WO2010026332A1 - Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode - Google Patents

Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode Download PDF

Info

Publication number
WO2010026332A1
WO2010026332A1 PCT/FR2009/051612 FR2009051612W WO2010026332A1 WO 2010026332 A1 WO2010026332 A1 WO 2010026332A1 FR 2009051612 W FR2009051612 W FR 2009051612W WO 2010026332 A1 WO2010026332 A1 WO 2010026332A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
composite material
material according
carbon
manufacturing
Prior art date
Application number
PCT/FR2009/051612
Other languages
English (en)
Inventor
Dominique Plee
Bernard Lestriez
Dominique Guyomard
Sabrina Desaever
Original Assignee
Arkema France
Centre National De Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France, Centre National De Recherche Scientifique filed Critical Arkema France
Priority to JP2011524431A priority Critical patent/JP2012501515A/ja
Priority to BRPI0917946A priority patent/BRPI0917946A2/pt
Priority to EP09740480A priority patent/EP2351121A1/fr
Priority to US13/061,642 priority patent/US20110163274A1/en
Priority to CN2009801428540A priority patent/CN102197519A/zh
Publication of WO2010026332A1 publication Critical patent/WO2010026332A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to an electrode composite material, it also relates to battery electrodes made of said material and lithium batteries comprising such electrodes.
  • the invention applies to the field of storage of electrical energy in batteries and more particularly in lithium secondary batteries Li-ion type. Technological background of the invention
  • the electrode composite materials comprise an active element, that is to say an element capable of exhibiting an electrochemical activity with respect to a metal, as well as a binder and a conductive additive.
  • the active element used most conventionally is graphite and cobalt oxide for the positive electrode.
  • lithium batteries for the negative electrode silicon Si or tin Sn.
  • Li-ion battery is meant a battery which comprises at least one negative electrode or anode, a positive electrode or cathode, a separator, and an electrolyte.
  • the electrolyte consists of a lithium salt, usually lithium hexafluorophosphate, mixed with a solvent that is a mixture of organic carbonates, chosen to optimize the transport and dissociation of ions.
  • a high dielectric constant favors the dissociation of ions, and therefore the number of ions available in a given volume, whereas a low viscosity will be favorable for the ionic diffusion which plays a key role, among other parameters, in the charging and discharging speeds of the electrochemical system.
  • a lithium battery electrode comprises a current collector on which is deposited a composite material which comprises a lithium-active element, a polymer which acts as a binder and which is generally a copolymer of fluoride. vinylidene, and an electrically conductive additive that is usually carbon black.
  • Li-ion batteries are used especially in mobile phones, computers and light tools.
  • Li-ion batteries have the highest energy density of all rechargeable systems and are therefore widely considered as a source of electrical energy in streetcars, electric vehicles and hybrid vehicles of the future, particularly those that would allow plug-in hybrid charging.
  • the new negative electrode active elements have significantly higher capacities than the graphite which reaches 372 mAh / g, this theoretically allows to have the same capacity in a smaller volume or to have in the same volume, a capacity more big.
  • the theoretical capacity of Si is 4200 mAh / g, while that of Sn is 1400 mAh / g.
  • the capacity after 30 cycles, for four Sn-Sb-Cu tested alloys varies from 100 to 450 mAh / g with a positive influence of the Sb content; on the other hand, the capacitance as a function of the current density decreases all the more as the Sb content is high (no value reaches 400 mAh / g at 2 mA / cm 2 ).
  • a method using an alloy is claimed in US Patent Application No. 2008 000 3503 of January 3, 2008 to Canon Kabushiki Kaisha; the objective is to prepare a silicon and tin composite covered with a protective layer of W, Ti, Mo, Nb or V oxides.
  • a conductive additive to be selected from mesoporous carbons, nanotubes or carbon is added.
  • JP-A-2002-8652 discloses a negative electrode prepared by depositing fine Si particles on a graphite powder and then producing a carbon coating. Nevertheless, these electrodes present problems of loss of electrical contact over time.
  • the 20 micron silicon particles are dispersed in THF with carbon nanotubes and PVC. After ultrasonification, the suspension is dried and the solid treated at 900 ° C. under argon. After 20 cycles, the capacity is only 650 mAh / g of electrode for composites incorporating up to 30% of nanotubes; it is necessary to reach a content of 35% of nanotubes to obtain a capacity of 750 mAh / g of electrode at the twentieth cycle. When 500 nm diameter silicon particles are used instead of the 20 micron particles, the value then reaches 970 mAh / g of electrode at the twentieth cycle. It is not clear, however, whether the decrease in the size of the silicon particles is accompanied by a decrease in the density of the electrode. And the capacity is not stable in cycling.
  • Matshushita Electric Industrial which describes a negative electrode.
  • the problem solved in this document D1 is also the obtaining of a negative electrode for battery having a high capacity maintenance during the charging and discharging cycles.
  • an active material capable of forming a reversible alloy with lithium comprising at least one metal and at least one semiconductor.
  • the results are improved when the electrode substrate is conductive and porous, and the active material fills the pores of the substrate.
  • the electrode thus comprises an active material comprising both a metal (such as Ti) and a semi-metal (semiconductor such as Si); a conductive material such as carbon nanotubes (CNTs) and a porous conductive substrate.
  • This document describes a method of manufacturing a negative electrode for rechargeable battery. According to this method, a mixture of conductive material containing fibrous carbon, a polymer and a dispersion medium is produced; to which is added an active material containing silicon.
  • the use as conductive material of NTC or NFC is exemplified.
  • the teaching provided by this document is similar to that described above for the document WO 2004/049473 and does not solve the problem.
  • the present invention provides an electrode composite material for the manufacture of negative electrodes for batteries so that the batteries have a capacity maintenance as high as possible to the cycling.
  • the electrode material allows the batteries to have low internal resistance and charge and discharge kinetics as high as possible.
  • the invention also proposes an industrial process for manufacturing the electrode composite material, the electrodes obtained and the batteries incorporating said electrodes.
  • the technical problem solved is, in particular but not exclusively, the realization of a composite material active against lithium, capable of forming reversibly alloys.
  • the material makes it possible to manufacture negative electrodes of Li-ion batteries.
  • the negative electrodes can be incorporated in a battery having a maintenance capacity as high as possible to cycling, a low internal resistance and load kinetics and discharge as strong as possible.
  • carbon nanotubes NTC is meant one or more hollow tubes with one or more graphitic plane walls or sheets of graphene, coaxial, or graphene sheet wound on itself. This or these tubes, usually “open” (ie open at one end) resemble several grid tubes arranged coaxially; in cross section the CNT is in the form of concentric rings. The external diameter of the CNT is from 2 to 50 nm.
  • SWNT single-walled carbon nanotubes
  • MWNT multi-walled carbon nanotubes
  • carbon nanofibers or NFC fibrils solid fibers of graphitic carbon, with a diameter of
  • NFCs are in the form of a disk.
  • the length / diameter ratio is much greater than 1, typically greater than 100.
  • the conductive material comprises a mixture of CNT and NFC as in the present invention.
  • NTCs are used alone as a conductive element.
  • the conductive material is at least one of carbon nanotube and carbon nanofiber"
  • the CNTs are alone.
  • the range of values for the diameter given in paragraph [0080] corresponds to the diameter of the CNTs.
  • the invention more particularly relates to an electrode composite material comprising a conductive additive, mainly characterized in that the conductive additive is a mixture of conductive additives containing at least carbon nanofibers
  • NFC carbon nanotubes
  • CNTs carbon nanotubes
  • the mixture may comprise other conductive additives chosen from graphite, carbon black such as acetylene black and SP carbon.
  • Carbon nanofibers have a diameter ranging from 50 to 200 nm and a form factor that can go from 10 to 1000 and carbon nanotubes, have a diameter of between 0.4 and 20 nm and a form factor of 20 to 1000.
  • the composite material according to the invention also comprises a so-called active element, that is to say an element operating on the principle of insertion (Li + ), conversion, displacement, and dissolution-recrystallization, for the electrode that contains said active element.
  • active element that is to say an element operating on the principle of insertion (Li + ), conversion, displacement, and dissolution-recrystallization, for the electrode that contains said active element.
  • the composite material comprises an active element capable of making reversible alloys with lithium, for example silicon (Si) or tin (Sn).
  • the invention also relates to an electrode comprising said composite material.
  • the electrode may be the negative electrode for electrochemical devices such as lithium batteries.
  • the subject of the invention is the use of such an electrode in a non-aqueous electrolyte secondary battery, as well as the secondary battery (Li-ion) comprising the electrode comprising said composite material.
  • charging and discharging of the battery takes place in a range of 0 to 1.1 lithium atoms inserted per silicon atom.
  • the invention also relates to the manufacture of secondary batteries with nonaqueous electrolyte, as well as secondary lithium batteries comprising an electrode comprising said composite material.
  • the composite material is usable in a non-aqueous electrolyte secondary battery having excellent capacitance characteristics and cycling under high current density.
  • the invention also relates to a method of manufacturing an electrode composite material comprising: the preparation of a suspension containing a binder P1, at least NFC carbon nanofibers conferring electronic conductivity, at least NTC carbon nanotubes conferring electronic conductivity, an M1 electrode active element capable of reversibly forming a alloy with lithium, a volatile solvent Sl,
  • the invention relates to the use of the method of manufacturing a composite material for the manufacture of electrodes for electrochemical devices of the lithium battery type.
  • the substrate film can be used directly as an electrode.
  • the invention applies to the use of the method for the manufacture of secondary battery with non-aqueous electrolyte, comprising an electrode comprising the composite material thus obtained.
  • FIG. graphical form the rheological characteristics of a dispersion obtained according to the process of the invention
  • FIGS. 2 and 3 represent scanning electron microscopic photographs of the composite material according to the invention with respectively a magnification of 3000 and 5000
  • FIG. 4 represents curves of evolution of capacitance Q as a function of the number of cycles for several samples, one of which is made of composite material according to the invention
  • FIG. 5 represents the evolution of the capacitance Q for an electrode made according to example 2.
  • the electrode composite material proposed according to the invention comprises a mixture of conductive additives containing at least carbon nanofibers (NFC) and at least carbon nanotubes (CNTs).
  • the two conductive additives NFC and NTC are different from the conductive additives used in the state of the art, such as SP carbon or graphite, by their very high form factor. This is defined by the largest dimension ratio on the smallest dimension of the particles. This ratio is of the order of 30 to 1000 for nanofibers and nanotubes, against 3 to 10 for SP carbon and graphite.
  • a conductive additive a mixture of conductive additives containing at least carbon nanofibers (NFC) and at least carbon nanotubes (CNTs), that carbon nanofibers and carbon nanotubes in the electrode composite material, complementary roles with respect to maintaining the cycling capacity, which give a negative electrode based on an active element capable of reversibly forming alloys with lithium an excellent stability in cycling at high levels of active element in the electrode composite material.
  • NFC carbon nanofibers
  • CNTs carbon nanotubes
  • the carbon nanofibers which are easily dispersed because of their large diameter, form a continuous structure capable of ensuring the transport of electrons from the current collector through the entire volume of the composite material.
  • This structure can preserve its integrity despite variations in the volume of the particles of the active element due to the very long length of the carbon nanofibers.
  • Carbon nanotubes are more difficult to disperse. Nevertheless, thanks to the method according to the invention, it is possible to distribute them in the electrode composite material in such a way that they form a mesh around the particles of the active element and thus play a complementary role to that of the nanofibres. .
  • they ensure the distribution to the particles of the active element of the electrons brought from the current collector by the carbon nanofibers.
  • they because of their length and their flexibility, they form electric bridges between the particles of the active element fractured by the repetition of their expansions and voluminal contractions.
  • the applicant has found that the usual conductive additives (SP carbon and graphite), with their low form factor, are significantly less effective than carbon nanofibers to ensure the maintenance during the cycling of electron transport from the collector current. Indeed, with this type of conductive additives, the electrical paths are formed by the juxtaposition of grains and the contacts between them are easily broken due to the volume expansion of the particles of the active element.
  • the conductive additive mixture may further comprise one or more other conductive additives consisting of graphite, carbon black such as acetylene black, SP carbon.
  • the electrode composite material comprises an active element with respect to lithium.
  • these metals M or metal alloys are chosen from Sn, Sb, Si.
  • the composite material also comprises at least one polymeric binder.
  • the polymeric binder is chosen from polysaccharides, modified polysaccharides, latices, polyelectrolytes, polyethers, polyesters, polyacrylic polymers, polycarbonates, polyimines, polyamides, polyacrylamides, polyurethanes, polyepoxides, polyphosphazenes, polysulfones, halogenated polymers.
  • the composite material has a submicron and micron structure that can be observed on a sample by scanning electron microscopy
  • Carbon nanofibers and carbon nanotubes have fibrillar morphology. Carbon nanofibers are different from carbon nanotubes by their larger diameter, 100 nm to 200 nm on average for the first against 10 to 20 nm average for the second.
  • the length of the carbon nanofibers is generally of the order of 10-30 ⁇ m and the length of the carbon nanotubes is generally of the order of 5-
  • the method according to the invention for the preparation of an electrode composite material comprises: - the preparation of a suspension containing a polymer P1, at least NFC carbon nanofibers conferring electronic conductivity, at least carbon nanotubes NTC imparting electronic conductivity, optionally a third conductive additive C1, an electrode active element M1 capable of reversibly forming an alloy with lithium, a volatile solvent S1, developing a film from the suspension obtained.
  • This film can optionally be densified by applying a pressure (between 0.1 and 10 tons).
  • a pressure between 0.1 and 10 tons.
  • the polymer P1 is introduced in the pure state or in the form of a solution in a volatile solvent; the NFC + NTC mixture is introduced in the pure state or in the form of a suspension in a volatile solvent.
  • the polymer P 1 can be chosen from polysaccharides, modified polysaccharides, latices, polyelectrolytes, polyethers, polyesters, polyacrylic polymers, polycarbonates, polyimines, polyamides, polyacrylamides, polyurethanes, polyepoxides and polyphosphazenes. polysulfones, halogenated polymers.
  • halogenated polymer there may be mentioned homopolymers and copolymers of vinyl chloride, vinylidene fluoride, vinylidene chloride, ethylene tetrafluoride, chlorotrifluoroethylene, and copolymers of vinylidene fluoride and of hexafluoropropylene (PVdF-HFP).
  • Water-soluble polymers P 1 are particularly preferred.
  • carboxymethyl cellulose and hydroxypropyl methyl cellulose
  • polyethers such as homopolymers and copolymers of ethylene oxide
  • polyacrylic polymers such as homopolymers and copolymers of acrylamide, acrylic acid, homopolymers and copolymers of maleic acid, homopolymers and copolymers of maleic anhydride, homopolymers and copolymers of acrylonitrile, homopolymers and copolymers of vinyl acetate and vinyl alcohol, homopolymers and pyrrolidone vinyl copolymers
  • polyelectrolytes such as homopolymers and copolymers of vinyl sulfonic acid, phenyl sulfonic acid, homopolymers and copolymers allylamine, diallyldimethylammonium, vinylpyridine, aniline, ethylenimine.
  • aqueous dispersions of polymers known as latex based on vinyl acetate, acrylic, nitrile rubber, polychloroprene, polyurethane, acrylic styrene and styrene butadiene may be mentioned.
  • copolymer is meant in the present text, a polymer compound obtained from at least two different monomers.
  • Polymer blends are also interesting. There may be mentioned mixtures of carboxymethyl cellulose with styrene-butadiene latex, acrylic, and nitrile rubber.
  • the volatile solvent S1 is an organic solvent or water or a mixture of organic solvent and water.
  • Organic solvents include N-methyl pyrrolidone and dimethyl sulfoxide.
  • Solvent S 1 is preferably water. Its pH can be adjusted by addition of an acid or a base.
  • the solvent S1 may contain a surfactant.
  • a surfactant There may be mentioned 4- (1,1,3,3-tetramethylbutyl) phenylpolyethylene glycol (marketed under the trade name Triton® X100).
  • Compound C1 may consist of graphite, carbon black such as acetylene black, SP carbon. Commercial conductive additives meet this requirement. These include in particular compounds Ensagri Super S ® or Super P® sold by Chemetals.
  • the active element M1 may be chosen in particular from the compounds that react with lithium during charging of the Li-ion battery, for example: M metals or alloys of metals M a M b M c ... forming an alloy with Lithium type Li x M has M b M c .
  • the preparation of the suspension can be carried out in a single step or in two successive steps.
  • a first embodiment consists in preparing a dispersion containing the carbon nanotubes and optionally all or part of the polymer P1, and then adding to this dispersion the other constituents of the composite material, this new suspension being used for the preparation of the final film.
  • a second embodiment consists in preparing a dispersion containing the carbon nanotubes and optionally all or part of the polymer P1 in a solvent, adding the active element M1, removing the solvent to obtain a powder and then forming a new suspension. by adding Sl and the remainder of the constituents of the composite material to this powder, this new suspension being used for the preparation of the final film.
  • the preparation of a dispersion of carbon nanotubes is advantageous because it allows the formation of a more homogeneous composite material film.
  • the film can be obtained from the suspension by any conventional means, for example extrusion, spreading (tap casting) or spraying (spray drying) on a substrate followed by drying.
  • a metal sheet capable of serving as a collector for the electrode for example a copper or nickel sheet or grid treated with an anti-corrosion coating.
  • the substrate film thus obtained can be used directly as an electrode.
  • the composite material according to the invention is useful for the elaboration of electrodes for electrochemical devices, in particular in lithium batteries.
  • Another object of the invention is constituted by a composite electrode constituted by the material according to the invention.
  • a lithium battery comprises a negative electrode constituted by lithium metal, a lithium alloy or a lithium insertion compound and a positive electrode, the two electrodes being separated by a solution of a salt whose cation contains at least one lithium ion, for example LiPF ⁇ , LiAsFe, LiClO 4 , LiBF 4 , LiC 4 BO 8 , Li (C 2 F 5 SO 2 ) 2 N, Li [(C 2 F 5 ) 3 PF 3 ], LiCF 3 SO 3 , LiCH 3 SO 3 , and LiN (SO 2 CF 3 ) 2 , LiN (FSO 2) 2, ...
  • a salt whose cation contains at least one lithium ion
  • the negative electrode may be a composite electrode according to the invention containing a negative electrode active element as defined above.
  • the positive electrode When the positive electrode is constituted by a lithium insertion compound, it may also consist of a material according to the invention in which the active element is a positive electrode active element as defined above.
  • the nanotubes have an average diameter of 20 nm, an estimated length of a few microns and their chemical composition shows that they contain about 7% of mineral ash from the synthesis process.
  • the carbon nanofibers have an average diameter of 150 nm and an estimated length of 15 ⁇ m. They come from SHOWA DENKO company.
  • CMC is used here to allow the incorporation and dispersion of carbon nanotubes in water.
  • CMC is a polyelectrolyte which, thanks to the presence of cellulosic units, can establish van der Waals bonds with carbon nanotubes and adsorb to their surface, thus promoting their wetting with water, and thanks to the presence of ionizable carboxylate groups ensures good dispersion of the nanotubes according to an electrostatic repulsion mechanism.
  • the conditions of the dispersion are 15 h at 700 rpm, a 12.5 ml crushing bowl containing 3 beads of 10 mm diameter, 1 ml of deionized water, 32 mg of nanotubes, and 4 mg of CMC.
  • Figure 1 gives the rheological characteristics of the dispersion after 15 hours of grinding.
  • optimum electrochemical performances are obtained when the storage module G 'reaches a value of 800 Pa in the frequency range 0.1 to 10 Hz.
  • the silicon particles (320 mg), the carbon nanofibers (16 mg) and the remaining CMC (28 mg) are added, and the mixture is mixed by co-grinding. 500 rpm for 30 minutes.
  • the composite material constitutes 28.57% by weight of the suspension. The rest is deionized water.
  • the electrode is prepared by coating the suspension containing the composite on a 25 ⁇ m thick copper current collector.
  • the height of the doctor blade of the coating machine is set at 100 ⁇ m.
  • the electrode is dried first at room temperature and then 3h at 55 ° C under vacuum.
  • the amount of silicon deposited per cm 2 of current collector is 1.70 mg and the thickness of the electrode 15 ⁇ m.
  • Figures 2 and 3 represent scanning electron microscope (SEM) photographs of the obtained composite material, respectively with a magnification of 3000 and 50000. It appears that the composite material according to the invention consists of silicon particles, nanotubes of carbon and nanofibers of carbons. The latter are differentiated from the first by their larger diameter, 150 nm on average against 20 nm on average, and their greater length.
  • CMC is present in the form of a very thin layer on the surface of all other materials.
  • the carbon nanofibers form a continuous structure capable of supplying the electron collector throughout the volume of the composite material from the current collector.
  • the carbon nanotubes form a mesh around the silicon particles. It appears that the method according to the invention allows a very homogeneous distribution of the two conductive additives.
  • the electrode (a) thus obtained was mounted in a battery having as a positive electrode a lithium metal foil laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a 1M LiPF solution. 6 dissolved in EC / DMC 1: 1.
  • the cycling performance was measured and compared to that of similar batteries in which the negative electrode is an electrode whose initial composition is: - (b) 80% Si, 8% CMC, 12% SP carbon;
  • the cycling was carried out with a constant specific capacity limited to 950 mAh / g in the 0-1 V vs potential range. Li + / Li. It was driven in galvanostatic mode at a current I of 150 mA / g which corresponds to a regime of C / 6 (duration of 6.33 hours of each charge and discharge). This mode of cycling leads to a constant capacity as long as the end-of-reaction potential is greater than OV, then to a capacity which decreases as a function of the number of cycles when the end-of-reaction potential becomes equal to OV.
  • FIG. 4 represents the evolution of the capacity Q (in mAh / g) as a function of the number of cycles N.
  • the correspondence between the two curves and the samples is as follows: Curve - • - • -: sample a according to the Invention Curve f: Comparative Sample B Curve O: Comparative Sample C Curve: Comparative Sample
  • the comparison of the cycling curves shows a substantial improvement in cycling capacity only when the composite material constituting the electrode contains the mixture of the two conductive additives claimed by the invention: carbon nanotubes and carbon nanofibers.
  • the capacity restored at the hundredth cycle is 900 mAh / g of silica, ie 720 mAh / g of electrode.
  • the volume capacity of the electrode is approximately 630 mAh / cm 3, which is to be compared with the volume capacity of commercial graphite anodes equal to approximately 500 mAh / cm 3 ("Nano-and-bulk-silicon-based insertion anodes for lithium- ion secondary cell ", U. Kasavajjula et al., J.
  • Example 2 is obtained with an electrode according to the invention and a battery prepared as in Example 1.
  • the amount of silicon deposited per cm 2 of current collector is 1.80 mg.
  • the mixture of CNT and NFC is preferably within the following limits: bound 1: 9% carbon nanofibers + 3% carbon nanotubes terminal 2: 3% carbon nanofibers + 9% carbon nanotubes.
  • Example 3 is given to illustrate the results within these limits: Example 3
  • the silicon particles, the carbon nanofibers and the remainder of the CMC are added, and the whole is mixed by co-grinding at 500 rpm for 30 minutes.
  • the composite material constitutes 28.57% by mass of the suspension.
  • the rest is deionized water.
  • the electrodes are prepared by coating the suspension containing the composite on a 25 ⁇ m thick copper current collector.
  • the height of the doctor blade of the coating machine is set at 100 ⁇ m.
  • the electrodes are first dried at room temperature and then 3h at 55 ° C under vacuum.
  • the electrodes thus obtained were mounted in a battery having, as a positive electrode, a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte constituted by a 1M LiPF ⁇ solution dissolved in EC / DMC 1: 1.
  • the cycling was carried out with a constant specific capacity limited to 950 mAh / g in the 0-1 V vs potential range. Li + / Li. It was driven in galvanostatic mode at a current I of 150 mA / g which corresponds to a regime of C / 6 (duration of 6.33 hours of each charge and discharge). This mode of cycling leads to a constant capacity as long as the end-of-reaction potential is greater than OV, then to a capacity which decreases as a function of the number of cycles when the end-of-reaction potential becomes equal to OV.
  • VCF Vapor growth carbon fiber
  • MWNT Multi Walled Carbon Nanotubes
  • the fibrous carbon content is preferably greater than 3 and less than 12 parts per 100 parts of active material.
  • the amount provided for in the present invention is greater than the upper limit of this range, ie 12 parts of conductive additive for 80 parts (equivalent to 15 parts per 100 parts) of active material.
  • the content of fibrous carbon is greater than 12 parts per 100 parts of active material (ie 9.6% by weight in the electrode).
  • the cycling stability is worse as illustrated in Example 4 below.
  • the composite material of this example consists of 83% by weight of silicon particles of 1 to 10 ⁇ m
  • the silicon particles, the carbon nanofibers and the remainder of the CMC are added, and the whole is mixed by co-grinding at 500 rpm for 30 minutes.
  • the composite material constitutes 28.57% by weight of the suspension.
  • the rest is deionized water.
  • the electrodes are prepared by coating the suspension containing the composite on a 25 ⁇ m thick copper current collector.
  • the height of the doctor blade of the coating machine is set at 100 ⁇ m.
  • the electrodes are first dried at room temperature and then 3h at 55 ° C under vacuum.
  • the electrodes thus obtained were mounted in a battery having, as positive electrode, a lithium metal foil laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a 1M LiPF ⁇ solution dissolved in EC / DMC 1: 1.
  • the cycling was carried out with a constant specific capacity limited to 950 mAh / g in the 0-1 V vs potential range. Li + / Li. It was driven in galvanostatic mode at a current I of 150 mA / g which corresponds to a regime of C / 6 (duration of 6.33 hours of each charge and discharge). This mode of cycling leads to a constant capacity as long as the end-of-reaction potential is greater than 0V, then to a capacity which decreases as a function of the number of cycles when the end-of-reaction potential becomes equal to 0V.
  • the service life increases to 88 in number of cycles instead of 120 if we choose 12 parts for 80 parts of active material as can be seen in the previous table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

L' invention concerne un matériau composite d'électrode et son procédé de fabrication. Le matériau composite comporte un élément actif c'est-à-dire présentant une activité électrochimique, un additif conducteur, un liant; selon l'invention, l'additif conducteur est un mélange d'additifs conducteurs contenant au moins des nanofibres de carbone (NFC) et au moins des nanotubes de carbones (NTC). L' invention concerne également les électrodes négatives pour dispositifs électrochimiques de type batteries au lithium comprenant ledit matériau composite et les batteries secondaires (Li-ion) munies d'une telle électrode négative.

Description

MATERIAU COMPOSITE D'ELECTRODE, ELECTRODE DE BATTERIE CONSTITUEE DUDIT MATERIAU ET BATTERIE AU LITHIUM COMPRENANT UNE TELLE ELECTRODE.
Domaine de l'invention
L' invention concerne un matériau composite d'électrode, elle concerne également des électrodes de batterie constituées dudit matériau et des batteries au lithium comprenant de telles électrodes.
L'invention s'applique au domaine du stockage d'énergie électrique dans des batteries et plus particulièrement dans des batteries au lithium secondaires de type Li-ion. Arrière plan technologique de l'invention
Les matériaux composites d'électrodes comportent un élément actif c'est-à-dire un élément susceptible de présenter une activité électrochimique vis-à-vis d'un métal ainsi qu'un liant et un additif conducteur. Pour l'électrode négative d'une batterie, l'élément actif utilisé le plus classiquement est le graphite et l'oxyde de cobalt pour l'électrode positive. Cependant, on trouve également pour l'électrode négative des batteries au lithium, le silicium Si ou l'étain Sn. Par batterie Li-ion, on entend une batterie qui comprend au moins une électrode négative ou anode, une électrode positive ou cathode, un séparateur, et un électrolyte. L' électrolyte est constitué d'un sel de lithium, généralement l' hexafluorophosphate de lithium, mélangé à un solvant qui est un mélange de carbonates organiques, choisis pour optimiser le transport et la dissociation des ions. Une constante diélectrique élevée favorise la dissociation des ions, et donc, le nombre d'ions disponibles dans un volume donné alors qu'une faible viscosité sera favorable à la diffusion ionique qui joue un rôle essentiel, entre autres paramètres, dans les vitesses de charge et décharge du système électrochimique .
De manière connue, une électrode pour batterie au lithium comprend un collecteur de courant sur lequel est déposé un matériau composite qui comprend un élément actif vis à vis du lithium, un polymère qui joue le rôle de liant et qui est généralement un copolymère du fluorure de vinylidène, et un additif conducteur électrique qui est généralement du noir de carbone. Lors de la charge de la batterie, le lithium s'insère dans l'actif d'électrode négative et sa concentration est maintenue constante dans le solvant par la désintercalation d'une quantité équivalente de l'élément actif de cathode. L'insertion dans l'électrode négative se traduit par une réduction du lithium et il faut donc apporter, via un circuit extérieur, les électrons à cette électrode, en provenance de l'électrode positive.
A la décharge, les réactions inverses ont lieu. Des batteries Li-ion s'utilisent notamment dans les téléphones mobiles, les ordinateurs et l'outillage léger.
D'autres applications sont envisagées telles que le transport automobile avec des véhicules électriques ou des véhicules hybrides. En effets, les réflexions sur l'influence du CO2 anthropogénique sur le réchauffement climatique et le besoin de s'abstraire de la consommation de combustibles fossiles provoquent un très fort regain d'intérêt pour les systèmes de stockage d'électricité, en particulier pour les batteries. Les énergies renouvelables, telles que le photovoltaïque et l'éolien sont intermittentes et le stockage semble la meilleure méthode pour permettre une utilisation et une gestion optimales de la production d' énergie . Parmi les systèmes de stockage d'énergie électrochimique, les batteries Li-ion présentent la densité d'énergie pratiquement la plus élevée de tous les systèmes rechargeables et sont donc largement envisagées comme source d'énergie électrique dans les tramways, les véhicules électriques et les véhicules hybrides du futur, en particulier ceux qui permettraient de recharger directement sur le secteur (« Plug-in Hybrids ») .
Ils présentent cependant quelques inconvénients que la communauté scientifique mondiale essaie de résoudre.
Actuellement, le problème technique à résoudre est le coût du kWh stocké encore élevé. Ce problème n'est en effet pas correctement résolu par les solutions existantes, ce qui conduit à de nombreux travaux de recherche en particulier sur des éléments actifs alternatifs tant à l'électrode positive (phosphates, divers oxydes, ..), qu'à l'électrode négative (silicium, étain, alliages divers, ..) .
Parmi les propriétés recherchées pour de telles batteries, on a principalement :
Une grande vitesse de charge/décharge, De bonnes performances de maintien de la capacité en fonction du cyclage,
Un maintien de la capacité en fonction de la densité de courant, Une faible capacité irréversible,
Une faible résistance interne, surtout à basse température.
Les nouveaux éléments actifs d'électrode négative ont des capacités nettement plus élevées que le graphite qui atteint 372 mAh/g, cela permet théoriquement d'avoir la même capacité dans un volume plus petit ou d' avoir dans le même volume, une capacité plus grande.
La capacité théorique de Si est de 4200 mAh/g, tandis que celle de Sn est de 1400 mAh/g.
Il est admis, néanmoins, que les fortes variations de volume occasionnées par les charges et décharges conduisent à des contraintes mécaniques et des pertes de cohésion de l'électrode. Cette perte s'accompagne au cours du temps d'une très grande diminution des capacités et d'une augmentation de la résistance interne.
La demande EP 0 997 543 Al du 29 octobre 1999 de l'Université israélienne Ramot, "Nanostructure alloy anodes, process for their préparation and lithium batteries comprising said anodes" revendique une structure qui contient des alliages métalliques sous forme de particules de 20 à 500 nm, liées entre elles et fixées électrolytiquement sur un support. Ces alliages contiennent Sn ou Zn comme constituant principal (40-90%) et incorporent d' autres éléments sélectionnés parmi le groupe du carbone et un métal, Sb, Zn, Ag, Cu, Fe, Bi, Co, Mn ou Ni, qui peut être lithié à au moins 40% de façon réversible. La capacité après 30 cycles, pour quatre alliages testés Sn-Sb-Cu, varie de 100 à 450 mAh/g avec une influence positive de la teneur en Sb ; par contre, la capacité en fonction de la densité de courant décroît d'autant plus que la teneur en Sb est élevée (aucune valeur n'atteint 400 mAh/g à 2mA/cm2) .
Ces alliages ne présentent donc pas des performances significativement supérieures à celles du graphite.
Une méthode où l'on utilise un alliage est revendiquée dans la demande de brevet US Patent Application n° 2008 000 3503 du 3 janvier 2008 au nom de Canon Kabushiki Kaisha ; l'objectif est de préparer un composite de silicium et d' étain recouvert d'une couche protectrice d'oxydes de W, Ti, Mo, Nb ou V. Un additif conducteur à choisir parmi les carbones mésoporeux, les nanotubes ou les fibres de carbone est ajouté.
Cependant, les performances décroissent avec le cyclage de façon importante.
Le brevet JP-A-2002-8652 décrit une électrode négative préparée en déposant de fines particules de Si sur une poudre de graphite, puis en réalisant un revêtement carboné. Néanmoins, ces électrodes présentent des problèmes de perte de contact électrique au cours du temps .
L'approche inverse consistant à recouvrir un matériau carboné par du silicium est exposée dans « Electrochemical characteristics of silicon coated graphite prepared by gas suspension spray method for anode material of lithium secondary batteries », Bup Ju Jeon et al., Korean J. Chem. Eng. 23 (5), (2006) , 854- 859. Dans ce travail, un composite carbone/silicium (C/Si) est fabriqué en lit fluidisé en injectant du dichlorodiméthylsilane sur des particules de graphite de 10 microns, puis en calcinant à 5000C. La capacité après 10 cycles est de 479 mAh/g dans le meilleur des cas et dépend fortement du mélange des solvants utilisés.
La différence par rapport au graphite n'est pas très grande, compte tenu de la difficulté du procédé en lit fluidisé pour des tailles de particules de cet ordre.
Ces différentes tentatives montrent que le revêtement de l'élément actif nanométrique par une espèce carbonée ou, à l'inverse, le revêtement d'un matériau carboné par des nanoparticules de silicium ne constituent pas des méthodes permettant d'aboutir à une forte amélioration des performances de l'électrode négative. La demande internationale WO 2004/049473 A2 de Showa Denko du 10 juin 2004, décrit un matériau d'électrode contenant un composé à base de Si ou Sn et un carbone fibreux. Le matériau d'électrode en question est un composite préparé en dispersant des particules de Si ou Sn de 20 microns et des nanofibres de carbone de 150 nm de diamètre dans une solution alcoolique d'une résine phénolique. Le composite est séché et calciné sous argon à 29000C.
Le meilleur résultat est obtenu sur un composite contenant 10% de fibres, ce composite présente en effet, une capacité de 589 mAh/g au bout de 50 cycles. Ce résultat est meilleur que dans les exemples précédents et supérieur à celui qu'on obtient avec le graphite. Néanmoins, le procédé d'obtention du composite est assez compliqué et le ratio coût du composite/performance est plus faible que pour une électrode classique en graphite. Les résultats de stabilisation au cours du cyclage ne sont obtenus qu'à partir de 10% d'additif conducteur.
Le principe de carboniser un précurseur polymérique est utilisé dans : « Electrochemical dilatometric study on Si-embedded carbon nanotubes powder électrodes » de S.
Park et al., Electrochemical and Solid State Letters, 10
(6), (2007), A 142-145. Les particules de silicium de 20 microns sont dispersées dans du THF avec des nanotubes de carbone et du PVC. Après ultrasonification, la suspension est séchée et le solide traité à 9000C sous Argon. Après 20 cycles, la capacité n'est que de 650 mAh/g d'électrode pour les composites incorporant jusqu'à 30% de nanotubes ; il faut atteindre une teneur de 35% en nanotubes pour obtenir une capacité de 750 mAh/g d'électrode au vingtième cycle. Lorsqu'on utilise des particules de silicium de 500 nm de diamètre au lieu des particules de 20 microns, la valeur atteint alors 970 mAh/g d'électrode au vingtième cycle. Il n'est cependant pas précisé si la diminution de la taille des particules de silicium s'accompagne d'une baisse de densité de l'électrode. Et la capacité n'est pas stable en cyclage.
Ainsi, selon l'état de la technique présenté ci- dessus, les procédés simples et peu coûteux comme le mélange physique, ne permettent pas d'avoir des performances nettement améliorées par rapport aux solutions actuelles, c'est à, dire les solutions utilisant le graphite.
A l'inverse, les solutions techniques qui semblent améliorer les performances de manière significative font appel à des procédés coûteux ou compliqués à mettre en œuvre ; certains de ces procédés sont multi-étapes avec des pertes de rendement à chacune d'entre elles et/ou mettent en œuvre des solvants organiques (THF : tétrahydrofuranne) .
Il ressort de l'état de la technique ci-dessus que le problème technique du maintien d'une capacité la plus élevée possible est un problème non résolu. La réduction de la taille des particules d' étain ou de silicium apporte une amélioration mais ne permet pas d'empêcher la perte de propriétés. On pourra se reporter également à l'état de la technique constitué par le document Dl : JP2007 - 335283
(US 2008/0096110) publié le 24 Avril 2008- Déposant
Matshushita Electric Industrial qui décrit une électrode négative . Le problème résolu dans ce document Dl est également l'obtention d'une électrode négative pour batterie présentant un maintien de capacité élevé au cours des cycles de charge et décharge. Pour cela, il est proposé d'utiliser un matériau actif capable de former un alliage réversible avec le lithium comportant au moins un métal et au moins un semi-conducteur. Les résultats sont améliorés lorsque le substrat d'électrode est conducteur et poreux, et que le matériau actif remplit les pores du substrat . L'électrode comporte ainsi, un matériau actif comprenant à la fois un métal (comme Ti) et un semi-métal (semi-conducteur comme Si) ; un matériau conducteur comme des nanotubes de carbone (NTC) et un substrat conducteur poreux . Le même problème que celui de la présente invention a été résolu dans ce brevet, non pas par le choix de l'additif conducteur comme on le verra dans la suite pour la présente invention mais par le choix du matériau actif qui comporte la combinaison de deux éléments (métal et semi-métal) . Cette solution est différente de celle proposée dans la présente invention. On pourra également se reporter au document D2 : US 2006/172196 - publié le 03 Août 2006 - Déposant Matshushita Electric Industriel.
Ce document décrit un procédé de fabrication d'une électrode négative pour batterie rechargeable. Selon ce procédé, on réalise un mélange de matériau conducteur contenant du carbone fibreux, un polymère et un milieu de dispersion; auquel on rajoute un matériau actif contenant du silicium. L'utilisation comme matériau conducteur de NTC ou de NFC est donnée en exemple. L'enseignement apporté par ce document est similaire à celui décrit précédemment pour le document WO 2004/049473 et ne permet pas de résoudre le problème posé.
Un autre problème qui a été résolu par la présente invention est la mise au point d'un procédé de fabrication du matériau d'électrode simple et facile à industrialiser permettant d'obtenir des coûts modérés du KW stocké et ainsi permettre une large diffusion des batteries utilisant lesdites électrodes. A cet effet, l'invention propose un matériau composite d'électrode permettant la fabrication d'électrodes négatives pour batteries de sorte que les batteries présentent un maintien de capacité aussi élevé que possible au cyclage. En outre, le matériau d'électrode permet aux batteries de présenter une faible résistance interne et des cinétiques de charge et décharge aussi fortes que possible .
L' invention propose également un procédé industriel de fabrication du matériau composite d'électrode, les électrodes obtenues et les batteries incorporant lesdites électrodes .
Le problème technique résolu est, en particulier mais non exclusivement, la réalisation d'un matériau composite actif vis à vis du lithium, capable de former de façon réversible des alliages. Le matériau permet de fabriquer des électrodes négatives de batteries Li-ion. Les électrodes négatives peuvent être incorporées dans une batterie présentant un maintien de la capacité aussi élevée que possible au cyclage, une faible résistance interne et des cinétiques de charge et décharge aussi fortes que possible.
Résumé de l'invention.
Si l'art antérieur montre une amélioration des performances d'électrode négative à base d'un élément actif capable de former un alliage de façon réversible avec le lithium lorsque l'on substitue tout ou partiellement un additif conducteur usuel par des nanotubes de carbone ou des nanofibres de carbones, aucun document en revanche y compris le document Dl, ne décrit ni ne suggère l'utilisation d'un additif conducteur comprenant au moins des nanofibres de carbone et des nanotubes de carbone pour résoudre le problème du maintien d'une capacité la plus élevée possible.
Par nanotubes de carbone NTC, on entend un ou plusieurs tubes creux à une ou plusieurs parois de plan graphitique ou feuillets de graphène, coaxiaux, ou feuillet de graphène enroulé sur lui-même. Ce ou ces tubes, le plus souvent « débouchant » (c'est à dire ouverts à une extrémité) ressemblent à plusieurs tubes de grillages disposés coaxialement ; en coupe transversale les NTC se présente sous forme d'anneaux concentriques. Le diamètre externe des NTC est de 2 à 50nm. On parle de nanotubes de carbone monofeuillet, (en anglais :Single- walled Carbon Nanotubes, SWNT) ou de nanotubes de carbone multifeuillets, (en anglais Multi-walled Carbon Nanotubes, MWNT) . Par nanofibres de carbone ou fibrilles NFC, on entend des fibres pleines de carbone graphitique, de diamètre de
50 à 200nm, mais pouvant présenter souvent un fin canal central creux. En coupe transversale, les NFC ont la forme d'un disque.
Pour les nanotubes comme pour les nanofibres, le rapport longueur/diamètre est très supérieur à 1, typiquement supérieur à 100.
Il est précisé, que dans aucun exemple décrit dans le document Dl il est fait mention que le matériau conducteur comprenne un mélange de NTC et de NFC comme dans la présente invention. Les NTC sont utilisés seuls en tant qu'élément conducteur. Même si en page 2, colonne 1 [0022] il est mentionné « the conductive material is at least one of carbon nanotube and carbon nanofiber », on ne peut comprendre à la lecture de la description détaillée que le document divulgue un matériau conducteur comprenant des NTC et des NFC. Dans tous les exemples donnés, les NTC sont seuls. La gamme de valeurs pour le diamètre donnée au paragraphe [0080] correspond au diamètre des NTC.
L'invention a plus particulièrement pour objet un matériau composite d'électrode comprenant un additif conducteur, principalement caractérisé en ce que l'additif conducteur est un mélange d'additifs conducteurs contenant au moins des nanofibres de carbone
(NFC) et au moins des nanotubes de carbones (NTC) .
Selon une autre caractéristique, le mélange peut comporter d'autres additifs conducteurs choisis parmi le graphite, le noir de carbone tel que le noir d'acétylène, le carbone SP.
Les nanofibres de carbone ont un diamètre pouvant aller de 50 à 200 nm et un facteur de forme pouvant aller de 10 à 1000 et les nanotubes de carbone, ont un diamètre compris entre 0,4 et 20 nm et un facteur de forme de 20 à 1000.
Le matériau composite selon l'invention comporte en outre un élément dit actif c'est-à-dire un élément fonctionnant sur le principe de l'insertion (Li+), de la conversion, du déplacement, et de la dissolution- recristallisation, pour l'électrode qui contient le dit élément actif. Le matériau composite comporte un élément actif susceptible de faire des alliages réversibles avec le lithium comme par exemple le silicium (Si) ou l'étain (Sn) .
L'invention a également pour objet une électrode comportant ledit matériau composite.
L'électrode peut être l'électrode négative pour dispositifs électrochimiques de type batteries au lithium.
L'invention a pour objet l'utilisation d'une telle électrode dans une batterie secondaire à électrolyte non aqueux, ainsi que la batterie secondaire (Li-ion) comprenant l'électrode comportant le dit matériau composite .
Lors de son fonctionnement, la charge et la décharge de la batterie s'opèrent dans une gamme de 0 à 1,1 atome de lithium inséré par atome de silicium.
L' invention concerne également la fabrication de batterie secondaire à électrolyte non aqueux, ainsi que les batteries au lithium secondaire comprenant une électrode comportant le dit matériau composite.
Selon l'invention, le matériau composite est utilisable dans une batterie secondaire à électrolyte non aqueux ayant d'excellentes caractéristiques de capacité et de cyclage sous forte densité de courant. L' invention concerne également un procédé de fabrication d'un matériau composite d'électrode comprenant : - la préparation d'une suspension contenant un liant Pl, au moins des nanofibres de carbone NFC conférant une conductivité électronique, au moins des nanotubes de carbone NTC conférant une conductivité électronique, un élément actif d'électrode Ml capable de former de façon réversible un alliage avec le lithium, un solvant volatil Sl,
- l'élaboration d'un film à partir de la suspension obtenue . L'invention concerne l'utilisation du procédé de fabrication d'un matériau composite pour la fabrication d'électrodes pour des dispositifs électrochimiques de type batteries au lithium.
Le film sur substrat peut être utilisé directement comme électrode.
L'invention s'applique à l'utilisation du procédé pour la fabrication de batterie secondaire à électrolyte non aqueux, comprenant une électrode comportant le matériau composite ainsi obtenu.
D'autres particularités et avantages de l'invention apparaîtront clairement à la lecture de la description qui est faite ci-après et qui est donnée à titre d'exemple illustratif et non limitatif et en regard des figures sur lesquelles : la figure 1 représente sous forme de graphique, les caractéristiques rhéologiques d'une dispersion obtenue selon le procédé de l'invention, les figures 2 et 3 représentent des photographies au microscope électronique à balayage du matériau composite selon l'invention avec respectivement un grossissement de 3000 et de 5000, la figure 4 représente des courbes d' évolution de la capacité Q en fonction du nombre de cycles pour plusieurs échantillons dont un est réalisé en matériau composite selon l'invention, la figure 5 représente l'évolution de la capacité Q pour une électrode réalisée selon l'exemple 2.
Le matériau composite d'électrode proposé selon l'invention comporte un mélange d'additifs conducteurs contenant au moins des nanofibres de carbone (NFC) et au moins des nanotubes de carbones (NTC) .
Les deux additifs conducteurs NFC et NTC se différencient des additifs conducteurs utilisés dans l'état de la technique, comme le carbone SP ou le graphite, par leur facteur de forme très élevé. Celui-ci est défini par le rapport de plus grande dimension sur la plus petite dimension des particules. Ce rapport est de l'ordre de 30 à 1000 pour les nanofibres et nanotubes, contre 3 à 10 pour le carbone SP et le graphite.
Le déposant s'est aperçu qu'en choisissant pour additif conducteur un mélange d'additifs conducteurs contenant au moins des nanofibres de carbone (NFC) et au moins des nanotubes de carbones (NTC) , que les nanofibres de carbone et les nanotubes de carbone jouent dans le matériau composite d'électrode des rôles complémentaires vis à vis du maintien de la capacité en cyclage, qui confèrent à une électrode négative à base d'un élément actif capable de former de façon réversible des alliages avec le lithium une excellente stabilité en cyclage, et ce à des teneurs élevée en élément actif dans le matériau composite d'électrode.
Les nanofibres de carbone, qui se dispersent facilement en raison de leur diamètre important, forment une structure continue capable d'assurer depuis le collecteur de courant le transport des électrons dans tout le volume du matériau composite. Cette structure peut préserver son intégrité malgré les variations de volume des particules de l'élément actif en raison de la très grande longueur des nanofibres de carbone. Les nanotubes de carbone sont plus difficiles à disperser. Néanmoins, grâce au procédé selon l'invention, il est possible de les distribuer dans le matériau composite d'électrode de telle façon qu'ils forment un maillage autour des particules de l'élément actif et jouent ainsi un rôle complémentaire à celui des nanofibres. D'une part ils assurent la distribution aux particules de l'élément actif des électrons apportés depuis le collecteur de courant par les nanofibres de carbone. D'autre part, en raison de leur longueur et de leur souplesse, ils forment des ponts électriques entre les particules de l'élément actif fracturés par la répétition de leurs expansions et contractions volumiques.
Ainsi, le déposant a constaté que les additifs conducteurs usuels (carbone SP et graphite) , avec leur facteur de forme peu élevé, sont nettement moins efficaces que les nanofibres de carbone pour assurer le maintien au cours du cyclage du transport des électrons depuis le collecteur de courant. En effet, avec ce type d'additifs conducteurs, les chemins électriques sont formés par la juxtaposition de grains et les contacts entre eux sont facilement rompus suite à l'expansion volumique des particules du l'élément actif.
De la même façon, les additifs conducteurs usuels (carbone SP et graphite) , avec leur facteur de forme peu élevé, sont nettement moins efficaces que les nanotubes de carbone pour assurer le maintien au cours du cyclage de la distribution des électrons aux particules fracturées de l'élément actif.
Le mélange d'additifs conducteurs peut comporter en outre un ou plusieurs autres additifs conducteurs constitués par du graphite, du noir de carbone tel que le noir d'acétylène, le carbone SP.
Pour des applications telles que la fabrication d'électrodes pour batterie secondaire à électrolyte non aqueux, ainsi que les batteries secondaire (Li-ion, le matériau composite d'électrode comporte un élément actif vis à vis du lithium. Cet élément est choisi parmi les métaux M ou alliages de métaux MaMbMc... formant un alliage avec le lithium de type LixMaMbMc.
De préférence, ces métaux M ou alliages de métaux sont choisis parmi Sn, Sb, Si. Le matériau composite comprend également au moins un liant polymère.
Le liant polymère est choisi parmi les polysaccharides, les polysaccharides modifiés, les latex, les polyélectrolytes, les polyéthers, les polyesters, les polymères polyacryliques, les polycarbonates, les polyimines, les polyamides, les polyacrylamides, les polyuréthanes, les polyépoxydes, les polyphosphazènes, les polysulfones, les polymères halogènes.
Le matériau composite présente une structure submicronique et micronique pouvant être constatée sur un échantillon par la microscopie électronique à balayage
(MEB) .
Les nanofibres de carbone et les nanotubes de carbones ont une morphologie fibrillaire. Les nanofibres de carbone se différencient des nanotubes de carbones par leur diamètre plus important, 100 nm à 200 nm en moyenne pour les premières contre 10 à 20 nm en moyennes pour les seconds. La longueur des nanofibres de carbone est généralement de l'ordre de 10-30 μm et la longueur des nanotubes de carbone est généralement de l'ordre de 5-
15μm.
Le procédé selon 1 ' invention pour la préparation d'un matériau composite d'électrode comprend: - la préparation d'une suspension contenant un polymère Pl, au moins des nanofibres de carbone NFC conférant une conductivité électronique, au moins des nanotubes de carbone NTC conférant une conductivité électronique, éventuellement un troisième additif conducteur Cl, un élément actif d'électrode Ml capable de former de façon réversible un alliage avec le lithium, un solvant volatil Sl, l'élaboration d'un film à partir de la suspension obtenue .
Ce film peut éventuellement être densifié par application d'une pression (entre 0,1 et 10 tonnes) . Lors de la préparation de la suspension, le polymère Pl est introduit à l'état pur ou sous forme d'une solution dans un solvant volatil ; le mélange NFC+NTC est introduit à l'état pur ou sous forme d'une suspension dans un solvant volatil. Le polymère Pl peut être choisi parmi les polysaccharides, les polysaccharides modifiés, les latex, les polyélectrolytes, les polyéthers, les polyesters, les polymères polyacryliques, les polycarbonates, les polyimines, les polyamides, les polyacrylamides, les polyuréthanes, les polyépoxydes, les polyphosphazènes, les polysulfones, les polymères halogènes. A titre d'exemple de polymère halogène, on peut citer les homopolymères et les copolymères de chlorure de vinyle, de fluorure de vinylidène, de chlorure de vinylidène, de tétrafluorure d'éthylène, de chlorotrifluoroéthylène, et les copolymères de fluorure de vinylidène et de hexafluoropropylène (PVdF-HFP) . Les polymères Pl solubles dans l'eau sont particulièrement préférés. A titre d'exemple, on peut citer la carboxymethyl cellulose, et 1' hydroxypropyle methyl cellulose, les polyéthers tels que les homopolymères et les copolymères d'oxyde d'éthylène, les polymères polyacryliques tels que les homopolymères et les copolymères d' acrylamide, d'acide acrylique, les homopolymères et copolymères d'acide maléique, les homopolymères et copolymères d'anhydride maléique, les homopolymères et copolymères d' acrylonitrile, les homopolymères et copolymères d'acétate de vinyle et d'alcool de vinyle, les homopolymères et copolymères de vinyle pyrrolidone, les polyélectrolytes tels que les sel des homopolymères et copolymères d'acide vinyle sulfonique, d'acide phényle sulfonique, les homopolymères et copolymères d' allylamine, de diallyldimethylammonium, de vinylpyridine, d'aniline, d' éthylènimine . On peut en outre citer les dispersions aqueuses de polymères appelées latex à base d'acétate de vinyle, acrylique, caoutchouc nitrile, polychloroprène, polyuréthane, styrène acrylique, styrène butadiène. Par copolymère, on entend dans le présent texte, un composé polymère obtenu à partir d'au moins deux monomères différents. Les mélanges de polymères sont également intéressants. On peut citer les mélanges de carboxymethyl cellulose avec les latex de styrène-butadième, acrylique, et de caoutchouc nitrile.
Le solvant volatil Sl est un solvant organique ou l'eau ou un mélange de solvant organique et d'eau. On peut citer parmi les solvants organiques la N-méthyle pyrrolidone, le diméthyle sulfoxide.
Le solvant Sl est de préférence l'eau. Son pH peut être ajusté par addition d'un acide ou d'une base.
Le solvant Sl peut contenir un tensioactif. On peut citer le 4- (1, 1, 3, 3-tétraméthylbutyl) -phényl-polyéthylène glycol (commercialisé sous la marque Triton ® XlOO) .
Comme cela a été dit, en plus des nanofibres de carbone et des nanotubes de carbone, d'autres additifs conducteurs Cl peuvent être ajoutés. Le composé Cl peut être constitué par du graphite, du noir de carbone tel que le noir d'acétylène, le carbone SP. Des additifs conducteurs du commerce répondent à cette condition. On peut citer en particulier les composés Ensagri Super S® ou Super P® commercialisés par la société Chemetals. L'élément actif Ml peut être choisi notamment parmi les composés réagissant avec le lithium lors de la recharge de la batterie Li-ion, par exemple : les métaux M ou alliages de métaux MaMbMc... formant un alliage avec le lithium de type LixMaMbMc. Ces métaux M ou alliages de métaux sont préférentiellement choisis parmi M=Sn, Sb, Si..., et peuvent être obtenus à partir de SnO, de Snθ2, de composés de Sn, Sn-Fe (-C), de composés du Si, Si-C, Si-C-Al, Si-TiN, Si-TiB2, Si-TiC, Si-TiO2/ZrO2, Si3N4, Si(3-xFexN4, SiOi. i, Si-Ni, Si-Fe, Si- Ba-Fe, Mg2Si (-C) , Si-Ag (-C) , Si-Sn-Ni, Si-Cu-C, Si-Sn, de composés de Sb) , ou - les composés CUeSn5, les borates de fer, les pnictures
(par exemple Li3-yCoyN, Li3_yFeyN, LixMnP4, FeP, FeP2,
FeP4, FeSb2, Cu3P, Zn3P2, NiP2, NiP3, CoP3, CoSb3, ...) , les oxydes simples à décomposition réversible (par exemple CoO, Co2O3, Fe2O3,...) , et les oxydes à insertion tels que les titanates (par exemple TiO2, Li4Ti5Oi2) ,
MoO3 ou WO3.
La préparation de la suspension peut être effectuée en une seule étape ou en deux étapes successives. Lorsqu'elle est effectuée en deux étapes successives, un premier mode de réalisation consiste à préparer une dispersion contenant les nanotubes de carbone et éventuellement tout ou partie du polymère Pl, puis à ajouter à cette dispersion les autres constituants du matériau composite, cette nouvelle suspension étant utilisée pour la préparation du film final. Un second mode de réalisation consiste à préparer une dispersion contenant les nanotubes de carbone et éventuellement tout ou partie du polymère Pl dans un solvant, à ajouter l'élément actif Ml, à éliminer le solvant pour obtenir une poudre, puis à former une nouvelle suspension en ajoutant Sl et le restant des constituants du matériau composite à cette poudre, cette nouvelle suspension étant utilisée pour la préparation du film final. La préparation d'une dispersion de nanotubes de carbone est avantageuse, du fait qu'elle permet la formation d'un film de matériau composite plus homogène.
Le film peut être obtenu à partir de la suspension par tout moyen conventionnel, par exemple par extrusion, par épandage (tape casting) ou par pulvérisation (spray- drying) sur un substrat suivi d'un séchage. Dans ce dernier cas, il est avantageux d'utiliser comme substrat une feuille métallique susceptible de servir de collecteur pour l'électrode, par exemple une feuille ou une grille de cuivre ou de nickel traitée par un revêtement anti-corrosion. Le film sur substrat ainsi obtenu peut être utilisé directement comme électrode.
Le matériau composite selon l'invention est utile pour l'élaboration d'électrodes pour des dispositifs électrochimiques, notamment dans les batteries au lithium. Un autre objet de l'invention est constitué par une électrode composite constituée par le matériau selon 1 ' invention .
Une batterie au lithium comprend une électrode négative constituée par du lithium métallique, un alliage de lithium ou un composé d'insertion du lithium et une électrode positive, les deux électrodes étant séparées par une solution d'un sel dont le cation contient au moins un ion lithium, comme par exemple LiPFε, LiAsFe, LiClO4, LiBF4, LiC4BO8, Li (C2F5SO2) 2N, Li [ (C2F5) 3PF3] , LiCF3SO3, LiCH3SO3, et LiN (SO2CF3) 2, LiN (FS02 ) 2, ... dans un solvant aprotique (éthylène carbonate, propylène carbonate, diméthylcarbonate, diéthylcarbonate, méthylcarbonate...) , le tout servant d' électrolyte . L'électrode négative peut être une électrode composite selon l'invention contenant un élément actif d'électrode négative telle que définie ci-dessus. Lorsque l'électrode positive est constituée par un composé d'insertion du lithium, elle peut également être constituée par un matériau selon l'invention dans lequel l'élément actif est un élément actif d'électrode positive telle que définie ci-dessus.
La présente invention est illustrée par les exemples suivants, auxquels elle n'est cependant pas limitée.
Exemple 1 : Le matériau composite de cet exemple est constituée de 80% en masse de particules de silicium de 1 à 10 μm (Alfa Aesar) à 99,999% de pureté, de 8% en masse du liant CMC (carboxymethyl cellulose, DS = 0.7, Mw = 90,000 Aldrich) , de 4% en masse de nanofibres de carbone et 8% en masse de nanotubes de carbone bruts fabriqué par exemple par la Société Arkema. Les nanotubes ont un diamètre moyen de 20 nm, une longueur estimée à quelques microns et leur composition chimique montre qu'ils contiennent environ 7% de cendres minérales issues du procédé de synthèse.
Les nanofibres de carbone ont un diamètre moyen de 150 nm et une longueur estimée à 15 μm. Ils proviennent de la société SHOWA DENKO.
On disperse tout d'abord dans de l'eau déionisée à l'aide d'un broyeur à bille (Pulveristette 7 Fritsch) la totalité des nanotubes de carbone entrant dans la composition du matériau composite avec une faible quantité de CMC correspondant à 1% en masse de l'électrode. La CMC est utilisée ici pour permettre l'incorporation et la dispersion des nanotubes de carbone dans l'eau. La CMC est un polyélectrolyte qui grâce à la présence de motifs cellulosique peut établir des liaisons de type van der Waals avec les nanotubes de carbones et s'adsorber à leur surface, favorisant ainsi leur mouillage par l'eau, et grâce à la présence de groupes carboxylates ionisables assure une bonne dispersion des nanotubes selon un mécanisme de répulsion électrostatique. Les conditions de la dispersion sont 15 h à 700 tours/minute, un bol de broyage 12,5 ml contenant 3 billes de 10 mm de diamètre, 1 ml d'eau déionisée, 32 mg de nanotubes, et 4 mg de CMC.
La Figure 1 donne les caractéristiques rhéologiques de la dispersion après 15h de broyage. Pour un extrait sec en nanotubes de 32 mg et 4 mg de CMC dans 1 ml d'eau, des performances électrochimiques optimales sont obtenues lorsque le module de stockage G' atteint une valeur de 800 Pa dans la plage de fréquence 0.1 à 10 Hz. A l'issue de la dispersion, on ajoute les particules de silicium (320 mg) , les nanofibres de carbone (16 mg) , et le restant de CMC (28 mg) , et l'on mélange le tout par co-broyage à 500 tours par minute pendant 30 minutes. Le matériau composite constitue 28,57% en masse de la suspension. Le reste est de l'eau déionisée.
L'électrode est préparée par enduction de la suspension contenant le composite sur un collecteur de courant en cuivre d'épaisseur 25 μm. La hauteur de la racle de la machine d' enduction est fixée à lOOμm. L'électrode est séchée tout d'abord à température ambiante puis 3h à 55°C sous vide. Pour cet exemple, la quantité de silicium déposée par cm2 de collecteur de courant est 1,70 mg et l'épaisseur de l'électrode 15μm. Les Figures 2 et 3 représentent des photographies au microscope électronique à balayage (MEB) du matériau composite obtenu, respectivement avec un grossissement de 3000 et de 50000. Il apparaît que le matériau composite selon 1 ' invention est constitué des particules de silicium, des nanotubes de carbone et des nanofibres de carbones. Ces dernières se différentiant des premiers par leur diamètre plus important, 150 nm en moyenne contre 20 nm en moyenne, et leur plus grande longueur. La CMC est présente sous la forme d'une très fine couche à la surface de tous les autres matériaux. Les nanofibres de carbone forment une structure continue capable d'assurer depuis le collecteur de courant le transport des électrons dans tout le volume du matériau composite. Les nanotubes de carbone forment un maillage autour des particules de silicium. Il apparaît que le procédé selon l'invention permet une distribution très homogène des deux additifs conducteurs.
L'électrode (a) ainsi obtenue a été montée dans une batterie ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constituée d'une solution 1 M LiPF6 dissous dans EC/DMC 1:1. Les performances en cyclage ont été mesurées et comparées à celles de batteries similaires dans laquelle l'électrode négative est une électrode dont la composition initiale est : - (b) 80%Si, 8%CMC, 12% carbone SP ;
(c) 80%Si, 8%CMC, 12% nanotubes de carbone ;
(d) 80%Si, 8%CMC, 12% nanofibres de carbone ; - (e) 80%Si, 8%CMC, 4% nanofibres de carbone, 8% carbone SP ;
(f) 80%Si, 8%CMC, 8% nanotubes de carbone, 4% carbone SP.
Le cyclage a été effectué à capacité spécifique constante limitée à 950 mAh/g dans le domaine de potentiel 0-1 V vs . Li+/Li. Il était piloté en mode galvanostatique à un courant I de 150 mA/g qui correspond à un régime de C/6 (durée de 6,33 heures de chaque charge et décharge) . Ce mode de cyclage conduit à une capacité constante tant que le potentiel de fin de réaction est supérieur à OV, puis à une capacité qui décroît en fonction du nombre de cycles quand le potentiel de fin de réaction devient égal à OV.
La figure 4 représente l'évolution de la capacité Q (en mAh/g) en fonction du nombre de cycles N. La correspondance entre les deux courbes et les échantillons est la suivante : Courbe -•--•- : échantillon a selon l'invention Courbe f ^ : échantillon b comparatif Courbe O O : échantillon c comparatif Courbe : échantillon d comparatif
Courbe 4 ^ : échantillon e comparatif Courbe X x : échantillon f comparatif
La comparaison des courbes de cyclage montre une amélioration substantielle de la capacité en cyclage uniquement lorsque le matériau composite constituant l'électrode contient le mélange des deux additifs conducteur revendiqué par l'invention : nanotubes de carbone et nanofibres de carbone. La capacité restituée au centième cycle est 900 mAh/g de silicum, soit 720 mAh/g d'électrode. La capacité volumique de l'électrode est environ 630 mAh/cm3 qui est à comparer avec la capacité volumique des anodes commerciales de graphite égale environ à 500 mAh/cm3 (« Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cell », U. Kasavajjula et al, J. Power Sources, 163 (2007) 1003-1039 et « The effect of compression on natural graphite anode performance and matrix conductivity », K. A. Striebel et al. J. Power Sources 134 (2004) 241-251 et « Benchmark study on high performing carbon anode materials », C. Lampe-Onnerud et al., J. Power Sources, 97-98 (2001) 133- 136) . Ces performances sont meilleures que celles rapportées dans l'art antérieur.
Comme le potentiel final de 0V n'est jamais atteint au cours du cyclage pendant 100 cycles, il faut noter que des capacités supérieures à 950 mAh/g peuvent être obtenues en modifiant les conditions de cyclage. Mais tout cyclage à une capacité supérieure à 950 mAh/g se fait au détriment de la durée de vie en cyclage.
Exemple 2 :
L'exemple 2, est obtenu avec une électrode selon l'invention et une batterie préparées comme dans l'exemple 1. Pour cet exemple, la quantité de silicium déposée par cm2 de collecteur de courant est 1,80 mg.
Le cyclage a été effectué à capacité spécifique constante limitée à 950 mAh/g dans le domaine de potentiel 0-1 V vs . Li+/Li. Il était piloté en mode galvanostatique à un courant I de 900 mA/g qui correspond à un régime de C (durée de 1,05 heures de chaque charge et décharge) . La figure 5 représente l'évolution de la capacité Q
(en mAh/g) en fonction du nombre de cycles N. Après une période d'induction de quelques cycles, attribuable à la cinétique d'imprégnation de l'électrode par l' électrolyte, on observe un très bon maintien de la capacité en cyclage à un régime de C. La capacité restituée au centième cinquantième cycle est 900 mAh/g de silicium, soit 720 mAh/g d'électrode.
De façon pratique le mélange de NTC et de NFC se situe préférentiellement dans les limites suivantes : borne 1 : 9% nanofibres de carbone + 3% nanotubes de carbone borne 2 : 3% nanofibres de carbone + 9% nanotubes de carbone.
L'exemple 3 suivant est donné pour illustrer les résultats dans ces limites : Exemple 3 :
Le matériau composite de cet exemple est constituée de 80% en masse de particules de silicium de 1 à 10 μm (Alfa Aesar) à 99,999% de pureté, de 8% en masse du liant CMC (carboxymethyl cellulose, DS = 0.7, Mw = 90,000 Aldrich) , de 12% en masse du mélange nanofibres de carbone + nanotubes de carbone bruts.
On disperse tout d'abord dans de l'eau déionisée à l'aide d'un broyeur à bille (Pulveristette 7 Fritsch) la totalité des nanotubes de carbone entrant dans la composition du matériau composite avec une faible quantité de CMC correspondant à 1% en masse de l'électrode. Les conditions de la dispersion sont 15 h à 700 tours/minute.
A l'issue de la dispersion, on ajoute les particules de silicium, les nanofibres de carbone, et le restant de CMC, et l'on mélange le tout par co-broyage à 500 tours par minute pendant 30 minutes. Le matériau composite constitue 28,57% en masse de la suspension. Le reste est de l'eau déionisée.
Les électrodes sont préparées par enduction de la suspension contenant le composite sur un collecteur de courant en cuivre d'épaisseur 25 μm. La hauteur de la racle de la machine d' enduction est fixée à lOOμm. Les électrodes sont séchées tout d' abord à température ambiante puis 3h à 55°C sous vide.
Les électrodes ainsi obtenues ont été montées dans une batterie ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPFβ dissous dans EC/DMC 1:1.
Le cyclage a été effectué à capacité spécifique constante limitée à 950 mAh/g dans le domaine de potentiel 0-1 V vs . Li+/Li. Il était piloté en mode galvanostatique à un courant I de 150 mA/g qui correspond à un régime de C/6 (durée de 6,33 heures de chaque charge et décharge) . Ce mode de cyclage conduit à une capacité constante tant que le potentiel de fin de réaction est supérieur à OV, puis à une capacité qui décroît en fonction du nombre de cycles quand le potentiel de fin de réaction devient égal à OV.
Le tableau ci-dessous donne la composition des électrodes et leur durée de vie en cyclage, le critère de fin de vie retenue étant que le potentiel de fin de réaction devient égal à OV :
Figure imgf000027_0001
« VGCF : Vapor growth carbon fïber" "MWNT : Multi Walled Carbon Nanotubes".
Dans la description détaillée de l'invention [0038] du document D2 cité précédemment, il est précisé que la teneur en carbone fibreux est préférentiellement supérieure à 3 et inférieure à 12 parts pour 100 parts de matériau actif.
La quantité prévue dans la présente invention est supérieure à la limite haute de cet intervalle, soit 12 parts d'additif conducteur pour 80 parts (équivalent à 15 parts pour 100 parts) de matériau actif. En effet, selon la présente invention, la teneur en carbone fibreux est supérieure à 12 parts pour 100 parts de matériau actif (soit 9.6% en masse dans l'électrode) . Pour une teneur inférieur la stabilité en cyclage est moins bonne comme l'illustre l'exemple 4 suivant.
Exemple 4 :
Le matériau composite de cet exemple est constituée de 83% en masse de particules de silicium de 1 à 10 μm
(Alfa Aesar) à 99, 999% de pureté, de 8% en masse du liant
CMC (carboxymethyl cellulose, DS = 0.7, Mw = 90,000
Aldrich) , de 9% en masse du mélange nanofibres de carbone
+ nanotubes de carbone bruts. On disperse tout d'abord dans de l'eau déionisée à l'aide d'un broyeur à bille (Pulveristette 7 Fritsch) la totalité des nanotubes de carbone entrant dans la composition du matériau composite avec une faible quantité de CMC correspondant à 1% en masse de l'électrode. Les conditions de la dispersion sont 15 h à 700 tours/minute.
A l'issue de la dispersion, on ajoute les particules de silicium, les nanofibres de carbone, et le restant de CMC, et l'on mélange le tout par co-broyage à 500 tours par minute pendant 30 minutes. Le matériau composite constitue 28,57% en masse de la suspension. Le reste est de l'eau déionisée.
Les électrodes sont préparées par enduction de la suspension contenant le composite sur un collecteur de courant en cuivre d'épaisseur 25 μm. La hauteur de la racle de la machine d' enduction est fixée à lOOμm. Les électrodes sont séchées tout d' abord à température ambiante puis 3h à 55°C sous vide.
Les électrodes ainsi obtenues ont été montées dans une batterie ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constituée d'une solution 1 M LiPFβ dissous dans EC/DMC 1:1.
Le cyclage a été effectué à capacité spécifique constante limitée à 950 mAh/g dans le domaine de potentiel 0-1 V vs . Li+/Li. Il était piloté en mode galvanostatique à un courant I de 150 mA/g qui correspond à un régime de C/6 (durée de 6,33 heures de chaque charge et décharge) . Ce mode de cyclage conduit à une capacité constante tant que le potentiel de fin de réaction est supérieur à 0V, puis à une capacité qui décroît en fonction du nombre de cycles quand le potentiel de fin de réaction devient égal à 0V.
Le tableau ci-dessous donne la composition des électrodes et leur durée de vie en cyclage, le critère de fin de vie retenue étant que le potentiel de fin de réaction devient égal à 0V :
Figure imgf000029_0001
La durée de vie passe à 88 en nombre de cycles au lieu de 120 si on choisit 12 parts pour 80 parts de matériau actif comme on peut le voir sur le tableau précédent .

Claims

REVENDICATIONS
1. Matériau composite d'électrode comprenant un élément actif c'est-à-dire présentant une activité électrochimique, un additif conducteur, un liant, caractérisé en ce que l'additif conducteur est un mélange d'additifs conducteurs contenant au moins des nanofibres de carbone (NFC) et au moins des nanotubes de carbones (NTC) .
2. Matériau composite d'électrode selon la revendication 1, caractérisé en ce que le mélange comporte un ou plusieurs autres additifs conducteurs choisis parmi le graphite ou le noir de carbone tel que le noir d'acétylène ou le carbone SP.
3. Matériau composite d'électrode selon la revendication 1, caractérisé en ce que les nanofibres de carbone ont un diamètre pouvant aller de 50 à 200 nm et un facteur de forme pouvant aller de 10 à 1000 et en ce que les nanotubes de carbone, ont un diamètre compris entre 0,4 et 20 nm et un facteur de forme de 20 à 1000.
4. Matériau composite d'électrode selon l'une quelconque des revendications précédentes, caractérisé en ce que l'élément actif est choisi parmi les éléments fonctionnant sur le principe de l'insertion (Li+), de la conversion, du déplacement, et de la dissolution- recristallisation, pour l'électrode qui contient le dit élément actif.
5. Matériau composite d'électrode selon la revendication 4, caractérisé en ce que l'élément actif est de type métal M ou alliages de métaux MaMbMc... susceptible de former un alliage réversible avec le lithium de type LixMaMbMc.
6. Matériau composite d'électrode selon la revendication 5, caractérisé en ce que le ou les métaux sont choisis parmi Sn, Sb, Si.
7. Matériau composite d'électrode selon l'une quelconque des revendications précédentes, caractérisé en ce que le liant est un polymère Pl choisi parmi les polysaccharides, les polysaccharides modifiés, les latex, les polyélectrolytes, les polyéthers, les polyesters et les polymères polyacryliques .
8. Matériau composite d'électrode selon les revendications 1, 6 et 7, caractérisé en ce que la teneur en nanofibres de carbone (NFC) et nanotubes de carbone (NTC) est supérieure à 12 parts pour 100 parts de matériau actif.
9. Matériau composite d'électrode selon la revendication 8, caractérisé en ce qu'il comprend en moyenne 4% en masse de nanofibres de carbone et en moyenne 8% en masse de nanotubes de carbone bruts
10. Matériau composite d'électrode selon la revendication 9 caractérisé en ce que, avec 4% en masse de nanofibres de carbone et 8% en masse de nanotubes de carbone, il comprend 80% en masse de particules de Si et 8% en masse de liant.
11. Electrode comprenant un matériau composite selon l'une quelconque des revendications précédentes.
12. Electrode négative selon la revendication 10 pour dispositifs électrochimiques de type batteries au lithium.
13. Electrode négative selon la revendication 11, pour batterie secondaire à électrolyte non aqueux.
14. Batterie secondaire (Li-ion) comprenant une électrode négative comportant le matériau composite selon l'une quelconque des revendications 1 à 10.
15. Batterie secondaire (Li-ion) selon la revendication 14, caractérisée en ce lors de son fonctionnement, la charge et la décharge s'opèrent dans une gamme de 0 à 1,1 atome de lithium inséré par atome de silicium.
16. Procédé de fabrication d'un matériau composite d'électrode selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend : - la préparation d'une suspension contenant un liant Pl, au moins des nanofibres de carbone NFC conférant une conductivité électronique, au moins des nanotubes de carbone NTC conférant une conductivité électronique, un élément actif d'électrode Ml capable de former de façon réversible un alliage avec le lithium, un solvant volatil Sl, l'élaboration d'un film à partir de la suspension obtenue .
17. Procédé de fabrication d'un matériau composite d'électrode selon la revendication 16, caractérisé en ce que le film est densifié par application d'une pression comprise entre 0,1 et 10 tonnes.
18. Procédé de fabrication d'un matériau composite d'électrode selon la revendication 16, caractérisé en ce que la préparation comprend un troisième additif conducteur Cl .
19. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que l'élément actif Ml est choisi parmi les composés réagissant avec le lithium lors de la recharge de la batterie Li-ion parmi lesquels les métaux M ou alliages de métaux MaMbMc... formant un alliage avec le lithium de type LixMaMbMc de préférence Sn, Sb, Si.
20. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que lors de la préparation de la suspension, le liant constitué par un polymère Pl est introduit à l'état pur ou sous forme d'une solution dans un solvant volatil Sl; le mélange NFC+NTC est introduit à l'état pur ou sous forme d'une suspension dans un solvant volatil.
21. Procédé de fabrication d'un matériau composite selon la revendication 20, caractérisé en ce que le polymère Pl peut être choisi parmi les polysaccharides, les polysaccharides modifiés, les latex, les polyélectrolytes, les polyéthers, les polyesters et les polymères polyacryliques .
22. Procédé de fabrication d'un matériau composites selon la revendication 20, caractérisé en ce que le solvant volatil Sl est un solvant organique ou l'eau ou un mélange de solvant organique et d'eau.
23. Procédé de fabrication d'un matériau composite selon la revendication 22, caractérisé en ce que le solvant organique est choisi parmi la N-méthyle pyrrolidone ou le diméthyle sulfoxide.
24. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que la préparation de la suspension est effectuée en une seule étape ou en deux étapes successives.
25. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que la préparation de la suspension est effectuée en deux étapes successives qui consiste à préparer une dispersion contenant les nanotubes de carbone et éventuellement tout ou partie du polymère Pl, puis à ajouter à cette dispersion les autres constituants du matériau composite, cette nouvelle suspension étant utilisée pour l'élaboration du film.
26. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que la préparation de la suspension consiste à préparer une dispersion contenant les nanotubes de carbone et éventuellement tout ou partie du polymère Pl dans un solvant, à ajouter l'élément actif Ml, à éliminer le solvant pour obtenir une poudre, puis à former une nouvelle suspension en ajoutant le solvant Sl et le restant des constituants du matériau composite à cette poudre, cette nouvelle suspension permettant l'élaboration du film.
27. Procédé de fabrication d'un matériau composite selon la revendication 16, caractérisé en ce que le film est obtenu à partir de la suspension par tout moyen conventionnel, par exemple par extrusion, par épandage (tape casting) ou par pulvérisation (spray-drying) sur un substrat suivi d'un séchage.
28. Procédé de fabrication d'un matériau composite selon la revendication 27, caractérisé en ce qu'on utilise comme substrat une feuille métallique susceptible de servir de collecteur pour l'électrode, par exemple une feuille ou une grille de cuivre ou de nickel traitée par un revêtement anti-corrosion.
29. Utilisation du procédé de fabrication d'un matériau composite selon l'une quelconque des revendications 16 à 28, pour la fabrication d'électrodes pour des dispositifs électrochimiques de type batteries au lithium.
30. Utilisation du procédé selon la revendication 27, dans lequel le film sur substrat est utilisé directement comme électrode.
31. Utilisation du procédé pour la fabrication de batterie secondaire à électrolyte non aqueux, comprenant une électrode comportant le matériau composite obtenu selon l'une quelconque des revendications 16 à 28.
PCT/FR2009/051612 2008-09-02 2009-08-20 Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode WO2010026332A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011524431A JP2012501515A (ja) 2008-09-02 2009-08-20 複合電極材料と、この材料を含む電池の電極と、この電極を有するリチウム電池
BRPI0917946A BRPI0917946A2 (pt) 2008-09-02 2009-08-20 material compósito de eletrodo de bateria constituído desse material ebateria aolítio,compreendendo esse eletrodo.
EP09740480A EP2351121A1 (fr) 2008-09-02 2009-08-20 Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode
US13/061,642 US20110163274A1 (en) 2008-09-02 2009-08-20 Electrode composite, battery electrode formed from said composite, and lithium battery comprising such an electrode
CN2009801428540A CN102197519A (zh) 2008-09-02 2009-08-20 复合电极材料、由所述材料组成的电池电极、及包含这种电极的锂电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0855883A FR2935546B1 (fr) 2008-09-02 2008-09-02 Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode.
FR0855883 2008-09-02

Publications (1)

Publication Number Publication Date
WO2010026332A1 true WO2010026332A1 (fr) 2010-03-11

Family

ID=40434876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051612 WO2010026332A1 (fr) 2008-09-02 2009-08-20 Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode

Country Status (8)

Country Link
US (1) US20110163274A1 (fr)
EP (1) EP2351121A1 (fr)
JP (1) JP2012501515A (fr)
KR (1) KR20110063634A (fr)
CN (1) CN102197519A (fr)
BR (1) BRPI0917946A2 (fr)
FR (1) FR2935546B1 (fr)
WO (1) WO2010026332A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013114094A1 (fr) * 2012-01-30 2013-08-08 Nexeon Limited Composition de matière électroactive à base de si/c
WO2014060532A1 (fr) * 2012-10-19 2014-04-24 Commissariat à l'énergie atomique et aux énergies alternatives Materiau composite comprenant des nano-objets notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau
US20170194627A1 (en) * 2011-05-16 2017-07-06 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US9768447B2 (en) 2013-05-31 2017-09-19 Showa Denko K.K. Negative electrode material for lithium ion secondary battery
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10826068B2 (en) 2015-06-30 2020-11-03 Murata Manufacturing Co., Ltd. Negative electrode, battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2421702A4 (fr) 2009-04-24 2013-01-02 Applied Nanostructured Sols Matériau de contrôle de signature ned
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
WO2010129234A2 (fr) 2009-04-27 2010-11-11 Lockheed Martin Corporation Chauffage résistif à base de nanotubes de carbone pour dégivrer des structures composites
KR20120128125A (ko) 2009-11-03 2012-11-26 엔비아 시스템즈 인코포레이티드 리튬 이온 전지용 고용량 아노드 물질
US9912009B2 (en) * 2009-12-18 2018-03-06 Molecular Rebar Design, Llc Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes
WO2013192513A2 (fr) 2012-06-21 2013-12-27 Molecular Rebar Design, Llc Liants, électrolytes et films séparateurs pour dispositifs de stockage et de collecte d'énergie faisant appel à des nanotubes de carbone individuels
US9163354B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
US8787001B2 (en) 2010-03-02 2014-07-22 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
WO2011109480A2 (fr) 2010-03-02 2011-09-09 Applied Nanostructed Solution, Llc Dispositifs électriques enroulés en spirale contenant des matériaux d'électrode imprégnés de nanotubes de carbone et procédés et appareils pour la fabrication de ceux-ci
US8780526B2 (en) 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
ES2548549T3 (es) * 2011-06-23 2015-10-19 Molecular Rebar Design, Llc Formulaciones de baterías de plomo y ácido que contienen nanotubos de carbono discretos
US20160077074A1 (en) 2011-12-21 2016-03-17 The Regents Of The University Of California Interconnected corrugated carbon-based network
GB2498803B (en) * 2012-01-30 2015-04-08 Nexeon Ltd Composition
CA2866250C (fr) 2012-03-05 2021-05-04 Maher F. El-Kady Condensateur avec des electrodes faites d'un reseau interconnecte a base de carbone ondule
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
KR20130108816A (ko) * 2012-03-26 2013-10-07 삼성에스디아이 주식회사 이차 전지
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
CN103427087B (zh) * 2012-05-17 2016-03-09 清华大学 集流体、电化学电池电极及电化学电池
JP5497110B2 (ja) 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維の製造方法
JP5497109B2 (ja) * 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維
JP5986836B2 (ja) * 2012-07-24 2016-09-06 株式会社日立製作所 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、リチウムイオン二次電池およびそれらの製造方法
US8962191B2 (en) 2012-07-31 2015-02-24 General Electric Company Electrochemical cells having a electrode current collector extending into a positive electrode composition, and related methods
DE102012018622A1 (de) * 2012-09-14 2014-03-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Li-S-Batterie mit hoher Zyklenstabilität und Verfahren zu deren Betreiben
JP5602262B2 (ja) 2013-01-29 2014-10-08 昭和電工株式会社 複合電極材
JP5580910B1 (ja) * 2013-02-20 2014-08-27 昭和電工株式会社 電池用電極の製造方法
JP5497220B1 (ja) 2013-03-14 2014-05-21 昭和電工株式会社 複合炭素繊維
US10020491B2 (en) 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
TW201505240A (zh) * 2013-05-30 2015-02-01 3M Innovative Properties Co 電極組合物、電化學電池及電化學電池之製造方法
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
US10033040B2 (en) * 2013-07-08 2018-07-24 The Board Of Trustees Of The Leland Standford Junior University Stable cycling of lithium sulfide cathodes through strong affinity with multifunctional binders
WO2015024004A1 (fr) 2013-08-16 2015-02-19 Envia Systems, Inc. Batteries au lithium-ion présentant un matériau actif anodique à haute capacité et de bonnes propriétés de cyclage pour appareils électroniques grand public
FR3011234B1 (fr) * 2013-09-30 2015-10-02 Renault Sa Electrode pour batterie de stockage d'energie electrique comprenant un materiau composite graphite/silicium/fibres de carbone
KR20150074903A (ko) * 2013-12-24 2015-07-02 일진전기 주식회사 리튬 이차 전지용 음극활물질층용 조성물
FR3018955B1 (fr) * 2014-03-24 2016-05-06 Commissariat Energie Atomique Procede de fabrication d'une electrode, electrode ainsi fabriquee et systeme electrochimique la comprenant.
EP3138144B1 (fr) 2014-05-01 2018-07-25 Basf Se Méthodes de fabrication des électrodes et articles associés
JP6289995B2 (ja) * 2014-05-13 2018-03-07 株式会社東芝 負極、負極の製造方法、及び非水電解質電池
CN106575806B (zh) 2014-06-16 2020-11-10 加利福尼亚大学董事会 混合电化学电池
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
CN106663807B (zh) * 2014-07-28 2019-08-23 昭和电工株式会社 锂离子二次电池用负极材料及其制造方法
WO2016081638A1 (fr) 2014-11-18 2016-05-26 The Regents Of The University Of California Composite de réseau à base de couches de carbone ondulé interconnectées (iccn) poreux
KR102028942B1 (ko) * 2014-11-26 2019-10-07 쇼와 덴코 가부시키가이샤 도전성 페이스트의 제조 방법 및 도전성 페이스트
CN104916458B (zh) * 2015-06-19 2017-07-04 中国第一汽车股份有限公司 一种超级电容器电极的制备方法
JP6869706B2 (ja) * 2015-12-11 2021-05-12 株式会社半導体エネルギー研究所 蓄電装置用負極、蓄電装置、および電気機器
JP7176735B2 (ja) 2015-12-22 2022-11-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア セル式グラフェン膜
CN108475590B (zh) 2016-01-22 2021-01-26 加利福尼亚大学董事会 高电压装置
FR3048821B1 (fr) * 2016-03-08 2021-12-17 Commissariat Energie Atomique Encre comprenant un melange d'acides polyacryliques pour la realisation d'une electrode de batterie lithium-ion, et electrode obtenue avec une telle encre
US11062855B2 (en) 2016-03-23 2021-07-13 The Regents Of The University Of California Devices and methods for high voltage and solar applications
KR101683723B1 (ko) 2016-03-24 2016-12-09 (주)상아프론테크 2차 전지 음극용 코팅제, 이를 이용한 2차 전지용 음극 및 이의 제조방법
KR101683737B1 (ko) 2016-03-24 2016-12-07 (주)상아프론테크 2차 전지 음극 코팅제용 바인더 조성물, 이를 이용한 2차 전지 음극 코팅제용 바인더 및 이의 제조방법
CA3017238A1 (fr) 2016-04-01 2017-10-05 The Regents Of The University Of California Croissance directe de nanotubes de polyaniline sur un tissu de carbone pour des supercondensateurs flexibles et a hautes performances
US10663450B2 (en) * 2016-06-15 2020-05-26 The University Of Chicago Amorphous, porous silicon materials and related methods
US11097951B2 (en) 2016-06-24 2021-08-24 The Regents Of The University Of California Production of carbon-based oxide and reduced carbon-based oxide on a large scale
CN106207122A (zh) * 2016-08-12 2016-12-07 联想(北京)有限公司 聚合物锂离子电池负极材料以及聚合物锂离子电池和电子设备
JP7109790B2 (ja) 2016-08-31 2022-08-01 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 炭素系材料を含むデバイス及びその製造
CN110892572B (zh) 2017-07-14 2023-02-17 加利福尼亚大学董事会 用碳纳米点制备高导电多孔石墨烯用于超级电容器应用的简单方法
KR101820446B1 (ko) 2017-10-10 2018-01-19 주식회사 엘지화학 두 가지 형태의 도전재를 포함하는 이차전지용 전극 슬러리 및 이를 포함하는 이차전지
CN107834072B (zh) * 2017-10-26 2020-09-04 山东大学 一种锂离子电池粘结剂
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
CN108559959A (zh) * 2018-01-12 2018-09-21 基迈克材料科技(苏州)有限公司 复合金属氧化物靶材材料、靶材及靶材材料、靶材的制备方法
KR102343706B1 (ko) * 2018-02-09 2021-12-24 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN109411758B (zh) * 2018-10-19 2020-09-29 深圳市优宝新材料科技有限公司 一种锂离子电池负极用水系导电粘合剂的制备方法
CN109848011B (zh) * 2019-02-22 2022-01-25 昆山国显光电有限公司 纳米银线溶液的制作方法和触控面板的制作方法
CN109980199B (zh) * 2019-03-20 2020-09-29 宁德新能源科技有限公司 负极活性材料及其制备方法及使用该负极活性材料的装置
DE102019002504A1 (de) 2019-04-05 2020-10-08 Diehl & Eagle Picher Gmbh Aktivierbare Batterie
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance
US10938032B1 (en) 2019-09-27 2021-03-02 The Regents Of The University Of California Composite graphene energy storage methods, devices, and systems
KR102509426B1 (ko) * 2019-12-13 2023-03-13 주식회사 아이센스 비혼합형 양친매성 열가소성 폴리우레탄, 이의 제조방법 및 이를 포함하는 삽입형 의료장치
CN113937256A (zh) * 2020-07-14 2022-01-14 天津国安盟固利新材料科技股份有限公司 一种喷雾包覆镍锰酸锂正极材料的方法
CN113035407B (zh) * 2021-02-27 2023-07-07 河南克莱威纳米碳材料有限公司 一种锂离子电池用碳纳米管复配导电浆料及其制备方法
JP7428156B2 (ja) * 2021-03-12 2024-02-06 トヨタ自動車株式会社 全固体電池
CN113293291B (zh) * 2021-05-21 2022-04-08 江苏中南锂业有限公司 一种高导电性提锂电极的制备方法
WO2023176937A1 (fr) * 2022-03-16 2023-09-21 国立大学法人信州大学 Matériau actif d'électrode négative pour batterie secondaire et son procédé de production, électrode négative pour batterie secondaire, et batterie secondaire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060172196A1 (en) * 2005-01-11 2006-08-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte rechargeable battery and manufacturing method of negative electrode employed therein
WO2007132077A1 (fr) * 2006-05-16 2007-11-22 Arkema France Composition catalytioue a base de charbon actif catalytioue et nanotubes de carbone, procede de fabrication, electrode et supercondensateur comprenant le composite catalytioue
JP2007335283A (ja) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137350B2 (ja) * 2000-06-16 2008-08-20 三星エスディアイ株式会社 リチウム二次電池用の負極材料及びリチウム二次電池用の電極及びリチウム二次電池並びにリチウム二次電池用の負極材料の製造方法
CN1903793A (zh) * 2005-07-26 2007-01-31 中国科学院物理研究所 一种碳硅复合材料及其制备方法和用途
US7794880B2 (en) * 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
JP2007207465A (ja) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US8080335B2 (en) * 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
KR100913178B1 (ko) * 2007-11-22 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지
US9564629B2 (en) * 2008-01-02 2017-02-07 Nanotek Instruments, Inc. Hybrid nano-filament anode compositions for lithium ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060172196A1 (en) * 2005-01-11 2006-08-03 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte rechargeable battery and manufacturing method of negative electrode employed therein
WO2007132077A1 (fr) * 2006-05-16 2007-11-22 Arkema France Composition catalytioue a base de charbon actif catalytioue et nanotubes de carbone, procede de fabrication, electrode et supercondensateur comprenant le composite catalytioue
JP2007335283A (ja) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd 非水電解質二次電池
US20080096110A1 (en) * 2006-06-16 2008-04-24 Matsushita Electric Industrial Co., Ltd. Negative electrode and non-aqueous electrolyte secondary battery using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170194627A1 (en) * 2011-05-16 2017-07-06 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US20230290925A1 (en) * 2011-05-16 2023-09-14 Zenlabs Energy, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
WO2013114094A1 (fr) * 2012-01-30 2013-08-08 Nexeon Limited Composition de matière électroactive à base de si/c
EP2810321A1 (fr) * 2012-01-30 2014-12-10 Nexeon Limited Composition de matière électroactive à base de si/c
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
FR2997076A1 (fr) * 2012-10-19 2014-04-25 Commissariat Energie Atomique Materiau composite comprenant des nano-objets notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau.
WO2014060532A1 (fr) * 2012-10-19 2014-04-24 Commissariat à l'énergie atomique et aux énergies alternatives Materiau composite comprenant des nano-objets notamment des nano-objets de carbone, son procede de preparation, et encre et electrode comprenant ce materiau
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US9768447B2 (en) 2013-05-31 2017-09-19 Showa Denko K.K. Negative electrode material for lithium ion secondary battery
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10826068B2 (en) 2015-06-30 2020-11-03 Murata Manufacturing Co., Ltd. Negative electrode, battery, battery pack, electronic apparatus, electrically driven vehicle, electrical storage device, and electric power system

Also Published As

Publication number Publication date
KR20110063634A (ko) 2011-06-13
BRPI0917946A2 (pt) 2019-09-24
CN102197519A (zh) 2011-09-21
US20110163274A1 (en) 2011-07-07
JP2012501515A (ja) 2012-01-19
FR2935546A1 (fr) 2010-03-05
EP2351121A1 (fr) 2011-08-03
FR2935546B1 (fr) 2010-09-17

Similar Documents

Publication Publication Date Title
WO2010026332A1 (fr) Materiau composite d'electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode
US10734653B2 (en) Lithium ion battery and battery materials
Hou et al. A “three‐region” configuration for enhanced electrochemical kinetics and high‐areal capacity lithium–sulfur batteries
KR101937897B1 (ko) 양극 합제 및 이를 포함하는 이차전지
EP3678228B1 (fr) Électrode négative et batterie rechargeable la comprenant
US20190173125A1 (en) Lithium ion battery and battery materials
US11749831B2 (en) Li—S battery with carbon coated separator
FR2939786A1 (fr) Procede de fabrication d'un materiau composite sno2 et nanotubes de carbone et/ou nanofibres de carbone, materiau obtenu par le procede, electrode pour batterie au lithium comportant ledit materiau.
WO2010086558A1 (fr) Procede pour la preparation d'une composition d'electrode
CN112913075B (zh) 引入了催化位点的功能性隔膜、其制造方法和包含其的锂二次电池
FR3071361B1 (fr) Procede de fabrication d'une electrode pour accumulateur lithium-soufre utilisant du li2s comme materiau actif
KR101919524B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
Kim et al. Silicon‐Rich Carbon Hybrid Nanofibers from Water‐Based Spinning: The Synergy Between Silicon and Carbon for Li‐ion Battery Anode Application
EP3887436A1 (fr) Electrolyte polymere conducteur pour batteries
EP3327832B1 (fr) Procede de fabrication d'une electrode positive pour accumulateur electrochimique lithium-soufre
FR3108793A1 (fr) Electrode nanoporeuse
EP3457471B1 (fr) Procede de fabrication d'une electrode pour accumulateur lithium-soufre a surface active importante
US12002949B2 (en) Negative electrode and secondary battery including the same
US20230307613A1 (en) Novel composites for anode electrodes
EP3472882B1 (fr) Procede de fabrication d'une structure faisant office d'electrode positive et de collecteur de courant pour accumulateur electrochimique lithium-soufre
Zeb Surface functionalization for the development of nanocomposite anodes for lithium ion batteries
FR3094710A1 (fr) Procédé de préparation d’une composition pâteuse comprenant des nanotubes de carbone
Fan Study of lithium-ion battery anodes based on silicon nanostructures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142854.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09740480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009740480

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1139/DELNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117004901

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011524431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0917946

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110211