WO2010073579A1 - 負荷処理バランス設定装置 - Google Patents

負荷処理バランス設定装置 Download PDF

Info

Publication number
WO2010073579A1
WO2010073579A1 PCT/JP2009/007047 JP2009007047W WO2010073579A1 WO 2010073579 A1 WO2010073579 A1 WO 2010073579A1 JP 2009007047 W JP2009007047 W JP 2009007047W WO 2010073579 A1 WO2010073579 A1 WO 2010073579A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
load processing
air
load
air conditioning
Prior art date
Application number
PCT/JP2009/007047
Other languages
English (en)
French (fr)
Inventor
西野淳
橋本哲
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP09834391A priority Critical patent/EP2375178A1/en
Priority to AU2009332323A priority patent/AU2009332323B2/en
Priority to CN2009801525288A priority patent/CN102265097A/zh
Priority to BRPI0924182A priority patent/BRPI0924182A2/pt
Priority to US13/139,752 priority patent/US8670871B2/en
Publication of WO2010073579A1 publication Critical patent/WO2010073579A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present invention relates to a load processing balance setting device for adjusting an air conditioning load of each air conditioner in an air conditioning system including a plurality of air conditioners.
  • Patent Document 1 there is an air conditioning system in which the operating condition of an ambient air conditioner that air-conditions an area including a predetermined area within the area is controlled based on an operation state of a task air conditioner that air-conditions only a predetermined area.
  • the ambient air conditioner may be operated wastefully by controlling the operating condition of the ambient air conditioner based on the operation state of the task air conditioner. For this reason, the coefficient of performance COP as the whole air conditioner may not improve. Therefore, there is a possibility that energy saving cannot actually be realized.
  • the subject of this invention is providing the load processing balance setting apparatus which can implement
  • the load processing balance setting device includes a first air conditioner, a second air conditioner, a calculation unit, a determination unit, and an adjustment unit.
  • the first air conditioner performs air conditioning for the first area.
  • the second air conditioner performs air conditioning on the second area including the first area in the area.
  • the calculation unit calculates the total value of the air conditioning loads of the first air conditioner and the second air conditioner.
  • the determination unit includes a first load processing amount that is a load processing amount of the first air conditioner and a second air conditioner so that the COP in the total value of the air conditioning loads calculated by the calculation unit is a maximum or a predetermined level or more.
  • the second load processing amount that is the load processing amount is determined.
  • the adjustment unit controls the first air conditioner based on the first load processing amount determined by the determination unit.
  • the adjustment unit controls the second air conditioner based on the second load processing amount determined by the determination unit.
  • the first load processing is performed so that the COP in the total value of the air conditioning load of the first air conditioner and the air conditioning load of the second air conditioner is maximum or exceeds a predetermined level.
  • the amount and the second load processing amount are determined.
  • the first air conditioner and the second air conditioner are controlled based on the determined first load processing amount and second load processing amount. For this reason, COP in the whole air conditioner can be improved, without changing the air conditioning load in the whole air conditioner. Thereby, energy saving can be realized by adjusting the air conditioning load of each air conditioner.
  • a load processing balance setting device is the load processing balance setting device according to the first invention, wherein the determining unit performs an operation for maximizing an objective function related to COP according to a constraint condition, thereby A processing amount and a second load processing amount are determined. For this reason, in this load processing balance setting device, the first load processing amount and the second load processing amount can be determined.
  • a load processing balance setting device is the load processing balance setting device of the first aspect, wherein the determining unit is configured based on a preset value set in advance for the total value of the air conditioning load. The load processing amount and the second load processing amount are determined. For this reason, in this load processing balance setting device, the first load processing amount and the second load processing amount can be determined.
  • the load processing balance setting device includes a first air conditioner, a second air conditioner, a calculation unit, a determination unit, and an adjustment unit.
  • the first air conditioner performs air conditioning for the first area.
  • the second air conditioner performs air conditioning on the second area including the first area in the area.
  • the calculation unit calculates the total value of the air conditioning loads of the first air conditioner and the second air conditioner.
  • the determination unit includes a first load processing amount and a second load processing amount that are load processing amounts of the first air conditioner so that the power consumption in the total value of the air conditioning loads calculated by the calculation unit is minimum or equal to or less than a predetermined level.
  • a second load processing amount that is the load processing amount of the air conditioner is determined.
  • the adjustment unit controls the first air conditioner based on the first load processing amount determined by the determination unit.
  • the adjustment unit controls the second air conditioner based on the second load processing amount determined by the determination unit.
  • the power consumption in the total value of the air-conditioning load of the first air conditioner and the air-conditioning load of the second air conditioner is minimized or less than a predetermined level.
  • the load processing amount and the second load processing amount are determined. Further, the first air conditioner and the second air conditioner are controlled based on the determined first load processing amount and second load processing amount. For this reason, the power consumption in the whole air conditioner can be reduced without changing the air conditioning load in the whole air conditioner. Thereby, energy saving can be realized by adjusting the air conditioning load of each air conditioner.
  • energy saving can be realized by adjusting the air conditioning load of each air conditioner.
  • the first load processing amount and the second load processing amount can be determined.
  • the first load processing amount and the second load processing amount can be determined.
  • energy saving can be realized by adjusting the air conditioning load of each air conditioner.
  • the block diagram of an air-conditioning system provided with the load processing balance setting apparatus which concerns on embodiment of this invention The figure which shows schematically the internal structure of the load processing balance setting apparatus which concerns on embodiment of this invention.
  • the Mollier diagram which shows the enthalpy difference of air conditioning.
  • the flowchart which shows a series of operation
  • the figure which shows the relationship between the air-conditioning load factor and COP in each air conditioner.
  • FIG. 1 is a configuration diagram of an air conditioning system 1 including a load processing balance setting device 20 according to an embodiment of the present invention.
  • the air conditioning system 1 is a system used for buildings such as office buildings and tenant buildings.
  • the air conditioning system 1 mainly includes a load processing balance setting device 20, a task air conditioner 10, and an ambient air conditioner 11.
  • the task air conditioner 10 and the ambient air conditioner 11 are installed one by one in one room R.
  • the task air conditioner 10 performs air conditioning for a task area (corresponding to a first area) S1.
  • the task area S1 is an area near a person, in other words, a work area for an individual group.
  • the task air conditioner 10 includes one outdoor unit 10a and one indoor unit 10b.
  • the ambient air conditioner 11 performs air conditioning for the ambient area (corresponding to the second area) S2.
  • the ambient area S2 is an area including the task area S1 in the area, and is the entire space in the area room R in the present embodiment. For this reason, when air conditioning is performed in the ambient air conditioner 11, air conditioning is also performed in the task area S1 existing in the ambient area S2.
  • the ambient air conditioner 11 includes one outdoor unit 11a and one indoor unit 11b. Moreover, since the task air conditioner 10 and the ambient air conditioner 11 can each perform different air conditioning, it is possible to provide different air conditioning environments. In this embodiment, an example in which one task air conditioner 10 and one ambient air conditioner 11 are provided in one room R will be described. However, a plurality of task air conditioners and ambient air conditioners are provided in one room. An air conditioner may be provided, and a plurality of rooms may be provided in one building.
  • the load processing balance setting device 20 adjusts the air conditioning load of each of the air conditioners 10 and 11 so that the total coefficient of performance (Coefficient Of Performance; hereinafter referred to as COP) of the task air conditioner 10 and the ambient air conditioner 11 is increased. It is a device for.
  • the load processing balance setting device 20 is connected to each of the outdoor units 10a and 11a via the air conditioning communication line 90, and transmits a control command to each of the outdoor units 10a and 11a.
  • Receive operation data is data relating to the operation history of the air conditioners 10 and 11, data relating to the operation state, and the like.
  • the data related to the operation history includes ON / OFF of the power supply 51 of each indoor unit 10b, 11b, thermo ON / OFF, various operation modes (specifically, a cooling mode, a heating mode, a blower mode, etc.), It is a set temperature.
  • various operation modes specifically, a cooling mode, a heating mode, a blower mode, etc.
  • It is a set temperature.
  • the data regarding an operation state are the values (for example, room temperature, ie, suction temperature) etc. which were detected with the various sensors and various measuring instruments attached to each air conditioner 10 and 11.
  • the load processing balance setting device 20 is connected to the watt hour meter 50 via the power wiring 91 and can receive the power consumption of the air conditioners 10 and 11 sent from the watt hour meter 50. it can.
  • the watt hour meter 50 is connected in the middle of the power wiring 93 extending from the output of the power source 51 to the outdoor units 10a and 11a, and the power source 51 is connected to the outdoor units 10a and 11a and the indoor units 10b and 11b. It is possible to measure the power supplied to. For this reason, the watt-hour meter 50 can measure the power consumption in each of the air conditioners 10 and 11.
  • the load processing balance setting device 20 includes an air conditioning communication unit 70, a watt hour communication unit 71, an operation panel 72, a storage unit 73, and a control unit 60.
  • the air-conditioning communication unit 70 is for communicating with the air conditioners 10 and 11.
  • the air-conditioning communication unit 70 transmits control commands for the indoor units 10b and 11b to the outdoor units 10a and 11a via the air-conditioning communication line 90, or the air conditioners 10 and 11a from the outdoor units 10a and 11a. 11 or receiving operation data for each. From this operation data, the load processing balance setting device 20 can grasp the operation time of each indoor unit 10b, 11b, the opening of the indoor expansion valve, the evaporation pressure Pe, the condensation pressure Pc, and the like.
  • the watt-hour meter communication unit 71 is for communicating with the watt-hour meter 50.
  • the watt-hour meter communication unit 71 can receive the power consumption kWh of the air conditioners 10 and 11 from the watt-hour meter 50.
  • the power consumption amount kWh received by the watt-hour meter communication unit 71 corresponds to the total power consumption amount consumed by the air conditioners 10 and 11 at that time. That is, the power consumption amount kWh received by the watt-hour communication unit 71 is the current power amount consumed by one outdoor unit 10a, 11a and the indoor units 10b, 11b connected to the outdoor units 10a, 11a. Is the total value with the current power consumption.
  • the power consumption kWh received by the watt-hour communication unit 71 is the total power consumption consumed by the air conditioners 10 and 11 at that time, but is not limited thereto. Instead, it may be the current amount of power consumed by one outdoor unit, or the current amount of power consumed by an indoor unit connected to this outdoor unit.
  • the operation panel 72 is a touch panel including, for example, a liquid crystal display and a matrix switch, and can display various screens. Examples of the screen displayed on the operation panel 72 include a setting screen related to the air flow control of the indoor units 10b and 11b performed by the control unit 60, a screen for turning on and off the indoor units 10b and 11b, and the like. According to this operation panel 72, the user of the air conditioning system 1 can perform settings related to on / off of each indoor unit 10b, 11b and airflow control by directly touching the screen displayed on the screen of the operation panel 72. it can. Further, the operation panel 72 can display operation data of the air conditioners 10 and 11 such as various operation modes, set temperatures, indoor temperatures, and the like of the indoor units 10b and 11b.
  • storage part 73 is comprised by HDD, flash memory, etc., and can memorize
  • the control unit 60 is a microcomputer composed of a CPU and a RAM, and controls various connected devices. Specifically, the control unit 60 is connected to the air conditioning communication unit 70 and the watt-hour communication unit 71, and performs communication control of the communication units 70 and 71.
  • control unit 60 generates control commands based on on / off control of each indoor unit 10b, 11b and airflow control. Further, the control unit 60 includes a total power amount calculation unit 63 that calculates the total power consumption amount Etl in each of the air conditioners 10 and 11, and an air conditioning capability calculation unit 61 that calculates the air conditioning capability Q.
  • the total power consumption calculation unit 63 calculates the total power consumption Etl of the air conditioners 10 and 11 based on the power consumption kWh of the air conditioners 10 and 11. Specifically, the total power consumption calculation unit 63 calculates the integrated value of the power consumption amount kWh within the predetermined period of the task air conditioner 10 or the ambient air conditioner 11 as each total power consumption amount Etl. Therefore, the total power consumption Etl includes a total power consumption Eo that is an integrated value of the power consumed by the outdoor units 10a and 11a within a predetermined period, and a predetermined amount of power consumed by the indoor units 10b and 11b. The total power consumption Elk, which is an integrated value within the period, is included.
  • the total electric energy calculation part 63 integrates electric energy every predetermined period (for example, 1 hour). For this reason, the total electric energy calculation part 63 integrates the electric energy acquired during 1 hour, resets an integration result when 1 hour passes, and integrates electric energy again.
  • the air conditioning capacity calculation unit 61 estimates the air conditioning capacity Q of each air conditioner 10, 11 based on the operation data of each air conditioner 10, 11. Specifically, the air-conditioning capacity calculation unit 61 calculates the air-conditioning capacity by multiplying the enthalpy difference between the evaporator or the condenser in each indoor unit 10b, 11b by the refrigerant circulation amount G.
  • the air conditioning capability calculation unit 61 estimates the enthalpy differences ⁇ ic and ⁇ ih and the refrigerant circulation amount G used in the above calculation based on the operation data acquired by the air conditioning communication unit 70.
  • the enthalpy differences ⁇ ic and ⁇ ih are the operation data acquired by the air conditioning communication unit 70, that is, the evaporation pressure Pe and the condensation pressure Pc grasped from the data regarding the operation history of the air conditioners 10 and 11 and the data regarding the operation state.
  • the control target value (superheat degree SH, supercool degree SC).
  • FIG. 3 is a Mollier diagram showing the difference in enthalpy of air conditioning with the horizontal axis representing enthalpy and the vertical axis representing pressure.
  • FIG. 3 shows the relationship between the evaporation pressure Pe, the condensation pressure Pc, the superheat degree SH, the supercooling degree SC, and the enthalpy differences ⁇ ic and ⁇ ih.
  • the control unit 60 includes an air conditioning load adjustment unit 62.
  • the air conditioning load adjustment unit 62 includes a calculation unit 64, a determination unit 65, and an adjustment unit 66.
  • the calculation unit 64 uses the air conditioning capability of the task air conditioner 10 estimated by the air conditioning capability calculation unit 61, that is, the amount of heat as the air conditioning load Qn_t of the task air conditioner 10, and the ambient air conditioner 11 estimated by the air conditioning capability calculation unit 61.
  • the determination unit 65 determines the air conditioning capability of the task air conditioner 10 such that the COP becomes maximum when the total air conditioning load Qn of the air conditioners 10 and 11 calculated by the calculation unit 64 is obtained according to the following objective function and constraint conditions.
  • the optimum load processing amount (corresponding to the load processing amount) Qo_t and the optimal load processing amount (corresponding to the load processing amount) Qo_t (corresponding to the first load processing amount) (second load processing amount) Qo_a is calculated, and the optimum load processing amounts Qo_t and Qo_a of the air conditioners 10 and 11 are determined.
  • f (Qt) is the relationship between the COP of task air conditioner 10 and the air conditioning load.
  • G (Qa) is a relational expression between the COP of the ambient air conditioner 11 and the air conditioning load. Further, these relational expressions are stored in the storage unit 73 as characteristics of the air conditioners 10 and 11.
  • examples of the COP of the air conditioners 10 and 11 include a device COP and a system COP.
  • system COP Q / Etl
  • system COP Q / Etl
  • the system COP is used as the COP of each of the air conditioners 10 and 11.
  • the present invention is not limited to this, and a device COP may be used.
  • the adjustment unit 66 controls the air conditioning capacity of the air conditioners 10 and 11 so that the air conditioning loads of the air conditioners 10 and 11 become the optimum load processing amounts Qo_t and Qo_a determined by the determination unit 65.
  • the adjustment unit 66 performs a forced thermo-off that suppresses the air conditioning capability of the air conditioners 10 and 11.
  • the air conditioning load adjusting unit 62 determines the air conditioning capability of the task air conditioner 10 estimated by the air conditioning capability calculating unit 61 after the control.
  • the air conditioning load adjustment unit 62 adds the air conditioning load Qn_t of the task air conditioner 10 and the air conditioning load Qn_a of the ambient air conditioner 11 calculated by the calculation unit 64 before the air conditioning capacity is controlled by the adjustment unit 66.
  • the total value Qm of the air conditioning load Qm_t of the task air conditioner 10 after the air conditioning capability is controlled by the adjusting unit 66 and the air conditioning load Qm_a of the ambient air conditioner 11 are compared.
  • the determination unit 65 sets the total value Qm as the total value Qn and COP at the time of the total value Qn of each air conditioning load.
  • the optimum load processing amount Qo_t of the task air conditioner 10 and the optimum load processing amount Qo_a of the ambient air conditioner 11 are calculated and determined.
  • the calculation unit 64 included in the load processing balance setting device 20 sets the air conditioning capability of the task air conditioner 10 estimated by the air conditioning capability calculation unit 61 as the air conditioning load Qn_t of the task air conditioner 10, and the ambient estimated by the air conditioning capability calculation unit 61.
  • the air conditioning capacity of the air conditioner 11 is defined as the air conditioning load Qn_a of the ambient air conditioner 11, and the total value Qn of the air conditioning load Qn_t of the task air conditioner 10 and the air conditioning load Qn_a of the ambient air conditioner 11 is set every predetermined time (for example, 1 hour). (Step S1).
  • the determination unit 65 determines that the task air conditioner has the maximum COP at the total value Qn of the air conditioning loads of the air conditioners 10 and 11 according to the objective function and the constraint conditions.
  • the optimal load processing amount Qo_t of 10 and the optimal load processing amount Qo_a of the ambient air conditioner 11 are calculated and determined (step S2).
  • the determining unit 65 determines the optimum load processing amounts Qo_t and Qo_a of the air conditioners 10 and 11
  • the adjusting unit 66 determines the optimum load processing amount in which the air conditioning loads of the air conditioning units 10 and 11 are determined by the determining unit 65.
  • the air conditioners 10 and 11 are controlled so as to be Qo_t and Qo_a (step S3).
  • the air conditioning load adjustment unit 62 calculates the total value Qm of the air conditioning load Qm_t of the task air conditioner 10 and the air conditioning load Qm_a of the ambient air conditioner 11 after being controlled by the adjustment unit 66.
  • the air conditioning load adjustment unit 62 then adjusts the air conditioning load Qn_t of the task air conditioner 10 and the air conditioning load Qn_a of the ambient air conditioner 11 before the air conditioning capacity is controlled by the adjustment unit 66 and the adjustment unit 66 performs air conditioning.
  • the total value Qm of the air conditioning load Qm_t of the task air conditioner 10 after the ability is controlled and the air conditioning load Qm_a of the ambient air conditioner 11 is compared (step S4).
  • the process returns to step S2, and the determination unit 65 sets the total value Qm as the total value Qn.
  • the optimum load processing amount Qo_t of the task air conditioner 10 and the optimum load processing amount Qo_a of the ambient air conditioner 11 are calculated and determined such that the COP becomes maximum at the total value Qn of the air conditioning loads of the air conditioners 10 and 11. . Further, as a result of the comparison by the air conditioning load adjusting unit 62, when the total value Qn and the total value Qm are not different from each other by a predetermined value or more, the air conditioning load of each controlled air conditioner is maintained.
  • the process returns to step S1, and the calculation unit 64 again sets the air conditioning load Qn_t of the task air conditioner 10 and the ambient air conditioner 11 again.
  • the total value Qn with the air conditioning load Qn_a is calculated.
  • the optimum load processing amount Qo_t and the optimum load processing amount Qo_a of the ambient air conditioner 11 are determined, and the air conditioners 10, 11 so that the air conditioning loads of the air conditioners 10, 11 become the determined optimum load processing amounts Qo_t, Qo_a.
  • the air conditioning capacity is controlled. For this reason, COP in the whole air conditioners 10 and 11 can be improved, without changing the air-conditioning load in the whole air conditioners 10 and 11.
  • the optimum load processing amount of the task air conditioner 10 that maximizes the COP at the total value Qn of the air conditioning loads of the air conditioners 10 and 11 calculated by the calculation unit 64 according to the objective function and the constraint conditions.
  • Qo_t and the optimum load processing amount Qo_a of the ambient air conditioner 11 are calculated, and the optimum load processing amounts Qo_t and Qo_a of the air conditioners 10 and 11 are determined.
  • the load processing balance setting device 20 can determine the optimum load processing amounts Qo_t and Qo_a of the air conditioners 10 and 11.
  • the ambient air conditioner 11 estimated by the air conditioning capability calculator 61 with the air conditioning capability of the task air conditioner 10 estimated by the air conditioning capability calculator 61 as the air conditioning load Qn_t of the task air conditioner 10 by the calculator 64.
  • the air conditioning load Qn_a of the ambient air conditioner 11 the total value Qn of the air conditioning load Qn_t of the task air conditioner 10 and the air conditioning load Qn_a of the ambient air conditioner 11 is calculated.
  • the total value of the air conditioning load of each air conditioner calculated by the calculating unit may be the total value of the air conditioning load factor of each air conditioner.
  • a calculation part calculates the air-conditioning load factor of each air conditioner in a predetermined period based on the operation data of each air conditioner.
  • Qr represents the rated capacity [kW].
  • the calculation unit further calculates a total value of the calculated air conditioning load factors of the respective air conditioners. Then, based on the total value of the air conditioning load factor calculated by the calculation unit, the optimum load processing amount is calculated and determined by the determination unit.
  • the air conditioning capacity of each air conditioner is controlled by the adjustment unit. For example, as shown in FIG. 5, by reducing the air conditioning load factor of the ambient air conditioner by 10% and increasing the air conditioning load factor of the task air conditioner by 10%, the COP of the ambient air conditioner decreases by 5%, but the COP of the task air conditioner Is increased by 30%, the overall COP can be improved without changing the overall air conditioning load factor of the task air conditioner and the ambient air conditioner.
  • the air conditioning capacity of each air conditioner 10, 11 is controlled by the adjustment unit 66 so that the air conditioning load of each air conditioner 10, 11 becomes the optimum load processing amount Qo_t, Qo_a determined by the determination unit 65.
  • the current air conditioning loads Qn_t, Qn_a are compared with the calculated optimum load processing amounts Qo_t, Qo_a, and the current air conditioning loads Qn_t, Qn_a are more optimal load processing amounts Qo_t,
  • the air conditioning capability may be controlled so that the load processing amount of each air conditioner becomes the optimum load processing amount.
  • the adjustment unit compares the current air conditioning loads Qn_t and Qn_a with the calculated optimum load processing amounts Qo_t and Qo_a in the task air conditioner and the ambient air conditioner. Then, as a result of comparing the current air conditioning loads Qn_t and Qn_a with the calculated optimum load processing amounts Qo_t and Qo_a, the adjustment unit compares the current air conditioning loads Qn_t and Qn_a with the optimum load processing amounts Qo_t and Qo_a. In this case, the air conditioning capability is suppressed so that the air conditioning load of each air conditioner becomes the optimum load processing amount.
  • the adjustment unit compares the current air conditioning load Qn_t with the calculated optimum load processing amount Qo_t in the task air conditioner, and the current air conditioning load Qn_t is larger than the optimum load processing amount Qo_t.
  • the air conditioning capacity is suppressed so that the load processing amount of the task air conditioner becomes the optimum load processing amount Qo_t.
  • the adjustment unit compares the current air conditioning load Qn_a with the calculated optimum load processing amount Qo_a in the ambient air conditioner, and when the current air conditioning load Qn_a is larger than the optimum load processing amount Qo_a, The air conditioning capacity is suppressed so that the load processing amount of the ambient air conditioner becomes the optimum load processing amount Qo_a.
  • a method of suppressing the air conditioning capacity a method of lowering the upper limit value of the INV frequency of the compressor, a method of lowering the upper limit value of the current of the air conditioning system, a method of raising the evaporation temperature during cooling and lowering the condensation temperature during heating, Alternatively, there is a method of increasing the set temperature during cooling and decreasing the set temperature during heating.
  • the optimum load processing amount Qo_t and the optimum load processing amount Qo_a of the ambient air conditioner 11 are calculated, and the optimum load processing amounts Qo_t and Qo_a of the air conditioners 10 and 11 are determined.
  • the load processing amounts Qo_t and Qo_a may be determined (see FIG. 6).
  • the determination unit determines the optimum load processing amount Qo_t of the task air conditioner to “0”.
  • the determination unit totals the optimum load processing amount Qo_a of the ambient air conditioner.
  • the optimum load processing amount Qo_t of the task air conditioner is set to “12”. decide.
  • the determination unit totals the optimum load processing amount Qo_a of the ambient air conditioner. A value obtained by subtracting the optimum load processing amount Qo_t of the task air conditioner from the value Qn, that is, “Qn-12” is determined.
  • the air conditioning load and the load processing amount are necessary air conditioning capacity, that is, heat quantity kWh.
  • the setting value may be changed by a user or the like.
  • the determining unit determines the optimum load processing amount using the objective function or the like. In comparison, calculations necessary for determining the optimum load processing amount can be omitted.
  • the determination unit 65 determines the optimal load processing amount Qo_t of the task air conditioner 10 and the optimal load processing amount Qo_a of the ambient air conditioner 11 that maximize the COP in the total value Qn of each air conditioning load. Yes. Instead, even if the determination unit determines the optimum load processing amount Qo_t of the task air conditioner and the optimum load processing amount Qo_a of the ambient air conditioner that minimizes the power consumption in the total value Qn of each air conditioning load. Good. For example, as shown in FIG. 7, the relationship between the air conditioning load and the power consumption differs for each air conditioner.
  • the total power consumption that is, the total power amount varies depending on the air conditioning load (corresponding to the load balance in FIG. 8) of each air conditioner (see FIG. 8).
  • the optimum load processing amount Qo_t, Qo_a of each air conditioner is determined so that the power consumption is minimized in the total value Qn of the air conditioning load of each air conditioner, and energy saving is achieved by controlling each air conditioner. Can be realized.
  • f (Qt) of the objective function is a relational expression between the power consumption of the task air conditioner and the air conditioning load
  • g (Qa) is a relational expression of the power consumption of the ambient air conditioner and the air conditioning load.
  • the determination unit may determine the optimum load processing amount Qo_t of the task air conditioner and the optimum load processing amount Qo_a of the ambient air conditioner such that the power consumption amount in the total value Qn of each air conditioning load is a predetermined level or less.
  • the predetermined level here corresponds to a range from the minimum amount of power consumption to the predetermined amount in the total value Qn of the air conditioning loads of each air conditioner.
  • the predetermined amount is smaller than the current total power consumption of each air conditioner and larger than the minimum amount.
  • the optimum load processing amount Qo_t of the task air conditioner 10 and the optimum load processing amount of the ambient air conditioner 11 such that the COP is maximized in the total value Qn of the air conditioning loads of the air conditioners 10 and 11 by the determining unit 65.
  • Qo_a is calculated, and optimum load throughputs Qo_t and Qo_a of the air conditioners 10 and 11 are determined.
  • the determination unit calculates the optimum load processing amount Qo_t of the task air conditioner and the optimum load processing amount Qo_a of the ambient air conditioner such that the COP is equal to or higher than a predetermined level in the total value Qn of the air conditioning loads of each air conditioner. , May be determined.
  • the predetermined level here corresponds to a range from the maximum value of COP to the predetermined value in the total value Qn of the air conditioning load of each air conditioner.
  • the predetermined value is a value that is larger than the total value of COPs of the respective air conditioners in the current air conditioning load of each air conditioner, and is a value that is smaller than the maximum value of COPs in the total value Qn.
  • the present invention can realize energy saving by adjusting the air conditioning load of each air conditioner, it is effective to apply to an air conditioner system including a plurality of air conditioners, particularly a task air conditioner and an ambient air conditioner. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

負荷処理バランス設定装置(20)は、タスク空調機(10)と、アンビエント空調機(11)と、算出部(64)と、決定部(65)と、調整部(66)と、を備えている。タスク空調機(10)は、タスク域(S1)を対象として空調を行う。アンビエント空調機(11)は、タスク域(S1)をエリア内に含むアンビエント域(S2)を対象として空調を行う。算出部(64)は、タスク空調機(10)およびアンビエント空調機(11)の空調負荷の合計値を算出する。決定部(65)は、算出された空調負荷の合計値におけるCOPが最大、または、所定レベル以上となるようにタスク空調機(10)およびアンビエント空調機(11)の最適負荷処理量を決定する。調整部(66)は、決定された最適負荷処理量に基づいてタスク空調機(10)およびアンビエント空調機(11)を制御する。

Description

負荷処理バランス設定装置
 本発明は、複数の空調機を備える空調システムにおいて、各空調機の空調負荷を調整する負荷処理バランス設定装置に関する。
 従来より、所定領域のみを対象に空調するタスク空調機の運転状態に基づいて、その領域内に所定領域を含む領域を対象に空調するアンビエント空調機の運転条件が制御される空調システムがある(特許文献1参照)。
 しかしながら、このような空調システムでは、タスク空調機の運転状態に基づいてアンビエント空調機の運転条件が制御されることで、アンビエント空調機が無駄に運転されるおそれがある。このため、空調機全体としての成績係数COPが向上しない場合がある。したがって、実際に省エネルギーを実現できないおそれがある。
 そこで、本発明の課題は、各空調機の空調負荷を調整することで、省エネルギーを実現することができる負荷処理バランス設定装置を提供することにある。
 第1発明に係る負荷処理バランス設定装置は、第1空調機と、第2空調機と、算出部と、決定部と、調整部とを備えている。第1空調機は、第1エリアを対象として空調を行う。第2空調機は、第1エリアをエリア内に含む第2エリアを対象として空調を行う。算出部は、第1空調機および第2空調機の空調負荷の合計値を算出する。決定部は、算出部によって算出された空調負荷の合計値におけるCOPが最大、または、所定レベル以上となるように、第1空調機の負荷処理量である第1負荷処理量および第2空調機の負荷処理量である第2負荷処理量を決定する。調整部は、決定部によって決定された第1負荷処理量に基づいて、第1空調機を制御する。また、調整部は、決定部によって決定された第2負荷処理量に基づいて、第2空調機を制御する。
 第1発明に係る負荷処理バランス設定装置では、第1空調機の空調負荷と第2空調機の空調負荷との合計値におけるCOPが最大、または、所定レベル以上となるように、第1負荷処理量および第2負荷処理量が決定されている。また、決定された第1負荷処理量および第2負荷処理量に基づいて、第1空調機および第2空調機が制御されている。このため、空調機全体における空調負荷を変えずに、空調機全体におけるCOPを向上させることができる。
 これによって、各空調機の空調負荷を調整することで、省エネルギーを実現することができる。
 第2発明に係る負荷処理バランス設定装置は、第1発明の負荷処理バランス設定装置であって、決定部は、制約条件に従って、COPに関する目的関数を最大にする演算を行うことで、第1負荷処理量および第2負荷処理量を決定する。このため、この負荷処理バランス設定装置では、第1負荷処理量および第2負荷処理量を決定することができる。
 第3発明に係る負荷処理バランス設定装置は、第1発明の負荷処理バランス設定装置であって、決定部は、空調負荷の合計値に対して予め設定されている設定値に基づいて、第1負荷処理量および第2負荷処理量を決定する。このため、この負荷処理バランス設定装置では、第1負荷処理量および第2負荷処理量を決定することができる。
 第4発明に係る負荷処理バランス設定装置は、第1空調機と、第2空調機と、算出部と、決定部と、調整部とを備えている。第1空調機は、第1エリアを対象として空調を行う。第2空調機は、第1エリアをエリア内に含む第2エリアを対象として空調を行う。算出部は、第1空調機および第2空調機の空調負荷の合計値を算出する。決定部は、算出部によって算出された空調負荷の合計値における消費電力量が最小、または、所定レベル以下となるように、第1空調機の負荷処理量である第1負荷処理量および第2空調機の負荷処理量である第2負荷処理量を決定する。調整部は、決定部によって決定された第1負荷処理量に基づいて、第1空調機を制御する。また、調整部は、決定部によって決定された第2負荷処理量に基づいて、第2空調機を制御する。
 第4発明に係る負荷処理バランス設定装置では、第1空調機の空調負荷と第2空調機の空調負荷との合計値における消費電力量が最小、または、所定レベル以下となるように、第1負荷処理量および第2負荷処理量が決定されている。また、決定された第1負荷処理量および第2負荷処理量に基づいて、第1空調機および第2空調機が制御されている。このため、空調機全体における空調負荷を変えずに、空調機全体における消費電力量を小さくすることができる。
 これによって、各空調機の空調負荷を調整することで、省エネルギーを実現することができる。
 第1発明に係る負荷処理バランス設定装置では、各空調機の空調負荷を調整することで、省エネルギーを実現することができる。
 第2発明に係る負荷処理バランス設定装置では、第1負荷処理量および第2負荷処理量を決定することができる。
 第3発明に係る負荷処理バランス設定装置では、第1負荷処理量および第2負荷処理量を決定することができる。
 第4発明に係る負荷処理バランス設定装置では、各空調機の空調負荷を調整することで、省エネルギーを実現することができる。
本発明の実施形態に係る負荷処理バランス設定装置を備える空調システムの構成図。 本発明の実施形態に係る負荷処理バランス設定装置の内部構成を概略的に示す図。 冷暖房のエンタルピ差を示すモリエル線図。 負荷処理バランス設定装置における一連の動作を示すフローチャート。 各空調機における空調負荷率とCOPとの関係を示す図。 変形例(C)における各空調機の最適負荷処理量を示す図。 変形例(D)における各空調機の空調負荷と消費電力量との関係の一例を示す図。 変形例(D)における全体の消費電力量と各空調機の空調負荷との関係を示す図。
 以下、本発明に係る負荷処理バランス設定装置20について、図面を参照しつつ説明する。
 (1)全体構成
 図1は、本発明の一実施形態に係る負荷処理バランス設定装置20を備える空調システム1の構成図である。この空調システム1は、オフィスビルやテナントビル等の建物に用いられるシステムである。また、この空調システム1は、主として、負荷処理バランス設定装置20と、タスク空調機10と、アンビエント空調機11とから構成されている。
 タスク空調機10およびアンビエント空調機11は、図1に示すように、1つの部屋R内に1台ずつ設置されている。
 タスク空調機10は、タスク域(第1エリアに相当)S1を対象とした空気調和を行う。なお、タスク域S1とは、人付近の領域、言い換えると、個人群の作業領域のことである。また、タスク空調機10は、1つの室外機10aと、1つの室内機10bとを備えている。
 アンビエント空調機11は、アンビエント域(第2エリアに相当)S2を対象とした空気調和を行う。また、アンビエント域S2とは、その領域内にタスク域S1を含む領域であって、本実施形態では領域部屋R内全体の空間のことである。このため、アンビエント空調機11において空気調和が実行されることで、アンビエント域S2内に存在するタスク域S1も併せて空気調和が行われることになる。また、アンビエント空調機11は、1つの室外機11aと、1つの室内機11bとを備えている。
 また、タスク空調機10とアンビエント空調機11とは、各々異なる空気調和を実行することができるため、各々異なる空調環境を提供することが可能となっている。
 なお、本実施形態では、1つの部屋R内にタスク空調機10とアンビエント空調機11とが1台ずつ設けられている例を説明するが、1つの部屋内に複数台のタスク空調機とアンビエント空調機とが設けられていてもよく、1つの建物に複数の部屋が設けられていてもよい。
 負荷処理バランス設定装置20は、タスク空調機10およびアンビエント空調機11のトータルの成績係数(Coefficient Of Performance;以下、COPという)が大きくなるように、各空調機10,11の空調負荷を調整するための装置である。負荷処理バランス設定装置20は、空調通信線90を介して各室外機10a,11aと接続されており、各室外機10a,11aに対して制御指令を送信したり、各空調機10,11の運転データを受信したりする。なお、ここでいう運転データとは、各空調機10,11の運転履歴に関するデータ及び運転状態に関するデータ等である。運転履歴に関するデータとは、具体的には、各室内機10b,11bの電源51のオン及びオフ、サーモオン及びオフ、各種運転モード(具体的には、冷房モードや暖房モード、送風モード等)、設定温度等のことである。また、運転状態に関するデータとは、各空調機10,11に取り付けられている各種センサ及び各種計測器で検知された値(例えば、室内温度、即ち、吸い込み温度)等のことである。
 また、負荷処理バランス設定装置20は、電力用配線91を介して電力量計50と接続されており、電力量計50から送られてくる各空調機10,11の消費電力を受信することができる。
 ここで、電力量計50は、電源51の出力から各室外機10a,11aに延びる電力用配線93の途中に接続されており、電源51が各室外機10a,11aや各室内機10b,11bに供給する電力を計測することができる。このため、電力量計50は、各空調機10,11における消費電力を計測することができる。
 (2)負荷処理バランス設定装置の構成
 次に、本発明の実施形態に係る負荷処理バランス設定装置20の構成について説明する。本実施形態に係る負荷処理バランス設定装置20は、図2に示すように、空調用通信部70、電力量計用通信部71、操作パネル72、記憶部73および制御部60を有する。
 空調用通信部70は、各空調機10,11と通信を行うためのものである。例えば、空調用通信部70は、空調通信線90を介して各室外機10a,11aに対して各室内機10b,11bの制御指令を送信したり、各室外機10a,11aから空調機10,11それぞれについての運転データを受信したりする。この運転データにより、負荷処理バランス設定装置20は、各室内機10b,11bの運転時間や室内膨張弁の開度、蒸発圧力Pe、凝縮圧力Pc等を把握することができる。
 電力量計用通信部71は、電力量計50と通信を行うためのものである。電力量計用通信部71は、各空調機10,11の消費電力量kWhを、電力量計50から受信することができる。ここで、電力量計用通信部71が受信する消費電力量kWhは、その時々において各空調機10,11が消費したトータルの消費電力量に相当する。つまり、電力量計用通信部71が受信する消費電力量kWhは、1台の室外機10a,11aが消費した現在の電力量とこの室外機10a,11aに接続されている室内機10b,11bが消費した現在の電力量との合計値のことである。なお、本実施形態では、電力量計用通信部71が受信する消費電力量kWhは、その時々において各空調機10,11が消費したトータルの消費電力量のことであるが、これに限定されず、1台の室外機が消費した現在の電力量、または、この室外機に接続されている室内機が消費した現在の電力量としてもよい。
 なお、電力量計用通信部71は、このような消費電力量kWhを所定時間(例えば、1分)毎に取得することができる。
 操作パネル72は、例えば液晶ディスプレイ及びマトリクススイッチ等で構成されるタッチパネルであって、各種画面を表示することができる。操作パネル72が表示する画面としては、制御部60が行う各室内機10b,11bの気流制御に関する設定画面や、各室内機10b,11bをオン及びオフさせるための画面等が挙げられる。この操作パネル72によると、空調システム1のユーザは、操作パネル72の画面上に表示された画面に直接触れることで、各室内機10b,11bのオン及びオフ、気流制御に関する設定を行うことができる。さらに、操作パネル72は、各室内機10b,11bの各種運転モード、設定温度、室内温度等といった各空調機10,11の運転データを表示することができる。
 記憶部73は、HDDやフラッシュメモリ等で構成され、各空調機10,11についての運転データを記憶することができる。また、記憶部73は、後述する総電力量算出部63によって算出された総消費電力量Etlを記憶することができる。さらに、記憶部73は、後述する空調能力算出部61によって算出された空調能力を記憶することができる。
 制御部60は、CPU及びRAMで構成されるマイクロコンピュータであって、接続された各種機器の制御を行う。具体的には、制御部60は、空調用通信部70および電力量計用通信部71と接続されており、各通信部70,71の通信制御を行う。また、制御部60は、各室内機10b,11bのオン及びオフの制御、気流制御に基づく制御指令の生成を行う。
 また、制御部60は、各空調機10,11における総消費電力量Etlの算出を行う総電力量算出部63、および、空調能力Qの算出を行う空調能力算出部61を有している。
 総電力量算出部63は、各空調機10,11の消費電力量kWhに基づいて、各空調機10,11の総消費電力量Etlを算出する。具体的には、総電力量算出部63は、タスク空調機10またはアンビエント空調機11の所定期間内における消費電力量kWhの積算値をそれぞれの総消費電力量Etlとして算出する。したがって、総消費電力量Etlには、各室外機10a,11aが消費した電力量の所定期間内における積算値である総消費電力量Eoと、各室内機10b,11bが消費した電力量の所定期間内における積算値である総消費電力量Elkとが含まれる。また、総電力量算出部63は、所定期間(例えば、1時間)毎に電力量を積算する。このため、総電力量算出部63は、1時間の間に取得した電力量を積算し、1時間が過ぎれば積算結果をリセットして、再度、電力量の積算を行う。
 空調能力算出部61は、各空調機10,11の運転データに基づいて、各空調機10,11の空調能力Qを推定する。具体的には、空調能力算出部61は、各室内機10b,11bにおける蒸発器または凝縮器のエンタルピ差に冷媒循環量Gを乗じることによって空調能力を算出する。ここで、冷房時の空調能力Qcは、蒸発器のエンタルピ差Δicに冷媒循環量Gを乗じることによって算出され(Qc=Δic×G)、暖房時の空調能力Qhは、凝縮器のエンタルピ差Δihに冷媒循環量Gを乗じることによって算出される(Qh=Δih×G)。
 なお、空調能力算出部61は、上記演算において用いるエンタルピ差Δic、Δih、及び冷媒循環量Gを、空調用通信部70が取得した運転データに基づいて推定する。具体的に、エンタルピ差Δic、Δihは、空調用通信部70が取得した運転データ、即ち各空調機10,11の運転履歴に関するデータ及び運転状態に関するデータにより把握される蒸発圧力Pe、凝縮圧力Pc、及び制御目標値(過熱度SH、過冷却度SC)によって求められる。図3は、横軸をエンタルピ、縦軸を圧力として冷暖房のエンタルピ差を示したモリエル線図である。図3には、蒸発圧力Peや凝縮圧力Pc、過熱度SH、過冷却度SCと、エンタルピ差Δic、Δihとの関係が図示されている。
 さらに、空調能力算出部61は、上記空調能力Qc,Qhの演算において、蒸発圧力相当飽和温度Te、凝縮圧力相当飽和温度Tcを用いて算出した冷媒循環量Gを用いる(G=f(Te,Tc)。尚、冷媒循環量Gの算出方法については、ARI::STANDARD for PERFORMANCE RATION OF POSITIVE DISPLACEMANT REFRIGERANT COMPRESSORS AND COMPRESSOR UNITS, Standard 540(2004)、Carl C. Hiller:DETAILED MODELING AND COMPUTER SIMULATION OF RECIPROCATING REFRIGERATION COMPRESSORS, Proc. of International Compressor Engineering Conference at Purdue (1976), pp12-16を参照のこと。ここで、蒸発圧力相当飽和温度Te、凝縮圧力相当飽和温度Tcは、それぞれ凝縮圧力Pe、凝縮圧力Pcによって決定される変数である。
 なお、上述した空調能力の推定動作は、電力量の積算と同様、所定期間(例えば、1時間)毎に行われる。
 また、制御部60は、空調負荷調整部62を備えている。空調負荷調整部62は、算出部64と、決定部65と、調整部66とを有している。
 算出部64は、空調能力算出部61によって推定されたタスク空調機10の空調能力、すなわち、熱量をタスク空調機10の空調負荷Qn_tとし、空調能力算出部61によって推定されたアンビエント空調機11の空調能力、すなわち、熱量をアンビエント空調機11の空調負荷Qn_aとして、タスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnを算出する(Qn=Qn_t+Qn_a)。
 決定部65は、以下の目的関数および制約条件に従って、算出部64によって算出された各空調機10,11の空調負荷の合計値Qnの時にCOPが最大となるようなタスク空調機10の空調能力(負荷処理量に相当)である最適負荷処理量(第1負荷処理量に相当)Qo_tおよびアンビエント空調機11の空調能力(負荷処理量に相当)である最適負荷処理量(第2負荷処理量に相当)Qo_aを演算し、各空調機10,11の最適負荷処理量Qo_t,Qo_aを決定する。
 目的関数:COP=f(Qt)+g(Qa)
 制約条件1:Qn=Qt+Qa
 制約条件2:0≦Qt≦タスク空調機10の定格能力
 制約条件3:0≦Qa≦アンビエント空調機11の定格能力
 なお、f(Qt)は、タスク空調機10のCOPと空調負荷との関係式であり、g(Qa)は、アンビエント空調機11のCOPと空調負荷との関係式である。また、これらの関係式は、各空調機10,11の特性として、記憶部73に記憶されている。さらに、各空調機10,11のCOPとしては、機器COPとシステムCOPとが挙げられるが、本実施形態では、システムCOPの場合を例に採る。システムCOPは、各空調能力Qを、各空調機10,11における総消費電力量Etlで除算することで求められる(システムCOP=Q/Etl)。なお、本実施形態では、各空調機10,11のCOPとして、システムCOPが用いられているが、これに限定されず、機器COPが用いられてもよい。
 調整部66は、各空調機10,11の空調負荷が決定部65において決定された最適負荷処理量Qo_t,Qo_aとなるように、各空調機10,11の空調能力を制御する。なお、決定部65において決定された最適負荷処理量Qo_t,Qo_aが「0」であった場合には、調整部66は、各空調機10,11の空調能力を抑制する強制サーモオフを実行する。
 また、空調負荷調整部62は、調整部66によって各空調機10,11が制御された場合には、制御後に空調能力算出部61によって推定されたタスク空調機10の空調能力をタスク空調機10の空調負荷Qm_tとし、空調能力算出部61によって推定されたアンビエント空調機11の空調能力をアンビエント空調機11の空調負荷Qm_aとして、タスク空調機10の空調負荷Qm_tとアンビエント空調機11の空調負荷Qm_aとの合計値Qmを算出する(Qm=Qm_t+Qm_a)。さらに、空調負荷調整部62は、調整部66によって空調能力が制御される前に算出部64によって算出されたタスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnと、調整部66によって空調能力が制御された後のタスク空調機10の空調負荷Qm_tとアンビエント空調機11の空調負荷Qm_aとの合計値Qmとを比較する。
 そして、合計値Qnと合計値Qmとが所定値(例えば、5)以上乖離している場合には、決定部65、合計値Qmを合計値Qnとして、各空調負荷の合計値Qnの時にCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aを演算し、決定する。
 (3)負荷処理バランス設定装置の動作
 次に、負荷処理バランス設定装置20が行う動作について、図4を用いて説明する。
 負荷処理バランス設定装置20の有する算出部64は、空調能力算出部61によって推定されたタスク空調機10の空調能力をタスク空調機10の空調負荷Qn_tとし、空調能力算出部61によって推定されたアンビエント空調機11の空調能力をアンビエント空調機11の空調負荷Qn_aとして、タスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnを、所定時間(例えば、1時間)毎に算出する(ステップS1)。算出部64によって合計値Qnが算出されると、決定部65は、目的関数および制約条件に従って、各空調機10,11の各空調負荷の合計値QnにおいてCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aを演算し、決定する(ステップS2)。決定部65によって各空調機10,11の最適負荷処理量Qo_t,Qo_aが決定されると、調整部66は、各空調機10,11の空調負荷が決定部65において決定された最適負荷処理量Qo_t,Qo_aとなるように、各空調機10,11を制御する(ステップS3)。その後、空調負荷調整部62は、調整部66によって制御された後のタスク空調機10の空調負荷Qm_tとアンビエント空調機11の空調負荷Qm_aとの合計値Qmを算出する。そして、空調負荷調整部62は、調整部66によって空調能力が制御される前のタスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnと、調整部66によって空調能力が制御された後のタスク空調機10の空調負荷Qm_tとアンビエント空調機11の空調負荷Qm_aとの合計値Qmとを比較する(ステップS4)。空調負荷調整部62によって比較された結果、合計値Qnと合計値Qmとが所定値以上乖離している場合には、ステップS2に戻り、合計値Qmを合計値Qnとして、決定部65によって、各空調機10,11の各空調負荷の合計値QnにおいてCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aが演算され、決定される。また、空調負荷調整部62によって比較された結果、合計値Qnと合計値Qmとが所定値以上乖離していない場合には、制御後の各空調機の空調負荷を維持させる。そして、算出部64によって合計値Qnが算出されてから所定時間(例えば、1時間)が経過すると、ステップS1に戻り、再び、算出部64によってタスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnが算出される。
 なお、負荷処理バランス設定装置20の動作は、各空調機10,11の稼働が停止されるまで行われる。
 <特徴>
 (1)
 従来より、タスク空調機とアンビエント空調機とを備える空調システムでは、タスク空調機によって個人群の作業領域に空気調和(例えば、冷房運転、または、暖房運転)が行われることで、空調負荷を低減できると考えられている。
 そこで、上記実施形態では、タスク空調機10とアンビエント空調機11とを備える空調システム1において、各空調機10,11の空調負荷の合計値QnにおけるCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aが決定され、各空調機10,11の空調負荷が決定された最適負荷処理量Qo_t,Qo_aとなるように各空調機10,11の空調能力が制御されている。このため、空調機10,11全体における空調負荷を変化させずに、空調機10,11全体におけるCOPを向上させることができる。
 これによって、各空調機10,11の空調負荷を調整することで、省エネルギーを実現することができている。
 (2)
 上記実施形態では、目的関数および制約条件に従って、算出部64によって算出された各空調機10,11の空調負荷の合計値Qnの時にCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aを演算し、各空調機10,11の最適負荷処理量Qo_t,Qo_aが決定されている。このため、この負荷処理バランス設定装置20では、各空調機10,11の最適負荷処理量Qo_t,Qo_aを決定することができる。
 <変形例>
 (A)
 上記実施形態では、算出部64によって、空調能力算出部61によって推定されたタスク空調機10の空調能力をタスク空調機10の空調負荷Qn_tとし、空調能力算出部61によって推定されたアンビエント空調機11の空調能力をアンビエント空調機11の空調負荷Qn_aとして、タスク空調機10の空調負荷Qn_tとアンビエント空調機11の空調負荷Qn_aとの合計値Qnが算出されている。
 これに代えて、算出部によって算出される各空調機の空調負荷の合計値が、各空調機の空調負荷率の合計値であってもよい。この場合、算出部は、各空調機の運転データに基づいて、所定期間における各空調機の空調負荷率を算出する。具体的には、空調負荷率は、式:空調負荷率[%]=(ΣQc/ΣH)/Qrにより求められる。なお、Qrは、定格能力[kW]を表す。
 また、算出部は、算出した各空調機の空調負荷率の合計値を更に算出する。そして、算出部によって算出された空調負荷率の合計値に基づいて、決定部によって、最適負荷処理量が演算され、決定される。そして、決定された最適負荷処理量に基づいて、調整部によって、各空調機の空調能力が制御される。
 例えば、図5に示すように、アンビエント空調機の空調負荷率を10%下げてタスク空調機の空調負荷率を10%上げることで、アンビエント空調機のCOPが5%下がるけれどもタスク空調機のCOPが30%上がるような場合には、タスク空調機およびアンビエント空調機の全体の空調負荷率を変えずに、全体のCOPを向上させることができる。
 (B)
 上記実施形態では、各空調機10,11の空調負荷が決定部65において決定された最適負荷処理量Qo_t,Qo_aとなるように、調整部66によって、各空調機10,11の空調能力が制御されている。
 これに代えて、各空調機において、現在の空調負荷Qn_t,Qn_aと算出された最適負荷処理量Qo_t,Qo_aとを比較して、現在の空調負荷Qn_t,Qn_aの方が最適負荷処理量Qo_t,Qo_aよりも大きい場合に、各空調機の負荷処理量が最適負荷処理量となるように、空調能力が制御されてもよい。
 例えば、調整部は、タスク空調機およびアンビエント空調機において、現在の空調負荷Qn_t,Qn_aと、算出された最適負荷処理量Qo_t,Qo_aとを比較する。そして、調整部は、現在の空調負荷Qn_t,Qn_aと算出された最適負荷処理量Qo_t,Qo_aとを比較した結果、現在の空調負荷Qn_t,Qn_aの方が最適負荷処理量Qo_t,Qo_aよりも大きい場合には、各空調機の空調負荷が最適負荷処理量となるように、空調能力を抑制する。
 具体的には、調整部は、タスク空調機において、現在の空調負荷Qn_tと算出された最適負荷処理量Qo_tとを比較し、現在の空調負荷Qn_tの方が最適負荷処理量Qo_tよりも大きい場合には、タスク空調機の負荷処理量が最適負荷処理量Qo_tとなるように、空調能力を抑制する。また、調整部は、アンビエント空調機において、現在の空調負荷Qn_aと算出された最適負荷処理量Qo_aとを比較し、現在の空調負荷Qn_aの方が最適負荷処理量Qo_aよりも大きい場合には、アンビエント空調機の負荷処理量が最適負荷処理量Qo_aとなるように、空調能力を抑制する。
 なお、空調能力を抑制する方法としては、圧縮機のINV周波数の上限値を下げる方法、空調システムの電流の上限値を下げる方法、冷房時では蒸発温度を上げ暖房時では凝縮温度を下げる方法、または、冷房時では設定温度を上げ暖房時では設定温度を下げる方法等がある。
 (C)
 上記実施形態では、決定部65によって、目的関数および制約条件に従って、算出部64によって算出された各空調機10,11の空調負荷の合計値Qnの時にCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aを演算し、各空調機10,11の最適負荷処理量Qo_t,Qo_aが決定されている。
 これに代えて、合計値Qnおよび現在のタスク空調機の空調負荷Qn_t、または、合計値Qnおよびアンビエント空調機の空調負荷Qn_aに対して予め記憶部に記憶されている設定値に基づいて、最適負荷処理量Qo_t,Qo_aが決定されてもよい(図6参照)。なお、図6中の「抑制なし」とは、アンビエント空調機の場合には、合計値Qnからタスク空調機の最適負荷処理量Qo_tを差し引いた値(Qo_a=Qn-Qo_t)のことであり、タスク空調機の場合には、合計値Qnからアンビエント空調機の最適負荷処理量Qo_aを差し引いた値(Qo_t=Qn-Qo_a)のことである。
 例えば、合計値(図6中の現在の合計空調負荷kWhに相当)Qnが「0~5」であり、かつ、タスク空調機の空調負荷(図6中の現在のタスク空調機の空調負荷kWhに相当)Qn_tが「0~5」の場合には、決定部は、タスク空調機の最適負荷処理量Qo_tを「0」に決定する。また、決定部は、合計値Qnが「0~5」の場合であってタスク空調機の最適負荷処理量Qo_tを「0」に決定した場合、アンビエント空調機の最適負荷処理量Qo_aを、合計値Qnからタスク空調機の最適負荷処理量Qo_tを差し引いた値、すなわち、Qnに決定する(Qo_a=Qn-0;図6参照)。
 また、例えば、合計値Qnが「10~15」であり、かつ、タスク空調機の空調負荷Qn_tが「0~5」の場合には、決定部は、現在のアンビエント空調機の空調負荷Qn_aからアンビエント空調機の最適負荷処理量Qo_aを決定する。ここで、決定部は、アンビエント空調機の最適負荷処理量Qo_aを「0」に決定した場合、タスク空調機の最適負荷処理量Qo_tを、合計値Qnからアンビエント空調機の最適負荷処理量Qo_aを差し引いた値、すなわち、Qnに決定する(Qo_t=Qn-0)。
 さらに、例えば、合計値Qnが「10~15」であり、かつ、タスク空調機の空調負荷Qn_tが「10~15」の場合には、タスク空調機の最適負荷処理量Qo_tを「12」に決定する。また、決定部は、合計値Qnが「10~15」の場合であってタスク空調機の最適負荷処理量Qo_tを「12」に決定した場合、アンビエント空調機の最適負荷処理量Qo_aを、合計値Qnからタスク空調機の最適負荷処理量Qo_tを差し引いた値、すなわち、「Qn-12」に決定する。
 なお、ここでいう空調負荷、および、負荷処理量とは、必要な空調能力、すなわち、熱量kWhのことである。また、図6中の設定値は、一例であって、ユーザ等によって、設定値が変更できるようにしてもよい。
 このように、予め記憶部に記憶されている設定値に基づいて最適負荷処理量Qo_t,Qo_aが決定されることで、決定部によって目的関数等を用いて最適負荷処理量が決定される場合と比較して、最適負荷処理量の決定に必要な演算を省くことができる。
 (D)
 上記実施形態では、決定部65によって、各空調負荷の合計値QnにおけるCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aが決定されている。
 これに代えて、決定部によって、各空調負荷の合計値Qnにおける消費電力量が最小となるようなタスク空調機の最適負荷処理量Qo_tおよびアンビエント空調機の最適負荷処理量Qo_aが決定されてもよい。
 例えば、図7に示すように、空調負荷と消費電力量との関係は、空調機毎に異なる。このため、空調機が複数ある場合、各空調機の空調負荷(図8中の負荷バランスに相当)によって、全体の消費電力量、すなわち、総電力量が異なることになる(図8参照)。このため、各空調機の空調負荷の合計値Qnにおいて消費電力量が最小となるように、各空調機の最適負荷処理量Qo_t,Qo_aを決定し、各空調機を制御することで、省エネルギーを実現することができる。
 なお、この場合、目的関数のf(Qt)はタスク空調機の消費電力量と空調負荷との関係式とし、g(Qa)はアンビエント空調機の消費電力量と空調負荷との関係式とする。
 また、決定部によって、各空調負荷の合計値Qnにおける消費電力量が所定レベル以下となるようなタスク空調機の最適負荷処理量Qo_tおよびアンビエント空調機の最適負荷処理量Qo_aが決定されてもよい。なお、ここでいう所定レベルとは、各空調機の空調負荷の合計値Qnにおける消費電力量の最小量から所定量までの範囲に相当する。また、所定量は、現在の各空調機の消費電力量の合計よりも小さく、かつ、最小量よりも大きい。
 (E)
 上記実施形態では、決定部65によって各空調機10,11の空調負荷の合計値QnにおいてCOPが最大となるようなタスク空調機10の最適負荷処理量Qo_tおよびアンビエント空調機11の最適負荷処理量Qo_aが演算され、各空調機10,11の最適負荷処理量Qo_t,Qo_aが決定されている。
 これに代えて、決定部によって各空調機の空調負荷の合計値QnにおいてCOPが所定レベル以上となるようなタスク空調機の最適負荷処理量Qo_tおよびアンビエント空調機の最適負荷処理量Qo_aが演算され、決定されてもよい。
 なお、ここでいう所定レベルとは、各空調機の空調負荷の合計値QnにおけるCOPの最大値から所定値までの範囲に相当する。また、所定値は、現在の各空調機の空調負荷における各空調機のCOPの合計値よりも大きい値であり、かつ、合計値QnにおけるCOPの最大値よりも小さい値である。
 本発明は、各空調機の空調負荷を調整することで、省エネルギーを実現することができるため、複数の空調機、特に、タスク空調機とアンビエント空調機とを備える空調システムへの適用が有効である。
  10   タスク空調機(第1空調機)
  11   アンビエント空調機(第2空調機)
  20   負荷処理バランス設定装置
  64   算出部
  65   決定部
  66   調整部
  S1   タスク域(第1エリア)
  S2   アンビエント域(第2エリア)
特開平6-185783号公報

Claims (4)

  1.  第1エリア(S1)を対象として空調を行う第1空調機(10)と、
     前記第1エリアをエリア内に含む第2エリア(S2)を対象として空調を行う第2空調機(11)と、
     前記第1空調機および前記第2空調機の空調負荷(Qn_t,Qn_a)の合計値(Qn)を算出する算出部(64)と、
     前記算出部によって算出された前記空調負荷の合計値におけるCOPが最大、または、所定レベル以上となるように、前記第1空調機の負荷処理量である第1負荷処理量(Qo_t)および前記第2空調機の負荷処理量である第2負荷処理量(Qo_a)を決定する決定部(65)と、
     前記決定部によって決定された前記第1負荷処理量に基づいて前記第1空調機を制御し、前記第2負荷処理量に基づいて前記第2空調機を制御する調整部(66)と、
    を備える負荷処理バランス設定装置(20)。
  2.  前記決定部は、制約条件に従って前記COPに関する目的関数を最大にする演算を行うことで、前記第1負荷処理量および前記第2負荷処理量を決定する、
    請求項1に記載の負荷処理バランス設定装置。
  3.  前記決定部は、前記空調負荷の合計値に対して予め設定されている設定値に基づいて、前記第1負荷処理量および前記第2負荷処理量を決定する、
    請求項1に記載の負荷処理バランス設定装置。
  4.  第1エリアを対象として空調を行う第1空調機と、
     前記第1エリアをエリア内に含む第2エリアを対象として空調を行う第2空調機と、
     前記第1空調機および前記第2空調機の空調負荷の合計値を算出する算出部と、
     前記算出部によって算出された前記空調負荷の合計値における消費電力量が最小、または、所定レベル以下となるように、前記第1空調機の負荷処理量である第1負荷処理量および前記第2空調機の負荷処理量である第2負荷処理量を決定する決定部と、
     前記決定部によって決定された前記第1負荷処理量に基づいて前記第1空調機を制御し、前記第2負荷処理量に基づいて前記第2空調機を制御する調整部と、
    を備える負荷処理バランス設定装置。
PCT/JP2009/007047 2008-12-26 2009-12-21 負荷処理バランス設定装置 WO2010073579A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09834391A EP2375178A1 (en) 2008-12-26 2009-12-21 Load handling balance setting device
AU2009332323A AU2009332323B2 (en) 2008-12-26 2009-12-21 Load processing balance setting apparatus
CN2009801525288A CN102265097A (zh) 2008-12-26 2009-12-21 负载处理均衡设定装置
BRPI0924182A BRPI0924182A2 (pt) 2008-12-26 2009-12-21 aparelho de configuração de equilíbrio de processamento de carga
US13/139,752 US8670871B2 (en) 2008-12-26 2009-12-21 Load processing balance setting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-334590 2008-12-26
JP2008334590A JP2010156494A (ja) 2008-12-26 2008-12-26 負荷処理バランス設定装置

Publications (1)

Publication Number Publication Date
WO2010073579A1 true WO2010073579A1 (ja) 2010-07-01

Family

ID=42287229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007047 WO2010073579A1 (ja) 2008-12-26 2009-12-21 負荷処理バランス設定装置

Country Status (8)

Country Link
US (1) US8670871B2 (ja)
EP (1) EP2375178A1 (ja)
JP (1) JP2010156494A (ja)
KR (1) KR20110104054A (ja)
CN (1) CN102265097A (ja)
AU (1) AU2009332323B2 (ja)
BR (1) BRPI0924182A2 (ja)
WO (1) WO2010073579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693133A1 (en) * 2011-03-30 2014-02-05 Mitsubishi Heavy Industries, Ltd. Heat source system and number-of-machines control method for heat source system
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159610A (en) * 1998-06-12 2000-12-12 Ut-Battelle, Llc Buffer layers on metal surfaces having biaxial texture as superconductor substrates
JP5715455B2 (ja) * 2011-03-15 2015-05-07 株式会社Nttファシリティーズ 空調機とデータ処理負荷分配の連係制御方法
CN103782110B (zh) * 2011-09-30 2017-02-15 欧姆龙株式会社 控制装置及控制方法
US20130110424A1 (en) * 2011-10-28 2013-05-02 General Electric Company Apparatus and method to detect power
CN104755850B (zh) 2012-11-02 2017-05-10 富士通株式会社 模块型数据中心及其控制方法
JP2014212095A (ja) * 2013-04-22 2014-11-13 株式会社東芝 機器制御システムおよび機器制御方法
JP6259597B2 (ja) * 2013-07-11 2018-01-10 大和ハウス工業株式会社 空調システム及び空調方法
US10447785B2 (en) * 2014-11-17 2019-10-15 Lg Electronics Inc. Digital device and method for controlling same
JP5975135B1 (ja) * 2015-03-31 2016-08-23 ダイキン工業株式会社 制御システム
EP3394696B1 (en) * 2015-12-21 2022-10-19 Dwyer Instruments, Inc. System, method, and apparatus for balancing an hvac system
US10671098B2 (en) 2015-12-21 2020-06-02 Dwyer Instruments, Inc. System, method, and apparatus for balancing an HVAC system
US10753632B2 (en) 2016-02-25 2020-08-25 Mitsubishi Electric Corporation Air-conditioning system
US10655879B2 (en) * 2016-04-19 2020-05-19 Mitsubishi Electric Corporation Air-conditioning system, air-conditioning control method, and non-transitory computer readable medium storing program
CN108332366B (zh) 2017-01-17 2021-08-20 松下知识产权经营株式会社 空气调节机控制装置及空气调节机控制方法
KR102367077B1 (ko) * 2017-04-04 2022-02-24 삼성전자주식회사 공조 장치 및 상기 공조 장치의 제어 방법
JP7263002B2 (ja) * 2018-12-29 2023-04-24 関西電力株式会社 個別分散空調高効率制御方法、制御装置及び制御プログラム
JP7339868B2 (ja) * 2019-12-04 2023-09-06 株式会社竹中工務店 空調システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185783A (ja) 1992-12-15 1994-07-08 Hitachi Ltd 空気調和システム
JPH10185277A (ja) * 1996-12-20 1998-07-14 Mitsubishi Electric Corp 空調システム
JP2005201509A (ja) * 2004-01-15 2005-07-28 Daikin Ind Ltd エリア別環境提供制御システム、アンビエント環境提供装置、タスク環境提供装置、エリア別環境提供制御方法及びエリア別環境提供制御プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG82589A1 (en) * 1998-12-10 2001-08-21 Univ Singapore A regenerative adsorption process and multi-reactor regenerative adsorption chiller
US7036559B2 (en) * 2003-07-08 2006-05-02 Daniel Stanimirovic Fully articulated and comprehensive air and fluid distribution, metering, and control method and apparatus for primary movers, heat exchangers, and terminal flow devices
US8424284B2 (en) * 2004-05-20 2013-04-23 Gilbert Staffend High efficiency positive displacement thermodynamic system
CA2526321A1 (en) * 2005-09-14 2007-03-14 Free Energy Solutions Inc. Geothermal exchange system using a thermally superconducting medium
US20080288193A1 (en) * 2007-05-17 2008-11-20 International Business Machines Corporation Techniques for Analyzing Data Center Energy Utilization Practices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06185783A (ja) 1992-12-15 1994-07-08 Hitachi Ltd 空気調和システム
JPH10185277A (ja) * 1996-12-20 1998-07-14 Mitsubishi Electric Corp 空調システム
JP2005201509A (ja) * 2004-01-15 2005-07-28 Daikin Ind Ltd エリア別環境提供制御システム、アンビエント環境提供装置、タスク環境提供装置、エリア別環境提供制御方法及びエリア別環境提供制御プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARL C. HILLER: "ARI:: Standard For Performance Ration of Positive Displacement Refrigerant Compressors and Compressor Units, Standard 540 (2004", DETAILED MODELING AND COMPUTER SIMULATION OF RECIPROCATING REFRIGERATION COMPRESSORS, PROC. OF INTERNATIONAL COMPRESSOR ENGINEERING CONFERENCE AT PURDUE, 1976, pages 12 - 16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206994B2 (en) 2009-11-13 2015-12-08 Mitsubishi Heavy Industries, Ltd. Heat source system
EP2693133A1 (en) * 2011-03-30 2014-02-05 Mitsubishi Heavy Industries, Ltd. Heat source system and number-of-machines control method for heat source system
EP2693133A4 (en) * 2011-03-30 2014-10-22 Mitsubishi Heavy Ind Ltd HEAT SOURCE SYSTEM AND METHOD FOR COUNTING A MACHINE NUMBER FOR A HEAT SOURCE SYSTEM

Also Published As

Publication number Publication date
CN102265097A (zh) 2011-11-30
EP2375178A1 (en) 2011-10-12
AU2009332323B2 (en) 2013-01-10
BRPI0924182A2 (pt) 2016-06-21
AU2009332323A1 (en) 2011-07-21
KR20110104054A (ko) 2011-09-21
US20110257794A1 (en) 2011-10-20
JP2010156494A (ja) 2010-07-15
US8670871B2 (en) 2014-03-11

Similar Documents

Publication Publication Date Title
WO2010073579A1 (ja) 負荷処理バランス設定装置
AU2009301912B2 (en) Energy saving support device
JP5146533B2 (ja) 診断支援装置
US20110093121A1 (en) Air-conditioning apparatus control device and refrigerating apparatus control device
JP6739671B1 (ja) 情報処理装置
JP5405076B2 (ja) 空調冷凍システム
EP3587948B1 (en) Air conditioner
JP5204987B2 (ja) 空調システムおよび空調システムの制御方法
JP2010048433A (ja) 診断支援装置
JP7203946B2 (ja) 空調管理装置、空調管理システム、空調管理方法及びプログラム
US10161651B2 (en) Air conditioning apparatus
JP5473619B2 (ja) 空気調和機の制御装置
WO2013061399A1 (ja) ヒートポンプシステム、制御装置、温調方法及びプログラム
JP6854896B2 (ja) 空気調和システム、空気調和装置、運転制御方法およびプログラム
KR101151321B1 (ko) 멀티형 공기조화기 및 그 운전방법
CN111412624A (zh) 空调机组及其压缩机频率控制方法
KR20140112681A (ko) 공기 조화기의 제어방법
KR20180119933A (ko) 인공지능 공기조화장치의 제어방법
JP6937925B2 (ja) 空気調和機
JP6271011B2 (ja) 冷凍空調装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152528.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834391

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139752

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009834391

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009332323

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2728/KOLNP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117016611

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2009332323

Country of ref document: AU

Date of ref document: 20091221

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924182

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924182

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110624