WO2010010599A1 - 鉄心の製造方法及び鉄心の製造装置 - Google Patents

鉄心の製造方法及び鉄心の製造装置 Download PDF

Info

Publication number
WO2010010599A1
WO2010010599A1 PCT/JP2008/001973 JP2008001973W WO2010010599A1 WO 2010010599 A1 WO2010010599 A1 WO 2010010599A1 JP 2008001973 W JP2008001973 W JP 2008001973W WO 2010010599 A1 WO2010010599 A1 WO 2010010599A1
Authority
WO
WIPO (PCT)
Prior art keywords
core member
annular core
reference position
shape
cut
Prior art date
Application number
PCT/JP2008/001973
Other languages
English (en)
French (fr)
Inventor
秋田裕之
古澤公康
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010521543A priority Critical patent/JPWO2010010599A1/ja
Priority to CN2008801296867A priority patent/CN102057556B/zh
Priority to EP08790262.3A priority patent/EP2309621B1/en
Priority to PCT/JP2008/001973 priority patent/WO2010010599A1/ja
Priority to US12/990,113 priority patent/US8677608B2/en
Publication of WO2010010599A1 publication Critical patent/WO2010010599A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49069Data storage inductor or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49073Electromagnet, transformer or inductor by assembling coil and core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/52Plural diverse manufacturing apparatus

Definitions

  • the present invention relates to an iron core manufacturing method and an iron core manufacturing apparatus in which adjacent divided iron cores are connected to each other via a rotating concavo-convex portion so as to be rotatable and these divided iron cores are arranged in an annular shape.
  • a divided iron core (divided iron core) is manufactured by punching a steel sheet with a press die to produce a divided iron core piece, and laminating a plurality of divided iron core pieces and fixing them by caulking.
  • the stator core is manufactured by winding a coil around the magnetic teeth (magnetic pole teeth) of the split core via an insulating sheet, assembling the split core with the coil in an annular shape, and fixing the annularly assembled core in the frame Is done.
  • the split iron core can be wound in a discrete state, compared to winding on an undivided integrated iron core, a sufficient space for the coil winding nozzle to pass through can be secured, and the coil can be densely packed. Can be installed. Therefore, it is possible to improve the torque by increasing the number of turns of the coil, and to reduce the electrical resistance by mounting a coil having a larger cross-sectional area, thereby improving the motor performance such as torque and efficiency.
  • the steel sheet has magnetic anisotropy with different magnetic resistances in the rolling direction and the direction perpendicular thereto. Therefore, when a plurality of divided cores having teeth aligned in the same direction are punched side by side from a single steel sheet, when the stator core is assembled by arranging the divided cores in an annular shape, the divided cores depend on the direction of the teeth. There is a problem that the magnetic resistances of the motors are different and increase the torque pulsation.
  • the invention according to the present application relates to an iron core in which adjacent divided iron cores are connected to each other via a rotating uneven portion and these divided iron cores are arranged in an annular shape.
  • an iron core manufacturing method and an iron core manufacturing apparatus capable of reducing torque pulsation caused by a shape asymmetry such as a circumferential step or a difference in magnetic resistance of a split core.
  • the manufacturing method of the iron core according to the present invention includes a first end portion having a first shape in the first circumferential direction and a second shape having a second shape different from the first shape in the second circumferential direction. And a plurality of first divisions having a yoke portion provided with a concavo-convex portion for rotation on the surface on the first end portion side and a tooth portion projecting radially inward from the yoke portion.
  • the iron core piece is divided into the first end of the yoke portion of one of the first divided core pieces and the second end of the yoke portion of the other first divided core piece adjacent in the circumferential direction.
  • first annular core member Forming a first annular core member by punching out from a single magnetic plate material in an annular arrangement so as to contact the part, A third end portion having the second shape in the first circumferential direction and a fourth end portion having the first shape in the second circumferential direction; A plurality of second divided core pieces each having a yoke portion provided with a concave and convex portion for rotation on the surface and teeth portions projecting radially inward from the yoke portion are formed on one of the second divided core pieces. From one magnetic plate material, the third end portion of the yoke portion and the fourth end portion of the yoke portion of the other second divided core piece adjacent in the circumferential direction come into contact with each other.
  • a second annular core member is formed by punching into an annularly arranged state, The first annular core member and the second annular core member are concentric so that the first end having the first shape and the fourth end having the first shape overlap.
  • a method Of the first end of the first annular core member, cut the first or second shape at a reference position and a position rotated by a predetermined angle from the reference position, the reference position and the reference A first step of cutting the first shape cut into a circumferential position excluding a position rotated by a predetermined angle from the position; Of the fourth end of the second annular core member, cut the first or second shape at the reference position and a position rotated by a predetermined angle from the reference position, and the reference position and the A second step of processing the first shape cut at a circumferential position excluding a position rotated by a predetermined angle from a reference position; The circumferential position excluding either the reference position or the position rotated by a predetermined angle from the reference position on the yoke surface on the first end side of the first annular core member and the second annular A third step of processing the irregularities for rotation on the yoke surface on the fourth end side of the iron core member; The first end portion of the first annular core member that has not processed
  • the iron core manufacturing apparatus includes a first end portion having a first shape in a first circumferential direction and a second shape having a second shape different from the first shape in a second circumferential direction. And a plurality of first divisions having a yoke portion provided with a concavo-convex portion for rotation on the surface on the first end portion side and a tooth portion projecting radially inward from the yoke portion.
  • the iron core piece is divided into the first end of the yoke portion of one of the first divided core pieces and the second end of the yoke portion of the other first divided core piece adjacent in the circumferential direction.
  • first annular core member Forming a first annular core member by punching out from a single magnetic plate material in an annular arrangement so as to contact the part, A third end portion having the second shape in the first circumferential direction and a fourth end portion having the first shape in the second circumferential direction; A plurality of second divided core pieces each having a yoke portion provided with a concave and convex portion for rotation on the surface and teeth portions projecting radially inward from the yoke portion are formed on one of the second divided core pieces. From one magnetic plate material, the third end portion of the yoke portion and the fourth end portion of the yoke portion of the other second divided core piece adjacent in the circumferential direction come into contact with each other.
  • a second annular core member is formed by punching into an annularly arranged state, The first annular core member and the second annular core member are concentric so that the first end having the first shape and the fourth end having the first shape overlap.
  • a device Of the first end of the first annular core member, cut the first or second shape at a reference position and a position rotated by a predetermined angle from the reference position, the reference position and the reference
  • the first cut punch for processing the cut of the first shape at a circumferential position excluding a position rotated by a predetermined angle from the position;
  • Of the fourth end of the second annular core member cut the first or second shape at the reference position and a position rotated by a predetermined angle from the reference position, and the reference position and the The second cut processing punch for processing the first shape cut at a circumferential position excluding a position rotated by a predetermined angle from a reference position;
  • the irregularities for rotation are processed on the surface on the first end side of the first annular core member and on the fourth end side surface of the second annular core member.
  • a first punch for processing irregularities for rotation The rotation on the surface on the first end side of the first annular core member and on the surface on the fourth end side of the second annular core member at a position rotated by a predetermined angle from the reference position.
  • a second punch for processing uneven portions for rotation that processes the uneven portions for use; At the circumferential position excluding the reference position and a position rotated by a predetermined angle from the reference position, the surface of the first annular core member on the first end side and the second annular core member
  • a mold stage provided with a third rotating uneven portion machining punch for processing the rotating uneven portion on the end side surface of 4; The first end portion of the first annular core member that has not processed the uneven portion for rotation or the fourth end portion of the second annular core member that has not processed the uneven portion for rotation.
  • a rotating laminating apparatus is provided that rotates and laminates the first annular core member or the second annular core member by the predetermined angle so that the circumferential position is the same in the laminating direction.
  • the adjacent divided iron cores are connected to each other via the rotating concave and convex portions, and the divided iron cores are arranged in an annular shape. Since the annular core member is configured by rotating and laminating the core, the torque pulsation generated due to the shape asymmetry such as the inner peripheral step of the split core and the difference in the magnetic resistance of the split core can be reduced.
  • FIG. 1 It is a top view which shows the stator of the rotary electric machine by embodiment of this invention. It is sectional drawing of the rotor with a magnet of the rotary electric machine by embodiment of this invention. It is a top view of the iron core which comprises the stator by embodiment of this invention. It is a side view of the iron core which comprises the stator by embodiment of this invention. It is a top view which shows simply the process of manufacturing the iron core by embodiment of this invention. It is sectional drawing which shows the iron core by embodiment of this invention. It is a top view which shows a coil
  • FIG. It is a figure which shows the concentrated magnetomotive force model of a rotor. It is a figure which shows a stator inner peripheral diameter distribution. It is a figure which shows the calculation result of An ((theta)). It is a figure which shows curve A0 ((theta)) and vector Y.
  • FIG. It is a figure which shows the model of the iron core structure by rotation lamination
  • FIG. 1 It is a figure showing the result of having measured the magnitude
  • FIG. 3 is a diagram for explaining stages S1 and S2 of a mold stage according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining stages S3 to S6 of the mold stage according to the embodiment of the present invention.
  • FIG. 5 is a view for explaining stages S7 to S8 of the mold stage according to the embodiment of the present invention. It is a figure for demonstrating stage S9 of the metal mold
  • FIG. 5 is a view for explaining stages S10 to S12 of the mold stage according to the embodiment of the present invention.
  • FIG. 5 is a view for explaining stages S13 to S14 of the mold stage according to the embodiment of the present invention. It is sectional drawing which shows the rotary lamination apparatus by embodiment of this invention.
  • FIG. 1 It is a perspective view which shows the iron core C3 by embodiment of this invention. It is a perspective view which shows the iron core C4 by embodiment of this invention. It is a perspective view which shows the iron core C5 by embodiment of this invention. It is a perspective view which shows the iron core C6 by embodiment of this invention. It is a perspective view which shows the iron core C7 by embodiment of this invention. It is a figure which shows the punch for manufacturing the iron core C1. It is a figure which shows the punch for manufacturing the iron cores C3 and C6. It is a figure which shows the punch for manufacturing the iron core C4. It is a figure which shows the punch for manufacturing the iron core C5.
  • FIG. 1 is a plan view showing a stator of a rotating electrical machine according to an embodiment of the present invention.
  • a stator of a rotating electrical machine includes a stator core 1 formed by arranging a plurality of split cores 2 having a yoke portion and tooth portions protruding from the yoke portion toward the radial inner side of the stator, and a split core.
  • the split iron core 2 is configured by laminating magnetic plate materials such as steel plates in the axial direction of the stator, as will be described later.
  • stator core 1 of FIG. 1 has shown the case where it has the 12 division
  • FIG. 2 is a sectional view of the rotor with magnet of the rotating electrical machine according to the embodiment of the present invention.
  • the rotor of the rotating electrical machine includes a rotor iron core 7, a ring-shaped magnet 6 provided outside the rotor iron core 7, and a shaft 8 provided at the center of the rotor iron core 7 and serving as a rotor rotation shaft.
  • the ring-shaped magnet 6 has N and S poles (not shown) alternately formed at predetermined intervals in the circumferential direction.
  • the rotor core 7 is configured by laminating magnetic plate materials such as steel plates in the same manner as the stator core 1.
  • the rotor shown in FIG. 2 is combined inside the stator shown in FIG.
  • the split core 2 is configured by stacking a plurality of split core pieces 2 a made of a magnetic plate material.
  • the divided core piece 2a has a yoke part 2b and a tooth part 2c protruding radially inward from the yoke part 2b.
  • the shape of the first end portion 2h in the first circumferential direction (counterclockwise direction in FIG. 3) of the yoke portion 2b is the second circumferential direction of the yoke portion 2b (see FIG.
  • the shape of the second end 2i in the clockwise direction 3 is different from that of the second end 2i.
  • a convex shape portion that is a first shape portion is formed at the first end portion 2h of the yoke portion 2b of the divided core piece 2a, and a concave shape portion that is a second shape portion is formed at the second end portion 2i.
  • segmentation iron core piece 2a adjacent to the circumferential direction, and the 2nd shape part (for example, concave shape part) of the 2nd end part 2i Are adapted to abut.
  • two uneven portions 2d are formed on the surface of the central portion of the divided core piece 2a.
  • a plurality of divided core pieces 2a are stacked, and the divided core pieces 2a are fixed to each other by the caulking uneven portions 2d to form the divided core 2.
  • the first shape portion (for example, convex) of the first end portion 2h of the divided core piece 2a is excluded except for the first end portion 2h1 of the predetermined divided core 2a1 among the plurality of divided cores 2 arranged in an annular shape.
  • a rotation uneven portion 2e having the same configuration as the uneven portion 2d is formed.
  • the above-described rotation uneven portion 2e is not formed on the surface.
  • the first shape portion (for example, the convex shape portion) of the first end 2h of the divided core piece 2a is arranged so as to overlap in the stacking direction at the contact portion of the divided core 2 adjacent in the circumferential direction. It is installed.
  • the divided core pieces 2a adjacent in the stacking direction are connected to each other at the overlapping portion.
  • segmentation iron cores 2 adjacent to the circumferential direction are comprised so that it can mutually rotate centering
  • first end portion 2h1 of the predetermined divided core piece 2a1 is not provided with the uneven portion 2e, and the fourth divided core piece 2a that overlaps the predetermined divided core piece 2a1 in the stacking direction as will be described later.
  • the uneven portion 2e is not formed also in the first shape portion (for example, the convex shape portion) at the end of the first portion. Therefore, the split core 2 having the first end 2h1 and the split core 2 adjacent in the circumferential direction can be separated from each other at the position of the open portion 10 in FIG.
  • FIG. 5 is a plan view schematically showing a process of manufacturing an iron core composed of divided iron cores, and includes a first annular core member A and a second annular core member B, and the first and second annular core members. It is a top view which shows the iron core C comprised by laminating
  • Each of the first and second annular core members A and B is manufactured by press punching in an annular shape from a thin steel plate (hereinafter referred to as a magnetic plate material) such as one electromagnetic steel plate or SPCE.
  • the first and second annular core members A and B are each divided by a cut line called a cut line 2f for each divided core piece 2a.
  • the stator core C is formed by laminating a first annular core member A and a second annular core member B.
  • the yoke 2b of each divided core piece 2a has a first end portion in the first circumferential direction (counterclockwise direction) forming a first shape portion (for example, a convex shape portion). And the 2nd edge part of the 2nd circumferential direction (clockwise direction) has comprised the 2nd shape part (for example, concave shape part).
  • the yoke 2b of each divided core piece 2a has a third end portion in the first circumferential direction (counterclockwise direction) as a second shape portion (for example, a concave shape portion).
  • the fourth end in the second circumferential direction forms a first shape portion (for example, a convex shape portion).
  • a first shape portion for example, a convex shape portion.
  • two uneven portions 2d formed for caulking are formed on the surface of the central portion of each of the divided core pieces 2a of the first and second annular core members A and B.
  • the divided core pieces 2a adjacent to each other in the stacking direction are fixed by the caulking uneven portion 2d.
  • the first shape portion (for example, a convex shape portion) of the first end portion of the yoke 2b of the divided core piece 2a of the first annular core member A has a rotation uneven portion 2e formed on the surface thereof. Yes.
  • the first shape portion (for example, a convex shape portion) of the fourth end portion of the yoke 2b of the split core piece 2a of the second annular core member B has a concave / convex portion for rotation 2e formed on the surface thereof.
  • grooved part 2e for rotation is not formed in the 1st end part 2h1 of the predetermined
  • grooved part 2e is not formed in the 4th edge part 2h2 of the predetermined
  • the first end 2h1 of the predetermined split core piece 2a of the first annular core member A and the fourth end 2h2 of the predetermined split core piece 2a of the second annular core member B are laminated. It arrange
  • FIG. 6 shows a cross-sectional view when the first and second annular core members A and B are cut along a circumferential line passing through the uneven portion 2d and the uneven portion 2e.
  • the first shape portion 2a (for example, a convex shape portion) of 2a overlaps at the overlap portion 2g.
  • a cylindrical uneven portion 2e is formed by plastic working by press working.
  • each divided iron core 2 is provided with an uneven portion 2d for caulking used for fixing each of the layers, and the divided iron core 2 is fixed as a single laminated body by caulking in the laminating direction with the uneven portion 2d for caulking. Can do.
  • FIG. 7 is a plan view showing a winding method around the iron core.
  • the first and second annular core members A and B are stacked and the annular core 1 (C in FIG. 5) is separated at the opening 10 and set in the winding machine 9.
  • the wire 9a used as a coil is wound around the tooth
  • FIG. 7 the adjacent divided cores 2 are connected to each other so as to be rotatable about the rotation uneven part 2 e, so that when the coil is wound, the angle between the adjacent tooth parts 2 c Can be enlarged.
  • a sufficient space for supplying the wire 9a can be ensured by making the tooth portion 2c of the split iron core 2 outward.
  • the wire 9a supplied from the winding machine 9 can be wound around the tooth portion 2c without interfering with the adjacent divided core 2 while maintaining the straightness. . Therefore, the stator can be wound with the wire aligned with the tooth portion 2c and the coil space factor is high.
  • the winding since a sufficient space for the winding is secured, the winding can be operated in a circular orbit capable of high-speed movement, and high productivity can be obtained.
  • an iron core composed of split cores can be fitted with a high-density coil on the teeth of the split core. Therefore, the output per unit volume of a motor using a split core equipped with a high-density coil can be reduced. Can be increased.
  • an iron core composed of split iron cores is more prone to work errors than an integrated iron core, and there is a problem that magnetic energy changes due to slight work errors and cogging torque known as torque pulsation increases.
  • the cogging torque can be suppressed to a very small value at the design stage, but actually, it is a value that cannot be ignored because it is manufactured including a machining error. In order to bring the machining error close to zero, an advanced manufacturing process is required, which is expensive and not realistic. Therefore, it is industrially useful to provide a manufacturing method and a manufacturing apparatus that effectively reduce cogging torque by a simple method in an iron core composed of divided iron cores.
  • a component due to the error of the inner peripheral shape of the stator which occupies a large proportion of the cogging torque, is analyzed, and a manufacturing method is proposed in which the influence of the inner peripheral shape error is superimposed and offset.
  • Cogging torque is generated by various factors such as the asymmetry of the magnetic characteristics of the stator and rotor and the combination of the number of slots and the number of poles (slot combination).
  • the asymmetry factor of the stator is not only the error of the inner peripheral shape but also the stator generated by, for example, the asymmetry of the inner and outer peripheral shape of the stator, the uneven distribution of stress due to welding or fixing to the frame, and the magnetic anisotropy. Magnetic asymmetry.
  • the permeance which is the reciprocal of the magnetic resistance, causes an imbalance in the permeance, and the magnetic energy generated in the air gap between the stator teeth and the rotor changes in the circumferential direction. Will occur.
  • the change in torque due to the asymmetry of the stator pulsates with the same period as the number of poles p of the rotor magnet as the rotor rotates.
  • the cogging torque 2f component can be expressed as a vector on the polar coordinates where the pole period of the rotor is one period, and is referred to as a torque vector here.
  • ⁇ 0 is the vacuum permeability
  • k is a value obtained by dividing the air gap volume at a minute angle d ⁇ by d ⁇ .
  • F ( ⁇ ) represents the magnetomotive force of the rotor, and the square thereof has a distribution of p cycles in the ⁇ direction on the rotor as illustrated in FIG.
  • a ( ⁇ , ⁇ ) is a component constituting the square of permeance, and is defined by the following equation (2) using the air gap g ( ⁇ , ⁇ ) at the position of the angle ⁇ when the rotor is at the rotation angle ⁇ . did.
  • the reluctance of the iron core was negligible because it was sufficiently smaller than that of the air gap.
  • the air gap g ( ⁇ , ⁇ ) is a variable having an error in the stator inner peripheral shape
  • a ( ⁇ , ⁇ ) is a variable representing a change in the circumferential direction of the error in the stator inner peripheral shape.
  • the pitch angle is 2 ⁇ / p
  • the magnetomotive force is expressed by the following equations (3) and (4).
  • n is an integer from 1 to p.
  • the influence of the magnetomotive force on the stator is such that a magnetic flux is generated only at the opposite point and there is no influence on the vicinity thereof.
  • the torque T ( ⁇ ) shown in Equation (1) is the sum of partial torques generated at the positions of p concentrated magnetomotive forces.
  • a ( ⁇ , ⁇ ) is a function that represents a change in the circumferential direction of the error of the stator inner circumferential shape.
  • the inner circumferential shape of the stator is equally divided into p sections in the circumferential direction.
  • the function A ( ⁇ , ⁇ ) of the inner peripheral shape of the n-th section is A n ( ⁇ )
  • the partial torque T n ( ⁇ ) generated at the position of the n-th magnetomotive force is given by the following equation (5 ).
  • ⁇ T ( ⁇ ) is given by the following equation (6) by taking the sum of p partial torques.
  • T ( ⁇ ) repeats the same waveform for each pitch angle, and becomes a waveform with a period of p times per rotation of the rotor.
  • a curve obtained by dividing the torque curve T ( ⁇ ) by k ⁇ 0 F 2 / 2 ⁇ is A 0 ( ⁇ )
  • a vector obtained by dividing the vector T (T x , T y ) by k ⁇ 0 F 2 / 2 ⁇ is Y ( Y x , Y y ) are newly defined by the following equations (9), (10), and (11).
  • the curve A 0 ( ⁇ ) and the vector Y (Y x , Y y ) can be calculated regardless of the characteristics of the material. It can be applied to the relative evaluation of cogging torque.
  • equation (9) a scalar sum of A n ( ⁇ ) is obtained for each position of ⁇ to obtain A 0 ( ⁇ ), and the pitch angle 2 ⁇ / p is taken as one period, and is displayed in polar coordinates in FIG.
  • the vector Y obtained from the equations (10) and (11) is displayed superimposed on the curve A 0 ( ⁇ ).
  • Equation (9) the sum of the vectors from the coordinate center to each point on the A 0 ( ⁇ ) curve indicates the vector Y.
  • a n ( ⁇ ) is calculated using only the value of the inner peripheral shape at the position of ⁇ by the concentrated magnetomotive force model, the part that causes the cogging torque 2f component is specified, and the shape error is determined.
  • FIG. 13 shows a conceptual model of an iron core structure formed by rotating lamination.
  • the iron core is divided into two portions 13A and 13B having a height of h 1 and h 2 in the stacking direction, and stacked with a phase shifted in the circumferential direction. Since both the first layer 13A and the second layer 13B are manufactured by punching with the same mold, the errors in the inner peripheral shape are the same. For example, assuming that the inner peripheral shape has a step at one place, the inner peripheral shapes of the first layer 13A and the second layer 13B are schematically shown on the right side of FIG. Since the shape of each step is the same, the sizes of the vectors Y are the same.
  • the stacking heights h 1 and h 2 of the first layer 13A and the second layer 13B equal and setting the rotation angles so that the directions of the vectors Y are reversed, the sum of the vectors Y can be reduced. It can.
  • the model in the case of dividing into two layers is shown, but the number of divisions in the stacking direction (corresponding to the number of vectors Y), stacking height ratio (corresponding to the size of each vector Y), rotation angle (each vector) (Corresponding to the phase of Y) can be arbitrarily set.
  • the iron core needs to have the same slot angle, which is a constraint for setting the rotation angle.
  • the condition of the rotation angle ⁇ t of the iron core that can be set is obtained from the condition for aligning the slot positions using the integer t by the following equation (12).
  • a combination for reducing the vector Y may be selected from the conditions of the equation (13).
  • the settable iron core rotation angle is expressed by the following equations (14) and (15).
  • FIG. 14 shows the vector orientation in the case of an 8-pole 12-slot motor and a 10-pole 12-slot motor. Then, by selecting the angle for canceling the torque vector from the equations (14), (15) or the phase shown in FIG. 14, the rotation angle of the rotating stack can be obtained.
  • the effect of rotating lamination will be verified by taking a slot combination of 10 poles and 12 slots as an example.
  • the rotation angle is 0, ⁇ / 2, ⁇ , 3 ⁇ / 2 from the equation (12).
  • the following four samples were verified. (1) No steps, no rotating stack (2) No step, with rotating stack (3) There is a step, no rotating lamination (4) There is a step and there is a rotational lamination.
  • the experimental sample was manufactured by automatic pitch feed type die machining as shown in FIG. In FIG.
  • a magnetic plate material 200 such as a steel plate is automatically fed in the direction of the arrow with the pilot hole 201 as a positioning reference, and is divided into magnetic pole teeth with a cut 2 f by pressing.
  • the magnetic plate material 200 has a circular shape with an outer shape punched out and laminated to form an iron core C.
  • the laminated iron cores C are separated at the cuts, and a coil can be attached. After winding, they are rearranged in a circular shape, and a frame is press-fitted to the outer periphery and fixed.
  • the inner diameter was additionally machined by wire cutting to form a stepped shape. Samples (2) and (4) were equally divided into four layers in the stacking direction and rotated and fixed at a predetermined angle.
  • FIG. 16 shows the result of measuring the magnitude of the vector Y and the cogging torque 2f component for each sample.
  • the cogging torque 2f component is expressed as a ratio to the rated torque.
  • the vector Y was calculated as the vector sum of the vectors Y of the four layers.
  • 19 and 20 show the vector Y and the combined vector of each layer of the samples (3) and (4).
  • the steps are at the same position in each layer. Therefore, as shown in FIG. 19, the vector Y of each layer has almost the same magnitude and the same direction. became.
  • the cogging torque 2f component showed a large value.
  • the vector Y of each layer has almost the same size, but since it is in the opposite direction, the combined vector becomes a small vector by weakening the vectors of each layer. .
  • the cogging torque 2f component showed a small value. From the comparison between samples (3) and (4), it was found that even if the step shape is the same, the vector Y can be canceled by rotating lamination, and the cogging torque 2f component can be reduced.
  • the iron cores constituting these samples were manufactured by punching from a single magnetic plate in a circular arrangement. Therefore, the angle formed by the rolling direction of the magnetic plate material and the direction of the magnetic pole teeth (the radial direction of the stator) varies depending on the magnetic pole teeth. Since the rolling direction of the magnetic plate coincides with the direction in which the magnetic flux easily passes, the magnetic resistance varies depending on the magnetic pole teeth, and this is called magnetic anisotropy. As described above, the magnetic anisotropy is a kind of asymmetry of the magnetic characteristics of the stator and causes the cogging torque 2f component. Sample (1) and sample (2) have a small step, so the magnitude of vector Y is smaller.
  • sample (1) has a cogging torque 2f component of about 0 in rated torque ratio than sample (2). .04 points larger. This is presumably because sample (1) was affected by magnetic anisotropy, while sample (2) was offset by magnetic anisotropy by rotating lamination.
  • the size of the vector Y is the same in the samples (1) and (2), and this is a value determined by only the influence of the shape error and does not reflect the influence of magnetic anisotropy. There is no contradiction. That is, according to the rotating lamination, it can be said that not only the influence of the error of the inner peripheral shape but also the influence of the magnetic anisotropy can be offset.
  • the reduction effect of the cogging torque 2f component of sample (4) with respect to sample (3) is included in both cases. The effect decreased by 86.6%, and the improvement effect by offsetting magnetic anisotropy decreased by 12.5%.
  • the rotary lamination method can be said to be a manufacturing method that can suppress the cogging torque 2f component small in a split core structure capable of high-density winding.
  • the torque vectors can be canceled out even if the magnitude and phase of the torque vector are unknown. This has the following advantages in manufacturing an iron core composed of divided iron cores. (1) In the production of iron cores, it is not necessary to measure the variation of the inner peripheral shape and adjust it according to the measurement results. (2) When producing with a plurality of molds, there is no need to adjust according to the error between the molds.
  • the rotation angle between the laminated bodies is obtained by the method described so far.
  • the rotation angle of the other stacked body with respect to one stacked body is ⁇ / 2.
  • the rotation angle of another laminate relative to one laminate is ⁇ / 2. An example in which rotational lamination is performed will be described.
  • the number of rotor poles, the number of status lots, the height of each laminate, the number of laminates, and the rotation angle for rotary lamination are not limited to this example, but apply within the range applicable to the methods and conditions described so far. Is possible.
  • FIG. 21 is a plan view showing the outline of the iron core manufacturing apparatus according to the embodiment of the present invention.
  • the iron core manufacturing apparatus 100 includes a mold stage 110 that performs press processing on a magnetic plate material 200 such as a steel plate, and a rotary lamination device 120 that rotates and laminates an annular core member punched from the magnetic plate material 200. ing.
  • the mold stage 110 includes a plurality of stages, in this example, stages S1 to S14.
  • punches used in the stages S1 to S14 are omitted
  • FIG. 22 shows details of the punches.
  • FIGS. 29 to 32 cross-sectional views seen from the direction of arrow Z in FIG. 21 are shown in FIGS. 29 to 32, and the details of the structure and operation will be described later.
  • FIG. 22 is a bottom view showing a punch used for the stage of the mold stage 110.
  • the punch P1 is used in the stage S3, and is used to make a break that separates the yoke portions of the annular core member at a reference position (hereinafter referred to as a reference position (0 degree position)) of the outer peripheral portion of the annular core member.
  • the blade part p1 is provided.
  • the punch P2 is used in the stage S4, and separates the yoke portions of the annular core member at a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position).
  • a blade part p2 for making a cut is provided.
  • the punch P3 is used in the stage S5, and is provided with a blade part p3 for making a cut that separates the yoke parts of the annular core member at the reference position.
  • the punch P4 is used in the stage S6, and separates the yoke portions of the annular core member at a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position).
  • a blade portion p4 for making a cut is provided.
  • the punch P5 is used in the stage S7 and has an outer periphery excluding a reference position (0 degree position) and a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position).
  • a blade portion p5 is provided for making a cut that separates the yoke portions of the annular core member at positions (10 locations in this example).
  • the punch P6 is used in the stage S8, and has a reference position (0 degree position) and a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position).
  • a blade portion p6 is provided at the outer peripheral position (10 locations in this example) for making a cut that separates the yoke portions of the annular core member.
  • the punch P7 is used in the stage S9, and is used for forming the uneven portion 213 for caulking located at the yoke portion and the center portion of the tooth portion of the divided core piece used when stacking and fixing the annular core member.
  • the protrusion p7 is provided.
  • the punch P8 is used in the stage S10, and the first shape portion (for example, a convex shape portion) and the second circumference of the first end portion in the first circumferential direction of the yoke of the annular core member at the reference position.
  • a protruding portion p8 for forming the rotation uneven portion 215 is provided in a portion where the first shape portion (for example, a convex shape portion) at the fourth end portion in the direction overlaps.
  • the punch P9 is used in the stage S11, and the first circumference of the yoke of the annular core member at a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position). Convex for rotation at a portion where the first shape portion (for example, a convex shape portion) at the first end portion in the direction and the first shape portion (for example, the convex shape portion) at the fourth end portion in the second circumferential direction overlap.
  • a protrusion p9 for forming the portion 216 is provided.
  • the punch P10 is used on the stage 12, and remains except for the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (in this example, the position rotated 90 degrees clockwise from the reference position).
  • 1st shape part for example, convex shape part
  • Protrusions p10 in this example, 10 locations
  • for forming the rotation concavo-convex portion 217 are provided at the portion where the first shape portion (for example, the convex shape portion) overlaps.
  • the punch P11 is used in the stage S13.
  • the punch P11 has a through hole 218a at the same position as the position of the caulking uneven portion 213 with respect to the lowermost annular core member formed by laminating and fixing a plurality of annular core members, and the rotation unevenness.
  • a protrusion p11 for forming the through hole 218b is provided at the same position as the positions of the portions 215, 216, and 217. Note that the through hole 218a of the lowermost annular core member is fitted with the caulking uneven portion 213 of the upper annular core member, and the through hole 218b of the lower annular core member is the upper rotating uneven portion. 215, 216, and 217 for fitting.
  • FIG. 23 to 28 are diagrams for explaining the respective stages S1 to S13 of the mold stage 110.
  • FIG. FIG. 23 shows stages S1 and S2.
  • a pilot hole 201 serving as a reference for feeding one pitch of press working is punched near both ends in the width direction of the magnetic plate material 200 by a punch (not shown), and the magnetic plate material 200 has an annular shape at a substantially central portion in the width direction.
  • a space 202 serving as an inner peripheral portion of the iron core member is punched out.
  • a slot 205 which is a space between the tooth portions of the annular core member, and a matching hole 206, which is a relief hole for the next process, located on the outer periphery of the annular core member are punched out by a punch (not shown). It should be noted that hatched portions are given to the portions to be punched out in the respective stages S1 and S2 in FIG.
  • FIG. 24 shows stages S3 to S6.
  • the punch P1 having the blade part p1 is used to perform a process of forming a convex cut 207 in the second circumferential direction (clockwise direction) to separate the yoke parts of the annular core member at the reference position.
  • the punch P2 having the blade portion p2 separates the yoke portions of the annular core member at a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position).
  • a process of forming a convex cut 208 in the second circumferential direction (clockwise direction) is performed.
  • the stages S3 and S4 at least a reference position (0 degree position) and a position (reference position) obtained by rotating a punch P1 having the blade portion p1 or the punch P2 having the blade portion p2 from the reference position. It is sufficient to install only one of the punch P1 and the punch P2 by making the structure rotatable in the circumferential direction between the position and the position rotated 90 degrees clockwise from the position.
  • the punch P3 having the blade portion p3 is used to perform a process of forming a convex cut 209 in the first circumferential direction (counterclockwise direction) for separating the yoke portions of the annular core member at the reference position.
  • the punch P4 having the blade portion p4 separates the yoke portions of the annular core member at a position rotated by a predetermined angle from the reference position (in this example, a position rotated 90 degrees clockwise from the reference position). For this purpose, a process of forming a convex cut 210 in the first circumferential direction (counterclockwise direction) is performed.
  • the stages S5 and S6 at least a reference position (0 degree position) and a position (reference position) obtained by rotating a punch P3 having the blade portion p3 or the punch P4 having the blade portion p4 from the reference position.
  • the cut processing by the punch P1 of the stage S3 and the cut processing by the punch P3 of the stage S5 are performed by selecting one of them.
  • the cut processing by the punch P2 of the stage S4 and the cut processing by the punch P4 of the stage S6 are performed by selecting one of them.
  • FIG. 25 shows stages S7 to S8.
  • the stage S7 the rest except for the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (in this example, the position rotated 90 degrees clockwise from the reference position) by the punch P5 having the blade part p5.
  • a process of forming a convex cut 211 in the first circumferential direction is performed.
  • the stage S8 the rest except for the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (in this example, the position rotated 90 degrees clockwise from the reference position) by the punch P6 having the blade part p6.
  • FIG. 26 shows stage S9.
  • the punching P7 having the projecting portion p7 forms the caulking uneven portion 213 located at the central portion of the yoke portion and the tooth portion of the divided core piece, which is used when stacking and fixing the annular core member.
  • FIG. 27 shows stages S10 to S12.
  • the first shape portion for example, the convex shape portion
  • the second circumference of the first end portion in the first circumferential direction of the yoke of the annular core member at the reference position are formed by the punch P8 having the protrusion portion p8.
  • the rotation uneven portion 215 is formed in a portion where the first shape portion (for example, the convex shape portion) of the fourth end portion in the direction overlaps.
  • the first circumference of the yoke of the annular core member at a position rotated by a predetermined angle from the reference position in this example, a position rotated 90 degrees clockwise from the reference position
  • a portion 216 is formed.
  • the first shape portion (for example, a convex shape portion) at the first end portion in the first circumferential direction of the yoke of the annular core member and the first shape portion at the fourth end portion in the second circumferential direction (for example, the concave / convex portion for rotation 217 is formed in a portion where the convex portion) overlaps.
  • corrugated part for rotation processed by the stage S10 or the stage S11 is abbreviate
  • FIG. 28 shows stage S13 and stage S14.
  • the position of the concavo-convex portion 213 for caulking formed in the stage S9 with respect to the lowermost annular core member among the iron cores formed by laminating and fixing the annular core member by the punch P11 having the projecting portion p11 A through hole 218a is formed at the same position, and a through hole 218b is formed at the same position as the positions of the concave and convex portions 215, 216, and 217 for rotation formed by the stages S10 to S12.
  • the through hole 218a of the lowermost annular core member is fitted with the caulking uneven portion 213 of the upper annular core member, and the through hole 218b of the lower annular core member is the upper rotating uneven portion. 215, 216, and 217 for fitting.
  • the outer peripheral portion of the annular core member is punched out from the magnetic plate member 200 along the matching hole 206 by the punch P15 shown in FIGS. 29 and 30 to create the annular core members A and B.
  • FIG. 29 is a cross-sectional view showing a rotating laminating apparatus 120 for rotating and laminating annular core members
  • FIG. 30 is an enlarged view showing a state of laminating the annular core members of FIG.
  • a punch P15 installed in the stripper 115 is for punching an annular core member from the magnetic plate member 200 in the above-described stage S14.
  • the rotary laminating apparatus 120 includes a die 121 that holds the annular core member punched out by the punch P15 with the side pressure of the inner peripheral portion thereof.
  • the first annular core member punched out by the punch P15 is held by the side pressure of the inner peripheral portion of the die 121, and the annular core member punched out thereafter is pushed by the punch P15 and placed on the first annular core member. Go stacked and fixed. In this way, the annular core members are sequentially laminated to form the iron core 1A.
  • the die 121 is rotatably supported by the lower mold 122 of the rotary laminating apparatus 120, and the die 121 is provided with a pulley 123.
  • a motor 125 is installed on the motor mounting portion 126 installed on the lower mold 122 of the rotary laminating apparatus 120, and a pulley 128 is installed on the motor shaft 127.
  • a belt 124 is engaged with the pulley 123 of the die 121 and the pulley 128 of the motor 125, and when the motor 125 is driven, the die 121 rotates through the pulley 128, the belt 124, and the pulley 123.
  • FIG. 29 shows a state in which the core 1A in a state where a predetermined number of annular core members are stacked is held by the inner peripheral portion of the die 121. By driving the motor 125 in this state, the die 121 rotates by a predetermined angle. .
  • FIG. 31 shows a process of forming the iron core 1A by rotating the die 121 in FIG. 29 by a predetermined angle and then punching and fixing the annular iron core member.
  • FIG. 32 shows a state in which the core 1A is completed by punching and fixing a predetermined number of annular core members.
  • the cores 1B and 1C in which a predetermined number of annular core members are stacked and fixed, are held on the inner periphery of the die 121 at the lower part of the core 1A in the process of being stacked and fixed, Eventually, it falls on the belt conveyor 129 and is carried.
  • FIG. 33 is a plan view showing the types of annular core members manufactured by the core manufacturing apparatus 100 of the present embodiment.
  • the annular core members M1 to M8 shown in FIG. 33 are based on the first and second annular core members A and B shown in FIG. 5, and have a concave and convex portion for rotation in the vicinity of the circumferential end of the yoke of the divided core piece.
  • the combination of the position of the open portion 10 that is not formed, the direction of the first shape portion (for example, convex portion) of the open portion 10 (hereinafter referred to as the direction of the open portion), and the direction of the joint is different.
  • the open portions 10 of the annular core members M1 to M8 indicate the cuts on the side where the uneven portions for rotation are not formed in the vicinity of the circumferential ends of the yoke portions of the divided core pieces of the annular core members.
  • the direction indicates the direction of the first shape portion (for example, a convex shape portion) at the end portion in the circumferential direction of the yoke portion of the divided core piece of the annular core member in which the uneven portion for rotation is formed in the vicinity thereof.
  • the first end portion in the first circumferential direction (counterclockwise direction) of the yoke of the divided core piece is the first shape portion.
  • the second end portion in the second circumferential direction forms a second shape portion (for example, a concave portion).
  • the third end portion of the yoke of the split core piece in the first circumferential direction forms a second shape portion (for example, a concave shape portion)
  • a fourth end portion in the second circumferential direction (clockwise direction) forms a first shape portion (for example, a convex shape portion).
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is a position (90-degree position) rotated by a predetermined angle from the reference position, and the orientation of the opening portion 10 is opposite. Clockwise direction.
  • the annular core member M2 is based on the second annular core member B, and the position of the opening portion 10 is a position (90 ° position) rotated by a predetermined angle from the reference position, and the direction of the opening portion 10 is counterclockwise. is there.
  • the annular core member M3 is based on the first annular core member A, and the position of the opening portion 10 is a position (90-degree position) rotated by a predetermined angle from the reference position, and the direction of the opening portion 10 is the clockwise direction.
  • the annular core member M4 is based on the second annular core member B, and the position of the opening portion 10 is a position (90 degrees position) rotated by a predetermined angle from the reference position, and the direction of the opening portion 10 is the clockwise direction. .
  • the annular core member M5 is based on the first annular core member A, the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the counterclockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the counterclockwise direction.
  • the position of the opening portion 10 is the reference position (0-degree position), and the direction of the opening portion 10 is the clockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • FIG. 34 is a diagram showing a process of processing the above-described annular core members M1 to M8 in the mold stage 110 of the iron core manufacturing apparatus 100 of the present embodiment.
  • the notch processing means processing for making a notch for separating the yoke portions of the annular core member.
  • joint bend processing means the process which forms the uneven
  • a through-hole is formed at the same position as the position of the caulking uneven portion formed in the stage S9 with respect to the lowermost annular core member formed by stacking and fixing the annular core members.
  • 0 degrees is the reference position of the outer peripheral portion of the annular core member in this example
  • 90 degrees is the position rotated by a predetermined angle from the reference position in this example
  • 10 positions are the reference positions (0 degree positions)
  • the remaining outer peripheral position excluding the position rotated by a predetermined angle from the reference position (90-degree position).
  • the punch represents the type of punch described above.
  • the annular core member M1 is manufactured through the following steps.
  • the punch P3 and the punch P4 are used to cut the reference position (0-degree position) and a cut for separating the yoke portions at a position rotated by a predetermined angle from the reference position (90-degree position).
  • the punch P5 cuts the cuts for separating the 10 yoke portions excluding the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portion at the reference position (0-degree position).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M2 is manufactured through the following steps.
  • the punch P1 and the punch P4 are used to process the cut for separating the reference position (0 degree position) and the yoke portion rotated by a predetermined angle from the reference position (90 degree position).
  • separating between 10 yoke parts except the reference position (0 degree position) and the position (90 degree position) rotated by the predetermined angle from the reference position is processed by punch P6.
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portion at the reference position (0-degree position).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M3 is manufactured through the following steps.
  • the punch P3 and the punch P2 are used to machine a cut for separating the reference position (0-degree position) and the yoke portion at a position rotated by a predetermined angle from the reference position (90-degree position).
  • the punch P5 cuts the cuts for separating the 10 yoke portions excluding the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portion at the reference position (0-degree position).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M4 is manufactured through the following steps.
  • the punch P1 and the punch P2 process a cut for separating the yoke position at the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • separating between 10 yoke parts except the reference position (0 degree position) and the position (90 degree position) rotated by the predetermined angle from the reference position is processed by punch P6.
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portion at the reference position (0-degree position).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M5 is manufactured through the following steps.
  • the punch P3 and the punch P4 are used to cut the reference position (0-degree position) and a cut for separating the yoke portions at a position rotated by a predetermined angle from the reference position (90-degree position).
  • the punch P5 cuts the cuts for separating the 10 yoke portions excluding the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portions at a position rotated by a predetermined angle from the reference position (position of 90 degrees).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M6 is manufactured through the following steps.
  • the punch P3 and the punch P2 are used to machine a cut for separating the reference position (0-degree position) and the yoke portion at a position rotated by a predetermined angle from the reference position (90-degree position).
  • separating between 10 yoke parts except the reference position (0 degree position) and the position (90 degree position) rotated by the predetermined angle from the reference position is processed by punch P6.
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portions at a position rotated by a predetermined angle from the reference position (position of 90 degrees).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M7 is manufactured through the following steps.
  • the punch P1 and the punch P4 are used to process the cut for separating the reference position (0 degree position) and the yoke portion rotated by a predetermined angle from the reference position (90 degree position).
  • the punch P5 cuts the cuts for separating the 10 yoke portions excluding the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portions at a position rotated by a predetermined angle from the reference position (position of 90 degrees).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • the annular core member M8 is manufactured through the following steps.
  • the punch P1 and the punch P2 process a cut for separating the yoke position at the reference position (0-degree position) and the position rotated by a predetermined angle from the reference position (90-degree position).
  • separating between 10 yoke parts except the reference position (0 degree position) and the position (90 degree position) rotated by the predetermined angle from the reference position is processed by punch P6.
  • the concave and convex portions for rotation are processed in the overlapping portion of the yoke portions at a position rotated by a predetermined angle from the reference position (position of 90 degrees).
  • the rotation uneven portion is processed in the overlapping portion of the 10 yoke portions excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position).
  • the cut process which processes the through-hole by punch P11 is performed with respect to the lowermost cyclic
  • 35 to 41 are perspective views showing the iron cores C1 to C7 manufactured by the iron core manufacturing apparatus 100 of the present embodiment, and the iron cores C1 to C7 are respectively combined with any of the above-described annular core members M1 to M8. At the same time, it is constituted by rotating lamination.
  • the iron core C1 shown in FIG. 35 is configured by alternately rotating and laminating annular core members M1 and annular core members M6.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position (90-degree position) rotated by a predetermined angle from the reference position. The direction is counterclockwise.
  • the position of the opening portion 10 is the reference position (0 degree position), and the direction of the opening portion 10 is the counterclockwise direction.
  • the iron core C1 has processed the 1st edge part in the position (90 degree position) rotated by the predetermined angle from the reference position of the cyclic
  • the annular core members M1 and M6 are predetermined by the rotary laminating device 120 so that the circumferential positions of the third end portion at the reference position (0 degree position) of the non-circular core member M6 are the same in the stacking direction. It is configured by alternately laminating by rotating an angle (90 degrees).
  • the ends of the divided iron cores that come into contact with each other in the open portion 10 have a planar shape, so that the iron core C1 in the open portion 10 can be easily opened and closed.
  • the annular core members M1 and M6 may be alternately rotated and stacked one by one, or may be alternately rotated and stacked every predetermined number (for example, 2 to 3).
  • reference numeral 15 indicates a state in which the annular core members are alternately stacked at the overlapping portions where the concave and convex portions for rotation are formed. The same applies to FIGS. 36 to 41.
  • An iron core C2 shown in FIG. 36 is formed by alternately laminating the annular core member M1 and the annular core member M6 to form an iron core portion C16, and alternately laminating the annular core member M3 and the annular core member M8. And the core portion C16 and the core portion C38 are laminated.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there.
  • the position of the opening portion 10 is the reference position (0 degree position), and the direction of the opening portion 10 is the counterclockwise direction.
  • the iron core part C16 processes the 1st end part in the position (90 degree position) rotated by the predetermined angle from the reference position of the cyclic
  • the annular core members M1 and M6 are rotated by the rotary laminating device 120 so that the circumferential positions of the third end portion at the reference position (0 degree position) of the non-circular core member M6 are the same in the stacking direction.
  • a predetermined angle (90 degrees) is rotated and alternately stacked.
  • the annular core member M3 is based on the first annular core member A, and the position of the opening 10 is at a position rotated by a predetermined angle from the reference position (90 ° position), and the direction of the opening 10 is clockwise. It is.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • the iron core portion C38 is formed by processing the second end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the annular core member M3 that has not processed the rotating uneven portion, and the rotating uneven portion.
  • the annular core members M3 and M8 are moved by the rotary laminating device 120 so that the circumferential positions of the fourth end portion at the reference position (0 degree position) of the non-circular core member M8 are the same in the stacking direction.
  • a predetermined angle (90 degrees) is rotated and alternately stacked.
  • the iron core C2 is formed by alternately laminating the iron core portions C16 and C38 so that the positions in the circumferential direction of the fourth end are the same in the laminating direction.
  • An iron core C3 shown in FIG. 37 is configured by alternately rotating and laminating annular core members M1 and annular core members M8.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there. Further, in the annular core member M8, based on the second annular core member B, the position of the opening portion 10 is the reference position (0 degree position), and the direction of the opening portion 10 is the clockwise direction.
  • the iron core C3 is processing the 1st edge part in the position (90 degree position) rotated by the predetermined angle from the reference position of the cyclic
  • the annular core members M1 and M8 are predetermined by the rotary laminating apparatus 120 so that the circumferential positions of the fourth end portion at the reference position (0 degree position) of the non-circular core member M8 are the same in the stacking direction. It is configured by alternately laminating by rotating an angle (90 degrees).
  • the iron core C4 shown in FIG. 38 forms an iron core portion C12 by alternately laminating the annular core member M1 and the annular iron core member M2, and forms an iron core portion C56 by alternately laminating the annular core member M5 and the annular iron core member M6.
  • the core portion C12 and the core portion C56 are alternately rotated and laminated.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there.
  • the annular core member M2 is based on the second annular core member B, and the position of the opening 10 is a position (0 degree position) rotated by a predetermined angle from the reference position, and the direction of the opening 10 is counterclockwise.
  • the core portion C12 is formed by processing the first end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the annular core member M1 that has not processed the rotating uneven portion, and the rotating uneven portion.
  • the annular core members M1 and M2 so that the circumferential positions of the third end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the non-circular annular core member M2 are the same in the stacking direction. Are alternately stacked.
  • the annular core member M5 is based on the first annular core member A, the position of the opening portion 10 is at the reference position (0 degree position), and the direction of the opening portion 10 is the counterclockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the counterclockwise direction.
  • the iron core part C56 has the 1st end part in the reference position (0 degree position) of the annular core member M5 which has not processed the uneven part for rotation, and the annular core member M6 which has not processed the uneven part for rotation.
  • the annular core members M5 and M6 are alternately laminated so that the circumferential end positions of the third end portion at the reference position (0 degree position) are the same position in the stacking direction.
  • the iron core portions C12 and C56 are alternately laminated at a predetermined angle (90 degrees) by the rotary laminating device 120 so that the circumferential positions of the third end portion of the third end portion are the same in the laminating direction. C4 is formed.
  • An iron core C5 shown in FIG. 39 forms an iron core portion C12 by alternately laminating annular core members M1 and annular core members M2, and forms an iron core portion C78 by alternately laminating annular core members M7 and annular core members M8.
  • the iron core portion C12 and the iron core portion C78 are alternately rotated and laminated.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there.
  • the annular core member M2 is based on the second annular core member B, and the position of the opening portion 10 is a position rotated by a predetermined angle from the reference position (90 ° position), and the direction of the opening portion 10 is counterclockwise.
  • the core portion C12 is formed by processing the first end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the annular core member M1 that has not processed the rotating uneven portion, and the rotating uneven portion.
  • the annular core members M1 and M2 so that the circumferential positions of the third end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the non-circular annular core member M2 are the same in the stacking direction. Are alternately stacked.
  • the position of the opening portion 10 is at the reference position (0 degree position), and the direction of the opening portion 10 is the clockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • the core portion C78 includes a second end portion at the reference position (0-degree position) of the annular core member M7 that does not process the rotating uneven portion, and an annular core member M8 that does not process the rotating uneven portion.
  • the annular core members M7 and M8 are alternately stacked so that the circumferential positions of the fourth end at the reference position (0-degree position) are the same in the stacking direction.
  • the iron core portions C12 and C78 are alternately laminated by rotating them by a predetermined angle (90 degrees) by the rotary laminating apparatus 120 so that the circumferential positions of the fourth end portion of the fourth end portion are the same in the laminating direction. C5 is formed.
  • the end portions of the divided iron cores that come into contact with each other at the open portion 10 have a stepped shape, so that the iron core C5 can be easily positioned in the open portion 10 in the stacking direction. Further, compared with the manufacture of the iron cores C1 to C3, the number of rotation laminations by the rotation lamination apparatus 120 is reduced, so that the productivity is improved.
  • the iron core C6 shown in FIG. 40 forms the iron core portion C14 by alternately laminating the ring iron core members M1 and the ring iron core member M4, and forms the iron core portion C58 by alternately laminating the ring iron core members M5 and the ring iron core member M8.
  • the core portion C14 and the core portion C58 are alternately rotated and laminated.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there.
  • the annular core member M4 is based on the second annular core member B, and the position of the opening 10 is a position rotated by a predetermined angle from the reference position (90 ° position), and the direction of the opening 10 is clockwise. It is. And the iron core part C14 processes the 1st edge part in the position (90 degree position) rotated by the predetermined angle from the reference position of the cyclic
  • annular core members M1 and M4 so that the circumferential positions of the fourth end at the position (90-degree position) rotated by a predetermined angle from the reference position of the non-circular annular core member M4 are the same in the stacking direction. Are alternately stacked.
  • the annular core member M5 is based on the first annular core member A, the position of the opening portion 10 is at the reference position (0 degree position), and the direction of the opening portion 10 is the counterclockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • the core portion C58 includes a first end portion at a reference position (0-degree position) of the annular core member M5 that has not processed the rotating uneven portion, and an annular core member M8 that has not processed the rotating uneven portion.
  • the annular core members M5 and M8 are alternately stacked so that the circumferential positions of the fourth end at the reference position (0 degree position) are the same in the stacking direction.
  • the iron core portions C14 and C58 are alternately rotated by a predetermined angle (90 degrees) by the rotary laminating device 120 so that the circumferential positions of the fourth end portion are the same in the laminating direction, thereby alternately laminating the iron core C6. Is formed.
  • the annular core members M1, M4, M5 and M6 constituting the iron core C6 since the cut direction of the annular core members M1, M4, M5 and M6 constituting the iron core C6 is the same direction, the annular core members M1, M4, M5 and M8, that is, the iron core C6.
  • the shape accuracy is stable. Further, compared with the manufacture of the iron cores C1 to C3, the number of rotation laminations by the rotation lamination apparatus 120 is reduced, so that the productivity is improved.
  • An iron core C7 shown in FIG. 41 forms an iron core portion C12 by alternately laminating annular core members M1 and annular core members M2, and forms an iron core portion C56 by alternately laminating annular core members M5 and annular core members M6. Then, the annular core member M3 and the annular core member M4 are alternately laminated to form the iron core portion C34, the annular iron core member M7 and the annular core member M8 are alternately laminated to form the iron core portion C78, and the iron core portion C12. , C56, C34, and C78 are rotationally stacked.
  • the annular core member M1 is based on the first annular core member A, and the position of the opening portion 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening portion 10 is counterclockwise. is there.
  • the annular core member M2 is based on the second annular core member B, and the position of the opening portion 10 is a position rotated by a predetermined angle from the reference position (90 ° position), and the direction of the opening portion 10 is counterclockwise.
  • the core portion C12 is formed by processing the first end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the annular core member M1 that has not processed the rotating uneven portion, and the rotating uneven portion.
  • annular core members M1 and M2 so that the circumferential positions of the third end portion at a position (90-degree position) rotated by a predetermined angle from the reference position of the non-circular annular core member M2 are the same in the stacking direction. Are alternately stacked.
  • the annular core member M5 is based on the first annular core member A, the position of the opening 10 is at the reference position (0 degree position), and the direction of the opening 10 is the counterclockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the counterclockwise direction.
  • the iron core part C56 has the 1st end part in the reference position (0 degree position) of the annular core member M5 which has not processed the uneven part for rotation, and the annular core member M6 which has not processed the uneven part for rotation.
  • the annular core members M5 and M6 are alternately stacked so that the circumferential position of the third end portion at the reference position (0 degree position) is the same position in the stacking direction.
  • the annular core member M3 is based on the first annular core member A, and the position of the opening 10 is at a position rotated by a predetermined angle from the reference position (90-degree position), and the direction of the opening 10 is the clockwise direction.
  • the annular core member M4 is based on the second annular core member B, and the position of the opening 10 is a position rotated by a predetermined angle from the reference position (90 ° position), and the direction of the opening 10 is clockwise. It is.
  • the iron core part C34 processes the 2nd end part in the position (90 degree position) rotated by the predetermined angle from the reference position of the cyclic
  • the annular core members M3 and M4 so that the circumferential positions of the fourth end located at a position (90-degree position) rotated by a predetermined angle from the reference position of the non-circular annular core member M2 are the same in the stacking direction. Are alternately stacked.
  • the annular core member M7 is based on the first annular core member A, the position of the opening 10 is at the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • the position of the opening 10 is the reference position (0 degree position), and the direction of the opening 10 is the clockwise direction.
  • the core portion C78 includes a second end portion at the reference position (0-degree position) of the annular core member M7 that does not process the rotating uneven portion, and an annular core member M8 that does not process the rotating uneven portion.
  • the annular core members M7 and M8 are alternately stacked so that the circumferential positions of the fourth end at the reference position (0-degree position) are the same in the stacking direction.
  • the core C7 is formed by rotating the core portions C12, C56, C34, and C78 by rotating them by a predetermined angle (90 degrees) by the rotary stacking device 120 so that the respective circumferential positions are the same in the stacking direction.
  • the iron core manufacturing apparatus shown in FIG. 21 As described above, in the iron core manufacturing apparatus shown in FIG. 21 according to the present embodiment, if the punch shown in FIG. 22 is provided and the rotary laminating apparatus shown in FIGS. A plurality of types of iron cores C1 to C7 shown in FIG. 41 can be manufactured. However, the iron cores C1 to C7 can also be manufactured by using iron core manufacturing apparatuses each having a punch shown below.
  • FIG. 42 is a view showing a punch for manufacturing the iron core C1 of FIG.
  • the iron core C1 is configured by alternately rotating and laminating annular core members M1 and annular core members M6.
  • a punch P20 is a punch for processing a cut between yoke portions of the annular core member M1, and is a reference position (0 degree position), a position rotated by a predetermined angle from the reference position (90 degree position), and a reference position. And in the outer peripheral position (10 places in this example) excluding the position rotated by a predetermined angle from the reference position, it has a blade part p20 for making a convex cut in the first circumferential direction (counterclockwise direction).
  • the punch P21 is a punch for processing a cut between yoke portions of the annular core member M6, and has a first shape (for example, a convex shape) in a first circumferential direction (counterclockwise direction) at a reference position (0 degree position).
  • the punch P22 has a first shape portion (for example, a convex shape portion) and a second shape at a first end portion in the first circumferential direction of the yoke of the annular core member at a position (90-degree position) rotated by a predetermined angle from the reference position.
  • a protrusion p22 for forming a rotation uneven portion is provided at a portion where the first shape portion (for example, the convex shape portion) of the fourth end portion in the circumferential direction overlaps.
  • the punch P23 has a first shape portion (for example, a convex shape portion) at the first circumferential end portion of the yoke of the annular core member at the reference position (0 degree position) and a second circumferential direction fourth portion.
  • a protruding portion p23 for forming a rotating uneven portion is provided at a portion where the first shape portion (for example, a convex shape portion) at the end of the portion overlaps.
  • the punch P24 is the remaining outer peripheral position excluding the reference position (0 degree position) and the position rotated by a predetermined angle from the reference position (90 degree position), and the first circumferential direction first yoke of the annular core member.
  • Projections p24 (10 locations in this example) are provided.
  • the iron core C1 can be manufactured with fewer punches than the punch shown in FIG. 42
  • FIG. 43 is a view showing a punch for manufacturing the iron core C3 of FIG.
  • the iron core C3 is configured by alternately rotating and laminating annular core members M1 and annular core members M8.
  • a punch P30 is a punch for processing a cut between the yoke portions of the annular core member M1, and includes a reference position (0 degree position), a position rotated by a predetermined angle from the reference position (90 degree position), and a reference position.
  • the blade portion p30 for making a first shape for example, a convex shape in the first circumferential direction (counterclockwise direction).
  • the punch P31 is a punch for processing a cut between the yoke portions of the annular core member M8, and is based on the reference position (0 degree position), the position rotated by a predetermined angle from the reference position (90 degree position), and the reference position and the reference position.
  • the outer peripheral position (10 positions in this example) excluding the position rotated by a predetermined angle it has a blade part p31 for cutting a first shape (for example, convex shape) in the second circumferential direction (clockwise direction). .
  • the punch P32, punch P33 and punch P34 are the same as the punch P22, punch P23 and punch P24 shown in FIG.
  • the iron core C3 can be manufactured with fewer punches than the punch shown in FIG. 43
  • the iron core C6 can be manufactured with fewer punches than the punch shown in FIG.
  • the iron core C6 is formed by alternately laminating the annular core member M1 and the annular core member M4 to form the iron core portion C14, and alternately laminating the annular core member M5 and the annular core member M8 to form the iron core portion C58.
  • C14 and iron core portion C58 are alternately laminated by rotation.
  • the punch P30 is used for processing a cut between the yoke portions of the annular core members M1 and M5
  • the punch P31 is used for processing a cut between the yoke portions of the annular core members M4 and M8. .
  • FIG. 44 is a diagram showing a punch for manufacturing the iron core C4 of FIG.
  • the iron core C4 is formed by alternately laminating the annular core member M1 and the annular core member M2 to form the iron core portion C12, and alternately laminating the annular core member M5 and the annular core member M6 to form the iron core portion C56.
  • C12 and iron core portion C56 are alternately laminated by rotation.
  • a punch P40 is a punch for processing a cut between the yoke portions of the annular core members M1 and M5, and is a reference position (0 degree position), a position rotated by a predetermined angle from the reference position (90 degree position), and A blade that cuts a first shape (for example, a convex shape) in a first circumferential direction (counterclockwise direction) at an outer peripheral position (10 positions in this example) excluding a reference position and a position rotated by a predetermined angle from the reference position. Part p30.
  • the punch P41 is a punch for processing a cut between the yoke portions of the annular core member M2, and the first punch 41 in the first circumferential direction (counterclockwise direction) at a position rotated by a predetermined angle from the reference position (position 90 degrees).
  • the second circumferential direction clockwise at the reference position (0-degree position) and the outer peripheral position (10 positions in this example) excluding the reference position and a position rotated by a predetermined angle from the reference position.
  • a blade portion p41 is provided in the first direction (for example, a convex shape) in the direction of rotation.
  • the punch P42 is a punch for processing a cut between the yoke portions of the annular core member M6, and has a first shape (for example, a convex shape) in a first circumferential direction (counterclockwise direction) at a reference position (0 degree position).
  • a first shape for example, a convex shape
  • a blade portion p42 for cutting a first shape (for example, a convex shape) in the rotation direction is provided.
  • the punch P43, the punch P44, and the punch P45 are the same as the punch P22, the punch P23, and the punch P24 shown in FIG.
  • the iron core C4 can be manufactured with fewer punches than the punch shown in FIG. 44
  • FIG. 45 is a view showing a punch for manufacturing the iron core C5 of FIG.
  • the iron core C5 is formed by alternately laminating the annular core member M1 and the annular core member M2 to form the iron core portion C12, and alternately laminating the annular core member M7 and the annular core member M8 to form the iron core portion C78. C12 and iron core portion C78 are alternately rotated and laminated.
  • a punch P50 is a punch for processing a cut between the yoke portions of the annular core member M1, and includes a reference position (0 degree position), a position rotated by a predetermined angle from the reference position (90 degree position), and a reference position.
  • the blade portion p50 for making a first shape for example, convex shape
  • the punch P51 is a punch that cuts the cut between the yoke portions of the annular core member M2.
  • the punch P51 has a first circumferential direction (counterclockwise direction) at a position rotated by a predetermined angle from the reference position (90-degree position).
  • the second circumferential direction (clockwise) at the reference position (0-degree position) and the outer peripheral position (10 positions in this example) excluding the reference position and a position rotated by a predetermined angle from the reference position.
  • a blade portion p51 is provided in the first direction (for example, a convex shape) in the turning direction.
  • the punch P52 is a punch for processing a cut between the yoke portions of the annular core member M7, and has a first shape (for example, a convex shape) in the second circumferential direction (clockwise direction) at the reference position (0 degree position).
  • a first circumferential direction (counterclockwise) is formed at an outer peripheral position (10 positions in this example) excluding a position (90 degrees position) rotated by a predetermined angle from the reference position and a reference position and a position rotated by a predetermined angle from the reference position.
  • a blade portion p52 for cutting a first shape (for example, a convex shape) in the rotation direction is provided.
  • the punch P53 is a punch for processing a cut between the yoke portions of the annular core member M8, and is based on the reference position (0 degree position), the position rotated by a predetermined angle from the reference position (90 degree position), and the reference position and the reference position.
  • the outer peripheral position (10 positions in this example) excluding the position rotated by a predetermined angle it has a blade part p53 for cutting a first shape (for example, convex shape) in the second circumferential direction (clockwise direction). .
  • the punch P54, punch P55, and punch P56 are the same as the punch P22, punch P23, and punch P24 shown in FIG.
  • the iron core C5 can be manufactured with fewer punches than the punch shown in FIG. 45.
  • a plurality of divided iron cores are rotatably connected via the rotating irregularities, and the plurality of divided iron cores are arranged in an annular shape. Therefore, the phase of torque pulsation caused by the difference in shape asymmetry of the inner peripheral shape of the split core and the magnetic resistance of the split core depends on the rotation angle of the rotary stack. Thus, it can be different for each laminate. For this reason, the rotational pulsation component can be canceled as a whole iron core by reducing the phase pulsation of each laminated body to a predetermined relationship by rotating lamination, and the torque pulsation component can be reduced.
  • the rotation angle of another stacked body with respect to one stacked body is ⁇ .
  • the example of rotating lamination so as to be / 2 has been described, but the number of rotor poles, the number of status lots, the height of each laminated body, the number of laminated bodies, and the rotation angle for rotating lamination are not limited to this. It is applicable to the extent applicable to the methods and conditions that have been explained.
  • the rotation angle of the laminated body is determined by the method described so far.
  • the rotation angles of the other laminates with respect to one laminate are ⁇ / 6 and ⁇ / 3, respectively.
  • the first end portion having the first shape in the first circumferential direction and the second end portion having the second shape in the second circumferential direction are provided.
  • One magnetic sheet so that the first end of the yoke part of the first split core piece and the second end of the yoke part of the other first split core piece adjacent in the circumferential direction are in contact with each other.
  • a first annular core member A is formed by punching from a plate material in an annularly arranged state, Rotating on the surface on the fourth end side with a third end having a second shape in the first circumferential direction and a fourth end having a first shape in the second circumferential direction
  • a plurality of second divided core pieces each having a yoke portion provided with an uneven portion and a tooth portion protruding radially inward from the yoke portion are connected to the third end of the yoke portion of one second divided core piece. Punched out from a single magnetic plate in an annular arrangement so that the portion and the fourth end of the yoke portion of the other second divided core piece adjacent in the circumferential direction are in contact with each other.
  • An annular core member B is formed, The first annular core member A and the second annular core member B are stacked concentrically such that the first end having the first shape and the fourth end having the first shape overlap.
  • the following steps are included. . That is, of the first end portion of the first annular core member A, the first or second shape is formed at the reference position, the position rotated by ⁇ / 6 from the reference position, and the position rotated by ⁇ / 3 from the reference position.
  • the cut of the first or second shape is made at the reference position, the position rotated by ⁇ / 6 from the reference position, and the position rotated by ⁇ / 3 from the reference position.
  • the first end portion having the first shape in the first circumferential direction and the second end portion having the second shape in the second circumferential direction are provided.
  • a plurality of first divided core pieces each having a yoke portion provided with a concavo-convex portion for rotation on the surface on the first end side and a tooth portion projecting radially inward from the yoke portion One magnetic plate material so that the first end of the yoke portion of one divided core piece and the second end of the yoke portion of the other first divided core piece adjacent in the circumferential direction are in contact with each other
  • To form a first annular core member A by punching into an annularly arranged state from Rotating on the surface on the fourth end side with a third end having a second shape in the first circumferential direction and a fourth end having a first shape in the second circumferential direction
  • the apparatus for manufacturing an iron core having a structure that can rotate between the first and second divided core pieces adjacent to each other in the circumferential direction by connecting the overlapping portions with the concave and convex portions for rotation includes the following configuration. .
  • the first or second shape is formed at the reference position, the position rotated by ⁇ / 6 from the reference position, and the position rotated by ⁇ / 3 from the reference position.
  • a first cut is made by cutting a cut and processing a cut of a first shape at a reference position, a position rotated by ⁇ / 6 from the reference position, and a circumferential position excluding a position rotated by ⁇ / 3 from the reference position.
  • punch Of the fourth end portion of the second annular core member B, the cut of the first or second shape is made at the reference position, the position rotated by ⁇ / 6 from the reference position, and the position rotated by ⁇ / 3 from the reference position.
  • a second punch for processing a slit that processes and cuts a first-shaped cut at a circumferential position excluding a reference position, a position rotated by ⁇ / 6 from the reference position, and a position rotated by ⁇ / 3 from the reference position; , 1st rotation which processes the uneven
  • the present invention relates to a manufacturing method and a manufacturing apparatus for an iron core composed of divided iron cores, and is particularly used as a method and a manufacturing apparatus for manufacturing an iron core used for a stator of a rotating electrical machine in which pulsation of torque is suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 開放部(10)の位置が基準位置から90度回転した位置にあり開放部(10)の向きが反時計回り方向である環状鉄心部材(M1)と、開放部(10)の位置が基準位置であり開放部(10)の向きが時計回り方向である環状鉄心部材(M8)とを用意し、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から90度回転した位置にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置にある第4の端部の周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM8を回転積層装置(120)により所定角度(90度)回転させて交互に積層して鉄心(C3)を構成する。

Description

鉄心の製造方法及び鉄心の製造装置
 この発明は、隣接する分割鉄心同士を回転用凹凸部を介して回動可能に連結すると共にこれらの分割鉄心を円環状に配設して構成する鉄心の製造方法及び鉄心の製造装置に関する。
 例えば、特許文献1に開示されるように、分割された鉄心(分割鉄心)は、プレス金型により鋼板を打ち抜いて分割鉄心片を製作し、複数の分割鉄心片を積層してかしめにより固定して製作する。ステータ鉄心は、分割鉄心の磁極ティース(磁極歯部)に絶縁シートを介してコイルを巻き付け、コイルを巻き付けた分割鉄心を環状に組み立て、環状に組み立てた分割鉄心をフレーム内に固定することにより製作される。
 分割鉄心はばらばらの状態で巻線することができるので、分割されていない一体型鉄心への巻線と比較すると、コイルを巻きつけるノズルが通過するスペースを十分に確保でき、高密度にコイルを装着することができる。したがって、コイルの巻数増加によるトルクの向上や、より断面積の大きなコイルの装着による電気抵抗の低減などの設計が可能となり、モータのトルクや効率などの性能を向上できるという効果がある。
特許第3461552号公報(第3頁、図1)
 例えば、工作機、乗用車の電動パワーステアリング、エレベータなどの駆動モータにおいて、その駆動精度向上、快適性向上のためにトルク脈動を小さく抑制したいという要求がある。トルク脈動の原因としては、ステータ鉄心の内周形状の誤差、ステータ鉄心の磁気抵抗のばらつき、ロータの起磁力のばらつき、ステータとロータの軸ずれなどさまざまな要素がある。
 分割鉄心を組み立てて環状のステータ鉄心を得た場合に、分割鉄心同士の境界が当接して各分割鉄心相互の位置が決まる。しかし、分割鉄心の加工精度や、組み立て誤差により分割鉄心同士の内周形状にわずかな段差が発生する。分割鉄心の内周形状にわずかな段差が存在すると、ステータとロータの間で構成される磁路のパーミアンスが局部的に大きくなりトルク脈動を増加させるという問題が生じる。
 分割鉄心の組み立て精度を向上させるために、分割鉄心を回転可能の連結型分割鉄心にして、組み立て精度の向上を図る方法がある。しかし、この場合も連結部の回転中心位置の誤差や分割鉄心自体の形状の不ぞろい等によって内周形状に段差が生じる。トルク脈動低減への要求が厳しい場合は、製作時の加工精度の一層の向上、又は組み立て後の内周研削仕上げ等の必要が生じ、製造コストが大きくなるという問題がある。
 また、鋼板は圧延方向とそれに垂直な方向で磁気抵抗が異なる磁気異方性を有する。そのため、1枚の鋼板から同じ向きに揃った歯部を有する分割鉄心を複数個並べて打ち抜いた場合に、それらの分割鉄心を円環状に並べてステータ鉄心を組み立てたとき、歯部の向きによって分割鉄心の磁気抵抗が相違し、トルク脈動を増加させてしまうという問題がある。
 本願に係る発明は、隣接する分割鉄心同士を回転用凹凸部を介して回動可能に連結すると共にこれらの分割鉄心を円環状に配設して構成する鉄心に関するものであり、分割鉄心の内周形状の段差等の形状非対称性や分割鉄心の磁気抵抗の相違から発生するトルク脈動を低減することができる鉄心の製造方法及び鉄心の製造装置を提供する。
 この発明に係る鉄心の製造方法は、第1の周方向に第1の形状を有する第1の端部及び第2の周方向に上記第1の形状とは異なる第2の形状を有する第2の端部を備えて上記第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の上記第1の分割鉄心片の上記ヨーク部の上記第1の端部と、周方向に隣り合う他方の上記第1の分割鉄心片の上記ヨーク部の上記第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材を形成し、
上記第1の周方向に上記第2の形状を有する第3の端部及び上記第2の周方向に上記第1の形状を有する第4の端部を備えて上記第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の上記第2の分割鉄心片の上記ヨーク部の上記第3の端部と、周方向に隣り合う他方の上記第2の分割鉄心片の上記ヨーク部の上記第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材を形成し、
上記第1の環状鉄心部材と上記第2の環状鉄心部材とを、上記第1の形状を有する上記第1の端部と上記第1の形状を有する上記第4の端部が重なり合うように同心状に積層し、上記重なり合った部分を上記回転用凹凸部により連結することにより、周方向に隣接する上記第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する方法であって、
上記第1の環状鉄心部材の上記第1の端部のうち、基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する第1の工程と、
上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する第2の工程と、
上記基準位置又は上記基準位置から所定角度回転した位置のいずれか一方を除いた周方向位置において、上記第1の環状鉄心部材の上記第1の端部側のヨーク表面上及び上記第2の環状鉄心部材の上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する第3の工程と、
上記回転用凹凸部を加工していない上記第1の環状鉄心部材の上記第1の端部又は上記回転用凹凸部を加工していない上記第2の環状鉄心部材の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記第1の環状鉄心部材又は上記第2の環状鉄心部材を上記所定角度回転させて積層する第4の工程を備えたものである。
 この発明に係る鉄心の製造装置は、第1の周方向に第1の形状を有する第1の端部及び第2の周方向に上記第1の形状とは異なる第2の形状を有する第2の端部を備えて上記第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の上記第1の分割鉄心片の上記ヨーク部の上記第1の端部と、周方向に隣り合う他方の上記第1の分割鉄心片の上記ヨーク部の上記第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材を形成し、
上記第1の周方向に上記第2の形状を有する第3の端部及び上記第2の周方向に上記第1の形状を有する第4の端部を備えて上記第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の上記第2の分割鉄心片の上記ヨーク部の上記第3の端部と、周方向に隣り合う他方の上記第2の分割鉄心片の上記ヨーク部の上記第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材を形成し、
上記第1の環状鉄心部材と上記第2の環状鉄心部材とを、上記第1の形状を有する上記第1の端部と上記第1の形状を有する上記第4の端部が重なり合うように同心状に積層し、上記重なり合った部分を上記回転用凹凸部により連結することにより、周方向に隣接する上記第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する装置であって、
上記第1の環状鉄心部材の上記第1の端部のうち、基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する上記第1の切れ目加工用パンチと、
上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する上記第2の切れ目加工用パンチと、
上記基準位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第1の回転用凹凸部加工用パンチと、
上記基準位置から所定角度回転した位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第2の回転用凹凸部加工用パンチと、
上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第3の回転用凹凸部加工用パンチとを備えた金型ステージと、
上記回転用凹凸部を加工していない上記第1の環状鉄心部材の上記第1の端部又は上記回転用凹凸部を加工していない上記第2の環状鉄心部材の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記第1の環状鉄心部材又は上記第2の環状鉄心部材を上記所定角度回転させて積層する回転積層装置を備えたものである。
 本発明に係る鉄心の製造方法及び鉄心の製造装置によれば、隣接する分割鉄心同士を回転用凹凸部を介して回動可能に連結すると共にこれらの分割鉄心を円環状に配設して構成する鉄心において、環状鉄心部材を回転積層することにより構成したので、分割鉄心の内周形状の段差等の形状非対称性や分割鉄心の磁気抵抗の相違から発生するトルク脈動を低減することができる。
この発明の実施の形態による回転電機のステータを示す平面図である。 この発明の実施の形態による回転電機の磁石付ロータの断面図である。 この発明の実施の形態によるステータを構成する鉄心の平面図である。 この発明の実施の形態によるステータを構成する鉄心の側面図である。 この発明の実施の形態による鉄心を製造する工程を簡略に示す平面図である。 この発明の実施の形態による鉄心を示す断面図である。 この発明の実施の形態による鉄心に巻線を示す平面図である。 ロータの分布起磁力モデルを示す図である。 ロータの集中起磁力モデルを示す図である。 ステータ内周径分布を示す図である。 (θ)の計算結果を示す図である。 曲線A(θ)とベクトルYを示す図である。 回転積層による鉄心構造のモデルを示す図である。 鉄心のスロット角度による回転角設定の条件を示す図である。 自動ピッチ送り式の金型加工による鉄心の製造工程を示す図である。 サンプルの鉄心の内周形状の計測結果を示す図である。 サンプルの鉄心のベクトルYの大きさとコギングトルク2f成分を計測した結果を表す図である。 サンプルの鉄心のベクトルYの大きさとコギングトルク2f成分の大きさの関係を示す図である。 サンプル(3)の鉄心の各層のベクトルYと合成ベクトルを示す図である。 サンプル(4)の鉄心の各層のベクトルYと合成ベクトルを示す図である。 この発明の実施の形態による鉄心製造装置の概略を示す平面図である。 この発明の実施の形態の金型ステージで使用されるパンチを示す底面図である。 この発明の実施の形態の金型ステージのステージS1~S2を説明するための図である。 この発明の実施の形態の金型ステージのステージS3~S6を説明するための図である。 この発明の実施の形態の金型ステージのステージS7~S8を説明するための図である。 この発明の実施の形態の金型ステージのステージS9を説明するための図である。 この発明の実施の形態の金型ステージのステージS10~S12を説明するための図である。 この発明の実施の形態の金型ステージのステージS13~S14を説明するための図である。 この発明の実施の形態による回転積層装置を示す断面図である。 この発明の実施の形態の回転積層装置による環状鉄心部材の積層の様子を示す拡大断面図である。 この発明の実施の形態による回転積層装置の動作を示す断面図である。 この発明の実施の形態による回転積層装置の動作を示す断面図である。 この発明の実施の形態の鉄心製造装置により製造される環状鉄心部材の種類を示す平面図である。 この発明の実施の形態の鉄心製造装置により環状鉄心部材を加工する工程を示した図である。 この発明の実施の形態による鉄心C1を示す斜視図である。 この発明の実施の形態による鉄心C2を示す斜視図である。 この発明の実施の形態による鉄心C3を示す斜視図である。 この発明の実施の形態による鉄心C4を示す斜視図である。 この発明の実施の形態による鉄心C5を示す斜視図である。 この発明の実施の形態による鉄心C6を示す斜視図である。 この発明の実施の形態による鉄心C7を示す斜視図である。 鉄心C1を製造するためのパンチを示す図である。 鉄心C3、C6を製造するためのパンチを示す図である。 鉄心C4を製造するためのパンチを示す図である。 鉄心C5を製造するためのパンチを示す図である。
実施の形態1.
 図1は、この発明の実施の形態による回転電機のステータを示す平面図である。図1において、回転電機のステータは、ヨーク部とこのヨーク部からステータの径方向内側に向かって突き出た歯部を有する分割鉄心2を複数個円環状に並べて形成したステータ鉄心1と、分割鉄心2の歯部に設けた絶縁樹脂製の巻き枠3と、この巻き枠3を介して分割鉄心2の歯部に巻装されたコイル4と、ステータ鉄心1の外側に取り付けられたフレーム5を備えている。分割鉄心2は、後述するように鋼板等の磁性板材をステータの軸方向に積層して構成されている。なお、図1のステータ鉄心1は一例として12個の分割鉄心2を有する場合を示しているが、分割鉄心2の個数はこれに限るものではない。
 図2は、この発明の実施の形態による回転電機の磁石付ロータの断面図である。図2において、回転電機のロータは、ロータ鉄心7と、ロータ鉄心7の外側に設けられたリング状の磁石6と、ロータ鉄心7の中心部に設けられロータの回転軸となるシャフト8を備えている。リング状の磁石6は、周方向に所定の間隔でN極、S極(図示せず)が交互に形成されている。ロータ鉄心7は、ステータ鉄心1と同様に鋼板等の磁性板材を積層して構成されている。図1に示したステータの内側に図2のロータが組み合わされて回転電機が構成される。
 図3及び図4はステータを構成する鉄心の平面図及び側面図である。図3及び図4に示すように、分割鉄心2は、磁性板材からなる分割鉄心片2aを複数枚積層して構成される。分割鉄心片2aは、ヨーク部2bと、このヨーク部2bから径方向内側に突き出た歯部2cを有する。また、分割鉄心片2aは、そのヨーク部2bの第1の周方向(図3の反時計回り方向)の第1の端部2hの形状が、そのヨーク部2bの第2の周方向(図3の時計回り方向)の第2の端部2iの形状とは異なったものになっている。例えば、分割鉄心片2aのヨーク部2bの第1の端部2hに第1の形状部である凸形状部を、第2の端部2iに第2の形状部である凹形状部を形成している。そして、周方向に隣接する分割鉄心片2aの第1の端部2hの第1の形状部(例えば凸形状部)と第2の端部2iの第2の形状部(例えば凹形状部)とは当接されるようになっている。
 分割鉄心片2aの中央部表面には例えば2個のかしめ用に形成された凹凸部2d(一方の表面には凹部、その裏面には凸部ということで凹凸部と呼ぶ)が形成されており、複数枚の分割鉄心片2aを積層し、このかしめ用の凹凸部2dにより、積層された分割鉄心片2aを相互に固定することにより分割鉄心2が構成される。また、環状に配列された複数の分割鉄心2のうち所定の分割鉄心2a1の第1の端部2h1を除いて、分割鉄心片2aの第1の端部2hの第1の形状部(例えば凸形状部)には、その表面に前記凹凸部2dと同様な構成の回転用凹凸部2eが形成されている。所定の分割鉄心2a1の第1の端部2h1の第1の形状部(例えば凸形状部)には、その表面に上記回転用凹凸部2eが形成されていない。
 本実施の形態では、周方向に隣接する分割鉄心2の当接部において、分割鉄心片2aの第1端部2hの第1の形状部(例えば凸形状部)が積層方向において重なり合うように配設されている。この重なり部において積層方向に回転用凹凸部2eを形成し、この回転用凹凸部2eでかしめることにより、上記重なり合う部分で積層方向に隣接する分割鉄心片2a同士が互いに連結される。そして、周方向に隣接する分割鉄心2同士は、回転用凹凸部2eを軸にして相互に回動することができるように構成される。なお、所定の分割鉄心片2a1の第1の端部2h1には凹凸部2eが形成されておらず、後述するように当該所定の分割鉄心片2a1と積層方向に重なり合う分割鉄心片2aの第4の端部の第1の形状部(例えば凸形状部)にも凹凸部2eが形成されていない。そのため、第1の端部2h1を有する分割鉄心2と、それに周方向に隣接する分割鉄心2とは、図3の開放部10の位置で相互に分離することができる。
 図5は分割鉄心から構成される鉄心を製造する工程を簡略に示す平面図であり、第1の環状鉄心部材A及び第2の環状鉄心部材Bと、これら第1及び第2の環状鉄心部材A、Bを積層して構成した鉄心Cを示す平面図である。第1及び第2の環状鉄心部材A、Bは、それぞれ1枚の電磁鋼板やSPCEなどの薄型鋼板(以下、磁性板材と称する)から円環状にプレス打ち抜き加工することにより製作される。第1及び第2の環状鉄心部材A、Bは、それぞれ分割鉄心片2a毎にカットライン2fと呼ばれる切れ目で分割されている。ステータ鉄心Cは、第1の環状鉄心部材Aと第2の環状鉄心部材Bを積層して構成している。
 第1の環状鉄心部材Aにおいて、各分割鉄心片2aのヨーク2bは、第1の周方向(反時計回り方向)の第1の端部が第1の形状部(例えば凸形状部)を成し、第2の周方向(時計回り方向)の第2の端部が第2の形状部(例えば凹形状部)を成している。一方、第2の環状鉄心部材Bにおいて、各分割鉄心片2aのヨーク2bは、第1の周方向(反時計回り方向)の第3の端部が第2の形状部(例えば凹形状部)を成し、第2の周方向(時計回り方向)の第4の端部が第1の形状部(例えば凸形状部)を成している。第1及び第2の環状鉄心部材A、Bを積層すると、積層方向に対して各分割鉄心片2aの第1の形状部(例えば凸形状部)が重なり合う部分(以下、「重なり部」と呼ぶ)2gができる。
 第1及び第2の環状鉄心部材A,Bの各分割鉄心片2aの中央部表面には例えば2個のかしめ用に形成された凹凸部2dが形成されている。積層方向に隣接する分割鉄心片2a同士は、このかしめ用の凹凸部2dにより固定される。また、第1の環状鉄心部材Aの分割鉄心片2aのヨーク2bの第1の端部の第1の形状部(例えば凸形状部)には、その表面に回転用凹凸部2eが形成されている。さらに、第2の環状鉄心部材Bの分割鉄心片2aのヨーク2bの第4の端部の第1の形状部(例えば凸形状部)には、その表面に回転用凹凸部2eが形成されている。ここで、第1の環状鉄心部材Aのうち所定の分割鉄心片2aの第1の端部2h1には回転用凹凸部2eが形成されていない。また、第2の環状鉄心部材Bのうち所定の分割鉄心片2aの第4の端部2h2には凹凸部2eが形成されていない。そして、第1の環状鉄心部材Aの所定の分割鉄心片2aの第1の端部2h1と、第2の環状鉄心部材Bの所定の分割鉄心片2aの第4の端部2h2とは、積層方向に対して相互に重なり部を有する様に配設されている。そして、当該重なり部において周方向に隣接する分割鉄心2同士を分離することができ、当該分離できる部分を開放部10と呼ぶ。
 図6は第1及び第2の環状鉄心部材A、Bを積層したときの凹凸部2d、凹凸部2eを通る円周線で切ったときの断面図を示したものである。図6に示すように、また、図3から図5でも述べたように、第1の環状鉄心部材Aと第2の環状鉄心部材Bが積層された場合に、積層方向に隣接する分割鉄心片2aの第1の形状部(例えば凸形状部)が重なり部2gで重なり合う。この重なり部2gの周方向中央には、円柱状の凹凸部2eがプレス加工による塑性加工で形成されている。この凹凸部2e同士は、積層方向に隣接する分割鉄心片2a間にわずかな隙間(約5μm)を有して嵌り合っているので、周方向に隣接する分割鉄心2は、それぞれ凹凸部2eを軸として相互に回転することができる。さらに、各分割鉄心2は、それぞれ積層固定用に使用するかしめ用の凹凸部2dを備え、かしめ用の凹凸部2dにより積層方向にかしめることにより、分割鉄心2を1積層体として固定することができる。
 図7は、鉄心への巻線方法を示す平面図である。図7において、第1及び第2の環状鉄心部材A,Bを積層して円環状に構成された鉄心1(図5のC)を開放部10で分離して巻線機9にセットする。そして、巻線機9のヘッド9bを回転させることにより、コイルとなるワイヤ9aを各分割鉄心2の歯部2cに巻き付ける。図7に示すように、隣接する分割鉄心2は回転用凹凸部2eを軸にして互いに回動自在に連結されているので、コイルを巻線する際には隣接する歯部2cの間の角度を拡大することができる。つまり、分割鉄心2の歯部2cを外向きにすることでワイヤ9aを供給するための十分なスペースを確保することができる。その結果、上記十分なスペースを利用して、巻線機9から供給されるワイヤ9aの真直性を保持したまま、隣接する分割鉄心2と干渉することなく歯部2cに巻線することができる。そのため歯部2cにワイヤを整列した状態で巻回でき、コイル占積率の高いステータが得られる。また、巻線のための十分なスペースが確保されているため、巻線の動作を高速運動の可能な円軌道とすることができ、高い生産性が得られる。
 以上のように、分割鉄心から構成される鉄心は、分割鉄心の歯部に高密度コイルを装着することができるので、高密度コイルを装着した分割鉄心を使用したモータの単位体積当たりの出力を高めることができる。しかし、分割鉄心から構成される鉄心は一体型の鉄心に比べ工作誤差が発生しやすく、わずかな工作誤差により磁気エネルギーが変化し、トルク脈動として知られるコギングトルクが大きくなる問題がある。コギングトルクは、設計段階でごく小さな値に抑制可能であるが、現実的には工作誤差を含んで製造されるので無視できない値となって現れる。工作誤差をゼロに近づけるには高度な製造工程が必要でコストがかかり現実的ではない。したがって、分割鉄心から構成される鉄心において、簡素な方法で有効的にコギングトルクを低減する製造方法及び製造装置を提供することは産業上有用である。
 そこで、本発明では、まずコギングトルクの中で大きな割合を占めるステータの内周形状の誤差に起因する成分を分析し、内周形状の誤差の影響を重ね合わせて相殺する製造方法を提案する。コギングトルクは、ステータやロータの磁気特性の非対称性やスロット数と極数の組み合わせ(スロットコンビネーション)など、さまざまな要因によって発生する。その中で、ステータの非対称性の要素は、内周形状の誤差の他、例えば、ステータ内外周形状の非対称性、溶接又はフレームへの固定による応力の不均一分布、磁気異方性により生じるステータの磁気的非対称性などが挙げられる。これらの要素が、ステータの周方向に変化した場合、磁気抵抗の逆数であるパーミアンスのアンバランスを招きステータの歯部とロータの間のエアギャップに生じる磁気エネルギーが周方向に変化し、コギングトルクが発生する。ステータの非対称性によるトルクの変化はロータの回転に伴い、ロータの磁石の極数pと同じ周期で脈動する。ロータの磁石が作るN極、S極の周波数fとすると極数pは2fとなり、本発明では極数p(=2f)と同じ周期の成分をコギングトルク2f成分と呼ぶ。コギングトルク2f成分は、ロータの極周期を一周期とした極座標上でベクトル表記でき、ここではトルクベクトルと呼ぶ。
 ステータの内周形状の誤差に起因するコギングトルク2f成分のベクトル表記を導出する。ここでは、内周形状誤差の影響だけを抽出するため、ステータの非対称性の要素のうち内周形状以外の要素およびロータの外周形状、起磁力には誤差がないものとする。ロータが回転角θにあるときのトルクT(θ)は、ロータ上の円周方向角度位置φにある微小区間dφに働くトルクdT(θ、φ)を積分することにより、次式(1)で得られる。すなわち、
Figure JPOXMLDOC01-appb-M000001
 ここで、μは真空透磁率、kは微小角度dφのエアギャップ体積をdφで除した値である。F(φ)はロータの起磁力を表し、その二乗は図8に例示するようにロータ上でφ方向にp回周期の分布を持つ。A(φ、θ)は、パーミアンスの二乗を構成する成分であり、ロータが回転角θにあるときの角度φの位置のエアギャップg(φ、θ)を用いて次式(2)で定義した。
Figure JPOXMLDOC01-appb-M000002
 鉄心の磁気抵抗はエアギャップの磁気抵抗に比べて十分に小さいので無視した。エアギャップg(φ、θ)は、ステータ内周形状の誤差を有す変数であるので、A(φ、θ)はステータ内周形状の誤差の周方向変化を表す変数となる。
 ロータの起磁力の二乗{F(φ)}は、正弦波状や矩形波状に分布するが、ここでは簡単のため、図9に示すようにφ=0から等ピッチで集中させた集中起磁力モデルを考える。ピッチ角度は2π/pとなり、起磁力は次式(3)、(4)として表現される。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 nは1からpまでの整数である。集中起磁力モデルでは、起磁力のステータへの影響は、対向する点のみに磁束が発生しその近傍への影響は無いものとする。この場合、式(1)に示すトルクT(θ)は、p個の集中起磁力の位置で発生する部分的なトルクの和となる。ロータが回転すると、p個の集中起磁力に対向するステータの位置が移動し、内周形状の変化に従ってトルクが変化する。ここで、上記した様にA(φ、θ)はステータ内周形状の誤差の周方向変化を表す関数となるので、ステータの内周形状を周方向に均等にp個の区間に分け、第n番目の区間の内周形状の関数A(φ、θ)をA(θ)とすると、第n番目の起磁力の位置に発生する部分的なトルクT(θ)は次式(5)となる。
Figure JPOXMLDOC01-appb-M000005
 p個の部分的なトルクの和をとって、T(θ)は次式(6)となる。
Figure JPOXMLDOC01-appb-M000006
 ロータが0から2π/pの角度を回転するとき、n=1からpまでの各区間で集中起磁力が始点から終点まで回転する。p個の起磁力の値は等しいので、ロータが次の2π/p分回転するとそれぞれのステータ区間では同じトルク波形が繰り返し発生する。したがって、T(θ)はピッチ角度毎に同じ波形を繰り返し、ロータ1回転につきp回周期の波形となる。T(θ)をフーリエ級数展開することで、p回周期成分はベクトルT(T、T)として次式(7)、(8)のように求まる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 ここで、トルク曲線T(θ)をkμ/2πで除した曲線をA(θ)、ベクトルT(T、T)をkμ/2πで除したベクトルをY(Y、Y)として次式(9)、(10)、(11)で新たに定義する。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 曲線A(θ)およびベクトルY(Y、Y)は、材料の特性によらず算出が可能であるので、工場での生産のように同じ材料、同じ寸法の製品を扱い、製造ばらつきによるコギングトルクの相対的な評価に適用することができる。
 ベクトル表記の例として、内周形状に段差を持つステータについて、p=8のロータに対するコギングトルクについて図を用いて表す。図10に示す内周形状について0<θ<2π/pの範囲で式(2)からA(θ)(n=1~8)を求め図11に示す。式(9)からθの位置毎にA(θ)のスカラー和をとりA(θ)を求め、ピッチ角度2π/pを一周期として図12に極座標表示した。さらに式(10)、(11)から求めたベクトルYを曲線A(θ)と重ねて表示した。このように極座標表示した場合、座標中心からA(θ)曲線上の各点へのベクトルの和がベクトルYを示すことが式(10)、(11)からわかる。また、A(θ)は式(9)からA(θ)(n=1~8)の重ね合わせである。つまり、図11、図12を用いるとベクトルYと内周形状の各部の誤差の因果関係がわかる。また、集中起磁力モデルにより、A(θ)はθの位置での内周形状の値だけを用いて算出されるので、コギングトルク2f成分の発生原因となる部位が特定され、形状誤差の影響、特に分割鉄心の場合は内周の段差の影響が明確になる。
 ただし、ベクトルYの大きさは、起磁力の分布、対向するステータの点の近傍への影響を無視した値であるので、内周形状に起因するコギングトルク2f成分の絶対値を表す値ではなく、モータの生産や開発の場面などで、同じ形状のステータの相対的評価や、内周形状の原因箇所の特定に適用できる指標である。
 ベクトルYを小さくする方法として、内周形状の形状精度を向上させることにより誤差を小さくする方法と、誤差同士を重ね合わせてベクトルを相殺させる方法が考えられる。
 本発明では、後者の方法によるものとし、複数のベクトルYを組み合わせることでコギングトルク2f成分を低減する方法について述べる。特に、同じ内周形状の誤差を持つ鉄心を、位相を変えて組み合わせる方法を考える。鉄心を構成する鋼板を例えば第一層及び第二層のように積層方向に分割して、例えば第二層を回転させることで内周形状が同じで向きの異なるベクトルYを含む鉄心が形成される。ここで、鉄心の一部を回転させて積層する工法を回転積層と呼ぶ。図13に回転積層による鉄心構造の概念モデルを示す。鉄心は積層方向にh、hの高さの2つの部分13A、13Bに分割され、周方向に位相をずらして積層されている。第1層13A、第2層13Bともに同じ金型で打ち抜かれて製造されているので内周形状の誤差は同等である。例えば一箇所に段差をもつ内周形状であるとして第1層13Aと第2層13Bの内周形状を図13の右側に模式的に示した。それぞれの段差の形状は同じであるので、ベクトルYの大きさは同等である。第一層13Aと第二層13Bの積層高さh、hを等しくし、回転角をそれぞれのベクトルYの向きが逆になるよう設定することで、ベクトルYの和を小さくすることができる。ここでは2つの層に分割した場合のモデルを示したが、積層方向の分割数(ベクトルYの数に対応)、積層高さ比率(各ベクトルYの大きさに対応)、回転角(各ベクトルYの位相に対応)は任意に設定可能である。
 ここで、鉄心はスロットの角度が一致する必要があり、回転角設定の制約条件となる。スロット数をsとするとスロットの位置を合わせる条件から、設定が可能な鉄心の回転角αの条件は整数tを用いて次式(12)で得られる。
Figure JPOXMLDOC01-appb-M000012
 回転角αを、磁極角を1周期とする極座標に変換しαt’として、次式(13)となる。
Figure JPOXMLDOC01-appb-M000013
 式(13)の条件の中から、ベクトルYを小さくする組み合わせを選択すればよい。例えば、8極12スロットのモータと10極12スロットのモータの場合、設定可能な鉄心の回転角(磁極角表示)は次の式(14)、(15)で表される。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 8極12スロットのモータと10極12スロットのモータの場合のベクトルの向きを図14に示す。そして、式(14)、(15)あるいは図14に示した位相の中からトルクベクトルをキャンセルさせる角度を選択することにより、回転積層の回転角度を求めることができる。
 一例として、10極12スロットのスロットコンビネーションの場合を例に回転積層の効果を検証する。ここでは積層方向を4分割し、図14から回転積層の回転角として、t=0、3、6、9を選択した。回転角は式(12)から0、π/2、π、3π/2となる。比較のため、次に示す4つのサンプルを検証した。
(1)段差なし、回転積層なし
(2)段差なし、回転積層あり
(3)段差あり、回転積層なし
(4)段差あり、回転積層あり
 実験サンプルは、図15に示すように自動ピッチ送り式の金型加工により製造した。図15において、鋼板等の磁性板材200は、パイロット穴201を位置決め基準として矢印方向に自動送りされ、プレス加工により切れ目2fを入れて磁極歯毎に分割される。そして、磁性板材200は、円形形状で外形が打ち抜かれ、それぞれ積層されて鉄心Cが形成される。積層された鉄心Cは切れ目で分離されコイルの装着が可能である。巻線後は円形に並べなおして外周にフレームを圧入して固定される。サンプル(3)、(4)は内径をワイヤカットで追加工し、段差形状を形成した。サンプル(2)、(4)は、積層方向に4層に等分割し所定の角度に回転して固定した。加工後の内周形状の誤差を計測し、結果を基準円からの位置として図16に示す。それぞれ4層のデータを計測し重ねて表示した。サンプル(3)、(4)の最大段差は29.4mm、31.4mmであり、段差量としては同等といえる。また、サンプル(1)、(2)の最大段差は6.9mm、5.4mmであり、サンプル(3)、(4)の最大段差に比べて十分に小さく、比較のための適切な形状が得られたといえる。
 それぞれのサンプルについて、ベクトルYの大きさとコギングトルク2f成分を計測した結果を図17に示す。コギングトルク2f成分は定格トルクとの比で表した。また、サンプル(1)から(4)のベクトルYの大きさとコギングトルク2f成分の大きさの関係を図18に示す。サンプル(3)のコギングトルク2f成分は、その他3つのサンプルに比べて大きな値を示した。回転積層を実施したサンプル(2)、(4)は段差量に大きな差があるにも関わらず、コギングトルク2f成分は同等の小さな値となった。
 ベクトルYは、4層それぞれのベクトルYのベクトル和として算出した。サンプル(3)、(4)の各層のベクトルYと合成ベクトルを図19、図20に示す。サンプル(3)は、各層で段差が同じ位置にあるため、図19に示すように、各層のベクトルYがほぼ同じ大きさかつ同じ方向となり、合成ベクトルは各層のベクトルが強め合って大きなベクトルとなった。ベクトルYの大きさに比例してコギングトルク2f成分は大きな値を示した。
 一方、サンプル(4)は、図20に示すように、各層のベクトルYの大きさはほぼ同じであるが、逆方向であるために合成ベクトルは各層のベクトルが弱め合って小さなベクトルとなった。ベクトルYの大きさに比例してコギングトルク2f成分は小さな値を示した。サンプル(3)と(4)の比較から、段差形状が同等であっても回転積層によりベクトルYを相殺し、コギングトルク2f成分を低減できることがわかった。
 これらのサンプルを構成する鉄心は、1枚の磁性板材から円形に並んだ姿勢で打ち抜かれて製造された。したがって磁性板材の圧延方向と磁極歯の方向(ステータの径方向)のなす角は、磁極歯によって異なる。磁性板材の圧延方向は磁束の通りやすい方向と一致するので磁極歯によって磁気抵抗が異なり、これを磁気異方性と呼ぶ。磁気異方性は、上述したように、ステータの磁気特性の非対称性の一種であり、コギングトルク2f成分の原因となる。サンプル(1)とサンプル(2)は段差が小さいのでベクトルYの大きさは小さい結果となったが、サンプル(1)の方がサンプル(2)よりコギングトルク2f成分が定格トルク比で約0.04ポイント大きい値となった。これは、サンプル(1)が磁気異方性の影響があるのに対して、サンプル(2)は回転積層により磁気異方性の影響が相殺されたためと考えられる。ベクトルYの大きさはサンプル(1)、(2)では同等の大きさとなり、これはベクトルYが形状誤差の影響のみから決まる値であり、磁気異方性の影響を反映しない値であることと矛盾しない。
 つまり、回転積層によれば内周形状の誤差の影響だけでなく、磁気異方性の影響も相殺可能といえる。サンプル(3)に対するサンプル(4)のコギングトルク2f成分の低減効果には両者が含まれ、サンプル(1)及び(2)の低減効果を考慮して整理すると、内周形状誤差の相殺による改善効果は86.6%減、磁気異方性の相殺による改善効果は12.5%減となった。
 以上のように、回転積層工法は、高密度巻線が可能な分割鉄心構造においてコギングトルク2f成分を小さく抑制できる製造方法といえる。回転積層工法によれば、同じ形状誤差をもつ鉄心を組み合わせるので、トルクベクトルの大きさと位相が未知であってもトルクベクトル同士を相殺することができる。このことは、分割鉄心から構成される鉄心の製造上において次の利点がある。
(1)鉄心の生産において、内周形状のばらつきを計測し、計測結果に応じて調整する必要がない。
(2)複数の金型で生産する場合に金型間の誤差に応じて調整する必要がない。
(3)金型磨耗や材料のロット違いなどによる内周形状誤差の経時的変化に応じて調整する必要がない。
 また、回転積層する回転角と積層高さの割合を変えることで合成ベクトルの大きさと位相を調整することが可能であり、ステータの非対称性のうち内周形状誤差以外の他の要素に起因するトルクベクトルとのベクトル和を取ることで、内周形状誤差以外の要因も含めてコギングトルク2f成分を低減することができる。
 次に、この発明の実施の形態による回転積層工法を利用した鉄心の製造方法及び製造装置について、具体的に説明する。ここで、高トルク性を有しかつ小型化に適している実用性の高い回転電機として、ロータ極数8及びステータスロット数12の回転電機、ロータ極数10及びステータスロット数12の回転電機があり、いずれもトルク脈動低減への要求が強い。例えば、ロータ極数8及びステータスロット数12の回転電機について、積層厚の等しい3つの積層体でステータ鉄心を構成した場合、これまで説明して来た方法によって積層体の回転角を求めると、1つの積層体に対する他の積層体の回転角はそれぞれπ/6、π/3となる。また、ロータ極数10及びステータスロット数12の回転電機について、積層厚の等しい2つの積層体でステータ鉄心を構成した場合、これまで説明して来た方法によって積層体間の回転角を求めると、1つの積層体に対する他の積層体の回転角はπ/2となる。以下の実施の形態の説明では、ロータ極数10及びステータスロット数12のスロットコンビネーションの回転電機の場合を例に、1つの積層体に対する他の積層体の回転角がπ/2となるように回転積層を行う例について説明する。なお、ロータ極数、ステータスロット数、各積層体の高さ、積層体の個数、回転積層に当たっての回転角は、本例に限らずこれまで説明した来た方法及び条件に該当する範囲で適用可能である。
 図21はこの発明の実施の形態による鉄心製造装置の概略を示す平面図である。本実施の形態の鉄心製造装置100は、鋼板等の磁性板材200に対してプレス加工を行う金型ステージ110と、磁性板材200から打ち抜かれた環状鉄心部材を回転積層する回転積層装置120を備えている。金型ステージ110は、複数のステージ、本例ではステージS1からステージS14を備えている。図21において、各ステージS1~S14で使用されるパンチは省略しており、図22に各パンチの詳細を示している。また、回転積層装置120については、図21の矢印Z方向から視た断面図を図29~図32に示しており、その構造及び動作の詳細は後述する。
 図22は、金型ステージ110のステージに使用されるパンチを示す底面図である。パンチP1は、ステージS3で使用されるもので、環状鉄心部材の外周部分の基準位置(以下、基準位置(0度位置)と呼ぶ)において環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p1が設けられている。パンチP2は、ステージS4で使用されるもので、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)において環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p2が設けられている。パンチP3は、ステージS5で使用されるもので、基準位置において環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p3が設けられている。パンチP4は、ステージS6で使用されるもので、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)において環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p4が設けられている。
 パンチP5は、ステージS7で使用されるもので、基準位置(0度位置)及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く外周位置(本例では10箇所)における環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p5が設けられている。また、パンチP6は、ステージS8で使用されるもので、基準位置(0度位置)及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く外周位置(本例では10箇所)において、環状鉄心部材のヨーク部間を分離する切れ目を入れるための刃部p6が設けられている。
 パンチP7は、ステージS9で使用されるもので、環状鉄心部材を積層固定するときに使用される、分割鉄心片のヨーク部及び歯部の中央部に位置するかしめ用凹凸部213を形成するための突起部p7が設けられている。パンチP8は、ステージS10で使用されるもので、基準位置における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部215を形成するための突起部p8が設けられている。パンチP9は、ステージS11で使用されるもので、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部216を形成するための突起部p9が設けられている。パンチP10は、ステージ12で使用されるもので、基準位置(0度位置)及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く残りの外周近傍位置であって、環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部217を形成するための突起部p10(本例では10箇所)が設けられている。
 パンチP11は、ステージS13で使用される。パンチP11は、複数の環状鉄心部材を積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して、上記かしめ用凹凸部213の位置と同じ位置に貫通穴218aを、上記回転用凹凸部215、216、217の位置と同じ位置に貫通穴218bを形成するための突起部p11が設けられている。なお、最下部の環状鉄心部材の貫通穴218aは、その上部の環状鉄心部材のかしめ用凹凸部213と嵌合し、最下部の環状鉄心部材の貫通穴218bは、その上部の回転用凹凸部215、216、217と嵌合するためのものである。
 図23から図28は金型ステージ110の各ステージS1~S13を説明するための図である。図23はステージS1及びS2を示すものである。ステージS1では、図示しないパンチにより、磁性板材200の幅方向の両端付近にプレス加工の1ピッチ分の送りの基準となるパイロット穴201を打ち抜くとともに、磁性板材200の幅方向の略中央部に環状鉄心部材の内周部と成る空間202を打ち抜く。ステージS2では、図示しないパンチにより、環状鉄心部材の歯部間の空間であるスロット部205と、環状鉄心部材の外周に位置する次工程のための逃がし穴であるマッチング穴206を打ち抜く。なお、図23の各ステージS1、S2において打ち抜かれる部分にハッチングを付している。
 図24はステージS3からS6を示すものである。ステージS3では、刃部p1を有するパンチP1により、基準位置における環状鉄心部材のヨーク部間を分離するための、第2の周方向(時計回り方向)に凸形状の切れ目207を入れる加工を行う。ステージS4では、刃部p2を有するパンチP2により、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)における環状鉄心部材のヨーク部間を分離するための、第2の周方向(時計回り方向)に凸形状の切れ目208を入れる加工を行う。なお、ステージS3及びS4において、刃部p1を有するパンチP1又は刃部p2を有するパンチP2のいずれか一方のパンチを、少なくとも基準位置(0度位置)と基準位置から所定角度回転した位置(基準位置から時計回り方向に90度回転した位置)との間で周方向に回動可能な構成にすることにより、パンチP1及びパンチP2のいずれか一方のみ設置するだけで足りる。ステージS5では、刃部p3を有するパンチP3により、基準位置における環状鉄心部材のヨーク部間を分離するための、第1の周方向(反時計回り方向)に凸形状の切れ目209を入れる加工を行う。ステージS6では、刃部p4を有するパンチP4により、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)における環状鉄心部材のヨーク部間を分離するための、第1の周方向(反時計回り方向)に凸形状の切れ目210を入れる加工を行う。なお、ステージS5及びS6において、刃部p3を有するパンチP3又は刃部p4を有するパンチP4のいずれか一方のパンチを、少なくとも基準位置(0度位置)と基準位置から所定角度回転した位置(基準位置から時計回り方向に90度回転した位置)との間で周方向に回動可能な構成にすれば、パンチP3又はパンチP4のいずれか一方のみ設置するだけで足りる。。
 ここで、ステージS3のパンチP1による切れ目加工と、ステージS5のパンチP3による切れ目加工は、そのうちのいずれか一方の加工が選択されて実施される。同様に、ステージS4のパンチP2による切れ目加工と、ステージS6のパンチP4による切れ目加工は、そのうちのいずれか一方の加工が選択されて実施される。
 図25はステージS7からS8を示すものである。ステージS7では、刃部p5を有するパンチP5により、基準位置(0度位置)及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く残りの外周位置(本例では10箇所)における環状鉄心部材のヨーク部間を分離するための、第1の周方向(反時計回り方向)に凸形状の切れ目211を入れる加工を行う。ステージS8では、刃部p6を有するパンチP6により、基準位置(0度位置)及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く残りの外周位置(本例では10箇所)における環状鉄心部材のヨーク部間を分離するための、第2の周方向(時計回り方向)に凸形状の切れ目212を入れる加工を行う。なお、図25において、図24のいずれかのステージS3~S6で加工される切れ目は、説明の便宜上図示を省略している。
 図26はステージS9を示すものである。ステージS9では、突起部p7を有するパンチP7により、環状鉄心部材を積層固定するときに使用される、分割鉄心片のヨーク部及び歯部の中央部に位置するかしめ用凹凸部213を形成する。
 図27はステージS10からステージS12を示すものである。ステージS10では、突起部p8を有するパンチP8により、基準位置における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部215を形成する。ステージS11では、突起部p9を有するパンチP9により、基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部216を形成する。なお、ステージS10及びS11において、刃部p8を有するパンチP8又は刃部p9を有するパンチP9のいずれか一方のパンチを、少なくとも基準位置(0度位置)と基準位置から所定角度回転した位置(基準位置から時計回り方向に90度回転した位置)との間で周方向に回動可能な構成にすれば、パンチP8又はパンチP9のいずれか一方のみ設置するだけで足りる。ステージS12では、突起部p10を有するパンチP10により、基準位置及び基準位置から所定角度回転した位置(本例では、基準位置から時計回り方向に90度回転した位置)を除く残りの外周位置であって、環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部217を形成する。なお、図27のステージS12において、ステージS10又はステージS11で加工される回転用凹凸部は、説明の便宜上図示を省略している。
 図28はステージS13及びステージS14を示すものである。ステージS13では、突起部p11を有するパンチP11により、環状鉄心部材を積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して、上記ステージS9で形成したかしめ用凹凸部213の位置と同じ位置に貫通穴218aを、上記ステージS10~S12で形成した回転用凹凸部215、216、217の位置と同じ位置に貫通穴218bを形成する。なお、最下部の環状鉄心部材の貫通穴218aは、その上部の環状鉄心部材のかしめ用凹凸部213と嵌合し、最下部の環状鉄心部材の貫通穴218bは、その上部の回転用凹凸部215、216、217と嵌合するためのものである。ステージS14では、図29及び図30で示すパンチP15により、磁性板材200から環状鉄心部材の外周部を上記マッチング穴206に沿って打ち抜き、環状鉄心部材A、Bを作成する。
 図29は環状鉄心部材を回転積層する回転積層装置120を示す断面図であり、図30は図29の環状鉄心部材の積層の様子を示す拡大図である。図において、ストリッパ115に設置されたパンチP15は、前述のステージS14において磁性板材200から環状鉄心部材を打ち抜くためのものである。回転積層装置120は、パンチP15により打ち抜かれた環状鉄心部材をその内周部の側圧で保持するダイス121を備えている。すなわち、パンチP15により打ち抜かれた最初の環状鉄心部材はダイス121の内周部の側圧により保持され、さらに、その後に打ち抜かれた環状鉄心部材はパンチP15で押し込まれて最初の環状鉄心部材上に積層固定されて行く。このようにして環状鉄心部材が順次積層されて鉄心1Aが形成されて行く。
 ダイス121は、回転積層装置120の下型122に回転自在に支持されており、ダイス121にはプーリ123が設けられている。回転積層装置120の下型122に設置されたモータ取付部126にはモータ125が設置され、モータ軸127にはプーリ128が設置されている。ダイス121のプーリ123とモータ125のプーリ128にはベルト124が掛かっており、モータ125を駆動することにより、プーリ128、ベルト124、プーリ123を介してダイス121が回転する。図29は、環状鉄心部材を所定枚数積層した状態の鉄心1Aをダイス121の内周部で保持した状態を示したもので、この状態でモータ125を駆動することによりダイス121が所定角度回転する。図31は、図29においてダイス121を所定角度回転した後、さらに環状鉄心部材を打ち抜いて積層固定することにより鉄心1Aを形成していく過程を示したものである。図32は、所定枚数の環状鉄心部材を打ち抜いて積層固定することにより鉄心1Aを完成した状態を示したものである。図29から図31において、積層固定されて行く過程の鉄心1Aの下部には、所定枚数の環状鉄心部材が積層固定され完成された鉄心1B、1Cがダイス121の内周部に保持され、それぞれ最終的にはベルトコンベア129上に落下して運ばれて行く。
 図33は、本実施の形態の鉄心製造装置100により製造される環状鉄心部材の種類を示す平面図である。図33に示す環状鉄心部材M1~M8は、図5に示す第1及び第2の環状鉄心部材A、Bを基本として、その分割鉄心片のヨークの周方向端部近傍に回転用凹凸部が形成されていない開放部10の位置、開放部10の第1の形状部(例えば凸形状部)の向き(以下、開放部の向きと呼ぶ)及びジョイントの向きの組み合わせが異なっている。ここで、環状鉄心部材M1~M8の開放部10とは、環状鉄心部材の分割鉄心片のヨーク部の周方向端部近傍に回転用凹凸部が形成されていない側の切れ目を示し、ジョイントの向きとは、その近傍に回転用凹凸部が形成されている環状鉄心部材の分割鉄心片のヨーク部の周方向端部の第1形状部(例えば凸形状部)の向きを示している。因みに、環状鉄心部材M1~M8の基本となる第1の環状鉄心部材Aは、分割鉄心片のヨークの第1の周方向(反時計回り方向)の第1の端部が第1の形状部(例えば凸形状部)を成し、第2の周方向(時計回り方向)の第2の端部が第2の形状部(例えば凹形状部)を成している。また、第2の環状鉄心部材Bは、分割鉄心片のヨークの第1の周方向(反時計回り方向)の第3の端部が第2の形状部(例えば凹形状部)を成し、第2の周方向(時計回り方向)の第4の端部が第1の形状部(例えば凸形状部)を成している。
 図33において、環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが反時計回り方向である。環状鉄心部材M2は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが反時計回り方向である。環状鉄心部材M3は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが時計回り方向である。環状鉄心部材M4は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが時計回り方向である。
 また、環状鉄心部材M5は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。環状鉄心部材M6は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。環状鉄心部材M7は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。
 図34は、本実施の形態の鉄心製造装置100の金型ステージ110において、上述の環状鉄心部材M1からM8を加工する工程を示した図である。図34の加工種類において、切れ目加工は、環状鉄心部材のヨーク部間を分離するために切れ目を入れる加工を意味する。また、ジョイントベンド加工は、環状鉄心部材のヨークの積層方向に重なり合う部分に回転用凹凸部を形成する加工を意味する。さらに、カット加工は、環状鉄心部材を積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して、上記ステージS9で形成したかしめ用凹凸部の位置と同じ位置に貫通穴を形成し、上記ステージS10~S12で形成した回転用凹凸部の位置と同じ位置に貫通穴を形成する加工を意味する。図34の加工位置における、0度は本例における環状鉄心部材の外周部分の基準位置を、90度は本例における基準位置から所定の角度回転した位置を、10箇所は基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く残りの外周位置を表す。パンチは上記で説明したパンチの種類を表す。
 図34において、環状鉄心部材M1は次の工程を経て製造される。すなわち、パンチP3及びパンチP4により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP5により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP8により、基準位置(0度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。なお、後述する環状鉄心部材M2~M8の工程でも同様であるが、ステージS1及びS2のプレス加工、並びにパンチP7を使用したステージS9のプレス加工についてはその説明を省略している。
 環状鉄心部材M2は次の工程を経て製造される。すなわち、パンチP1及びパンチP4により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP6により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP8により、基準位置(0度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M3は次の工程を経て製造される。すなわち、パンチP3及びパンチP2により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP5により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP8により、基準位置(0度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M4は次の工程を経て製造される。すなわち、パンチP1及びパンチP2により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP6により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP8により、基準位置(0度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M5は次の工程を経て製造される。すなわち、パンチP3及びパンチP4により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP5により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP9により、基準位置から所定角度回転した位置(90度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M6は次の工程を経て製造される。すなわち、パンチP3及びパンチP2により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP6により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP9により、基準位置から所定角度回転した位置(90度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M7は次の工程を経て製造される。すなわち、パンチP1及びパンチP4により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP5により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP9により、基準位置から所定角度回転した位置(90度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 環状鉄心部材M8は次の工程を経て製造される。すなわち、パンチP1及びパンチP2により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)のヨーク部間を分離するための切れ目を加工する。そして、パンチP6により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部間を分離するための切れ目が加工される。そして、パンチP9により、基準位置から所定角度回転した位置(90度位置)のヨーク部の重なり合う部分に回転用凹凸部を加工する。さらに、パンチP10により、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く10箇所のヨーク部の重なり合う部分に回転用凹凸部を加工する。また、パンチP11による貫通穴を加工するカット加工は、積層固定して形成する鉄心のうち最下部の環状鉄心部材に対して行う。
 図35~図41は、本実施の形態の鉄心製造装置100により製造された鉄心C1~C7を示す斜視図であり、鉄心C1~C7はそれぞれ上述の環状鉄心部材M1~M8のいずれかを組み合わせると共に、回転積層して構成されるものである。
 図35に示す鉄心C1は、環状鉄心部材M1と環状鉄心部材M6を交互に回転積層して構成される。図33に示すように、環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M6は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心C1は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M6の基準位置(0度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM6を回転積層装置120により所定角度(90度)回転させて交互に積層して構成する。
 図35に示す鉄心C1によれば、開放部10において当接する分割鉄心の端部同士が平面形状になるので、開放部10における鉄心C1の開閉が容易となる。なお、図35において、環状鉄心部材M1及びM6は1枚ずつ交互に回転積層しても良いし、所定枚数(例えば2~3枚)毎に交互に回転積層させても良い。また、図35において、符号15は環状鉄心部材が回転用凹凸部が形成された重なり部で交互に積層されている様子を示すものである。これらは、図36から図41においても同様である。
 図36に示す鉄心C2は、環状鉄心部材M1と環状鉄心部材M6を交互に回転積層して鉄心部分C16を形成し、環状鉄心部材M3と環状鉄心部材M8を交互に回転積層して鉄心部分C38を形成し、さらに鉄心部分C16と鉄心部分C38を積層して構成される。環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M6は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C16は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M6の基準位置(0度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM6を回転積層装置120により所定角度(90度)回転させて交互に積層して構成する。
 一方、環状鉄心部材M3は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが時計回り方向である。環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C38は、回転用凹凸部を加工していない環状鉄心部材M3の基準位置から所定角度回転した位置(90度位置)にある第2の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置(0度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M3及びM8を回転積層装置120により所定角度(90度)回転させて交互に積層して構成する。
 そして、回転用凹凸部を加工していない、環状鉄心部材M1の第1の端部、環状鉄心部材M6の第3の端部、環状鉄心部材M3の第4の端部、及び環状鉄心部材M8の第4の端部の、各周方向位置が積層方向で同じ位置になるように、鉄心部分C16とC38を交互に積層することにより鉄心C2が形成される。
 図36に示す鉄心C2によれば、開放部10において当接する分割鉄心の端部同士が段差を有する形状になるので、開放部10における鉄心C2の積層方向の位置決めが容易となる。
 図37に示す鉄心C3は、環状鉄心部材M1と環状鉄心部材M8を交互に回転積層して構成される。環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心C3は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置(0度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM8を回転積層装置120により所定角度(90度)回転させて交互に積層して構成する。
 図37に示す鉄心C3によれば、鉄心C3を構成する各環状鉄心部材M1及びM8の切れ目加工の方向が同一方向になるので、環状鉄心部材M1及びM8つまり鉄心C3の形状精度が安定する。
 図38に示す鉄心C4は、環状鉄心部材M1と環状鉄心部材M2を交互に積層して鉄心部分C12を形成し、環状鉄心部材M5と環状鉄心部材M6を交互に積層して鉄心部分C56を形成し、鉄心部分C12と鉄心部分C56を交互に回転積層して構成される。環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M2は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(0度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C12は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M2の基準位置から所定角度回転した位置(90度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM2を交互に積層して構成する。
 一方、環状鉄心部材M5は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)にあり、開放部10の向きが反時計回り方向である。環状鉄心部材M6は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C56は、回転用凹凸部を加工していない環状鉄心部材M5の基準位置(0度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M6の基準位置(0度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M5及びM6を交互に積層して構成する。
 そして、回転用凹凸部を加工していない、環状鉄心部材M1の第1の端部、環状鉄心部材M2の第3の端部、環状鉄心部材M5の第1の端部、及び環状鉄心部材M6の第3の端部の、各周方向位置が積層方向で同じ位置になるように、鉄心部分C12とC56を回転積層装置120により所定角度(90度)回転させて交互に積層することにより鉄心C4が形成される。
 図38に示す鉄心C4によれば、開放部10において当接する分割鉄心の端部同士が平面形状になるので、開放部10における鉄心C4の開閉が容易となる。また、鉄心C1~C3の製作に比較して、回転積層装置120による回転積層の回数が減るので生産性が向上する。
 図39に示す鉄心C5は、環状鉄心部材M1と環状鉄心部材M2を交互に積層して鉄心部分C12を形成し、環状鉄心部材M7と環状鉄心部材M8を交互に積層して鉄心部分C78を形成し、鉄心部分C12と鉄心部分C78を交互に回転積層して構成される。環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M2は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C12は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M2の基準位置から所定角度回転した位置(90度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM2を交互に積層して構成する。
 一方、環状鉄心部材M7は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)にあり、開放部10の向きが時計回り方向である。環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C78は、回転用凹凸部を加工していない環状鉄心部材M7の基準位置(0度位置)にある第2の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置(0度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M7及びM8を交互に積層して構成する。
 そして、回転用凹凸部を加工していない、環状鉄心部材M1の第1の端部、環状鉄心部材M2の第3の端部、環状鉄心部材M7の第2の端部、及び環状鉄心部材M8の第4の端部の、各周方向位置が積層方向で同じ位置になるように、鉄心部分C12とC78を回転積層装置120により所定角度(90度)回転させて交互に積層することにより鉄心C5が形成される。
 図39に示す鉄心C5によれば、開放部10において当接する分割鉄心の端部同士が段差を有する形状になるので、開放部10における鉄心C5の積層方向の位置決めが容易となる。また、鉄心C1~C3の製作に比較して、回転積層装置120による回転積層の回数が減るので生産性が向上する。
 図40に示す鉄心C6は、環状鉄心部材M1と環状鉄心部材M4を交互に積層して鉄心部分C14を形成し、環状鉄心部材M5と環状鉄心部材M8を交互に積層して鉄心部分C58を形成し、鉄心部分C14と鉄心部分C58を交互に回転積層して構成される。環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M4は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C14は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M4の基準位置から所定角度回転した位置(90度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM4を交互に積層して構成する。
 一方、環状鉄心部材M5は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)にあり、開放部10の向きが反時計回り方向である。環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C58は、回転用凹凸部を加工していない環状鉄心部材M5の基準位置(0度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置(0度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M5及びM8を交互に積層して構成する。
 そして、回転用凹凸部を加工していない環状鉄心部材M1の第1の端部、環状鉄心部材M4の第4の端部、環状鉄心部材M5の第1の端部、及び環状鉄心部材M8の第4の端部の、各周方向位置が積層方向で同じ位置になるように、鉄心部分C14とC58を回転積層装置120により所定角度(90度)回転させて交互に積層することにより鉄心C6が形成される。
 図40に示す鉄心C6によれば、鉄心C6を構成する環状鉄心部材M1、M4、M5及びM6の切れ目加工の方向が同一方向になるので、環状鉄心部材M1、M4、M5及びM8つまり鉄心C6の形状精度が安定する。また、鉄心C1~C3の製作に比較して、回転積層装置120による回転積層の回数が減るので生産性が向上する。
 図41に示す鉄心C7は、環状鉄心部材M1と環状鉄心部材M2を交互に積層して鉄心部分C12を形成し、環状鉄心部材M5と環状鉄心部材M6を交互に積層して鉄心部分C56を形成し、環状鉄心部材M3と環状鉄心部材M4を交互に積層して鉄心部分C34を形成し、環状鉄心部材M7と環状鉄心部材M8を交互に積層して鉄心部分C78を形成すると共に、鉄心部分C12、C56、C34、及びC78を回転積層して構成する。
 環状鉄心部材M1は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが反時計回り方向である。また、環状鉄心部材M2は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C12は、回転用凹凸部を加工していない環状鉄心部材M1の基準位置から所定角度回転した位置(90度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M2の基準位置から所定角度回転した位置(90度位置)にある第3の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M1及びM2を交互に積層して構成する。
 環状鉄心部材M5は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)にあり、開放部10の向きが反時計回り方向である。環状鉄心部材M6は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが反時計回り方向である。そして、鉄心部分C56は、回転用凹凸部を加工していない環状鉄心部材M5の基準位置(0度位置)にある第1の端部と、回転用凹凸部を加工していない環状鉄心部材M6の基準位置(0度位置)にある第3の端部の周方向位置が積層方向で同じ位置になるように、環状鉄心部材M5及びM6を交互に積層して構成する。
 環状鉄心部材M3は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)にあり、開放部10の向きが時計回り方向である。また、環状鉄心部材M4は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置から所定角度回転した位置(90度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C34は、回転用凹凸部を加工していない環状鉄心部材M3の基準位置から所定角度回転した位置(90度位置)にある第2の端部と、回転用凹凸部を加工していない環状鉄心部材M2の基準位置から所定角度回転した位置(90度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M3及びM4を交互に積層して構成する。
 環状鉄心部材M7は、第1の環状鉄心部材Aを基本として、開放部10の位置が基準位置(0度位置)にあり、開放部10の向きが時計回り方向である。環状鉄心部材M8は、第2の環状鉄心部材Bを基本として、開放部10の位置が基準位置(0度位置)であり、開放部10の向きが時計回り方向である。そして、鉄心部分C78は、回転用凹凸部を加工していない環状鉄心部材M7の基準位置(0度位置)にある第2の端部と、回転用凹凸部を加工していない環状鉄心部材M8の基準位置(0度位置)にある第4の端部の、各周方向位置が積層方向で同じ位置になるように、環状鉄心部材M7及びM8を交互に積層して構成する。
 そして、回転用凹凸部を加工していない、環状鉄心部材M1の第1の端部、環状鉄心部材M2の第3の端部、環状鉄心部材M5の第1の端部、環状鉄心部材M6の第3の端部、環状鉄心部材M3の第2の端部、環状鉄心部材M4の第4の端部、環状鉄心部材M7の第2の端部、及び環状鉄心部材M8の第4の端部の、各周方向位置が積層方向で同じ位置になるように、鉄心部分C12、C56、C34及びC78を回転積層装置120により所定角度(90度)回転させて積層することにより鉄心C7が形成される。
 図41に示す鉄心C7によれば、開放部10において当接する分割鉄心の端部同士が段差を有する形状になるので、開放部10における鉄心C7の積層方向の位置決めが容易となる。また、鉄心C1~C3の製作に比較して、回転積層装置120による回転積層の回数が減るので生産性が向上する。
 以上のように、本実施の形態の図21に示す鉄心製造装置において、図22のパンチを備え、図29~図32の回転積層装置を使用すれば、1台の鉄心製造装置100によって図35~図41に示す複数種類の鉄心C1~C7を製造することができる。ただし、鉄心C1~C7は、それぞれ下記に示すパンチを有する鉄心製造装置を使用することによっても製造することができる。
 図42は、図35の鉄心C1を製造するためのパンチを示す図である。鉄心C1は環状鉄心部材M1と環状鉄心部材M6を交互に回転積層して構成される。図42において、パンチP20は、環状鉄心部材M1のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第1の周方向(反時計回り方向)に凸形状の切れ目を入れる刃部p20を有している。パンチP21は、環状鉄心部材M6のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)に第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れ、基準位置から所定角度回転した位置(90度位置)並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)に第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p21を有している。
 パンチP22は、基準位置から所定角度回転した位置(90度位置)における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部を形成するための突起部p22が設けられている。パンチP23は、基準位置(0度位置)における環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部を形成するための突起部p23が設けられている。パンチP24は、基準位置(0度位置)及び基準位置から所定角度回転した位置(90度位置)を除く残りの外周位置であって、環状鉄心部材のヨークの第1の周方向の第1の端部の第1の形状部(例えば凸形状部)と第2の周方向の第4の端部の第1の形状部(例えば凸形状部)が重なり合う部分に回転用凹凸部を形成するための突起部p24(本例では10箇所)が設けられている。
 以上のように、図42に示すパンチを使用すれば、図22に示すパンチよりも数少ないパンチで鉄心C1を製作することができる。
 図43は、図37の鉄心C3を製造するためのパンチを示す図である。鉄心C3は環状鉄心部材M1と環状鉄心部材M8を交互に回転積層して構成される。図43において、パンチP30は、環状鉄心部材M1のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p30を有している。パンチP31は、環状鉄心部材M8のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p31を有している。
 なお、パンチP32、パンチP33及びパンチP34は、図42に示すパンチP22、パンチP23及びパンチP24と同様であるので説明を省略する。
 以上のように、図43に示すパンチを使用すれば、図22に示すパンチより数少ないパンチで鉄心C3を製作することができる。
 また、図43に示すパンチを使用すれば、図22に示すパンチより数少ないパンチで鉄心C6を製作することもできる。鉄心C6は、環状鉄心部材M1と環状鉄心部材M4を交互に積層して鉄心部分C14を形成し、環状鉄心部材M5と環状鉄心部材M8を交互に積層して鉄心部分C58を形成し、鉄心部分C14と鉄心部分C58を交互に回転積層して構成される。この場合、パンチP30は環状鉄心部材M1及びM5のヨーク部間の切れ目を加工するために使用され、パンチP31は、環状鉄心部材M4及びM8のヨーク部間の切れ目を加工するために使用される。
 図44は、図38の鉄心C4を製造するためのパンチを示す図である。鉄心C4は、環状鉄心部材M1と環状鉄心部材M2を交互に積層して鉄心部分C12を形成し、環状鉄心部材M5と環状鉄心部材M6を交互に積層して鉄心部分C56を形成し、鉄心部分C12と鉄心部分C56を交互に回転積層して構成される。図44において、パンチP40は、環状鉄心部材M1及びM5のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p30を有している。パンチP41は、環状鉄心部材M2のヨーク部間の切れ目を加工するパンチであり、基準位置から所定角度回転した位置(90度位置)において第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れると共に、基準位置(0度位置)並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p41を有している。パンチP42は、環状鉄心部材M6のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)において第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れると共に、基準位置から所定角度回転した位置(90度位置)並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p42を有している。
 なお、パンチP43、パンチP44及びパンチP45は、図42に示すパンチP22、パンチP23及びパンチP24と同様であるので説明を省略する。
 以上のように、図44に示すパンチを使用すれば、図22に示すパンチより数少ないパンチで鉄心C4を製作することができる。
 図45は、図39の鉄心C5を製造するためのパンチを示す図である。鉄心C5は、環状鉄心部材M1と環状鉄心部材M2を交互に積層して鉄心部分C12を形成し、環状鉄心部材M7と環状鉄心部材M8を交互に積層して鉄心部分C78を形成し、鉄心部分C12と鉄心部分C78を交互に回転積層して構成される。
 図45において、パンチP50は、環状鉄心部材M1のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p50を有している。パンチP51は、環状鉄心部材M2のヨーク部間の切れ目を加工するパンチであり、基準位置から所定角度回転した位置(90度位置)において第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れると共に、基準位置(0度位置)並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p51を有している。パンチP52は、環状鉄心部材M7のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)において第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れると共に、基準位置から所定角度回転した位置(90度位置)並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において第1の周方向(反時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p52を有している。パンチP53は、環状鉄心部材M8のヨーク部間の切れ目を加工するパンチであり、基準位置(0度位置)、基準位置から所定角度回転した位置(90度位置)、並びに基準位置及び基準位置から所定角度回転した位置を除く外周位置(本例では10箇所)において、第2の周方向(時計回り方向)に第1の形状(例えば凸形状)の切れ目を入れる刃部p53を有している。
 なお、パンチP54、パンチP55及びパンチP56は、図42に示すパンチP22、パンチP23及びパンチP24と同様であるので説明を省略する。
 以上のように、図45に示すパンチを使用すれば、図22に示すパンチより数少ないパンチで鉄心C5を製作することができる。
 以上のように本実施の形態によれば、複数の分割鉄心を回転用凹凸部を介して回動可能に連結すると共に当該複数の分割鉄心を円環状に配設して構成する鉄心において、複数の積層体を回転積層することにより構成したので、分割鉄心の内周形状の段差等の形状非対称性や分割鉄心の磁気抵抗の相違から発生するトルク脈動の位相を回転積層の回転角に依存して積層体毎に異なるものとすることができる。そのため、回転積層により積層体毎の位相の相互関係を所定の関係にすることにより積層体毎のトルク脈動成分を鉄心全体として相殺し、トルク脈動成分を低減することができる。
 また、前述したように、上記実施の形態の説明では、ロータ極数10及びステータスロット数12のスロットコンビネーションの回転電機の場合を例に、1つの積層体に対する他の積層体の回転角がπ/2となるように回転積層を行う例について説明したが、ロータ極数、ステータスロット数、各積層体の高さ、積層体の個数、回転積層に当たっての回転角は、これに限らずこれまで説明した来た方法及び条件に該当する範囲で適用可能である。
 例えば、ロータ極数8及びステータスロット数12の回転電機について、積層厚の等しい3つの積層体でステータ鉄心を構成した場合、これまで説明して来た方法によって積層体の回転角を求めると、1つの積層体に対する他の積層体の回転角はそれぞれπ/6、π/3となる。
 この場合、本発明の鉄心の製造方法を適用すると、第1の周方向に第1の形状を有する第1の端部及び第2の周方向に第2の形状を有する第2の端部を備えて第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の第1の分割鉄心片のヨーク部の第1の端部と、周方向に隣り合う他方の第1の分割鉄心片のヨーク部の第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材Aを形成し、
 第1の周方向に第2の形状を有する第3の端部及び第2の周方向に第1の形状を有する第4の端部を備えて第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の第2の分割鉄心片のヨーク部の第3の端部と、周方向に隣り合う他方の第2の分割鉄心片のヨーク部の第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材Bを形成し、
 第1の環状鉄心部材Aと第2の環状鉄心部材Bとを、第1の形状を有する第1の端部と第1の形状を有する第4の端部が重なり合うように同心状に積層し、重なり合った部分を回転用凹凸部により連結することにより、周方向に隣接する第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する方法において以下の工程を含む。
 すなわち、第1の環状鉄心部材Aの第1の端部のうち、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置に第1又は第2の形状の切れ目を加工し、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置を除いた周方向位置に第1の形状の切れ目を加工する第1の工程と、
 第2の環状鉄心部材Bの第4の端部のうち、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置に第1又は第2の形状の切れ目を加工し、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置を除いた周方向位置に第1の形状の切れ目を加工する第2の工程と、
 基準位置、基準位置からπ/6回転した位置、又は基準位置からπ/3回転した位置のいずれか一箇所を除いた周方向位置において、第1の環状鉄心部材Aの第1の端部側の表面上及び第2の環状鉄心部材Bの第4の端部側表面上に回転用凹凸部を加工する第3の工程と、
 回転用凹凸部を加工していない第1の環状鉄心部材Aの第1の端部又は回転用凹凸部を加工していない第2の環状鉄心部材Bの第4の端部の周方向位置が積層方向で同じ位置になるように、第1の環状鉄心部材A又は第2の環状鉄心部材Bをπ/6又はπ/3回転させて積層する第4の工程を備える。
 また、本発明の鉄心の製造装置を適用すると、第1の周方向に第1の形状を有する第1の端部及び第2の周方向に第2の形状を有する第2の端部を備えて第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の第1の分割鉄心片のヨーク部の第1の端部と、周方向に隣り合う他方の第1の分割鉄心片のヨーク部の第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材Aを形成し、
 第1の周方向に第2の形状を有する第3の端部及び第2の周方向に第1の形状を有する第4の端部を備えて第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の第2の分割鉄心片のヨーク部の第3の端部と、周方向に隣り合う他方の第2の分割鉄心片のヨーク部の第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材Bを形成し、
 第1の環状鉄心部材Aと第2の環状鉄心部材Bとを、第1の形状を有する第1の端部と第1の形状を有する第4の端部が重なり合うように同心状に積層し、重なり合った部分を回転用凹凸部により連結することにより、周方向に隣接する第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する装置において以下の構成を含む。
 すなわち、第1の環状鉄心部材Aの第1の端部のうち、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置に第1又は第2の形状の切れ目を加工し、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置を除いた周方向位置に第1の形状の切れ目を加工する第1の切れ目加工用パンチと、
 第2の環状鉄心部材Bの第4の端部のうち、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置に第1又は第2の形状の切れ目を加工し、基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置を除いた周方向位置に第1の形状の切れ目を加工する第2の切れ目加工用パンチと、
 基準位置において、第1の環状鉄心部材Aの第1の端部側の表面上及び第2の環状鉄心部材Bの第4の端部側表面上に回転用凹凸部を加工する第1の回転用凹凸部加工用パンチと、
 基準位置からπ/6回転した位置において、第1の環状鉄心部材Aの第1の端部側の表面上及び第2の環状鉄心部材Bの第4の端部側表面上に回転用凹凸部を加工する第2aの回転用凹凸部加工用パンチと、
 基準位置からπ/3回転した位置において、第1の環状鉄心部材Aの第1の端部側の表面上及び第2の環状鉄心部材Bの第4の端部側表面上に回転用凹凸部を加工する第2bの回転用凹凸部加工用パンチと、
 基準位置、基準位置からπ/6回転した位置、及び基準位置からπ/3回転した位置を除いた周方向位置において、第1の環状鉄心部材Aの第1の端部側の表面上及び第2の環状鉄心部材Bの第4の端部側表面上に回転用凹凸部を加工する第3の回転用凹凸部加工用パンチとを備えた金型ステージと、
 回転用凹凸部を加工していない第1の環状鉄心部材Aの第1の端部又は回転用凹凸部を加工していない第2の環状鉄心部材Bの第4の端部の周方向位置が積層方向で同じ位置になるように、第1の環状鉄心部材A又は第2の環状鉄心部材Bをπ/6又はπ/3回転させて積層する回転積層装置を備える。
 この発明は、分割鉄心から構成される鉄心の製造方法及び製造装置に係り、特に、トルクの脈動を抑制した回転電機のステータに使用される鉄心を製造する方法及び製造する装置として利用される。

Claims (10)

  1. 第1の周方向に第1の形状を有する第1の端部及び第2の周方向に上記第1の形状とは異なる第2の形状を有する第2の端部を備えて上記第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の上記第1の分割鉄心片の上記ヨーク部の上記第1の端部と、周方向に隣り合う他方の上記第1の分割鉄心片の上記ヨーク部の上記第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材を形成し、
    上記第1の周方向に上記第2の形状を有する第3の端部及び上記第2の周方向に上記第1の形状を有する第4の端部を備えて上記第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の上記第2の分割鉄心片の上記ヨーク部の上記第3の端部と、周方向に隣り合う他方の上記第2の分割鉄心片の上記ヨーク部の上記第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材を形成し、
    上記第1の環状鉄心部材と上記第2の環状鉄心部材とを、上記第1の形状を有する上記第1の端部と上記第1の形状を有する上記第4の端部が重なり合うように同心状に積層し、上記重なり合った部分を上記回転用凹凸部により連結することにより、周方向に隣接する上記第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する方法であって、
    上記第1の環状鉄心部材の上記第1の端部のうち、基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する第1の工程と、
    上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する第2の工程と、
    上記基準位置又は上記基準位置から所定角度回転した位置のいずれか一方を除いた周方向位置において、上記第1の環状鉄心部材の上記第1の端部側のヨーク表面上及び上記第2の環状鉄心部材の上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する第3の工程と、
    上記回転用凹凸部を加工していない上記第1の環状鉄心部材の上記第1の端部又は上記回転用凹凸部を加工していない上記第2の環状鉄心部材の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記第1の環状鉄心部材又は上記第2の環状鉄心部材を上記所定角度回転させて積層する第4の工程を備えた鉄心の製造方法。
  2. 上記第1の工程は、上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作する工程であり、
    上記第2の工程は、上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M6を製作する工程であり、
    上記第3の工程は、上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工すると共に、上記環状鉄心部材M6の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M6の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM6を上記所定角度回転させて交互に積層する工程である請求項1記載の鉄心の製造方法。
  3. 上記第1の工程は、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M3を製作する工程であり、
    上記第2の工程は、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M6を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M8を製作する工程であり、
    上記第3の工程は、
    上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M3の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M6の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M8の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、
    上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と上記回転用凹凸部を加工していない上記環状鉄心部材M6の上記第3の端部の周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM6を上記所定角度回転させて交互に積層して鉄心部分C16を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M3の上記第2の端部と上記回転用凹凸部を加工していない上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M3及びM8を上記所定角度回転させて交互に積層して鉄心部分C38を構成し、
    上記回転用凹凸部を加工していない、上記環状鉄心部材M1の上記第1の端部、上記環状鉄心部材M6の上記第3の端部、上記環状鉄心部材M3の上記第2の端部、及び上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記鉄心部分C16とC38を交互に積層する工程である請求項1に記載の鉄心の製造方法。
  4. 上記第1の工程は、上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作する工程であり、
    上記第2の工程は、上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M8を製作する工程であり、
    上記第3の工程は、上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工すると共に、上記環状鉄心部材M8の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M8の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM8を上記所定角度回転させて交互に積層する工程である請求項1記載の鉄心の製造方法。
  5. 上記第1の工程は、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M5を製作する工程であり、
    上記第2の工程は、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M2を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M6を製作する工程であり、
    上記第3の工程は、
    上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M5の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M2の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M6の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、
    上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M2の上記第3の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM2を交互に積層して鉄心部分C12を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M5の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M6の上記第3の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M5及びM6を交互に積層して鉄心部分C56を構成し、
    上記回転用凹凸部を加工していない、上記環状鉄心部材M1の上記第1の端部、上記環状鉄心部材M2の上記第3の端部、上記環状鉄心部材M5の上記第1の端部、及び上記環状鉄心部材M6の上記第3の端部の周方向位置が積層方向で同じ位置になるように、上記鉄心部分C12とC56を上記所定角度回転させて交互に積層する工程である請求項1に記載の鉄心の製造方法。
  6. 上記第1の工程は、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第1の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M7を製作する工程であり、
    上記第2の工程は、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M2を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M8を製作する工程であり、
    上記第3の工程は、
    上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M7の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M2の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M8の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、
    上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M2の上記第3の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM2を交互に積層して鉄心部分C12を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M7の上記第2の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M8の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M7及びM8を交互に積層して鉄心部分C78を構成し、
    上記回転用凹凸部を加工していない、上記環状鉄心部材M1の上記第1の端部、上記環状鉄心部材M2の上記第3の端部、上記環状鉄心部材M7の上記第2の端部、及び上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記鉄心部分C12とC78を上記所定角度回転させて交互に積層する工程である請求項1に記載の鉄心の製造方法。
  7. 上記第1の工程は、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M5を製作する工程であり、
    上記第2の工程は、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M4を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M8を製作する工程であり、
    上記第3の工程は、
    上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M5の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M4の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M8の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、
    上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M4の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM4を交互に積層して鉄心部分C14を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M5の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M8の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M5及びM8を交互に積層して鉄心部分C58を構成し、
    上記回転用凹凸部を加工していない、上記環状鉄心部材M1の上記第1の端部、上記環状鉄心部材M4の上記第4の端部、上記環状鉄心部材M5の上記第1の端部、及び上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記鉄心部分C14とC58を上記所定角度回転させて交互に積層する工程である請求項1に記載の鉄心の製造方法。
  8. 上記第1の工程は、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M1を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第1の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M5を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工し、上記第1の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M3を製作し、
    上記第1の環状鉄心部材について、上記第1の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第1の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M5を製作する工程であり、
    上記第2の工程は、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M2を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第2の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M6を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M4を製作し、
    上記第2の環状鉄心部材について、上記第4の端部のうち上記基準位置に上記第1の形状の切れ目を加工し、上記第4の端部のうち上記基準位置を除いた周方向位置に上記第1の形状の切れ目を加工することにより環状鉄心部材M8を製作する工程であり、
    上記第3の工程は、
    上記環状鉄心部材M1の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M5の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M3の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M7の上記基準位置を除いた周方向位置における上記第1の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M2の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M6の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M4の上記基準位置から所定角度回転した位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工し、
    上記環状鉄心部材M8の上記基準位置を除いた周方向位置における上記第4の端部側のヨーク表面上に上記回転用凹凸部を加工する工程であり、
    上記第4の工程は、
    上記回転用凹凸部を加工していない上記環状鉄心部材M1の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M2の上記第3の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M1及びM2を交互に積層して鉄心部分C12を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M5の上記第1の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M6の上記第3の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M5及びM6を交互に積層して鉄心部分C56を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M3の上記第2の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M4の上記第4の端部との周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M3及びM4を交互に積層して鉄心部分C34を構成し、
    上記回転用凹凸部を加工していない上記環状鉄心部材M7の上記第2の端部と、上記回転用凹凸部を加工していない上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記環状鉄心部材M7及びM8を交互に積層して鉄心部分C78を構成し、
    上記回転用凹凸部を加工していない、上記環状鉄心部材M1の上記第1の端部、上記環状鉄心部材M2の上記第3の端部、上記環状鉄心部材M5の上記第1の端部、上記環状鉄心部材M6の上記第3の端部、上記環状鉄心部材M3の上記第2の端部、上記環状鉄心部材M4の上記第4の端部、上記環状鉄心部材M7の上記第2の端部、及び上記環状鉄心部材M8の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記鉄心部分C12、C56、C34及びC78を上記所定角度回転させて交互に積層する工程である請求項1に記載の鉄心の製造方法。
  9. 第1の周方向に第1の形状を有する第1の端部及び第2の周方向に上記第1の形状とは異なる第2の形状を有する第2の端部を備えて上記第1の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第1の分割鉄心片を、一方の上記第1の分割鉄心片の上記ヨーク部の上記第1の端部と、周方向に隣り合う他方の上記第1の分割鉄心片の上記ヨーク部の上記第2の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第1の環状鉄心部材を形成し、
    上記第1の周方向に上記第2の形状を有する第3の端部及び上記第2の周方向に上記第1の形状を有する第4の端部を備えて上記第4の端部側の表面上に回転用凹凸部を設けたヨーク部と、上記ヨーク部から径方向内側に突出する歯部とを有する複数個の第2の分割鉄心片を、一方の上記第2の分割鉄心片の上記ヨーク部の上記第3の端部と、周方向に隣り合う他方の上記第2の分割鉄心片の上記ヨーク部の上記第4の端部とが当接するように、1枚の磁性板材から円環状に配列した状態に打ち抜いて第2の環状鉄心部材を形成し、
    上記第1の環状鉄心部材と上記第2の環状鉄心部材とを、上記第1の形状を有する上記第1の端部と上記第1の形状を有する上記第4の端部が重なり合うように同心状に積層し、上記重なり合った部分を上記回転用凹凸部により連結することにより、周方向に隣接する上記第1及び第2の分割鉄心片の相互間で回動可能な構造の鉄心を製造する装置であって、
    上記第1の環状鉄心部材の上記第1の端部のうち、基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する上記第1の切れ目加工用パンチと、
    上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置に上記第1又は第2の形状の切れ目を加工し、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工する上記第2の切れ目加工用パンチと、
    上記基準位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第1の回転用凹凸部加工用パンチと、
    上記基準位置から所定角度回転した位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第2の回転用凹凸部加工用パンチと、
    上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置において、上記第1の環状鉄心部材の上記第1の端部側の表面上及び上記第2の環状鉄心部材の上記第4の端部側表面上に上記回転用凹凸部を加工する第3の回転用凹凸部加工用パンチとを備えた金型ステージと、
    上記回転用凹凸部を加工しなかった上記第1の環状鉄心部材の上記第1の端部又は上記回転用凹凸部を加工しなかった上記第2の環状鉄心部材の上記第4の端部の周方向位置が積層方向で同じ位置になるように、上記第1の環状鉄心部材又は上記第2の環状鉄心部材を上記所定角度回転させて積層する回転積層装置を備えた鉄心の製造装置。
  10. 上記第1及び第2の切れ目加工用パンチは、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置に上記第1の形状の切れ目を加工するパンチと、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置に上記第2の形状の切れ目を加工するパンチと、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置から所定角度回転した位置に上記第1の形状の切れ目を加工するパンチと、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置から所定角度回転した位置に上記第2の形状の切れ目を加工するパンチと、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第1の形状の切れ目を加工するパンチと、
    上記第1の環状鉄心部材の上記第1の端部又は上記第2の環状鉄心部材の上記第4の端部のうち、上記基準位置及び上記基準位置から所定角度回転した位置を除いた周方向位置に上記第2の形状の切れ目を加工するパンチとを備えた請求項9に記載の鉄心の製造装置。
PCT/JP2008/001973 2008-07-24 2008-07-24 鉄心の製造方法及び鉄心の製造装置 WO2010010599A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010521543A JPWO2010010599A1 (ja) 2008-07-24 2008-07-24 鉄心の製造方法及び鉄心の製造装置
CN2008801296867A CN102057556B (zh) 2008-07-24 2008-07-24 铁心的制造方法和铁心的制造装置
EP08790262.3A EP2309621B1 (en) 2008-07-24 2008-07-24 Method for producing iron core and device for producing iron core
PCT/JP2008/001973 WO2010010599A1 (ja) 2008-07-24 2008-07-24 鉄心の製造方法及び鉄心の製造装置
US12/990,113 US8677608B2 (en) 2008-07-24 2008-07-24 Method for manufacturing iron core and apparatus for manufacturing iron core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001973 WO2010010599A1 (ja) 2008-07-24 2008-07-24 鉄心の製造方法及び鉄心の製造装置

Publications (1)

Publication Number Publication Date
WO2010010599A1 true WO2010010599A1 (ja) 2010-01-28

Family

ID=41570078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001973 WO2010010599A1 (ja) 2008-07-24 2008-07-24 鉄心の製造方法及び鉄心の製造装置

Country Status (5)

Country Link
US (1) US8677608B2 (ja)
EP (1) EP2309621B1 (ja)
JP (1) JPWO2010010599A1 (ja)
CN (1) CN102057556B (ja)
WO (1) WO2010010599A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005155A (ja) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp 積層鉄心の製造方法
JP2013017374A (ja) * 2011-06-08 2013-01-24 Mitsubishi Electric Corp 回転電機
JP2013132145A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 積層鉄心
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JP2018121469A (ja) * 2017-01-26 2018-08-02 株式会社三井ハイテック 積層鉄心の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749557B2 (ja) * 2011-04-28 2015-07-15 本田技研工業株式会社 回転電機の製造方法
JP5554383B2 (ja) * 2012-09-11 2014-07-23 三菱電機株式会社 回転電機の固定子、及びその固定子の製造方法
CN203445710U (zh) * 2013-09-09 2014-02-19 苏州腾龙电机科技有限公司 一种电机
JP6247925B2 (ja) * 2013-12-16 2017-12-13 東芝産業機器システム株式会社 回転電機鉄心の製造装置
CN106233577B (zh) * 2014-04-16 2018-11-02 三菱电机株式会社 旋转电机的电枢铁芯
JP6450222B2 (ja) * 2015-03-06 2019-01-09 株式会社三井ハイテック 打ち抜き片の形成方法及びその方法で形成した打ち抜き片を用いた積層体並びに積層鉄心の製造方法
CN104993622B (zh) * 2015-06-12 2018-04-10 宁波震裕科技股份有限公司 一种定子铁芯及形成该定子铁芯的带状层叠体
JP6293712B2 (ja) * 2015-08-27 2018-03-14 株式会社三井ハイテック 電機子および電機子の製造方法
CN106549512B (zh) 2015-09-16 2019-06-14 雅马哈发动机株式会社 旋转电机
JP6761310B2 (ja) * 2015-09-16 2020-09-23 ヤマハ発動機株式会社 回転電機及びステータ
WO2017090571A1 (ja) * 2015-11-27 2017-06-01 日本電産株式会社 モータおよびモータの製造方法
JP6652527B2 (ja) * 2017-07-14 2020-02-26 本田技研工業株式会社 ステータ用分割コアの製造方法
CN111602317B (zh) * 2018-01-24 2022-05-24 三菱电机株式会社 定子以及电动机
DE102021106186A1 (de) * 2021-03-15 2022-09-15 Ebm-Papst Mulfingen Gmbh & Co. Kg Modular aufgebautes, segmentiertes Statorpaket

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461552B2 (ja) 1994-01-28 2003-10-27 多摩川精機株式会社 ステータ及び分割積層コアの製造方法
JP2004236497A (ja) * 1996-09-30 2004-08-19 Matsushita Electric Ind Co Ltd 回転電機のコア製造方法
JP2005110464A (ja) * 2003-10-02 2005-04-21 Mitsubishi Electric Corp 電動機のステータコア及びその製造方法
JP2005218194A (ja) * 2004-01-28 2005-08-11 Nsk Ltd モータ及びそれを用いた電動パワーステアリング装置
JP2005341684A (ja) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp 積層型鉄心及びその製造方法
JP2006211819A (ja) * 2005-01-27 2006-08-10 Fanuc Ltd モータ、及びモータ製造装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795158A (en) * 1980-12-02 1982-06-12 Toshiba Corp Rotary electric machine
EP0084568B1 (en) * 1981-03-31 1986-06-25 Matsushita Electric Industrial Co., Ltd. Iron core laminate manufacturing apparatus
US4427462A (en) * 1981-06-18 1984-01-24 Matsushita Electric Industrial Co., Ltd. Electric apparatus and its magnetic core of (100)[011] silicon-iron sheet made by rapid quenching method
DE3869004D1 (de) * 1987-07-20 1992-04-16 Mitsubishi Electric Corp Anker.
DE3929331C2 (de) * 1989-09-04 1990-12-13 Buehler Gmbh Nachf Geb Verfahren zur Herstellung und zum Bewickeln von für Elektro-Motore mit Innenläufer bestimmten Statorblechpaketen
JP2556776B2 (ja) 1991-06-26 1996-11-20 株式会社三井ハイテック 電動機の固定子用積層鉄心の製造方法
JP3393902B2 (ja) 1993-11-19 2003-04-07 オリエンタルモーター株式会社 リニア・ロータリ複合型ステッピングモータ
CA2135817C (en) 1993-11-19 1998-08-11 Hirobumi Satomi Combined linear-rotary stepping motor
JP3103343B2 (ja) * 1998-12-30 2000-10-30 株式会社三井ハイテック 固定子用積層磁極鉄心の製造方法及び同製造方法に用いる金型装置
JP3786854B2 (ja) * 2001-08-30 2006-06-14 株式会社三井ハイテック 積層鉄心の製造方法
US7038349B2 (en) * 2003-03-18 2006-05-02 Asmo Co., Ltd. Stator for dynamo-electric machine
JP4366103B2 (ja) * 2003-04-15 2009-11-18 株式会社三井ハイテック 積層鉄心の製造方法
JP2005103638A (ja) * 2003-09-10 2005-04-21 Aisin Aw Co Ltd モータ用積層コアの製造方法、その製造装置、及び積層治具
JP4226437B2 (ja) 2003-10-22 2009-02-18 日本精工株式会社 Vr型レゾルバの鉄心構造及びその製造方法
JP2007020386A (ja) * 2005-06-08 2007-01-25 Denso Corp 回転電機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3461552B2 (ja) 1994-01-28 2003-10-27 多摩川精機株式会社 ステータ及び分割積層コアの製造方法
JP2004236497A (ja) * 1996-09-30 2004-08-19 Matsushita Electric Ind Co Ltd 回転電機のコア製造方法
JP2005110464A (ja) * 2003-10-02 2005-04-21 Mitsubishi Electric Corp 電動機のステータコア及びその製造方法
JP2005218194A (ja) * 2004-01-28 2005-08-11 Nsk Ltd モータ及びそれを用いた電動パワーステアリング装置
JP2005341684A (ja) * 2004-05-26 2005-12-08 Mitsubishi Electric Corp 積層型鉄心及びその製造方法
JP2006211819A (ja) * 2005-01-27 2006-08-10 Fanuc Ltd モータ、及びモータ製造装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005155A (ja) * 2010-06-14 2012-01-05 Mitsubishi Electric Corp 積層鉄心の製造方法
JP2013017374A (ja) * 2011-06-08 2013-01-24 Mitsubishi Electric Corp 回転電機
JP2015146733A (ja) * 2011-06-08 2015-08-13 三菱電機株式会社 回転電機
JP2013132145A (ja) * 2011-12-22 2013-07-04 Mitsubishi Electric Corp 積層鉄心
US9343930B2 (en) 2012-05-25 2016-05-17 Baldor Electric Company Segmented stator assembly
JP2018121469A (ja) * 2017-01-26 2018-08-02 株式会社三井ハイテック 積層鉄心の製造方法
US11605988B2 (en) 2017-01-26 2023-03-14 Mitsui High-Tec, Inc. Method for manufacturing laminated iron core

Also Published As

Publication number Publication date
EP2309621A4 (en) 2014-05-14
CN102057556B (zh) 2013-03-27
EP2309621A1 (en) 2011-04-13
CN102057556A (zh) 2011-05-11
US8677608B2 (en) 2014-03-25
JPWO2010010599A1 (ja) 2012-01-05
US20110047780A1 (en) 2011-03-03
EP2309621B1 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2010010599A1 (ja) 鉄心の製造方法及び鉄心の製造装置
US8205320B2 (en) Method of manufacturing a rotating electric machine
US8102092B2 (en) Split cores for motor stator, motor stator, permanent magnet type synchronous motor and punching method by split core punching die
JP4427760B2 (ja) 積層鉄心の製造方法及び製造装置
TWI566503B (zh) 旋轉電機用定子芯、旋轉電機及旋轉電機的製造方法
US8161625B2 (en) Method of manufacturing a rotating electric machine
US20140009023A1 (en) Permanent magnet motor
JP2014072988A (ja) 固定子コア、分割コアブロック、固定子の製造方法、および回転電機
WO2013051125A1 (ja) 積層鉄心の製造方法およびそれにより製造された積層鉄心
JP2011036039A (ja) 転積前の打ち抜き方法
JP2011193689A (ja) 電機子コアの製造方法
JP6080654B2 (ja) 回転電機の回転子、回転電機、回転子の積層コアの製造方法
JP2007028799A (ja) コアの製造方法
KR20140038901A (ko) 적층 철심의 제조 방법 및 적층 철심 제조 장치
JP2021052574A (ja) ステータ、モータ、及びステータの製造方法
US11228226B2 (en) Electric machine comprising a knurled rotor shaft and method of manufacturing such a machine
JP2015107013A (ja) 積層鉄心に用いる鉄心片の打ち抜き方法
JP2556776B2 (ja) 電動機の固定子用積層鉄心の製造方法
JP2011254699A (ja) 積層鉄心の製造方法及び製造装置
WO2018180344A1 (ja) 電動モータ用ステータおよび電動モータ
JP2007166767A (ja) 分割スキュー積層コア及びその製造方法
JPWO2018180343A1 (ja) 電動モータ用ステータおよび電動モータ
JPS63228945A (ja) 回転電機の固定子鉄心製造方法
JP2010011737A (ja) 積層鉄心の製造方法及び製造装置
JP2018019472A (ja) ロボット、モーター、及びモーターの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880129686.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010521543

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12990113

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2008790262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008790262

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE