WO2010021101A1 - 診断支援装置 - Google Patents
診断支援装置 Download PDFInfo
- Publication number
- WO2010021101A1 WO2010021101A1 PCT/JP2009/003835 JP2009003835W WO2010021101A1 WO 2010021101 A1 WO2010021101 A1 WO 2010021101A1 JP 2009003835 W JP2009003835 W JP 2009003835W WO 2010021101 A1 WO2010021101 A1 WO 2010021101A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screen
- unit
- air conditioner
- state value
- diagnosis support
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
- F24F11/38—Failure diagnosis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/52—Indication arrangements, e.g. displays
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2140/00—Control inputs relating to system states
- F24F2140/60—Energy consumption
Definitions
- the present invention relates to a diagnosis support apparatus for an air conditioner.
- a multi-type air conditioner In an office building or a tenant building, a multi-type air conditioner is generally used to effectively adjust the air conditioning environment of each space in the building. Moreover, it is estimated that the ratio of the power consumption of the air conditioner to the total power consumption of these buildings is increasing. On the other hand, in response to a recent demand for energy saving, for example, as shown in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-85087), an apparatus for estimating power consumption of an air conditioner and diagnosing power consumption has been proposed. Yes. Multi-type air conditioners also increase power consumption compared to single-type air conditioners. Therefore, it is expected that energy conservation effects can be obtained by estimating power consumption and taking some measures.
- An object of the present invention is to provide a diagnosis support apparatus that makes it possible to easily diagnose the operational efficiency of an air conditioner, and to realize an energy saving effect.
- a diagnosis support apparatus is a diagnosis support apparatus that supports diagnosis of operational efficiency of an air conditioner, and includes an acquisition unit, a specifying unit, and a screen generation unit.
- the acquisition unit acquires operation data from the air conditioner.
- the specifying unit specifies the state value of the air conditioner using the operation data acquired by the acquiring unit.
- the state value includes an air conditioning load factor, COP, power consumption, or frequency.
- the screen generation unit generates one of the first screen and the second screen based on the state value specified by the specifying unit.
- the first screen shows the operating status of the air conditioner.
- the second screen shows information related to measures for improving the state value and the driving situation.
- operation data such as the evaporation pressure Pe, the condensation pressure Pc, and the operation state of the compressor is acquired from the air conditioner.
- a state value including an air conditioning load factor, COP, power consumption, or frequency of the air conditioner is specified using the acquired operation data.
- One of the first screen and the second screen is generated based on the state value.
- the first screen shows the operating status of the air conditioner.
- On the second screen information on measures for improving the state value and the driving situation are displayed. Thereby, diagnosis of the operational efficiency of the air conditioner is facilitated, and an energy saving effect can be realized.
- a diagnosis support apparatus is the diagnosis support apparatus according to the first aspect of the present invention, further comprising a determination unit and a measure information providing unit.
- the determination unit determines operational efficiency based on the state value.
- the measure information providing unit provides information relating to measures for improving the state value to the screen generating unit. Further, the measure information providing unit provides information to the screen generation unit based on the operational efficiency determined by the determination unit.
- the operational efficiency of the air conditioner is determined based on the state value.
- the information regarding the measure which improves a state value is provided based on the operation efficiency determined by the determination part. Thereby, the operation efficiency of an air conditioner can be improved appropriately.
- a diagnosis support apparatus is the diagnosis support apparatus according to the second aspect of the present invention, further comprising a determination condition storage area and a measure information storage area.
- the determination condition storage area stores conditions for the determination unit to determine operational efficiency.
- the measure information storage area stores a plurality of information according to the operational efficiency determined by the determination unit.
- the operational efficiency of the air conditioner is determined based on the conditions stored in the determination condition storage area. A plurality of pieces of information corresponding to the determined operational efficiency are stored. Thereby, a suitable measure can be taken according to operational efficiency.
- a diagnosis support apparatus is the diagnosis support apparatus according to the third aspect of the present invention, wherein the measure information providing unit stores the measure information storage area when the operation efficiency determined by the determination unit is in the first state. One piece of information is selected from a plurality of stored information and provided to the screen generation unit. Further, the screen generation unit generates a second screen including the operating status of the air conditioner and the one information provided from the measure information providing unit. In the diagnosis support apparatus according to the present invention, the second screen is generated when the operation efficiency determined by the determination unit is the first state. Thereby, it can be grasped that the operational efficiency of the air conditioner is in a predetermined state.
- a diagnosis support apparatus is the diagnosis support apparatus according to the fourth aspect of the present invention, wherein the measure information providing unit is a piece of information suitable from a plurality of pieces of information when the determination unit determines that the operation efficiency is poor. Is provided to the screen generator.
- the diagnosis support apparatus when it is determined that the operation efficiency is poor, one piece of information suitable for improving the operation efficiency is selected, and the selected one piece of information and the operation status of the air conditioner are A second screen including is generated. Thereby, an appropriate measure can be taken when the operation efficiency of the air conditioner is poor.
- a diagnosis support apparatus is the diagnosis support apparatus according to the fifth aspect of the present invention, wherein the measure information providing unit includes a plurality of measures when the COP is low and the operation efficiency is low, that is, when the power consumption is large. One suitable information is selected from the information.
- the diagnosis support apparatus when the COP is low and the power consumption is large, one piece of information suitable for improving the operation efficiency is selected, and the selected piece of information and the air conditioner A second screen including the driving situation is generated. Thereby, a coefficient of performance and power consumption can be improved.
- a diagnosis support apparatus is the diagnosis support apparatus according to the sixth aspect of the present invention, further comprising a load determination unit.
- the load determination unit determines whether the state where the COP is low occurs in a high load or a low load of the air conditioner.
- the measure information providing unit selects and provides one piece of information according to the result determined by the load determining unit when the operation efficiency is poor.
- a measure suitable for improving the operation efficiency is selected according to the load of the air conditioner when the COP is low.
- a second screen including the selected measure and the operating status of the air conditioner is displayed. Thereby, the measure according to the state of the load of an air conditioner can be grasped.
- a diagnosis support apparatus is the diagnosis support apparatus according to the seventh aspect of the present invention, further comprising a driving time determination unit.
- the operation time determination unit determines the operation time of the air conditioner based on the state value.
- the measure information providing unit further selects and provides one piece of information according to the result determined by the driving time determination unit.
- the operation time of the air conditioner is further determined based on the state value. Also, one piece of information that further considers the operating time of the air conditioner is selected. Thereby, the fall of the operation efficiency by long-time driving
- a diagnosis support apparatus is the diagnosis support apparatus according to any of the third to eighth aspects of the present invention, wherein the plurality of pieces of information includes suppression of the air conditioning capability of the air conditioner, change of the target temperature, or intermittent operation. It is information to propose.
- the diagnosis support apparatus according to the operational efficiency of the air conditioner, any one of information suggesting suppression of the air conditioning capability of the air conditioner, change of the target temperature, or intermittent operation is selected, and the second screen is generated. Is done. Thereby, the operational efficiency of an air conditioner can be improved.
- a diagnosis support apparatus is the diagnosis support apparatus according to the fourth aspect of the present invention, further comprising a control command generation unit.
- the control command generation unit generates a control command corresponding to the one information selected by the measure information providing unit.
- the control command is a command for controlling the air conditioner.
- a control command corresponding to information selected according to operational efficiency is generated. Thereby, control which improves operational efficiency can be performed automatically.
- a diagnosis support apparatus is the diagnosis support apparatus according to the first aspect of the present invention, in which the screen generation unit indicates the driving situation determined in relation to one state value and several state values.
- the first screen or the second screen is generated.
- the diagnosis support apparatus the first screen or the second screen for indicating the driving situation determined by the relationship between any one state value and some state values is generated. Thereby, diagnosis of operational efficiency can be facilitated.
- a diagnosis support apparatus is the diagnosis support apparatus according to the eleventh aspect of the present invention, wherein the screen generated by the screen generation unit includes a third screen and a fourth screen.
- the third screen is a screen showing the driving situation determined by the relationship between the first state value and the second state value.
- the first state value is one state value.
- the second state value is a state value different from the first state value.
- the fourth screen is a screen showing the driving situation determined by the relationship between the first state value and the third state value.
- the third state value is a state value different from the first state value and the second state value.
- the screen includes a third screen and a fourth screen.
- the third screen shows the driving situation determined by the relationship between the first state value and the second state value.
- the first state value is one state value
- the second state value is a state value different from the first state value.
- running condition determined by the relationship between a 1st state value and a 3rd state value is shown on a 4th screen.
- the third state value is a state value different from the first state value and the second state value.
- a diagnosis support apparatus is the diagnosis support apparatus according to the twelfth aspect of the present invention, wherein the driving situation is displayed as a columnar graph on the third screen and the fourth screen.
- the driving situation determined in relation to each state value is displayed in a columnar graph on each of the third screen and the fourth screen.
- a diagnosis support apparatus is the diagnosis support apparatus according to the twelfth or thirteenth invention, wherein the first state value is an air conditioning load factor, and the second state value is frequency, The third state value is power consumption.
- the graph of the operation status determined by the relationship between the air conditioning load factor and the frequency, and the graph of the operation status determined by the relationship between the air conditioning load factor and the power consumption are respectively displayed on the screen. Will be. Thereby, the operation efficiency can be evaluated by comparing the air-conditioning load factor with the frequency.
- a diagnosis support apparatus is the diagnosis support apparatus according to the twelfth or thirteenth invention, wherein the first state value is COP, the second state value is frequency, and the third The state value is power consumption.
- the diagnosis support apparatus a graph of the driving situation determined by the relationship between the COP and the frequency and a graph of the driving situation judged by the relationship between the COP and the power consumption are displayed on the screen. Thereby, operation efficiency can be evaluated by comparing frequency and power consumption.
- diagnosis support apparatus In the diagnosis support apparatus according to the first aspect of the invention, diagnosis of the operation efficiency of the air conditioner is facilitated, and an energy saving effect can be realized. In the diagnosis support apparatus according to the second aspect of the invention, the operation efficiency of the air conditioner can be appropriately improved. In the diagnosis support apparatus according to the third aspect of the invention, it is possible to take appropriate measures according to the operational efficiency. In the diagnosis support apparatus according to the fourth aspect of the invention, it is possible to grasp that the operational efficiency of the air conditioner is in a predetermined state. In the diagnosis support apparatus according to the fifth aspect of the invention, it is possible to take appropriate measures when the operation efficiency of the air conditioner is poor. In the diagnosis support apparatus according to the sixth aspect, the coefficient of performance and the power consumption can be improved.
- diagnosis support apparatus it is possible to grasp the measures according to the load state of the air conditioner.
- diagnosis support apparatus for example, it is possible to eliminate a decrease in operational efficiency due to long-time operation or the like.
- the operational efficiency of the air conditioner can be improved.
- control for improving operational efficiency can be automatically performed.
- diagnosis of operational efficiency can be facilitated.
- diagnosis support apparatus it is possible to check a plurality of determination results determined based on the relationship between one common state value and different state values.
- the operating status of the air conditioner during a predetermined period can be easily confirmed.
- the operation efficiency can be evaluated by comparing the air conditioning load factor with the frequency.
- the operation efficiency can be evaluated by comparing the frequency with the power consumption.
- FIG. 1 shows a configuration of a diagnosis support system 1 for an air conditioner 10 used in the present embodiment.
- the diagnosis support system 1 is a system used for buildings such as office buildings and tenant buildings.
- the diagnosis support system 1 mainly includes an air conditioner 10 and a diagnosis support device 40.
- the air conditioner 10 is a multi-type air conditioner, and a plurality of indoor units 12 are connected to one outdoor unit 11.
- FIG. 1 shows an air conditioner 10 including one outdoor unit 11 and eight indoor units 12, the number of outdoor units 11 and indoor units 12 is not limited to this.
- the diagnosis support device 40 includes a controller 20 and an auxiliary device 30.
- the controller 20 is connected to the outdoor unit 11 via an air conditioning control communication line 91.
- the controller 20 transmits a control command for the air conditioner 10 to the outdoor unit 11 via the air conditioning control communication line 91. Further, the controller 20 acquires the operation data of the air conditioner 10 via the air conditioning control communication line 91.
- the operation data is data relating to the operation history of the air conditioner 10 and data relating to the operation state.
- the data related to the operation history refers to information related to power on / off, thermo on / off, operation mode (cooling mode, heating mode, air blowing mode, etc.), set temperature, indoor temperature (suction temperature), and the like of each indoor unit 12. .
- the data relating to the operating state is a value detected by various sensors and various measuring instruments attached to the air conditioner 10.
- the controller 20 obtains such operation data from the air conditioner 10, for example, the operation time of each indoor unit 12, the opening of the indoor expansion valve, the evaporation pressure Pe, the condensation pressure Pc, and the frequency of the compressor. / The number of rotations can be grasped.
- the operation time is specifically the thermo-on time of the indoor unit 12.
- the thermo-on time refers to the time during which the indoor unit 12 is supplying cold / hot heat.
- the watt hour meter 50 measures the power supplied from the power source 60 to the air conditioner 10.
- the outdoor unit 11 is connected to the power source 60, and the watt hour meter 50 is installed between the power source 60 and the outdoor unit 11.
- the watt hour meter 50 measures the amount of power supplied from the power source 60 to the outdoor unit 11.
- the controller 20 acquires, via the wiring 92, the amount of power measured by the watt-hour meter 50, that is, information (total power consumption) related to the power sent to the outdoor unit 11 to operate the air conditioner 10. .
- the power consumption measured by the watt hour meter 50 is stored as operation data of the air conditioner 10 in an operation data storage area 24a described later.
- FIG. 2 is a schematic configuration diagram of the diagnosis support device 40 according to the present embodiment.
- the diagnosis support device 40 includes a controller 20 and an auxiliary device 30.
- the controller 20 is connected to the outdoor unit 11 of the air conditioner 10 through the air conditioning control communication line 91.
- the auxiliary device 30 is connected to the controller 20 via a LAN.
- the auxiliary device 30 acquires operation data of the air conditioner 10 via the controller 20.
- the configuration of each unit will be described with reference to FIG.
- the controller 20 mainly includes a communication unit 21, a display unit 22, an input unit 23, a storage unit 24, and a control unit 25.
- the communication unit 21 is a communication interface for communicating with other devices.
- the display unit 22 is a display for displaying the operation data of each indoor unit 12 received by the controller 20.
- the operation data displayed on the display includes the operation / stop state of each indoor unit 12, the operation mode (cooling mode, heating mode, air blowing mode, etc.), set temperature, indoor temperature, and the like.
- the display unit 22 is also an operation screen for receiving control commands for the plurality of indoor units 12.
- the input unit 23 mainly includes a touch panel and operation buttons that cover the above-described display.
- the storage unit 24 includes an operation data storage area 24a.
- the operation data storage area 24a stores the operation data of the air conditioner 10.
- the operation data stored in the operation data storage area 24a includes data relating to the operation history of the air conditioner 10, data relating to the operation state, and power consumption of the air conditioner 10.
- the power consumption of the air conditioner 10 includes the total power consumption acquired by the acquisition unit 25a described later and the power consumption of the outdoor unit 11 calculated by the power consumption calculation unit 25c described later (outdoor unit power). Power amount Eo) and the power consumption of the indoor unit 12 (indoor unit electric energy E Ik ).
- the operation data storage area 24a has a storage capacity capable of storing operation data only for a predetermined time (in this embodiment, 30 minutes), and every time new operation data is acquired, Older operating data will be erased sequentially.
- the storage unit 24 has an area for storing a management program that can be read and executed by the control unit 25 described later, in addition to the above-described area.
- the control unit 25 mainly includes an acquisition unit 25a, an air conditioning capacity calculation unit 25b, a power consumption calculation unit 25c, and a transmission unit 25d.
- A) Acquisition Unit The acquisition unit 25a acquires the operation data of the air conditioner 10 at predetermined intervals (every 5 minutes in the present embodiment) via the communication unit 21.
- B) Air-conditioning capacity calculation part The air-conditioning capacity calculation part 25b calculates the air-conditioning capacity of the air conditioner 10 based on the operation data of the air conditioner 10 which the acquisition part 25a acquired. Specifically, the air conditioning capacity calculation unit 25b calculates the air conditioning capacity by multiplying the enthalpy difference of the evaporator or the condenser by the refrigerant circulation amount G.
- the air conditioning capacity calculation unit 25b calculates the enthalpy differences ⁇ ic and ⁇ ih and the refrigerant circulation amount G used here based on the operation data acquired by the acquisition unit 25a. Specifically, the enthalpy differences ⁇ ic, ⁇ ih are obtained from the evaporation pressure Pe, the condensation pressure Pc, the performance characteristics of the compressor, and the control target values (superheat degree SH, supercool degree SC).
- FIG. 3 is a diagram showing the enthalpy difference between the air conditioning and the air conditioning, and represents the relationship of the operation data described above.
- the evaporation pressure equivalent saturation temperature Te and the condensation pressure equivalent saturation temperature Tc are variables uniquely determined from the evaporation pressure Pe and the condensation pressure Pc, respectively.
- the power consumption calculation unit 25 c calculates the power consumption of the air conditioner 10. Specifically, the power consumption amount calculation unit 25c, based on the total power consumption amount stored in the operation data storage area 24a, the outdoor unit power amount Eo that is the power consumption amount of each outdoor unit 11, and the indoor unit 12 The indoor unit power consumption E Ik that is the power consumption is calculated.
- the outdoor unit electric energy Eo is obtained by apportioning the power consumption measured by the watt-hour meter 50 according to the capacity ratio of the outdoor unit 11 included in the diagnosis support system 1. That is, when the number of outdoor units 11 included in the diagnosis support system 1 is one, the power consumption measured by the watt-hour meter 50 becomes the outdoor unit power amount Eo.
- the indoor unit electric energy E Ik is obtained by multiplying the rated power of the fan of the indoor unit 12 by the operation time.
- the value calculated by the power consumption calculation unit 25c is stored in the operation data storage area 24a.
- (D) Transmission unit The transmission unit 25d transmits the operation data stored in the operation data storage area 24a to the auxiliary device 30 via the communication unit 21 every predetermined time (for example, every 5 minutes).
- the auxiliary device 30 mainly includes a communication unit 31, a display unit 32, an input unit 33, a storage unit 34, and a control unit 35.
- the communication unit 31 is a communication interface for communicating with the controller 20.
- the display unit 32 is a display for displaying the operation data of the air conditioner 10 acquired via the controller 20.
- the operation data displayed on the display is the same as the operation data displayed on the display unit 22 of the controller 20, the operation / stop state of each indoor unit 12, the operation mode (cooling mode, heating mode, air blowing mode, etc.), The set temperature, room temperature, etc. are displayed.
- the display unit 32 displays a screen generated by a screen generation unit 35j described later.
- the screen generated by the screen generation unit 35j will be described in detail together with the description of the screen generation unit 35j.
- the input unit 33 mainly includes a keyboard and operation buttons.
- the storage unit 34 mainly includes an operation data storage area 34a, a determination condition storage area 34b, and a measure information storage area 34c.
- A Operation data storage area
- the operation data data relating to the operation history of the air conditioner 10 and data relating to the operation state, the outdoor unit electric energy Eo and the indoor unit electric energy transmitted by the transmission unit 25d described above are stored. E Ik ) is stored.
- the operation data storage area 34a also stores values obtained by a COP calculation unit 35b, an average air conditioning load factor calculation unit 35c, an average power consumption calculation unit 35d, and a frequency measurement unit 35e described later.
- the value stored in the operation data storage area 34a will be described as the state value of the indoor unit.
- (B) Determination condition storage area In the determination condition storage area 34b, a plurality of conditions (determination conditions) used for determining the operational efficiency of the air conditioner 10 are stored.
- FIG. 4 shows an example of determination conditions. Each determination condition is associated with a number related to the next condition or measure information depending on whether the condition is met or not.
- the next condition is a condition to be determined next.
- the number related to the measure information is a number corresponding to information stored in a measure information storage area 34c described later.
- the determination condition is used according to the operation efficiency determined by the operation efficiency determination unit 35g.
- (C) Measure information storage area The measure information storage area 34c stores information (measure information) relating to measures for improving operational efficiency. Specifically, a plurality of measures corresponding to the degree of operational efficiency (state of each state value) is stored as measure information.
- the control unit 35 mainly includes an acquisition unit 35a, a COP calculation unit 35b, an average air conditioning load factor calculation unit 35c, an average power consumption calculation unit 35d, a frequency measurement unit 35e, a load determination unit 35f, and an operation efficiency. It has the determination part 35g, the measure information provision part 35h, the driving time determination part 35i, and the screen generation part 35j.
- A) Acquisition Unit The acquisition unit 35a acquires the operation data sent from the controller 20 described above.
- the COP calculation unit 35b calculates a COP (coefficient of performance) of the air conditioner 10.
- the COP of the air conditioner 10 includes a device COP and a system COP.
- the equipment COP represents the performance of the outdoor unit 11 alone.
- the system COP is calculated for each refrigerant system.
- ⁇ H represents the operation time [hour] of the air conditioner 10. In the present embodiment, one day is a predetermined period.
- the COP calculated by the COP calculation unit 35b is stored in the operation data storage area 34a.
- the daily average integrated power consumption calculated by the average power consumption calculation unit 35d is stored in the operation data storage area 34a.
- the frequency measurement unit 35e is a frequency at which the air conditioner 10 has a predetermined average air conditioning load factor in the predetermined period described above (for example, three days when the air conditioning load factor is 0%), The frequency of the predetermined system COP (for example, the number of days when the system COP was 0 is 3 days) is measured. The frequency measured by the frequency measuring unit 35e is stored in the operation data storage area 34a.
- (F) Load determination unit The load determination unit 35f determines whether the low system COP is generated when the air conditioning load is high (high load) or when the air conditioning load is low (low load). To do.
- the state where the system COP is low (the state where the COP is low) refers to a state where the system COP is 60% or less of the rated COP.
- the load determination unit 35f performs the above determination based on the daily average air conditioning load factor stored in the operation data storage area 34a.
- (G) Operation efficiency determination unit The operation efficiency determination unit 35g is based on the operation data stored in the operation data storage area 34a and the determination conditions stored in the determination condition storage area 34b. Determine. The operation efficiency determination method by the operation efficiency determination unit 35g will be described in detail in the section ⁇ (4) Process flow> below.
- (H) Measure information providing unit The measure information providing unit 35h selects one measure information suitable for the determination result by the operation efficiency determining unit 35g from the plurality of measure information stored in the above-described measure information storage area 34c. To do. Thereafter, the measure information providing unit 35h provides the selected measure information to the screen generation unit 35j described later.
- the operation time determination unit 35i determines the operation time of each indoor unit 12 based on the operation data stored in the operation data storage area 34a.
- (J) Screen Generation Unit The screen generation unit 35j generates a screen (first screen) for indicating the operation status of the air conditioner 10 during a predetermined period (see FIGS. 6A to 7). On the screen, operation data related to the plurality of indoor units 12 is displayed for each refrigerant system. Specifically, a columnar graph indicating the state values (frequency, air conditioning load factor, integrated power consumption, and system COP) of the plurality of indoor units 12 is displayed. Specifically, the screen shown in FIG.
- 6A includes a value calculated by the average air conditioning load factor calculating unit 35c described above, and a frequency at which the air conditioner 10 measured by the frequency measuring unit 35e has a predetermined average air conditioning load factor. It is a screen which shows the driving
- the screen shown in FIG. 6B is determined based on the value calculated by the average air conditioning load factor calculation unit 35c described above and the daily average value of the integrated power consumption calculated by the average power consumption calculation unit 35d. It is a screen which shows the operating condition of the air conditioner. Furthermore, the screen shown in FIG.
- FIG. 6C shows the air conditioner determined based on the value calculated by the COP calculating unit 35b described above and the frequency at which the air conditioner 10 measured by the frequency measuring unit 35e is a predetermined COP.
- 10 is a screen showing ten driving situations. Further, the screen shown in FIG. 6D shows the air conditioning determined based on the value calculated by the COP calculating unit 35b described above and the daily average value of the integrated power consumption calculated by the average power consumption calculating unit 35d. 3 is a screen showing the operating status of the machine 10.
- the screen generation unit 35j generates a screen (second screen) that further shows the measure information in addition to the operation status of the air conditioner 10 in a predetermined period.
- the measure information is information provided by the above-described measure information providing unit 35h.
- the predetermined case is a case where the operation efficiency of the air conditioner 10 determined by the operation efficiency determination unit 35g is poor.
- FIG. 7 is an example in which the measure information provided by the measure information providing unit 35h is displayed on the screen.
- FIG. 6A is an air conditioning load factor columnar graph in which the horizontal axis represents the air conditioning load factor [%] of the air conditioner 10 and the vertical axis represents the frequency at which the air conditioner 10 is operated at a predetermined air conditioning load factor.
- FIG. 6A is an air conditioning load factor columnar graph in which the horizontal axis represents the air conditioning load factor [%] of the air conditioner 10 and the vertical axis represents the frequency at which the air conditioner 10 is operated at a predetermined air conditioning load factor.
- the horizontal axis is the air conditioning load factor [%] of the air conditioner 10
- the vertical axis is the integrated power consumption [kWh] of the air conditioner 10
- the columnar graph showing the integrated power consumption for each air conditioning load factor.
- the screen of FIG. 6C is a column graph of the system COP that shows the frequency of the system COP [ ⁇ ] of the air conditioner 10 on the horizontal axis and the frequency at which the air conditioner 10 is the predetermined system COP on the vertical axis.
- the screen in FIG. 6D is a columnar graph showing the accumulated power consumption for each system COP, with the horizontal axis being the system COP [ ⁇ ] of the air conditioner 10 and the vertical axis being the accumulated power consumption [kWh] of the air conditioner 10. .
- step S ⁇ b> 101 the auxiliary device 30 acquires operation data of the air conditioner 10 via the controller 20. Specifically, the acquisition unit 35 a acquires operation data stored in the operation data storage area 24 a of the controller 20. Thereafter, in step S102, the state value of the air conditioner 10 is specified. Specifically, the state value is the air conditioning load factor, power consumption, system COP, frequency, and the like of the air conditioner 10.
- a screen to be displayed on the display unit 32 is generated.
- a screen (see FIG. 6A) that displays a columnar graph that is determined based on the relationship between the air conditioning load factor and the frequency (see FIG. 6A) and a screen that displays a columnar graph that is determined based on the relationship between the air conditioning load factor and the integrated power consumption (see FIG. 6B).
- a screen displaying a columnar graph determined by the relationship between the system COP and the frequency see FIG. 6C
- a screen displaying a columnar graph determined by the relationship between the system COP and the integrated power consumption see FIG. 6D
- / or A screen see FIG.
- Measure information provided by the measure information providing unit 35h is also displayed on the screen. These screens are displayed on the display unit 32.
- step S201 it is determined whether or not there is a low COP operation based on the state value specified in step S102 described above (condition 1).
- the low COP refers to a state where the system COP is 60% or less of the rated COP as described above. Therefore, it is determined whether or not there is a time when the system COP is operated in a state of 60% or less of the rated COP. In FIG. 10, the power consumption of 60% or less of the rated COP is indicated by hatching. If it is determined in step S201 that there is a low COP operation, the process proceeds to step S202, and if it is determined that there is no low COP operation, the process ends.
- step S202 it is determined whether the ratio of the power consumption by the low COP operation is 20% or more with respect to the total power consumption (condition 2). Specifically, it is determined whether the hatched portion in FIG. 10 is 20% or more of the total power consumption.
- step S202 when the ratio of the power consumption by the low COP operation is 20% or more of the total power consumption, the process proceeds to step S203, and when it is less than 20%, the process ends.
- step S203 the low COP operation occurs at the time of a high load factor operation (load factor of 90% or more) (premise 1), and further, the power consumption (hereinafter referred to as the low COP operation).
- low COP total power consumption It is determined whether or not (low COP high load power consumption) is 30% or more of the total power consumption by low COP operation (hereinafter, low COP total power consumption) (condition 3). Specifically, in the premise 1, as indicated by the hatched lines in FIG. 11, it is determined whether or not the power consumed by the low COP operation is generated at the load rate of 90% or more of the total power consumption. It is determined by the part 35f. In assumption 2, the operational efficiency determination unit 35g determines whether or not the low COP high load power consumption indicated by diagonal lines is 30% or more of the low COP total power consumption. As shown in FIG. 11, when the low COP operation occurs during the high load factor operation and the low COP high load power consumption is 30% or more of the low COP total power consumption, Proceed to step S204. On the other hand, even when low COP operation does not occur during high load factor operation, or even when low COP operation occurs, low COP high load power consumption is equal to low COP total power consumption. If it is less than 30%, the process proceeds
- step S204 the measure information providing unit 35h selects one measure information associated with the condition 3 in the determination condition storage region 34b from the plurality of measure information stored in the measure information storage region 34c. Specifically, measure information indicating “suppression of the upper limit value of the air conditioning capability” is selected.
- the measure information is provided to the screen generation unit 35j, and then the process proceeds to step S205.
- step S205 the low COP operation occurs when the operation is a low load factor (load factor of 30% or less) (premise 1), and further, the power consumption (hereinafter, referred to as “low COP operation”). It is determined whether (low COP low load power consumption) is 30% or more of the low COP total power consumption (premise 2) (condition 4).
- the operation efficiency determination unit 35g determines whether or not the low COP low load power consumption indicated by hatching is 30% or more of the low COP total power consumption.
- the step The process proceeds to S206.
- the low COP low load power consumption is 30% of the low COP total power consumption. If it is less than%, the process ends.
- step S206 it is determined whether or not the indoor unit 12 has frequently started and stopped (condition 5).
- the process proceeds to step S208.
- step S207 it is determined whether the continuous operation time T0 is slightly long. Specifically, it is determined whether or not the continuous operation time T0 is equal to or longer than T1 and less than T2 (condition 6).
- step S208 when the continuous operation time T0 is equal to or longer than T1 time and shorter than T2 time, the process proceeds to step S208.
- step S208 the measure information providing unit 35h selects one measure information associated with the condition 5 and the condition 6 in the determination condition storage region 34b from the plurality of measure information stored in the measure information storage region 34c. . Specifically, information indicating “temperature relaxation of heat exchanger” is selected.
- the temperature relaxation of the heat exchanger means raising the evaporation temperature during cooling and lowering the condensation temperature during heating.
- the measure information is provided to the screen generating unit 35j, and then the process ends.
- step S207 if the continuous operation time T0 is equal to or longer than T1 and is not less than T2, or if it is less than T1, the process proceeds to step S209.
- step S209 it is determined whether or not the continuous operation time T0 is equal to or longer than T2 time (condition 7).
- step S209 when the continuous operation time T0 is T2 hours or more, the process proceeds to step S210.
- the measure information providing unit 35h selects one measure information associated with the condition 7 in the determination condition storage region 34b from the plurality of measure information stored in the measure information storage region 34c. Specifically, information indicating “intermittent operation” is selected.
- the intermittent operation refers to forcibly turning off the air conditioner 10 for 3 minutes in 30 minutes, for example.
- the forced thermo-off means that the compressor of the outdoor unit 11 is stopped.
- the measure information is provided to the screen generating unit 35j, and then the process ends.
- step S209 if the continuous operation time T0 is not T2 hours or longer, that is, if the continuous operation time T0 is less than T1 hours, the measure information is not selected and the process ends.
- the diagnosis support apparatus 40 for an air conditioner displays each result as a columnar graph on the screen (see FIGS. 6A to 7) displayed on the display unit 32.
- the display unit 32 displays the integrated power consumption for each air conditioning load factor (see FIG. 6B) and the integrated power consumption for each system COP (see FIG. 6D).
- the power consumption according to the magnitude of the system COP can be considered together with the power consumption according to the magnitude of the air conditioning load factor.
- the operational status of the air conditioner 10 from various angles, it is possible to determine an appropriate response and realize an energy saving effect.
- a columnar graph representing the relationship between the system COP and the frequency is displayed.
- the diagnosis support apparatus 40 displays a columnar graph (see FIG. 6A) that represents the relationship between the air conditioning load factor and the frequency. By comparing these graphs, it is possible to easily confirm how much the COP has decreased due to the decrease in the air conditioning load factor. For example, in FIG. 6A, relatively low air-conditioning load factors can be seen, but in FIG.
- the operational efficiency is determined based on the operation status of the air conditioner 10. Furthermore, when the determination result of the operation efficiency is bad, a measure for improving the operation efficiency is displayed on the screen. Thereby, the administrator can easily grasp what measures should be taken in order to increase the operational efficiency of the air conditioner 10.
- the diagnosis support device 40 is configured by the controller 20 and the auxiliary device 30, but the diagnosis support device 40 is one device having the functions provided in the controller 20 and the auxiliary device 30. It may be. Alternatively, the functions of both the controller 20 and the auxiliary device 30 may be included in either one or both.
- the columnar graphs shown on the display unit 32 may be designed so that each is displayed by switching the screen, or a plurality of columnar graphs showing respective states are displayed on one screen. It may be designed to be (3) In FIG.
- a columnar graph having the air conditioning load factor as the horizontal axis and the integrated power consumption as the vertical axis, and the system COP as the horizontal axis is illustrated, but a columnar graph as shown in FIG. 13 may be used instead of the columnar graph used in FIG.
- the horizontal axis indicates the air conditioning load factor
- the vertical axis indicates the integrated power consumption
- high COP and low COP can be identified by color coding of the columnar graph.
- the columnar graph (FIG. 10) used for the description of the operational efficiency determination process may be displayed on the display unit 32 of the auxiliary device 30.
- the vertical axis indicates the power consumption and the horizontal axis indicates the rated COP
- the columnar graph of FIG. 14 may be displayed instead of FIG.
- FIG. 14 shows whether the operation of the air conditioner 10 is performed at a low load or a high load in addition to the power consumption and the rated COP. Thereby, it is possible to grasp the power consumption, the rated COP, and the degree of load (low load / high load) from one columnar graph.
- assistant apparatus 30 which concerns on the said embodiment may further have the control command production
- the control command generation unit 35k generates a control command based on the measure information selected by the measure information providing unit 35h.
- the control command is sent to the air conditioner 10 via the controller 20.
- a control command for improving the operation efficiency is sent to the air conditioner 10 according to the operation efficiency determined by the operation efficiency determination unit 35g.
- the air conditioner 10 can be made to execute control for automatically improving operation efficiency.
- the vertical axis is the power consumption in FIGS. 10 to 12, but the vertical axis may be the frequency.
- the predetermined period is “one day”. However, the predetermined period may be shorter or longer than one day. For example, it may be 1 hour or 1 minute, or 1 month or 1 year.
- the present invention is useful as a diagnosis support apparatus that makes it possible to easily diagnose the operational efficiency of an air conditioner.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
一方、近年の省エネルギーの要請により、例えば、特許文献1(特開2004―85087号公報)に示すように、空調機の電力消費量を推定して電力消費量の診断を行う装置が提案されている。マルチタイプの空調機では、シングルタイプの空調機に比べ電力消費量も増加するため、電力消費量を推定して何らかの対策を講じることにより、省エネルギー効果を得ることが期待される。
本発明は、空調機の運用効率を容易に診断することを可能にする診断支援装置を提供し、省エネルギー効果を実現することを目的とする。
本発明に係る診断支援装置では、空調機から蒸発圧力Pe、凝縮圧力Pc、圧縮機の運転状態などの運転データが取得される。取得された運転データを用いて、空調機の空調負荷率、COP、電力消費量、または頻度を含む状態値が特定される。状態値に基づいて、第1画面および第2画面のいずれか一方が生成される。第1画面には、空調機の運転状況が示される。第2画面には、状態値を改善させる措置に関する情報と、運転状況とが示される。
これにより、空調機の運用効率の診断が容易になり、省エネルギー効果を実現することができる。
本発明に係る診断支援装置では、状態値に基づいて空調機の運用効率が判定される。また、判定部によって判定された運用効率に基づいて、状態値を改善させる措置に関する情報が提供される。
これにより、空調機の運用効率を適切に改善することができる。
本発明に係る診断支援装置では、判定条件記憶領域に記憶された条件に基づいて空調機の運用効率が判定される。また、判定される運用効率に応じた複数の情報が記憶されている。
これにより、運用効率に応じて、適した措置をとることができる。
本発明に係る診断支援装置では、判定部によって判定された運用効率が第1状態である場合に、第2画面が生成される。
これにより、空調機の運用効率が所定の状態にある事を把握することができる。
本発明に係る診断支援装置では、運用効率が悪いと判定された場合に、運用効率を改善させるために適した一の情報が選択され、選択された一の情報と、空調機の運転状況とを含む第2画面が生成される。
これにより、空調機の運用効率が悪い場合に適切な措置をとることができる。
本発明に係る診断支援装置では、COPが低く、かつ、電力消費量が多い場合に、運用効率を改善させるために適した一の情報が選択され、選択された一の情報と、空調機の運転状況とを含む第2画面が生成される。
これにより、成績係数および電力消費量を改善することができる。
本発明に係る診断支援装置では、COPが低い場合の空調機の負荷に応じて、運用効率を改善させるために適した措置を選択する。また、選択された措置と空調機の運転状況とを含む第2画面が表示される。
これにより、空調機の負荷の状態に応じた措置を把握することができる。
本発明に係る診断支援装置では、状態値に基づいて、空調機の運転時間がさらに判定される。また、空調機の運転時間をさらに考慮した一の情報が選択される。
これにより、例えば、長時間運転等による運用効率の低下を解消することができる。
本発明に係る診断支援装置では、空調機の運用効率に応じて、空調機の空調能力の抑制、目標温度の変更、または間欠運転を提案する情報のいずれかが選択され、第2画面が生成される。
これにより、空調機の運用効率を向上させることができる。
本発明に係る診断支援装置では、運用効率に応じて選択される情報に対応した制御指令が生成される。
これにより、運用効率を改善させる制御を自動的に行うことができる。
本発明に係る診断支援装置では、いずれか一の状態値と、いくつかの状態値との関係で判定された運転状況を示すための第1画面または第2画面が生成される。
これにより、運用効率の診断を容易にすることができる。
本発明に係る診断支援装置では、画面には第3画面および第4画面が含まれる。第3画面には、第1の状態値と第2の状態値との関係で判定された運転状況が示される。第1の状態値とは、一の状態値であり、第2の状態値とは、第1の状態値とは異なる状態値である。また、第4画面には、第1の状態値と第3の状態値との関係で判定された運転状況が示される。第3の状態値とは、第1の状態値および第2の状態値とは異なる状態値である。
これにより、共通する一の状態値と、異なる状態値との関係で判定された、複数の判定結果を確認することができる。
本発明に係る診断支援装置では、第3画面および第4画面のそれぞれで、各状態値との関係で判定された運転状況が柱状グラフで表示される。
これにより、所定期間における空調機の運転状況を容易に確認することができる。
本発明に係る診断支援装置では、空調負荷率と頻度との関係で判定された運転状況のグラフ、および空調負荷率と電力消費量との関係で判定された運転状況のグラフがそれぞれ画面に表示されます。
これにより、空調負荷率と頻度とを比較して運用効率を評価することができる。
本発明に係る診断支援装置では、COPと頻度との関係で判定された運転状況のグラフ、およびCOPと電力消費量との関係で判定された運転状況のグラフがそれぞれ画面に表示されます。
これにより、頻度と電力消費量とを比較して運用効率を評価することができる。
第2発明に係る診断支援装置では、空調機の運用効率を適切に改善することができる。
第3発明に係る診断支援装置では、運用効率に応じて、適した措置をとることができる。
第4発明に係る診断支援装置では、空調機の運用効率が所定の状態にある事を把握することができる。
第5発明に係る診断支援装置では、空調機の運用効率が悪い場合に適切な措置をとることができる。
第6発明に係る診断支援装置では、成績係数および電力消費量を改善することができる。
第8発明に係る診断支援装置では、例えば、長時間運転等による運用効率の低下を解消することができる。
第9発明に係る診断支援装置では、空調機の運用効率を向上させることができる。
第10発明に係る診断支援装置では、運用効率を改善させる制御を自動的に行うことができる。
第11発明に係る診断支援装置では、運用効率の診断を容易にすることができる。
第12発明に係る診断支援装置では、共通する一の状態値と、異なる状態値との関係で判定された、複数の判定結果を確認することができる。
第14発明に係る診断支援装置では、空調負荷率と頻度とを比較して運用効率を評価することができる。
第15発明に係る診断支援装置では、頻度と電力消費量とを比較して運用効率を評価することができる。
(1)全体構成
図1は、本実施形態で用いる空調機10の診断支援システム1の構成を示す。診断支援システム1はオフィスビルやテナントビル等の建物に用いられるシステムである。診断支援システム1は、主として、空調機10と、診断支援装置40とからなる。
空調機10はマルチタイプの空調機であり、一台の室外機11に複数の室内機12が接続されている。図1には、1台の室外機11と8台の室内機12とからなる空調機10が示されているが、室外機11および室内機12の数はこれに限定されるものではない。
診断支援装置40は、コントローラ20と、補助装置30とからなる。コントローラ20は、室外機11と空調制御用通信線91で接続されている。コントローラ20は、空調制御用通信線91を介して、空調機10に対する制御指令を室外機11に送信する。また、コントローラ20は、空調制御用通信線91を介して、空調機10の運転データを取得する。ここで、運転データとは、空調機10の運転履歴に関するデータおよび運転状態に関するデータである。運転履歴に関するデータとは、各室内機12の電源のオン・オフ、サーモオン・オフ、運転モード(冷房モード、暖房モード、送風モード等)、設定温度、室内温度(吸込み温度)等に関する情報をいう。運転状態に関するデータとは、空調機10に取り付けられている各種センサおよび各種計測器で検知された値である。コントローラ20は、空調機10からのこのような運転データを取得することにより、例えば、各室内機12の運転時間や室内膨張弁の開度、蒸発圧力Pe、凝縮圧力Pc、および圧縮機の周波数/回転数等を把握することができる。なお、本実施形態において運転時間とは、具体的に、室内機12のサーモオン時間である。ここで、サーモオン時間とは、室内機12が冷温熱供給を行っている時間をいう。
さらに、診断支援システム1では、電源60から空調機10に供給される電力が電力量計50によって計測される。具体的に、電源60には室外機11が接続されており、電源60と室外機11との間に電力量計50が設置される。電力量計50は、電源60から室外機11に供給される電力量を計測する。コントローラ20は、配線92を介して、電力量計50で計測された電力量、すなわち、空調機10を動作させるために室外機11に送られた電力に関する情報(総電力消費量)を取得する。電力量計50で計測された電力消費量は、空調機10の運転データとして後述する運転データ記憶領域24aに記憶される。
図2は、本実施形態に係る診断支援装置40の概略構成図である。診断支援装置40は、コントローラ20と、補助装置30とからなる。上述したように、コントローラ20は、空調制御用通信線91を介して、空調機10の室外機11と接続されている。また、補助装置30は、コントローラ20とLANで接続されている。補助装置30は、コントローラ20を介して空調機10の運転データを取得する。以下、図2を参照して、各部の構成を説明する。
コントローラ20は、主として、通信部21と、表示部22と、入力部23と、記憶部24と、制御部25とを有する。
〔通信部〕
通信部21は、他の機器と通信を行うための通信用インターフェースである。
〔表示部〕
表示部22は、コントローラ20で受け付けた各室内機12の運転データを表示するためのディスプレイである。ディスプレイに表示される運転データには、各室内機12の運転/停止の状態、運転モード(冷房モード、暖房モード、送風モード等)、設定温度、および室内温度などが含まれる。また、表示部22は、複数の室内機12に対する制御命令を受け付けるための操作画面でもある。
入力部23は、主として上述のディスプレイを覆うタッチパネルおよび操作ボタンから構成されている。
〔記憶部〕
記憶部24には、運転データ記憶領域24aが含まれる。運転データ記憶領域24aには、空調機10の運転データが記憶される。運転データ記憶領域24aに記憶される運転データには、空調機10の運転履歴に関するデータおよび運転状態に関するデータと、空調機10の電力消費量とが含まれる。ここで、空調機10の電力消費量には、後述する取得部25aによって取得された総電力消費量と、後述する電力消費量算出部25cによって算出された室外機11の電力消費量(室外機電力量Eo)および室内機12の電力消費量(室内機電力量EIk)とが含まれる。なお、運転データ記憶領域24aは、運転データを所定の時間(本実施形態では30分)のみ記憶しておくことが可能な記憶容量を有しており、新しい運転データが取得されるたびに、順次古い運転データが消去されてゆく。なお、記憶部24は、上記領域の他、後述の制御部25が読み出して実行可能な管理プログラムが格納される領域を有している。
制御部25は、主として、取得部25aと、空調能力算出部25bと、電力消費量算出部25cと、送信部25dとを有している。
(a)取得部
取得部25aは、通信部21を介して、空調機10の運転データを所定間隔毎(本実施形態では5分毎)に取得する。
(b)空調能力算出部
空調能力算出部25bは、取得部25aが取得した空調機10の運転データに基づいて、空調機10の空調能力を算出する。具体的には、空調能力算出部25bは、蒸発器または凝縮器のエンタルピ差に冷媒循環量Gを乗じることによって空調能力を算出する。より具体的には、冷房時の空調能力Qcは、蒸発器のエンタルピ差Δicに冷媒循環量Gを乗じることにより算出される(Qc=Δic×G)。また、暖房時の空調能力Qhは、凝縮器のエンタルピ差Δihに冷媒循環量Gを乗じることにより算出される(Qh=Δih×G)。
図3は、冷暖房のエンタルピ差を示す図であり、上述した運転データの関係を表す。また、冷媒循環量Gは、蒸発圧力相当飽和温度Te、凝縮圧力相当飽和温度Tcから算出される(G=f(Te,Tc))(ARI:STANDARD for PERFORMANCE RATION OF POSITIVE DISPLACEMANT REFRIGERANT COMPRESSORS AND COMPRESSOR UNITS, Standard 540(2004)、Carl C. Hiller:DETAILED MODELING AND COMPUTER SIMULATION OF RECIPROCATING REFRIGERATION COMPRESSORS, Proc. of International Compressor Engineering Conference at Purdue (1976), pp12-16参照)。なお、蒸発圧力相当飽和温度Te、凝縮圧力相当飽和温度Tcは、それぞれ、蒸発圧力Pe、凝縮圧力Pcより一意に決まる変数である。
電力消費量算出部25cは、空調機10の電力消費量を算出する。詳細には、電力消費量算出部25cは、運転データ記憶領域24aに記憶されている総電力消費量に基づいて、各室外機11の電力消費量である室外機電力量Eoと、室内機12の電力消費量である室内機電力消費量EIkとをそれぞれ算出する。室外機電力量Eoは、電力量計50で計測された電力消費量を、診断支援システム1内に含まれる室外機11の能力比に応じて按分することで求められる。すなわち、診断支援システム1内に含まれる室外機11の数が1台である場合には、電力量計50で計測された電力消費量が室外機電力量Eoになる。室内機電力量EIkは、室内機12のファンの定格電力にその運転時間を乗じることにより求められる。電力消費量算出部25cによって算出された値は、上述の運転データ記憶領域24aに記憶される。
(d)送信部
送信部25dは、運転データ記憶領域24aに記憶された運転データを、通信部21を介して、所定時間ごと(例えば、5分ごと)に補助装置30に送信する。
図2に示すように、補助装置30は、主として、通信部31と、表示部32と、入力部33と、記憶部34と、制御部35とを有する。
〔通信部〕
通信部31は、コントローラ20と通信を行うための通信用インターフェースである。
〔表示部〕
表示部32は、コントローラ20を介して取得された空調機10の運転データを表示するためのディスプレイである。ディスプレイに表示される運転データには、コントローラ20の表示部22で表示された運転データと同様、各室内機12の運転/停止の状態、運転モード(冷房モード、暖房モード、送風モード等)、設定温度、および室内温度などが表示される。さらに、表示部32には、後述する画面生成部35jによって生成される画面が表示される。画面生成部35jによって生成される画面については、画面生成部35jの説明と併せて詳細に説明する。
入力部33は、主として、キーボードおよび操作ボタンから構成されている。
〔記憶部〕
記憶部34は、主として、運転データ記憶領域34aと、判定条件記憶領域34bと、措置情報記憶領域34cとを有する。
(a)運転データ記憶領域
運転データ記憶領域34aには、上述の送信部25dによって送信された運転データ(空調機10の運転履歴に関するデータおよび運転状態に関するデータと、室外機電力量Eoおよび室内機電力量EIk)が記憶される。さらに、運転データ記憶領域34aには、後述するCOP算出部35b、平均空調負荷率算出部35c、平均電力消費量算出部35d、および頻度計測部35eによって得られた値も記憶される。運転データ記憶領域34aに記憶された値を、以下、室内機の状態値として説明する。
判定条件記憶領域34bには、空調機10の運用効率を判定するために用いられる複数の条件(判定条件)が記憶されている。図4に、判定条件の例を示す。各判定条件には、当該条件に該当する場合と該当しない場合とに応じて、次条件または措置情報に関する番号が関連付けられている。次条件とは、次に判定されるべき条件である。措置情報に関する番号は、後述する措置情報記憶領域34cに記憶された情報に対応する番号である。判定条件は、運用効率判定部35gによって判定される運用効率に応じて用いられる。
(c)措置情報記憶領域
措置情報記憶領域34cには、運用効率を改善する措置に関する情報(措置情報)が記憶されている。具体的には、措置情報として、運用効率の程度(各状態値の状態)に応じた複数の措置が記憶されている。
制御部35は、主として、取得部35aと、COP算出部35bと、平均空調負荷率算出部35cと、平均電力消費量算出部35dと、頻度計測部35eと、負荷判定部35fと、運用効率判定部35gと、措置情報提供部35hと、運転時間判定部35iと、画面生成部35jとを有する。
(a)取得部
取得部35aは、上述のコントローラ20から送られた運転データを取得する。
(b)COP算出部
COP算出部35bは、空調機10のCOP(成績係数)を算出する。空調機10のCOPには、機器COPとシステムCOPとが含まれる。機器COPは、室外機11の単体の性能を表す。具体的には、上述の空調能力算出部25bによって算出された室外機11の空調能力Qを室外機11の電力消費量Eoで除算した値とする(機器COP=Q/Eo)。システムCOPは、空調能力Qを室外機電力量Eoおよび室内機電力量EIkの合計値で除算した値とする(システムCOP=Q/(Eo+ΣEIk))。システムCOPは、冷媒系統毎に算出される。また、所定期間におけるシステムCOPは、式:システムCOP=(ΣQc/ΣH)/Eaにより求められる。ここで、ΣHは、空調機10の運転時間[時間]を表す。本実施形態では、1日を所定期間とする。COP算出部35bによって算出されたCOPは、運転データ記憶領域34aに記憶される。
平均空調負荷率算出部35cは、運転データ記憶領域34aに記憶されている運転データに基づいて、所定期間における空調機10の空調負荷率の日平均値を算出する。具体的には、式:空調負荷率[%]=(ΣQc/ΣH)/Qrにより求められる。ここで、Qrは、定格能力[kW]を表す。平均空調負荷率算出部35cによって算出された日平均の空調負荷率は、運転データ記憶領域34aに記憶される。
(d)平均電力消費量算出部
平均電力消費量算出部35dは、運転データ記憶領域34aに記憶されている運転データに基づいて、所定期間における空調機10の積算電力消費量の日平均値を算出する。具体的には、式:電力消費量Ea[kWh/h]=Σ(Eo+ΣEIk)/ΣHにより求められる。平均電力消費量算出部35dによって算出された日平均の積算電力消費量は、運転データ記憶領域34aに記憶される。
頻度計測部35eは、上述した所定期間において、空調機10が所定の平均空調負荷率であった頻度(例えば、空調負荷率が0%であった日数が3日)、および所定のシステムCOPであった頻度(例えば、システムCOPが0であった日数が3日)をそれぞれ計測する。頻度計測部35eによって計測された頻度は、運転データ記憶領域34aに記憶される。
(f)負荷判定部
負荷判定部35fは、システムCOPが低い状態が、空調負荷の高い場合(高負荷)および空調負荷の低い場合(低負荷)のいずれの場合に多く発生しているかを判定する。システムCOPが低い状態(低COPの状態)とは、システムCOPが、定格COPの60%以下である状態をいう。負荷判定部35fは、運転データ記憶領域34aに記憶された日平均の空調負荷率に基づいて上記判定を行う。
運用効率判定部35gは、運転データ記憶領域34aに記憶されている運転データと、判定条件記憶領域34bに記憶された判定条件とに基づいて、空調機10の運用効率を判定する。運用効率判定部35gによる運用効率の判定方法は、下記<(4)処理の流れ>の欄で詳細に説明する。
(h)措置情報提供部
措置情報提供部35hは、上述の措置情報記憶領域34cに記憶された複数の措置情報の中から、運用効率判定部35gによる判定結果に適した一の措置情報を選択する。その後、措置情報提供部35hは、後述する画面生成部35jに、選択した措置情報を提供する。
運転時間判定部35iは、運転データ記憶領域34aに記憶されている運転データに基づいて、各室内機12の運転時間を判定する。
(j)画面生成部
画面生成部35jは、所定期間における空調機10の運転状況を示すための画面(第1画面)を生成する(図6A~図7参照)。画面には、複数の室内機12に関する運転データが冷媒系統毎に表示される。具体的には、複数の室内機12の状態値(頻度、空調負荷率、積算電力消費量、およびシステムCOP)を示す柱状グラフが表示される。詳細には、図6Aに示す画面は、上述した平均空調負荷率算出部35cによって算出された値と、頻度計測部35eによって計測された空調機10が所定の平均空調負荷率であった頻度とに基づいて判定された空調機10の運転状況を示す画面である。図6Bに示す画面は、上述した平均空調負荷率算出部35cによって算出された値と、平均電力消費量算出部35dによって算出された積算電力消費量の日平均の値とに基づいて判定された空調機10の運転状況を示す画面である。さらに、図6Cに示す画面は、上述したCOP算出部35bによって算出された値と、頻度計測部35eによって計測された空調機10が所定のCOPであった頻度とに基づいて判定された空調機10の運転状況を示す画面である。さらに、図6Dに示す画面は、上述したCOP算出部35bによって算出された値と、平均電力消費量算出部35dによって算出された積算電力消費量の日平均の値とに基づいて判定された空調機10の運転状況を示す画面である。
画面生成部35jは、所定の場合には、所定期間における空調機10の運転状況に加え、措置情報をさらに示す画面(第2画面)を生成する。当該措置情報は、上述の措置情報提供部35hによって提供された情報である。所定の場合とは、運用効率判定部35gによって判定された空調機10の運用効率が悪い場合である。図7は、措置情報提供部35hによって提供された措置情報が画面に示された例である。
以下に、図6A~図6Dを参照して、空調機10の運転状況を示す画面について説明する。当該画面は、画面生成部35jによって生成される。上述したように、図6Aから図6Dは、補助装置30の表示部32に表示される画面である。図6Aの画面は、横軸を空調機10の空調負荷率[%]とし、縦軸を空調機10が所定の空調負荷率で運転された頻度を示す空調負荷率の柱状グラフである。図6Bの画面は、横軸を空調機10の空調負荷率[%]とし、縦軸を空調機10の積算電力消費量[kWh]とし、空調負荷率毎の積算電力消費量を示す柱状グラフである。図6Cの画面は、横軸を空調機10のシステムCOP[-]とし、縦軸を空調機10が所定のシステムCOPであった頻度を示すシステムCOPの柱状グラフである。図6Dの画面は、横軸を空調機10のシステムCOP[-]とし、縦軸を空調機10の積算電力消費量[kWh]とし、システムCOP毎の積算電力消費量を示す柱状グラフである。
次に、空調機10(一の冷媒系統に含まれる複数の室内機12)の運転状況と、空調機10の運用効率を改善するための情報とが表示部32に表示されるまでの処理の流れを、図8および図9を用いて説明する。
〔画面生成処理〕
ステップS101で、補助装置30は、コントローラ20を介して、空調機10の運転データを取得する。詳細には、取得部35aがコントローラ20の運転データ記憶領域24aに記憶されている運転データを取得する。その後、ステップS102で、空調機10の状態値が特定される。状態値とは、具体的に、空調機10の空調負荷率、電力消費量、システムCOPおよび頻度等である。これらの値は、上述したように、COP算出部35b、平均空調負荷率算出部35c、平均電力消費量算出部35d、および頻度計測部35eによって求められる。次に、ステップS103に進み、運用効率判定処理が行われる。運用効率判定処理については、追って説明する。
次に、図9を用いて、運用効率判定部35gによって空調機10の運用効率が判定される処理を説明する。
まず、ステップS201で、上述のステップS102において特定された状態値に基づいて、低COP運転があるか否かが判定される(条件1)。本実施形態において、低COPとは、上記したように、システムCOPが、定格COPの60%以下である状態をいう。したがって、システムCOPが定格COPの60%以下の状態で運転された時間があるかどうかが判定される。図10では、定格COPの60%以下の電力消費量を斜線で示す。ステップS201において、低COP運転があると判定された場合には、ステップS202に進み、低COP運転が無いと判定された場合には、終了する。
ステップS203では、低COP運転が、高負荷率(負荷率90%以上)運転のときに発生しており(前提1)、更に、高負荷率運転かつ低COP運転されている電力消費量(以下、低COP高負荷電力消費量)が、低COP運転による全電力消費量(以下、低COP全電力消費量)の30%以上であるかどうか(前提2)が判定される(条件3)。具体的に、前提1では、図11の斜線で示すように、全電力消費量のうち、負荷率90%以上のところで、低COP運転によって消費された電力が発生しているか否かが負荷判定部35fによって判定される。また、前提2では、斜線で示される低COP高負荷電力消費量が、低COP全電力消費量の30%以上であるか否かが運用効率判定部35gによって判定される。図11が示すように、高負荷率運転のときに低COP運転が発生しており、かつ、低COP高負荷電力消費量が、低COP全電力消費量の30%以上である場合には、ステップS204に進む。一方、高負荷率運転の時に低COP運転が発生していない場合、もしくは、低COP運転が発生していた場合であっても、低COP高負荷電力消費量が、低COP全電力消費量の30%未満であった場合には、ステップS205に進む。
ステップS205では、低COP運転が低負荷率(負荷率30%以下)運転のときに発生しており(前提1)、更に、低負荷率運転かつ低COP運転されている電力消費量(以下、低COP低負荷電力消費量)が、低COP全電力消費量の30%以上あるかどうか(前提2)が判定される(条件4)。具体的に、前提1では、図12の斜線で示すように、全電力消費量のうち、負荷率30%以下のところで、低COP運転によって消費された電力が発生しているか否かが負荷判定部35fによって判定される。また、前提2では、斜線で示される低COP低負荷電力消費量が、低COP全電力消費量の30%以上であるか否かが運用効率判定部35gによって判定される。図12が示すように、低COP運転が低負荷率運転のときに発生しており、かつ、低COP低負荷電力消費量が低COP全電力消費量の30%以上である場合には、ステップS206に進む。一方、低負荷率運転の時に低COP運転が発生していない場合、もしくは、低COP運転が発生していた場合であっても、低COP低負荷電力消費量が低COP全電力消費量の30%未満であった場合には、終了する。
ステップS207では、連続運転時間T0がやや長いかどうかが判定される。具体的には、連続運転時間T0がT1時間以上であって、T2時間未満かどうかが判定される(条件6)。ステップS208において、連続運転時間T0がT1時間以上であって、T2時間未満である場合には、ステップS208に進む。
一方、ステップS207において、連続運転時間T0がT1時間以上であって、T2時間未満でなかった場合、もしくは、T1時間未満であった場合には、ステップS209に進む。ステップS209では、連続運転時間T0がT2時間以上であるか否かが判定される(条件7)。ステップS209において、連続運転時間T0がT2時間以上であった場合には、ステップS210に進む。
一方、ステップS209において、連続運転時間T0がT2時間以上でなかった場合、すなわち、連続運転時間T0がT1時間未満であった場合には、措置情報は選択されずに終了する。
(1)本実施形態に係る空調機の診断支援装置40は、表示部32に表示される画面(図6Aから図7参照)では、それぞれの結果が柱状グラフで示される。これにより、各値の量を視覚的に認識することができ、空調機の運用効率の診断が容易になる。
また、表示部32に、空調負荷率毎の積算電力消費量(図6B参照)、およびシステムCOP毎の積算電力消費量(図6D参照)が表示される。これにより、空調負荷率の大小に応じた電力消費量に併せて、システムCOPの大小に応じた電力消費量を考慮することができる。また、空調機10の運転状況を多角的に判定することにより、適切な対応を見極めることが可能になり、省エネルギー効果を実現することができる。
(2)また、本実施形態に係る診断支援装置40では、システムCOPと頻度との関係を表す柱状グラフ(図6C参照)が表示される。図6CでシステムCOPが低いところでは、頻度があまり出ていないのがわかる。したがって、運用上、空調機10は効率の悪い運転を行っているわけではないことが読み取れる。
さらに、診断支援装置40では、空調負荷率と頻度との関係を表す柱状グラフ(図6A参照)が表示される。これらのグラフを比較することで、空調負荷率の低下に起因して、COPの低下がどの程度発生したかを容易に確認することができる。例えば、図6Aでは、低い空調負荷率が比較的多く見られるが、図6Cでは、著しく低いCOPの発生頻度はそれほど高くないことが確認できる。一般的に、システムCOPは、低い空調負荷率で低下する傾向があるため、省エネルギーを目的としてCOPを評価する場合は、COPが低くなる部分負荷の発生状況を確認することが重要になる。
さらに、図6Cおよび図6Dに示される画面を比較することにより、所定のシステムCOPの頻度と、積算電力消費量との関係を診断することもできる。すなわち、システムCOPが低いところの運転をやめることにより、削減できる電力消費量がどの程度あるのかを容易に判定することができる。
(4)さらに、本実施形態に係る診断支援装置40では、空調機10の運転状況に基づいて運用効率が判定される。さらに、運用効率の判定結果が悪い場合に、当該運用効率を改善させるための措置が画面に表示される。これにより、管理者は、空調機10の運用効率を上げるために如何なる措置をとるべきかを容易に把握することができる。
(1)上記実施形態に係る診断支援装置40は、コントローラ20と補助装置30とから構成されていたが、診断支援装置40は、コントローラ20および補助装置30に備えられた機能を有する一つの装置であってもよい。または、コントローラ20および補助装置30の両方の機能がいずれか一方もしくは両方に含まれていてもよい。
(2)表示部32に示される柱状グラフは、画面が切り替えられることによりそれぞれが表示されるように設計されていてもよく、または、一の画面にそれぞれの状態を示す複数の柱状グラフが表示されるように設計されていてもよい。
(3)上記実施形態で用いた図7では、画面生成部35jによって生成された画面のうち、空調負荷率を横軸にし積算電力消費量を縦軸にする柱状グラフと、システムCOPを横軸にし積算電力消費量を縦軸にする柱状グラフの両方を並べた診断画面を例示したが、図7で用いられた柱状グラフに代えて、図13に示すような柱状グラフを用いてもよい。図13では、横軸に空調負荷率、縦軸に積算電力消費量を示し、柱状グラフの色分けにより、高COPと低COPとを識別可能に示してある。これにより、一の柱状グラフにより、複数の状態値を把握することができる。
(5)また、上記実施形態に係る補助装置30の制御部35は、図15に示すように、制御指令生成部35kをさらに有していてもよい。制御指令生成部35kは、措置情報提供部35hによって選択される措置情報に基づいて制御指令を生成する。当該制御指令は、コントローラ20を介して空調機10に送られる。これにより、運用効率判定部35gによって判定された運用効率に応じて、当該運用効率を改善させるための制御指令が空調機10に送られる。これにより、運用効率が悪い場合に、自動的に運用効率を改善させる制御を空調機10に実行させることができる。
(7)上記実施形態では、所定期間を「1日」として例を挙げたが、当該所定期間は、一日より短くても長くてもよい。例えば、1時間または1分間であってもよいし、一ヶ月または一年であってもよい。
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成はこれらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
11 室外機
12 室内機
20 コントローラ
30 補助装置
40 診断支援装置
Claims (15)
- 空調機の運用効率の診断を支援する診断支援装置(40)であって、
前記空調機の運転データを取得する取得部(25a,35a)と、
前記取得部によって取得された前記運転データを用いて、前記空調機の空調負荷率、COP、電力消費量、および頻度のいずれかを含む状態値を特定する特定部(25b,25c,35b-35e)と、
前記特定部によって特定された前記状態値に基づいて、前記空調機の運転状況を示す第1画面と、前記状態値を改善させる措置に関する情報および前記運転状況を示す第2画面とのいずれか一方を生成する画面生成部(35j)と、
を備える、
診断支援装置。 - 前記状態値に基づいて、前記運用効率を判定する判定部(35g)と、
前記情報を前記画面生成部に提供する措置情報提供部(35h)と
をさらに備え、
前記措置情報提供部は、前記判定部によって判定された前記運用効率に基づいて、前記情報を前記画面生成部に提供する、
請求項1に記載の診断支援装置。 - 前記判定部が前記運用効率を判定するための条件を記憶する判定条件記憶領域(34b)と、
前記判定部によって判定される運用効率に応じた複数の前記情報を記憶する措置情報記憶領域(34c)と
をさらに備える、
請求項2に記載の診断支援装置。 - 前記措置情報提供部は、前記判定部によって判定された前記運用効率が第一状態である場合に、前記措置情報記憶領域に記憶された前記複数の情報から一の情報を選択して前記画面生成部に提供し、
前記画面生成部は、前記空調機の運転状況と前記措置情報提供部から提供された前記一の情報とを含む前記第2画面を生成する、
請求項3に記載の診断支援装置。 - 前記措置情報提供部は、前記判定部によって前記運用効率が悪いと判定された場合、前記複数の情報から適した前記一の情報を選択し、前記画面生成部に提供する、
請求項4に記載の診断支援装置。 - 前記措置情報提供部は、前記COPが低く、かつ、前記電力消費量が多い場合である前記運用効率が悪い場合に、前記複数の情報から適した前記一の情報を選択する、
請求項5に記載の診断支援装置。 - 前記COPが低い状態が、前記空調機の高負荷および低負荷のいずれの場合に生じているかを判定する負荷判定部(35f)をさらに備え、
前記措置情報提供部は、前記運用効率が悪い場合に、前記負荷判定部によって判定された結果に応じて、前記一の情報を選択して提供する、
請求項6に記載の診断支援装置。 - 前記状態値に基づいて、前記空調機の運転時間を判定する運転時間判定部(35i)をさらに備え、
前記措置情報提供部は、さらに、運転時間判定部によって判定された結果に応じて、前記一の情報を選択して提供する、
請求項7に記載の診断支援装置。 - 前記複数の情報は、前記空調機の空調能力の抑制、目標温度の変更、または間欠運転を提案する情報である、
請求項3から8のいずれかに記載の診断支援装置。 - 前記措置情報提供部によって選択された前記一の情報に対応して、前記空調機を制御するための制御指令を生成する制御指令生成部(35k)をさらに備える、
請求項4に記載の診断支援装置。 - 前記画面生成部は、一の状態値と、いくつかの状態値との関係で判定された前記運転状況を示すための前記第1画面または前記第2画面を生成する、
請求項1に記載の診断支援装置。 - 前記画面生成部が生成する前記第1画面または前記第2画面は、第3画面および第4画面を含み、
前記第3画面は、前記一の状態値である第1の状態値と、前記第1の状態値とは異なる状態値である第2の状態値との関係で判定された運転状況を示す画面であり、
前記第4画面は、前記第1の状態値と、前記第1の状態値および前記第2の状態値とは異なる状態値である第3の状態値との関係で判定された運転状況を示す画面である、
請求項11に記載の診断支援装置。 - 前記運転状況は、前記第3画面および前記第4画面に柱状グラフで表示される、
請求項12に記載の診断支援装置。 - 前記第1の状態値は、空調負荷率であり、前記第2の状態値は、頻度であり、前記第3の状態値は、電力消費量である、
請求項12または13に記載の診断支援装置。 - 前記第1の状態値は、COPであり、前記第2の状態値は、頻度であり、前記第3の状態値は、電力消費量である、
請求項12または13に記載の診断支援装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009283752A AU2009283752B2 (en) | 2008-08-19 | 2009-08-10 | Diagnostic aid device |
KR1020117004396A KR20110046504A (ko) | 2008-08-19 | 2009-08-10 | 진단 지원 장치 |
CN200980131912XA CN102124277B (zh) | 2008-08-19 | 2009-08-10 | 诊断支援装置 |
JP2010525579A JP5146533B2 (ja) | 2008-08-19 | 2009-08-10 | 診断支援装置 |
BRPI0917291A BRPI0917291A2 (pt) | 2008-08-19 | 2009-08-10 | dispositivo de auxílio a diagnóstico |
EP09808037.7A EP2327937A4 (en) | 2008-08-19 | 2009-08-10 | Diagnostic aid device |
US13/058,872 US8949073B2 (en) | 2008-08-19 | 2009-08-10 | Diagnostic aid device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-210659 | 2008-08-19 | ||
JP2008210659 | 2008-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010021101A1 true WO2010021101A1 (ja) | 2010-02-25 |
Family
ID=41706994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003835 WO2010021101A1 (ja) | 2008-08-19 | 2009-08-10 | 診断支援装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8949073B2 (ja) |
EP (1) | EP2327937A4 (ja) |
JP (1) | JP5146533B2 (ja) |
KR (1) | KR20110046504A (ja) |
CN (1) | CN102124277B (ja) |
AU (1) | AU2009283752B2 (ja) |
BR (1) | BRPI0917291A2 (ja) |
WO (1) | WO2010021101A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010112697A (ja) * | 2008-10-09 | 2010-05-20 | Daikin Ind Ltd | 省エネ支援装置 |
JP2011191011A (ja) * | 2010-03-15 | 2011-09-29 | Fujitsu General Ltd | 空調機システム |
CN102207322A (zh) * | 2010-09-14 | 2011-10-05 | 中华电信股份有限公司 | 冰水主机的冰水温度动态调整方法 |
JP2015203544A (ja) * | 2014-04-16 | 2015-11-16 | 株式会社日立製作所 | 空調機器管理システム |
JP2016099049A (ja) * | 2014-11-20 | 2016-05-30 | 三菱重工業株式会社 | 空気調和機 |
JP2018059703A (ja) * | 2016-09-30 | 2018-04-12 | ダイキン工業株式会社 | 判定用情報生成装置、及び容量判定装置 |
CN110726221A (zh) * | 2019-10-29 | 2020-01-24 | 珠海格力电器股份有限公司 | 确定空调能效信息的方法、装置和空调 |
WO2023135703A1 (ja) * | 2022-01-13 | 2023-07-20 | 三菱電機株式会社 | 機器管理システムおよび通知方法 |
WO2023135696A1 (ja) * | 2022-01-13 | 2023-07-20 | 三菱電機株式会社 | 機器管理システムおよび冷媒量推定方法 |
WO2024009434A1 (ja) * | 2022-07-06 | 2024-01-11 | 三菱電機株式会社 | 空気調和装置および空気調和システム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9141507B2 (en) * | 2009-12-23 | 2015-09-22 | Microsoft Technology Licensing, Llc | Visualization of states of a process |
JP6234801B2 (ja) * | 2013-12-18 | 2017-11-22 | 三菱重工サーマルシステムズ株式会社 | 空調システムの評価支援装置及び方法並びにプログラム |
CN104048390B (zh) * | 2014-07-04 | 2017-01-11 | 国家电网公司 | 一种风冷热泵型中央空调机组的能效诊断方法 |
CN110686366B (zh) * | 2019-10-16 | 2021-02-09 | 广东美的暖通设备有限公司 | 空调控制方法、装置及计算机可读存储介质 |
CN113757943B (zh) * | 2021-09-17 | 2023-03-24 | 广东电网有限责任公司 | 一种基于故障判断规则的空调系统故障诊断方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002335591A (ja) * | 2001-03-09 | 2002-11-22 | Osaka Gas Co Ltd | エネルギ使用量提示システムおよびその方法 |
JP2004085087A (ja) | 2002-08-27 | 2004-03-18 | Daikin Ind Ltd | 空調機電力導出装置、エネルギー診断システムおよびエネルギー診断装置 |
JP2004301505A (ja) * | 2004-07-30 | 2004-10-28 | Matsushita Electric Ind Co Ltd | 空調制御装置 |
JP2006292279A (ja) * | 2005-04-11 | 2006-10-26 | Sanki Eng Co Ltd | 空調システムの表示装置 |
WO2008084635A1 (ja) * | 2006-12-22 | 2008-07-17 | Daikin Industries, Ltd. | 空調管理装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4186450B2 (ja) * | 2001-10-16 | 2008-11-26 | 株式会社日立製作所 | 空調設備運用システム及び空調設備設計支援システム |
CN100491847C (zh) | 2003-05-30 | 2009-05-27 | 乐金电子(天津)电器有限公司 | 电力可分式多室空气调节器系统及其运算方法 |
JP4473552B2 (ja) * | 2003-10-24 | 2010-06-02 | 三菱電機ビルテクノサービス株式会社 | 空気調和機の運転状況判定方法及び運転状況判定システム |
KR100550556B1 (ko) * | 2003-11-11 | 2006-02-10 | 엘지전자 주식회사 | 에어컨의 중앙제어 시스템 및 그 동작방법 |
US7424343B2 (en) * | 2004-08-11 | 2008-09-09 | Lawrence Kates | Method and apparatus for load reduction in an electric power system |
JP2006162213A (ja) * | 2004-12-10 | 2006-06-22 | Matsushita Electric Ind Co Ltd | 空調用遠隔制御装置 |
KR101271059B1 (ko) | 2005-10-26 | 2013-06-04 | 삼성전자주식회사 | 공기조화기 에너지소비 진단장치 및 그 진단방법 |
-
2009
- 2009-08-10 US US13/058,872 patent/US8949073B2/en not_active Expired - Fee Related
- 2009-08-10 EP EP09808037.7A patent/EP2327937A4/en not_active Withdrawn
- 2009-08-10 KR KR1020117004396A patent/KR20110046504A/ko not_active Application Discontinuation
- 2009-08-10 JP JP2010525579A patent/JP5146533B2/ja not_active Expired - Fee Related
- 2009-08-10 CN CN200980131912XA patent/CN102124277B/zh not_active Expired - Fee Related
- 2009-08-10 AU AU2009283752A patent/AU2009283752B2/en not_active Ceased
- 2009-08-10 BR BRPI0917291A patent/BRPI0917291A2/pt not_active IP Right Cessation
- 2009-08-10 WO PCT/JP2009/003835 patent/WO2010021101A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002335591A (ja) * | 2001-03-09 | 2002-11-22 | Osaka Gas Co Ltd | エネルギ使用量提示システムおよびその方法 |
JP2004085087A (ja) | 2002-08-27 | 2004-03-18 | Daikin Ind Ltd | 空調機電力導出装置、エネルギー診断システムおよびエネルギー診断装置 |
JP2004301505A (ja) * | 2004-07-30 | 2004-10-28 | Matsushita Electric Ind Co Ltd | 空調制御装置 |
JP2006292279A (ja) * | 2005-04-11 | 2006-10-26 | Sanki Eng Co Ltd | 空調システムの表示装置 |
WO2008084635A1 (ja) * | 2006-12-22 | 2008-07-17 | Daikin Industries, Ltd. | 空調管理装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2327937A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010112697A (ja) * | 2008-10-09 | 2010-05-20 | Daikin Ind Ltd | 省エネ支援装置 |
JP2011191011A (ja) * | 2010-03-15 | 2011-09-29 | Fujitsu General Ltd | 空調機システム |
CN102207322A (zh) * | 2010-09-14 | 2011-10-05 | 中华电信股份有限公司 | 冰水主机的冰水温度动态调整方法 |
JP2015203544A (ja) * | 2014-04-16 | 2015-11-16 | 株式会社日立製作所 | 空調機器管理システム |
JP2016099049A (ja) * | 2014-11-20 | 2016-05-30 | 三菱重工業株式会社 | 空気調和機 |
JP2018059703A (ja) * | 2016-09-30 | 2018-04-12 | ダイキン工業株式会社 | 判定用情報生成装置、及び容量判定装置 |
CN110726221A (zh) * | 2019-10-29 | 2020-01-24 | 珠海格力电器股份有限公司 | 确定空调能效信息的方法、装置和空调 |
CN110726221B (zh) * | 2019-10-29 | 2020-09-25 | 珠海格力电器股份有限公司 | 确定空调能效信息的方法、装置和空调 |
WO2023135703A1 (ja) * | 2022-01-13 | 2023-07-20 | 三菱電機株式会社 | 機器管理システムおよび通知方法 |
WO2023135696A1 (ja) * | 2022-01-13 | 2023-07-20 | 三菱電機株式会社 | 機器管理システムおよび冷媒量推定方法 |
WO2024009434A1 (ja) * | 2022-07-06 | 2024-01-11 | 三菱電機株式会社 | 空気調和装置および空気調和システム |
Also Published As
Publication number | Publication date |
---|---|
CN102124277A (zh) | 2011-07-13 |
JP5146533B2 (ja) | 2013-02-20 |
BRPI0917291A2 (pt) | 2015-11-10 |
US8949073B2 (en) | 2015-02-03 |
EP2327937A4 (en) | 2017-11-01 |
AU2009283752B2 (en) | 2012-11-15 |
CN102124277B (zh) | 2013-06-05 |
AU2009283752A1 (en) | 2010-02-25 |
EP2327937A1 (en) | 2011-06-01 |
US20110144948A1 (en) | 2011-06-16 |
KR20110046504A (ko) | 2011-05-04 |
JPWO2010021101A1 (ja) | 2012-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146533B2 (ja) | 診断支援装置 | |
JP2010048433A (ja) | 診断支援装置 | |
US8694174B2 (en) | Energy saving support device | |
WO2010073579A1 (ja) | 負荷処理バランス設定装置 | |
JP5394047B2 (ja) | パッケージ型空調機による空調システムの冷房能力測定方法及びその装置 | |
JP2014236605A (ja) | 空気調和装置の管理システム | |
JP6739671B1 (ja) | 情報処理装置 | |
JP4290705B2 (ja) | 空気調和機の診断方法及び診断システム | |
Aynur et al. | Experimental evaluation of the ventilation effect on the performance of a VRV system in cooling mode—Part I: Experimental evaluation | |
US20140257575A1 (en) | Systems and methods for implementing environmental condition control, monitoring and adjustment in enclosed spaces | |
JP2011214738A (ja) | ダクト循環方式空調システムにおけるエネルギー消費効率管理方法 | |
JP7072398B2 (ja) | 一体型空気調和装置の管理装置および管理プログラム | |
JP5473619B2 (ja) | 空気調和機の制御装置 | |
JP5495148B1 (ja) | 運転制御装置及び運転制御方法 | |
JP2012255570A (ja) | 空調能力算出システム | |
JP4147868B2 (ja) | エネルギー診断システムおよびエネルギー診断装置 | |
JP3857833B2 (ja) | 空気調和システム | |
JP7562020B2 (ja) | 機器管理システムおよび管理方法 | |
KR20070018453A (ko) | 에어컨 시스템 및 그 제어 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131912.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09808037 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010525579 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13058872 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20117004396 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 985/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009808037 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009283752 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2009283752 Country of ref document: AU Date of ref document: 20090810 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: PI0917291 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110218 |