WO2010086558A1 - Procede pour la preparation d'une composition d'electrode - Google Patents

Procede pour la preparation d'une composition d'electrode Download PDF

Info

Publication number
WO2010086558A1
WO2010086558A1 PCT/FR2010/050135 FR2010050135W WO2010086558A1 WO 2010086558 A1 WO2010086558 A1 WO 2010086558A1 FR 2010050135 W FR2010050135 W FR 2010050135W WO 2010086558 A1 WO2010086558 A1 WO 2010086558A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
binder
particles
weight
electrode
Prior art date
Application number
PCT/FR2010/050135
Other languages
English (en)
Inventor
Bernard Lestriez
Dominique Guyomard
Driss Mazouzi
Lionel Roue
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to EP10707608A priority Critical patent/EP2392043A1/fr
Priority to CA2750743A priority patent/CA2750743A1/fr
Priority to JP2011546923A priority patent/JP2012516531A/ja
Priority to CN2010800099290A priority patent/CN102341938A/zh
Priority to US13/146,239 priority patent/US20120276451A1/en
Publication of WO2010086558A1 publication Critical patent/WO2010086558A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a composition for producing a negative composite electrode of a lithium-ion battery, a process for producing the composition and an electrode, and a battery comprising said electrode.
  • a lithium ion battery comprises at least one negative or anode electrode and at least one positive electrode or cathode between which is placed a separator impregnated with an electrolyte.
  • the electrolyte consists of a lithium salt dissolved in a solvent chosen to optimize the transport and dissociation of the ions.
  • each of the electrodes generally comprises a current collector on which is deposited a composite material which comprises a material active towards lithium, a polymer which acts as a binder (for example a fluoride copolymer of vinylidene (PVdF), and an electronic conduction conferring agent (eg carbon black)
  • PVdF fluoride copolymer of vinylidene
  • an electronic conduction conferring agent eg carbon black
  • Li-ion batteries are used in many devices that include portable devices such as mobile phones, computers and light equipment, or heavier devices such as two-wheeled vehicles (bicycles, mopeds). or four-wheeled (electric or hybrid motor vehicles). For all these applications, it is imperative to have batteries that have the highest specific energy density (Wh / kg) and density (Wh / L).
  • Li-ion batteries used in mobile phones, computers and light equipment
  • the active ingredient of the negative electrode is usually graphite and the active ingredient of the positive electrode is cobalt oxide.
  • the specific energy density of Li-ion batteries based on this torque is 200 Wh / kg.
  • Such Batteries are not safe enough to be used for transport applications.
  • Li-ion batteries marketed for transport applications have the negative electrode graphite as the active material and the positive electrode as the iron phosphate, and their specific energy density is 110 Wh / kg.
  • the theoretical capacity of graphite is 372 mAh / g of graphite, while those of Si and Sn are respectively 3580 mAh / g of Si and 1400 mAh / g of Sn.
  • Si or Sn in place of graphite would therefore make it possible to obtain the same capacity with a smaller volume, or a larger capacity with the same volume of material.
  • replacing silicon with graphite in Li-ion batteries could achieve an energy density of 320 Wh / kg for portable applications and 180 Wh / kg for transportation applications.
  • thick negative electrodes which have a surface capacity of 3.0 mAh.cm -2 , are obtained by mixing Si particles with an electronically conductive agent (eg carbon black) and a polymeric binder. (eg PVdF)
  • an electronically conductive agent eg carbon black
  • a polymeric binder eg PVdF
  • the poor cyclability of these electrodes is due to the collapse of the network formed by the carbon black and the loss of the Si / carbon contacts due to the expansion and then the contraction of the Si particles as well as from their fracture into very small particles during the formation of alloys with lithium [JH Ryu, JW Kim, YE Sung, SM Oh, Electrochem Solid State Lett., 2004, 7, A306; R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, NL Wu, J., Power Sources, 2005, 140, 139].
  • nanoscale particles of silicon [U. Kasavajjula, C. Wang, AJ. Appleby, J. Power Sources, 2007, 163, 1003; ZP Guo, Wang JZ, Liu HK, Dou SX, Power Sources, 2005, 146, 448], or composite particles of Si and of various conductive materials (prepared for example by decomposition of organic precursors, by chemical deposition in vapor phase ("Chemical Vapor Deposition”: CVD), by mechanical chemical milling, by simple physical mixing, or by the reaction of gels) [U. Kasavajjula, C. Wang, AJ. Appleby, J. Power Sources, 2007 which is a review on silicon]. It has also been proposed nanostructured active materials [M.
  • a composite electrode is prepared from a composition consisting of a mixture of submicron particles of an active material M (Si, Sn or Ge), carbon particles and a polymer, under certain pH conditions and relative proportions of the various constituents of the mixture, was obtained a battery having improved properties in terms of conservation of the capacity to charge and discharge during successive cycles, when said composition is produced in an acid medium.
  • M active material
  • the inventors believe that these improved properties result in particular from improved mechanical strength.
  • the object of the present invention is to provide a composition for the development of a negative electrode for use in a lithium-ion battery, a method of producing said composition and the electrode, and a battery comprising such a negative electrode.
  • a composition according to the invention is prepared by a method comprising a step of suspending in an aqueous medium an electrode active material, a binder and an agent generating an electronic conductivity.
  • the method is characterized in that: the electrode active material is in the form of particles containing an element M selected from Si, Sn, Ge; said particles having an average size of less than 1 ⁇ m; the binder is a polymer which carries reactive groups capable of reacting with hydroxyl groups in acidic medium; the aqueous medium is an acid medium at pH 1 unbuffered, or an acid medium at a buffered pH of less than or equal to 4, obtained by addition of a strong base and an organic acid; the total amount of the constituents "active substance, binder, electronic conduction agent" introduced into the acidic aqueous medium is from 10 to 80% by weight of the total amount of the composition, and the proportions of said constituents in the aqueous medium are as follows:
  • the amount of organic acid is such that it corresponds to a content greater than 0.5 ⁇ 10 -4 mol per gram of element M, and the ratio of organic acid mass + strong base of organic acid + strong base + M + binder + electronic conduction agent remains less than or equal to 20%, that is to say (d + e) / (a + b + c + d + e) ⁇ 0, 1, the letters a, b, c, d and e respectively denoting the amounts of active ingredient, binder, electronic conduction agent, acid and base.
  • the particles of active material preferably have an average size of less than 200 nm. Silicon is particularly preferred as the active ingredient.
  • the particles of active material may be constituted by a single element M, an alloy of M with Li, or a composite material comprising the element M or the alloy M-Li and a conducting material Q.
  • the active ingredient when the active ingredient is in the form of composite particles, it can be obtained by various processes, in particular by decomposition of organic precursors in the presence of M, by CVD deposition, by chemical mechanical grinding, by simple physical mixing, by reaction of gels. , or by nanostructuration.
  • the conducting material Q may be carbon in various forms, for example in the form of amorphous carbon, graphite, carbon nanotubes or carbon nanofibers.
  • the conductive material Q may also be a metal that does not react with lithium, for example Ni or Cu.
  • the polymer used as binder is advantageously chosen from polymers which are electrochemically stable in the window of potential 0-5 V with respect to Li ° / Li + , insoluble in liquid media which can be used as liquid electrolyte solvent, and which carry functions capable of reacting with OH groups in acidic medium, especially carboxyl, amine, alkoxysilane, phosphonate, and sulfonate groups.
  • polymers that may be mentioned in particular are copolymers of acrylic acid, copolymers of acrylamide, copolymers of styrene sulfonic acid, copolymers of maleic acid, copolymers of itaconic acid, copolymers of the acid lignosulfonic acid, allylamine copolymers, ethylacrylic acid copolymers, polysiloxanes, epoxy-amine polymers, polyurethanes and carboxymethylcelluloses (CMC). CMCs are particularly preferred.
  • the agent generating an electronic conductivity may be selected from carbon black, SP carbon, acetylene black, carbon nanofibers, and carbon nanotubes.
  • the amount of organic acid is such that it corresponds to a content greater than 5.10 -4 mol per gram of element M and the organic acid mass ratio + strong organic acid base + strong base + M + binder + electronic conduction agent remains less than or equal to 10%.
  • the total amount of the active ingredient, binder and electron-conducting agent components introduced into the acidic aqueous medium is preferably from 20 to 60% by weight of the total amount of the composition.
  • the particles When the element M is in the form of particles, the particles have an oxide layer on at least a part of their surface.
  • the pH of the composition containing them must be sufficiently acidic so that the oxide on the surface of the M particles is substantially in the form of MOH groups and the reactive functions of the polymer acting as a binder are substantially in the form of of groups COOH, NH 2 , PO 3 H 2 , Si- (OH) 3 , and SO 3 H.
  • the aqueous acidic medium can be obtained by adding to the water either a strong acid in an amount sufficient to obtain an initial pH of 1, or using an aqueous solution buffered at a pH of less than or equal to 4.
  • the buffered aqueous solution is obtained adding to the water a mixture of organic acid and a strong base in sufficient quantity.
  • organic acid / strong base it is particularly advantageous to use an "organic acid / strong base" mixture, which makes it possible to maintain the pH constant during the conversion of the oxide of M into MOH so as to keep the reactive groups of the binder polymer in acid form.
  • the simple addition of a strong acid would involve the use of larger initial amounts of acid, which would have the disadvantage of causing irreversible degradation of the various constituents of the electrode and the current collector when the material is used as a material.
  • the strong base is advantageously an alkali metal hydroxide.
  • the organic acid is chosen from weak acids, in particular glycine, aspartic acid, bromoethanoic acid, bromobenzoic acid, chloroethanoic acid, dichloroethanoic acid, trichloroethanoic acid and lactic acid. , maleic acid, malonic acid, phthalic acid, isophthalic acid, terephthalic acid, picric acid, salicylic acid, formic acid, acetic acid, oxalic acid , malic acid, fumaric acid and citric acid. Citric acid is particularly preferred.
  • a negative electrode according to the present invention consists of a composite material on a conductive substrate. It is developed by applying to said conductive substrate, a composition according to the present invention as defined above, and then drying the deposited composition.
  • the conductive substrate intended to form the current collector of the electrode, is preferably a sheet of a conductive material, for example a sheet of copper, nickel or stainless steel. Copper is particularly preferred.
  • the drying can be carried out by a process comprising a step of drying in air at room temperature, then a drying step under vacuum with heating at a temperature between 70 and 150 ° C. A temperature of about 100 ° C. is preferred.
  • the resulting electrode comprises a layer of composite material on a conductive substrate serving as a collector.
  • the conductive substrate is as defined above.
  • the proportions of the constituents of the composite material are such that: 30 to 90% by weight of particles of active material; 5 to 40% by weight of binder;
  • the element M of the initial composition is Si, so that the active material of the composite electrode is Si.
  • the element M is in the form of nanoparticles.
  • Particularly preferred are compositions in which the element M is Si in the form of nanoparticles.
  • compositions are:
  • the electrode composite material according to the invention has improved properties, in particular as regards the mechanical strength, the resistance to degradation by an electrolyte, and the thickness of the passivation layer on the active material.
  • a lithium-ion battery comprising an electrode according to the present invention is another object of the present invention.
  • a lithium-ion battery according to the present invention comprises at least one negative electrode and at least one positive electrode between which is placed a solid electrolyte (polymer or vitreous) or a separator impregnated with a liquid electrolyte. It is characterized in that the negative electrode is an electrode according to the invention.
  • the positive electrode is constituted by a current collector carrying a material capable of reversibly inserting lithium ions at a potential greater than that of the material of the negative electrode.
  • This material is generally used in the form of a composite material further comprising a binder and an agent generating an electronic conductivity.
  • the binder and the electronic conductivity agent may be selected from those mentioned for the negative electrode.
  • the material capable of reversibly inserting the lithium ions at the positive electrode is preferably a material which has an electrochemical potential greater than 2 V relative to the lithium pair, and is advantageously chosen from: transition metal oxides having a spinel type of structure LiM 2 O 4, and transition metal oxides with layered structure type LiMO 2 wherein M represents at least one metal selected from the group consisting of Mn, Fe, Co, Ni Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B and Mo; - the oxides polyanionic structural LiM type y (XO z) n wherein M represents at least one metal selected from the group consisting of Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba , Ti, Al, Si, B and Mo and X represents an element selected from the group consisting of P, Si, Ge, S and As.
  • Vanadium oxides Vanadium oxides.
  • the oxides with a spinel structure of LiM 2 O 4 type those in which M represents at least one metal chosen from Mn and Ni are preferred.
  • the oxides with lamellar structure of LiMO 2 type those in which M represents at least one metal chosen from Mn, Co and Ni are preferred.
  • the polyanionic framework oxides of LiM type y (XO z ) n particularly preferred are the olivine structure-containing phosphates, the composition of which corresponds to the formula LiMPO 4 in which M represents at least one element selected from Mn, Fe, Co and Ni). LiFePO 4 is preferred.
  • the electrolyte consists of a lithium salt dissolved in a solvent chosen to optimize the transport and dissociation of the ions.
  • the lithium salt may be selected from LiPF 6, LiAsF 6, LiClO 4, LiBF 4, LiC 4 BO 8, Li (C 2 F 5 SO 2) 2 N, Li [(C 2 F 5) 3 PF 3] LiCF 3 SO 3 , LiCH 3 SO 3 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 F) 2 ,
  • the solvent may be a liquid solvent comprising one or more aprotic polar compounds selected from linear or cyclic carbonates, linear or cyclic ethers, linear or cyclic esters, linear or cyclic sulfones, sulfonamides and nitriles.
  • the solvent is preferably at least two carbonates selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and methyl and ethyl carbonate.
  • the solvent of the electrolyte may further be a solvating polymer.
  • solvating polymers mention may be made of polyethers of linear structure, comb or block, forming or not a network, based on poly (ethylene oxide); copolymers containing the ethylene oxide or propylene oxide or allylglycidyl ether unit; polyphosphazenes; crosslinked networks based on polyethylene glycol crosslinked with isocyanates; copolymers of oxyethylene and of epichlorohydrin as described in FR-9712952; and the networks obtained by polycondensation and bearing groups that allow the incorporation of crosslinkable groups.
  • Block copolymers in which certain blocks carry functions which have redox properties can also be mentioned.
  • the above list is not limiting, and all polymers having solvating properties can be used.
  • the solvent of the electrolyte may further contain a mixture of a polar aprotic liquid compound selected from the aprotic polar compounds mentioned above and a solvating polymer. It may comprise from 2 to 98% by volume of liquid solvent, depending on whether a plasticized electrolyte with a low content of polar aprotic compound or a gelled electrolyte with a high content of polar aprotic compound is desired.
  • the lithium salt is optional.
  • the solvent of the electrolyte may also contain a non-solvating polar polymer comprising units containing at least one heteroatom selected from sulfur, oxygen, nitrogen and fluorine.
  • a non-solvating polymer may be chosen from homopolymers and copolymers of acrylonitrile, homopolymers and copolymers of fluorovinylidene, and homopolymers and copolymers of N-vinylpyrrolidone.
  • the nonsolvating polymer may also be a polymer bearing ionic substituents, and in particular a polyperfluoroether sulfonate salt (such as a Nafion® mentioned above for example) or a polystyrene sulphonate salt.
  • the electrolyte contains a nonsolvating polymer, it is necessary that it also contains at least one polar aprotic compound as defined above or at least one solvating polymer as defined above.
  • nanoscale silicon in the form of particles having an average size of 100 nm and a purity of 99.999%, supplied by Alfa Aesar were used; micrometric silicon in the form of particles having an average size of 5 ⁇ m and a purity of 99.999%, supplied by Alfa Aesar; a CMC carboxymethylcellulose having a degree of substitution of protons by CH 2 CO 2 groups Na (DS) of 0.7 and a weight average molecular weight M w of 90,000, supplied by Aldrich.
  • Example 1 Preparing a battery
  • Buffered acid solution at pH 3 was prepared by dissolving in 100 mL of water, 3.842 g of citric acid and 0.402 g of KOH. T is the buffer concentration of this solution. 0.5 ml of this solution was dispersed 160 mg of nanoscale silicon, 16 mg of CMC and 24 mg of acetylene black. The dispersion was carried out using a ball mill (Pulverisette
  • Fritsch which has a 12.5 mL grinding bowl containing 3 beads of 10 mm diameter, for 1 hr at 500 rpm.
  • the initial composition thus obtained consists of 72.4% by weight of silicon particles 7.2% by weight of CMC binder, 10.8% by weight of acetylene black, 8.7% by weight of citric acid and 0.9% by weight of KOH.
  • the entire initial composition was applied to a copper current collector having a thickness of 25 ⁇ m and an area of 10 cm 2 . It was then dried at ambient temperature for 12 hours and then at 100 ° C. under vacuum for 2 hours.
  • the layer of composite material deposited on the current collector has a thickness of 10-20 ⁇ m, which corresponds to a quantity of silicon of 1-2 mg / cm 2 .
  • the composite material obtained after drying has the following composition:
  • the electrode thus obtained was mounted in a battery (designated by battery D) having as positive electrode a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • battery D a battery having as positive electrode a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • the cycling performance of the 4 batteries assembled according to the procedure of Example 1 were evaluated in cycling.
  • the cycling was carried out with a constant specific capacity limited to 1200 mAh / g Si in the 0-1 V potential range.
  • Li + / Li It was driven in static galvano current mode at a current I of 900 mA / g which corresponds to a regime of C, according to which each charge and discharge takes place in 1 hour.
  • FIG. 1 shows the evolution of the capacitance and the faradic efficiency during the charge / discharge cycles, during a cycling of the battery (D) according to the invention.
  • the specific capacitance CS in mAh / g and the coulombic efficiency in% are given as a function of the number of cycles N.
  • the respective curves are as follows: m CS during a discharge, D CS during a charge, 0 output Faraday.
  • FIG. 2 compares the evolution of the specific discharge capacity (CSD in mA / h) as a function of the number N, during cycling of the batteries (A), (B), (C) and (D). It shows the substantial improvement provided by a pH buffered to 3 compared to a pH of 7, for both micrometric particles and nanoscale particles.
  • the correspondence between the curves and the batteries is as follows: o D battery m battery C 0 battery B • battery A
  • the cycling performance of the 4 batteries assembled according to the procedure of Example 1 were evaluated in cycling without capacity limitation, in the range of 0-1 V vs. potential. Li + / Li.
  • the cycling was controlled in galvanostatic current mode at a current I of 120 mA / g which corresponds to a regime of C / 7.5, according to which each charge and discharge takes place in 7.5 hours.
  • FIG. 3 compares the evolution of the specific discharge capacity (CSD in mA / h) as a function of the number N, during cycling of the batteries (A), (B), (C) and
  • the batteries were prepared at acidic pH, using a strong H 2 SO 4 acid and not a buffer.
  • the batteries thus prepared have been studied in cycling, with limitation of capacity, according to the detailed protocol below.
  • An unbuffered acid solution at pH 1 was prepared by dissolving in
  • the entire initial composition was applied to a copper current collector having a thickness of 25 ⁇ m and an area of 10 cm 2 . It was then dried at ambient temperature for 12 hours and then at 100 ° C. under vacuum for 2 hours.
  • the layer of composite material deposited on the current collector has a thickness of 10-20 .mu.m, which corresponds to a quantity of silicon of 1-2 mg / cm 2 .
  • the electrode thus obtained (denoted by battery E) was mounted in batteries having, as positive electrode, a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte constituted by a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • batteries having, as positive electrode, a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte constituted by a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • the cycling performance of the 3 assembled batteries was evaluated in cycling.
  • the cycling was carried out with a constant specific capacity limited to 1200 mAh / g Si in the 0-1 V potential range. Li + / Li. It was driven in static galvano current mode at a current I of 900 mA / g which corresponds to a regime of C, according to which each charge and discharge takes place in 1 hour.
  • FIG. 4 compares the evolution of the specific discharge capacity (CSD in mA / h) as a function of the number N, during cycling of the batteries (E), (F), (G) and (A).
  • the acidification leads to an improvement in performance, in the following order pH 1> pH 2> pH 3> pH 7.
  • the correspondence between the curves and the batteries is as follows:
  • FIG. 4 shows that the best performances are nevertheless obtained by using a mixture of citric acid and a strong base which makes it possible to buffer at pH 3 (battery D of example 1).
  • the batteries were prepared at acidic pH, using a citric acid and KOH buffer.
  • the buffer concentration was varied to take the following values: T710, T / 4, T / 2, 3T / 4, 3T / 2, 2T .
  • Buffered acid solution at pH 3 was prepared by dissolving in 100 mL of water, 0.3842 g of citric acid and 0.0402 g of KOH.
  • the buffer concentration of this solution is T710, because it is equal to 1/10 of the buffer concentration of the solution prepared in Example 1, the concentration of which has been noted T.
  • TY10 160 mg of nanoscale silicon 16 mg of CMC and 24 mg of acetylene black were dispersed.
  • the dispersion was carried out using a ball mill (Fritsch Spray) which has a 12.5 mL milling bowl containing 3 beads of 10 mm diameter for 1 hour at 500 rpm.
  • the initial composition thus obtained consists of 79.83% by weight of silicon particles 7.98% by weight of CMC binder, 11.97% by mass of acetylene black, 0.19% by weight of citric acid and 0.02% by weight of KOH.
  • the entire initial composition was applied to a copper current collector having a thickness of 25 ⁇ m and an area of 10 cm. It was then dried at ambient temperature for 12 hours and then at 100 ° C. under vacuum for 2 hours.
  • the layer of composite material deposited on the current collector has a thickness of 10-20 ⁇ m, which corresponds to a quantity of silicon of 1-2 mg / cm 2 .
  • the composite material obtained after drying has the following composition:
  • the electrode thus obtained was mounted in a battery (designated battery H) having as a positive electrode a lithium metal sheet laminated on a copper current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • a battery designated battery H having as a positive electrode a lithium metal sheet laminated on a copper current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • the performance of the battery H has been evaluated in cycling.
  • the cycling was carried out with a constant specific capacity limited to 1200 mAh / g Si in the 0-1 V potential range.
  • Li + / Li It was driven in galvanostatic current mode at a current I of 900 mA / g which corresponds to a regime of C, according to which each charge and discharge takes place in 1 hour.
  • the table below gives, for each of the tested batteries, the actual mAh / g electrode capacity, the number of cycles with constant specific capacity held by each battery and the average faradic efficiency during the charge / discharge cycles, during Cycling of the battery (H) and batteries (I), (J), (K), (D, Example 1), (L) and (M) according to the invention and A (neutral pH, unmodified). ).
  • the amount of organic acid must be such that it corresponds to a content greater than 0.510 -4 mol per gram of element M, preferably a content of greater than 5.10 -4 mol per gram of element M because below this value the performance improvement is less interesting, and it is preferable that the mass ratio organic acid + strong base organic acid + strong base + M + binder + electronic conduction agent remains less than or equal to 10% because beyond this value there is no significant improvement in performance.
  • the batteries were prepared at acidic pH, using an organic acid buffer and KOH.
  • the organic acid being: aspartic acid (buffer pH 2), aspartic acid (buffer pH 3.9).
  • Another battery was prepared with phosphoric mineral acid (buffer pH 3).
  • Buffered acid solutions were prepared by dissolving in 10O mL water, some organic acid or mineral acid and some KOH. 0.5 ml of this solution was dispersed 160 mg of nanoscale silicon, 16 mg of CMC and 24 mg of acetylene black. The dispersion was carried out using a ball mill (Fritsch Spray) which has a 12.5 mL milling bowl containing 3 beads of 10 mm diameter for 1 hour at 500 rpm.
  • the acid is either the organic aspartic acid (pH 2 buffer or pH 4 buffer) or the phosphoric mineral acid (pH 3 buffer).
  • the entire initial composition was applied to a copper current collector having a thickness of 25 ⁇ m and an area of 10 cm 2 . It was then dried at ambient temperature for 12 hours and then at 100 ° C. under vacuum for 2 hours.
  • the layer of composite material deposited on the current collector has a thickness of 10-20 ⁇ m, which corresponds to a quantity of silicon of 1-2 mg / cm 2 .
  • the electrodes thus obtained were mounted in a battery having, as positive electrode, a metal lithium sheet laminated on a copper current collector, a fiberglass separator, a liquid electrolyte consisting of a 1M LiPF 6 solution dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • FIG. 5 compares the evolution of the specific discharge capacity (CSD in mA / h) as a function of the number N, during cycling of the batteries (D), (N), (O) and (P).
  • Example 2 a battery was prepared according to Example 1 with the difference that the drying temperature is not 100 ° C., but 150 ° C.
  • the entire initial composition was applied to a copper current collector having a thickness of 25 ⁇ m and an area of 10 cm. It was then dried at ambient temperature for 12 hours and then at 100 ° C. under vacuum for 2 hours.
  • the layer of composite material deposited on the current collector has a thickness of 10-20 microns, which corresponds to a silicon amount of 1-2 mg / cm.
  • the composite material obtained after drying has the following composition:
  • the electrode thus obtained was mounted in a battery (designated Q battery) having as positive electrode a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • a battery designated Q battery having as positive electrode a lithium metal sheet laminated on a nickel current collector, a fiberglass separator, a liquid electrolyte consisting of a solution 1M LiPF 6 dissolved in a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), EC / DMC 1/1.
  • the cycling performance of the battery was evaluated during cycling.
  • the cycling was carried out with a constant specific capacity limited to 1200 mAh / g Si in the 0-1 V potential range. Li + / Li. It was driven in galvanostatic current mode at a current I of 900 mA / g which corresponds to a regime of C, according to which each charge and discharge takes place in 1 hour.
  • FIG. 6 shows the evolution of the capacitance and the faradic efficiency during the charge / discharge cycles, during a cycling of the battery (D) according to the invention.
  • the specific capacitance CS in mAh / g is given as a function of the number of cycles N. The respective curves are as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne un procédé pour la préparation d'une composition d'électrode, comprenant une étape de mise en suspension, dans un milieu aqueux acide à pH 1 non tamponné ou un milieu acide tamponné à un pH inférieur ou égal à 4, d'une matière active d'électrode sous forme de particules contenant un élément M choisi parmi Si, Sn, Ge, d'un liant polymère qui porte des groupes réactifs capables de réagir avec des groupes hydroxyle en milieu acide et d'un agent générant une conductivité électronique. L'invention concerne également l'électrode obtenue selon ce procédé ainsi qu'une batterie comprenant une telle électrode.

Description

PROCEDE POUR LA PREPARATION D'UNE COMPOSITION
D'ELECTRODE
La présente invention concerne une composition pour l'élaboration d'une électrode composite négative d'une batterie lithium-ion, un procédé pour l'élaboration de la composition et de l'électrode, ainsi qu'une batterie comprenant ladite électrode.
Une batterie lithium-ion comprend au moins une électrode négative ou anode et au moins une électrode positive ou cathode entre lesquelles est placé un séparateur imprégné par un électrolyte. L'électrolyte est constitué d'un sel de lithium en solution dans un solvant choisi pour optimiser le transport et la dissociation des ions.
Dans une batterie lithium ion, chacune des électrodes comprend généralement un collecteur de courant sur lequel est déposé un matériau composite qui comprend une matière active vis-à-vis du lithium, un polymère qui joue le rôle de liant (par exemple un copolymère du fluorure de vinylidène (PVdF), et un agent conférant une conduction électronique (par exemple du noir de carbone). Au cours du fonctionnement de la batterie, des ions lithium passent de l'une des électrodes à l'autre à travers l'électrolyte. Lors de la décharge de la batterie, une quantité de lithium réagit avec la matière active d'électrode positive à partir de l'électrolyte, et une quantité équivalente est introduite dans l'électrolyte à partir de la matière active de l'électrode négative, la concentration en lithium restant ainsi constante dans l'électrolyte. L'insertion du lithium dans l'électrode positive est compensée par apport d'électrons à partir de l'électrode négative via un circuit extérieur. Lors de la charge, les phénomènes inverses ont lieu. Les batteries Li-ion sont utilisées dans de nombreux dispositifs qui comprennent des appareils portables tels que notamment les téléphones mobiles, les ordinateurs et l'outillage léger, ou des appareils plus lourds tels que des moyens de transports à deux roues (bicyclettes, cyclomoteurs) ou à quatre roues (véhicules automobiles électriques ou hybrides). Pour toutes ces applications, il est impératif de disposer de batteries qui ont une densité d'énergie massique (Wh/kg) et une densité d'énergie volumique (Wh/L) les plus élevées possible. Dans les batteries Li- ion commerciales utilisées dans les téléphones mobiles, les ordinateurs et l'outillage léger, la matière active de l'électrode négative est généralement le graphite et la matière active de l'électrode positive est l'oxyde de cobalt. La densité d'énergie massique des batteries Li-ion basées sur ce couple est de 200 Wh/kg. De telles batteries ne sont pas suffisamment sures pour être utilisées pour les applications de transport. Les batteries Li-ion commercialisées pour les applications relatives au transport ont comme matière active le graphite à l'électrode négative et le phosphate de fer à l'électrode positive, et leur densité d'énergie massique est de 110 Wh/kg. La capacité théorique du graphite est de 372 mAh/g de graphite, alors que celles de Si et de Sn sont respectivement de 3580 mAh/g de Si et de 1400 mAh/g de Sn. L'utilisation de Si ou de Sn à la place du graphite permettrait donc d'obtenir la même capacité avec un volume plus petit, ou une capacité plus grande avec le même volume de matière. Ainsi, le remplacement du graphite par le silicium dans les batteries Li-ion pourrait permettre d'atteindre une densité d'énergie de 320 Wh/kg pour les applications portables et de 180 Wh/kg dans les applications dans le domaine du transport.
L'utilisation d'une matière active telle que Si, Sn ou Ge présente cependant un inconvénient, du fait que les fortes variations de volume (jusqu'à 300%) des particules de Si occasionnées par les charges et décharges conduisent à des contraintes mécaniques et des pertes de cohésion de l'électrode. Cette perte s'accompagne au cours du temps d'une très grande diminution des capacités et d'une augmentation de la résistance interne. (N. Obrovac, L. Christensen, Electrochem. Solid-State Lett., 2004, 7, A93). Cet inconvénient est plus limité pour les films minces de Si qui peuvent présenter une bonne cyclabilité (3600 mAh.g"1 après 200 cycles pour un film de 250 nm de Si mais qui ont une faible capacité surfacique (inférieure à 0,5 mAh.cm"2) en raison de leur faible épaisseur [T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, J. Power Sources, 2004, 129, 96]. Cependant, le coût élevé associé au procédé de dépôt de ces films minces limite leur développement commercial pour toutes les applications portable et de transport. [U. Kasavajjula, C. Wang, AJ. Appleby, J. Power Sources, 2007, 163, 1003].
Pour les applications portables, des électrodes négatives épaisses, qui ont une capacité surfacique de 3,0 mAh.cm"2, sont obtenues en mélangeant des particules de Si avec un agent conducteur électronique (par exemple le noir de carbone) et un liant polymère (par exemple PVdF). La mauvaise cyclabilité de ces électrodes est due à l'écroulement du réseau formé par le noir de carbone et la perte des contacts Si/carbone en raison de l'expansion puis de la contraction des particules de Si ainsi que de leur fracture en de très petites particules lors de la formation des alliages avec le lithium. [J. H. Ryu, J. W. Kim, Y.-E. Sung, S. M. Oh, Electrochem. Solid- State Lett., 2004, 7, A306 ; W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang, N.-L. Wu, J., Power Sources, 2005, 140, 139]. La perte des contacts carbone/carbone et Si/carbone limite le transport des électrons dans l'anode et par suite la réaction d'alliage.
Pour remédier à ces inconvénients, il a été proposé d'utiliser des particules nanométriques de silicium [U. Kasavajjula, C. Wang, AJ. Appleby, J. Power Sources, 2007, 163, 1003 ; Z. P. Guo, J. Z. Wang, H. K. Liu, S. X. Dou, J., Power Sources, 2005, 146, 448], ou des particules composites de Si et de différents matériaux conducteurs (préparées par exemple par décomposition de précurseurs organiques, par dépôt chimique en phase vapeur (« Chemical Vapor Déposition » : CVD), par broyage mécano-chimique, par simple mélangeage physique, ou par la réaction de gels) [U. Kasavajjula, C. Wang, AJ. Appleby, J. Power Sources, 2007 qui est une revue sur le silicium]. Il a également été proposé des matières actives nanostructurées [M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, F. -M. Petrat, Chem. Commun., 2005, 1566], ou des agents conducteurs tels que des nanotubes de carbone ou des nanofibres de carbone [S. Park, T. Kim, S. M. Oh, Electrochem. Solid-State Lett., 2007, 10, A 142.]. Toutefois, aucun de ces moyens ne permet d'obtenir une forte amélioration des performances de l'électrode négative. La meilleure stabilité en cyclage est limitée à 400 cycles avec une électrode qui a une capacité de 425 mAh/g d'électrode [M. Yoshio, S. Kugino, N. Dimov, J. Power Sources, 2006, 153, 375 et M. Yoshio, T. Tsumura, N. Dimov, J. Power Sources, 2007, 163, 215].
Il a en outre été proposé de préparer un matériau composite contenant des particules micrométriques de Si comme matière active, une carboxyméthylcellulose comme liant et du noir de carbone comme agent conférant une conductivité électronique, dans un milieu à pH 3 [(B. Lestriez, S. Bahri, I. Sandu, L. Roue, D.
Guyomard, Electrochemistry Communications, 2007, 9, 2801-2806].
Cependant, diverses publications de l'art antérieur relatent des procédés de préparations de matériaux composites d'électrodes dans lesquels la mise en œuvre en milieu acide est déconseillée. On peut citer à cet égard W. Porcher, et al. [Electrochemical and Solid-State Letters, 2008, 1, A4-A8] selon lesquels l'élaboration en solution aqueuse acide d'une électrode positive à base de LiFePO4 est néfaste car le matériau actif se dissout à pH acide ; J-H. Lee, et al, [J. Power Sources, 2005, 147, 249-255] selon lesquels il est préférable de préparer une électrode négative à base de graphite et de carboxyméthylcellulose (CMC) dans une plage de pH > 6, car à un pH acide la suspension d'électrode n'est pas stable en raison de la neutralisation des fonctions carboxylates COO" de la CMC en fonction carboxylique COOH ; et C-C. Li, et al, [J. Mater. ScL, 2007, 42, 5773 selon lesquels il est préférable de préparer une électrode positive à base de LiCoO2 et de CMC dans une plage de pH > 7, car à un pH acide la suspension d'électrode n'est pas stable, ce qui se traduit par des performances électrochimiques inférieures. La neutralisation des fonctions carboxylates COO" de la CMC en fonction carboxylique COOH amène une perte de ses propriétés rhéoépaississantes, propriétés qui sont à l'origine de son utilisation dans les suspensions aqueuses d'électrode.
Les inventeurs ont constaté que, de manière surprenante, lorsqu'une électrode composite est préparée à partir d'une composition constituée par un mélange de particules submicroniques d'une matière active M (Si, Sn ou Ge), de particules de carbone et d'un polymère, dans certaines conditions de pH et de proportions relatives des différents constituants du mélange, on obtenait une batterie présentant des propriétés améliorées en termes de conservation de la capacité à la charge et à la décharge au cours des cycles successifs, lorsque ladite composition est élaborée en milieu acide. Sans vouloir être lié par une quelconque théorie, les inventeurs pensent que ces propriétés améliorées résultent notamment d'une tenue mécanique améliorée.
Le but de la présente invention est de fournir une composition pour l'élaboration d'une électrode négative destinée à être utilisée dans une batterie lithium-ion, un procédé d'élaboration de ladite composition et de l'électrode, ainsi qu'une batterie comprenant une telle électrode négative.
Une composition selon l'invention est préparée par un procédé comprenant une étape de mise en suspension dans un milieu aqueux d'une matière active d'électrode, d'un liant et d'un agent générant une conductivité électronique. Ledit procédé est caractérisé en ce que : la matière active d'électrode est sous forme de particules contenant un élément M choisi parmi Si, Sn, Ge ; lesdites particules ayant une dimension moyenne inférieure à 1 μm ; le liant est un polymère qui porte des groupes réactifs capables de réagir avec des groupes hydroxyle en milieu acide ; le milieu aqueux est un milieu acide à pH 1 non tamponné, ou un milieu acide à un pH tamponné inférieur ou égal à 4, obtenu par addition d'une base forte et d'un acide organique ; la quantité totale des constituants « matière active, liant, agent de conduction électronique » introduite dans le milieu aqueux acide est de 10 à 80% en poids de la quantité totale de la composition, et les proportions desdits constituants dans le milieu aqueux sont comme suit :
30 à 90 % en poids de particules de matière active ; 5 à 40 % en poids de liant ; - 5 à 30 % en poids d'agent de conductivité électronique. la quantité d'acide organique est telle qu'elle corresponde à une teneur supérieure à 0,5.10"4 mol par gramme d'élément M, et le rapport en masse acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique reste inférieur ou égal à 20%, c'est-à-dire (d+e)/(a+b+c+d+e)<0, 1 , les lettres a, b, c, d et e désignant respectivement les quantités de matière active, de liant, d'agent de conduction électronique, d'acide et de base.
Les particules de matière active ont de préférence une dimension moyenne inférieure à 200 nm. Le silicium est particulièrement préféré comme matière active. Les particules de matière active peuvent être constituées par un élément M seul, un alliage de M avec Li, ou par un matériau composite comprenant l'élément M ou l'alliage M-Li et un matériau conducteur Q.
Lorsque la matière active est sous forme de particules composites, elle peut être obtenue par différents procédés, notamment par décomposition de précurseurs organiques en présence de M, par dépôt par CVD, par broyage mécano-chimique, par simple mélangeage physique, par réaction de gels, ou par nanostructuration. Le matériau conducteur Q peut être du carbone sous différentes formes, par exemple sous forme de carbone amorphe, de graphite, de nanotubes de carbone ou de nanofibres de carbone. Le matériau conducteur Q peut aussi être un métal qui ne réagit pas avec le lithium, par exemple Ni ou Cu.
Le polymère utilisé comme liant est choisi avantageusement parmi les polymères qui sont stables électrochimiquement dans la fenêtre de potentiel 0-5 V par rapport à Li°/Li+, insolubles dans les milieux liquides utilisables comme solvant d'électrolyte liquide, et qui portent des fonctions capables de réagir avec des groupes OH en milieu acide, notamment des groupes carboxyle, aminé, alcoxysilane, phosphonate, et sulfonate. Comme exemples de polymères, on peut citer en particulier les copolymères de l'acide acrylique, les copolymères de l'acrylamide, les copolymères de l'acide sulfonique de styrène, les copolymères d'acide maléique, les copolymères d'acide itaconique, les copolymères de l'acide lignosulfonique, les copolymères d'ally lamine, les copolymères d'acide éthylacrylique, les polysiloxanes, les polymères époxy-amines, les polyuréthanes et les carboxyméthylcelluloses (CMC). Les CMC sont particulièrement préférées.
L'agent générant une conductivité électronique peut être choisi parmi le noir de carbone, le carbone SP, le noir d'acétylène, les nano fibres de carbone, et les nanotubes de carbone.
Selon une forme de réalisation préférée de l'invention, la quantité d'acide organique est telle qu'elle corresponde à une teneur supérieure à 5.10"4 mol par gramme d'élément M et le rapport en masse acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique reste inférieur ou égal à 10%.
La quantité totale des constituants « matière active, liant et agent de conduction électronique » introduite dans le milieu aqueux acide est de préférence de 20 à 60 % en poids de la quantité totale de la composition.
Lorsque l'élément M est sous forme de particules, les particules ont une couche d'oxyde sur au moins une partie de leur surface. Le pH de la composition qui les contient doit être suffisamment acide pour que l'oxyde à la surface des particules de M se trouve essentiellement sous forme de groupes MOH et pour que les fonctions réactives du polymère agissant en tant que liant se trouvent essentiellement sous forme de groupes COOH, NH2, PO3H2, Si-(OH)3, et SO3H.
Le milieu aqueux acide peut être obtenu en ajoutant à l'eau soit un acide fort en quantité suffisante pour obtenir un pH initial de 1 , soit en utilisant une solution aqueuse tamponnée à un pH inférieur ou égal à 4. La solution aqueuse tamponnée est obtenue en ajoutant à l'eau un mélange d'acide organique et d'une base forte en quantité suffisante. Il est particulièrement avantageux d'utiliser un mélange « acide organique / base forte », qui permet de maintenir le pH constant lors de la transformation de l'oxyde de M en MOH de sorte à conserver les groupes réactifs du polymère liant sous forme acide. La simple addition d'un acide fort impliquerait l'utilisation de quantités initiales d'acide plus importantes, ce qui aurait pour inconvénient de provoquer une dégradation irréversible des différents constituants de l'électrode et du collecteur de courant lorsque le matériau est utilisé comme matériau d'électrode. La base forte est avantageusement un hydroxyde de métal alcalin. L'acide organique est choisi parmi les acides faibles, en particulier la glycine, l'acide aspartique, l'acide bromoéthanoïque, l'acide bromobenzoïque, l'acide chloroéthanoïque, l'acide dichloroéthanoïque, l'acide trichloroéthanoïque, l'acide lactique, l'acide maléique, l'acide malonique, l'acide phtalique, l'acide isophtalique, l'acide téréphtalique, l'acide picrique, l'acide salicylique, l'acide formique, l'acide acétique, l'acide oxalique, l'acide malique, l'acide fumarique et l'acide citrique. L'acide citrique est particulièrement préféré.
Une électrode négative selon la présente invention est constituée par un matériau composite sur un substrat conducteur. Elle est élaborée en appliquant sur ledit substrat conducteur, une composition selon la présente invention telle que définie ci-dessus, puis en séchant la composition déposée.
Le substrat conducteur, destiné à former le collecteur de courant de l'électrode, est de préférence une feuille d'un matériau conducteur, par exemple une feuille de cuivre, de nickel ou d'inox. Le cuivre est particulièrement préféré.
Après dépôt de la composition sur le substrat conducteur, le séchage peut être effectué par un procédé comprenant une étape de séchage à l'air à température ambiante, puis une étape de séchage sous vide avec un chauffage à une température entre 70 et 1500C. Une température d'environ 1000C est préférée. L'électrode obtenue comprend une couche de matériau composite sur un substrat conducteur servant de collecteur. Le substrat conducteur est tel que défini précédemment.
Les proportions des constituants du matériau composite sont telles que : 30 à 90 % en poids de particules de matière active ; - 5 à 40 % en poids de liant ;
5 à 30 % en poids agent de conductivité électronique ; une quantité f du sel de la base et de l'acide organique ; étant entendu que f/(a+b+c+f) < 0,2, a, b et c ayant la signification indiquée précédemment, et f est inférieur à 20% en poids, de préférence inférieur à 10 %. Dans un mode de réalisation particulier, l'élément M de la composition initiale est Si, de sorte que la matière active de l'électrode composite est Si.
Dans un autre mode de réalisation particulier, l'élément M est sous forme de nanoparticules. On préfère en particulier les compositions dans lesquelles l'élément M est Si sous forme de nanoparticules.
Des exemples particuliers de compositions sont les suivants :
80% en masse de particules de silicium 8% en masse de liant CMC, 12% en masse de noir d'acétylène
76,25% en masse de particules de silicium 8% en masse de liant CMC, 11% en masse de noir d'acétylène, 4,35% en masse d'acide citrique et 0,4% en masse de KOH
50 % en masse de particules de silicium 25% en masse de liant CMC, 15,5% en masse de noir d'acétylène, 8,7% en masse d'acide citrique et 0,8% en masse de KOH
72,3% en masse de particules de silicium 7,2% en masse de liant CMC, 10,8% en masse de noir d'acétylène, 8,7% en masse d'acide citrique et 0,9% en masse de KOH. Le matériau composite d'électrode selon l'invention a des propriétés améliorées, notamment en ce qui concerne la tenue mécanique, la résistance à la dégradation par un électrolyte, et l'épaisseur de la couche de passivation sur la matière active.
Une batterie lithium-ion comprenant une électrode selon la présente invention constitue un autre objet de la présente invention.
Une batterie lithium-ion selon la présente invention comprend au moins une électrode négative et au moins une électrode positive entre lesquelles est placé un électrolyte solide (polymère ou vitreux) ou un séparateur imprégné par un électrolyte liquide. Elle est caractérisée en ce que l'électrode négative est une électrode selon l'invention.
L'électrode positive est constituée par un collecteur de courant portant un matériau capable d'insérer réversiblement des ions lithium à un potentiel supérieur à celui du matériau de l'électrode négative. Ce matériau est généralement utilisé sous forme d'un matériau composite comprenant en outre un liant et un agent générant une conductivité électronique. Le liant et l'agent de conductivité électronique peuvent être choisis parmi ceux mentionnés pour l'électrode négative. Le matériau capable d'insérer réversiblement les ions lithium à l'électrode positive est de préférence un matériau qui a un potentiel électrochimique supérieur à 2 V par rapport au couple du lithium, et il est choisi avantageusement parmi : les oxydes de métaux de transition à structure spinelle de type LiM2O4 et les oxydes de métaux de transition à structure lamellaire de type LiMO2 dans lequel M représente au moins un métal choisi dans le groupe constitué par Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B et Mo ; - les oxydes à charpente polyanionique de type LiMy(XOz)n dans lesquels M représente au moins un métal choisi dans le groupe formé par Mn, Fe, Co, Ni, Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B et Mo et X représente un élément choisi dans le groupe constitué par P, Si, Ge, S et As. les oxydes à base de vanadium. Parmi les oxydes à structure spinelle de type LiM2O4, on préfère ceux dans lesquels M représente au moins un métal choisi parmi par Mn et Ni. Parmi les oxydes à structure lamellaire de type LiMO2, on préfère ceux dans lesquels M représente au moins un métal choisi parmi par Mn, Co et Ni. Parmi les oxydes à charpente polyanionique de type LiMy(XOz)n, on préfère en particulier les phosphates à structures olivine, dont la composition répond à la formule LiMPO4 dans laquelle M représente au moins un élément choisi parmi Mn, Fe, Co et Ni). LiFePO4 est préféré.
L'électrolyte est constitué d'un sel de lithium en solution dans un solvant choisi pour optimiser le transport et la dissociation des ions. Le sel de lithium peut être choisi parmi LiPF6, LiAsF6, LiClO4, LiBF4, LiC4BO8, Li(C2F5 SO2)2N, Li[(C2F5)3PF3], LiCF3SO3, LiCH3SO3, LiN(SO2CF3)2, et LiN(SO2F)2,
Le solvant peut être un solvant liquide comprenant un ou plusieurs composés polaires aprotiques choisis parmi les carbonates linéaires ou cycliques, les éthers linéaires ou cycliques, les esters linéaires ou cycliques, les sulfones linéaires ou cycliques, les sulfamides et les nitriles. Le solvant est constitué de préférence par au moins deux carbonates choisis parmi le carbonate d'éthylène, le carbonate de propylène, le carbonate de diméthyle, le carbonate de diéthyle et le carbonate de méthyle et d'éthyle.
Le solvant de l'électrolyte peut en outre être un polymère solvatant. Comme exemples de polymères solvatants, on peut citer les polyéthers de structure linéaire, peigne ou à blocs, formant ou non un réseau, à base de poly(oxyde d'éthylène) ; les copolymères contenant le motif oxyde d'éthylène ou oxyde de propylène ou allylglycidyléther ; les polyphosphazènes ; les réseaux réticulés à base de polyéthylène glycol réticulé par des isocyanates ; les copolymères d'oxyéthylène et d'épichlorhydrine tels que décrits dans FR-9712952 ; et les réseaux obtenus par polycondensation et portant des groupements qui permettent l'incorporation de groupements réticulables. On peut également citer les copolymères à blocs dans lesquels certains blocs portent des fonctions qui ont des propriétés rédox. Bien entendu, la liste ci-dessus n'est pas limitative, et tous les polymères présentant des propriétés solvatantes peuvent être utilisés.
Le solvant de l'électrolyte peut en outre contenir un mélange d'un composé liquide aprotique polaire choisi parmi les composés polaires aprotiques cités ci- dessus et d'un polymère solvatant. Il peut comprendre de 2 à 98% en volume de solvant liquide, suivant que l'on souhaite un électrolyte plastifié avec une faible teneur en composé aprotique polaire, ou un électrolyte gélifié avec une teneur élevée en composé aprotique polaire. Lorsque le solvant polymère de l'électrolyte porte des fonctions ioniques, le sel de lithium est facultatif.
Le solvant de l'électrolyte peut également contenir un polymère polaire non solvatant comprenant des unités contenant au moins un hétéroatome choisi parmi le soufre, l'oxygène, l'azote et le fluor. Un tel polymère non solvatant peut être choisi parmi les homopolymères et les copolymères d'acrylonitrile, les homopolymères et les copolymères de fluorovinylidène, et les homopolymères et les copolymères de N-vinylpyrrolidone. Le polymère non solvatant peut en outre être un polymère portant des substituants ioniques, et notamment un sel de polyperfluoroéther sulfonate (tel qu'un Nafion® précité par exemple) ou un sel de polystyrène sulfonate. Lorsque l'électrolyte contient un polymère non solvatant, il est nécessaire qu'il contienne en outre au moins un composé polaire aprotique tel que défini précédemment ou au moins un polymère solvatant tel que défini précédemment.
La présente invention est illustrée par les exemples ci-après, auxquels elle n'est cependant pas limitée.
Dans les exemples, on a utilisé : du silicium nanométrique sous forme de particules ayant une dimension moyenne de 100 nm et une pureté de 99,999% fourni par la société Alfa Aesar ; - du silicium micrométrique sous forme de particules ayant une dimension moyenne de 5μm et une pureté de 99,999%, fourni par la société Alfa Aesar ; une carboxyméthylcellulose CMC ayant un degré de substitution des protons par des groupement CH2CO2Na (DS) de 0,7 et une masse molaire moyenne en poids Mw de 90 000, fournie par la société Aldrich. Exemple 1 Préparation d'une batterie
Préparation d'une composition initiale
On a préparé une solution acide tamponnée à pH 3 en dissolvant dans 10O mL d'eau, 3,842 g d'acide citrique et 0,402 g de KOH. On note T la concentration en tampon de cette solution. Dans 0,5 mL de cette solution on a dispersé 160 mg de silicium nanométrique, 16 mg de CMC et 24 mg de noir d'acétylène. La dispersion a été effectuée à l'aide d'un broyeur à billes (Pulvérisette
7 Fritsch) qui a un bol de broyage de 12,5 mL contenant 3 billes de 10 mm de diamètre, pendant 1 h à 500 tours/minute.
La composition initiale ainsi obtenue est constituée par 72,4% en masse de particules de silicium 7,2% en masse de liant CMC, 10,8% en masse de noir d'acétylène, 8,7% en masse d'acide citrique et 0,9% en masse de KOH.
Préparation d'une électrode On a appliqué la totalité de la composition initiale sur un collecteur de courant en cuivre ayant une épaisseur 25 μm et une surface de 10 cm2. On a ensuite séché à température ambiante pendant 12 heures, puis à 1000C sous vide pendant 2 h. Dans l'électrode ainsi obtenue, la couche de matériau composite déposée sur le collecteur de courant a une épaisseur de 10-20 μm, ce qui correspond à une quantité de silicium de 1-2 mg/cm2. Le matériau composite obtenu après séchage a la composition suivante :
72,4% en masse de particules de silicium ; 7,2% en masse de liant CMC ; 10,8% en masse de noir d'acétylène ; - 8,7 % en masse d'acide citrique et 0,9 % en masse de KOH. Assemblage d'une batterie
L'électrode ainsi obtenue a été montée dans une batterie (désignée par batterie D) ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPF6 dissous dans un mélange de carbonate d'éthylène (EC) et de carbonate de diméthyle (DMC), EC/DMC 1/1.
On a assemblé trois autres batteries selon le même mode opératoire, mais en utilisant du silicium micrométrique et un pH tamponné (batterie B), du silicium nanométrique à pH 7 (batterie C) et du silicium micrométrique à pH 7 (batterie A). Les données concernant les différentes batteries sont rassemblées dans le tableau ci- dessous. Les quantités sont données en % en poids.
Figure imgf000014_0001
Exemple 2 Cyclage des batteries, avec limitation de la capacité spécifique
Les performances en cyclage des 4 batteries assemblées selon le mode opératoire de l'exemple 1 ont été évaluées en cyclage. Le cyclage a été effectué à capacité spécifique constante limitée à 1200 mAh/g de Si dans le domaine de potentiel 0-1 V vs. Li+/Li. Il était piloté en mode courant galvano statique à un courant I de 900 mA/g qui correspond à un régime de C, selon lequel chaque charge et chaque décharge s'effectue en 1 heure.
La figure 1 montre l'évolution de la capacité et du rendement faradique au cours des cycles charge/décharge, lors d'un cyclage de la batterie (D) selon l'invention. La capacité spécifique CS en mAh/g et l'efficacité coulombique en % sont données en fonction du nombre de cycle N. Les courbes respectives sont comme suit : m CS lors d'une décharge, D CS lors d'une charge, 0 rendement faradique. La figure 2 compare l'évolution de la capacité spécifique à la décharge (CSD en mA/h) en fonction du nombre N, lors d'un cyclage des batteries (A), (B), (C) et (D). Elle montre l'amélioration substantielle apportée par un pH tamponné à 3 par rapport à un pH de 7, aussi bien pour les particules micrométriques que pour les particules nanométrique s. La correspondance entre les courbes et les batteries est la suivante : o batterie D m batterie C 0 batterie B • batterie A
Exemple 3 Cyclages des batteries sans limitation de la capacité spécifique
Les performances en cyclage des 4 batteries assemblées selon le mode opératoire de l'exemple 1 ont été évaluées en cyclage sans limitation de capacité, dans le domaine de potentiel 0-1 V vs. Li+/Li. Le cyclage était piloté en mode courant galvanostatique à un courant I de 120 mA/g qui correspond à un régime de C/7,5, selon lequel chaque charge et chaque décharge s'effectuent en 7,5 heure.
La figure 3 compare l'évolution de la capacité spécifique à la décharge (CSD en mA/h) en fonction du nombre N, lors d'un cyclage des batteries (A), (B), (C) et
(D). Ces résultats montrent l'amélioration substantielle apportée par un pH tamponné à 3 par rapport à un pH de 7 aussi bien pour les particules micrométriques que pour les particules nanométriques.
La correspondance entre les courbes et les batteries est la suivante : Δ batterie D A batterie C D batterie B m batterie A.
Exemple 4 Cyclage des batteries, avec limitation de la capacité spécifique
Dans cet exemple, les batteries ont été préparées à pH acide, par utilisation d'un acide fort H2SO4 et non d'un tampon. Les batteries ainsi préparées ont été étudiées en cyclage, avec limitation de la capacité, selon le protocole détaillé ci-dessous.
Préparation d'une composition initiale
On a préparé une solution acide non tamponnée à pH 1 en dissolvant dans
10O mL d'eau la quantité adéquate d'acide sulfurique. Dans 0,5 mL de cette solution on a dispersé 160 mg de silicium nanométrique, 16 mg de CMC et 24 mg de noir d'acétylène. La dispersion a été effectuée à l'aide d'un broyeur à billes (Pulvérisette 7 Fritsch) qui a un bol de broyage de 12,5 mL contenant 3 billes de 10 mm de diamètre, pendant 1 h à 500 tours/minute.
Préparation d'une électrode
On a appliqué la totalité de la composition initiale sur un collecteur de courant en cuivre ayant une épaisseur 25 μm et une surface de 10 cm2. On a ensuite séché à température ambiante pendant 12 heures, puis à 1000C sous vide pendant 2 h. Dans l'électrode ainsi obtenue, la couche de matériau composite déposée sur le collecteur de courant a une épaisseur de 10-20μm, ce qui correspond à une quantité de silicium de 1-2 mg/cm2.
Assemblage d'une batterie
L'électrode ainsi obtenue (désignée par batterie E) a été montée dans des batteries ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPF6 dissous dans un mélange de carbonate d'éthylène (EC) et de carbonate de diméthyle (DMC), EC/DMC 1/1.
On a assemblé deux autres batteries selon le même mode opératoire, mais en utilisant une solution d'acide sulfurique non tamponnées à pH 2 (batterie F), et une solution d'acide sulfurique non tamponnée à pH 3 (batterie G). Les données concernant les différentes batteries sont rassemblées dans le tableau ci-dessous. Les quantités sont données en % en poids.
Figure imgf000016_0001
Cvclage des batteries, avec limitation de la capacité spécifique
Les performances en cyclage des 3 batteries assemblées ont été évaluées en cyclage. Le cyclage a été effectué à capacité spécifique constante limitée à 1200 mAh/g de Si dans le domaine de potentiel 0-1 V vs. Li+/Li. Il était piloté en mode courant galvano statique à un courant I de 900 mA/g qui correspond à un régime de C, selon lequel chaque charge et chaque décharge s'effectue en 1 heure. La figure 4 compare l'évolution de la capacité spécifique à la décharge (CSD en mA/h) en fonction du nombre N, lors d'un cyclage des batteries (E), (F), (G) et (A). Comparativement au procédé de préparation sans modification du pH, l'acidification amène une amélioration des performances, dans l'ordre suivant pH 1 > pH 2 > pH 3 > pH 7. La correspondance entre les courbes et les batteries est la suivante :
+ batterie E m batterie F
D batterie G • batterie C o batterie D
La comparaison de la figure 4 avec la figure 1 montre que les meilleures performances sont cependant obtenues en utilisant un mélange d'acide citrique et d'une base forte qui permet de tamponner à pH 3 (batterie D de l'exemple 1).
Exemple 5
Cyclage des batteries, avec limitation de la capacité spécifique
Dans cet exemple, les batteries ont été préparées à pH acide, par l'utilisation d'un tampon d'acide citrique et KOH. Par rapport à la concentration T de référence utilisée ci-dessus à l'exemple 1, la concentration en tampon a été variée pour prendre les valeurs suivantes: T710, T/4, T/2, 3T/4, 3T/2, 2T.
Préparation d'une composition initiale
On a préparé une solution acide tamponnée à pH 3 en dissolvant dans 10O mL d'eau, 0,3842 g d'acide citrique et 0,0402 g de KOH. On note T710 la concentration en tampon de cette solution, car elle est égale à 1/10 de la concentration en tampon de la solution préparée dans l'exemple 1 dont on a noté la concentration T. Dans 0,5 mL de cette solution TYlO on a dispersé 160 mg de silicium nanométrique, 16 mg de CMC et 24 mg de noir d'acétylène. La dispersion a été effectuée à l'aide d'un broyeur à billes (Pulvérisette 7 Fritsch) qui a un bol de broyage de 12,5 mL contenant 3 billes de 10 mm de diamètre, pendant 1 h à 500 tours/minute.
La composition initiale ainsi obtenue est constituée par 79,83% en masse de particules de silicium 7,98% en masse de liant CMC, 11 ,97% en masse de noir d'acétylène, 0,19% en masse d'acide citrique et 0,02% en masse de KOH. Préparation d'une électrode
On a appliqué la totalité de la composition initiale sur un collecteur de courant en cuivre ayant une épaisseur de 25 μm et une surface de 10 cm . On a ensuite séché à température ambiante pendant 12 heures, puis à 1000C sous vide pendant 2 h. Dans l'électrode ainsi obtenue, la couche de matériau composite déposée sur le collecteur de courant a une épaisseur de 10-20 μm, ce qui correspond à une quantité de silicium de 1-2 mg/cm2. Le matériau composite obtenu après séchage a la composition suivante :
79,2% en masse de particules de silicium ; - 7,9% en masse de liant CMC ;
11 ,9% en masse de noir d'acétylène, 1,0% en masse d'acide citrique et 0,1% de KOH. Assemblage d'une batterie
L'électrode ainsi obtenue a été montée dans une batterie (désignée par batterie H) ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en cuivre, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPF6 dissous dans un mélange de carbonate d'éthylène (EC) et de carbonate de diméthyle (DMC), EC/DMC 1/1.
On a assemblé cinq autres batteries selon le même mode opératoire, mais en utilisant une solution tampon de concentration 174 (batterie I), T/2 (batterie J), 3174 (batterie K), 3T/2 (batterie L), et 2T (batterie M). Les données concernant les différentes batteries sont rassemblées dans le tableau ci-dessous.
Figure imgf000018_0001
Dans ce tableau, les quantités sont données en % en poids ; on a noté Q la quantité d'acide organique en mol par gramme d'élément M ; et on a noté R le rapport en masse : acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique.
Les performances de la batterie H ont été évaluées en cyclage. Le cyclage a été effectué à capacité spécifique constante limitée à 1200 mAh/g de Si dans le domaine de potentiel 0-1 V vs. Li+/Li. Il était piloté en mode courant galvanostatique à un courant I de 900 mA/g qui correspond à un régime de C, selon lequel chaque charge et chaque décharge s'effectue en 1 heure.
Le tableau ci-après donne, pour chacune des batteries testées, la capacité réelle mAh/g d'électrode, le nombre de cycles à capacité spécifique constante tenu par chaque batterie et le rendement faradique moyen au cours des cycles charge/décharge, lors d'un cyclage de la batterie (H) et des batteries (I), (J), (K), (D, exemple 1), (L) et (M) selon l'invention et A (pH neutre, non modifié).
Figure imgf000019_0001
Ces résultats montrent que la quantité d'acide organique doit être telle qu'elle corresponde à une teneur supérieure à 0,510"4 mol par gramme d'élément M, préférentiellement une teneur supérieure à 5.10"4 mol par gramme d'élément M car en deçà de cette valeur l'amélioration des performances est moins intéressante, et qu'il est préférable que le rapport en masse acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique reste inférieur ou égal à 10% car au-delà de cette valeur on ne constate plus d'amélioration significatives des performances.
Exemple 6
Cyclage des batteries, avec limitation de la capacité spécifique
Dans cet exemple, les batteries ont été préparées à pH acide, par utilisation d'un tampon d'acide organique et KOH. L'acide organique étant : l'acide aspartique (tampon pH 2), l'acide aspartique (tampon pH 3,9). Une autre batterie a été préparée avec l'acide minéral phosphorique (tampon pH 3).
Préparation d'une composition initiale
On a préparé des solutions acides tamponnées en dissolvant dans 10O mL d'eau, une certaine quantité d'acide organique ou d'acide minéral et une certaine quantité de KOH. Dans 0,5 mL de cette solution on a dispersé 160 mg de silicium nanométrique, 16 mg de CMC et 24 mg de noir d'acétylène. La dispersion a été effectuée à l'aide d'un broyeur à billes (Pulvérisette 7 Fritsch) qui a un bol de broyage de 12,5 mL contenant 3 billes de 10 mm de diamètre, pendant 1 h à 500 tours/minute.
L'acide est soit l'acide organique aspartique (tampon pH 2 ou tampon pH 4), soit l'acide minéral phosphorique (tampon pH 3).
Préparation d'une électrode
On a appliqué la totalité de la composition initiale sur un collecteur de courant en cuivre ayant une épaisseur de 25 μm et une surface de 10 cm2. On a ensuite séché à température ambiante pendant 12 heures, puis à 1000C sous vide pendant 2 h. Dans l'électrode ainsi obtenue, la couche de matériau composite déposée sur le collecteur de courant a une épaisseur de 10-20 μm, ce qui correspond à une quantité de silicium de 1-2 mg/cm2.
Assemblage d'une batterie
Les électrodes ainsi obtenues ont été montées dans une batterie ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en cuivre, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPF6 dissous dans un mélange de carbonate d'éthylène (EC) et de carbonate de diméthyle (DMC), EC/DMC 1/1. Les données concernant les différentes batteries sont rassemblées dans le tableau ci-dessous. Les quantités sont données en % en poids.
Figure imgf000021_0001
La figure 5 compare l'évolution de la capacité spécifique à la décharge (CSD en mA/h) en fonction du nombre N, lors d'un cyclage des batteries (D), (N), (O) et (P).
La correspondance entre les courbes et les batteries est la suivante : o batterie D m batterie N D batterie O
A batterie P
Cet exemple montre donc que la valeur pH inférieur ou égal à 4 est bien une limite haute pour la valeur du pH quand il est tamponné. Ces résultats montrent aussi que l'utilisation d'un acide minéral (H3PO4) n'apporte pas d'amélioration, contrairement à l'utilisation d'un acide organique.
Exemple 7
Dans cet exemple une batterie a été préparée selon l'exemple 1 à la différence que la température de séchage n'est pas 1000C, mais 1500C.
Préparation d'une batterie La préparation de la batterie de cet exemple est identique à celle de l'exemple 1 à la différence de la température de séchage qui est 1500C. Préparation d'une électrode
On a appliqué la totalité de la composition initiale sur un collecteur de courant en cuivre ayant une épaisseur 25 μm et une surface de 10 cm . On a ensuite séché à température ambiante pendant 12 heures, puis à 1000C sous vide pendant 2 h. Dans l'électrode ainsi obtenue, la couche de matériau composite déposée sur le collecteur de courant a une épaisseur de 10-20 μm, ce qui correspond à une quantité de silicium de 1-2 mg/cm . Le matériau composite obtenu après séchage a la composition suivante :
72,4% en masse de particules de silicium ; - 7,2% en masse de liant CMC ;
10,8% en masse de noir d'acétylène, 8,7 % en masse d'acide citrique et 0,9 de KOH Assemblage d'une batterie
L'électrode ainsi obtenue a été montée dans une batterie (désignée par batterie Q) ayant comme électrode positive une feuille de lithium métallique laminée sur un collecteur de courant en nickel, un séparateur en fibre de verre, un électrolyte liquide constitué d'une solution 1 M LiPF6 dissous dans un mélange de carbonate d'éthylène (EC) et de carbonate de diméthyle (DMC), EC/DMC 1/1.
Cvclage de la batterie avec limitation de la capacité spécifique Les performances en cyclage de la batterie ont été évaluées en cyclage. Le cyclage a été effectué à capacité spécifique constante limitée à 1200 mAh/g de Si dans le domaine de potentiel 0-1 V vs. Li+/Li. Il était piloté en mode courant galvanostatique à un courant I de 900 mA/g qui correspond à un régime de C, selon lequel chaque charge et chaque décharge s'effectue en 1 heure. La figure 6 montre l'évolution de la capacité et du rendement faradique au cours des cycles charge/décharge, lors d'un cyclage de la batterie (D) selon l'invention. La capacité spécifique CS en mAh/g est donnée en fonction du nombre de cycle N. Les courbes respectives sont comme suit :
• CS lors d'une décharge, o CS lors d'une charge,
Les résultats présentés dans cet exemple montrent que la température de séchage n'a aucune incidence sur les performances électrochimiques.

Claims

REVENDICATIONS
1. Procédé pour la préparation d'une composition d'électrode négative, comprenant une étape de mise en suspension dans un milieu aqueux d'une matière active d'électrode, d'un liant et d'un agent générant une conductivité électronique, caractérisé en ce que : la matière active d'électrode est sous forme de particules contenant un élément M choisi parmi Si, Sn, Ge ; lesdites particules ayant une dimension moyenne inférieure à 1 μm ; le liant est un polymère qui porte des groupes réactifs capables de réagir avec des groupes hydroxyle en milieu acide ; le milieu aqueux est un milieu acide à pH 1 non tamponné, ou un milieu acide à un pH tamponné inférieur ou égal à 4, obtenu par addition d'une base forte et d'un acide organique ; la quantité totale des constituants « matière active, liant, agent de conduction électronique » introduite dans le milieu aqueux acide est de 10 à 80% en poids de la quantité totale de la composition, et les proportions desdits constituants dans le milieu aqueux sont comme suit :
30 à 90 % en poids de particules de matière active ; 5 à 40 % en poids de liant ; - 5 à 30 % en poids d'agent de conductivité électronique. la quantité d'acide organique est telle qu'elle corresponde à une teneur supérieure à 0,5.10"4 mol par gramme d'élément M, et le rapport en masse acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique reste inférieur ou égal à 20 %.
2. Procédé selon la revendication 1, caractérisé en ce que les particules de matière active ont une dimension moyenne inférieure à 200 nm.
3. Procédé selon la revendication 1, caractérisé en ce que les particules de matière active sont constituées par un élément M seul, un alliage de M avec Li, ou par un matériau composite comprenant l'élément M ou l'alliage M-Li et un matériau conducteur Q.
4. Procédé selon la revendication 3, caractérisé en ce que le matériau conducteur Q est constitué par du carbone ou par un métal qui ne réagit pas avec le lithium.
5. Procédé selon la revendication 1, caractérisé en ce que le liant polymère est un polymère stable électrochimiquement dans la fenêtre de potentiel
0-5 V par rapport à Li°/Li+, insoluble dans les milieux liquides utilisables comme solvant d'électrolyte liquide, et qui porte des fonctions capables de réagir avec des groupes OH en milieu acide.
6. Procédé selon la revendication 5, caractérisé en ce que le polymère est choisi parmi les copolymères de l'acide acrylique, les copolymères de l'acrylamide, les copolymères de l'acide sulfonique de styrène, les copolymères d'acide maléique, les copolymères d'acide itaconique, les copolymères de l'acide lignosulfonique, les copolymères d'allylamine, les copolymères d'acide éthylacrylique, les polysiloxanes, les polymères époxy-amines, les polyuréthanes et les carboxyméthylcelluloses.
7. Procédé selon la revendication 1, caractérisé en ce que l'agent générant une conductivité électronique est choisi parmi le noir de carbone, le carbone SP, le noir d'acétylène, les nanofibres de carbone, et les nanotubes de carbone.
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité d'acide organique est telle qu'elle corresponde à une teneur supérieure à 5.10"4 mol par gramme d'élément M et le rapport en masse
acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique
reste inférieur ou égal à 10%.
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité totale des constituants « matière active, liant et agent de conduction électronique » introduite dans le milieu aqueux acide est de 20 à 60% en poids de la quantité totale de la composition.
10. Procédé selon la revendication 1, caractérisé en ce que la base forte est un hydroxyde de métal alcalin et l'acide organique est choisi parmi la glycine, l'acide aspartique, l'acide bromoéthanoïque, l'acide bromobenzoïque, l'acide chloroéthanoïque, l'acide dichloroéthanoïque, l'acide trichloroéthanoïque, l'acide lactique, l'acide maléique, l'acide malonique, l'acide phtalique, l'acide isophtalique, l'acide téréphtalique, l'acide picrique, l'acide salicylique, l'acide formique, l'acide acétique, l'acide oxalique, l'acide malique, l'acide fumarique et l'acide citrique.
11. Composition d'électrode négative obtenue selon la revendication 1, caractérisé en ce qu'elle comprend : une matière active d'électrode sous forme de particules contenant un élément M choisi parmi Si, Sn, Ge ; lesdites particules ayant une dimension moyenne inférieure à 1 μm ; un liant polymère qui porte des groupes réactifs capables de réagir avec des groupes hydroxyle en milieu acide ; un agent conférant une conductivité électronique ; un milieu aqueux acide à pH 1 non tamponné, ou un milieu acide à un pH tamponné inférieur ou égal à 4 obtenu par addition d'une base forte et d'un acide organique ; et en ce que : la quantité totale des constituants « matière active, liant, agent de conduction électronique » introduite dans le milieu aqueux acide est de 10 à 80% en poids de la quantité totale de la composition, et les proportions desdits constituants dans le milieu aqueux sont comme suit : - 30 à 90 % en poids de particules de matière active ;
5 à 40 % en poids de liant ; 5 à 30 % en poids d'agent de conductivité électronique. la quantité d'acide organique est telle qu'elle corresponde à une teneur supérieure à 0,5.10"4 mol par gramme d'élément M, et le rapport en masse acide organique + base forte acide organique + base forte + M + liant + agent de conduction électronique reste inférieur ou égal à 20%.
12. Composition d'électrode négative selon la revendication 11 , caractérisée en ce que les particules de matière active ont une dimension moyenne inférieure à 200 nm.
13. Electrode négative constituée par une composition d'électrode négative telle que définie à la revendication 11 ou 12 sur un substrat conducteur.
14. Electrode selon la revendication 13, caractérisée en ce que les particules de matière active sont des particules de silicium.
15. Batterie qui comprend au moins une électrode négative et au moins une électrode positive entre lesquelles est placé un électrolyte solide ou un séparateur imprégné par un électrolyte liquide, caractérisée en ce que l'électrode négative est une électrode selon la revendication 13 ou 14.
PCT/FR2010/050135 2009-01-30 2010-01-28 Procede pour la preparation d'une composition d'electrode WO2010086558A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10707608A EP2392043A1 (fr) 2009-01-30 2010-01-28 Procede pour la preparation d'une composition d'electrode
CA2750743A CA2750743A1 (fr) 2009-01-30 2010-01-28 Procede pour la preparation d'une composition d'electrode
JP2011546923A JP2012516531A (ja) 2009-01-30 2010-01-28 電極組成物の製造方法
CN2010800099290A CN102341938A (zh) 2009-01-30 2010-01-28 电极复合物的制备方法
US13/146,239 US20120276451A1 (en) 2009-01-30 2010-01-28 Method for preparing an electrode composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0900410 2009-01-30
FR0900410A FR2941817B1 (fr) 2009-01-30 2009-01-30 Procede pour la preparation d'une composition d'electrode

Publications (1)

Publication Number Publication Date
WO2010086558A1 true WO2010086558A1 (fr) 2010-08-05

Family

ID=41055408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/050135 WO2010086558A1 (fr) 2009-01-30 2010-01-28 Procede pour la preparation d'une composition d'electrode

Country Status (7)

Country Link
US (1) US20120276451A1 (fr)
EP (1) EP2392043A1 (fr)
JP (1) JP2012516531A (fr)
CN (1) CN102341938A (fr)
CA (1) CA2750743A1 (fr)
FR (1) FR2941817B1 (fr)
WO (1) WO2010086558A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035876A1 (fr) * 2009-09-23 2011-03-31 Umicore Nouvelles formulations pour électrodes à base de silicium destinées à être utilisées dans des batteries lithium-ion et procédé d'obtention associé
WO2013156888A1 (fr) 2012-04-17 2013-10-24 Umicore Electrodes négative à faible coût à base de silicium ayant des performances de cycle améliorées
WO2019057323A1 (fr) * 2017-09-21 2019-03-28 Karlsruher Institut Für Technologie (Kit) Matériau d'électrode pour batterie au lithium-ion et son procédé de préparation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
PT1889198E (pt) 2005-04-28 2015-03-06 Proteus Digital Health Inc Sistema fármaco-informático
WO2010129288A2 (fr) 2009-04-28 2010-11-11 Proteus Biomedical, Inc. Marqueurs d'évènement comestibles à haute fiabilité et leurs procédés d'utilisation
RU2012143791A (ru) 2010-04-07 2014-05-20 Проутьюс Диджитал Хэлс, Инк. Миниатюрное проглатываемое устройство
WO2012071280A2 (fr) 2010-11-22 2012-05-31 Proteus Biomedical, Inc. Dispositif ingérable avec produit pharmaceutique
WO2015112603A1 (fr) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Produit ingérable pouvant être mâché et système de communication associé
US20150129426A1 (en) * 2012-06-05 2015-05-14 Middle Tennessee State University Electrochemical sensing nanocomposite
JP2016508529A (ja) 2013-01-29 2016-03-22 プロテウス デジタル ヘルス, インコーポレイテッド 高度に膨張可能なポリマーフィルムおよびこれを含む組成物
US10797310B2 (en) * 2013-03-21 2020-10-06 Sila Nanotechnologies Inc. Electrochemical energy storage devices and components
KR20160040227A (ko) * 2013-07-29 2016-04-12 더 펜 스테이트 리서어치 파운데이션 실리콘-계 음극을 위한 탄성 겔 고분자 바인더
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
DE102014207882A1 (de) * 2014-04-25 2015-10-29 Volkswagen Aktiengesellschaft Neue Beschichtung von Siliziumpartikeln für Lithium-Ionen-Batterien zur verbesserten Zyklenstabilität
FR3028088B1 (fr) * 2014-11-03 2016-12-23 Hutchinson Electrodes conductrices et leur procede de fabrication
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
RU2711058C1 (ru) 2016-07-22 2020-01-14 Протеус Диджитал Хелс, Инк. Электромагнитное зондирование и обнаружение проглатываемых маркеров событий
TWI735689B (zh) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 製造含有可攝食性事件標記之膠囊之方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197654A1 (en) * 2003-04-03 2004-10-07 Jeremy Barker Electrodes comprising mixed active particles
JP2004349079A (ja) * 2003-05-21 2004-12-09 Canon Inc リチウム二次電池用の電極構造体及びその製造方法、及び前記電極構造体を有する二次電池及びその製造方法
US20070122712A1 (en) * 2005-11-30 2007-05-31 Yong-Mook Kang Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197654A1 (en) * 2003-04-03 2004-10-07 Jeremy Barker Electrodes comprising mixed active particles
JP2004349079A (ja) * 2003-05-21 2004-12-09 Canon Inc リチウム二次電池用の電極構造体及びその製造方法、及び前記電極構造体を有する二次電池及びその製造方法
US20070122712A1 (en) * 2005-11-30 2007-05-31 Yong-Mook Kang Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
B. LESTRIEZ; S. BAHRI; I. SANDU; L. ROUE; D. GUYOMARD, ELECTROCHEMISTRY COMMUNICATIONS, vol. 9, 2007, pages 2801 - 2806
C-C. LI ET AL., J. MATER. SCI., vol. 42, 2007, pages 5773
J. H. RYU; J. W. KIM; Y.-E. SUNG; S. M. OH, ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages A306
J-H. LEE ET AL., J. POWER SOURCES, vol. 147, 2005, pages 249 - 255
LESTRIEZ; BAHRI B; SANDU S; ROUE I; GUYOMARD L; D: "On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries", ELECTROCHEMISTRY COMMUNICATION, ELSEVIER, AMSTERDAM, NL, vol. 9, no. 12, 24 November 2007 (2007-11-24), pages 2801 - 2806, XP022361109, ISSN: 1388-2481 *
M. HOLZAPFEL; H. BUQA; W. SCHEIFELE; P. NOVAK; F.-M. PETRAT, CHEM. COMMUN., 2005, pages 1566
M. YOSHIO; S. KUGINO; N. DIMOV, J. POWER SOURCES, vol. 153, 2006, pages 375
M. YOSHIO; T. TSUMURA; N. DIMOV, J. POWER SOURCES, vol. 163, 2007, pages 215
MAZOUZI D; LESTRIEZ B; ROUE L; GUYOMARD D: "Silicon composite electrode with high capacity and long cycle life", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 12, no. 11, 28 August 2009 (2009-08-28), pages A215 - A218, XP002577337 *
N. OBROVAC; L. CHRISTENSEN, ELECTROCHEM. SOLID-STATE LETT., vol. 7, 2004, pages A93
S. PARK; T. KIM; S. M. OH, ELECTROCHEM. SOLID-STATE LETT., vol. 10, 2007, pages A142
T. TAKAMURA; S. OHARA; M. UEHARA; J. SUZUKI; K. SEKINE, J. POWER SOURCES, vol. 129, 2004, pages 96
U. KASAVAJJULA; C. WANG; A.J. APPLEBY, J. POWER SOURCES, 2007
U. KASAVAJJULA; C. WANG; A.J. APPLEBY, J. POWER SOURCES, vol. 163, 2007, pages 1003
W. PORCHER ET AL., ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 1, 2008, pages A4 - A8
W.-R. LIU; Z.-Z. GUO; W.-S. YOUNG; D.-T. SHIEH; H.-C. WU; M.-H. YANG; N.-L. WU, J., POWER SOURCES, vol. 140, 2005, pages 139
Z. P. GUO; J. Z. WANG; H. K. LIU; S. X. DOU, J., POWER SOURCES, vol. 146, 2005, pages 448

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035876A1 (fr) * 2009-09-23 2011-03-31 Umicore Nouvelles formulations pour électrodes à base de silicium destinées à être utilisées dans des batteries lithium-ion et procédé d'obtention associé
WO2013156888A1 (fr) 2012-04-17 2013-10-24 Umicore Electrodes négative à faible coût à base de silicium ayant des performances de cycle améliorées
KR20150016944A (ko) * 2012-04-17 2015-02-13 우미코르 사이클링 성능이 향상된 저 비용 si-베이스 음극
JP2015517190A (ja) * 2012-04-17 2015-06-18 ユミコア 向上したサイクル性能を有する低コストSi系負極
EP2839531A4 (fr) * 2012-04-17 2015-07-15 Umicore Nv Electrodes négative à faible coût à base de silicium ayant des performances de cycle améliorées
US20150349328A9 (en) * 2012-04-17 2015-12-03 Nathalie Delpuech Low Cost Si-Based Negative Electrodes with Enhanced Cycling Performance
US9692044B2 (en) 2012-04-17 2017-06-27 Umicore Low cost Si-based negative electrodes with enhanced cycling performance
KR102118758B1 (ko) * 2012-04-17 2020-06-04 유미코아 사이클링 성능이 향상된 저 비용 si계 음극
EP2690689A1 (fr) * 2012-07-25 2014-01-29 Umicore Électrodes négatives à faible coût à base de Si avec une meilleure performance de cyclage
WO2019057323A1 (fr) * 2017-09-21 2019-03-28 Karlsruher Institut Für Technologie (Kit) Matériau d'électrode pour batterie au lithium-ion et son procédé de préparation
EP3477747A1 (fr) * 2017-09-21 2019-05-01 Karlsruher Institut für Technologie Matériau d'électrode pour batteries au lithium-ion et son procédé de préparation

Also Published As

Publication number Publication date
EP2392043A1 (fr) 2011-12-07
FR2941817B1 (fr) 2011-04-01
CN102341938A (zh) 2012-02-01
JP2012516531A (ja) 2012-07-19
US20120276451A1 (en) 2012-11-01
CA2750743A1 (fr) 2010-08-05
FR2941817A1 (fr) 2010-08-06

Similar Documents

Publication Publication Date Title
WO2010086558A1 (fr) Procede pour la preparation d&#39;une composition d&#39;electrode
FR2935546A1 (fr) Materiau composite d&#39;electrode, electrode de batterie constituee dudit materiau et batterie au lithium comprenant une telle electrode.
KR101929642B1 (ko) 비수 전해질 이차 전지용 부극제, 비수 전해질 이차 전지용 부극 및 비수 전해질 이차 전지
EP2729978B1 (fr) Accumulateur lithium/soufre
EP3227944B1 (fr) Batterie lithium organique
WO2010106292A1 (fr) Materiaux composites a base de liants fluores et nanotubes de carbone pour electrodes positives de batteries lithium
WO2020234538A1 (fr) Composition d&#39;electrolyte comprenant un mélange de sels de lithium
CA3095554A1 (fr) Films autoportants a base de cellulose pour utilisation dans des batteries li-ion
WO2012013872A1 (fr) Electrode pour accumulateur au lithium
WO2021237335A1 (fr) Cellules électrochimiques à l&#39;état solide, procédés pour leur préparation et leurs utilisations
WO2022126253A1 (fr) Matériaux d&#39;électrode comprenant un oxyde lamellaire de métaux enrobé d&#39;un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
US20130327249A1 (en) Electrodes for lithium batteries
EP3714498A1 (fr) Utilisation d&#39;un melange de sels a titre d&#39;additif dans une batterie au lithium gelifiee
WO2022251968A1 (fr) Matériaux d&#39;enrobage à base d&#39;hydrocarbures aliphatiques insaturés et leurs utilisations dans des applications électrochimiques
EP4369436A1 (fr) Composition pour formation d&#39;électrode
KR101505218B1 (ko) 수명 저하가 없는 급속 충전형 음극과 이를 포함하는 리튬 이차전지
JP7121738B2 (ja) オリビン構造を有する複合酸化物を含む、電極物質、電極および固体電池
EP4333124A1 (fr) Nouvelles électrodes organiques et leur utilisation dans des systèmes électrochimiques
CA3171202A1 (fr) Liants d&#39;electrode comprenant un melange d&#39;un polymere base sur le polybutadiene et d&#39;un polymere base sur le polynorbornene, electrodes les comprenant et leur utilisation en electrochimie
CN116646590A (zh) 固态电解质及制备方法、正极材料、正极极片和固态电池
EP3457471A1 (fr) Procede de fabrication d&#39;une electrode pour accumulateur lithium-soufre a surface active importante

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009929.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10707608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2750743

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011546923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010707608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13146239

Country of ref document: US