WO2010013637A1 - 色変換方式有機elディスプレイ - Google Patents

色変換方式有機elディスプレイ Download PDF

Info

Publication number
WO2010013637A1
WO2010013637A1 PCT/JP2009/063186 JP2009063186W WO2010013637A1 WO 2010013637 A1 WO2010013637 A1 WO 2010013637A1 JP 2009063186 W JP2009063186 W JP 2009063186W WO 2010013637 A1 WO2010013637 A1 WO 2010013637A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
organic
substrate
layer
bank
Prior art date
Application number
PCT/JP2009/063186
Other languages
English (en)
French (fr)
Inventor
幸則 河村
Original Assignee
富士電機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機ホールディングス株式会社 filed Critical 富士電機ホールディングス株式会社
Priority to CN2009801080443A priority Critical patent/CN101960917B/zh
Priority to US12/736,078 priority patent/US8044575B2/en
Publication of WO2010013637A1 publication Critical patent/WO2010013637A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to an element structure of an organic display in which a color conversion film is directly formed on a top emission type organic EL element to achieve full color.
  • Organic EL elements are expected to achieve high luminance and luminous efficiency because they can achieve high current density at low voltage, and the practical application of organic multi-color EL displays capable of high-definition multi-color or full-color display is expected.
  • a method for making the organic EL display multi-colored or full-colored there is a method using a plurality of types of color filters that transmit light in a specific wavelength region (color filter method).
  • color filter method When applying the color filter method, the organic EL element used emits multicolor light and includes the three primary colors of light (red (R), green (G), and blue (B)) in a balanced manner, so-called “white light”. "Is required to emit light.
  • a method of simultaneously exciting a plurality of luminescent dyes using a luminescent layer containing a plurality of luminescent dyes see Japanese Patent No. 2991450 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2000-243563 (Patent Document 2)).
  • the above-described multicolor light-emitting organic EL device relies on either exciting a plurality of types of light-emitting materials at the same time or transferring energy between a plurality of types of light-emitting materials.
  • the emission intensity balance between the light emitting materials changes and the obtained hue may change as the driving time elapses or the energization current changes.
  • JP-A-2002-75643, JP-A-2003-217859, and JP-A-2000-230172 disclose different methods for obtaining a multicolor light-emitting organic EL element, such as a monochromatic light-emitting organic EL element and a color conversion film.
  • the color conversion film used is a layer that contains one or more color conversion materials that absorb light of short wavelengths and convert it to light of longer wavelengths.
  • As a method for forming a color conversion film it has been studied to apply a coating liquid in which a color conversion material is dispersed in a resin, or to deposit the color conversion material by a dry process such as vapor deposition or sputtering. .
  • Japanese Patent Application Laid-Open No. 2007-157550 discloses a host-guest system having a film thickness of 2 ⁇ m or less.
  • the formation of a color conversion film by vapor deposition has been examined (Patent Document 9).
  • Patent Document 9 when a color conversion film is formed by vapor deposition, if a film is formed on the entire surface of the display surface, it is impossible to emit light in three primary colors, so it is necessary to form a fine pattern corresponding to a specific pixel by some means. Become.
  • Japanese Patent Application Laid-Open No. 2006-32021 forms a concavo-convex pattern on a support substrate, applies a color conversion material to the concavo-convex pattern portion, and embeds the color conversion material in the concave portion. Then, a method of patterning by polishing the color conversion layer and flattening the surface is studied (Patent Document 10).
  • Patent Document 10 a method of patterning by polishing the color conversion layer and flattening the surface is studied.
  • the above method has problems that the material utilization efficiency of the expensive color return conversion material is poor and that the color conversion performance is deteriorated by directly polishing the color conversion layer.
  • Japanese Patent Laid-Open No. 2000-353594 proposes a method in which partition walls are formed around pixels on a substrate, and a phosphor material is selectively applied between the partition walls by an ink jet method and patterned (Patent Document 11). ).
  • Patent Document 11 a phosphor material is selectively applied between the partition walls by an ink jet method and patterned.
  • the height of the partition wall is about 10 times the required film thickness of the color conversion material so that it does not flow into the adjacent pixels during ejection. Need to be high. Therefore, (a) Even when the organic EL element substrate is prepared separately, (b) When the planarization layer is provided on the color conversion layer and the organic EL element is formed thereon, the color conversion layer is also provided.
  • a gap is generated between the organic EL element and the organic EL element by the height of the partition wall and the film thickness of the planarizing layer.
  • the gap causes problems such as a crosstalk phenomenon in which light from the EL element leaks to adjacent pixels or a phenomenon of loss due to insufficient light from the EL element entering the color conversion layer.
  • Japanese Patent Laid-Open No. 2006-32010 discloses a color filter directly on the upper transparent electrode of an organic EL element having a top emission structure in which an organic light emitting layer is sandwiched between a cathode and an anode on a substrate. And an organic EL display structure that emits light of three primary colors by forming a color conversion layer (Patent Document 12).
  • Patent Document 12 an organic EL display structure that emits light of three primary colors by forming a color conversion layer.
  • An object of the present invention is to form a color conversion layer finely and selectively above a light emitting layer without using a metal mask having a problem of definition and an expensive laser scanning device, thereby achieving high efficiency and long life. It is to provide a color conversion type organic EL display that emits multicolor light.
  • a color conversion type organic EL display of the present invention includes (1) a substrate, a lower reflective electrode, a bank, an organic EL layer composed of a plurality of parts separated by the bank, and an upper part.
  • An organic EL substrate including a transparent electrode and a color conversion layer separated by the bank, the EL substrate having a pixel region separated by the bank; and (2) a black matrix and a color filter on the transparent substrate. Is aligned with the color filter substrate having the pixel region separated by the black matrix so that the pixel region of the EL substrate and the pixel region of the color filter substrate face each other.
  • the organic EL layer is sandwiched between the lower reflective electrode and the upper transparent electrode, and is a polymer material.
  • the color conversion layer is formed on the upper transparent electrode and absorbs EL light emitted from the light emitting layer and emits light having a wavelength different from that of the EL light.
  • the color conversion layer may be formed directly on the upper transparent electrode.
  • a transparent protective layer may be further provided between the upper transparent electrode and the color conversion layer.
  • the light emitting layer sandwiched between the lower reflective electrode and the upper transparent electrode and separated by the bank is formed of the polymer organic EL material, and the color conversion layer is directly formed on the upper transparent electrode.
  • the following effects can be obtained by forming and bonding to another substrate on which a color filter and a black matrix are formed. (1) Since the color filter is formed on the transparent substrate by controlling the film thickness accurately using a normal photo process, it is possible to minimize the chromaticity variation. (2) Since the color conversion layer is directly formed on the organic EL element, EL light is incident on the color conversion layer without loss, and a highly efficient organic EL display can be realized. (3) After forming the color conversion layer, annealing at a high temperature of 200 ° C. or higher eliminates moisture and organic solvent residue even after the color filter substrate and the EL substrate are bonded to each other. realizable.
  • FIG. 1 is a schematic sectional view of a color conversion type organic EL display according to a first embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of a color conversion type organic EL display according to the second embodiment of the present invention.
  • FIG. 1 is a schematic sectional view of a color conversion type organic EL display according to a first embodiment of the present invention.
  • the TFT substrate 1 is a substrate on which a TFT circuit constituting an organic EL display is formed.
  • the outermost surface of the TFT substrate 1 is covered with an insulating planarization layer, and divided into pixel units, and contact electrodes connected to the TFT circuit are formed.
  • a cathode or an anode serving as a lower reflective electrode joined to the TFT by a contact electrode is formed separately on the pixel unit.
  • the material of the substrate may be an insulating material, and glass is mainly used, but there is no problem even with a polymer material, ceramics, or Si single crystal.
  • (Lower reflective electrode 2) In order to form an organic EL element having a top emission structure, it is necessary to use a light reflective material for the lower reflective electrode 2.
  • Light reflective metals that can be used include Al, Ag, Mg / Al, Mg / Ag, Mg / In, and the like. It is preferable to form the lower reflective electrode 2 by vapor deposition. When the lower reflective electrode 2 is used as a cathode, it is also possible to insert a LiF thin layer as an electron injecting material between the organic EL layer 4.
  • the lower reflective electrode 2 is composed of a plurality of partial electrodes that are separated and independent from each other by patterning in a normal photolithography process. Each of the plurality of partial electrodes is connected to the contact electrode of the TFT substrate 1 on a one-to-one basis to form a pixel region.
  • the film thickness of the lower reflective electrode 2 is 20 nm or more and 200 nm or less. If the lower reflective electrode 2 is too thin, light is transmitted, and if it is too thick, the surface unevenness becomes large.
  • the bank 3 is a layer for separating an organic EL layer 4 and a color conversion layer (6, 7) described later.
  • the bank 3 is formed with an opening on each of the partial electrodes constituting the lower reflective electrode 2.
  • the position of the opening of the bank 3 is a pixel area, and each pixel area is separated by the bank 3.
  • a photocurable or photothermal combination type curable resin is generally lightly and / or heat-treated to generate radical species and ionic species to be polymerized or crosslinked to be insoluble and infusible. It is.
  • the photocurable or photothermal combination type curable resin is preferably soluble in an organic solvent or an alkaline solution before curing in order to perform patterning.
  • a composition comprising an acrylic polyfunctional monomer or oligomer having a plurality of acroyl groups and / or methacryloyl groups, and a photo or thermal polymerization initiator.
  • a composition comprising a polyvinyl cinnamate ester and a sensitizer.
  • a composition comprising a chain or cyclic olefin and bisazide, and (4) a composition comprising an epoxy group-containing monomer and a photoacid generator can be used.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • polyethersulfone polyvinyl butyral
  • polyphenylene ether polyamide
  • polyetherimide norbornene resin
  • methacrylic resin methacrylic resin.
  • Resin isobutylene maleic anhydride copolymer resin
  • thermoplastic resin such as cyclic polyolefin, epoxy resin, phenol resin, urethane resin, acrylic resin, vinyl ester resin, imide resin, urethane resin, urea resin, melamine resin, etc.
  • thermosetting resins polymer hybrids containing polystyrene, polyacrylonitrile, polycarbonate, and the like and trifunctional or tetrafunctional alkoxysilanes.
  • the bank 3 preferably has a film thickness of 3 to 5 ⁇ m. This is because when a color conversion material described later is formed by an ink jet coating method, if the film thickness is thin, the droplets overflow outside the pixels.
  • the side wall shape of the partition wall may be any of forward taper, reverse taper, and vertical, and is not particularly limited.
  • the bank 3 may be formed using an inorganic material.
  • inorganic oxides and inorganic nitrides such as SiO x , SiN x , SiN x O y , AlO x , TiO x , TaO x , and ZnO x can be used.
  • a sputtering method, a CVD method, a vacuum evaporation method, or the like can be used.
  • the bank 3 is patterned by dry etching.
  • plasma etching is used for patterning the bank 3 using an inorganic material.
  • a pattern is formed on the bank layer by using a photoresist having a selective ratio with the inorganic material of the bank layer, and dry etching is performed using a gas such as CF 4 , SF 6 , CHF 3 , Ar, and the bank 3 is patterned. Further, the resist used for patterning is etched by changing the gas to O 2 and performing O 2 plasma etching. At this time, in order to increase the reactivity, a fluorine-based gas such as CF 4 may be added to O 2 slightly.
  • a hydrophilic treatment or a water repellent treatment is performed, and an ink (ink for forming an organic EL layer 4 and / or a color conversion layer (6, 7) formed of a polymer material), which will be described later separately, and The wettability with the base (lower reflective electrode 2 or upper transparent electrode 5) and / or the bank 3 may be changed.
  • Organic EL layer 4 The organic EL layer 4 of the present invention is separated by the bank 3 and formed from a plurality of portions.
  • the organic EL layer 4 is formed in direct contact with the lower reflective electrode 2 and the upper transparent electrode 5.
  • the organic EL layer 4 includes at least a light emitting layer.
  • the light emitting layer is formed using a polymer material.
  • a light-emitting layer can be formed by pattern-coating polyphenylene vinylene and polyalkylphenylene as polymer materials that emit blue light by an inkjet method.
  • the light emitting layer has a thickness of 30 to 100 nm, preferably 50 nm.
  • polytetrahydrothiophenylene which is a polymer precursor
  • the precursor is converted into polyphenylene vinylene by heating to form a hole transport layer.
  • the hole transport layer has a thickness of 30 to 100 nm, preferably 50 nm.
  • the material for forming the light emitting layer and the hole transport layer is not limited to the above materials as long as it is a high heat resistant polymer material.
  • the upper transparent electrode 5 is either an anode or a cathode used as an integrated common electrode.
  • FIG. 1 shows an example in which the upper transparent electrode 5 is continuously formed so as to cover the bank 3 and the organic EL layer 4.
  • an oxide transparent electrode or a half mirror electrode made of a thin metal layer can be used as the upper transparent electrode 5.
  • the material for forming the oxide transparent electrode include ITO and IZO.
  • the oxide transparent electrode preferably has a thickness of 100 to 200 nm.
  • Al, Ag, etc. can be mentioned as a material for comprising a half mirror electrode.
  • the half mirror electrode preferably has a thickness of 5 to 20 nm.
  • the color conversion layer includes a plurality of portions separated by the bank 3.
  • one or more color conversion layers may be provided.
  • the red color conversion layer 6 and the green color conversion layer 7 are formed.
  • the red conversion layer 6 and the green conversion layer 7 are formed of a material that absorbs the blue light emission of the organic EL layer 4 and fluoresces red and green, respectively. These materials are not particularly limited as long as they are soluble in a solvent having a high boiling point (150 ° C. or higher). It is desirable to form the color conversion layer (6, 7) using a polymer material rather than a low molecular material. This is because the polymer material can be annealed at a high temperature (150 ° C. or higher) after application.
  • the viscosity of the polymer fluorescent material solution dissolved in the solvent is in the range of 10 to 20 mPa ⁇ S (cP).
  • concentration for achieving such a viscosity is approximately 0.5 to 2% by mass, and can be adjusted within this range.
  • the thickness of the fluorescent material after solvent drying within the range of 100 to 600 nm, it is possible to achieve a suitable balance between sufficient light absorption and transmittance.
  • the effective thickness is 100 to 200 nm.
  • the ink jet method is used as the coating film forming method, but the present invention is not limited to this method.
  • a method of selectively dispensing a solution with a nozzle coater can be applied.
  • Transparent substrate 8 The transparent substrate 8 on which the color filters (10 to 12) and the black matrix 9 are formed is bonded to an EL substrate including a TFT circuit. It is essential that the transparent substrate 8 is transparent to visible light in order to extract light emitted from the organic EL layer 4 and the color conversion layers (6, 7). A glass substrate, a plastic substrate, or the like can be used as the transparent substrate 8.
  • the color filters 10 to 12 used in the device of the present invention are formed on the transparent substrate 8.
  • a color filter material used for a flat panel display such as a liquid crystal display can be used.
  • a pigment dispersion type color filter in which a pigment is dispersed in a photoresist is often used.
  • the color filter for flat panel display includes a blue color filter 12 that transmits a wavelength of 400 nm to 550 nm, a green color filter 11 that transmits a wavelength of 500 nm to 600 nm, and a red color filter 10 that transmits a wavelength of 600 nm or more.
  • a black matrix 9 that does not transmit light in the visible range is disposed between the color filter pixels mainly for the purpose of improving the contrast.
  • each of the sub-pixels (that is, pixel regions) of each color filter is separated by the black matrix 9.
  • any material commercially available for a black matrix of a flat panel display can be used.
  • the adhesive layer 13 is a layer for adhering the EL substrate and the color filter substrate.
  • any transparent and liquid thermosetting adhesive can be used without any particular limitation.
  • FIG. 2 is a schematic sectional view of a color conversion type organic EL display according to the second embodiment of the present invention.
  • the transparent protective layer 14 exists on the upper transparent electrode 5, and the color conversion layers (6, 7) are formed on the transparent protective layer 14. Except for this point, the configuration is the same as that of the first embodiment.
  • the color conversion layer (6, 7) may be formed directly on the upper transparent electrode 5, but when the formation method of the color conversion layer (6, 7) is wet, if there is a pinhole in the upper transparent electrode 5 Since it is conceivable that the solvent enters the organic EL layer 4 (particularly the light emitting layer), the transparent protective layer 14 can be inserted on the upper transparent electrode 5.
  • the material of the transparent protective layer 14 is not particularly limited as long as it is transparent and does not dissolve in the solvent of the ink solution for forming the color conversion layer (6, 7).
  • the transparent protective layer 14 needs to be formed by a method that does not generate pinholes. From this viewpoint, it is preferable to form the transparent protective layer 14 by depositing an inorganic material using a sputtering or CVD process.
  • Materials that can be used to form the transparent protective layer 14 include SiOx, SiNx, SiON, or a laminated film thereof.
  • the transparent protective layer 14 can have a film thickness of 0.5 ⁇ m to 5 ⁇ m.
  • the transparent protective layer 14 preferably has a thickness of about 1 ⁇ m. When the transparent protective layer 14 is thin, a sufficient protective function is not exhibited, and when the transparent protective layer 14 is thick, optical absorption increases. For this reason, it is desirable to design optically in consideration of material properties.
  • Example 1 This example is an example of the first embodiment of the present invention.
  • a substrate in which a circuit using an amorphous Si-TFT was formed on a non-alkali glass plate having a thickness of 0.7 mm was used as the TFT substrate 1.
  • An Al film having a film thickness of 100 nm was formed on the TFT substrate 1 by vapor deposition, and patterned into a pixel region shape by a photolithography process. Specifically, a plurality of partial electrodes having dimensions of 300 ⁇ m ⁇ 100 ⁇ m were formed from the Al film. The gap between the partial electrodes is 30 ⁇ m in the vertical direction and 10 ⁇ m in the horizontal direction. 50 partial electrodes were arranged in the vertical direction and 150 partial electrodes in the horizontal direction.
  • VPA100P5.0 manufactured by Nippon Steel Chemical Co., Ltd. was applied and then patterned by photolithography to form banks in the gaps (vertical and horizontal directions) of the plurality of partial electrodes constituting the lower reflective electrode 2.
  • the film thickness of the bank was 5 ⁇ m.
  • a LiF film having a thickness of 1 nm was deposited to obtain a lower reflective electrode 2 made of a laminate of Al and LiF.
  • the lower reflective electrode 2 of this embodiment is a cathode.
  • polyphenylene vinylene and polyalkylphenylene were pattern coated by an ink jet method to form a light emitting layer having a thickness of 50 nm.
  • a 50 nm-thick hole transport layer made of polyphenylene vinylene was formed on the light-emitting layer to obtain an organic EL layer 4 made of a laminate of the light-emitting layer and the hole transport layer.
  • an ITO film having a thickness of 200 nm was formed by using an evaporation method, and an upper transparent electrode 5 covering the bank 3 and the organic EL layer 4 was obtained.
  • the upper transparent electrode 5 of this embodiment is an anode.
  • a red conversion layer 6 and a green conversion layer 7 were formed to obtain an EL substrate.
  • a solution containing PAT poly [3-alkylthiophene], Poly [3-alkylthiophene]
  • PAT poly [3-alkylthiophene]
  • the red color conversion layer 6 is formed.
  • every three pixel regions include acetylene derivative PDPA (poly [1- (pn-butylphenyl) -2-phenylacetylene], Poly [1- (pn-butylphenyl) -2-phenylacetylene]).
  • the solution was deposited by an ink jet method to form a green color conversion layer 7.
  • the concentration of the ink-jet solution was 1% by mass, and tetralin (boiling point 207 ° C.) was used as the solvent.
  • the drying conditions were 200 ° C./30 minutes, and the film thicknesses of the red conversion layer 6 and the green conversion layer 7 after drying were both 200 nm.
  • 1737 glass manufactured by Corning
  • 1737 glass which is a non-alkali glass substrate having a thickness of 0.7 mm, was prepared as the transparent substrate 8.
  • each of the color mosaics CK-7001, CR-7001, CG-7001 and CB-7001 (all manufactured by Fuji Film Electronics Material) is applied onto the transparent substrate 8 and patterned by a photolithographic method.
  • a black matrix 9, a red color filter 10, a green color filter 11, and a blue color filter 12 were formed to obtain a color filter substrate.
  • the thickness of each layer was 1 ⁇ m.
  • a pixel region (subpixel) is defined by a black matrix 9 composed of stripe portions extending in the vertical and horizontal directions.
  • the produced color filter (10 to 12) has a subpixel size (that is, an opening size of the black matrix 9) of 300 ⁇ m ⁇ 100 ⁇ m, and a gap between the subpixels (that is, the width of the stripe-shaped portion of the black matrix 9). It is 30 ⁇ m in the vertical direction and 10 ⁇ m in the horizontal direction.
  • the three sub-pixels red, blue, and green
  • form one pixel and 50 pixels are arranged in the vertical direction and 50 pixels in the horizontal direction.
  • the obtained EL substrate and color filter substrate were annealed at a temperature of 100 ° C. or 200 ° C. for 1 hour. After annealing, using the T832 series (Nagase Sangyo), which is a low-viscosity liquid epoxy resin, the EL substrate and the color filter substrate were bonded to each other with their pixel regions facing each other to obtain a color conversion type organic EL display. .
  • the film thickness of the adhesive layer 13 was 1 to 2 ⁇ m at the top of the bank 3.
  • Example 2 This example is an example of the second embodiment of the present invention.
  • the same procedure as in Example 1 was repeated to form a structure below the upper transparent electrode 5.
  • a laminated film of a 0.5 ⁇ m thick SiON film and a 0.5 ⁇ m thick SiNx film was deposited on the upper transparent electrode 5 by sputtering to form a transparent protective layer 14.
  • the same procedure as in Example 1 was repeated to form a red color conversion layer 6 and a green color conversion layer 7 to obtain an EL substrate.
  • the color filter substrate was produced and the EL substrate and the color filter substrate were bonded together in the same procedure as in Example 1, to obtain a color conversion type organic EL display.
  • the annealing temperature that can be implemented is generally 100 ° C. or lower.
  • the EL substrate and the color filter substrate prepared in Examples 1 and 2 were annealed at a temperature of 100 ° C. and 200 ° C. for 1 hour, respectively, and then bonded together to form an organic material.
  • An EL display was produced.
  • the light emission state of the obtained organic EL display was observed. The results are as shown in Table 1, and the effectiveness of the embodiment of the present invention was confirmed.
  • TFT substrate 2 Lower reflective electrode 3
  • Bank 4 Organic EL layer 5
  • Upper transparent electrode 6 Red conversion layer 7
  • Green conversion layer 8 Transparent substrate 8
  • Black matrix 10 Red color filter 11
  • Green color filter 12 Blue color filter 13
  • Adhesive layer 14 Transparent protective layer

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 精細度に問題があるメタルマスクおよび高価なレーザースキャン装置を使わずに、高効率で長寿命な色変換方式有機ELディスプレイを提供する。本発明の色変換方式有機ELディスプレイは、基板と;下部反射電極と;バンクと;下部反射電極および上部透明電極に挟持され、バンクによって分離された複数の部分からなり、高分子材料からなる発光層を少なくとも有する有機EL層と;上部透明電極と;バンクによって分離された色変換層とを含む有機EL基板であって、バンクで分離された画素領域を有するEL基板と、透明基板上に、ブラックマトリクスおよびカラーフィルタがフォトプロセスでパターン形成されており、ブラックマトリクスで分離された画素領域を有するカラーフィルタ基板とを、EL基板の画素領域とカラーフィルタの画素領域とが対向するように位置合わせをして貼り合わせて形成されていることを特徴とする。

Description

色変換方式有機ELディスプレイ
 本発明はトップエミッション方式の有機EL素子に直接色変換膜を形成してフルカラー化する有機ディスプレイの素子構造に関する。
 近年、有機EL素子は実用化に向けての研究が活発に行われている。有機EL素子は低電圧で高い電流密度が実現できるために高い発光輝度および発光効率を実現することが期待され、特に高精細なマルチカラーまたはフルカラー表示が可能な有機多色ELディスプレイの実用化が期待されている。有機ELディスプレイのマルチカラー化またはフルカラー化の方法の1例として、特定波長領域の光を透過させる複数種のカラーフィルタを用いる方法(カラーフィルタ法)がある。カラーフィルタ法を適用する場合、用いられる有機EL素子は、多色発光して、光の3原色(赤色(R)、緑色(G)、青色(B))をバランスよく含む、いわゆる「白色光」を発光することが求められる。
 多色発光有機EL素子を得るために:
(a)複数の発光色素を含む発光層を用い、該複数の発光色素を同時に励起する方法(特許第2991450号公報(特許文献1)および特開2000-243563号公報(特許文献2)参照);
(b)ホスト発光材料とゲスト発光材料とを含む発光層を用い、ホスト発光材料を励起および発光させると同時に、ゲスト材料へのエネルギー移動を行い、ゲスト材料を発光させる方法(米国特許第5,683,823号明細書(特許文献3)参照);
(c)異なる発光色素を含む複数の発光層を用い、それぞれの層において発光色素を励起させる方法;および
(d)発光色素を含む発光層と該発光層に隣接して発光性ドーパントを含むキャリア輸送層とを用い、発光層においてキャリア再結合によって生成する励起子から、一部の励起エネルギーを発光性ドーパントに移動させ、発光性ドーパントを発光させる方法(特開2002-93583号公報(特許文献4)および特開2003-86380号公報(特許文献5)参照)
などが検討されてきている。
 しかしながら、前述の多色発光有機EL素子は、複数種の発光材料を同時に励起させるか、あるいは複数種の発光材料間のエネルギー移動のいずれかに依拠している。そのような素子において、駆動時間の経過または通電電流の変化に伴って、発光材料間の発光強度バランスが変化し、得られる色相が変化する恐れがあることが報告されてきている。
 多色発光有機EL素子を得るための別法として、特開2002-75643号公報、特開2003-217859号公報、および特開2000-230172号公報は、単色発光の有機EL素子と色変換膜とを用いる色変換法を提案している(特許文献6~8参照)。用いられる色変換膜は、短波長の光を吸収して、長波長への光へと変換する1つまたは複数の色変換物質を含む層である。色変換膜の形成法としては、色変換物質を樹脂中に分散させた塗布液を塗布すること、あるいは色変換物質を蒸着ないしスパッタのようなドライプロセスで堆積させることなどが検討されてきている。
 しかしながら、色変換膜中の色変換物質の濃度が高くなると、吸収したエネルギーが同一分子間の移動を繰り返すうちに発光を伴わずに失活する濃度消光と呼ばれる現象が発生する。この現象を抑制するために、特開2000-230172号公報などに記載されるように、色変換物質を何らかの媒体中に溶解または分散させて濃度を低下させることが行われている(特許文献8参照)。
 ここで、色変換物質の濃度を低下させると、吸収すべき光の吸光度が減少し十分な変換光強度が得られない。この問題に関して、色変換膜を厚くして吸光度を高め、色変換の効率を維持することが行われている。このように厚い色変換膜(膜厚10μm程度)を用いた場合、段差部での電極パターンの断線、高精細化の困難さ、膜中への水分または溶媒の残留(有機EL素子と組み合わせた場合に、残留水分または溶媒により有機EL層が変質し、表示欠陥となる)などの問題点が存在する。一方、視野角依存性を減少させるという観点からは、色変換膜を薄くするという相反する要求が存在する。
 そこで、厚さを増大させることなく十分な変換光強度を維持することが可能な色変換膜を提供するために、特開2007-157550号公報は、2μm以下の膜厚を有するホスト-ゲスト系色変換膜を蒸着法によって形成することを検討している(特許文献9)。しかしながら、蒸着法により色変換膜を形成する場合、表示面の全面に膜を形成すると3原色に分けて発光させることが出来ないため、何らかの手段で特定の画素に対応した微細パターン形成が必要になる。
 現在のところ、蒸着材料薄膜をパターン形成する方法としては、メタルマスクによる塗分け法が古くから実用化されている。しかしながら、マスク材質と厚さによる限界から、用いるメタルマスクのパターンの微細化は150ppiの精細度レベルが限界である。それ以上の高精細なパターンに対するメタルマスクによる塗り分け法の適用は、困難さの増大、大面積化が到底困難であること、および歩留りの低下という問題を生じる。
 そこで、厚膜色変換層のパターニング方法として、特開2006-32021号公報は、支持基板上に凹凸パターンを形成し、その凹凸パターン部に色変換材料を塗布して凹部に色変換材料を埋め込み、その後色変換層を研磨して表面を平坦化してパターニングする方法を検討している(特許文献10)。しかしながら、上記方法では、高価な色返変換材料の材料利用効率が悪く、また、色変換層を直接研磨することで色変換性能が劣化するといった不具合が生じるという問題がある。
 また、特開2000-353594号公報は、基板上の画素周辺に隔壁を形成して、インクジェット法で隔壁間に選択的に蛍光体材料を塗布しパターニングする方法を提案している(特許文献11)。この方法で色変換膜のパターニングを行う場合、インクジェット法では色変換材料の希薄溶液を用いるため、吐出時に隣接画素に流出しないように隔壁の高さを色変換材料の必要膜厚より10倍程度高くする必要が生じる。そのため、(a)別途作製した有機EL素子基板と貼り合わせる場合においても、(b)色変換層の上に平坦化層を設け、その上に有機EL素子を形成する場合においても、色変換層と有機EL素子との間に、隔壁の高さおよび平坦化層の膜厚の分だけギャップが生じる。そのギャップは、EL素子からの光が隣接画素に漏れるクロストーク現象、またはEL素子からの光が色変換層に十分に入射しないことによるロスの発生という現象を引き起こし、問題となる。
 最近、これらの問題を解決する手段として、特開2006-32010号公報は、基板上に陰極と陽極に有機発光層を挟んだトップエミッション構造の有機EL素子の上部透明電極の上に直接カラーフィルタや色変換層を形成して3原色を発光させる方式の有機ELディスプレイ構造を提案している(特許文献12)。この方式は、高精細化にとってはメリットがあるが、発光層には低分子の有機EL材料が例示されているためカラーフィルタおよび色変換層を形成する際のアニール温度が100℃以下に制限される。そのため、カラーフィルタおよび色変換層から、有機EL材料に対して最も悪影響を及ぼす水分および溶剤を充分に除去することが困難であり、それらが素子寿命に対し決定的なダメージを与えることが容易に予想される。
特許第2991450号公報 特開2000-243563号公報 米国特許第5,683,823号明細書 特開2002-93583号公報 特開2003-86380号公報 特開2002-75643号公報 特開2003-217859号公報 特開2000-230172号公報 特開2007-157550号公報 特開2006-32021号公報 特開2000-353594号公報 特開2006-32010号公報
 本発明の目的は、精細度に問題があるメタルマスクおよび高価なレーザースキャン装置を使わずに、色変換層を発光層の上方に微細かつ選択的に形成することで、高効率で長寿命の多色発光する色変換方式有機ELディスプレイを提供することである。
 上記目的を達成するために、本発明の色変換方式有機ELディスプレイは、(1)基板と、下部反射電極と、バンクと、前記バンクによって分離された複数の部分からなる有機EL層と、上部透明電極と、前記バンクによって分離された色変換層とを含む有機EL基板であって、前記バンクで分離された画素領域を有するEL基板と、(2)透明基板上に、ブラックマトリクスおよびカラーフィルタがフォトプロセスでパターン形成されており、前記ブラックマトリクスで分離された画素領域を有するカラーフィルタ基板とを、前記EL基板の画素領域と前記カラーフィルタ基板の画素領域とが対向するように位置合わせをして貼り合わせて形成されており、前記有機EL層は下部反射電極および上部透明電極に挟持され、かつ高分子材料からなる発光層を少なくとも有し、前記色変換層は上部透明電極の上に形成され、かつ前記発光層の発するEL光を吸収し該EL光とは異なる波長の光を発光することを特徴とする。ここで、色変換層は、上部透明電極の上に直接形成されていてもよい。あるいはまた、上部透明電極と色変換層との間に透明保護層をさらに有してもよい。
 以上の構成を採る本発明によれば、下部反射電極と上部透明電極とに挟まれバンクによって分離された発光層を高分子有機EL材料で形成し、上部の透明電極上に直接色変換層を形成し、かつカラーフィルタおよびブラックマトリクスを形成した別基板と貼り合わせる構造にすることで以下の効果が得られる。
(1)通常のフォトプロセスを用い膜厚を正確に制御して、透明基板上にカラーフィルタを形成するため、色度のバラつきを最小限に抑えることが可能である。
(2)色変換層が有機EL素子の上に直接形成されるため、EL光がロス無く色変換層に入射し、高効率な有機ELディスプレイが実現できる。
(3)色変換層を形成した後に200℃以上の高温でアニールすることによって、カラーフィルタ基板とEL基板とを貼り合わせた後も水分および有機溶剤の残留が無くなり、長寿命の有機ELディスプレイが実現できる。
図1は、本発明の第1の実施形態の色変換方式有機ELディスプレイの概略断面図である。 図2は、本発明の第2の実施形態の色変換方式有機ELディスプレイの概略断面図である。
 以下、図面を参照して、本発明の実施の形態を詳細に説明する。
  <第1の実施形態>
 図1は、本発明の第1の実施形態の色変換方式有機ELディスプレイの概略断面図である。
  (TFT基板1)
 TFT基板1は、有機ELディスプレイを構成するTFT回路が形成されている基板である。TFT基板1の最表面は、絶縁性の平坦化層で覆われ、および、画素単位で分割され、TFT回路と接続されたコンタクト電極が形成されている。その上にコンタクト電極でTFTと接合された下部の反射電極となる陰極、又は陽極が画素単位で分離されて形成される。
 基板の材質は絶縁性の材料であればよく、主にガラスが使用されるが、高分子材料やセラミックス、Si単結晶でも問題はない。
  (下部反射電極2)
 トップエミッション構造の有機EL素子を形成するために、下部反射電極2は光反射性の材料を用いる必要がある。用いることができる光反射性の金属は、Al、Ag、Mg/Al、Mg/Ag、Mg/Inなどを含む。下部反射電極2を蒸着法で形成することが好ましい。下部反射電極2を陰極として用いる場合は、有機EL層4との間に、電子注入性材料としてLiF薄層を挿入することも可能である。
 下部反射電極2は、通常のフォトリソグラフィー工程でパターニングを行って互いに分離独立した複数の部分電極から構成される。複数の部分電極のそれぞれはTFT基板1のコンタクト電極と1対1に接続され、画素領域を形成する。
 下部反射電極2の膜厚は、20nm以上200nm以下である。下部反射電極2が薄すぎると光が透過し、厚すぎると表面凹凸が大きくなるため、好ましくは100nm程度である。
  (バンク3)
 バンク3は、後述する有機EL層4および色変換層(6、7)を分離するための層である。バンク3は、下部反射電極2を構成する部分電極のそれぞれの上に開口部を有して形成される。本実施形態においてはバンク3の開口部の位置が画素領域となり、画素領域のそれぞれはバンク3によって分離されている。バンク3の材料としては、光硬化性または光熱併用型硬化性樹脂を、光および/または熱処理して、ラジカル種、イオン種を発生させて重合または架橋させ、不溶不融化させたものが一般的である。また、光硬化性または光熱併用型硬化性樹脂は、パターニングを行うために、硬化をする前は有機溶媒またはアルカリ溶液に可溶性であることが好ましい。
 具体的に、光硬化性または光熱併用型硬化性樹脂としては、
(1)複数のアクロイル基および/またはメタクロイル基を有するアクリル系多官能モノマーまたはオリゴマーと、光または熱重合開始剤とからなる組成物
(2)ポリビニル桂皮酸エステルと増感剤とからなる組成物
(3)鎖状または環状オレフィンとビスアジドとからなる組成物、および
(4)エポキシ基を有するモノマーと光酸発生剤からなる組成物
を用いることができる。
 特に上記(1)の光硬化性または光熱併用型硬化性樹脂を用いた場合には、フォトプロセスによるパターニングが可能であり、耐溶剤性、耐熱性等の信頼性の面でも好ましい。
 バンク3を形成するのに用いることができるその他の材料としては、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエーテルサルホン、ポリビニルブチラール、ポリフェニレンエーテル、ポリアミド、ポリエーテルイミド、ノルボルネン系樹脂、メタクリル樹脂、イソブチレン無水マレイン酸共重合樹脂、環状ポリオレフィン系などの熱可塑性樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、ビニルエステル樹脂、イミド系樹脂、ウレタン系樹脂、ユリア樹脂、メラミン樹脂などの熱硬化性樹脂、あるいはポリスチレン、ポリアクリロニトリル、ポリカーボネートなどと3官能性もしくは4官能性のアルコキシシランとを含むポリマーハイブリッド等が挙げられる。
 前述の樹脂性材料を用いたバンク3の形成方法としては、塗布法を用いることができ、特に、フォトプロセスを用いることが好ましい。バンク3は、好ましくは3~5μmの膜厚を有する。なぜなら、後述する色変換材料をインクジェット塗布法で形成する際に、膜厚が薄いと液滴が画素外にあふれてしまうためである。また、隔壁の側面形状は、順テーパ、逆テーパあるいは垂直のいずれであってもよく、特に限定はされない。
 また、無機材料を用いてバンク3を形成しても良い。たとえば、SiOx、SiNx、SiNxy、AlOx、TiOx、TaOx、ZnOx等の無機酸化物、無機窒化物などを使用することができる。無機材料を用いるバンク層の形成方法は特に制約はなく、スパッタ法、CVD法、真空蒸着法などを用いることができる。また、無機材料を用いる場合、バンク3のパターニングはドライエッチングにて行う。好ましくは、無機材料を用いるバンク3のパターニングに、プラズマエッチングを用いる。バンク層の無機材料と選択比の取れるフォトレジストによりパターンをバンク層上に形成し、CF4、SF6、CHF3、Arなどのガスを用いてドライエッチングを行い、バンク3をパターニングする。さらに、ガスをO2に変え、O2プラズマエッチングを行うことにより、パターニングに使用したレジストをエッチングする。この際に、反応性を高めるために、Oに対してCF4などのフッ素系のガスを若干添加しても良い。
 また、必要に応じて、親水処理または撥水処理を行って、別途後述するインク(高分子材料からなる有機EL層4形成用インクおよび/または色変換層(6、7)形成用インク)と、下地(下部反射電極2または上部透明電極5)および/またはバンク3との濡れ性を変化させてもよい。
  (有機EL層4)
 本発明の有機EL層4は、バンク3によって分離され、複数の部分から形成される。有機EL層4は、下部反射電極2と上部透明電極5と直接に接触して形成される。有機EL層4は、少なくとも発光層を含む。発光層は、高分子材料を用いて形成される。青色発光する高分子材料としてのポリフェニレンビニレンおよびポリアルキルフェニレンを、インクジェット法でパターン塗布して、発光層を形成することができる。発光層は、30~100nm,好ましくは50nmの膜厚を有する。
 発光層の上に、ポリマー前駆体であるポリテトラヒドロチオフェニレンをキャスト法で塗布し、加熱により該前駆体をポリフェニレンビニレンに変換し、正孔輸送層を形成することができる。正孔輸送層は、30~100nm,好ましくは50nmの膜厚を有する。
 発光層および正孔輸送層を形成するための材料は、耐熱性の高い高分子材料であれば、前記材料に限定されるものではない。
  (上部透明電極5)
 上部透明電極5は、一体型の共通電極として用いられる陽極または陰極のいずれかである。図1においては、上部透明電極5がバンク3および有機EL層4を覆うように連続的に形成された例を示した。上部透明電極5としては、酸化物透明電極、あるいは金属薄層からなるハーフミラー電極を用いることができる。酸化物透明電極を構成するための材料としては、ITO、IZOなどを挙げることができる。酸化物透明電極は、100~200nmの膜厚を有することが好ましい。また、ハーフミラー電極を構成するための材料としては、Al、Agなどを挙げることができる。ハーフミラー電極は、5~20nmの膜厚を有することが好ましい。
  (色変換層6,7)
 色変換層は、バンク3によって分離された複数の部分からなる。本発明においては1種または複数種の色変換層を設けてもよい。本実施形態では赤色変換層6および緑色変換層7を形成した。赤色変換層6および緑色変換層7は、それぞれ、有機EL層4の青色発光を吸収し、赤色および緑色に蛍光発光する材料で形成される。それら材料は、高沸点(150℃以上)の溶媒に可溶であれば特に材料の制限はない。低分子材料よりも、高分子材料を使用して色変換層(6、7)を形成することが望ましい。なぜなら、高分子材料は、塗布後に高温(150℃以上)でアニールすることができるからである。
 インクジェット法でバンク3間に色変換層を形成するには、溶媒に溶解した高分子蛍光材料溶液の粘度が10~20mPa・S(cP)の範囲であることが必要である。このような粘度を達成するための濃度はおおむね0.5~2質量%であり、この範囲で調整することができる。
 溶媒乾燥後の蛍光材料の厚さを100~600nmの範囲内とすることによって、十分な光吸収量と透過率との好適なバランスをとることが可能である。効果的な厚さは100~200nmである。
 本実施形態では、塗膜形成法としてインクジェット法を用いたが、この方法に制限されるものではなく、たとえば、ノズルコーターで連続的に溶液を選択的にディスペンスする方法なども適用できる。
  (透明基板8)
 その上にカラーフィルタ(10~12)およびブラックマトリクス9を形成する透明基板8は、TFT回路を含むEL基板と貼り合わせられる。透明基板8は、有機EL層4および色変換層(6,7)の発光を取り出すために可視光に対して透明であることは必須である。ガラス基板、プラスチック基板などを透明基板8として用いることが可能である。
  (ブラックマトリクス9、カラーフィルタ10~12)
 本発明のデバイスで用いるカラーフィルタ10~12は、透明基板8上に作成される。カラーフィルタの材料としては、液晶ディスプレイなどのフラットパネルディスプレイに用いられるカラーフィルタ用材料を用いることができる。近年は、フォトレジストに顔料を分散させた、顔料分散型カラーフィルタが良く用いられている。
 フラットパネルディスプレイ用のカラーフィルタは、400nm~550nmの波長を透過する青色カラーフィルタ12、500nm~600nmの波長を透過する緑色カラーフィルタ11、600nm以上の波長を透過する赤色カラーフィルタ10のそれぞれを配列したものが一般的であり、また、各カラーフィルタ画素間に、主にコントラストの向上を目的として、可視域の光を透過しないブラックマトリクス9を配設することが一般的に行われている。ブラックマトリクス9を形成する場合、各カラーフィルタのサブピクセル(すなわち画素領域)のそれぞれは、ブラックマトリクス9によって分離されている。ブラックマトリクス9の材料としては、フラットパネルディスプレイのブラックマトリクス用として市販されている任意の材料を用いることができる。
  (接着層13)
 接着層13は、EL基板とカラーフィルタ基板とを接着するための層である。EL基板とカラーフィルタ基板との接着には、透明で、液状の熱硬化型の接着剤であれば特に制限なく使用することができる。
  <第2の実施形態>
 図2は、本発明の第2の実施形態の色変換方式有機ELディスプレイの概略断面図である。本発明の第2の実施形態の色変換方式有機ELディスプレイは、上部透明電極5の上に透明保護層14が存在し、色変換層(6,7)が透明保護層14の上に形成される点を除いて、第1の実施形態と同様の構成を有する。
  (透明保護層14)
 上部透明電極5の上に色変換層(6,7)を直接形成してもよいが、色変換層(6,7)の形成法が湿式の場合、上部透明電極5にピンホールがあると有機EL層4(特に発光層)への溶媒の浸入が考えられるため、上部透明電極5上に透明保護層14を挿入することができる。
 透明保護層14の材料としては、透明であり、かつ色変換層(6,7)形成用インクジェット溶液の溶媒に溶けない材料であれば特に制限はない。ただし、透明保護層14はピンホールが発生しない方法で形成する必要がある。この観点から、スパッタまたはCVDプロセスを用いて無機材料を堆積させて透明保護層14を形成することが好ましい。透明保護層14の形成に用いることができる材料は、SiOx、SiNx、SiON、あるいはこれらの積層膜などを含む。透明保護層14は、0.5μmから5μmの膜厚を有することができる。透明保護層14は、1μm前後の膜厚を有することが好ましい。透明保護層14は、薄いと十分な保護機能が発揮されず、厚くなると光学的吸収が増大する。このため、材料物性を考慮して光学的に設計することが望ましい。
  <実施例1>
 本実施例は、本発明の第1の実施形態の例である。本実施例では0.7mm厚さの無アルカリガラス板の上にアモルファスSi-TFTを用いた回路を形成した基板をTFT基板1として用いた。
 TFT基板1の上に、蒸着法を用いて膜厚100nmのAl膜を形成し、フォトリソグラフィー工程で画素領域の形状にパターニングした。詳細には、Al膜から、300μm×100μmの寸法を有する複数の部分電極を形成した。部分電極間のギャップは、縦方向30μmおよび横方向10μmである。縦方向に50個および横方向に150個の部分電極を配列した。
 続いて、新日鐵化学製VPA100P5.0を塗布した後に、フォトリソグラフィー法でパターニングして、下部反射電極2を構成する複数の部分電極の間隙(縦方向および横方向)にバンクを形成した。バンクの膜厚は5μmとした。バンク形成後に、膜厚1nmのLiF膜を蒸着し、AlとLiFとの積層体からなる下部反射電極2を得た。本実施例の下部反射電極2は陰極である。
 続いて、ポリフェニレンビニレンおよびポリアルキルフェニレンをインクジェット法でパターン塗布し、膜厚50nmの発光層を形成した。次いで、発光層の上に、ポリフェニレンビニレンからなる膜厚50nmの正孔輸送層を形成し、発光層と正孔輸送層との積層体からなる有機EL層4を得た。
 続いて、蒸着法を用いて膜厚200nmのITO膜を形成し、バンク3および有機EL層4を覆う上部透明電極5を得た。本実施例の上部透明電極5は陽極である。
 続いて、赤色変換層6および緑色変換層7を形成して、EL基板を得た。詳細には、バンク3で離間された画素領域3個毎に、PAT(ポリ[3-アルキルチオフェン]、Poly[3-alkylthiophene])を含む溶液をインクジェット法で付着して、赤色変換層6を形成した。さらに、画素領域3個毎に、アセチレン誘導体のPDPA(ポリ[1-(p-n-ブチルフェニル)-2-フェニルアセチレン]、Poly[1-(p-n-butylphenyl)-2-phenylacetylene])を含む溶液をインクジェット法で付着して、緑色変換層7を形成した。インクジェット用の溶液の濃度はいずれも1質量%で、溶媒はテトラリン(沸点207℃)を用いた。乾燥条件は200℃/30分で、乾燥後の赤色変換層6および緑色変換層7の膜厚はいずれも200nmとした。
 別途、透明基板8として、0.7mm厚の無アルカリガラス基板である1737ガラス(コーニング社製)を準備した。
 続いて、透明基板8上に、カラーモザイクCK-7001、CR-7001、CG-7001およびCB-7001(全て富士フィルムエレクトロニクスマテリアル製)のそれぞれを塗布し、フォトリソグラフ法にてパターニングを行うことによって、ブラックマトリクス9、赤色カラーフィルタ10、緑色カラーフィルタ11、および青色カラーフィルタ12を形成して、カラーフィルタ基板を得た。各層の膜厚はそれぞれ1μmとした。
 カラーフィルタ基板においては、縦方向および横方向に延びるストライプ状部分からなるブラックマトリクス9によって画素領域(サブピクセル)が画定されている。作製したカラーフィルタ(10~12)のサブピクセル寸法(すなわち、ブラックマトリクス9の開口部寸法)は300μm×100μmであり、サブピクセル間のギャップ(すなわち、ブラックマトリクス9のストライプ状部分の幅)が縦方向30μm、横方向10μmである。前記サブピクセル3個(赤・青・緑)で1画素であり、縦方向に50画素、横方向に50画素が配列されている。
 得られたEL基板およびカラーフィルタ基板を、1時間にわたって100℃または200℃の温度でアニーリングした。アニーリングの後に、低粘度液状エポキシ樹脂であるT832シリーズ(長瀬産業)を用いて、EL基板とカラーフィルタ基板とをそれぞれの画素領域を対向させて貼り合わせて、色変換方式有機ELディスプレイを得た。接着層13の膜厚は、バンク3の頂上で1~2μmとした。
  <実施例2>
 本実施例は、本発明の第2の実施形態の例である。実施例1と同様の手順を繰り返して、上部透明電極5以下の構造を形成した。引き続いて、上部透明電極5の上に、スパッタ法を用いて膜厚0.5μmのSiON膜と膜厚0.5μmのSiNx膜との積層膜を堆積させ、透明保護層14を形成した。続いて、実施例1と同様の手順を繰り返して、赤色変換層6および緑色変換層7を形成して、EL基板を得た。
 続いて、実施例1と同様の手順により、カラーフィルタ基板の作製およびEL基板とカラーフィルタ基板との貼り合わせを行い、色変換方式有機ELディスプレイを得た。
  <評価>
 低分子材料を用いて有機EL層4(特に発光層)を形成する場合、実施可能なアニーリング温度はおおむね100℃以下である。本発明の実施形態の効果を確認するために、実施例1および2で作製したEL基板およびカラーフィルタ基板を、それぞれ100℃および200℃の温度で1時間にわたってアニーリングし、その後に貼り合わせて有機ELディスプレイを作製した。得られた有機ELディスプレイの発光状態を観察した。その結果は第1表に示すとおりであり、本発明の実施形態の有効性が確認できた。
Figure JPOXMLDOC01-appb-T000001
  1 TFT基板
  2 下部反射電極
  3 バンク
  4 有機EL層
  5 上部透明電極
  6 赤色変換層
  7 緑色変換層
  8 透明基板
  8 ブラックマトリクス
 10 赤色カラーフィルタ
 11 緑色カラーフィルタ
 12 青色カラーフィルタ
 13 接着層
 14 透明保護層

Claims (3)

  1.  基板と、下部反射電極と、バンクと、前記バンクによって分離された複数の部分からなる有機EL層と、上部透明電極と、前記バンクによって分離された色変換層とを含む有機EL基板であって、前記バンクで分離された画素領域を有するEL基板と、
     透明基板上に、ブラックマトリクスおよびカラーフィルタがフォトプロセスでパターン形成されており、前記ブラックマトリクスで分離された画素領域を有するカラーフィルタ基板と
    を、前記EL基板の画素領域と前記カラーフィルタ基板の画素領域とが対向するように位置合わせをして貼り合わせて形成されており、
     前記有機EL層は下部反射電極および上部透明電極に挟持され、かつ高分子材料からなる発光層を少なくとも有し、
     前記色変換層は上部透明電極の上に形成され、かつ前記発光層の発するEL光を吸収し該EL光とは異なる波長の光を発光する
    ことを特徴とする色変換方式有機ELディスプレイ。
  2.  前記色変換層は上部透明電極の上に直接形成されていることを特徴とする請求項1に記載の色変換方式有機ELディスプレイ。
  3.  上部透明電極と色変換層との間に透明保護層をさらに有することを特徴とする請求項1に記載の色変換方式有機ELディスプレイ。
PCT/JP2009/063186 2008-07-29 2009-07-23 色変換方式有機elディスプレイ WO2010013637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801080443A CN101960917B (zh) 2008-07-29 2009-07-23 色变换方式的有机el显示器
US12/736,078 US8044575B2 (en) 2008-07-29 2009-07-23 Color conversion type organic EL display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008195154A JP5214360B2 (ja) 2008-07-29 2008-07-29 色変換方式有機elディスプレイ
JP2008-195154 2008-07-29

Publications (1)

Publication Number Publication Date
WO2010013637A1 true WO2010013637A1 (ja) 2010-02-04

Family

ID=41610336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063186 WO2010013637A1 (ja) 2008-07-29 2009-07-23 色変換方式有機elディスプレイ

Country Status (6)

Country Link
US (1) US8044575B2 (ja)
JP (1) JP5214360B2 (ja)
KR (1) KR101266345B1 (ja)
CN (1) CN101960917B (ja)
TW (1) TWI481298B (ja)
WO (1) WO2010013637A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935629A (zh) * 2015-12-30 2017-07-07 乐金显示有限公司 有机发光二极管显示装置

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459142B2 (ja) * 2010-08-11 2014-04-02 セイコーエプソン株式会社 有機el装置、有機el装置の製造方法、及び電子機器
JP5766422B2 (ja) * 2010-10-05 2015-08-19 株式会社Joled 有機el表示装置およびその製造方法
US20120138874A1 (en) 2010-12-02 2012-06-07 Intematix Corporation Solid-state light emitting devices and signage with photoluminescence wavelength conversion and photoluminescent compositions therefor
TWI457883B (zh) * 2011-03-11 2014-10-21 E Ink Holdings Inc 彩色顯示裝置
JP5720887B2 (ja) * 2011-03-30 2015-05-20 ソニー株式会社 表示装置および電子機器
JP5732977B2 (ja) * 2011-03-31 2015-06-10 凸版印刷株式会社 有機el素子及びその製造方法
JP2013045635A (ja) * 2011-08-24 2013-03-04 Sony Corp 有機el表示装置、有機el表示装置の製造方法および電子機器
US9123667B2 (en) * 2011-10-04 2015-09-01 Universal Display Corporation Power-efficient RGBW OLED display
JP2013127611A (ja) * 2011-11-14 2013-06-27 Dic Corp カラーレジスト組成物、カラーフィルター、液晶表示装置および有機el表示装置
US8994056B2 (en) * 2012-07-13 2015-03-31 Intematix Corporation LED-based large area display
JP6061581B2 (ja) 2012-09-19 2017-01-18 ソニーセミコンダクタソリューションズ株式会社 ディスプレイ装置
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US9385168B2 (en) * 2013-01-18 2016-07-05 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
KR102103421B1 (ko) 2013-02-07 2020-04-23 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
JP6439689B2 (ja) * 2013-06-17 2018-12-19 東レ株式会社 積層樹脂ブラックマトリクス基板の製造方法
JP6134236B2 (ja) 2013-09-02 2017-05-24 株式会社ジャパンディスプレイ 表示装置
KR20180021926A (ko) 2013-12-02 2018-03-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 그 제조방법
CN103700687A (zh) 2013-12-20 2014-04-02 京东方科技集团股份有限公司 有机电致发光显示面板及其制造方法、显示装置
JP2015187635A (ja) * 2014-03-26 2015-10-29 株式会社Joled 色変化部材、光装置、表示装置および電子機器
US9318670B2 (en) 2014-05-21 2016-04-19 Intematix Corporation Materials for photoluminescence wavelength converted solid-state light emitting devices and arrangements
US10700134B2 (en) 2014-05-27 2020-06-30 Universal Display Corporation Low power consumption OLED display
WO2016098954A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 유기전계발광표시장치
KR102536628B1 (ko) * 2015-08-24 2023-05-26 엘지디스플레이 주식회사 투명표시장치
KR102459596B1 (ko) * 2015-10-16 2022-10-31 엘지디스플레이 주식회사 유기발광 표시장치
GB2546002B (en) * 2015-12-30 2019-10-30 Lg Display Co Ltd Organic light emitting diode display device
KR102609507B1 (ko) * 2015-12-30 2023-12-04 엘지디스플레이 주식회사 백색광 발광장치 및 이를 이용한 하이브리드 표시장치
US10170521B2 (en) * 2015-12-30 2019-01-01 Lg Display Co., Ltd. Organic light-emitting diode display device
CN105932169A (zh) 2016-06-08 2016-09-07 京东方科技集团股份有限公司 Oled器件及其制造方法、显示面板以及显示装置
JP6235657B2 (ja) * 2016-07-08 2017-11-22 ソニーセミコンダクタソリューションズ株式会社 ディスプレイ装置
KR20190033979A (ko) * 2017-09-22 2019-04-01 주식회사 루멘스 색 변환 전극부를 갖는 수직형 발광소자
KR102016565B1 (ko) * 2017-11-30 2019-08-30 엘지디스플레이 주식회사 전계발광표시장치
KR102471517B1 (ko) * 2017-12-27 2022-11-25 엘지디스플레이 주식회사 유기발광 표시장치
CN110416258B (zh) * 2018-07-27 2021-11-02 广东聚华印刷显示技术有限公司 显示器件及其制作方法
JP2020021619A (ja) * 2018-07-31 2020-02-06 株式会社Joled 発光装置および電子機器
CN109192759B (zh) * 2018-08-29 2021-09-21 京东方科技集团股份有限公司 显示面板及显示面板的制备方法
KR20200054423A (ko) * 2018-11-09 2020-05-20 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20200083879A (ko) * 2018-12-31 2020-07-09 삼성디스플레이 주식회사 색변환 기판 및 표시 장치
CN110085762B (zh) * 2019-04-15 2021-08-03 昆山工研院新型平板显示技术中心有限公司 Oled显示面板及显示装置
TWI699903B (zh) 2019-05-17 2020-07-21 友達光電股份有限公司 顯示面板及其製造方法
CN112310300A (zh) * 2019-07-23 2021-02-02 群创光电股份有限公司 发光装置以及制作发光装置的方法
CN110459573A (zh) * 2019-08-20 2019-11-15 昆山工研院新型平板显示技术中心有限公司 显示面板、显示面板的制作方法及显示装置
KR20210048290A (ko) 2019-10-23 2021-05-03 삼성전자주식회사 디스플레이 장치 및 이의 제조 방법
KR102198966B1 (ko) * 2020-04-16 2021-01-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN111682124B (zh) * 2020-06-29 2023-01-31 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板
KR102534437B1 (ko) * 2021-02-10 2023-05-22 한국전자기술연구원 양자점 컬러 필터 구조 및 이를 구비하는 디스플레이 장치
KR20220125985A (ko) * 2021-03-08 2022-09-15 삼성전자주식회사 컬러 컨버터 레이어 및 그 제조 방법
CN113308295B (zh) * 2021-06-03 2022-08-02 安徽劲龙粮油股份有限公司 一种大豆食用油压榨过滤装置
US11810956B2 (en) * 2021-11-11 2023-11-07 Taiwan Semiconductor Manufacturing Company, Ltd. In-situ thermal annealing of electrode to form seed layer for improving FeRAM performance
KR20240040847A (ko) * 2022-09-21 2024-03-29 삼성디스플레이 주식회사 표시장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100939A (ja) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd カラー調節層を有するフールカラー有機電界発光素子
JP2006032010A (ja) * 2004-07-13 2006-02-02 Hitachi Displays Ltd 有機el表示装置
JP2008077860A (ja) * 2006-09-19 2008-04-03 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法及び電子機器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69027697T2 (de) 1989-03-31 1997-01-23 Toshiba Kawasaki Kk Organische elektrolumineszente Vorrichtung
US5683823A (en) 1996-01-26 1997-11-04 Eastman Kodak Company White light-emitting organic electroluminescent devices
US6117529A (en) * 1996-12-18 2000-09-12 Gunther Leising Organic electroluminescence devices and displays
US5949188A (en) * 1996-12-18 1999-09-07 Hage Gmbh & Co. Kg Electroluminescent display device with continuous base electrode
JP3328297B2 (ja) 1998-03-17 2002-09-24 セイコーエプソン株式会社 表示装置の製造方法
JP2000230172A (ja) 1998-12-09 2000-08-22 Sharp Corp 蛍光部材及びそれを用いた発光素子
JP2000243563A (ja) 1999-02-23 2000-09-08 Stanley Electric Co Ltd 有機発光素子
US20010043043A1 (en) 2000-01-07 2001-11-22 Megumi Aoyama Organic electroluminescent display panel and organic electroluminescent device used therefor
JP2002075643A (ja) 2000-08-29 2002-03-15 Tdk Corp 有機elディスプレイパネルおよびそれに用いる有機el素子
US6696177B1 (en) 2000-08-30 2004-02-24 Eastman Kodak Company White organic electroluminescent devices with improved stability and efficiency
US6627333B2 (en) 2001-08-15 2003-09-30 Eastman Kodak Company White organic light-emitting devices with improved efficiency
US6781304B2 (en) 2002-01-21 2004-08-24 Tdk Corporation EL panel
JP2003217859A (ja) 2002-01-21 2003-07-31 Tdk Corp Elパネル
US6670772B1 (en) * 2002-06-27 2003-12-30 Eastman Kodak Company Organic light emitting diode display with surface plasmon outcoupling
JP3613268B2 (ja) * 2002-07-19 2005-01-26 富士電機ホールディングス株式会社 色変換フィルタ、色変換層およびそれらを用いた色変換発光デバイス
JP4846191B2 (ja) * 2003-06-04 2011-12-28 住友化学株式会社 色変換膜および発光装置
JP2005099393A (ja) * 2003-09-25 2005-04-14 Sharp Corp カラーフィルタ基板およびこれを用いた表示装置
JP2006032021A (ja) 2004-07-13 2006-02-02 Idemitsu Kosan Co Ltd 色変換基板の製造方法及び色変換基板
JP2007005173A (ja) * 2005-06-24 2007-01-11 Toshiba Matsushita Display Technology Co Ltd 表示装置
JP2007164123A (ja) * 2005-11-15 2007-06-28 Fuji Electric Holdings Co Ltd 色変換機能付カラーフィルタ、有機elディスプレイおよびその製造方法
JP4692257B2 (ja) 2005-12-06 2011-06-01 富士電機ホールディングス株式会社 色変換膜およびそれを用いた多色発光有機elデバイス
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005100939A (ja) * 2003-09-22 2005-04-14 Samsung Sdi Co Ltd カラー調節層を有するフールカラー有機電界発光素子
JP2006032010A (ja) * 2004-07-13 2006-02-02 Hitachi Displays Ltd 有機el表示装置
JP2008077860A (ja) * 2006-09-19 2008-04-03 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法及び電子機器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106935629A (zh) * 2015-12-30 2017-07-07 乐金显示有限公司 有机发光二极管显示装置
CN106935629B (zh) * 2015-12-30 2020-12-15 乐金显示有限公司 有机发光二极管显示装置

Also Published As

Publication number Publication date
CN101960917B (zh) 2013-11-20
CN101960917A (zh) 2011-01-26
KR101266345B1 (ko) 2013-05-22
US20110062859A1 (en) 2011-03-17
TWI481298B (zh) 2015-04-11
KR20100114101A (ko) 2010-10-22
US8044575B2 (en) 2011-10-25
JP5214360B2 (ja) 2013-06-19
TW201014443A (en) 2010-04-01
JP2010033905A (ja) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5214360B2 (ja) 色変換方式有機elディスプレイ
US8446091B2 (en) Color conversion filter and manufacturing method of the organic EL display
WO2009119815A1 (ja) 色変換フィルタ
US20070290612A1 (en) Light Emitting Device and Method for Producing Same
WO2010146653A1 (ja) 色変換フィルター基板
JP5196665B2 (ja) 有機elディスプレイの製造方法
WO2010106619A1 (ja) 色変換フィルター基板
JP4676168B2 (ja) フィルタ基板、及びこれを用いたカラーディスプレイ
WO2010092694A1 (ja) 色変換基板およびそれを用いた有機elディスプレイ
JP4729719B2 (ja) 赤色変換フィルタおよびそのパターニング方法、該赤色変換フィルタを含む多色変換フィルタおよび有機elディスプレイ
JP2010146760A (ja) 色変換フィルタパネル、パネル型有機el発光部およびカラー有機elディスプレイ
JP4729754B2 (ja) 複数の有機el発光素子を利用した表示装置
WO2010010730A1 (ja) 色変換基板の製造方法
JP2009230889A (ja) 色変換フィルタの製造方法
JP2009129586A (ja) 有機el素子
JP5334341B2 (ja) 有機elデバイス
JP5067950B2 (ja) 有機elデバイスおよびその製造方法
JP3444298B1 (ja) 有機elディスプレイの製造方法ならびに色変換フィルタ基板の製造方法
JP2008218344A (ja) 色変換層のパターニング方法および有機elディスプレイの製造方法
JP2008269923A (ja) 多色発光デバイスの製造方法
JP2010267552A (ja) 色変換フィルター基板
JP2007317962A (ja) 配列型有機elディスプレイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108044.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09802880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107018864

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12736078

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09802880

Country of ref document: EP

Kind code of ref document: A1