconductor element.
  • a semiconductor element including an interlayer insulating layer or a surface protective layer formed from a cured film of the above-described photosensitive resin composition, and an electronic device including the semiconductor element can be produced.
  • the semiconductor device may be, for example, a memory, a package, etc., having a multilayer wiring structure, a rewiring structure, or the like.
  • Examples of electronic devices include mobile phones, smartphones, tablet terminals, personal computers, and hard disk suspensions.
  • the mixed solution was cooled to 60°C, 2 parts by mass of triphenylphosphine was added, and the mixture was reacted at 100°C until the acid value of the solution became 1 mgKOH/g or less.
  • 98 parts by mass of tetrahydrophthalic anhydride (THPAC) and 85 parts by mass of carbitol acetate were added to the reaction solution, and the mixture was reacted at 80° C. for 6 hours. Thereafter, the reaction solution was cooled to room temperature to obtain a solution (solid content concentration: 73% by mass) of acid-modified epoxy acrylate (A-1) as component (A).
  • A-1 Acid-modified epoxy acrylate (A-1) of Synthesis Example 1
  • B-1 Bisphenol F type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., product name "YDF-8170C", average molecular weight: 310-330, epoxy equivalent: 155-165)
  • B-2 Bisphenol A type epoxy resin (manufactured by Nippon Steel Chemical & Materials Co., Ltd., product name "YD-8125”, average molecular weight: 336-356, epoxy equivalent: 168-178)
  • B-3 Bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name "jER828”, average molecular weight: 368-388, epoxy equivalent: 184-194)
  • B-4 Phenol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name "RE-306", average molecular weight: 400, epoxy equivalent: 170-181)
  • C-1 2-methyl-[4-[4-
  • Photosensitive resin composition Each component was blended in the amounts shown in Table 1 or Table 2 (parts by mass, solid content equivalent) and kneaded using a three-roll mill. Thereafter, carbitol acetate was added so that the solid content concentration was 70% by mass to prepare a photosensitive resin composition.
  • a polyethylene terephthalate film (manufactured by Toyobo Film Solutions Co., Ltd., trade name "G2-25") with a thickness of 25 ⁇ m was prepared as a support film.
  • a photosensitive layer was formed.
  • a polyethylene film (manufactured by Tamapoly Co., Ltd., trade name "NF-15”) was laminated as a protective film on the surface of the photosensitive layer opposite to the side in contact with the support film to obtain a photosensitive element. .
  • a copper-clad laminate board (manufactured by Showa Denko Materials Co., Ltd., trade name "MCL-E-67”) with a thickness of 0.6 mm was prepared. While peeling and removing the protective film from the photosensitive element, it was pressed onto the copper-clad laminate board using a press-type vacuum laminator (manufactured by Meiki Seisakusho Co., Ltd., product name "MVLP-500”) at a pressure of 0.4 MPa. The photosensitive layers were laminated at a hot plate temperature of 80° C., a vacuum time of 25 seconds, and a lamination press time of 25 seconds to obtain a laminate.
  • a negative mask having an opening pattern of a predetermined size (opening diameter size: 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 150, 200 ⁇ m) is brought into close contact with the support film of the laminate, Using an ultraviolet exposure device (manufactured by Oak Co., Ltd., trade name "EXM-1201"), the photosensitive layer was exposed to light at an exposure amount that would result in 13 stages of complete curing on a step tablet (manufactured by Showa Denko Materials Co., Ltd.).
  • an ultraviolet exposure device manufactured by Oak Co., Ltd., trade name "EXM-1201”
  • the support film was peeled off from the photosensitive layer, and spray development was performed using a 1% by mass aqueous sodium carbonate solution at a pressure of 1.765 ⁇ 10 5 Pa for 60 seconds to dissolve and develop the unexposed areas.
  • the developed photosensitive layer was exposed to light at an exposure dose of 2000 mJ/cm 2 using an ultraviolet exposure device, and then heated at 170°C for 1 hour to form an opening pattern of a predetermined size on the copper-clad laminate.
  • a test piece with a cured film formed was prepared. The above test piece was observed using an optical microscope and evaluated based on the following criteria.
  • B The minimum opening diameter size exceeded 30 ⁇ m and was 50 ⁇ m or less.
  • C The minimum opening diameter size exceeded 50 ⁇ m.
  • Thermal shock resistance A temperature cycle test was performed on the test piece prepared for resolution evaluation, with one cycle of -65°C for 30 minutes and 150°C for 30 minutes, and at the 1000th cycle and 2000th cycle, the test piece was visually inspected and Observation was made using an optical microscope and evaluation was made using the following criteria. A: No cracks were observed after 2000 cycles. B: No cracks were observed after 1000 cycles, but cracks were observed after 2000 cycles. C: Occurrence of cracks was confirmed after 1000 cycles.
  • the test piece prepared for resolution evaluation was placed in a 150°C environment, and after 1000 hours and 2000 hours, the test piece was observed visually and with an optical microscope, and evaluated based on the following criteria.
  • a laminate having a photosensitive layer was produced in the same manner as the laminate produced for resolution evaluation, except that the copper-clad laminate was replaced with a 6-inch silicon wafer (manufactured by Electronics End Materials Corporation). The entire surface of the laminate was exposed to light at 500 mJ/cm 2 using an i-line exposure device (manufactured by Ushio Inc., trade name "UX-2240SM-XJ-01"). Next, the support film was peeled off from the photosensitive layer, and the photosensitive layer was further exposed to light at an exposure dose of 2000 mJ/cm 2 using an ultraviolet exposure device, and then heated at 170° C. for 1 hour to deposit the photosensitive resin composition on the silicon wafer. A cured film was formed.
  • an aluminum stud pin with epoxy adhesive (manufactured by Phototechnica Co., Ltd., product name "P/N901106", adhesive part diameter: 2.7 mm) was vertically installed on the cured film, and heated at 150°C for 1 hour. A test piece was obtained by heating. The stud pin on the test piece was fixed to the chuck of a thin film adhesion strength measuring device (manufactured by Phototechnica Co., Ltd.), and a force was applied perpendicularly to the cured film. The adhesion of the cured film to the silicon wafer was evaluated based on the following criteria. A: The epoxy adhesive failed cohesively without peeling off at the interface between the cured film and the silicon wafer. B: Peeling occurred at the interface between the cured film and the silicon wafer.
  • Photosensitive element 10
  • Support film 20
  • Photosensitive layer 30
  • Protective film

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

本開示の一側面は、(A)酸変性ビニル基含有樹脂、(B)熱硬化性樹脂、(C)光重合開始剤、(D)光重合性化合物、及び(E)エラストマーを含有し、(B)熱硬化性樹脂が、平均分子量が360以下のビスフェノール型エポキシ化合物を含み、(E)エラストマーが、アクリル系エラストマーを含む、感光性樹脂組成物に関する。

Description

感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
 本開示は、感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法に関する。
 プリント配線板分野では、プリント配線板上に永久レジストを形成することが行われている。永久レジストは、プリント配線板の使用時において、導体層の腐食を防止したり、導体層間の電気絶縁性を保持したりする役割を有している。近年、永久レジストは、半導体素子をプリント配線板上にはんだを介してフリップチップ実装、ワイヤボンディング実装等を行う工程においても、プリント配線板の導体層の不要な部分にはんだが付着することを防ぐ、はんだレジスト膜としての役割も有している。
 従来、永久レジストは、熱硬化性樹脂組成物を用いてスクリーン印刷する方法、又は、感光性樹脂組成物を用いた写真法で作製されている。例えば、FC(Flip Chip)、TAB(Tape Automated Bonding)、COF(Chip On Film)等の実装方式を用いたフレキシブル配線板においては、ICチップ、電子部品又はLCD(液晶ディスプレイ)パネルと接続配線パターン部分を除いて、熱硬化性樹脂ペーストをスクリーン印刷し、熱硬化して永久レジストを形成している(例えば、特許文献1参照)。
 電子部品に搭載されているBGA(Ball Grid Array)、CSP(Chip Size Package)等の半導体パッケージ基板においては、(1)半導体パッケージ基板上にはんだを介して半導体素子をフリップチップ実装するために、(2)半導体素子と半導体パッケージ基板とをワイヤボンディング接合するために、又は(3)半導体パッケージ基板をマザーボード基板上にはんだ接合するために、接合部分の永久レジストを除去する必要がある。永久レジストの像形成には、感光性樹脂組成物を塗布し乾燥した後に選択的に紫外線等の活性光線を照射して硬化させ、未照射部分のみを現像で除去して像形成する写真法が用いられている。フォトリソグラフィー法は、作業性の良さから大量生産に適しているため、電子材料業界では感光性材料の像形成に広く用いられている。(例えば、特許文献2参照)。
特開2003-198105号公報 特開2011-133851号公報
 プリント配線板の高密度化に対応して、永久レジスト(ソルダーレジスト)にも更なる高性能化が要求されている。特に微細パターンの形成、耐熱性、及び耐熱衝撃性に関する要求は年々高まっており、これらの特性を高度に両立させることが重要になっている。
 本開示は、優れた解像性及びパターン形成性を有し、耐熱性及び耐熱衝撃性に優れる永久レジストを形成できる感光性樹脂組成物、該感光性樹脂組成物を用いた感光性エレメント、プリント配線板、及びプリント配線板の製造方法を提供することを目的とする。
 本開示の一側面は、(A)酸変性ビニル基含有樹脂、(B)熱硬化性樹脂、(C)光重合開始剤、(D)光重合性化合物、及び(E)エラストマーを含有し、(B)熱硬化性樹脂が、平均分子量が360以下のビスフェノール型エポキシ化合物を含み、(E)エラストマーが、アクリル系エラストマーを含む、感光性樹脂組成物に関する。
 本開示の他の一側面は、支持フィルムと、支持フィルム上に形成された感光層とを備え、感光層が、上述の感光性樹脂組成物を含む、感光性エレメントに関する。
 本開示の他の一側面は、上述の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板に関する。
 本開示の他の一側面は、基板上に、上述の感光性樹脂組成物又は感光性エレメントを用いて感光層を形成する工程と、感光層を露光及び現像してレジストパターンを形成する工程と、レジストパターンを硬化して永久レジストを形成する工程と、を備える、プリント配線板の製造方法に関する。
 本発明によれば、優れた解像性及びパターン形成性を有し、耐熱性及び耐熱衝撃性に優れる永久レジストを形成できる感光性樹脂組成物、該感光性樹脂組成物を用いた感光性エレメント、プリント配線板、及びプリント配線板の製造方法を提供することができる。
本実施形態に係る感光性エレメントを模式的に示す断面図である。
 本開示の一態様は、以下の感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法に関する。
[1](A)酸変性ビニル基含有樹脂、(B)熱硬化性樹脂、(C)光重合開始剤、(D)光重合性化合物、及び(E)エラストマーを含有し、前記熱硬化性樹脂が、平均分子量が360以下のビスフェノール型エポキシ化合物を含み、前記エラストマーが、アクリル系エラストマーを含む、感光性樹脂組成物。
[2]前記熱硬化性樹脂の含有量が、前記感光性樹脂組成物の固形分全量を基準として、5~25質量%である、上記[1]に記載の感光性樹脂組成物。
[3]前記アクリル系エラストマーがカルボキシ基を有する、上記[1]又は[2]に記載の感光性樹脂組成物。
[4]前記アクリル系エラストマーがn-ブチル基を更に有する、上記[3]に記載の感光性樹脂組成物。
[5]前記アクリル系エラストマーの重量平均分子量が、5000~20000である、上記[1]~[4]のいずれかに記載の感光性樹脂組成物。
[6](I)シランカップリング剤を更に含有する、上記[1]~[5]のいずれかに記載の感光性樹脂組成物。
[7](F)無機フィラーを更に含有する、上記[1]~[6]のいずれかに記載の感光性樹脂組成物。
[8]支持フィルムと、前記支持フィルム上に形成された感光層とを備え、前記感光層が、上記[1]~[7]のいずれかに記載の感光性樹脂組成物を含む、感光性エレメント。
[9]上記[1]~[7]のいずれかに記載の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板。
[10]基板上に、上記[1]~[7]のいずれかに記載の感光性樹脂組成物を用いて感光層を形成する工程と、前記感光層を露光及び現像してレジストパターンを形成する工程と、前記レジストパターンを硬化して永久レジストを形成する工程と、を備える、プリント配線板の製造方法。
[11]基板上に、上記[8]に記載の感光性エレメントを用いて感光層を形成する工程と、前記感光層を露光及び現像してレジストパターンを形成する工程と、前記レジストパターンを硬化して永久レジストを形成する工程と、を備える、プリント配線板の製造方法。
 以下、本開示について詳細に説明する。本明細書において、「工程」との語は、独立した工程だけではなく、その工程の所期の作用が達成される限り、他の工程と明確に区別できない工程も含む。「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」の少なくとも一方を意味し、(メタ)アクリル酸、(メタ)アクリロイル等の他の類似表現についても同様である。本明細書において、「固形分」とは、感光性樹脂組成物に含まれる揮発する物質(水、溶剤等)を除いた不揮発分を指し、室温(25℃付近)で液状、水飴状、又はワックス状の成分も含む。
[感光性樹脂組成物]
 本実施形態に係る感光性樹脂組成物は、(A)酸変性ビニル基含有樹脂、(B)熱硬化性樹脂、(C)光重合開始剤、(D)光重合性化合物、及び(E)エラストマーを必須成分として含有する。本実施形態に係る感光性樹脂組成物は、ネガ型の感光性樹脂組成物であり、感光性樹脂組成物の硬化膜は、永久レジストとして好適に用いることができる。以下、本実施形態の感光性樹脂組成物で用いられる各成分についてより詳細に説明する。
((A)成分:酸変性ビニル基含有樹脂)
 本実施形態に係る感光性樹脂組成物は、(A)成分として酸変性ビニル基含有樹脂を含有する。酸変性ビニル基含有樹脂は、光重合性のエチレン性不飽和結合であるビニル結合と、アルカリ可溶性の酸性基とを有していれば、特に限定されない。
 (A)成分が有するエチレン性不飽和結合を有する基としては、例えば、ビニル基、アリル基、プロパルギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、及び(メタ)アクリロイル基が挙げられる。これらの中でも、反応性及び解像性の観点から、(メタ)アクリロイル基が好ましい。(A)成分が有する酸性基としては、例えば、カルボキシ基、スルホ基、及びフェノール性水酸基が挙げられる。これらの中でも、解像性の観点から、カルボキシ基が好ましい。
 (A)成分は、(a)エポキシ樹脂(以下、「(a)成分」と称する場合がある。)と、(b)エチレン性不飽和基含有有機酸(以下、「(b)成分」と称する場合がある。)と、を反応させてなる樹脂(A’)に、(c)飽和基又は不飽和基含有多塩基酸無水物(以下、「(c)成分」と称する場合がある。)を反応させてなる酸変性ビニル基含有エポキシ誘導体であることが好ましい。
 酸変性ビニル基含有エポキシ誘導体としては、例えば、酸変性エポキシ(メタ)アクリレートが挙げられる。酸変性エポキシ(メタ)アクリレートは、(a)成分と(b)成分との反応物であるエポキシ(メタ)アクリレートを(c)成分で酸変性した樹脂である。酸変性エポキシ(メタ)アクリレートとして、例えば、エポキシ樹脂とビニル基含有モノカルボン酸とを反応させて得られるエステル化物に、飽和又は不飽和多塩基酸無水物を付加した付加反応物を用いることができる。
 (A)成分としては、例えば、(a)成分としてビスフェノールノボラック型エポキシ樹脂(a1)(以下、「エポキシ樹脂(a1)」と称する場合がある。)を用いてなる酸変性ビニル基含有樹脂(A1)(以下、「(A1)成分」と称する場合がある。)、及び(a)成分としてエポキシ樹脂(a1)以外のエポキシ樹脂(a2)(以下、「エポキシ樹脂(a2)」と称する場合がある。)を用いてなる酸変性ビニル基含有樹脂(A2)(以下、「(A2)成分」と称する場合がある。)が挙げられる。
 エポキシ樹脂(a1)としては、例えば、下記式(I)又は(II)で表される構造単位を有するエポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、R11は水素原子又はメチル基を示し、複数のR11は同一でも異なっていてもよい。Y及びYはそれぞれ独立に水素原子又はグリシジル基を示すが、Y及びYの少なくとも一方はグリシジル基である。アンダーカットの発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、R11は、水素原子であることが好ましく、耐熱衝撃性をより向上する観点から、Y及びYは、グリシジル基であることが好ましい。
 エポキシ樹脂(a1)中の式(I)で表される構造単位数は、1以上であり、10~100、12~80、又は15~70であってもよい。構造単位数が上記範囲内であると、レジストパターン輪郭の直線性、銅基板との密着性、耐熱性及び電気絶縁性を向上し易くなる。ここで、構造単位の構造単位数は、単一の分子においては整数値を示し、複数種の分子の集合体においては平均値である有理数を示す。以下、構造単位の構造単位数については同様である。
Figure JPOXMLDOC01-appb-C000002
 式(II)中、R12は水素原子又はメチル基を示し、複数のR12は同一でも異なっていてもよい。Y及びYはそれぞれ独立に水素原子又はグリシジル基を示すが、Y及びYの少なくとも一方はグリシジル基である。アンダーカットの発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、R12は、水素原子であることが好ましく、耐熱衝撃性をより向上する観点から、Y及びYは、グリシジル基であることが好ましい。
 エポキシ樹脂(a1)中の式(II)で表される構造単位数は、1以上であり、10~100、12~80又は15~70であってもよい。構造単位数が上記範囲内であると、レジストパターン輪郭の直線性、銅基板との密着性及び耐熱性を向上し易くなる。
 式(II)において、R12が水素原子であり、Y及びYがグリシジル基であるエポキシ樹脂は、EXA-7376シリーズ(DIC株式会社製、商品名)として、また、R12がメチル基であり、Y及びYがグリシジル基であるエポキシ樹脂は、EPON SU8シリーズ(三菱ケミカル株式会社製、商品名)として商業的に入手可能である。
 エポキシ樹脂(a2)は、エポキシ樹脂(a1)とは異なるエポキシ樹脂であれば特に制限されないが、アンダーカットの発生を抑制し、レジストパターン輪郭の直線性、銅基板との密着性、及び解像性を向上する観点から、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも1種であることが好ましい。
 ノボラック型エポキシ樹脂としては、例えば、下記式(III)で表される構造単位を有するエポキシ樹脂が挙げられる。ビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、下記式(IV)で表される構造単位を有するエポキシ樹脂が挙げられる。トリフェノールメタン型エポキシ樹脂としては、例えば、下記式(V)で表される構造単位を有するエポキシ樹脂が挙げられる。ビフェニル型エポキシ樹脂としては、下記式(VI)で表される構造単位を有するエポキシ樹脂が挙げられる。
 エポキシ樹脂(a2)としては、下記式(III)で表される構造単位を有するノボラック型エポキシ樹脂が好ましい。このような構造単位を有するノボラック型エポキシ樹脂としては、例えば、下記式(III’)で表されるノボラック型エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 式(III)及び(III’)中、R13は水素原子又はメチル基を示し、Yは水素原子又はグリシジル基を示すが、Yの少なくとも一つはグリシジル基である。式(III’)中、nは1以上の数であり、複数のR13及びYは、同一でも異なっていてもよい。アンダーカットの発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、R13は、水素原子であることが好ましい。
 式(III’)中、水素原子であるYとグリシジル基であるYとのモル比が、アンダーカットの発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、0/100~30/70又は0/100~10/90であってもよい。nは1以上であるが、10~200、20~150、又は30~100であってもよい。nが上記範囲内であると、レジストパターン輪郭の直線性、銅基板との密着性及び耐熱性が向上し易くなる。
 式(III’)で表されるノボラック型エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂が挙げられる。これらのノボラック型エポキシ樹脂は、例えば、公知の方法でフェノールノボラック樹脂又はクレゾールノボラック樹脂と、エピクロルヒドリンとを反応させることにより得ることができる。
 式(III’)で表されるフェノールノボラック型エポキシ樹脂又はクレゾールノボラック型エポキシ樹脂としては、例えば、YDCN-701、YDCN-702、YDCN-703、YDCN-704、YDCN-704L、YDPN-638、YDPN-602(以上、日鉄ケミカル&マテリアル株式会社製、商品名)、DEN-431、DEN-439(以上、ダウ・ケミカル社製、商品名)、EOCN-120、EOCN-102S、EOCN-103S、EOCN-104S、EOCN-1012、EOCN-1025、EOCN-1027、BREN(以上、日本化薬株式会社製、商品名)、EPN-1138、EPN-1235、EPN-1299(以上、BASF社製、商品名)、N-730、N-770、N-865、N-665、N-673、VH-4150、VH-4240(以上、DIC株式会社製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a2)として、下記式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するエポキシ樹脂としては、例えば、下記式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(IV)及び(IV’)中、R14は水素原子又はメチル基を示し、複数存在するR14は同一でも異なっていてもよく、Yは水素原子又はグリシジル基を示す。式(IV’)中、nは1以上の数を示し、nが2以上の場合、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。
 アンダーカットの発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、R14は水素原子であることが好ましく、耐熱衝撃性をより向上する観点から、Yはグリシジル基であることが好ましい。nは1以上を示すが、10~100、12~80又は15~60であってもよい。nが上記範囲内であると、レジストパターン輪郭の直線性、銅基板との密着性、及び耐熱性が向上し易くなる。
 式(IV)中のYがグリシジル基であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂は、例えば、式(IV)中のYが水素原子であるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂の水酸基(-OY)とエピクロルヒドリンとを反応させることにより得ることができる。
 水酸基とエピクロルヒドリンとの反応を促進するためには、反応温度50~120℃でアルカリ金属水酸化物存在下、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド等の極性有機溶剤中で反応を行うことが好ましい。反応温度が上記範囲内であると、反応が遅くなりすぎることがなく、副反応を抑制することができる。
 式(IV’)で表されるビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂としては、例えば、jER807、jER815、jER825、jER827、jER828、jER834、jER1001、jER1004、jER1007及びjER1009(以上、三菱ケミカル株式会社製、商品名)、DER-330、DER-301、DER-361(以上、ダウ・ケミカル社製、商品名)、YD-8125、YDF-170、YDF-175S、YDF-2001、YDF-2004、YDF-8170(以上、日鉄ケミカル&マテリアル株式会社製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a2)としては、下記式(V)で表される構造単位を有するトリフェノールメタン型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するトリフェノールメタン型エポキシ樹脂としては、例えば、下記式(V’)で表されるトリフェノールメタン型エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 式(V)及び(V’)中、Yは水素原子又はグリシジル基を示し、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。式(V’)中、nは1以上の数を示す。
 アンダーカット及び上部の欠落の発生を抑制し、レジストパターン輪郭の直線性及び解像性を向上する観点から、Yにおける水素原子であるYとグリシジル基であるYとのモル比が、0/100~30/70であってもよい。このモル比からもわかるように、Yの少なくとも一つはグリシジル基である。nは1以上であるが、10~100、12~80、又は15~70であってもよい。nが上記範囲内であると、レジストパターン輪郭の直線性、銅基板との密着性、及び耐熱性が向上し易くなる。
 式(V’)で表されるトリフェノールメタン型エポキシ樹脂としては、例えば、FAE-2500、EPPN-501H、EPPN-502H(以上、日本化薬株式会社製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a2)としては、下記式(VI)で表される構造単位を有するビフェニル型エポキシ樹脂が好ましく挙げられる。このような構造単位を有するビフェニル型エポキシ樹脂としては、例えば、下記式(VI’)で表されるビフェニル型エポキシ樹脂が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(VI)及び(VI’)中、Yは水素原子又はグリシジル基を示し、複数のYは同一でも異なっていてもよく、少なくとも一つのYはグリシジル基である。式(VI’)中、nは1以上の数を示す。
 式(VI’)で表されるビフェニル型エポキシ樹脂としては、例えば、NC-3000、NC-3000-L、NC-3000-H、NC-3000-FH-75M、NC-3100、CER-3000-L(以上、日本化薬株式会社製、商品名)等が商業的に入手可能である。
 エポキシ樹脂(a2)としては、式(III)で表される構造単位を有するノボラック型エポキシ樹脂、式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂、及び式(IV)で表される構造単位を有するビスフェノールF型エポキシ樹脂からなる群より選ばれる少なくとも1種が好ましく、式(IV)で表される構造単位を有するビスフェノールF型エポキシ樹脂がより好ましい。
 耐熱衝撃性、反り低減性、及び解像性をより向上観点から、エポキシ樹脂(a1)として、式(II)で表される構造単位を有するビスフェノールノボラック型エポキシ樹脂を用いた(A1)成分と、エポキシ樹脂(a2)として、式(IV)で表される構造単位を有するビスフェノールA型エポキシ樹脂又はビスフェノールF型エポキシ樹脂を用いた(A2)成分とを組み合わせて用いてもよい。
 (b)成分としては、例えば、アクリル酸、アクリル酸の二量体、メタクリル酸、β-フルフリルアクリル酸、β-スチリルアクリル酸、桂皮酸、クロトン酸、α-シアノ桂皮酸等のアクリル酸誘導体;水酸基含有(メタ)アクリレートと二塩基酸無水物との反応生成物である半エステル化合物;及びビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと二塩基酸無水物との反応生成物である半エステル化合物が挙げられる。(b)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 半エステル化合物は、例えば、水酸基含有(メタ)アクリレート、ビニル基含有モノグリシジルエーテル又はビニル基含有モノグリシジルエステルと、二塩基酸無水物とを反応させることで得られる。
 水酸基含有(メタ)アクリレート、ビニル基含有モノグリシジルエーテル、及びビニル基含有モノグリシジルエステルとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びグリシジル(メタ)アクリレートが挙げられる。
 二塩基酸無水物としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、及び無水イタコン酸が挙げられる。
 (a)成分と(b)成分との反応において、(a)成分のエポキシ基が1当量に対して、(b)成分が0.6~1.05当量となる比率で反応させることが好ましく、0.8~1.0当量となる比率で反応させることがより好ましい。このような比率で反応させることで、光感度が大きくなり、レジストパターン輪郭の直線性に優れる傾向にある。
 (a)成分及び(b)成分は、有機溶剤に溶かして反応させることができる。有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤が挙げられる。有機溶剤は、1種を単独で又は2種以上を組み合わせて用いてよい。
 (a)成分と(b)成分との反応を促進するための触媒を用いてもよい。触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムアイオダイド、及びトリフェニルホスフィンが挙げられる。触媒は、1種を単独で又は2種以上を組み合わせて用いてよい。
 触媒の使用量は、(a)成分と(b)成分との反応を促進する観点から、(a)成分と(b)成分の合計100質量部に対して、0.01~10質量部、0.05~2質量部、又は0.1~1質量部であってもよい。
 (a)成分と(b)成分との反応には、反応中の重合を防止する目的で、重合禁止剤を用いてもよい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、及びピロガロールが挙げられる。重合禁止剤は、1種を単独で又は2種以上を組み合わせて用いてよい。
 重合禁止剤の使用量は、安定性を向上させる観点から、(a)成分と(b)成分の合計100質量部に対して、0.01~1質量部、0.02~0.8質量部、又は0.04~0.5質量部であってもよい。
 (a)成分と(b)成分との反応温度は、生産性の観点から、60~150℃、80~120℃、又は90~110℃であってもよい。
 (a)成分と(b)成分とを反応させてなる(A’)成分は、(a)成分のエポキシ基と(b)成分のカルボキシ基との開環付加反応により形成される水酸基を有している。(A’)成分に、更に(c)成分を反応させることにより、(A’)成分の水酸基((a)成分中に元来存在する水酸基も含む)と(c)成分の酸無水物基とが半エステル化された、酸変性ビニル基含有樹脂が得られる。
 (c)成分としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、及び無水イタコン酸が挙げられる。これらの中でも、解像性の観点から、テトラヒドロ無水フタル酸が好ましい。(c)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 (A’)成分と(c)成分との反応において、例えば、(A’)成分中の水酸基が1当量に対して、(c)成分を0.1~1.0当量反応させることで、(A)成分の酸価を調整することができる。
 (A’)成分と(c)成分との反応温度は、生産性の観点から、50~150℃、60~120℃、又は70~100℃であってもよい。
 必要に応じて、(a)成分として、水添ビスフェノールA型エポキシ樹脂を一部併用してもよく、スチレン-無水マレイン酸共重合体のヒドロキシエチル(メタ)アクリレート変性物等のスチレン-マレイン酸系樹脂を一部併用してもよい。
 (A)成分は、アンダーカットの発生を抑制し、銅基板との密着性、耐熱衝撃性及び解像性をより向上する観点から、(A1)成分を含むことが好ましく、特に密着強度を向上する観点から、(A1)成分と(A2)成分とを含むことがより好ましい。
 (A)成分として(A1)成分と(A2)成分とを組み合わせて用いる場合、(A1)/(A2)の質量比は、特に限定されないが、レジストパターン輪郭の直線性、耐無電解めっき性及び耐熱性を向上する観点から、20/80~90/10、30/70~80/20、40/60~75/25、又は50/50~70/30であってもよい。
 (A)成分の酸価は、特に限定されない。(A)成分の酸価は、未露光部のアルカリ水溶液への溶解性を向上する観点から、30mgKOH/g以上、40mgKOH/g以上、又は50mgKOH/g以上であってもよい。(A)成分の酸価は、硬化膜の電気特性を向上する観点から、150mgKOH/g以下、120mgKOH/g以下、又は100mgKOH/g以下であってもよい。
 (A)成分の重量平均分子量(Mw)は、特に限定されない。(A)成分のMwは、硬化膜の密着性を向上する観点から、3000以上、4000以上、又は5000以上であってもよい。(A)成分のMwは、感光層の解像性を向上する観点から、30000以下、25000以下、又は18000以下であってもよい。
 Mwは、ゲルパーミエーションクロマトグラフィ(GPC)法により測定することができる。Mwは、例えば、下記のGPC条件で測定し、標準ポリスチレンの検量線を使用して換算した値をMwとすることができる。検量線の作成は、標準ポリスチレンとして5サンプルセット(「PStQuick MP-H」及び「PStQuick B」、東ソー株式会社製)を用いることができる。
GPC装置:高速GPC装置「HCL-8320GPC」(東ソー株式会社製)
検出器  :示差屈折計又はUV検出器(東ソー株式会社製)
カラム  :カラムTSKgel SuperMultipore HZ-H(カラム長さ:15cm、カラム内径:4.6mm)(東ソー株式会社製)
溶離液  :テトラヒドロフラン(THF)
測定温度 :40℃
流量   :0.35mL/分
試料濃度 :10mg/THF5mL
注入量  :20μL
 感光性樹脂組成物中における(A)成分の含有量は、永久レジストの耐熱性、電気特性及び耐薬品性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、20~70質量%、25~60質量%、又は30~50質量%であってもよい。
((B)成分:熱硬化性樹脂)
 本実施形態に係る感光性樹脂組成物は、(B)成分として熱硬化性樹脂を含有し、(B)成分は、平均分子量が360以下のビスフェノール型エポキシ化合物(以下、「(B1)成分」と称する場合がある。)を含む。本実施形態に係る感光性樹脂組成物は、(B1)成分を含有することで、良好な解像性を維持しつつ、感光性樹脂組成物から形成される硬化膜(永久レジスト)の耐熱性及び耐熱衝撃性を向上することができる。
 (B1)成分は、ビスフェノール化合物とエピクロロヒドリンとの縮合反応により合成されるエポキシ化合物である。ビスフェノール化合物としては、例えば、ビスフェノールA、ビスフェノールF、及びビスフェノールSが挙げられる。(B1)成分は、ビスフェノール化合物が1モルに対してエピクロロヒドリンが2モル結合した、ビスフェノール骨格を有するジグリシジルエーテル(下記式(1)で表されるジグリシジルエーテル)を主成分として含有する。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、Xは、メチレン基(CH)、エチレン基(CHCH)、エチリデン基(CH(CH))、1-メチルエチリデン基(C(CH)、又はスルホ基を示す。現像性を高める観点から、Xは、メチレン基又は1-メチルエチリデン基であることが好ましい。
 一般的なビスフェノール型エポキシ化合物は、ビスフェノール化合物とエピクロロヒドリンとの重合物(例えば、二量体、三量体等のオリゴマー成分)を含んでいる。これに対して、(B1)成分は、オリゴマー成分の含有量が少ない。(B1)成分における式(1)で表されるジグリシジルエーテルの含有量は、現像性及び耐熱衝撃性をより向上する観点から、94質量%以上、96質量%以上、又は98質量%以上であってもよい。
 (B1)成分の平均分子量は、耐熱性及び耐熱衝撃性をより向上する観点から、310~360、315~359、320~358、325~357、又は330~356であってもよい。平均分子量は、例えば、GPC法により算出することができる(関税中央分析所報、第21号、1980年、第85~90頁、「GPC、NMR等によるエポキシオリゴマーの重合度の測定」参照)。
(B1)成分のエポキシ当量は、耐熱性及び耐熱衝撃性をより向上する観点から、150~182g/eq、154~181g/eq、160~180g/eq、162~179g/eq、又は166~178g/eqであってもよい。エポキシ当量は、JIS K 7236に従い測定することができる。
 (B)成分は、(B1)成分以外の他の熱硬化性樹脂を含んでいてよい。他の熱硬化性樹脂としては、例えば、ビスフェノール骨格を有しないエポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、及びメラミン樹脂が挙げられる。これらの中でも、硬化膜の耐熱性をより向上させる観点から、ビスフェノール骨格を有しないエポキシ樹脂が好ましい。ビスフェノール骨格を有しないエポキシ樹脂としては、例えば、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ヒダントイン型エポキシ樹脂、トリグリシジルイソシアヌレート、及びビキシレノール型エポキシ樹脂が挙げられる。
 (B)成分中における(B1)成分の含有量は、(B)成分の総量を基準として、30質量%以上、50質量%以上、又は60質量%以上であってもよい。この含有量が30質量%以上であると、より優れた耐熱衝撃性が得られる傾向がある。
 感光性樹脂組成物中における(B)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、2~30質量%、5~25質量%、8~20質量%、又は10~18質量%であってもよい。(B)成分の含有量が上記範囲内であると、良好な現像性を維持しつつ、形成される硬化膜の密着性及び耐熱性をより向上することができる。
((C)成分:光重合開始剤)
 (C)成分である光重合開始剤としては、(A)成分及び(D)成分を重合させることができれば、特に限定されない。(C)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 (C)成分としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン化合物;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン化合物;2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン化合物;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン化合物;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール化合物;ベンゾフェノン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、ミヒラーズケトン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン化合物;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等のイミダゾール化合物;9-フェニルアクリジン、1,7-ビス(9,9’-アクリジニル)ヘプタン等のアクリジン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)、1-フェニル-1,2-プロパンジオン-2-[O-(エトキシカルボニル)オキシム]等のオキシムエステル化合物;及びN,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等の三級アミン化合物が挙げられる。
 感光性樹脂組成物中における(C)成分の含有量は、特に限定されないが、感光性樹脂組成物の固形分全量を基準として、0.2~15質量%、0.4~5質量%、又は0.6~1.5質量%であってもよい。
((D)成分:光重合性化合物)
 本実施形態に係る感光性樹脂組成物は、露光部の耐薬品性を高め、露光部と未露光部との耐現像液性の差を大きくする観点から、(D)成分として光重合性化合物を含有する。(D)成分は、光重合性の官能基を有し、酸性基を有しない光重合性化合物であればよく、特に限定されない。光重合性の官能基としては、例えば、ビニル基、アリル基、プロパギル基、ブテニル基、エチニル基、フェニルエチニル基、マレイミド基、ナジイミド基、(メタ)アクリロイル基等のエチレン性不飽和結合を有する基が挙げられる。
 (D)成分としては、例えば、エチレン性不飽和結合を1つ有する光重合性化合物、エチレン性不飽和結合を2つ有する光重合性化合物、及びエチレン性不飽和結合を3つ以上有する光重合性化合物が挙げられる。
 エチレン性不飽和結合を1つ有する光重合性化合物としては、例えば、(メタ)アクリル酸、及び(メタ)アクリル酸アルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチルエステル、(メタ)アクリル酸エチルエステル、(メタ)アクリル酸ブチルエステル、(メタ)アクリル酸2-エチルヘキシルエステル、及び(メタ)アクリル酸ヒドロキシエチルエステルが挙げられる。
 エチレン性不飽和結合基を2つ有する光重合性化合物としては、例えば、ポリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシポリエトキシポリプロポキシフェニル)プロパン、及びビスフェノールAジグリシジルエーテルジ(メタ)アクリレートが挙げられる。
 エチレン性不飽和結合を3つ以上有する光重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート等のトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート等のテトラメチロールメタン由来の骨格を有する(メタ)アクリレート化合物;ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物;ジトリメチロールプロパンテトラ(メタ)アクリレート等のジトリメチロールプロパン由来の骨格を有する(メタ)アクリレート化合物;及びジグリセリン由来の骨格を有する(メタ)アクリレート化合物が挙げられる。
 これらの中でも、露光部の耐薬品性を高め、露光部と未露光部の耐現像液性の差をより大きくする観点から、ジペンタエリスリトール由来の骨格を有する(メタ)アクリレート化合物が好ましく、ジペンタエリスリトールペンタ(メタ)アクリレート及びジペンタエリスリトールヘキサ(メタ)アクリレートがより好ましい。
 (D)成分の含有量は、感光性樹脂組成物の固形分全量を基準として、1~20質量%、2~15質量%、又は3~10質量%であってもよい。
((E)成分:エラストマー)
 本実施形態に係る感光性樹脂組成物は、(E)成分としてエラストマーを含有することにより、(A)成分の硬化収縮による樹脂内部の歪み(内部応力)に起因する可とう性及び接着強度の低下を抑えることができる。(E)成分は、アクリル系エラストマーを含むことで、感光性樹脂組成物から形成される硬化膜の耐熱性及び耐衝撃性を向上することができる。
 アクリル系エラストマーは、(メタ)アクリル化合物を重合して合成することができる。(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、及びアクリロニトリルが挙げられる。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸エステル2-エチルヘキシル、(メタ)アクリル酸2-メトキシエチル、及び(メタ)アクリル酸2-エトキシエチルが挙げられる。
 アクリル系エラストマーは、現像性をより向上する観点から、カルボキシ基を有することが好ましい。カルボキシ基は、(メタ)アクリル酸を重合することで導入することができる。アクリル樹脂中の(メタ)アクリル酸に基づく構造単位の含有量は、2~50質量%、5~30質量%、8~25質量%、又は10~20質量%であってもよい。(メタ)アクリル酸に基づく構造単位の含有量が上記範囲内であると、現像性及び解像性を高める傾向にある。
 アクリル系エラストマーは、耐衝撃性をより向上する観点から、n-ブチル基を有することが好ましい。n-ブチル基は、(メタ)アクリル酸n-ブチルを重合することで導入することができる。アクリル系エラストマーにおける(メタ)アクリル酸n-ブチルに基づく構造単位の含有量は、30~90質量%、40~85質量%、45~80質量%、又は50~75質量%であってよい。(メタ)アクリル酸n-ブチルに基づく構造単位の含有量が上記範囲内であると、解像性及び耐衝撃性を高める傾向にある。
 アクリル系エラストマーの重量平均分子量(Mw)は、1000~50000、2000~40000、3000~30000、5000~20000、又は8000~18000であってもよい。アクリル系エラストマーのMwが上記範囲内であると、(A)成分との相溶性及び未露光部の現像性に優れ、解像性により一層優れる傾向にある。アクリル系エラストマーのMwは、上述したGPC法により測定することができる。
 (E)成分は、アクリル系エラストマー以外のエラストマーを更に含んでもよい。アクリル系エラストマー以外の(E)成分としては、例えば、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、及びシリコーン系エラストマーが挙げられる。
 スチレン系エラストマーとしては、例えば、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-イソプレン-スチレンブロックコポリマー、スチレン-エチレン-ブチレン-スチレンブロックコポリマー、及びスチレン-エチレン-プロピレン-スチレンブロックコポリマーが挙げられる。スチレン系エラストマーを構成する成分としては、スチレンの他に、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。
 オレフィン系エラストマーとしては、例えば、エチレン-プロピレン共重合体、エチレン-α-オレフィン共重合体、エチレン-α-オレフィン-非共役ジエン共重合体、プロピレン-α-オレフィン共重合体、ブテン-α-オレフィン共重合体、エチレン-プロピレン-ジエン共重合体、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、ブタジエン、イソプレン等の非共役ジエンとα-オレフィンとの共重合体、エポキシ変性ポリブタジエン、及びカルボン酸変性ブタジエン-アクリロニトリル共重合体が挙げられる。
 エポキシ変性ポリブタジエンは、分子末端に水酸基を有することが好ましく、分子両末端に水酸基を有することがより好ましく、分子両末端にのみ水酸基を有することが更に好ましい。エポキシ変性ポリブタジエンが有する水酸基の数は、1以上であってよく、好ましくは1~5、より好ましくは1又は2、更に好ましくは2である。
 ウレタン系エラストマーとして、低分子(短鎖)ジオール及びジイソシアネートからなるハードセグメントと、高分子(長鎖)ジオール及びジイソシアネートからなるソフトセグメントとから構成される化合物を用いることができる。
 短鎖ジオールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、及びビスフェノールAが挙げられる。短鎖ジオールの数平均分子量は、48~500が好ましい。
 長鎖ジオールとしては、例えば、ポリプロピレングリコール、ポリテトラメチレンオキサイド、ポリ(1,4-ブチレンアジペート)、ポリ(エチレン-1,4-ブチレンアジペート)、ポリカプロラクトン、ポリ(1,6-ヘキシレンカーボネート)、及びポリ(1,6-ヘキシレン-ネオペンチレンアジペート)が挙げられる。長鎖ジオールの数平均分子量は、500~10000が好ましい。
 ポリエステル系エラストマーとしては、ジカルボン酸又はその誘導体と、ジオール化合物又はその誘導体とを重縮合した化合物を用いることができる。
 ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;アジピン酸、セバシン酸、ドデカンジカルボン酸等の炭素数2~20の脂肪族ジカルボン酸;及びシクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。ジカルボン酸は、1種を単独で又は2種以上を組み合わせて用いることができる。
 ジオール化合物としては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、1,10-デカンジオール等の脂肪族ジオール;1,4-シクロヘキサンジオール等の脂環族ジオール;及びビスフェノールA、ビス-(4-ヒドロキシフェニル)メタン、ビス-(4-ヒドロキシ-3-メチルフェニル)プロパン、レゾルシン等の芳香族ジオールが挙げられる。
 ポリエステル系エラストマーとして、芳香族ポリエステル(例えば、ポリブチレンテレフタレート)をハードセグメント成分に、脂肪族ポリエステル(例えば、ポリテトラメチレングリコール)をソフトセグメント成分にしたマルチブロック共重合体を用いることができる。ハードセグメント及びソフトセグメントの種類、比率、分子量の違いによりさまざまなグレードのポリエステル系エラストマーがある。
 ポリアミド系エラストマーは、ハードセグメントにポリアミドを、ソフトセグメントにポリエーテル又はポリエステルを用いた、ポリエーテルブロックアミド型とポリエーテルエステルブロックアミド型との2種類に大別される。ポリアミドとしては、例えば、ポリアミド-6、ポリアミド-11、及びポリアミド-12が挙げられる。ポリエーテルとしては、例えば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、及びポリテトラメチレングリコールが挙げられる。
 シリコーン系エラストマーは、オルガノポリシロキサンを主成分とする化合物である。オルガノポリシロキサンとしては、例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、及びポリジフェニルシロキサンが挙げられる。シリコーン系エラストマーは、オルガノポリシロキサンの一部をビニル基、アルコキシ基等で変性した化合物であってもよい。
 (E)成分の含有量は、(A)成分の含有量が100質量部に対して、1~40質量部、2~35質量部、3~30質量部、又は4~15質量部であってもよい。(E)成分の含有量は、(A)成分の含有量が100質量部に対して、5質量部以上、8質量部以上、又は10質量部以上であってもよく、40質量部以下、35質量部以下、30質量部以下、又は25質量部以下であってもよい。(E)成分の含有量が上記範囲内であると、硬化膜の高温領域での弾性率が低くなり、かつ未露光部が現像液でより溶出し易くなる。
((F)成分:無機フィラー)
 本実施形態に係る感光性樹脂組成物は、(F)成分として無機フィラーを更に含有してもよい。(F)成分を含有することで、永久レジストの接着強度及び硬度を向上することができる。(F)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 無機フィラーとしては、例えば、シリカ、アルミナ、チタニア、酸化タンタル、ジルコニア、窒化ケイ素、チタン酸バリウム、炭酸バリウム、炭酸マグネシウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸鉛、チタン酸ジルコン酸鉛、チタン酸ジルコン酸ランタン鉛、酸化ガリウム、スピネル、ムライト、コーディエライト、タルク、チタン酸アルミニウム、イットリア含有ジルコニア、ケイ酸バリウム、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、酸化亜鉛、チタン酸マグネシウム、ハイドロタルサイト、雲母、焼成カオリン、及びカーボンが挙げられる。
 (F)成分は、永久レジストの耐熱性を向上する観点から、シリカを含んでもよく、永久レジストの耐熱性及び接着強度を向上する観点から、硫酸バリウムを含んでもよく、シリカと硫酸バリウムとを含んでもよい。無機フィラーの分散性を向上する観点から、予めアルミナ又は有機シラン化合物で表面処理された無機フィラーを用いてもよい。
 無機フィラーの平均粒径は、解像性の観点から、0.01~5.0μm、0.05~3.0μm、0.1~2.0μm、又は0.15~1.0μmであってもよい。
 (F)成分の平均粒径は、感光性樹脂組成物中に分散した状態での無機フィラーの平均粒径であり、以下のように測定して得られる値とする。まず、感光性樹脂組成物をメチルエチルケトンで1000倍に希釈した後、サブミクロン粒子アナライザ(ベックマン・コールター株式会社製、商品名:N5)を用いて、国際標準規格ISO13321に準拠して、屈折率1.38で、溶剤中に分散した粒子を測定し、粒度分布における積算値50%(体積基準)での粒子径を平均粒径とする。
 (F)成分の含有量は、感光性樹脂組成物の固形分全量を基準として10~70質量%、15~60質量%、又は20~50質量%であってもよい。(E)成分の含有量が上記範囲内であると、低熱膨張率、耐熱性、及び膜強度をより向上させることができる。
 (F)成分としてシリカを用いる場合のシリカの含有量は、感光性樹脂組成物の固形分全量を基準として、5~60質量%、10~40質量%、又は15~30質量%であってもよい。(F)成分として硫酸バリウムを用いる場合の硫酸バリウムの含有量は、感光性樹脂組成物の固形分全量を基準として、5~30質量%、8~25質量%、又は10~20質量%であってよい。シリカ及び硫酸バリウムの含有量が上記範囲内であると、低熱膨張率、はんだ耐熱性、及び接着強度に優れる傾向にある。
((G)成分:顔料)
 本実施形態に係る感光性樹脂組成物は、製造装置の識別性又は外観を向上させる観点から、(G)成分として顔料を更に含有してもよい。(G)成分としては、配線(導体パターン)を隠蔽する等の際に所望の色を発色する着色剤を用いることができる。(G)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 (G)成分としては、例えば、フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、及びナフタレンブラックが挙げられる。
 (G)成分の含有量は、製造装置を識別し易くし、配線をより隠蔽させる観点から、感光性樹脂組成物中の固形分全量を基準として、0.01~5.0質量%、0.03~3.0質量%、又は0.05~2.0質量%であってもよい。
((H)成分:イオン捕捉剤)
 本実施形態に係る感光性樹脂組成物は、レジスト形状、密着性、流動性、及び信頼性を向上する観点から、(H)成分としてイオン捕捉剤を更に含有してもよい。(H)成分は、イオン捕捉剤中にイオンを捕捉できるものであって、陽イオン及び陰イオンの少なくとも一方を捕捉する機能を有するものであれば特に制限はない。
 本実施形態において捕捉するイオンは、光、電子線等の照射により反応し溶剤に対する溶解度が変化する組成物に取り込まれている、例えば、ナトリウムイオン(Na)、塩素イオン(Cl)、臭素イオン(Br)、銅イオン(Cu、Cu2+)等のイオンである。これらのイオンを捕捉することにより、電気絶縁性、耐電食性等が向上する。
 (H)成分は、Zr(ジルコニウム)、Bi(ビスマス)、Mg(マグネシウム)及びAl(アルミニウム)からなる群から選ばれる少なくとも1種を有するイオン捕捉剤であることが好ましい。(H)成分は、1種を単独で又は2種以上を組み合わせて用いてよい。
 (H)成分としては、陽イオンを捕捉する陽イオン捕捉剤、陰イオンを捕捉する陰イオン捕捉剤、並びに陽イオン及び陰イオンを捕捉する両イオン捕捉剤が挙げられる。
 陽イオン捕捉剤としては、例えば、リン酸ジルコニウム、タングステン酸ジルコニウム、モリブデン酸ジルコニウム、タングステン酸ジルコニウム、アンチモン酸ジルコニウム、セレン酸ジルコニウム、テルル酸ジルコニウム、ケイ酸ジルコニウム、リンケイ酸ジルコニウム、ポリリン酸ジルコニウム等の金属酸化物の無機イオン交換体が挙げられる。
 陰イオン捕捉剤としては、例えば、酸化ビスマス水和物、ハイドロタルサイト類等の無機イオン交換体が挙げられる。
 両イオン捕捉剤としては、例えば、酸化アルミニウム水和物、酸化ジルコニウム水和物等の金属含水酸化物の無機イオン交換体が挙げられる。両イオン捕捉剤として、東亞合成株式会社製のIXE-1320(Mg,Al含有化合物)、IXE-600(Bi含有化合物)、IXE-633(Bi含有化合物)、IXE-680(Bi含有化合物)、IXE-6107(Zr,Bi含有化合物)、IXE-6136(Zr,Bi含有化合物)、IXEPLAS-A1(Zr,Mg,Al含有化合物)、IXEPLAS-A2(Zr,Mg,Al含有化合物)、IXEPLAS-B1(Zr,Bi含有化合物)等が商業的に入手可能である。
 (H)成分は、粒状のものを用いることができ、絶縁性を向上させる観点から、(H)成分の平均粒径は、5μm以下、3μm以下、又は2μm以下であってもよく、0.1μm以上であってもよい。(H)成分の平均粒径は、感光性樹脂組成物中に分散した状態での粒子の粒子径であり、(F)成分の平均粒径の測定方法と同じ方法により測定することができる。
 感光性樹脂組成物が(H)成分を含有する場合、その含有量は、特に限定されないが、電気絶縁性及び耐電食性を向上させる観点から、感光性樹脂組成物の固形分全量を基準として、0.05~10質量%、0.1~5質量%、又は0.2~1質量%であってもよい。
((I)成分:シランカップリング剤)
 本実施形態に係る感光性樹脂組成物は、(I)成分としてシランカップリング剤を更に含有してもよい。(I)成分としては、公知のシランカップリング剤を用いることができる。(I)成分は、電子部品の基板との接着性を向上させることができ、特に、該基板がケイ素を含有する基板(例えば、ガラス基板、シリコンウェハ、エポキシ樹脂含浸ガラスクロス基板等)の場合は有効である。
 シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のアルコキシシラン;(メタ)アクリロキシプロピルトリメトキシシラン、(メタ)アクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロイル基含有アルコキシシラン;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン等のアミン系アルコキシシラン;γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシドキシプロピルメチルジイソプロペノキシシラン等のグリシドキシ基含有アルコキシシラン;2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等の脂環式エポキシ基含有アルコキシシラン;3-ウレイドプロピルトリエトキシシラン等のウレイド基含有アルコキシシラン;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有アルコキシシラン;トリエトキシシリルプロピルエチルカルバメート等のカルバメート基含有アルコキシシラン;3-(トリエトキシシリル)プロピルコハク酸無水物等の多塩基酸無水物基含有アルコキシシランが挙げられる。シランカップリング剤は1種を単独で又は2種以上を組み合わせて用いてもよい。
 (I)成分は、より接着性を向上させる観点から、(メタ)アクリロイル基を有するシランカップリング剤を含むことが好ましい。(メタ)アクリロイル基を有するシランカップリング剤を用いることで、永久レジストの耐熱性を維持し、組成物中からのブリードを抑えることができる。本明細書において、(メタ)アクリロイル基を有するシランカップリング剤は、(D)成分には包含されない。
 (メタ)アクリロイル基を有するシランカップリング剤の市販品としては、例えば、KBM-502、KBM-503、KBE-502、KBE-503、及びKBM-5103(信越シリコーン株式会社製)が挙げられる。
 (I)成分の含有量は、感光性樹脂組成物中の固形分全量を基準として、0.1~10質量%、0.5~5質量%、又は1~3質量%であってもよい。(I)成分の含有量が上記範囲であるとシリコンウェハとの密着性に優れ、かつ解像性に優れる傾向にある。
(硬化剤)
 本実施形態に係る感光性樹脂組成物は、硬化膜の耐熱性、密着性、耐薬品性等の特性を更に向上する目的で、硬化剤を含有してもよい。硬化剤は1種を単独で又は2種以上を組み合わせて用いてもよい。
 硬化剤としては、例えば、イミダゾール化合物、グアナミン化合物、アミン化合物、及びトリアジン化合物が挙げられる。イミダゾール化合物としては、例えば、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニルイミダゾール、及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが挙げられる。グアナミン化合物としては、例えば、アセトグアナミン及びベンゾグアナミンが挙げられる。アミン化合物としては、例えば、ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルホン、ジシアンジアミド、尿素、尿素誘導体、メラミン、及び多塩基ヒドラジドが挙げられる。トリアジン化合物としては、例えば、エチルジアミノ-s-トリアジン、2,4-ジアミノ-s-トリアジン、及び2,4-ジアミノ-6-キシリル-s-トリアジンが挙げられるが挙げられる。
 硬化剤の含有量は、硬化膜の信頼性を向上する観点から、感光性樹脂組成物の固形分全量を基準として、0.01~20質量%、0.05~10質量%、又は0.1~5質量%であってもよい。
(その他の成分)
 本実施形態に係る感光性樹脂組成物には、必要に応じて、各種添加剤を更に含有してもよい。添加剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等の重合禁止剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系、フッ素系、ビニル樹脂系の消泡剤;及び臭素化エポキシ化合物、酸変性臭素化エポキシ化合物、アンチモン化合物、ホスフェート化合物、芳香族縮合リン酸エステル、含ハロゲン縮合リン酸エステル等の難燃剤が挙げられる。
(溶剤)
 本実施形態に係る感光性樹脂組成物は、各成分を溶解・分散させるため溶剤を含有することにより、基板上への塗布を容易にし、均一な厚さの塗膜を形成できる。
 溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素;メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル;酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル;オクタン、デカン等の脂肪族炭化水素;及び石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤が挙げられる。溶剤は、1種を単独で又は2種以上を組み合わせて用いてよい。
 溶剤の配合量は、特に限定されないが、感光性樹脂組成物中の溶剤の割合が10~50質量%、20~40質量%、又は25~35質量%であってもよい。
 本実施形態に係る感光性樹脂組成物は、上述の各成分をロールミル、ビーズミル等で均一に混合することにより調製することができる。
[感光性エレメント]
 本実施形態に係る感光性エレメントは、支持フィルムと、上述した感光性樹脂組成物を含む感光層とを備える。図1は、本実施形態に係る感光性エレメントを模式的に示す断面図である。図1に示されるように、感光性エレメント1は、支持フィルム10と、支持フィルム10上に形成された感光層20とを備えている。
 感光性エレメント1は、本実施形態に係る感光性樹脂組成物を、リバースロールコート、グラビアロールコート、コンマコート、カーテンコート等の公知の方法で支持フィルム10上に塗布した後、塗膜を乾燥して感光層20を形成することで作製することができる。
 支持フィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、ポリプロピレン、ポリエチレン等のポリオレフィンフィルムが挙げられる。支持フィルムの厚さは、例えば、5~100μmであってもよい。感光層の厚さは、例えば、5~50μm、5~40μm、又は10~30μmであってもよい。支持フィルムの表面粗さは特に限定されないが、算術平均粗さ(Ra)が1000nm以下、500nm以下、又は250nm以下であってもよい。
 塗膜の乾燥は、熱風乾燥、遠赤外線又は近赤外線を用いた乾燥を用いることができる。乾燥温度は、60~120℃、70~110℃、又は80~100℃であってもよい。乾燥時間は、1~60分、2~30分、又は5~20分であってもよい。
 感光層20上には、感光層20を被覆する保護フィルム30を更に備えていてもよい。感光性エレメント1は、感光層20の支持フィルム10と接する面とは反対側の面に保護フィルム30を積層することもできる。保護フィルム30としては、例えば、ポリエチレン、ポリプロピレン等の重合体フィルムを用いてもよい。
[プリント配線板]
 本実施形態に係るプリント配線板は、本実施形態に係る感光性樹脂組成物の硬化物を含む永久レジストを具備する。
 本実施形態に係るプリント配線板の製造方法は、基板上に、上述の感光性樹脂組成物又は感光性エレメントを用いて感光層を形成する工程と、感光層を露光及び現像してレジストパターンを形成する工程と、レジストパターンを硬化して永久レジストを形成する工程と、を備える。以下、各工程の一例について説明する。
 まず、銅張積層板等の基板を準備し、該基板上に、感光層を形成する。感光層は、基板上に感光性樹脂組成物を塗布し乾燥することで形成してもよい。感光性樹脂組成物を塗布する方法としては、例えば、スクリーン印刷法、スプレー法、ロールコート法、カーテンコート法、及び静電塗装法が挙げられる。乾燥温度は、60~120℃、70~110℃、又は80~100℃であってもよい。乾燥時間は、1~7分間、1~6分間、又は2~5分間であってよい。感光層の厚さは、5μm以上が好ましく、10~200μm、15~150μm、20~100μm、又は23~50μmであってもよい。
 感光層は、基板上に、感光性エレメントから保護フィルムを剥離して感光層をラミネートすることで形成してもよい。感光層をラミネートする方法としては、例えば、ラミネータを用いて熱ラミネートする方法が挙げられる。
 次に、感光層にネガフィルムを直接接触又は支持フィルムを介して接触させて、活性光線を照射して露光する。活性光線としては,例えば、電子線、紫外線、及びX線が挙げられ、好ましくは紫外線である。光源としては、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ハロゲンランプ等を使用することができる。露光量は、10~2000mJ/cm、100~1500mJ/cm、又は300~1000mJ/cmであってもよい。
 露光後、未露光部を現像液で除去することにより、レジストパターンを形成する。現像方法としては、例えば、ディッピング法及びスプレー法が挙げられる。現像液としては、例えば、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム等のアルカリ水溶液が使用できる。
 レジストパターンに対して、後露光及び後加熱の少なくとも一方の処理することによって、パターン硬化膜(永久レジスト)を形成することができる。後露光の露光量は、100~5000mJ/cm、500~2000mJ/cm、又は700~1500J/cmであってもよい。後加熱の加熱温度は、100~200℃、120~180℃、又は135~165℃であってもよい。後加熱の加熱時間は、5分~12時間、10分~6時間、又は30分~2時間であってもよい。
 本実施形態に係る永久レジストは、半導体素子の層間絶縁層又は表面保護層として用いることができる。上述の感光性樹脂組成物の硬化膜から形成された層間絶縁層又は表面保護層を備える半導体素子、該半導体素子を含む電子デバイスを作製することができる。半導体素子は、例えば、多層配線構造、再配線構造等を有する、メモリ、パッケージ等であってよい。電子デバイスとしては、例えば、携帯電話、スマートフォン、タブレット型端末、パソコン、及びハードディスクサスペンションが挙げられる。本実施形態に係る感光性樹脂組成物により形成されるパターン硬化膜を備えることで、信頼性に優れた半導体素子及び電子デバイスを提供することができる。
 以下、実施例により本開示を更に詳細に説明するが、本開示はこれらの実施例に限定されるものではない。
(合成例1)
 ビスフェノールFノボラック型エポキシ樹脂(DIC株式会社製、商品名「EXA-7376」、式(II)において、Y及びYがグリシジル基、R12が水素原子である構造単位を有するビスフェノールFノボラック型エポキシ樹脂、エポキシ当量:186)350質量部、アクリル酸70質量部、メチルハイドロキノン0.5質量部、及びカルビトールアセテート120質量部を90℃で撹拌しながら混合した。混合液を60℃に冷却し、トリフェニルホスフィン2質量部を加え、100℃で溶液の酸価が1mgKOH/g以下になるまで反応させた。反応液に、テトラヒドロ無水フタル酸(THPAC)98質量部及びカルビトールアセテート85質量部を加え、80℃で6時間反応させた。その後、反応液を室温まで冷却し、(A)成分としての酸変性エポキシアクリレート(A-1)の溶液(固形分濃度:73質量%)を得た。
(合成例2)
 撹拌機、窒素導入管及び温度計を備えた100mLの三口フラスコに、乳酸エチルを70g、アクリル酸メチルを13.4g、アクリル酸n-ブチルを22.5g、アクリル酸を2.0g、及びアゾビスイソブチロニトリルを3.0g添加した後、室温で約160rpmで撹拌しながら、窒素ガスを400mL/分の流量で30分間流し、フラスコ内の溶存酸素を除去した。その後、窒素ガスの流入を止め、フラスコを密閉し、恒温水槽にて約25分で65℃まで昇温した。同温度で10時間保持して重合反応を行い、アクリル系エラストマー(E-1)を得た。E-1のMwは約10000であった。
(合成例3)
 乳酸エチルを70g、アクリル酸メチルを2.8g、アクリル酸n-ブチルを13.3g、アクリル酸を2.4g、及びアゾビスイソブチロニトリルを1.0g添加した以外はE-1の合成と同じ手順で重合反応を行い、アクリル系エラストマー(E-2)を得た。E-2のMwは約15000であった。
 (A)~(I)成分として、以下の材料を準備した。
A-1:合成例1の酸変性エポキシアクリレート(A-1)
B-1:ビスフェノールF型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、商品名「YDF-8170C」、平均分子量:310~330、エポキシ当量:155~165)
B-2:ビスフェノールA型エポキシ樹脂(日鉄ケミカル&マテリアル株式会社製、商品名「YD-8125」、平均分子量:336~356、エポキシ当量:168~178)
B-3:ビスフェノールA型エポキシ樹脂(三菱ケミカル株式会社製、商品名「jER828」、平均分子量:368~388、エポキシ当量:184~194)
B-4:フェノールノボラック型エポキシ樹脂(日本化薬株式会社製、商品名「RE-306」、平均分子量:400、エポキシ当量:170~181)
C-1:2-メチル-[4-(メチルチオ)フェニル]モルホリノ-1-プロパノン(IGM Resins B.V.製、商品名「Omirad 907」)
C-2:2,4-ジエチルチオキサントン(日本化薬株式会社製、商品名「DETX-S」)
C-3:4,4’-ビス(ジエチルアミノ)ベンゾフェノン(EAB)
C-4:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASFジャパン株式会社製、商品名「Irgacure OXE02」)
D-1:ジペンタエリストールヘキサアクリレート(日本化薬株式会社製、商品名「DPHA」)
E-1:合成例2のアクリル系エラストマー(E-1)
E-2:合成例3のアクリル系エラストマー(E-2)
F-1:シリカ(デンカ株式会社製、商品名「SFP20M」、平均粒径:0.3μm)
F-2:硫酸バリウム(堺化学工業株式会社製、商品名「B-34」、平均粒径:0.3μm)
G-1:フタロシアニン系顔料(山陽色素株式会社製)
H-1:Zr、Mg、Al含有両イオン捕捉剤(東亞合成株式会社製、商品名「IXEPLAS-A2」、平均粒径:0.2μm、Zr化合物の含有量:20~30質量%)
I-1:3-メタクリロキシプロピルトリエトキシシラン(信越化学工業株式会社製、商品名「KBM-503」)
[感光性樹脂組成物]
 表1又は表2に示す配合量(質量部、固形分換算量)で各成分を配合し、3本ロールミルで混練した。その後、固形分濃度が70質量%になるようにカルビトールアセテートを加えて、感光性樹脂組成物を調製した。
[感光性エレメント]
 支持フィルムとして、厚さ25μmのポリエチレンテレフタレートフィルム(東洋紡フィルムソリューション株式会社製、商品名「G2-25」)を準備した。支持フィルム上に、感光性樹脂組成物にメチルエチルケトンを加えて希釈した溶液を、乾燥後の厚さが25μmとなるように塗布し、熱風対流式乾燥機を用いて75℃で30分間乾燥し、感光層を形成した。次いで、感光層の支持フィルムと接している側とは反対側の表面上に、ポリエチレンフィルム(タマポリ株式会社製、商品名「NF-15」)を保護フィルムとして貼り合わせ、感光性エレメントを得た。
(解像性)
 厚さ0.6mmの銅張積層基板(昭和電工マテリアルズ株式会社製、商品名「MCL-E-67」)を準備した。感光性エレメントから保護フィルムを剥離除去しながら、銅張積層基板上に、プレス式真空ラミネータ(株式会社名機製作所製、商品名「MVLP-500」)を用いて、圧着圧力0.4MPa、プレス熱板温度80℃、真空引き時間25秒間、ラミネートプレス時間25秒間で、感光層をラミネートして、積層体を得た。次いで、所定サイズの開口パターン(開口径サイズ:30、40、50、60、70、80、90、100、110、120、150、200μm)を有するネガマスクを上記積層体の支持フィルムに密着させ、紫外線露光装置(オーク株式会社製、商品名「EXM-1201」)を用いて、ステップタブレット(昭和電工マテリアルズ株式会社製)における完全硬化段数が13段となる露光量で感光層を露光した。その後、感光層から支持フィルムを剥離し、1質量%の炭酸ナトリウム水溶液を用いて、60秒間、1.765×10Paの圧力でスプレー現像し、未露光部を溶解現像した。次に、紫外線露光装置を用いて、現像後の感光層を2000mJ/cmの露光量で露光した後、170℃で1時間加熱して、銅張積層基板上に、所定サイズの開口パターンが形成さられた硬化膜を有する試験片を作製した。上記試験片を、光学顕微鏡を用いて観察し、以下の基準で評価した。
 A:最小の開口径サイズが30μm以下であった。
 B:最小の開口径サイズが30μmを超え、50μm以下であった。
 C:最小の開口径サイズが50μmを超えた。
(レジストパターン形状)
 上記試験片を、包埋樹脂(エポキシ樹脂として三菱ケミカル株式会社製の商品名「jER828」、硬化剤としてトリエチレンテトラミンを使用)で注型し十分硬化させた後、研磨機(リファインテック株式会社製、商品名「リファインポリッシャー」)で研磨して、硬化膜の開口パターンの断面を削り出した。得られた開口パターンの断面を、金属顕微鏡を用いて観察し、以下の基準で評価した。
 A:アンダーカット及びレジスト上部の欠落が確認されず、且つ、パターン輪郭の直線性が良かった。
 B:アンダーカット若しくはレジスト上部の欠落が確認された、又はパターン輪郭の直線性が悪かった。
(耐熱衝撃性)
 解像性の評価で作製した試験片に対して、-65℃で30分間及び150℃で30分間を1サイクルとして温度サイクル試験を実施し、1000サイクル及び2000サイクルの時点で試験片を目視及び光学顕微鏡で観察し、以下の基準で評価した。
 A:2000サイクルでクラックの発生が確認されなかった。
 B:1000サイクルでクラックの発生が確認されなかったが、2000サイクルでクラックの発生が確認された。
 C:1000サイクルでクラックの発生が確認された。
(耐熱性)
 解像性の評価で作製した試験片を150℃の環境に置き、1000時間後及び2000時間後に試験片を目視及び光学顕微鏡で観察し、以下の基準で評価した。
 A:2000時間でクラックの発生が確認されなかった。
 B:1000時間でクラックの発生は確認されなかったが、2000時間でクラックの発生が確認された。
 C:1000時間でクラックの発生が確認された。
(接着性)
 銅張積層基板を6インチのシリコンウェハ(株式会社エレクトロニクスエンドマテリアルズコーポレーション製)に代えた以外は、解像度の評価で作製した積層体と同様の手順で、感光層を有する積層体を作製した。該積層体を、i線露光装置(ウシオ電機株式会社製、商品名「UX-2240SM―XJ-01」)を用いて500mJ/cmで全面露光した。次いで、感光層から支持フィルムを剥離し、紫外線露光装置を用いて2000mJ/cmの露光量で感光層を更に露光した後、170℃で1時間加熱し、シリコンウェハ上に感光性樹脂組成物の硬化膜を形成した。その後、硬化膜上に、エポキシ接着剤付Al製スタッドピン(フォトテクニカ株式会社製、商品名「P/N901106」、接着部直径:2.7mm、)を垂直に設置し、150℃で1時間加熱して、試験片を得た。試験片上のスタッドピンを薄膜密着強度測定装置(フォトテクニカ株式会社製)のチャックへ固定し、硬化膜に対して垂直に力を加えた。硬化膜のシリコンウェハに対する接着性を以下の基準で評価した。
 A:硬化膜とシリコンウェハとの界面で剥離せずに、エポキシ接着剤が凝集破壊した。
 B:硬化膜とシリコンウェハとの界面で剥離した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 1…感光性エレメント、10…支持フィルム、20…感光層、30…保護フィルム。

Claims (11)

  1.  (A)酸変性ビニル基含有樹脂、(B)熱硬化性樹脂、(C)光重合開始剤、(D)光重合性化合物、及び(E)エラストマーを含有し、
     前記熱硬化性樹脂が、平均分子量が360以下のビスフェノール型エポキシ化合物を含み、
     前記エラストマーが、アクリル系エラストマーを含む、感光性樹脂組成物。
  2.  前記熱硬化性樹脂の含有量が、前記感光性樹脂組成物の固形分全量を基準として、5~25質量%である、請求項1に記載の感光性樹脂組成物。
  3.  前記アクリル系エラストマーがカルボキシ基を有する、請求項1に記載の感光性樹脂組成物。
  4.  前記アクリル系エラストマーがn-ブチル基を更に有する、請求項3に記載の感光性樹脂組成物。
  5.  前記アクリル系エラストマーの重量平均分子量が、5000~20000である、請求項1に記載の感光性樹脂組成物。
  6.  (I)シランカップリング剤を更に含有する、請求項1に記載の感光性樹脂組成物。
  7.  (F)無機フィラーを更に含有する、請求項1に記載の感光性樹脂組成物。
  8.  支持フィルムと、前記支持フィルム上に形成された感光層とを備え、
     前記感光層が、請求項1~7のいずれか一項に記載の感光性樹脂組成物を含む、感光性エレメント。
  9.  請求項1~7のいずれか一項に記載の感光性樹脂組成物の硬化物を含む永久レジストを具備する、プリント配線板。
  10.  基板上に、請求項1~7のいずれか一項に記載の感光性樹脂組成物を用いて感光層を形成する工程と、
     前記感光層を露光及び現像してレジストパターンを形成する工程と、
     前記レジストパターンを硬化して永久レジストを形成する工程と、
    を備える、プリント配線板の製造方法。
  11.  基板上に、請求項8に記載の感光性エレメントを用いて感光層を形成する工程と、
     前記感光層を露光及び現像してレジストパターンを形成する工程と、
     前記レジストパターンを硬化して永久レジストを形成する工程と、
    を備える、プリント配線板の製造方法。
PCT/JP2023/016740 2022-05-06 2023-04-27 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法 WO2023214540A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-076612 2022-05-06
JP2022076612 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023214540A1 true WO2023214540A1 (ja) 2023-11-09

Family

ID=88646479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016740 WO2023214540A1 (ja) 2022-05-06 2023-04-27 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法

Country Status (2)

Country Link
TW (1) TW202402822A (ja)
WO (1) WO2023214540A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240930A (ja) * 1997-11-28 1999-09-07 Hitachi Chem Co Ltd 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP2003140334A (ja) * 2001-11-01 2003-05-14 Mitsubishi Chemicals Corp 光重合性画像形成材及び画像形成方法
US20030138733A1 (en) * 2002-01-22 2003-07-24 International Business Machines Corporation UV-curable compositions and method of use thereof in microelectronics
JP2006261629A (ja) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd パターン形成方法
JP2007199532A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp パターン形成方法
JP2009265388A (ja) * 2008-04-25 2009-11-12 Hitachi Chem Co Ltd 感光性樹脂組成物及びそれを用いた感光性永久レジスト、感光性フィルム
JP2010222398A (ja) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd 樹脂ペースト組成物及び半導体装置
JP2011215392A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 感光性組成物、並びに、感光性積層体、永久パターン形成方法、及びプリント基板
JP2012243698A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 燃料電池セパレータ用成形材料、燃料電池セパレータの製造方法、及び燃料電池セパレータ
WO2012173242A1 (ja) * 2011-06-17 2012-12-20 太陽インキ製造株式会社 光硬化性熱硬化性樹脂組成物
JP2018048277A (ja) * 2016-09-23 2018-03-29 日立化成株式会社 光学材料用樹脂組成物、それを用いた光学材料用樹脂フィルム及び光導波路とその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240930A (ja) * 1997-11-28 1999-09-07 Hitachi Chem Co Ltd 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP2003140334A (ja) * 2001-11-01 2003-05-14 Mitsubishi Chemicals Corp 光重合性画像形成材及び画像形成方法
US20030138733A1 (en) * 2002-01-22 2003-07-24 International Business Machines Corporation UV-curable compositions and method of use thereof in microelectronics
JP2006261629A (ja) * 2005-02-15 2006-09-28 Fuji Photo Film Co Ltd パターン形成方法
JP2007199532A (ja) * 2006-01-27 2007-08-09 Fujifilm Corp パターン形成方法
JP2009265388A (ja) * 2008-04-25 2009-11-12 Hitachi Chem Co Ltd 感光性樹脂組成物及びそれを用いた感光性永久レジスト、感光性フィルム
JP2010222398A (ja) * 2009-03-19 2010-10-07 Hitachi Chem Co Ltd 樹脂ペースト組成物及び半導体装置
JP2011215392A (ja) * 2010-03-31 2011-10-27 Fujifilm Corp 感光性組成物、並びに、感光性積層体、永久パターン形成方法、及びプリント基板
JP2012243698A (ja) * 2011-05-24 2012-12-10 Panasonic Corp 燃料電池セパレータ用成形材料、燃料電池セパレータの製造方法、及び燃料電池セパレータ
WO2012173242A1 (ja) * 2011-06-17 2012-12-20 太陽インキ製造株式会社 光硬化性熱硬化性樹脂組成物
JP2018048277A (ja) * 2016-09-23 2018-03-29 日立化成株式会社 光学材料用樹脂組成物、それを用いた光学材料用樹脂フィルム及び光導波路とその製造方法

Also Published As

Publication number Publication date
TW202402822A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP7284205B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
KR101323928B1 (ko) 반도체 패키지용 프린트 배선판의 보호막용 감광성 수지 조성물
WO2014136897A1 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP6953758B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP3928620B2 (ja) 感光性樹脂組成物
EP3978544A1 (en) Photosensitive resin composition, photosensitive resin film, printed wiring board, semiconductor package, and method for producing printed wiring board
JP2018169464A (ja) 感光性樹脂組成物、感光性エレメント、半導体装置及びレジストパターンの形成方法
WO2023214540A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
WO2018179259A1 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及び、プリント配線板の製造方法
WO2023139694A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
WO2024135741A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
WO2023120570A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
WO2023153103A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板、及びプリント配線板の製造方法
JP7415443B2 (ja) 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及び、プリント配線板の製造方法
WO2024075229A1 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板及びプリント配線板の製造方法
JP7013666B2 (ja) 感光性樹脂組成物、感光性エレメント、プリント配線板及びプリント配線板の製造方法
JP7035304B2 (ja) 感光性樹脂組成物、並びにこれを用いた感光性フィルム、レジストパターンの形成方法及びプリント配線板
JP2024036366A (ja) 感光性樹脂組成物、パターン硬化膜とその製造方法、感光性エレメント及びプリント配線板とその製造方法
JP2022031758A (ja) 感光性樹脂組成物、並びにこれを用いた感光性フィルム、レジストパターンの形成方法及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799470

Country of ref document: EP

Kind code of ref document: A1