WO2010026645A1 - 自動車用エンジンにおけるカムシャフト位相可変装置 - Google Patents

自動車用エンジンにおけるカムシャフト位相可変装置 Download PDF

Info

Publication number
WO2010026645A1
WO2010026645A1 PCT/JP2008/066082 JP2008066082W WO2010026645A1 WO 2010026645 A1 WO2010026645 A1 WO 2010026645A1 JP 2008066082 W JP2008066082 W JP 2008066082W WO 2010026645 A1 WO2010026645 A1 WO 2010026645A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotator
eccentric
control
rotating body
rotation
Prior art date
Application number
PCT/JP2008/066082
Other languages
English (en)
French (fr)
Inventor
美千広 亀田
真康 永洞
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to EP08810137.3A priority Critical patent/EP2320036B1/en
Priority to CN2008801309763A priority patent/CN102144077B/zh
Priority to KR1020117005179A priority patent/KR101236276B1/ko
Priority to US13/062,351 priority patent/US8613266B2/en
Priority to PCT/JP2008/066082 priority patent/WO2010026645A1/ja
Priority to JP2010527628A priority patent/JP5307145B2/ja
Publication of WO2010026645A1 publication Critical patent/WO2010026645A1/ja
Priority to HK11112488.1A priority patent/HK1158288A1/xx

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake

Definitions

  • the present invention includes a rotating operation force applying means for rotating a rotating drum arranged coaxially with the camshaft in either the forward or reverse direction, and the rotational phases of the crankshaft and the camshaft are adjusted according to the rotating direction.
  • This is a technology of a phase variable device in an automobile engine that changes the opening / closing timing of a valve by changing it to either an advance angle direction or a retard angle direction.
  • Patent Document 1 As this type of conventional technology, there is a valve timing control device shown in Patent Document 1 below.
  • the assembly angle of the camshaft 1 with respect to the drive plate 2 driven by driving force from the crankshaft of the engine is set to the advance direction (rotation direction of the drive plate 2) or retard direction (drive plate).
  • 2 is a device that changes the opening / closing timing of a valve of an internal combustion engine that is opened and closed by a cam.
  • the spacer 8 and the lever shaft 13 are integrally fixed, and the drive plate 2 is assembled so as to be rotatable relative to the spacer 8.
  • One end of a link arm 14 is rotatably attached to the three levers 12 of the lever shaft 13, and a movable operation member 11 rotatably attached to the other end of the link arm 14 is provided on the front surface of the drive plate 2. It slides on the substantially radial guide groove 10 in the radial direction.
  • a guide plate 24 (rotating drum) is disposed so as to be rotatable relative to the camshaft 1 (lever shaft 13) and the drive plate 2.
  • a ball 22 is rotatably held between a recess 21 provided on the front surface of the movable operation member 11 and a spiral groove 28 (spiral guide) provided on the rear surface of the guide plate 24.
  • the movable operation member 11 is moved radially inward or outward on the substantially radial guide groove 10 by the ball 22 rolling along the spiral groove 28 according to the relative rotation direction of the guide plate 24 with respect to the drive plate 2. Slide towards.
  • the guide plate 24 is rotated relatively to the retard side with respect to the drive plate 2 by the braking force of the first electromagnetic brake 26, and is operated by the following planetary gear mechanism 25 (reverse rotation mechanism) operated by the second electromagnetic brake 27. Rotate relative to the drive plate 2 toward the advance side.
  • the planetary gear mechanism 25 (reverse rotation mechanism) is provided with a sun gear 30 on the rear surface of the braking flange 34 and the front surface of the guide plate that are assembled to be rotatable relative to the camshaft 1 (lever shaft 13) in front of the guide plate 24. And a plurality of planetary gears 33 that are rotatably supported with respect to the carrier plate 32 fixed to the lever shaft 13 and mesh between the sun gear 30 and the ring gear 31. ing.
  • the brake flange 34 is braked by the second electromagnetic brake 27, the guide plate 24 rotates the planetary gear 33 to accelerate the ring gear 31 in the advance direction, and the guide plate 24 rotates relative to the drive plate 2 in the advance direction. Move.
  • Patent Document 1 rotates the guide plate 24 relative to the drive plate 2 by a pair of electromagnetic brakes (26, 27) and a planetary gear mechanism 25 (reverse rotation mechanism), and the relative rotation direction thereof.
  • This is a device for changing the assembly angle of the camshaft 1 and the crankshaft (drive plate 2) according to the above.
  • the apparatus of Patent Document 1 has a problem in that the manufacturing unit price of the reverse rotation mechanism of the rotating drum (guide plate 24) becomes high and the operation noise increases. That is, since the planetary gear mechanism 25 employs a large number of gears including the sun gear 30, the ring gear 31, and the plurality of planetary gears 33, there is a problem in that the manufacturing unit cost increases when molding a large number of teeth with high accuracy. there were. On the other hand, the gear generates a rattling sound when the meshing tooth portions collide during operation. Accordingly, the planetary gear mechanism 25 has a problem in that the operation noise becomes loud when the valve timing is changed by employing a large number of gears.
  • the inventor of the present application has a low manufacturing unit price and a quiet operation sound when changing the valve timing, and includes a reverse rotation mechanism for a rotating drum (guide plate 24).
  • Invented the phase-variable device in No. 1 and filed a patent application international application number: PCT / JP2008 / 57857, title of the invention: phase-variable device in an automobile engine, hereinafter referred to as “prior application 1”).
  • the reverse rotation mechanism of the rotary drum in the prior application 1 is attached so as to be rotatable relative to the center shaft 42 integrated with the camshaft 40 and is braked by the first and second electromagnetic clutches (44, 60), respectively.
  • the first and second control rotators (45, 57) are provided, and the second intermediate rotator 56 cannot rotate relative to the center shaft 42 between the first and second control rotators (45, 57). It is fixed in the state.
  • the second control rotator 57 has a curved second guide groove 62 that decreases in diameter along the advance direction (the clockwise direction when viewed from the second electromagnetic clutch 60 side, which is the rotation direction of the drive rotator 71).
  • the first control rotator 45 is provided on a surface facing the second intermediate rotator 56, and the first control rotator 45 has a curvilinear shape whose diameter decreases along a retarded direction (a counterclockwise direction opposite to the rotation of the drive rotator 71).
  • the first guide groove 61 is provided on the surface facing the second intermediate rotator 56, and the second intermediate rotator 56 includes a substantially radial guide groove 63 penetrating in the central axis direction.
  • a slide pin 64 is inserted into each guide (61-63) and is slidable along the direction of each guide groove.
  • the slide pin 64 moves along the second guide groove 62 and the substantially radial guide groove 63.
  • the first control rotor 45 rotates relative to the second intermediate rotor 56 in the advance direction by receiving the torque in the advance direction from the slide pin 64 in which the first guide groove 61 moves inward.
  • the assembly angle of the camshaft 40 (center shaft 42) with respect to the shaft (drive rotating body 41) is changed to the advance side.
  • the first control rotator 45 rotates relative to the intermediate rotator 56 in the retard direction to change the assembly angle to the retard side.
  • the reverse rotation mechanism of the first control rotating body 45 has a simple shape in which each rotating body (56, 57), slide pin 64, and each guide groove (61 to 63) are based on a circle. Is easy, and the manufacturing cost is reduced. Since the slide pin 64 is silently displaced while being always in sliding contact with the respective guide grooves (61 to 63), the operation sound when changing the valve timing is quiet.
  • the assembling angle of the camshaft 40 with respect to the crankshaft (drive rotating body 41) can increase the displacement width by increasing the length of the first guide groove 61 in the circumferential direction.
  • the advance torque received from the slide pin 64 that slides inward along the first guide groove 61 by the first control rotator 45 increases the length of the first guide groove 61 in the circumferential direction.
  • the first guide groove 61 becomes smaller with an increase in the inclination of the first guide groove 61 with respect to the substantially radial guide groove 63 (increase in friction).
  • the reverse rotation mechanism of the first control rotator 45 (rotary drum) maintains the rotational torque of the first rotator 45 given by the braking of the second control rotator 57, and further sets the camshaft 40 to the crankshaft. It is desirable to make the displacement angle of the angle of attachment as large as possible.
  • the present invention maintains the advantages of the prior application 1 (inexpensive manufacturing cost and quietness), and further, the crankshaft and the camshaft without reducing the rotational torque of the first control rotor by the second control rotor.
  • An engine phase variable device having a reverse rotation mechanism of a rotary drum capable of increasing the displacement width of the assembly angle is provided.
  • a phase varying device for an engine includes a drive rotating body that is rotationally driven by a crankshaft, a first intermediate rotating body integrated with a camshaft, and a rotating operation force applying means.
  • the first control rotator that receives the rotation torque from the first control rotator is disposed on the same rotation center axis so as to be rotatable relative to each other, and the relative rotation direction of the first control rotator with respect to the first intermediate rotator and the drive rotator
  • the turning operation force applying means is configured to perform the first control rotation with respect to the first intermediate rotator and the drive rotator.
  • a coupling means for coupling the first and second eccentric rotation mechanisms so as to be capable of relative rotation, and the first control rotation body and the second control rotation body are either When one is rotated, the other is relatively rotated.
  • the first control rotating body rotates integrally with the first intermediate rotating body integrated with the camshaft and the driving rotating body that receives the driving force from the crankshaft.
  • the first control rotator receives a braking force from the first braking means
  • the first control rotator rotates relative to the drive rotator and the first intermediate rotator in the retarding direction
  • the second control rotator is rotated by the second braking means.
  • the brake When the brake is braked, it rotates relative to the drive rotating body and the first intermediate rotating body in the advance direction, contrary to the first braking means.
  • the phase angle of the first intermediate rotator (camshaft side) with respect to the drive rotator (crankshaft side) is an advance direction (rotation direction of the drive rotator below) according to the relative rotation direction of the first control rotator. Same) or retarded direction (the direction opposite to the rotation direction of the drive rotator, hereinafter the same).
  • the first eccentric rotating mechanism rotates together with the first control rotating body, and the second control rotating body and the second eccentric rotating mechanism are moved to the first control rotating body and the camshaft by the second braking means. Both rotate relative to the integrated second intermediate rotating body.
  • the connecting means displaces the substantially radial guide groove of the second rotating body in the radial direction and rotates the other in the opposite direction. That is, when the first control rotator brakes the second control rotator, the first control rotator is rotated by the first and second eccentric rotation mechanisms in the opposite direction to the time of braking by the first braking means.
  • the connection means includes an eccentric point from the rotation center axis of the connection means and the first eccentric rotation mechanism, an eccentric point of the connection means and the second eccentric rotation mechanism, and an eccentric point and rotation of the first eccentric rotation mechanism.
  • the displacement width of the camshaft assembly angle with respect to the crankshaft can be increased by making the substantially radial guide groove longer or by increasing the reciprocating rotation range of the first and second eccentric rotation mechanisms. .
  • Each control rotator, second intermediate rotator, each eccentric rotation mechanism, and connecting means have a simple configuration based on a circle, and therefore are easy to process. Further, when changing the phase angle between the drive rotator and the first intermediate rotator, the connecting means is gently displaced while always slidingly contacting each guide groove.
  • the first eccentric rotation mechanism includes a first eccentric circular hole formed in the first control rotor.
  • a first ring member engaged with the outer periphery of the first eccentric circular hole so as to be in sliding contact with the inner periphery of the first eccentric circular hole, and the second eccentric rotation mechanism is formed on the second control rotating body.
  • Two eccentric circular holes and a second ring member engaged with the outer periphery of the second eccentric circular hole so as to be in sliding contact with the inner periphery of the second eccentric circular hole, and the connecting means are formed on the first and second ring members, respectively.
  • the centers of the second ring members were respectively arranged with the extending line of the substantially radial guide groove interposed therebetween.
  • the first and second ring members rotate eccentrically around the rotation center axis of each control rotator together with the first and second control rotators, and slide in the first and second eccentric circular holes. To do. When one of the first and second control rotators is braked, the ring member of the braked control rotator slides in the eccentric circular hole and swings the connecting member along the substantially radial guide groove. Then, the other control rotator is rotated in the reverse direction via the other connected ring member.
  • the first and second control rotators are each of a first ring member (first eccentric circular hole) and a second ring member (second eccentric circular hole) that slide in circular holes that rotate eccentrically in opposite directions.
  • the eccentric points rotate in the reverse direction smoothly by performing the same operation as the connecting portion of the four-bar linkage mechanism by the connecting member that displaces the substantially radial guide groove.
  • the ring member, the eccentric circular hole, and the connecting member based on a circle are easy to process and operate quietly.
  • the first eccentric circular hole extends from the rotation center axis of the first control rotating body.
  • the amount of eccentricity reaching the central axis was made larger than the amount of eccentricity reaching the central axis of the second eccentric circular hole from the rotation central axis of the second control rotator.
  • the eccentric amount of the first ring member (the distance from the central axis of the first ring member to the rotation central axis of the first control rotating body, hereinafter the same) is the eccentric amount of the second ring member. (The distance from the central axis of the second ring member to the rotational central axis of the second control rotator, hereinafter the same), and the movement distance of the center of the first ring member when the second ring member rotates It is larger than the moving distance of the center of the second ring member. Therefore, the phase varying device according to claim 3 applies the reverse rotation torque of the same magnitude as the first braking means to the first control rotating body while reducing the braking torque of the second control rotating body by the second braking means. Therefore, the relative rotation speed of the first control rotator coincides with the advance direction and the retard direction.
  • Claim 4 is the engine phase variable device according to claim 2 or 3, wherein at least one of the first and second ring members is a C-shaped ring member.
  • the C-shaped cutout portion serves as an escape portion from the center shaft, so that the eccentric amount of the first ring member and the second ring member can be increased. I can do it.
  • the substantially radial guide has a length capable of rotating 360 ° or more within the second eccentric circular hole of the second ring member. A groove was formed.
  • the rotation operation force applying means of the first control rotator reduces the relative rotation torque of the first control rotator based on the braking of the second control rotator.
  • the displacement width of the assembly angle between the crankshaft and the camshaft can be increased without making it.
  • the rotating operation force applying means is formed with the component parts based on a circle, it can be manufactured easily and inexpensively, and the operation sound when changing the phase angle is reduced.
  • the second braking means that is arranged on the inner side of the first braking means and is concerned about lack of braking torque is equivalent to the first braking means.
  • the braking performance can be demonstrated.
  • the degree of freedom in setting the eccentric amount of the first ring and the second ring is improved, the displacement width of the assembly angle of the crankshaft and the camshaft is further increased. it can.
  • the assembly angle of the crankshaft and the camshaft can be changed in both the advance direction or the retard direction by one control rotating body and one braking means.
  • the other braking means can be provided with a fail-safe function that can change the assembly angle of the crankshaft and the camshaft.
  • FIG. 1 is an exploded perspective view of a phase varying device in an automobile engine according to a first embodiment of the present invention as viewed from the front
  • FIG. 2 is a front view of the device
  • FIG. 3 is an axial sectional view of the device.
  • 2 is a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 4 is a cross-sectional view taken along the radial direction of the device before the phase displacement, in which (a) is a cross-sectional view taken along BB in FIG. 3 is a cross-sectional view taken along the line CC in FIG. 3,
  • FIG. 5C is a cross-sectional view taken along the line DD in FIG. 3, FIG.
  • FIG. 5 is a view showing a state after the phase displacement of each cross-sectional view in FIG.
  • FIG. 3 is a radial cross-sectional view of the same device before displacement, in which (a) is a cross-sectional view taken along line EE in FIG. 3, (b) is a cross-sectional view taken along line FF in FIG. 3 is a cross-sectional view taken along the line GG in FIG. 3, FIG. 7 is a view showing a state after the phase displacement of each cross-sectional view in FIG. 6, and FIG. 8 is a diagram showing the first ring member and the first eccentricity in the second embodiment of the phase varying device.
  • GG sectional view of FIG. 3, showing a circular hole 3A is a cross-sectional view taken along line EE of FIG.
  • FIG. 3 showing the second ring member and the second eccentric circular hole in the third embodiment of the phase varying device
  • FIG. 3B is the first ring member in the third embodiment
  • FIG. 4 is a sectional view taken along the line GG of FIG. 3 showing the first eccentric circular hole.
  • the engine phase varying device shown in the embodiment is used in a form assembled and integrated with the engine, and transmits the rotation of the crankshaft to the camshaft so that the intake and exhaust valves open and close in synchronization with the rotation of the crankshaft.
  • This is a device for changing the opening / closing timing of the intake / exhaust valve of the engine according to the operating state such as the engine load and the rotational speed.
  • the configuration of the device of the first embodiment will be described with reference to FIGS. 1 to 7.
  • the device of the first embodiment (for convenience of explanation, the direction of a second electromagnetic clutch 90 described later is the front side, and the direction of the sprocket 71a is the rear side. ) Is fixed to a driving rotator 71 that rotates by receiving a driving force from a crankshaft (not shown) of the engine and a camshaft (not shown), and supports the driving rotator 71 in a relatively rotatable state.
  • the outer peripheral surface is supported, and the first control rotating body 74 that rotates relative to the center shaft 72 in a non-contact state is fixed to an engine case (not shown).
  • a first electromagnetic clutch 75 for braking the rotation of the body 74 are provided on the same rotational axis L1.
  • the first control rotator 74 is provided with an eccentric circular cam 76 (see FIGS. 3 and 4 (a)) that rotates integrally around the central axis L1 on the rear surface.
  • the intermediate rotating body 73 includes a cam guide 77 that engages with the eccentric circular cam 76 on the front surface, and reciprocally swings in a direction orthogonal to the central axis L1 and the wall surface direction of the cam guide 77 when the eccentric circular cam 76 rotates.
  • the center shaft 72 is integrated with the hole 72a in a state in which the hole 72a cannot rotate relative to the tip of a camshaft (not shown).
  • the drive rotator 71 is configured by a sprocket 71 a and a drive cylinder 71 b being coupled by a plurality of coupling pins 78.
  • the drive rotator 71 is supported in a state in which the hole 71c of the sprocket 71a is rotatable relative to a cylindrical portion 72c provided behind the flange 72b of the center shaft 72.
  • the drive cylinder 71b is formed in a bottomed cylinder shape, and a pair of curved guide grooves 79 provided in a substantially circumferential direction around the rotation center axis L1 is formed in the bottom portion of the drive cylinder 71b.
  • the guide groove 79 has a guide groove 79a that decreases in diameter in the rotation direction D1 (clockwise direction when viewed from the front of the apparatus, the same applies hereinafter) of the drive rotator 71, and a rotation center axis.
  • the guide groove 79b is formed symmetrically with the guide groove 79a.
  • the direction in which the guide groove 79a decreases in diameter may be a counterclockwise D2 direction to be described later.
  • the first intermediate rotating body 73 is a pair of wall surfaces that are formed in a disc shape and perpendicular to the central axis L1, and includes a cam guide 77 that engages with an eccentric circular cam 76 on the front surface.
  • the bottom surface of the cam guide 77 is provided with an elongated hole 80 that extends in a direction orthogonal to the wall surface of the cam guide 77 and the central axis L1 and penetrates in the direction of the central axis L1.
  • the first intermediate rotating body 73 is fixed in a state in which it cannot rotate relative to the center shaft 72 when the long hole 80 is engaged with the flat engagement surface 72 d, and the long hole 80 is fixed by the center shaft 72. Is slidably supported in the extending direction.
  • the first intermediate rotator 73, the first control rotator 74, and the eccentric circular cam 76 are disposed inside the drive cylinder 71b.
  • the first control rotator 74 includes a through-hole 74a through which the cylindrical portion 72e of the center shaft 72 is inserted in a non-contact state.
  • the eccentric circular cam 76 integrally formed on the rear surface of the first control rotator 74 has its center axis L2 eccentric from the rotation center axis L1 by a distance d0.
  • the first control rotator 74 is formed in a disk shape, and is supported by a step inner peripheral surface 71d of the drive cylinder 71b with which the outer peripheral surface 74b is substantially inscribed.
  • the first control rotator 74 is supported by the drive cylinder 71b without the through-hole 74a always contacting the cylindrical portion 72e of the center shaft 72.
  • the eccentric circular cam 76 receives a force from the cam guide 77 in a direction orthogonal to the rotation center axis L1.
  • the first control rotator 74 moves in a direction orthogonal to L1, and the outer peripheral surface 74b comes into contact with the inner peripheral surface 71d of the rotating cylinder 71b.
  • the phase varying device of the first embodiment has a self-locking function that prevents the frictional force of the contact surface from causing the phase angle deviation due to the disturbance. Since the through-hole 74a has a sufficient gap with the cylindrical portion 72e of the center shaft 72, even if the first control rotator 74 moves in the direction perpendicular to L1 during self-locking, the through-hole 74a does not move to the cylindrical portion 72e. There is no contact. Therefore, the self-locking function acts reliably between the outer peripheral surface 74b and the inner peripheral surface 71d.
  • the outer shape of the eccentric circular cam 76 is not limited to the circular shape as in the present embodiment, but may be a cam shape having a special peripheral edge.
  • the first intermediate rotating body 73 includes a pair of shaft-like members 81 protruding rearward from the pair of engaging holes 73a.
  • the shaft-like member 81 is formed by inserting a thin round shaft 81a inside a hollow thick round shaft 81b.
  • the thin round shaft 81a at the front end is engaged with the engagement hole 73a, and the hollow thick round shaft 81b at the rear end is a pair of guide grooves (79a, 79b) that are substantially circumferential grooves formed in the drive cylinder 71b. Engage in a displaceable state.
  • a first electromagnetic clutch 75 having a friction material 82 disposed on the rear surface is disposed in front of the first control rotator 74.
  • the electromagnetic clutch 75 energizes the coil 75a, and the suction surface 74c of the first control rotator 74 is placed on the suction surface 74c. By making sliding contact with the friction material 82, the rotation of the first control rotating body 74 is braked.
  • the holder 89 and the second electromagnetic clutch 90 are respectively disposed.
  • the members 83 to 90 together with the first electromagnetic clutch 90 constitute the turning operation force applying means of claim 1 of the present application.
  • the first control rotating body 74 is formed in a bottomed cylindrical shape, and has a step-shaped first eccentric circular hole 74d whose center axis L2 is eccentric from the rotation center axis L1 by a distance d1 on the front surface of the bottom.
  • the first ring member 83 is slidably engaged with the eccentric circular hole 74d.
  • the first ring member 83 includes a first engagement hole 83a that opens to the front surface.
  • the second intermediate rotator 84 includes a square hole 84a at the center, and a substantially radial guide groove 84b extending in the radial direction of the second intermediate rotator 84 on the outer side thereof.
  • the second intermediate rotating body 84 is fixed to the center shaft 72 in a non-rotatable state by engaging the square holes 84a with the second flat engaging surfaces (72f, 72g) of the center shaft 72, respectively.
  • the second control rotator 87 is supported in a state in which the small cylindrical portion 72h at the tip of the center shaft 72 is inserted into a circular hole 87a formed in the center and is rotatable with respect to the center shaft 72.
  • the second control rotator 87 is provided with a step-shaped eccentric circular hole 87b on the rear surface whose central axis L3 is eccentric from the rotation central axis L1 by a distance d1 in the same manner as the first eccentric circular hole 74d.
  • the second ring member 86 is slidably engaged with the eccentric circular hole 87b.
  • the second ring member 86 includes a second engagement hole 86a that opens to the rear surface.
  • the shaft-shaped member 85 is configured by inserting a hollow thick circular shaft 85b at the center of the thin circular shaft 85a. Both ends of the thin round shaft 85a are slidably engaged with the first and second engagement holes (83a, 86a), and the hollow round shaft 85b is second along the substantially radial guide groove 84b.
  • the intermediate rotating body 84 engages in a displaceable state in the radial direction.
  • the first and second ring members (83, 86) have substantially central diameters (R2, L3) perpendicular to the rotation center axis L1 of the first and second control rotators (74, 87).
  • the first and second eccentric circular holes (74d, 87b) are arranged so that the extension line L4 of the direction guide groove 84b is sandwiched therebetween and arranged substantially symmetrically about the extension line L4.
  • the shim 88 is disposed in the stepped circular hole 87c on the front surface of the second control rotating body 87, and the holder 89 is inserted into the small cylindrical portion 72h of the center shaft 72 protruding forward from the circular hole 87a.
  • the components from the holder 89 to the drive cylinder 71b are fixed by inserting bolts (not shown) into the central holes from the front and screwing them onto the camshaft (not shown).
  • the second electromagnetic clutch 90 is disposed so as to face the front surface of the second control rotor 87 in a state of being fixed to an engine case (not shown).
  • the second electromagnetic clutch 90 energizes the coil 90 a, brakes the rotation of the second control rotator 87 by attracting the suction surface 87 d on the front surface of the second control rotator 87 and slidingly contacting the friction material 91. To do.
  • the adsorption surface 87d of the second control rotator is magnetized when the first electromagnetic clutch 75 is operated and the operation may become unstable if the second control rotator 87 is disposed inside the coil 75a. As shown in FIG. 3, it is desirable to arrange the first control rotator 74 flush with the suction surface 74c.
  • the shaft-like members (81, 85) may be configured to have a bearing, for example, and may roll inside the groove when the guide groove 79 and the substantially radial guide groove 84b are displaced.
  • the shaped members (81, 85) may be replaced with balls. In that case, the frictional resistance at the time of displacement of the shaft-like members (81, 85) is reduced and the displacement becomes easy, and the power consumption of each electromagnetic clutch is reduced.
  • the second intermediate rotator 84 be formed of a nonmagnetic material.
  • the second intermediate rotator 84 is formed of a magnetic body, a magnetic force for attracting one of the control rotators (74, 87) is transmitted to the other control rotator via the second intermediate rotator 84, The problem of being sucked together can be solved.
  • the second control rotator 87 is braked by the second electromagnetic clutch 90.
  • the first and second ring members (83, 86) are displaced from the state shown in FIG. 6 to FIG. That is, the second control rotator 87 causes a rotation delay with respect to the second intermediate rotator 84 and the first control rotator 74, and in the retard direction (counterclockwise D2 direction when viewed from the front of the apparatus, the same applies hereinafter). Relative rotation.
  • the shaft-shaped member 85 is radially inward along the substantially radial guide groove 84b as the second ring member 86 slides in the direction D1 in the second eccentric circular hole 87b (FIG. 6 ( b) (D3 direction).
  • the first ring member 83 slides in the first eccentric circular hole 74d in the D2 direction while passing the D1 to the first control rotating body 74.
  • a relative rotational torque in the direction is applied.
  • the first control rotator 74 rotates relative to the second intermediate rotator 84 and the second control rotator 87 in the advance direction (D1 direction).
  • the first control rotator 74 rotates relative to the first intermediate rotator 73 and the drive rotator 71 in the advance direction D1, and is an eccentric circle integrated with the first control rotator 74 shown in FIG.
  • the cam 76 rotates eccentrically around the central axis L1 in the clockwise direction D1.
  • the eccentric circular cam 76 rotates eccentrically while sliding with the inner peripheral surface of the cam guide 77, the first intermediate rotating body 73 and the shaft-shaped member 81 are moved in the direction D3 in FIG. Descend.
  • the first intermediate rotating body 73 rotates relative to the driving rotating body 71 in the D1 direction by being displaced in the D1 direction along the guide grooves (79a, 79b) when the shaft-like member 81 is lowered.
  • the state is displaced from FIG. 4 to FIG.
  • the phase angle of the camshaft (not shown) that rotates synchronously with the first intermediate rotator 73 is changed to the advance direction (D1 direction) with respect to the phase angle of the drive rotator 71 driven by the crankshaft. Is done.
  • the first control rotator 74 is braked by the first electromagnetic clutch 75.
  • the eccentric circular cam 76 integrated with the braked first control rotator 74 is relatively rotated in the counterclockwise direction D2 with respect to the drive rotator 71 and the first intermediate rotator 73.
  • the intermediate rotating body 73 and the shaft-like member 81 are raised in the direction D4 in FIG.
  • the first intermediate rotator 73 rotates in the D2 direction relative to the drive rotator 71 by being displaced in the D2 direction along the guide groove 79 when the shaft-like member 81 is lifted.
  • the amount is equally d1.
  • the amount of eccentricity d2 from the rotation center axis L1 of the first control rotating body 74 to the center axis L2 ′ of the first eccentric circular hole 92 (first ring member 93) is The eccentric amount d1 of the second eccentric circular hole 87b (second ring member 86) shown in FIG.
  • the first ring member 93 has a center axis L2 ′ sandwiched between the extension line L4 (see FIG. 6B) of the substantially radial guide groove 84b together with the center axis L3 of the second ring member 86. Arranged in the eccentric circular hole 92.
  • the configuration of the second embodiment is the same as that of the first embodiment except for the first eccentric circular hole 92 and the first ring member 93.
  • the eccentric amount d2 of the first ring member 93 in FIG. 8 is larger than the eccentric amount d1 of the second ring member 86 in FIG.
  • the central axis L2 ′ (eccentric point) of the first ring member 93 that relatively rotates about the torque radius is larger than the central axis L3 (eccentric point) of the second ring member 86 that also rotates about the rotational center axis L1.
  • the relative rotational torque applied to the first control rotator 74 can be increased. Even the second braking means for which the shortage of torque is a concern can exhibit braking performance equivalent to that of the first braking means. Further, a smaller second electromagnetic clutch 90 can be arranged inside the first electromagnetic clutch 75, and the phase variable device can be formed compactly.
  • the first and second ring members (83, 86), which were circular in the first embodiment, are provided with cutout portions, and the first and second C-shapes shown in FIG.
  • the ring members (94, 95) are used.
  • the notch of the first ring member formed in a C-shape serves as a relief portion for the center shaft 72, and therefore the eccentric amount d3 of the first and second ring members (94, 95) is further increased.
  • the relative rotational torque generated in the first control rotor 74 by the second electromagnetic clutch 90 can be further increased.
  • the formation range of the notch part in a 1st and 2nd ring member (94,95) shall be less than 180 degrees of the whole.
  • the second ring member 83 of the first and second embodiments rotates 360 ° or more in the second eccentric circular hole 87b by making the length of the substantially radial guide groove 84 sufficiently long.
  • the shaft-shaped member 85 reciprocates from one end to the other end of the substantially radial guide groove when the second control rotator 87 rotates 360 °
  • the first control rotator 74 moves to the drive rotator 71.
  • it relatively rotates in both the advance direction and the retard direction.
  • the second ring member 86 is configured to be able to rotate 360 ° or more in the second eccentric circular hole.
  • the first ring member (83, 93) is the first one. It is also possible to adopt a configuration in which the inside of one knitted circular hole can be rotated by 360 ° or more. In that case, the outer diameter of the eccentric circular cam 76 is formed such that the cam guide 77 can rotate 360 °. In such a configuration, since the shaft-like member 81 reciprocates both ends of the substantially radial guide groove 79 when the first control rotator 74 rotates 360 °, the crankshaft is driven only by the first electromagnetic clutch 75.
  • the camshaft assembly angle can be changed to both the advance side and the retard side. That is, even if one of the first and second electromagnetic clutches (75, 90) fails, the non-failed electromagnetic clutch is operated and the assembly angle of the crankshaft and the camshaft is retarded from the advance side. It is possible to change both sides (fail-safe function).
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a radial cross-sectional view of the device before phase displacement
  • (a) is a cross-sectional view taken along line BB in FIG. 3
  • (b) is a cross-sectional view taken along line CC in FIG. 3
  • (c) is a cross-sectional view.
  • FIG. 4 is a DD cross-sectional view of FIG. 3. It is a figure which shows the state after the phase displacement of each sectional drawing of FIG. FIG.
  • FIG. 3 is a radial cross-sectional view of the device before phase displacement, (a) is a cross-sectional view taken along line EE in FIG. 3, (b) is a cross-sectional view taken along line FF in FIG. 3, and (c) is a cross-sectional view.
  • FIG. 4 is a GG sectional view of FIG. 3. It is a figure which shows the state after the phase displacement of each sectional drawing of FIG.
  • FIG. 6 is a cross-sectional view taken along the line GG in FIG. 3 showing the first ring member and the first eccentric circular hole in the second embodiment of the phase varying device.
  • 3A is a cross-sectional view taken along the line EE of FIG.
  • FIG. 3 showing the second ring member and the second eccentric circular hole in the third embodiment of the phase varying device
  • FIG. 3B is the first ring member in the third embodiment
  • FIG. 4 is a sectional view taken along the line GG in FIG. 3 showing a first eccentric circular hole.
  • Second electromagnetic clutch (second braking means) L1 rotation center axis L2, L2 ′ first eccentric circular hole and central axis of the first ring member L3 second eccentric circular hole and central axis of the second ring member L4 extension line of substantially radial guide groove d1, d3 first And the eccentric amount of the second eccentric circular hole d2 the eccentric amount of the first eccentric circular hole D1 advance angle direction (

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

【課題】クランクシャフトとカムシャフトの組付け角の変位幅が大きく、製造コストが安価で、動作音が静かなエンジンのカムシャフト位相可変装置の提供。 【解決手段】回動操作力付与手段で制動される第一制御回転体の相対回動方向に応じてカムシャフトとクランクシャフトの位相角を変更するエンジンの位相可変装置において、前記回動操作力付与手段は、第一制御回転体の制動手段と、カムシャフトと同期回転する第二中間回転体と、制動手段を備えた第二制御回転体と、第一制御回転体と連動して偏心回動する、第一の偏心回動機構と、第二制御回転体と連動して偏心回動する、第二の偏心回動機構と、前記第二中間回転体の略径方向ガイド溝と変位可能な状態で係合し、前記第一及び第二の偏心回動機構を相対回動可能に連結する連結手段を備えた。                                  

Description

[規則37.2に基づきISAが決定した発明の名称] 自動車用エンジンにおけるカムシャフト位相可変装置
 本発明は、カムシャフトと同軸に配置した回動ドラムを正逆いずれかの方向に回動させる回動操作力付与手段を備え、前記回動方向に応じてクランクシャフトとカムシャフトの回転位相を進角方向または遅角方向のいずれかに変化させることによってバルブの開閉タイミングを変化させる自動車用エンジンにおける位相可変装置の技術である。
 この種の従来技術としては、下記特許文献1に示すバルブタイミング制御装置がある。下記特許文献1の装置は、エンジンのクランクシャフトから駆動力を受けて駆動する駆動プレート2に対するカムシャフト1の組付角を進角方向(駆動プレート2の回転方向)または遅角方向(駆動プレート2の回転方向と逆方向)に変更し、カムによって開閉する内燃機関のバルブの開閉タイミングを変更する装置である。
 特許文献1の装置は、スペーサ8とレバー軸13が一体固定され、駆動プレート2が、スペーサ8に対して相対回動可能に組付けられている。レバー軸13の三つのレバー12には、リンクアーム14の一端が回動自在に取付けられ、リンクアーム14の他端に回動自在に取付けられた可動操作部材11は、駆動プレート2の前面の略径方向ガイド溝10上を半径方向に摺動する。駆動プレート2に対するカムシャフト1の組付け角は、可動操作部材11が半径方向内側に摺動すると、リンクアーム14がピン16の周りを回動することによって進角方向に変更され、可動操作部材11が半径方向外側に摺動すると、リンクアーム14が逆回動することで遅角方向に戻される。
 可動操作部材11の前方には、カムシャフト1(レバー軸13)と駆動プレート2に対して相対回動可能に組付けられたガイドプレート24(回動ドラム)が配置されている。可動操作部材11の前面に設けられた凹み部21とガイドプレート24の後面に設けられた渦巻き溝28(渦巻き状ガイド)との間には、球22が転動可能に保持されている。可動操作部材11は、駆動プレート2に対するガイドプレート24の相対回動方向に応じて球22が渦巻き溝28に沿って転動することにより、略径方向ガイド溝10上を半径方向内側または外側に向けて摺動する。
 ガイドプレート24は、第1電磁ブレーキ26の制動力により、駆動プレート2に対して遅角側に相対回動し、第2電磁ブレーキ27で作動する以下の遊星歯車機構25(逆回転機構)により、駆動プレート2に対して進角側に相対回動する。
 遊星歯車機構25(逆回転機構)は、ガイドプレート24の前方でカムシャフト1(レバー軸13)に対して相対回動可能に組付けられた制動フランジ34の後面とガイドプレートの前面にサンギヤ30とリングギヤ31をそれぞれ有し、レバー軸13に固定されたキャリアプレート32に対して回動可能に支持されると共にサンギヤ30とリングギヤ31との間に噛合する複数のプラネタリギヤ33を有することによって構成されている。ガイドプレート24は、制動フランジ34が第2電磁ブレーキ27によって制動されると、プラネタリギヤ33が回動することによってリングギヤ31が進角方向に加速し、駆動プレート2に対して進角側に相対回動する。
 即ち、特許文献1の装置は、一対の電磁ブレーキ(26,27)と遊星歯車機構25(逆回転機構)により、ガイドプレート24を駆動プレート2に対して相対回動させ、その相対回動方向に応じてカムシャフト1とクランクシャフト(駆動プレート2)の組付け角を変更する装置である。
特開2006-77779号
 特許文献1の装置では、回動ドラム(ガイドプレート24)の逆回転機構の製造単価が高くなり、動作音が大きくなる点で問題があった。即ち、遊星歯車機構25は、サンギヤ30,リングギヤ31及び複数のプラネタリギヤ33からなる多数の歯車を採用しているため、多数の歯部を精度良く成型する際に製造単価が高くなる点で問題があった。一方歯車は、かみ合う歯部同士が動作時に衝突することによって歯打ち音を発生させる。従って、遊星歯車機構25は、多数の歯車の採用により、バルブタイミングの変更時に動作音が大きくなる点でも問題があった。
 そこで、本願の発明者は、前記問題を解決すべく、製造単価が安く、バルブタイミングの変更時における動作音が静かである、回動ドラム(ガイドプレート24)の逆回転機構を含む自動車用エンジンにおける位相可変装置を発明し、特許出願を行った(国際出願番号:PCT/JP2008/57857、発明の名称:自動車用エンジンにおける位相可変装置、以降は、「先行出願1」という)。
 先行出願1における回転ドラムの逆回転機構は、カムシャフト40に一体化したセンターシャフト42に対して相対回動可能に取付けられ、第一及び第二電磁クラッチ(44,60)によってそれぞれ制動される第一及び第二制御回転体(45,57)を備え、第一及び第二制御回転体(45,57)の間に第二中間回転体56をセンターシャフト42に対して相対回動不能な状態で固定している。
 第二制御回転体57は、進角方向(駆動回転体71の回転方向である第二電磁クラッチ60側から見て時計回りの方向)に沿って縮径する曲線状の第二ガイド溝62を第二中間回転体56との対向面に備え、第一制御回転体45は、遅角方向(駆動回転体71の回転と逆方向である反時計回りの方向)に沿って縮径する曲線状の第一ガイド溝61を第二中間回転体56との対向面に備え、第二中間回転体56は、中心軸方向に貫通する略径方向ガイド溝63を備えている。また、各ガイド(61~63)には、スライドピン64が共に挿入され、各ガイド溝の方向に沿って摺動可能に配置されている。
 第二制御回転体57が第二電磁クラッチ60によって制動され、中間回転体56に対して遅角方向に相対回動すると、スライドピン64が第二ガイド溝62と略径方向ガイド溝63に沿って変位することによって前記回転体の半径方向内側に移動する。第一制御回転体45は、第一ガイド溝61が内側に移動するスライドピン64から進角方向のトルクを受けることによって第二中間回転体56に対して進角方向に相対回動し、クランクシャフト(駆動回転体41)に対するカムシャフト40(センターシャフト42)の組付け角を進角側に変更させる。一方、第一制御回転体45は、第一電磁クラッチ44によって制動されると、中間回転体56に対して遅角方向に相対回動し、前記組付け角を遅角側に変更させる。
 第一制御回転体45(回転ドラム)の逆回転機構は、各回転体(56,57)とスライドピン64、各ガイド溝(61~63)が円形を基調とした単純な形状であって加工が容易であるため、製造コストが安くなる。スライドピン64は、各ガイド溝(61~63)と常時摺接しながら静かに変位するため、バルブタイミングの変更時における動作音は静かである。
 一方、クランクシャフト(駆動回転体41)に対するカムシャフト40の組付け角は、第一ガイド溝61の長さを周方向により長くすることによって変位の幅を大きくすることが出来る。その反面、第一制御回転体45が第一ガイド溝61に沿って内側に摺動するスライドピン64から受ける進角方向のトルクは、第一ガイド溝61の長さを周方向に長くする程、略径方向ガイド溝63に対する第一ガイド溝61の傾きの増加(フリクションの増加)によって小さくなる。
 第一制御回転体45(回転ドラム)の逆回転機構は、第二制御回転体57の制動によって与えられる第一回転体45の回動トルクを維持しつつ、更にクランクシャフトに対するカムシャフト40の組付け角の変位幅を出来るだけ大きくすることが望ましい。
 本願発明は、先行出願1の利点(安価な製造コストと静音性)を維持し、更には前記第二制御回転体による第一制御回転体の回動トルクを低下させることなくクランクシャフトとカムシャフトの組付け角の変位幅を大きくできる回転ドラムの逆回転機構を備えたエンジンの位相可変装置を提供するものである。
 前記目的を達成するために、請求項1のエンジンの位相可変装置は、クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化された第一中間回転体と、回動操作力付与手段から回動トルクを受ける第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一中間回転体と駆動回転体に対する第一制御回転体の相対回動方向に応じて前記カムシャフトと駆動回転体の位相角を変更するエンジンの位相可変装置において、前記回動操作力付与手段は、前記第一中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、前記カムシャフトに一体化され、その半径方向に延伸すると共に軸方向に貫通する略径方向ガイド溝を有する第二中間回転体と、前記第一制御回転体と第二中間回転体に対して同軸かつ相対回動可能に配置され、第二の制動手段によって相対回動する第二制御回転体と、第一制御回転体と連動して前記回動中心軸周辺を偏心回動する、第一の偏心回動機構と、第二制御回転体と連動して前記回動中心軸周辺を偏心回動する、第二の偏心回動機構と、前記略径方向ガイド溝と変位可能な状態で係合し、前記第一及び第二の偏心回動機構を相対回動可能に連結する連結手段と、を備え、第一制御回転体と第二制御回転体をいずれか一方を回動させると他方が相対回動するようにした。
 (作用)初期状態において第一制御回転体は、カムシャフトに一体化された第一中間回転体とクランクシャフトから駆動力を受ける駆動回転体と一体になって回転する。第一制御回転体は、第一の制動手段から制動力を受けると駆動回転体と第一中間回転体に対して遅角方向に相対回動し、第二の制動手段によって第二制御回転体が制動されると第一の制動手段とは逆に駆動回転体と第一中間回転体に対して進角方向に相対回動する。前記駆動回転体(クランクシャフト側)に対する第一中間回転体(カムシャフト側)の位相角は、第一制御回転体の相対回動方向に応じて進角方向(駆動回転体の回転方向。以下同じ)または遅角方向(駆動回転体の回転方向と逆方向。以下同じ)のいずれかに変更される。
 一方、第一偏心回動機構は、第一制御回転体と共に回動し、第二制御回転体と第二偏心回動機構は、第二の制動手段により、第一制御回転体とカムシャフトに一体化された第二中間回転体に対して共に相対回動する。第一及び第二偏心回動機構は、いずれか一方が回動すると、連結手段が第二回転体の略径方向ガイド溝を半径方向に変位させて他方を逆向きに回動させる。即ち、第一制御回転体は、第二制御回転体を制動すると、第一及び第二偏心回動機構によって第一の制動手段による制動時と逆向きに回動する。
 前記連結手段は、前記連結手段と第一偏心回動機構の回動中心軸からの偏心点、連結手段と第二偏心回動機構の偏心点、第一偏心回動機構の偏心点と回動中心軸、及び第二偏心回動機構の偏心点と回動中心軸をそれぞれ連結する4節リンク機構を仮に形成した場合、前記4節リンク機構の連結部の一つと同じ動作で略径方向ガイド溝を往復揺動する。同じくリンクの連結部に該当する第一及び第二偏心回動機構の偏心点は、連結手段が往復揺動すると、それぞれの回動中心を中心として互いに逆向きかつスムーズに回動する。従って、第一及び第二偏心回動機構と共に回動する第一及び第二制御回転体は、その一方が回動すると他方がスムーズに逆回転する。
 一方、クランクシャフトに対するカムシャフトの組付け角の変位幅は、略径方向ガイド溝をより長くするか、第一及び第二偏心回動機構の往復回動範囲を大きくすることによって拡げることが出来る。
 尚、各制御回転体、第二中間回転体、各偏心回動機構及び連結手段は、円形を基調とした単純な構成であるため、加工が容易である。また、駆動回転体と第一中間回転体との位相角を変更する際に連結手段は、各ガイド溝と常時摺接しながら静かに変位する。
 また前記目的を達成するために、請求項2は、請求項1のエンジンの位相可変装置において、前記第一偏心回動機構が、前記第一制御回転体に形成された第一偏心円孔と、その外周が前記第一偏心円孔の内周と摺接可能な状態で係合する第一リング部材を備え、前記第二偏心回動機構が、前記第二制御回転体に形成された第二偏心円孔と、その外周が前記第二偏心円孔の内周と摺接可能な状態で係合する第二リング部材を備え、前記連結手段が、第一及び第二リング部材にそれぞれ形成された第一及び第二係合孔と、前記略径方向ガイド溝を貫通し、その両端が前記第一及び第二係合孔にそれぞれ挿入される連結部材を備え、前記第一リング部材と第二リング部材の中心を前記略径方向ガイド溝の延伸線を間に挟んでそれぞれ配置した。
 (作用)第一及び第二リング部材は、第一及び第二制御回転体と共に各制御回転体の回動中心軸周りを偏心回動し、かつ第一及び第二偏心円孔内を摺動する。第一及び第二制御回転体のいずれか一方が制動されると、制動された制御回転体のリング部材が偏心円孔内を摺動して連結部材を略径方向ガイド溝に沿って揺動させ、連結された他方のリング部材を介して他方の制御回転体を逆向きに回転させる。第一及び第二制御回転体は、互いに逆向きに偏心回動する円孔内を摺動する第一リング部材(第一偏心円孔)と第二リング部材(第二偏心円孔)の各偏心点が、略径方向ガイド溝を変位する連結部材によって4節リンク機構の連結部と同一の動作をすることにより、互いにスムーズに逆回転する。また、円形を基調とするリング部材、偏心円孔及び連結部材は、加工が容易で静かに動作する。
 また前記目的を達成するために、請求項3は、請求項2のエンジンの位相可変装置において、前記第一偏心円孔は、第一制御回転体の回動中心軸から第一偏心円孔の中心軸に至る偏心量を前記第二制御回転体の回動中心軸から第二偏心円孔の中心軸に至る偏心量よりも大きく形成した。
 (作用)一般に第二の制動手段を第一の制動手段と同軸かつその内側に配置する場合、第二の制動手段による第二制御回転体の制動半径は、第一の制動手段による第一制御回転体の制動半径より小さくなる。従って、第二の制動手段は、第一の制動手段よりも大きな制動力を発生させなければ、第一の制動手段と同じ大きさの逆回転トルクを第一制御回転体に付与できないため、トルク差によって第一制御回転体の作動速度が進角方向と遅角方向で異なることになる。
 請求項3の位相可変装置は、第一リング部材の偏心量(第一リング部材の中心軸から第一制御回転体の回動中心軸までの距離、以下同じ)が第二リング部材の偏心量(第二リング部材の中心軸から第二制御回転体の回動中心軸までの距離、以下同じ)よりも大きく、第二リング部材が回動した際の第一リング部材の中心の移動距離が第二リング部材の中心の移動距離より大きい。従って、請求項3の位相可変装置は、第二の制動手段による第二制御回転体の制動トルクを小さくしつつ第一の制動手段と同じ大きさの逆回転トルクを第一制御回転体に付与できるため、第一制御回転体の相対回動速度が進角方向と遅角方向で一致する。
 請求項4は、請求項2または3のエンジンの位相可変装置において、前記第一及び第二リング部材のうち少なくともひとつをC型形状のリング部材とした。
 (作用)リング部材をC型に形成した場合には、C型形状の切欠部部分がセンターシャフトからの逃げ部になるため、第一リング部材と第二リング部材の偏心量を大きくすることが出来る。
 請求項5は、請求項2から4のうちいずれかに記載のエンジンの位相可変装置において、前記第二リング部材第二偏心円孔内を360°以上回転可能な長さに前記略径方向ガイド溝を形成した。
 (作用)第一制御回転体は、第二制御回転体が360°回転した際、軸状部材が略径方向ガイド溝の一端から他端までを往復し、駆動回転体に対する進角方向への相対回動と遅角方向への相対回動の双方を行う。即ち、第二の制動手段と第二制御回転体は、単独で第一制御回転体を進角及び遅角方向の双方に相対回動させ、クランクシャフトとカムシャフトの組付角を進角側と遅角側のいずれかに変更する。
 請求項1と2におけるエンジンの位相可変装置によれば、第一制御回転体の回動操作力付与手段は、第二制御回転体の制動に基づく第一制御回転体の相対回動トルクを低下させることなくクランクシャフトとカムシャフトの組付け角の変位幅を大きくできる。また、前記回動操作力付与手段は、構成部品が円形を基調として形成されているため、容易かつ安価に製造出来ると共に位相角変更時の動作音が低減される。
 請求項3のエンジンの位相可変装置によれば、第一の制動手段よりも内側に配置され、制動トルクの不足が懸念される第二の制動手段であっても、第一の制動手段と同等の制動性能を発揮する事が出来る。
 請求項4のエンジンの位相可変装置によれば、第一リングと第二リングの偏心量を設定する際の自由度が向上するため、クランクシャフトとカムシャフトの組付け角の変位幅を更に大きくできる。
 請求項5のエンジンの位相可変装置によれば、一つの制御回転体と一つの制動手段によってクランクシャフトとカムシャフトの組付け角を進角方向または遅角方向の双方に変更できるため、二つの制動手段のうち一つが故障した際に他方の制動手段でクランクシャフトとカムシャフトの組付け角を変更できる、フェールセーフ機能を持たせることが出来る。
 次に、本発明の実施の形態を実施例1~3によって説明する。
 図1は、本発明の第一実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図、図2は、同装置の正面図、図3は、同装置の軸方向断面図である図2のA-A断面図、図4は、位相変位前の同装置の半径方向断面図であって、(a)図は、図3のB-B断面図、(b)図は、図3のC-C断面図、(c)図は、図3のD-D断面図、図5は、図4の各断面図の位相変位後の状態を示す図、図6は、位相変位前の同装置の半径方向断面図であって、(a)図は、図3のE-E断面図、(b)図は、図3のF-F断面図、(c)図は、図3のG-G断面図、図7は、図6の各断面図の位相変位後の状態を示す図、図8は、位相可変装置の第二実施例における第一リング部材と第一偏心円孔を示す図3のG-G断面図、図9(a)は、位相可変装置の第三実施例における第二リング部材と第二偏心円孔を示す図3のE-E断面図、(b)図は、第三実施例における第一リング部材と第一偏心円孔を示す図3のG-G断面図である。
 実施例に示すエンジンの位相可変装置は、エンジンに組み付け一体化された形態で用いられ、クランクシャフトの回転に同期して吸排気弁が開閉するようにクランクシャフトの回転をカムシャフトに伝達するとともに、エンジンの負荷や回転数などの運転状態によってエンジンの吸排気弁の開閉タイミングを変化させるための装置である。
 図1~7により第一実施例の装置の構成について説明すると、第一実施例の装置(説明の便宜上、後述する第二電磁クラッチ90の方向を前側、スプロケット71aの方向を後側としている。)は、エンジンのクランクシャフト(図示しない)から駆動力を受けて回転する駆動回転体71と、カムシャフト(図示しない)に固定され、前記駆動回転体71を相対回動可能な状態で支持するセンターシャフト72と、駆動回転体71の前方でセンターシャフト72に相対回動不能な状態で固定され、駆動回転体71に対して相対回動する第一中間回転体73と、駆動回転体71によって、その外周面が支持され、センターシャフト72と非接触の状態で相対回動する第一制御回転体74と、図示しないエンジンケースに固定され、第一制御回転体74の回転を制動する第一電磁クラッチ75を同一の回動中心軸L1上に備えている。
 第一制御回転体74は、これと一体になって中心軸L1の周囲を偏心回動する偏心円カム76(図3、図4(a)を参照)を後面に備えている。中間回転体73は、偏心円カム76が係合するカムガイド77を前面に備え、偏心円カム76の回動時に中心軸L1及びカムガイド77の壁面方向と直交する方向に往復揺動する。
 センターシャフト72は、孔72aが図示しないカムシャフトの先端と相対回動不能な状態で一体化されている。駆動回転体71は、スプロケット71aと駆動円筒71bが、複数の結合ピン78によって結合されて構成されている。駆動回転体71は、スプロケット71aの孔71cがセンターシャフト72のフランジ72bの後方に設けられた円筒部72cに相対回動可能な状態で支持されている。駆動円筒71bは、有底円筒状に形成され、その底部に回動中心軸L1を中心として略円周方向に一対設けられた曲線状のガイド溝79が形成されている。ガイド溝79は、図4に示すとおり、駆動回転体71の回転方向D1(装置正面から見て時計回り方向、以下同じ)に向けて縮径するガイド溝79aと、回動中心軸を挟んでガイド溝79aと対称に形成されたガイド溝79bによって構成される。尚、ガイド溝79aが縮径する方向は、後述する反時計回りD2方向としても良い。
 第一中間回転体73は、円盤状に形成されると共に中心軸L1に直交する一対の壁面であって、偏心円カム76が係合するカムガイド77を前面に備えている。カムガイド77の底面は、カムガイド77の壁面及び中心軸L1と直交する方向に延伸し、中心軸L1方向に貫通する長角穴80を備えている。第一中間回転体73は、長角穴80が平坦係合面72dに係合することにより、センターシャフト72に対して相対回動不能な状態で固定され、かつセンターシャフト72によって長角穴80の延伸するする方向に摺動可能に支持されている。
 第一中間回転体73,第一制御回転体74及び偏心円カム76は、駆動筒体71bの内側に配置されている。第一制御回転体74は、センターシャフト72の円筒部72eを非接触状態で挿通させる貫通円孔74aをその中心に備える。第一制御回転体74の後面に一体形成された偏心円カム76は、その中心軸L2が回動中心軸L1から距離d0だけ偏心する。第一制御回転体74は、円盤形状に形成され、その外周面74bが略内接する駆動筒体71bの段差内周面71dによって支持される。
 第一制御回転体74は、貫通円孔74aがセンターシャフト72の円筒部72eと常に接触することなく駆動筒体71bに支持される。第一制御回転体74は、カムシャフトが外乱による相対回動トルクを受けると、偏心円カム76がカムガイド77から回動中心軸L1と直交する方向に力をうける。その際、第一制御回転体74は、L1と直交する方向に移動し、外周面74bが回動筒体71bの内周面71dと接触する。従って第一実施例の位相可変装置は、前記接触面の摩擦力が、前記外乱による位相角のズレの発生を防止するセルフロック機能を有する。尚、貫通円孔74aは、センターシャフト72の円筒部72eとの間に十分な隙間を持つため、セルフロック時に第一制御回転体74がL1と直交する方向に移動しても円筒部72eに接触することがない。従って、外周面74bと内周面71dとの間に前記セルフロック機能が確実に作用する。尚、偏心円カム76の外形は、本実施例のような円形状に限らず、特殊な周縁を持つカム形状にしてもよい。
 第一中間回転体73は、一対の係合孔73aから後方に突出する一対の軸状部材81を備えている。軸状部材81は、中空太丸軸81bの内側に細丸軸81aを挿入して形成される。先端の細丸軸81aは、前記係合孔73aに係合し、後端の中空太丸軸81bは、駆動円筒71bに形成された略円周溝である一対のガイド溝(79a,79b)と変位可能な状態で係合する。
 第一制御回転体74の前方には、摩擦材82を後面に配置した第一電磁クラッチ75を配置し、電磁クラッチ75は、コイル75aに通電し、第一制御回転体74の吸着面74cを摩擦材82に摺接させることにより、第一制御回転体74の回動を制動する。
 また、第一制御回転体74の前方には、第一リング部材83、第二中間回転体84、軸状部材(連結部材)85、第二リング部材86、第二制御回転体87、シム88、ホルダー89及び第二電磁クラッチ90がそれぞれ配置されている。符号83から90の各部材は、第一電磁クラッチ90と共に本願請求項1の回動操作力付与手段を構成する。
 第一制御回転体74は、有底円筒状に形成され、その底部の前面にその中心軸L2が回動中心軸L1から距離d1だけ偏心した段差状の第一偏心円孔74dを備える。偏心円孔74dには、第一リング部材83が摺動可能な状態で係合する。第一リング部材83は、前面に開口する第一係合孔83aを備える。
 第二中間回転体84は、中央に角穴84aを備え、その外側に第二中間回転体84の半径方向に延伸する略径方向ガイド溝84bを備える。第二中間回転体84は、角穴84aがセンターシャフト72の第二平坦係合面(72f、72g)とそれぞれ係合することによってセンターシャフト72に回動不能な状態で固定されている。
 第二制御回転体87は、中央に形成された円孔87aにセンターシャフト72の先端の小円筒部72hが挿通され、センターシャフト72に対して回動可能な状態で支持されている。第二制御回転体87は、その中心軸L3が第一偏心円孔74dと同じように回動中心軸L1から距離d1だけ偏心した段差状の偏心円孔87bを後面に備える。偏心円孔87bには、第二リング部材86が摺動可能な状態で係合する。第二リング部材86は、後面に開口する第二係合孔86aを備える。
 軸状部材85は、細丸軸85aの中央に中空太丸軸85bを挿入して構成されている。細丸軸85aの両端は、第一及び第二係合孔(83a,86a)と摺動可能な状態で係合し、中空太丸軸85bは、略径方向ガイド溝84bに沿って第二中間回転体84の半径方向に変位可能な状態で係合する。
 前記第一及び第二リング部材(83,86)は、それぞれの中心軸(L2,L3)が、第一及び第二制御回転体(74,87)の回動中心軸L1に直交する略径方向ガイド溝84bの延伸線L4を間に挟み、かつ前記延伸線L4を中心に略対称に配置されるように、第一及び第二偏心円孔(74d、87b)を配置する。
 第二制御回転体87前面の段差円孔87cには、シム88を配置し、円孔87aから前方に突出するセンターシャフト72の小円筒部72hにホルダー89を挿着する。ホルダー89から駆動円筒71bに至る構成部品は、それら中央の孔に図示しないボルトを前方から挿入し、カムシャフト(図示せず)に螺着することで固定する。第二電磁クラッチ90は、図示しないエンジンケースに固定した状態で第二制御回転体87の前面に対向するよう配置する。第二電磁クラッチ90は、コイル90aに通電し、第二制御回転体87の前面の吸着面87dを吸着して摩擦材91と摺接させることにより、第二制御回転体87の回動を制動する。
 尚、第二制御回転体の吸着面87dは、第二制御回転体87をコイル75aの内側に配置すると、第一電磁クラッチ75の作動時に磁化されて動作が不安定になることがあるため、図3に示すように第一制御回転体74の吸着面74cと面一に配置することが望ましい。
 また、軸状部材(81,85)は、例えばベアリングを有する形態とし、ガイド溝79と略径方向ガイド溝84bをそれぞれ変位する際に溝の内部を転動するようにしてもよいし、軸状部材(81,85)は、ボールに置き換えても良い。その場合、軸状部材(81,85)は、変位時の摩擦抵抗が低下して変位が容易になり、各電磁クラッチの消費電力が低減される。
 また、第二中間回転体84は、非磁性体で形成することが望ましい。第二中間回転体84を被磁性体で形成すると、制御回転体(74,87)の一方を吸着するための磁力が、第二中間回転体84を介して他方の制御回転体に伝達され、一緒に吸引されてしまう不具合を解消できる。
 次にカムシャフト(図示せず)と駆動回転体71との位相角を変更する際の動作を図1,図4~7に基づいて説明する。位相角変更のない初期状態において、駆動回転体71がクランクシャフト(図示せず)によって装置正面から見て時計回りD1方向に回転すると、第一中間回転体73、第一制御回転体74(偏心円カム76)、第二中間回転体84及び第二制御回転体87は、駆動回転体71と一体になって時計回りD1方向に回動する。
 駆動回転体71に対するカムシャフトの位相角を進角方向(装置正面から見て時計回りD1方向。以下同じ)に変更する場合には、第二制御回転体87を、第二電磁クラッチ90によって制動する。第二電磁クラッチを作動させると、第一及び第二リング部材(83,86)は、図6から図7の状態に変位する。即ち、第二制御回転体87は、第二中間回転体84と第一制御回転体74に対して回転遅れを生じ、遅角方向(装置正面から見て反時計回りD2方向、以下同じ)に相対回動する。その際、軸状部材85は、第二リング部材86が第二偏心円孔87bの内部をD1方向に摺動することに伴い、略径方向ガイド溝84bに沿って半径方向内側(図6(b)のD3方向)に移動する。第一リング部材83は、略径方向ガイド溝84bに沿って軸状部材85が内側に移動すると、第一偏心円孔74dの内部をD2方向に摺動しつつ第一制御回転体74にD1方向の相対回動トルクを付与する。第一制御回転体74は、第二中間回転体84と第二制御回転体87に対して進角方向(D1方向)に相対回動する。
 同時に第一制御回転体74は、第一中間回転体73と、駆動回転体71に対して進角方向D1方向に相対回動し、図4に示す第一制御回転体74と一体の偏心円カム76は、中心軸L1を中心として時計回りD1方向に偏心回動する。第一中間回転体73と軸状部材81は、偏心円カム76がカムガイド77の内周面と摺動しながら偏心回転すると、長角孔80の延伸方向に沿って図4のD3方向に下降する。
 第一中間回転体73は、軸状部材81が下降する際にガイド溝(79a,79b)に沿ってD1方向に変位することにより、駆動回転体71に対してD1方向に相対回動し、図4から図5の状態に変位する。その結果、第一中間回転体73と同期回動するカムシャフト(図示せず)の位相角は、クランクシャフトで駆動する駆動回転体71の位相角に対し、進角方向(D1方向)に変更される。
 一方、駆動回転体71に対するカムシャフト(図示せず)の位相角を遅角方向(D2方向)に戻す場合には、第一電磁クラッチ75によって第一制御回転体74を制動する。制動された第一制御回転体74と一体の偏心円カム76は、図5に示すように駆動回転体71と第一中間回転体73に対して反時計回りD2方向に相対回動し、第一中間回転体73と軸状部材81を図5のD4方向に上昇させる。第一中間回転体73は、軸状部材81が上昇する際にガイド溝79に沿ってD2方向に変位することにより、駆動回転体71に対してD2方向に相対回動し、図5から図4の状態に戻る。その結果、第一中間回転体73と同期回動するカムシャフト(図示せず)の位相角は、クランクシャフトで駆動する駆動回転体71の位相角に対し、遅角方向(D2方向)に戻される。
 次に、図8により、本願の位相可変装置の第二実施例を説明する。第一実施例では、図6(a)(c)に示すとおり、第一偏心円孔74d(第一リング部材83)の偏心量と第二偏心円孔87b(第二リング部材86)の偏心量を等しくd1としている。第二実施例では、図8に示す通り、第一制御回転体74の回動中心軸L1から第一偏心円孔92(第一リング部材93)の中心軸L2’に至る偏心量d2を、図6(a)に示す第二偏心円孔87b(第二リング部材86)の偏心量d1より大きくしている。
 尚、第一リング部材93は、中心軸L2’が、第二リング部材86の中心軸L3と共に略径方向ガイド溝84bの延伸線L4(図6(b)参照)を間に挟み、第一偏心円孔92に配置する。また、第二実施例の構成は、第一偏心円孔92と第一リング部材93を除き、第1実施例と同一である。
 第二実施例では、図8の第一リング部材93の偏心量d2が図6(a)の第二リング部材86の偏心量d1よりも大きいため、第二リング部材86によって回動中心軸L1周りを相対回動する第一リング部材93の中心軸L2’(偏心点)は、同じく回動中心軸L1周りを回動する第二リング部材86の中心軸L3(偏心点)よりもトルク半径が大きくなる。即ち、第一リング部材93に発生する相対回動トルクは、第二リング部材86の回動トルクと比べて大きくなる。従って、第二実施例では、電磁クラッチ90によって第二制御回転体87に与える回動トルクを小さくしても、第一制御回転体74に与える相対回動トルクを大きくすることが出来るため、制動トルクの不足が懸念される第二の制動手段であっても、第一の制動手段と同等の制動性能を発揮する事が出来る。また、より小さな第二電磁クラッチ90を第一電磁クラッチ75の内側に配置し、位相可変装置をコンパクトに形成出来る。
 次に、図9各図により、本願の位相可変装置の第三実施例を説明する。第三実施例では、第一実施例において円形であった第一及び第二リング部材(83,86)の一部に切欠部を設け、図9に示すCの字状の第一及び第二リング部材(94,95)としている。円形の第一及び第二リング部材(83,86)は、偏心量d1を大きくしすぎると、リング部材の一部がセンターシャフト72に干渉する。第三実施例では、Cの字状に形成した第一リング部材の切欠が、センターシャフト72に対する逃げ部となるため、第一及び第二リング部材(94、95)の偏心量d3を更に大きくし、第二電磁クラッチ90によって第一制御回転体74に発生する相対回動トルクを更に高めることが出来る。尚、第一及び第二リング部材(94,95)における切欠部の形成範囲は、全体の180°未満にする。
 尚、第一及び第二実施例の第二リング部材83は、略径方向ガイド溝84の長さを十分に長く取ることによって第二偏心円孔87b内を360°以上回転する。その場合、第一制御回転体74は、第二制御回転体87が360°回転した際、軸状部材85が略径方向ガイド溝の一端から他端までを往復するため、駆動回転体71に対して進角方向と遅角方向の双方に相対回動する。このような構成にすれば、第二電磁クラッチ90のみによってクランクシャフトとカムシャフトの組付角を進角側と遅角側の双方に変更させることが可能になる。
 第一及び第二実施例では、第二リング部材86が第二偏心円孔内を360°以上回転可能な構成にしたが、同じ原理を用いて、第一リング部材(83,93)が第一編心円孔内を360°以上回転可能な構成にする事も可能である。その場合、偏心円カム76の外径は、カムガイド77内を360°回動可能な長さに形成する。このような構成にした場合には、第一制御回転体74が360°回転した際に軸状部材81が略径方向ガイド溝79の両端を往復するため、第一電磁クラッチ75のみによってクランクシャフトとカムシャフトの組付け角を進角側と遅角側の双方に変更することが出来る。即ち、第一及び第二電磁クラッチ(75、90)のいずれかが故障した場合であっても、故障のない電磁クラッチを作動させてクランクシャフトとカムシャフトの組付け角を進角側と遅角側の双方に変更させることが可能になる(フェールセーフ機能)。
本発明の第一実施例である自動車用エンジンにおける位相可変装置を前方から見た分解斜視図である。 同装置の正面図である。 同装置の軸方向断面図である図2のA-A断面図である。 位相変位前の同装置の半径方向断面図であり、(a)図は、図3のB-B断面図、(b)図は、図3のC-C断面図、(c)図は、図3のD-D断面図、である。 図4の各断面図の位相変位後の状態を示す図である。 位相変位前の同装置の半径方向断面図であり、(a)図は、図3のE-E断面図、(b)図は、図3のF-F断面図、(c)図は、図3のG-G断面図である。 図6の各断面図の位相変位後の状態を示す図である。 は、位相可変装置の第二実施例における第一リング部材と第一偏心円孔を示す図3のG-G断面図である。 (a)は、位相可変装置の第三実施例における第二リング部材と第二偏心円孔を示す図3のE-E断面図、(b)は、第三実施例における第一リング部材と第一偏心円孔を示す図3のG-G断面図である。
符号の説明
  71    駆動回転体
  72    センターシャフト(カムシャフトと一体の部材)
  73    第一中間回転体
  74    第一制御回転体
  74d   第一偏心円孔(第一偏心回動機構)
  75    第一電磁クラッチ(第一の制動手段)
  83,93,95 第一リング部材(第一偏心回動機構)
  83a   第一係合孔(連結手段)
  84    第二中間回転体
  84b   略径方向ガイド溝
  85    軸状部材(連結手段)
  86,94 第二リング部材(第二偏心回動機構)
  86a   第二係合孔(連結手段)
  87    第二制御回転体
  87b   第二偏心円孔(第二偏心回動機構)
  90    第二電磁クラッチ(第二の制動手段)
  L1    回動中心軸
  L2,L2’ 第一偏心円孔と第一リング部材の中心軸
  L3    第二偏心円孔と第二リング部材の中心軸
  L4    略径方向ガイド溝の延伸線
  d1,d3 第一及び第二偏心円孔の偏心量
  d2    第一偏心円孔の偏心量
  D1    進角方向(駆動回転体の回動方向)
  D2    遅角方向(駆動回転体の回動方向と逆方向)

Claims (5)

  1.  クランクシャフトによって回転駆動する駆動回転体と、カムシャフトに一体化
    された第一中間回転体と、回動操作力付与手段から回動トルクを受ける第一制御回転体を互いに相対回動可能に同一の回動中心軸上に配置し、前記第一中間回転体と駆動回転体に対する第一制御回転体の相対回動方向に応じて前記カムシャフトと駆動回転体の位相角を変更するエンジンの位相可変装置において、
     前記回動操作力付与手段は、
     前記第一中間回転体と駆動回転体に対して前記第一制御回転体を相対回動させる第一の制動手段と、
     前記カムシャフトに一体化され、その半径方向に延伸すると共に軸方向に貫通する略径方向ガイド溝を有する第二中間回転体と、
     前記第一制御回転体と第二中間回転体に対して同軸かつ相対回動可能に配置され、第二の制動手段によって相対回動する第二制御回転体と、
     第一制御回転体と連動して前記回動中心軸周辺を偏心回動する、第一の偏心回動機構と、
     第二制御回転体と連動して前記回動中心軸周辺を偏心回動する、第二の偏心回動機構と、
     前記略径方向ガイド溝と変位可能な状態で係合し、前記第一及び第二の偏心回動機構を相対回動可能に連結する連結手段と、
    を備えたことを特徴とするエンジンの位相可変装置。
  2.  前記第一偏心回動機構は、前記第一制御回転体に形成された第一偏心円孔と、その外周が前記第一偏心円孔の内周と摺接可能な状態で係合する第一リング部材を備え、
     前記第二偏心回動機構は、前記第二制御回転体に形成された第二偏心円孔と、その外周が前記第二偏心円孔の内周と摺接可能な状態で係合する第二リング部材を備え、
     前記連結手段は、第一及び第二リング部材にそれぞれ形成された第一及び第二係合孔と、前記略径方向ガイド溝を貫通し、その両端が前記第一及び第二係合孔にそれぞれ挿入される連結部材を備え、
     前記第一リング部材と第二リング部材の中心は、前記略径方向ガイド溝の延伸線を間に挟んでそれぞれ配置されたことを特徴とする、請求項1記載のエンジンの位相可変装置。
  3.  前記第一偏心円孔は、第一制御回転体の回動中心軸から第一偏心円孔の中心軸に至る偏心量が、前記第二制御回転体の回動中心軸から第二偏心円孔の中心軸に至る偏心量よりも大きく形成されたことを特徴とする、請求項2記載のエンジンの位相可変装置。
  4.  前記第一及び第二リング部材のうち少なくとも一つは、C型形状のリング部材であることを特徴とする、請求項2または3に記載のエンジンの位相可変装置
  5.  前記略径方向ガイド溝は、前記第二リング部材が第二偏心円孔内を360°以上回転可能な長さに形成されたことを特徴とする請求項2から4のうちいずれかに記載のエンジンの位相可変装置。
PCT/JP2008/066082 2008-09-05 2008-09-05 自動車用エンジンにおけるカムシャフト位相可変装置 WO2010026645A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP08810137.3A EP2320036B1 (en) 2008-09-05 2008-09-05 Cam shaft phase variable device in engine for automobile
CN2008801309763A CN102144077B (zh) 2008-09-05 2008-09-05 汽车用发动机中的凸轮轴相位可变装置
KR1020117005179A KR101236276B1 (ko) 2008-09-05 2008-09-05 자동차용 엔진에 있어서의 캠샤프트 위상 가변 장치
US13/062,351 US8613266B2 (en) 2008-09-05 2008-09-05 Cam shaft phase variable device in engine for automobile
PCT/JP2008/066082 WO2010026645A1 (ja) 2008-09-05 2008-09-05 自動車用エンジンにおけるカムシャフト位相可変装置
JP2010527628A JP5307145B2 (ja) 2008-09-05 2008-09-05 自動車用エンジンにおけるカムシャフト位相可変装置
HK11112488.1A HK1158288A1 (en) 2008-09-05 2011-11-18 Cam shaft phase variable device in engine for automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/066082 WO2010026645A1 (ja) 2008-09-05 2008-09-05 自動車用エンジンにおけるカムシャフト位相可変装置

Publications (1)

Publication Number Publication Date
WO2010026645A1 true WO2010026645A1 (ja) 2010-03-11

Family

ID=41796833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066082 WO2010026645A1 (ja) 2008-09-05 2008-09-05 自動車用エンジンにおけるカムシャフト位相可変装置

Country Status (7)

Country Link
US (1) US8613266B2 (ja)
EP (1) EP2320036B1 (ja)
JP (1) JP5307145B2 (ja)
KR (1) KR101236276B1 (ja)
CN (1) CN102144077B (ja)
HK (1) HK1158288A1 (ja)
WO (1) WO2010026645A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192365A1 (en) * 2008-09-05 2011-08-11 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
WO2011145175A1 (ja) * 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置
WO2013024513A1 (ja) 2011-08-12 2013-02-21 日鍛バルブ株式会社 自動車用エンジンの位相可変装置
EP2589766A1 (en) * 2010-07-02 2013-05-08 Nittan Valve Co., Ltd. Engine phase varying device and controller for same
US8505508B2 (en) 2009-06-05 2013-08-13 Nittan Valve Co., Ltd. Phase varying device for engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110074753A (ko) * 2008-10-22 2011-07-01 니탄 밸브 가부시키가이샤 자동차용 엔진에 있어서의 위상 가변 장치
KR20150063378A (ko) * 2012-10-09 2015-06-09 니탄 밸브 가부시키가이샤 자동차용 엔진의 위상 가변 장치
US10132210B1 (en) * 2017-05-16 2018-11-20 Schaeffler Technologies AG & Co. KG Electric camshaft phaser with detent and method thereof
JP7272216B2 (ja) * 2019-07-26 2023-05-12 株式会社デンソー クラッチ装置
CN114144598A (zh) * 2019-07-26 2022-03-04 株式会社电装 离合器装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003419A (ja) * 2002-04-19 2004-01-08 Denso Corp バルブタイミング調整装置
JP2006077779A (ja) 2005-12-07 2006-03-23 Hitachi Ltd 内燃機関のバルブタイミング制御装置
JP2008057857A (ja) 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559914A (ja) * 1991-08-31 1993-03-09 Mazda Motor Corp エンジンのバルブタイミング制御装置
JP3378097B2 (ja) * 1994-09-29 2003-02-17 本田技研工業株式会社 摩擦クラッチ
EP0799977B1 (en) * 1996-04-04 2000-12-13 Toyota Jidosha Kabushiki Kaisha Variable valve timing mechanism for internal combustion engine
DE19830930A1 (de) * 1998-07-10 2000-01-13 Bauss Hans Werner Vorrichtung zur Winkelverstellung einer Welle gegenüber ihrem Antriebsrad
KR100287371B1 (ko) * 1998-07-31 2001-04-16 정주호 가변 밸브 타이밍 시스템의 캠각도 검출장치
JP3911982B2 (ja) * 2000-09-25 2007-05-09 日産自動車株式会社 内燃機関の可変バルブタイミング装置
JP4115663B2 (ja) * 2000-11-27 2008-07-09 株式会社日立製作所 可変バルブタイミング装置の診断装置
JP3960917B2 (ja) * 2001-01-29 2007-08-15 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP3798944B2 (ja) * 2001-01-31 2006-07-19 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP2002227623A (ja) * 2001-01-31 2002-08-14 Unisia Jecs Corp 内燃機関のバルブタイミング制御装置
JP3961237B2 (ja) * 2001-05-23 2007-08-22 株式会社日立製作所 可変バルブタイミング装置の制御装置
US6732688B2 (en) * 2001-08-10 2004-05-11 Unisia Jecs Corporation Valve timing control system for internal combustion engine
US6672264B2 (en) * 2001-10-12 2004-01-06 Hitachi Unisia Automotive, Ltd. Valve timing control device of internal combustion engine
JP3992955B2 (ja) * 2001-10-12 2007-10-17 株式会社日立製作所 内燃機関のバルブタイミング制御装置
JP2003129805A (ja) * 2001-10-22 2003-05-08 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置
JP2003129806A (ja) * 2001-10-24 2003-05-08 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置
JP4072346B2 (ja) * 2002-01-16 2008-04-09 株式会社日立製作所 可変バルブタイミング機構の制御装置
JP4060087B2 (ja) * 2002-02-04 2008-03-12 株式会社日立製作所 可変バルブタイミング機構の制御装置
DE10248355A1 (de) * 2002-10-17 2004-04-29 Ina-Schaeffler Kg Nockenwellenversteller mit elektrischem Antrieb
JP4113823B2 (ja) * 2003-09-22 2008-07-09 株式会社デンソー バルブタイミング調整装置
JP4295081B2 (ja) * 2003-12-19 2009-07-15 株式会社日立製作所 内燃機関のバルブタイミング制御装置
DE102004007052A1 (de) * 2004-02-13 2005-09-08 Daimlerchrysler Ag Verstelleinrichtung für eine Welle
JP2006299867A (ja) * 2005-04-19 2006-11-02 Hitachi Ltd 内燃機関のバルブタイミング制御装置
JP4210945B2 (ja) * 2005-07-12 2009-01-21 株式会社デンソー バルブタイミング調整装置
JP4390078B2 (ja) * 2005-09-05 2009-12-24 株式会社デンソー バルブタイミング調整装置
JP2008002324A (ja) * 2006-06-21 2008-01-10 Hitachi Ltd 位相角検出装置及び該位相角検出装置を用いた内燃機関のバルブタイミング制御装置
JP2008019757A (ja) * 2006-07-12 2008-01-31 Hitachi Ltd 内燃機関のバルブタイミング制御装置
EP2067944B1 (en) * 2006-09-29 2011-11-09 Nittan Valve Co., Ltd. Engine valve controller
JP4952653B2 (ja) * 2007-06-04 2012-06-13 株式会社デンソー バルブタイミング調整装置
JP4360426B2 (ja) * 2007-07-09 2009-11-11 株式会社デンソー バルブタイミング調整装置
JP2009091928A (ja) * 2007-10-05 2009-04-30 Hitachi Ltd 内燃機関のバルブタイミング制御装置
CN101939512B (zh) * 2008-02-04 2012-11-21 日锻汽门株式会社 机动车用发动机中的相位可变装置
JP5102071B2 (ja) * 2008-03-03 2012-12-19 日鍛バルブ株式会社 自動車用エンジンにおける位相可変装置
JP2009222036A (ja) * 2008-03-19 2009-10-01 Hitachi Ltd 内燃機関のバルブタイミング制御装置
CN102016242B (zh) * 2008-04-23 2013-01-23 日锻汽门株式会社 机动车用发动机中的相位可变装置
DE112008003861T5 (de) 2008-05-13 2011-07-21 Hewlett-Packard Development Company, L.P., Tex. Systeme und Verfahren, um Software zum Herunterladen zur Verfügung zu stellen
US8613266B2 (en) * 2008-09-05 2013-12-24 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
KR20110074753A (ko) * 2008-10-22 2011-07-01 니탄 밸브 가부시키가이샤 자동차용 엔진에 있어서의 위상 가변 장치
CN102459827B (zh) * 2009-06-05 2014-01-22 日锻汽门株式会社 发动机的相位可变装置
KR101209725B1 (ko) * 2010-06-16 2012-12-07 현대자동차주식회사 연속 가변 밸브 타이밍 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003419A (ja) * 2002-04-19 2004-01-08 Denso Corp バルブタイミング調整装置
JP2006077779A (ja) 2005-12-07 2006-03-23 Hitachi Ltd 内燃機関のバルブタイミング制御装置
JP2008057857A (ja) 2006-08-31 2008-03-13 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2320036A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110192365A1 (en) * 2008-09-05 2011-08-11 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
US8613266B2 (en) * 2008-09-05 2013-12-24 Nittan Valve Co., Ltd. Cam shaft phase variable device in engine for automobile
US8505508B2 (en) 2009-06-05 2013-08-13 Nittan Valve Co., Ltd. Phase varying device for engine
WO2011145175A1 (ja) * 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
JP5616440B2 (ja) * 2010-05-18 2014-10-29 日鍛バルブ株式会社 エンジンの位相可変装置
EP2573336A1 (en) * 2010-05-18 2013-03-27 Nittan Valve Co., Ltd. Phase variable device for engine
EP2573336A4 (en) * 2010-05-18 2013-12-18 Nittan Valva PHASE VARYING DEVICE FOR MOTOR
EP2589766A4 (en) * 2010-07-02 2014-07-23 Nittan Valva DEVICE FOR MOTOR PHASE VARIATION AND CONTROL AND FOR THIS
EP2589766A1 (en) * 2010-07-02 2013-05-08 Nittan Valve Co., Ltd. Engine phase varying device and controller for same
EP2628910A1 (en) * 2010-10-12 2013-08-21 Nittan Valve Co., Ltd. Phase variable device of engine
CN103140653A (zh) * 2010-10-12 2013-06-05 日锻汽门株式会社 发动机的相位可变装置
US8726867B2 (en) 2010-10-12 2014-05-20 Nittan Valve Co., Ltd. Phase varying apparatus for automobile engine technical
JP5600748B2 (ja) * 2010-10-12 2014-10-01 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置
EP2628910A4 (en) * 2010-10-12 2014-11-12 Nittan Valva PHASE REVERSIBLE DEVICE FOR A MOTOR
WO2013024513A1 (ja) 2011-08-12 2013-02-21 日鍛バルブ株式会社 自動車用エンジンの位相可変装置
EP2743465A4 (en) * 2011-08-12 2015-04-29 Nittan Valva VARIABLE PHASE DEVICE OF AN AUTOMOBILE ENGINE
US9032925B2 (en) 2011-08-12 2015-05-19 Nittan Valve Co., Ltd. Phase varying apparatus for automobile engine

Also Published As

Publication number Publication date
HK1158288A1 (en) 2012-07-13
JP5307145B2 (ja) 2013-10-02
KR20110059607A (ko) 2011-06-02
JPWO2010026645A1 (ja) 2012-01-26
KR101236276B1 (ko) 2013-02-22
EP2320036A4 (en) 2012-03-28
US20110192365A1 (en) 2011-08-11
US8613266B2 (en) 2013-12-24
EP2320036A1 (en) 2011-05-11
CN102144077B (zh) 2013-02-13
CN102144077A (zh) 2011-08-03
EP2320036B1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5307145B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP5154657B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
WO2009130770A1 (ja) 自動車用エンジンにおける位相可変装置
US6510826B2 (en) Valve timing control device of internal combustion engine
JP5255114B2 (ja) エンジンの位相可変装置
JPWO2011145175A1 (ja) エンジンの位相可変装置
JP5563079B2 (ja) エンジンの位相可変装置及びその制御装置
JP5260741B2 (ja) エンジンの位相可変装置
JP5802273B2 (ja) 自動車用エンジンの位相可変装置
JP2015102065A (ja) 弁開閉時期制御装置
JP3964158B2 (ja) 内燃機関のバルブタイミング制御装置
JP4012386B2 (ja) 内燃機関のバルブタイミング制御装置
JP3996755B2 (ja) 内燃機関のバルブタイミング制御装置
JP5840768B2 (ja) エンジンの位相可変装置
JP5840769B2 (ja) エンジンの位相可変装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130976.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08810137

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010527628

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008810137

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117005179

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13062351

Country of ref document: US