WO2010001785A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2010001785A1
WO2010001785A1 PCT/JP2009/061521 JP2009061521W WO2010001785A1 WO 2010001785 A1 WO2010001785 A1 WO 2010001785A1 JP 2009061521 W JP2009061521 W JP 2009061521W WO 2010001785 A1 WO2010001785 A1 WO 2010001785A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
circumferential
pneumatic tire
tread
inland
Prior art date
Application number
PCT/JP2009/061521
Other languages
English (en)
French (fr)
Inventor
越智 直也
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP20090773363 priority Critical patent/EP2308695B1/en
Priority to US13/002,167 priority patent/US9079460B2/en
Priority to CN2009801255490A priority patent/CN102076508B/zh
Publication of WO2010001785A1 publication Critical patent/WO2010001785A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • B60C11/125Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern arranged at the groove bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0304Asymmetric patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0306Patterns comprising block rows or discontinuous ribs
    • B60C11/0309Patterns comprising block rows or discontinuous ribs further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0381Blind or isolated grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0386Continuous ribs
    • B60C2011/0388Continuous ribs provided at the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1209Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe straight at the tread surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/133Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C2011/1338Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls comprising protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1353Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom
    • B60C2011/1361Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove bottom with protrusions extending from the groove bottom

Definitions

  • the present invention relates to a pneumatic tire in which circumferential grooves extending along the tire circumferential direction are formed, and more particularly to a pneumatic tire for icy and snowy roads.
  • a so-called studless tire a structure in which a circumferential groove having a wide groove width (for example, 7 mm or more) along the tire circumferential direction and a sipe extending in the tread width direction are formed. It has been known.
  • the conventional pneumatic tire described above has the following problems. That is, when a circumferential groove with a wide groove width is formed, the area of the land portion (block) constituting the tread surface, the number of sipes, and the like are reduced. For this reason, although drainage improvement and suppression of skid on an icy snow road can be achieved, there has been a problem that driving performance and braking performance on an icy snow road cannot be improved.
  • the present invention has been made in view of such a situation, and a pneumatic tire that further improves driving performance and braking performance on an icy snow road while improving drainage and suppressing side slip on the icy snow road.
  • the purpose is to provide.
  • a pneumatic tire for example, a pneumatic tire 1A
  • a land portion that constitutes a tread surface (tread surface 10) in contact with a road surface.
  • a circumferential groove e.g., circumferential groove 32 is formed extending along.
  • a smooth groove portion (smooth groove portion 60) having a smooth surface of the groove bottom (groove bottom 32a) of the circumferential groove, and a groove inland portion that protrudes more on the tread tread side than the groove bottom of the circumferential groove ( A groove inland portion 70) is formed.
  • a plurality of narrow grooves (thin grooves 80) extending along the tread width direction are formed in the inland portion of the groove.
  • the width along the tread width direction of the circumferential groove (thick groove width W1) is 5 to 30% with respect to the width along the tread width direction of the tread surface (tread width TW).
  • the smooth groove portion is formed in the circumferential groove.
  • the wide groove width is 5 to 30% with respect to the tread width. According to this, rainwater or the like that enters the circumferential groove is easily discharged, so that drainage can be improved. Moreover, since snow enters the circumferential groove firmly, skidding on an icy snow road can be suppressed.
  • inland grooves are formed in the circumferential grooves.
  • a plurality of narrow grooves extending along the tread width direction are formed in the inland portion of the groove.
  • a plurality of circumferential grooves are provided.
  • the circumferential groove in which the smooth groove portion and the inland portion of the groove are formed has the widest width along the tread width direction among the plurality of circumferential grooves.
  • the groove depth (first groove depth D1) from the tread surface of the land portion to the upper surface portion (upper surface portion 72) of the inland groove portion is from the tread surface of the land portion to the groove bottom of the circumferential groove. It is 60 to 95% with respect to the depth (second groove depth D2).
  • the width of the narrow groove along the tire circumferential direction (thin groove width W2) is 1 to 8 mm.
  • the angle between the narrow groove and the straight line perpendicular to the tire equator plane (the narrow groove angle ⁇ ) is 0 to 45 degrees.
  • the depth from the groove bottom of the narrow groove (groove bottom 81) to the upper surface portion of the inland groove portion (thin groove depth D3) is from the groove bottom of the circumferential groove to the upper surface portion of the groove inland portion. It is 50 to 100% of the height (groove inland height H).
  • a gap (gap 90) is generated between the inland part of the groove and the land part located on the opposite side of the smooth groove part.
  • the cross-sectional shape of the smooth groove portion along the tread width direction and the tire radial direction is constant along the tire circumferential direction, and the distance along the tread width direction from the smooth groove portion to the tire equatorial plane is It is constant along the tire circumferential direction.
  • a plurality of lug grooves extending along the tread width direction are formed in at least a part of the land portion.
  • 2 to 8 narrow grooves are formed between mutually adjacent lug grooves.
  • a notch (notch 85) extending in the tread width direction from the narrow groove is formed in the land portion.
  • the width along the tire circumferential direction of the notch (notch width W3) is substantially the same as the width along the tire circumferential direction of the narrow groove.
  • the cross-section of the inland groove section along the tread width direction and the tire radial direction is substantially rectangular.
  • a straight line (straight line L3) extending along the end located on the smooth groove portion side of the inland groove portion is inclined with respect to the tire equatorial plane.
  • FIG. 1 is a development view showing a tread pattern of a pneumatic tire 1A according to the first embodiment.
  • FIG. 2 is a partially enlarged view showing the pneumatic tire 1A according to the first embodiment.
  • FIG. 3 is a partial perspective view of the circumferential groove 32 according to the first embodiment.
  • 4 is a cross-sectional view in the tread width direction of the circumferential groove 32 according to the first embodiment (cross-sectional view along AA in FIG. 3).
  • FIG. 5 is a cross-sectional view in the tire circumferential direction of the circumferential groove 32 according to the first embodiment (cross-sectional view along BB in FIG. 3).
  • FIG. 6 is a partial perspective view of the circumferential groove 32 according to the modified example.
  • FIG. 1 is a development view showing a tread pattern of a pneumatic tire 1A according to the first embodiment.
  • FIG. 2 is a partially enlarged view showing the pneumatic tire 1A according to the first embodiment.
  • FIG. 3 is a partial perspective view of
  • FIG. 7 is a cross-sectional view in the tread width direction (CC cross-sectional view in FIG. 6) of the circumferential groove 32 according to the modified example.
  • FIG. 8 is a development view showing a tread pattern of the pneumatic tire 1B according to the second embodiment.
  • FIG. 9 is a partially enlarged view showing the pneumatic tire 1B according to the second embodiment.
  • FIG. 10 is a partial perspective view of the circumferential groove 32 according to the second embodiment.
  • FIG. 11 is a development view showing a tread pattern of the pneumatic tire 100 according to the comparative example.
  • FIG. 1 is a development view showing a tread pattern of a pneumatic tire 1A according to the first embodiment.
  • FIG. 2 is a partially enlarged view showing the pneumatic tire 1A according to the first embodiment.
  • the pneumatic tire 1A according to the first embodiment is a general radial tire including a bead portion, a carcass layer, and a belt layer (not shown).
  • the pneumatic tire 1A according to the first embodiment has an asymmetric pattern with respect to the tire equatorial plane CS.
  • a tread tread surface 10 in contact with a road surface that is, a circumferential groove 30 extending along the tire circumferential direction by a land portion 20 constituting a tread portion surface, and a tread.
  • a plurality of lug grooves 40 extending along the width direction and a sipe 50 narrower than the circumferential groove 30 and the lug grooves 40 are formed.
  • a plurality of land portions 20 are provided at predetermined intervals in the tire circumferential direction and the tread width direction.
  • the land portion 20 is a land portion 21, a land portion 22, a land portion 23, a land portion 24, and a land portion 25 from the right side to the left side in FIG.
  • a plurality of lug grooves 41 that divide the land portion 21, a sipe 51A extending in the tire circumferential direction, and a sipe 51B extending in the tread width direction are formed.
  • the land portion 22 is formed with a plurality of lug grooves 42 that divide the land portion 22 and sipes 52 that extend in the tread width direction.
  • the land portion 23 is formed with a plurality of lug grooves 43 extending substantially parallel to the lug grooves 42 and sipes 53 extending in the tread width direction.
  • One end of the lug groove 43 opens in a circumferential groove 33 described later, and the other end of the lug groove 43 terminates in the land portion 23. That is, the land portion 23 is formed in a rib shape.
  • a plurality of lug grooves 44A that divide the land portion 24, lug grooves 44B that extend substantially parallel to the lug grooves 42 and the lug grooves 43, and sipes 54 that extend in the tread width direction are formed.
  • One end of the lug groove 44 ⁇ / b> B opens to a circumferential groove 33 described later, and the other end of the lug groove 43 is terminated in the land portion 24.
  • the land portion 25 includes a plurality of lug grooves 45 that divide the land portion 25, a sipe 55A that extends in the tire circumferential direction, and a sipe 55B that extends in the tread width direction.
  • a plurality of circumferential grooves 30 are provided at predetermined intervals in the tread width direction.
  • the circumferential grooves 30 are referred to as a circumferential groove 31, a circumferential groove 32, a circumferential groove 33, and a circumferential groove 34 from the right side to the left side in FIG.
  • the circumferential groove 32 of the plurality of circumferential grooves 30 has the widest width along the tread width direction.
  • the width along the tread width direction of the circumferential groove 32 (hereinafter, thick groove width W1) is 5 to 30% with respect to the width along the tread width direction of the tread surface (hereinafter referred to as tread width TW).
  • FIG. 3 is a partial perspective view of the circumferential groove 32 according to the first embodiment.
  • the sipes 50 are omitted.
  • 4 is a cross-sectional view in the tread width direction of the circumferential groove 32 according to the first embodiment (cross-sectional view along AA in FIG. 3).
  • FIG. 5 is a cross-sectional view in the tire circumferential direction of the circumferential groove 32 according to the first embodiment (cross-sectional view along BB in FIG. 3).
  • a smooth groove portion 60 having a smooth surface of the groove bottom 32 a of the circumferential groove 32, and the tread tread surface 10 side from the groove bottom 32 a of the circumferential groove 32.
  • a groove inland portion 70 is formed.
  • the smooth groove portion 60 is provided on the tire equatorial plane CS side with respect to the groove inland portion 70.
  • the cross-sectional shape of the smooth groove portion 60 along the tread width direction and the tire radial direction is constant along the tire circumferential direction (see FIG. 4), and along the tread width direction from the smooth groove portion 60 to the tire equatorial plane CS.
  • the distance D is constant along the tire circumferential direction (see FIG. 1).
  • the inland groove portion 70 is formed continuously with the land portion 22 in the tread width direction.
  • the cross section of the groove inland portion 70 in the tread width direction and the tire radial direction is substantially rectangular (see FIG. 4). Specifically, in the cross section, the upper surface portion 72 of the groove inland portion 70 extends along the tread width direction.
  • the groove wall 73 extending from the inner end 71 (end portion) located on the smooth groove portion 60 side of the groove inland portion 70 toward the smooth groove portion 60 (the groove bottom 32a of the circumferential groove 32) is a tire diameter. Extend in the direction.
  • a straight line L1 extending along the inner end 71 located on the smooth groove portion 60 side of the groove inland portion 70 is substantially parallel to the tire equatorial plane CS (see FIG. 3). That is, the straight line L1 extends along the tire circumferential direction.
  • the groove depth from the tread surface 10 of the land portion 22 to the upper surface portion 72 of the inland groove portion 70 (hereinafter referred to as the first groove depth D1) is from the tread surface of the land portion 23 to the groove bottom 32a of the circumferential groove 32. It is 60 to 95% with respect to the depth (hereinafter referred to as second groove depth D2) (see FIG. 4).
  • a lug groove 42 continuous from the land portion 22 and a plurality of narrow grooves 80 extending in the tread width direction are formed.
  • An angle formed by the narrow groove 80 and a straight line L2 perpendicular to the tire equatorial plane CS (hereinafter, the narrow groove angle ⁇ ) is 0 to 45 degrees (see FIG. 1).
  • the width of the narrow groove 80 in the tire circumferential direction (hereinafter referred to as the narrow groove width W2) is 1 to 8 mm (see FIG. 5).
  • the depth from the groove bottom 81 of the narrow groove 80 to the upper surface portion 72 of the groove inland portion 70 (hereinafter referred to as the fine groove depth D3) is from the groove bottom 32a of the circumferential groove 32 to the upper surface portion 72 of the groove inland portion 70. It is 50 to 100% with respect to the height (hereinafter referred to as the inland groove height H) (see FIG. 5).
  • a notch 85 extending from the narrow groove 80 in the tread width direction and terminating in the land portion 22 is formed in the land portion 22 adjacent to the inland groove portion 70.
  • the width of the notch 85 along the tire circumferential direction (hereinafter, notch width W3) is substantially the same as the narrow groove width W2.
  • a smooth groove portion 60 is formed in the circumferential groove 32.
  • the thick groove width W1 is 5 to 30% with respect to the tread width TW. According to this, rainwater or the like that enters the circumferential groove 32 is easily discharged, so that drainage can be improved. In addition, since the snow firmly enters the circumferential groove 32, it is possible to suppress a skid on an icy and snowy road.
  • the thick groove width W1 is smaller than 5% with respect to the tread width TW, the amount of rainwater entering the circumferential groove 32 is reduced, so that the drainage performance cannot be expected.
  • the thick groove width W1 is larger than 30% with respect to the tread width TW, the area of the tread surface 10 in contact with the road surface is reduced, and it is not possible to suppress the side slip on the icy and snowy road and to improve the driving performance and braking performance.
  • an inland groove portion 70 is formed in the circumferential groove 32.
  • a plurality of narrow grooves 80 extending in the tread width direction are formed in the inland groove portion 70.
  • the circumferential groove 32 has the widest wide groove width W1 among the plurality of circumferential grooves.
  • the cross-sectional shape of the smooth groove portion 60 along the tread width direction and the tire radial direction is constant along the tire circumferential direction, and the distance D along the tread width direction from the smooth groove portion 60 to the tire equatorial plane CS is the tire It is constant along the circumferential direction. According to this, rainwater or the like that enters the circumferential groove 32 is easily drained, so that it is possible to suppress a decrease in drainage.
  • the narrow groove width W2 is 1 to 8 mm.
  • the narrow groove width W2 is 1 mm or more, the effect of soaking the narrow groove 80 on the snow that has entered the circumferential groove 32 (so-called edge effect) increases, so that the driving performance and braking performance on an icy and snowy road are further improved. be able to.
  • the narrow groove width W2 is 8 mm or less, the resistance of rainwater or the like that has entered the circumferential groove 32 does not increase excessively, so that it is possible to suppress a decrease in drainage.
  • the first groove depth D1 is 60 to 95% with respect to the second groove depth D2. Since the first groove depth D1 is 60% or more with respect to the second groove depth D2, the volume of the circumferential groove 32 is not excessively reduced, and thus it is possible to suppress a decrease in drainage. On the other hand, when the first groove depth D1 is 95% or less with respect to the second groove depth D2, it is possible to secure the effect (so-called edge effect) that the narrow groove 80 is caught by the snow that has entered the circumferential groove 32. Therefore, the driving performance and braking performance on an icy and snowy road can be further improved.
  • the narrow groove angle ⁇ is 0 to 45 degrees.
  • the effect (so-called edge effect) that the groove inland portion 70 and the narrow groove 80 are caught by the snow that has entered the circumferential groove 32 increases (so-called edge effect).
  • edge effect the effect that the groove inland portion 70 and the narrow groove 80 are caught by the snow that has entered the circumferential groove 32 increases.
  • the braking performance can be further improved.
  • the narrow groove depth D3 is 50 to 100% with respect to the inland groove height H. Since the narrow groove depth D3 is 50% or more with respect to the inland groove height H, the effect that the narrow groove 80 is caught by the snow that has entered the circumferential groove 32 (so-called edge effect) is secured. Driving performance and braking performance on icy and snowy roads can be further improved.
  • the narrow groove depth D3 is 100% or less with respect to the groove inland portion height H, the narrow groove 80 is formed in the snow that has entered the circumferential groove 32 without lowering the rigidity of the groove inland portion 70. Since a catching effect (so-called edge effect) is ensured, the driving performance and braking performance on icy and snowy roads can be further improved.
  • a plurality of lug grooves 40 are formed in at least a part of the land portion 20. This improves the driving performance and braking performance not only on icy and snowy roads but also on dry roads.
  • 2 to 8 narrow grooves 80 are formed between the lug grooves 42 adjacent to each other. Since there are two or more narrow grooves 80 between the adjacent lug grooves 42, the effect of soaking the narrow grooves 80 into the snow that has entered the circumferential grooves 32 (so-called edge effect) increases. Driving performance and braking performance can be further improved. On the other hand, since there are eight or less narrow grooves 80 between the adjacent lug grooves 42, resistance to rainwater, snow, etc. that have entered the circumferential grooves 32 does not increase excessively. Can be suppressed.
  • the land portion 22 is formed with a notch 85 at a position facing the narrow groove 80.
  • the notch width W3 is substantially the same as the narrow groove width W2. According to this, the effect (so-called edge effect) that the narrow groove 80 is caught by the snow that has entered the circumferential groove 32 increases (so-called edge effect), so that it is possible to further improve the driving performance and braking performance on the icy and snowy road.
  • one edge part of the lug groove 43 is a circumferential groove
  • the other end of the lug groove 43 is terminated in the land portion 23. According to this, since resistance, such as rain water and snow which entered the circumferential groove 32, does not increase excessively, it is possible to suppress a decrease in drainage.
  • the inland groove portion 70 according to the first embodiment described above has been described as being formed continuously with the land portion 22 in the tread width direction, but may be modified as follows.
  • symbol is attached
  • FIG. 6 is a partial perspective view of the circumferential groove 32 according to a modification.
  • FIG. 7 is a cross-sectional view in the tread width direction (CC cross-sectional view in FIG. 6) of the circumferential groove 32 according to a modification.
  • a notch 85 is formed at a position facing the narrow groove 80 in the land 22 where the inland groove 70 is close.
  • a gap 90 is generated between the inland groove portion 70 and the land portion 22 adjacent to the inland groove portion 70.
  • a gap 90 is generated between the inland groove portion 70 and the land portion 22 adjacent to the inland groove portion 70. According to this, in addition to the smooth groove portion 60, the gap 90 can be secured in the circumferential groove 32. Accordingly, it is possible to further improve drainage.
  • FIG. 8 is a development view showing a tread pattern of the pneumatic tire 1B according to the second embodiment.
  • FIG. 9 is a partially enlarged view showing the pneumatic tire 1B according to the second embodiment. In FIG. 9, the sipe 50 is omitted.
  • FIG. 10 is a partial perspective view of the circumferential groove 32 according to the second embodiment.
  • symbol is attached
  • one end of the lug groove 42 opens into the circumferential groove 31, and the other end of the lug groove 42.
  • the lug groove 43 divides the land portion 23.
  • a straight line L3 extending along the inner end 71 located on the smooth groove portion 60 side of the groove inland portion 70 is inclined with respect to the tire equatorial plane CS. That is, the inner end 71 is formed in a zigzag shape with respect to the tire circumferential direction.
  • Tire size 205 / 55R16 ⁇ Wheel size: 6.5J ⁇ 16 ⁇
  • Internal pressure condition Regular internal pressure Configuration of tread pattern of each of these pneumatic tires, driving performance on snowy road, braking performance on snowy road, driving performance on snowy road, sherbet snow performance, hydroplaning performance on rainy road Will be described with reference to Table 1.
  • the smooth groove portion 60 and the groove inland portion 70 are not formed in the circumferential groove 32.
  • the land portion 23 located on the tire equatorial plane CS side of the circumferential groove 32 is formed in a rib shape (see FIG. 11).
  • the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32.
  • a straight line L1 extending along the inner end 71 located on the smooth groove portion 60 side of the groove inland portion 70 is substantially parallel to the tire equatorial plane CS.
  • the land portion 23 located on the tire equatorial plane CS side of the circumferential groove 32 is formed in a rib shape (see FIGS. 1 to 5).
  • the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32.
  • a straight line L3 extending along the inner end 71 located on the smooth groove portion 60 side of the groove inland portion 70 is inclined with respect to the tire equatorial plane CS.
  • the land portion 22 located on the tread shoulder side of the circumferential groove 32 is formed in a rib shape (see FIGS. 8 to 10).
  • the vehicle equipped with the pneumatic tire 1A according to Example 1 and the pneumatic tire 1B according to Example 2 is steered on a snowy road as compared with the vehicle equipped with the pneumatic tire 100 according to the comparative example. It was found that the performance was excellent. That is, it can be seen that the pneumatic tire in which the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32 and the narrow groove 80 is formed in the groove inland portion 70 improves the steering performance on snowy roads.
  • Table 1 shows values obtained by indexing the braking distances of vehicles equipped with other pneumatic tires with reference to the braking distance of the vehicle equipped with the pneumatic tire 100 according to the comparative example as a reference (100). The larger the index, the better the braking performance on snowy roads.
  • the vehicle equipped with the pneumatic tire 1A according to Example 1 and the pneumatic tire 1B according to Example 2 is braked on a snowy road as compared with the vehicle equipped with the pneumatic tire 100 according to the comparative example. It was found that the performance was excellent. That is, it can be seen that the pneumatic tire in which the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32 and the narrow groove 80 is formed in the groove inland portion 70 improves the braking performance on snowy roads.
  • Table 1 shows an indexed value of the acceleration time in a vehicle equipped with other pneumatic tires, with the acceleration time in a vehicle equipped with the pneumatic tire 100 according to the comparative example as a reference (100). The larger the index, the better the driving performance on snowy roads.
  • the vehicle equipped with the pneumatic tire 1A according to Example 1 and the pneumatic tire 1B according to Example 2 is driven on a snowy road as compared with the vehicle equipped with the pneumatic tire 100 according to the comparative example. It was found that the performance was excellent. That is, it is understood that the pneumatic tire in which the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32 and the narrow groove 80 is formed in the groove inland portion 70 improves driving performance on a snowy road. .
  • ⁇ Sherbet snow performance> The sherbet snow performance accelerates vehicles equipped with pneumatic tires on the course of a snowy road with a moisture content of 80-90% (including a slash shape) under a temperature of 0 ⁇ 1 degrees. Then, the evaluation was made based on the limit speed until the pneumatic tire mounted on each vehicle did not contact the road surface.
  • Table 1 shows values obtained by indexing the critical speeds of vehicles equipped with other pneumatic tires with reference to the critical speed of the vehicle equipped with the pneumatic tire 100 according to the comparative example as a reference (100). The larger the index, the better the sherbet snow performance.
  • the vehicle equipped with the pneumatic tire 1A according to Example 1 and the pneumatic tire 1B according to Example 2 is superior in the sherbet snow performance as compared with the vehicle equipped with the pneumatic tire 100 according to the comparative example.
  • the pneumatic tire in which the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32 and the narrow groove 80 is formed in the groove inland portion 70 improves the sherbet snow performance.
  • Hydroplaning performance on rainy roads is evaluated based on the critical speed at which hydroplaning occurs when a vehicle equipped with pneumatic tires is run on a rainy road course with a depth of 5 mm and the pneumatic tires lift off the road surface.
  • Table 1 shows values obtained by indexing the critical speeds of vehicles equipped with other pneumatic tires with reference to the critical speed of the vehicle equipped with the pneumatic tire 100 according to the comparative example as a reference (100). The larger the index, the better the hydroplaning performance on the rainy road.
  • the vehicle equipped with the pneumatic tire 1A according to the first embodiment and the pneumatic tire 1B according to the second embodiment is more hydrostatic in the rain road than the vehicle equipped with the pneumatic tire 100 according to the comparative example. It was found that the planing performance was excellent. That is, it can be seen that the pneumatic tire in which the smooth groove portion 60 and the groove inland portion 70 are formed in the circumferential groove 32 and the narrow groove 80 is formed in the groove inland portion 70 improves the hydroplaning performance in the rainy road. .
  • the smooth groove portion 60 and the groove inland portion 70 have been described as being formed in the circumferential groove 32 having the widest width along the tread width direction among the plurality of circumferential grooves 30. It is not limited to this, and it may be formed in another circumferential groove 30 or of course formed in a plurality of circumferential grooves 30.
  • the smooth groove portion 60 has been described as being provided closer to the tire equatorial plane CS than the groove inland portion 70.
  • the present invention is not limited to this, and for example, the position is reversed, that is, the groove inland portion. Of course, it may be provided closer to the tread shoulder portion than 70.
  • the cross section of the groove inland portion 70 in the tread width direction and the tire radial direction has been described as having a substantially square shape, but is not limited thereto, and has a substantially triangular shape or a substantially trapezoidal shape. Of course, it is also good.
  • the pneumatic tire 1 ⁇ / b> A has been described as a general radial tire including a bead portion, a carcass layer, and a belt layer (not shown).
  • the pneumatic tire 1 ⁇ / b> A is not limited to this and is not a radial tire.
  • a tire (for example, a bias tire) may be sufficient and a tire with a tube may be sufficient.
  • the pneumatic tire according to the present invention can be further improved in driving performance and braking performance in an icy snow road while improving drainage and suppressing skid on the icy snow road, and is useful in tire manufacturing technology and the like. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

本発明は、空気入りタイヤ1Aは、路面と接するトレッド踏面10を構成する陸部20によって、タイヤ周方向に沿って延びる周方向溝32が形成される。周方向溝32内には、周方向溝32の溝底32aの表面が平滑な平滑溝部60と、周方向溝32の溝底32aよりもトレッド踏面10側に隆起する溝内陸部70とが形成される。溝内陸部70には、トレッド幅方向に沿って延びる複数の細溝80が形成される。周方向溝32のトレッド幅方向に沿った太溝幅W1は、トレッド踏面のトレッド幅方向に沿ったトレッド幅TWに対して5~30%である。

Description

空気入りタイヤ
 本発明は、タイヤ周方向に沿って延びる周方向溝が形成された空気入りタイヤに関し、特に、氷雪路向けの空気入りタイヤに関する。
 従来、氷雪路向けに製造された空気入りタイヤ、いわゆるスタッドレスタイヤにおいて、タイヤ周方向に沿った溝幅が広い(例えば、7mm以上)周方向溝と、トレッド幅方向に伸びるサイプとを形成する構造が知られている。
 このような空気入りタイヤによれば、路面とトレッド踏面との間に入り込んだ雨水やシャーベット状の雪などの排水性向上と、氷雪路における横滑りの抑制とを実現することができる。
特開2000-255217号公報(第4-5頁、第1図)
 しかしながら、上述した従来の空気入りタイヤには、次のような問題があった。すなわち、溝幅が広い周方向溝が形成されると、トレッド踏面を構成する陸部(ブロック)の面積やサイプの数などが減少する。このため、排水性向上や氷雪路における横滑りの抑制は図られるものの、氷雪路における駆動性能や制動性能を向上させることはできない問題があった。
 そこで、本発明は、このような状況に鑑みてなされたものであり、排水性向上や氷雪路における横滑りの抑制を図りつつ、氷雪路における駆動性能や制動性能をさらに向上させた空気入りタイヤを提供することを目的とする。
 上述した状況を解決するため、本発明は、次のような特徴を有している。まず、本発明の第1の特徴において、空気入りタイヤ(例えば、空気入りタイヤ1A)は、路面と接するトレッド踏面(トレッド踏面10)を構成する陸部(陸部20)によって、タイヤ周方向に沿って延びる周方向溝(例えば、周方向溝32)が形成される。周方向溝内には、周方向溝の溝底(溝底32a)の表面が平滑な平滑溝部(平滑溝部60)と、周方向溝の溝底よりもトレッド踏面側に隆起する溝内陸部(溝内陸部70)とが形成される。溝内陸部には、トレッド幅方向に沿って延びる複数の細溝(細溝80)が形成される。周方向溝のトレッド幅方向に沿った幅(太溝幅W1)は、トレッド踏面のトレッド幅方向に沿った幅(トレッド幅TW)に対して5~30%である。
 かかる特徴によれば、周方向溝内には、平滑溝部が形成される。太溝幅は、トレッド幅に対して5~30%である。これによれば、周方向溝に入り込んだ雨水などが排出されやすくなるため、排水性向上を図ることができる。また、周方向溝に雪がしっかり入り込むため、氷雪路における横滑りを抑制することができる。
 また、周方向溝内には、溝内陸部が形成される。溝内陸部には、トレッド幅方向に沿って延びる複数の細溝が形成されている。これによれば、周方向溝に入り込んだ雪に細溝が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 その他の特徴において、周方向溝は、複数設けられる。平滑溝部と溝内陸部とが形成された周方向溝は、複数の周方向溝のうち、トレッド幅方向に沿った幅が最も広い。
 その他の特徴において、陸部のトレッド踏面から溝内陸部の上面部(上面部72)までの溝深さ(第1溝深さD1)は、陸部のトレッド踏面から周方向溝の溝底までの深さ(第2溝深さD2)に対して60~95%である。
 その他の特徴において、細溝のタイヤ周方向に沿った幅(細溝幅W2)は、1~8mmである。
 その他の特徴において、細溝と、タイヤ赤道面に直交する直線とが成す角度(細溝角度α)は、0~45度である。
 その他の特徴において、細溝の溝底(溝底81)から溝内陸部の上面部までの深さ(細溝深さD3)は、周方向溝の溝底から溝内陸部の上面部までの高さ(溝内陸部高さH)に対して50~100%である。
 その他の特徴において、溝内陸部と、平滑溝部の逆側に位置する陸部との間には、空隙(空隙90)が生成される。
 その他の特徴において、トレッド幅方向及びタイヤ径方向に沿った平滑溝部の断面形状は、タイヤ周方向に沿って一定であるとともに、平滑溝部からタイヤ赤道面までのトレッド幅方向に沿った距離は、タイヤ周方向に沿って一定である。
 その他の特徴において、陸部の少なくとも一部には、トレッド幅方向に沿って延びるラグ溝が複数形成される。
 その他の特徴において、細溝は、相互に隣接するラグ溝間において、2~8本形成される。
 その他の特徴において、陸部には細溝からトレッド幅方向に延びる切欠き部(切欠き部85)が形成される。切欠き部のタイヤ周方向に沿った幅(切欠幅W3)は、細溝のタイヤ周方向に沿った幅と略同一である。
 その他の特徴において、トレッド幅方向及びタイヤ径方向に沿った溝内陸部の断面は、略四角形状である。
 その他の特徴において、溝内陸部記平滑溝部側に位置する端部に沿って延びる直線(直線L3)は、タイヤ赤道面に対して傾く。
 本発明によれば、排水性向上や氷雪路における横滑りの抑制を図りつつ、氷雪路における駆動性能や制動性能をさらに向上させた空気入りタイヤを提供することができる。
図1は、第1実施形態に係る空気入りタイヤ1Aのトレッドパターンを示す展開図である。 図2は、第1実施形態に係る空気入りタイヤ1Aを示す一部拡大図である。 図3は、第1実施形態に係る周方向溝32の一部斜視図である。 図4は、第1実施形態に係る周方向溝32のトレッド幅方向断面図(図3のA-A断面図)である。 図5は、第1実施形態に係る周方向溝32のタイヤ周方向断面(図3のB-B断面図)である。 図6は、変更例に係る周方向溝32の一部斜視図である。 図7は、変更例に係る周方向溝32のトレッド幅方向断面図(図6のC-C断面図)である。 図8は、第2実施形態に係る空気入りタイヤ1Bのトレッドパターンを示す展開図である。 図9は、第2実施形態に係る空気入りタイヤ1Bを示す一部拡大図である。 図10は、第2実施形態に係る周方向溝32の一部斜視図である。 図11は、比較例に係る空気入りタイヤ100のトレッドパターンを示す展開図である。
 次に、本発明に係る空気入りタイヤの一例について、図面を参照しながら説明する。なお、以下の図面の記載において、同一または類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なのものであり、各寸法の比率などは現実のものとは異なることを留意すべきである。
 したがって、具体的な寸法などは以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
[第1実施形態]
(トレッドパターンの構成)
 以下において、第1実施形態に係る空気入りタイヤ1Aのトレッドパターン構成について、図面を参照しながら説明する。図1は、第1実施形態に係る空気入りタイヤ1Aのトレッドパターンを示す展開図である。図2は、第1実施形態に係る空気入りタイヤ1Aを示す一部拡大図である。
 第1実施形態に係る空気入りタイヤ1Aは、ビード部やカーカス層、ベルト層(不図示)を備える一般的なラジアルタイヤである。また、第1実施形態に係る空気入りタイヤ1Aは、タイヤ赤道面CSに対して非対称パターンである。
 図1及び図2に示すように、空気入りタイヤ1Aでは、路面と接するトレッド踏面10、すなわち、トレッド部表面を構成する陸部20によって、タイヤ周方向に沿って延びる周方向溝30と、トレッド幅方向に沿って伸びるラグ溝40と、周方向溝30及びラグ溝40よりも細いサイプ50とが複数形成されている。
 陸部20は、タイヤ周方向及びトレッド幅方向に向かって所定間隔で複数設けられている。陸部20は、図1の右側から左側に向けて、陸部21、陸部22、陸部23、陸部24、陸部25とする。
 陸部21には、陸部21を分断するラグ溝41と、タイヤ周方向に伸びるサイプ51Aと、トレッド幅方向に伸びるサイプ51Bとが複数形成されている。陸部22には、陸部22を分断するラグ溝42と、トレッド幅方向に伸びるサイプ52とが複数形成されている。
 陸部23には、ラグ溝42と略平行に伸びるラグ溝43と、トレッド幅方向に伸びるサイプ53とが複数形成されている。ラグ溝43の一方の端部は、後述する周方向溝33に開口し、ラグ溝43の他方の端部は、陸部23内で終結している。すなわち、陸部23は、リブ状に形成されている。
 陸部24には、陸部24を分断するラグ溝44Aと、ラグ溝42及びラグ溝43と略平行に伸びるラグ溝44Bと、トレッド幅方向に伸びるサイプ54とが複数形成されている。ラグ溝44Bの一方の端部は、後述する周方向溝33に開口し、ラグ溝43の他方の端部は、陸部24内で終結している。陸部25には、陸部25を分断するラグ溝45と、タイヤ周方向に伸びるサイプ55Aと、トレッド幅方向に伸びるサイプ55Bとが複数形成されている。
 周方向溝30は、トレッド幅方向に向かって所定の間隔で複数(図面では、4本)設けられている。周方向溝30は、以下において、図1右側から左側に向けて、周方向溝31、周方向溝32、周方向溝33、周方向溝34とする。
 複数の周方向溝30のうちの周方向溝32は、トレッド幅方向に沿った幅が最も広い。周方向溝32のトレッド幅方向に沿った幅(以下、太溝幅W1)は、トレッド踏面のトレッド幅方向に沿った幅(以下、トレッド幅TW)に対して5~30%である。
(周方向溝の構成)
 次に、上述した周方向溝32の構成について、図面を参照しながら説明する。図3は、第1実施形態に係る周方向溝32の一部斜視図である。図3では、サイプ50が省略されている。図4は、第1実施形態に係る周方向溝32のトレッド幅方向断面図(図3のA-A断面図)である。図5は、第1実施形態に係る周方向溝32のタイヤ周方向断面(図3のB-B断面図)である。
 図3~図5に示すように、周方向溝32内には、周方向溝32の溝底32aの表面が平滑な平滑溝部60と、周方向溝32の溝底32aよりもトレッド踏面10側に隆起する溝内陸部70とが形成されている。
 平滑溝部60は、溝内陸部70よりもタイヤ赤道面CS側に設けられている。トレッド幅方向及びタイヤ径方向に沿った平滑溝部60の断面形状は、タイヤ周方向に沿って一定である(図4参照)とともに、平滑溝部60からタイヤ赤道面CSまでのトレッド幅方向に沿った距離Dは、タイヤ周方向に沿って一定である(図1参照)。
 溝内陸部70は、陸部22とトレッド幅方向に連続して形成されている。トレッド幅方向及びタイヤ径方向における溝内陸部70の断面は、略四角形状である(図4参照)。具体的には、該断面において、溝内陸部70の上面部72は、トレッド幅方向に沿って延びる。また、該断面において、溝内陸部70の平滑溝部60側に位置する内側端71(端部)から平滑溝部60(周方向溝32の溝底32a)に向かって伸びる溝壁73は、タイヤ径方向に延びる。
 溝内陸部70の平滑溝部60側に位置する内側端71に沿って延びる直線L1は、タイヤ赤道面CSと略平行である(図3参照)。すなわち、直線L1は、タイヤ周方向に沿って延びている。
 陸部22のトレッド踏面10から溝内陸部70の上面部72までの溝深さ(以下、第1溝深さD1)は、陸部23のトレッド踏面から周方向溝32の溝底32aまでの深さ(以下、第2溝深さD2)に対して60~95%である(図4参照)。
 溝内陸部70には、陸部22から連続したラグ溝42と、トレッド幅方向に沿って延びる複数の細溝80とが形成されている。細溝80と、タイヤ赤道面CSに直交する直線L2とが成す角度(以下、細溝角度α)は、0~45度である(図1参照)。
 細溝80は、相互に隣接するラグ溝42間において、2~8本(図面では、3本)形成されている。細溝80のタイヤ周方向に沿った幅(以下、細溝幅W2)は、1~8mmである(図5参照)。
 細溝80の溝底81から溝内陸部70の上面部72までの深さ(以下、細溝深さD3)は、周方向溝32の溝底32aから溝内陸部70の上面部72までの高さ(以下、溝内陸部高さH)に対して50~100%である(図5参照)。
 ここで、溝内陸部70が隣接する陸部22には、細溝80からトレッド幅方向に延びて陸部22内に終結する切欠き部85が形成されている。切欠き部85のタイヤ周方向に沿った幅(以下、切欠幅W3)は、細溝幅W2と略同一である。
(作用・効果)
 第1実施形態では、周方向溝32内には、平滑溝部60が形成される。太溝幅W1は、トレッド幅TWに対して5~30%である。これによれば、周方向溝32に入り込んだ雨水などが排出されやすくなるため、排水性向上を図ることができる。また、周方向溝32に雪がしっかり入り込むため、氷雪路における横滑りを抑制することができる。
 なお、太溝幅W1がトレッド幅TWに対して5%よりも小さいと、周方向溝32に入り込む雨水の量が少なくなってしまい、排水性向上を見込めない。一方、太溝幅W1がトレッド幅TWに対して30%よりも大きいと、路面と接するトレッド踏面10の面積が減少してしまい、氷雪路における横滑りの抑制や駆動性能・制動性能を向上できない。
 また、周方向溝32内には、溝内陸部70が形成される。溝内陸部70には、トレッド幅方向に沿って延びる複数の細溝80が形成されている。これによれば、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 第1実施形態では、周方向溝32は、複数の周方向溝のうち、太溝幅W1が最も広い。トレッド幅方向及びタイヤ径方向に沿った平滑溝部60の断面形状は、タイヤ周方向に沿って一定であるとともに、平滑溝部60からタイヤ赤道面CSまでのトレッド幅方向に沿った距離Dは、タイヤ周方向に沿って一定である。これによれば、周方向溝32に入り込んだ雨水などが排水されやすくなるため、排水性の低下を抑制することができる。
 第1実施形態では、細溝幅W2は、1~8mmである。細溝幅W2が1mm以上であることによって、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。一方、細溝幅W2が8mm以下であることによって、周方向溝32に入り込んだ雨水などの抵抗が増大し過ぎることがないため、排水性の低下を抑制することができる。
 第1実施形態では、第1溝深さD1は、第2溝深さD2に対して60~95%である。第1溝深さD1が第2溝深さD2に対して60%以上であることによって、周方向溝32の体積を減少させ過ぎることがないため、排水性の低下を抑制することができる。一方、第1溝深さD1が第2溝深さD2に対して95%以下であることによって、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)を確保できるため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 第1実施形態では、細溝角度αは、0~45度である。細溝角度αが45度以下であることによって、周方向溝32に入り込んだ雪に溝内陸部70や細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 第1実施形態では、細溝深さD3は、溝内陸部高さHに対して50~100%である。細溝深さD3が溝内陸部高さHに対して50%以上であることによって、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が確保されるため、氷雪路における駆動性能や制動性能をさらに向上させることができる。一方、細溝深さD3が溝内陸部高さHに対して100%以下であることによって、溝内陸部70の剛性が低下することなく、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が確保されるため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 第1実施形態では、陸部20の少なくとも一部には、ラグ溝40が複数形成される。これによれば、氷雪路のみならず、乾燥路などにおいても、駆動性能や制動性能が向上する。
 第1実施形態では、細溝80は、相互に隣接するラグ溝42間において、2~8本形成される。細溝80が相互に隣接するラグ溝42間において2本以上であることによって、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。一方、細溝80が相互に隣接するラグ溝42間において8本以下であることによって、周方向溝32に入り込んだ雨水や雪などの抵抗が増大し過ぎることがないため、排水性の低下を抑制することができる。
 第1実施形態では、陸部22には、細溝80と対向する位置に切欠き部85が形成されている。切欠幅W3は、細溝幅W2と略同一である。これによれば、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
 第1実施形態では、平滑溝部60及び溝内陸部70とが形成される周方向溝32のタイヤ赤道面CS側に位置する陸部23において、ラグ溝43の一方の端部は、周方向溝32に開口し、ラグ溝43の他方の端部は、陸部23内で終結している。これによれば、周方向溝32に入り込んだ雨水や雪などの抵抗が増大し過ぎることがないため、排水性の低下を抑制することができる。
(変更例)
 上述した第1実施形態に係る溝内陸部70は、陸部22とトレッド幅方向に連続して形成されているものとして説明したが、以下のように変更してもよい。なお、上述した第1実施の形態に係る空気入りタイヤ1Aと同一部分には同一の符号を付して、相違する部分を主として説明する。
 図6は、変形例に係る周方向溝32の一部斜視図である。図7は、変形例に係る周方向溝32のトレッド幅方向断面図(図6のC-C断面図)である。
 図6及び図7に示すように、溝内陸部70が近接する陸部22には、細溝80と対向する位置に切欠き部85が形成されている。溝内陸部70と、溝内陸部70と近接する陸部22との間には、空隙90が生成されている。
 変更例では、溝内陸部70と、溝内陸部70と隣接する陸部22との間には、空隙90が生成されている。これによれば、周方向溝32内において、平滑溝部60に加えて、空隙90を確保することができる。従って、排水性向上をさらに図ることができる。
[第2実施形態]
 以下において、第2実施形態に係る空気入りタイヤ1Bのトレッドパターンの構成について、図8~図10を参照しながら説明する。図8は、第2実施形態に係る空気入りタイヤ1Bのトレッドパターンを示す展開図である。図9は、第2実施形態に係る空気入りタイヤ1Bを示す一部拡大図である。図9では、サイプ50が省略されている。図10は、第2実施形態に係る周方向溝32の一部斜視図である。なお、上述した第1の実施の形態に係る空気入りタイヤ1Aと同一部分には同一の符号を付して、相違する部分を主として説明する。
 図8及び図9に示すように、周方向溝32のトレッドショルダー側に位置する陸部22において、ラグ溝42の一方の端部は、周方向溝31に開口し、ラグ溝42の他方の端部は、陸部22内で終結している。すなわち、陸部22は、リブ状に形成されている。
 周方向溝32のタイヤ赤道面CS側に位置する陸部23において、ラグ溝43は、陸部23を分断している。
 図10に示すように、溝内陸部70の平滑溝部60側に位置する内側端71に沿って延びる直線L3は、タイヤ赤道面CSに対して傾いている。すなわち、内側端71は、タイヤ周方向に対してジグザグ状に形成されている。
(作用・効果)
 第2実施形態では、溝内陸部70の平滑溝部60側に位置する内側端71に沿って延びる直線L3は、タイヤ赤道面CSに対して傾いている。これによれば、周方向溝32に入り込んだ雪に細溝80が引っかかる効果(いわゆる、エッジ効果)が増大するため、氷雪路における駆動性能や制動性能をさらに向上させることができる。
(比較評価)
 次に、本発明の効果をさらに明確にするために、以下の比較例及び実施例1,2に係る空気入りタイヤを用いて行った比較評価について説明する。なお、本発明はこれらの例によってなんら限定されるものではない。
 各空気入りタイヤに関するデータは、以下に示す条件において測定された。
  ・ タイヤサイズ : 205/55R16
  ・ ホイールサイズ : 6.5J×16
  ・ 内圧条件 : 正規内圧
 これらの各空気入りタイヤのトレッドパターンの構成、雪路での操縦性能、雪路での制動性能、雪路での駆動性能、シャーベットスノー性能、雨路でのハイドロプレーニング性能について、表1を参照しながら説明する。
Figure JPOXMLDOC01-appb-T000001
 ここで、比較例及び実施例1,2に係る空気入りタイヤについて、簡単に説明する。なお、各空気入りタイヤでは、以下で説明する周方向溝32内に形成される平滑溝部60及び溝内陸部70、及び、周方向溝に隣接する陸部22,陸部23の構成以外については、全て同一である。
 比較例に係る空気入りタイヤ100では、周方向溝32内に平滑溝部60及び溝内陸部70が形成されていない。周方向溝32のタイヤ赤道面CS側に位置する陸部23は、リブ状に形成されている(図11参照)。
 実施例1に係る空気入りタイヤ1Aでは、第1実施形態で説明したように、周方向溝32内に平滑溝部60及び溝内陸部70(細溝80)が形成されている。溝内陸部70の平滑溝部60側に位置する内側端71に沿って延びる直線L1は、タイヤ赤道面CSと略平行である。周方向溝32のタイヤ赤道面CS側に位置する陸部23は、リブ状に形成されている(図1~図5参照)。
 実施例2に係る空気入りタイヤ1Bでは、第2実施形態で説明したように、周方向溝32内に平滑溝部60及び溝内陸部70(細溝80)が形成されている。溝内陸部70の平滑溝部60側に位置する内側端71に沿って延びる直線L3は、タイヤ赤道面CSに対して傾いている。周方向溝32のトレッドショルダー側に位置する陸部22は、リブ状に形成されている(図8~図10参照)。
<雪路での操縦性能>
 雪路での操縦性能(直進性やコーナーリング性、レーンチェンジ性などの総合性能)は、雪路のコース上において、各空気入りタイヤを装着した車両を走行させることによって評価した。なお、表1は、比較例に係る空気入りタイヤ100を装着した車両における操縦性能を基準(100)として、その他の空気入りタイヤを装着した車両における操縦性能が指数化された値を示す。指数が大きいほど、雪路での操縦性能が優れている。
 この結果、実施例1に係る空気入りタイヤ1A及び実施例2に係る空気入りタイヤ1Bを装着した車両は、比較例に係る空気入りタイヤ100を装着した車両と比較して、雪路での操縦性能に優れていることが分かった。すなわち、周方向溝32に平滑溝部60及び溝内陸部70が形成され、かつ溝内陸部70に細溝80が形成された空気入りタイヤは、雪路での操縦性能を向上させることが分かる。
<雪路での制動性能>
 雪路での制動性能は、雪路のコース上において、各空気入りタイヤを装着した車両を速度40km/hで走行させ、走行中の車両が急停止するまでの距離(制動距離)によって評価した。なお、表1は、比較例に係る空気入りタイヤ100を装着した車両における制動距離を基準(100)として、その他の空気入りタイヤを装着した車両の制動距離が指数化された値を示す。指数が大きいほど、雪路での制動性能が優れている。
 この結果、実施例1に係る空気入りタイヤ1A及び実施例2に係る空気入りタイヤ1Bを装着した車両は、比較例に係る空気入りタイヤ100を装着した車両と比較して、雪路での制動性能に優れていることが分かった。すなわち、周方向溝32に平滑溝部60及び溝内陸部70が形成され、かつ溝内陸部70に細溝80が形成された空気入りタイヤは、雪路での制動性能を向上させることが分かる。
<雪路での駆動性能>
 雪路での駆動性能は、雪路のコース上において、各空気入りタイヤを装着した車両を、停止状態から50m間走行させて、車両の加速時間によって評価した。なお、表1は、比較例に係る空気入りタイヤ100を装着した車両における加速時間を基準(100)として、その他の空気入りタイヤを装着した車両における加速時間が指数化された値を示す。指数が大きいほど、雪路での駆動性能が優れている。
 この結果、実施例1に係る空気入りタイヤ1A及び実施例2に係る空気入りタイヤ1Bを装着した車両は、比較例に係る空気入りタイヤ100を装着した車両と比較して、雪路での駆動性能に優れていることが分かった。すなわち、周方向溝32に平滑溝部60及び溝内陸部70が形成され、かつ溝内陸部70に細溝80が形成された空気入りタイヤは、雪路での駆動性能を向上させるすることが分かる。
<シャーベットスノー性能>
 シャーベットスノー性能は、含水率80~90%のシャーベット状(スラッシュ状も含む)の雪路のコース上において、気温0±1度の条件下のもと、各空気入りタイヤを装着した車両を加速させ、各車両に装着された空気入りタイヤが路面に接しなくなるまでの限界速度によって評価した。なお、表1は、比較例に係る空気入りタイヤ100を装着した車両の限界速度を基準(100)として、その他の空気入りタイヤを装着した車両の限界速度が指数化された値を示す。指数が大きいほど、シャーベットスノー性能が優れている。
 この結果、実施例1に係る空気入りタイヤ1A及び実施例2に係る空気入りタイヤ1Bを装着した車両は、比較例に係る空気入りタイヤ100を装着した車両と比較して、シャーベットスノー性能に優れていることが分かった。すなわち、周方向溝32に平滑溝部60及び溝内陸部70が形成され、かつ溝内陸部70に細溝80が形成された空気入りタイヤは、シャーベットスノー性能を向上させることが分かる。
<雨路でのハイドロプレーニング性能>
 雨路でのハイドロプレーニング性能は、水深5mmの雨路のコース上において、各空気入りタイヤを装着した車両を走行させ、路面から空気入りタイヤが浮き上がって滑走するハイドロプレーニングが発生する限界速度によって評価した。なお、表1は、比較例に係る空気入りタイヤ100を装着した車両の限界速度を基準(100)として、その他の空気入りタイヤを装着した車両の限界速度が指数化された値を示す。指数が大きいほど、雨路でのハイドロプレーニング性能が優れている。
 この結果、実施例1に係る空気入りタイヤ1A及び実施例2に係る空気入りタイヤ1Bを装着した車両は、比較例に係る空気入りタイヤ100を装着した車両と比較して、雨路でのハイドロプレーニング性能に優れていることが分かった。すなわち、周方向溝32に平滑溝部60及び溝内陸部70が形成され、かつ溝内陸部70に細溝80が形成された空気入りタイヤは、雨路でのハイドロプレーニング性能を向上させることが分かる。
[その他の実施の形態]
 上述したように、本発明の実施の形態を通じて本発明の内容を開示したが、この開示の一部をなす論述及び図面は、本発明を限定するものであると理解すべきではない。
 実施形態では、平滑溝部60及び溝内陸部70は、複数の周方向溝30のうち、トレッド幅方向に沿った幅が最も広い周方向溝32内に形成されているものとして説明したが、これに限定されるものではなく、他の周方向溝30に形成されていてもよく、複数の周方向溝30内に形成されていても勿論よい。
 実施形態では、平滑溝部60は、溝内陸部70よりもタイヤ赤道面CS側に設けられているものとして説明したが、これに限定されるものではなく、例えば、位置が逆、すなわち溝内陸部70よりもトレッドショルダー部側に設けられていても勿論よい。
 実施形態では、トレッド幅方向及びタイヤ径方向における溝内陸部70の断面は、略四角形状であるものとして説明したが、これに限定されるものではなく、略三角形状や略台形状であってもよいことは勿論である。
 実施形態では、空気入りタイヤ1Aは、ビード部やカーカス層、ベルト層(不図示)を備える一般的なラジアルタイヤであるものとして説明したが、これに限定されるものではなく、ラジアルタイヤ以外のタイヤ(例えば、バイアスタイヤ)であってもよく、チューブ付きタイヤであってもよい。
 この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。したがって、本発明の技術的範囲は、上述の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 なお、日本国特許出願第2008-174656号(2008年7月3日出願)の全内容が、参照により、本願明細書に組み込まれている。
産業上の利用の可能性
 以上のように、本発明に係る空気入りタイヤは、排水性向上や氷雪路における横滑りの抑制を図りつつ、氷雪路における駆動性能や制動性能をさらに向上できるため、タイヤの製造技術などにおいて有用である。

Claims (13)

  1.  路面と接するトレッド踏面を構成する陸部によって、タイヤ周方向に沿って延びる周方向溝が形成された空気入りタイヤであって、
     前記周方向溝内には、
     前記周方向溝の溝底の表面が平滑な平滑溝部と、
     前記周方向溝の溝底よりも前記トレッド踏面側に隆起する溝内陸部とが形成され、
     前記溝内陸部には、トレッド幅方向に沿って延びる複数の細溝が形成され、
     前記周方向溝のトレッド幅方向に沿った幅は、前記トレッド踏面のトレッド幅方向に沿った幅に対して5~30%である空気入りタイヤ。
  2.  前記周方向溝は、複数設けられ、
     前記平滑溝部と前記溝内陸部とが形成された前記周方向溝は、複数の前記周方向溝のうち、トレッド幅方向に沿った幅が最も広い請求項1に記載の空気入りタイヤ。
  3.  前記陸部の前記トレッド踏面から前記溝内陸部の上面部までの溝深さは、前記陸部の前記トレッド踏面から前記周方向溝の溝底までの深さに対して60~95%である請求項1に記載の空気入りタイヤ。
  4.  前記細溝のタイヤ周方向に沿った幅は、1~8mmである請求項1に記載の空気入りタイヤ。
  5.  前記細溝と、タイヤ赤道面に直交する直線とが成す角度は、0~45度である請求項1に記載の空気入りタイヤ。
  6.  前記細溝の溝底から前記溝内陸部の上面部までの深さは、前記周方向溝の溝底から前記溝内陸部の上面部までの高さに対して50~100%である請求項1に記載の空気入りタイヤ。
  7.  前記溝内陸部と、前記平滑溝部の逆側に位置する前記陸部との間には、空隙が生成される請求項1に記載の空気入りタイヤ。
  8.  トレッド幅方向及びタイヤ径方向に沿った前記平滑溝部の断面形状は、タイヤ周方向に沿って一定であるとともに、
     前記平滑溝部からタイヤ赤道面までのトレッド幅方向に沿った距離は、タイヤ周方向に沿って一定である請求項1に記載の空気入りタイヤ。
  9.  前記陸部の少なくとも一部には、トレッド幅方向に沿って延びるラグ溝が複数形成される請求項1に記載の空気入りタイヤ。
  10.  前記細溝は、相互に隣接する前記ラグ溝間において、2~8本形成される請求項9に記載の空気入りタイヤ。
  11.  前記陸部には、前記細溝からトレッド幅方向に延びる切欠き部が形成され、
     前記切欠き部の前記タイヤ周方向に沿った幅は、前記細溝のタイヤ周方向に沿った幅と略同一である請求項1に記載の空気入りタイヤ。
  12.  トレッド幅方向及びタイヤ径方向に沿った前記溝内陸部の断面は、略四角形状である請求項1に記載の空気入りタイヤ。
  13.  前記溝内陸部の前記平滑溝部側に位置する端部に沿って延びる直線は、タイヤ赤道面に対して傾く請求項1に記載の空気入りタイヤ。
PCT/JP2009/061521 2008-07-03 2009-06-24 空気入りタイヤ WO2010001785A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20090773363 EP2308695B1 (en) 2008-07-03 2009-06-24 Pneumatic tire
US13/002,167 US9079460B2 (en) 2008-07-03 2009-06-24 Pneumatic tire
CN2009801255490A CN102076508B (zh) 2008-07-03 2009-06-24 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-174656 2008-07-03
JP2008174656A JP5294735B2 (ja) 2008-07-03 2008-07-03 空気入りタイヤ

Publications (1)

Publication Number Publication Date
WO2010001785A1 true WO2010001785A1 (ja) 2010-01-07

Family

ID=41465883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061521 WO2010001785A1 (ja) 2008-07-03 2009-06-24 空気入りタイヤ

Country Status (7)

Country Link
US (1) US9079460B2 (ja)
EP (1) EP2308695B1 (ja)
JP (1) JP5294735B2 (ja)
KR (1) KR20110013538A (ja)
CN (1) CN102076508B (ja)
RU (1) RU2466878C2 (ja)
WO (1) WO2010001785A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235741A (ja) * 2010-05-10 2011-11-24 Bridgestone Corp タイヤ
US20130167998A1 (en) * 2010-09-09 2013-07-04 Bridgestone Corporation Tire
US9809062B2 (en) 2012-06-19 2017-11-07 Bridgestone Corporation Tire
WO2020032276A1 (ja) * 2018-08-10 2020-02-13 横浜ゴム株式会社 空気入りタイヤ

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102883894B (zh) 2010-03-08 2015-04-22 株式会社普利司通 充气轮胎
JP5506463B2 (ja) * 2010-03-08 2014-05-28 株式会社ブリヂストン 空気入りタイヤ
JP5506462B2 (ja) * 2010-03-08 2014-05-28 株式会社ブリヂストン 空気入りタイヤ
JP5661324B2 (ja) * 2010-04-15 2015-01-28 株式会社ブリヂストン 空気入りタイヤ
JP5711917B2 (ja) * 2010-08-27 2015-05-07 株式会社ブリヂストン タイヤ
JP5679105B2 (ja) * 2010-11-12 2015-03-04 横浜ゴム株式会社 空気入りタイヤ及びその加硫用金型
FR2983114B1 (fr) * 2011-11-25 2013-12-20 Michelin Soc Tech Moule comportant une cavite pour le moulage d'un dispositif de fermeture dans une rainure
FR2984232B1 (fr) * 2011-12-20 2014-02-07 Michelin Soc Tech Sommet pour pneumatique d'avion
JP5458145B2 (ja) * 2012-06-19 2014-04-02 株式会社ブリヂストン タイヤ
JP5944756B2 (ja) * 2012-06-19 2016-07-05 株式会社ブリヂストン タイヤ
JP5600143B2 (ja) * 2012-07-04 2014-10-01 株式会社ブリヂストン タイヤ
JP6012397B2 (ja) * 2012-10-24 2016-10-25 株式会社ブリヂストン 空気入りタイヤ
JP5806707B2 (ja) * 2013-07-03 2015-11-10 住友ゴム工業株式会社 空気入りタイヤ
JP6204331B2 (ja) * 2014-12-09 2017-09-27 株式会社ブリヂストン タイヤ
JP6364342B2 (ja) * 2014-12-22 2018-07-25 東洋ゴム工業株式会社 空気入りタイヤ
USD787424S1 (en) * 2015-03-17 2017-05-23 The Goodyear Tire & Rubber Company Tire
CN105346334A (zh) * 2015-11-10 2016-02-24 青岛双星轮胎工业有限公司 一种工业用子午线轮胎
WO2017082405A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
WO2017082407A1 (ja) * 2015-11-12 2017-05-18 株式会社ブリヂストン タイヤ
FR3044597A1 (fr) * 2015-12-07 2017-06-09 Michelin & Cie Bande de roulement de pneumatique pour vehicule lourd de type genie civil
US20190092101A1 (en) * 2017-09-22 2019-03-28 The Goodyear Tire & Rubber Company Tread for a tire
JP7056344B2 (ja) * 2018-04-13 2022-04-19 住友ゴム工業株式会社 タイヤの性能評価方法及び性能評価装置
JP6930944B2 (ja) * 2018-06-21 2021-09-01 株式会社ブリヂストン タイヤ
WO2023129169A1 (en) * 2021-12-31 2023-07-06 Compagnie Generale Des Etablissements Michelin Heavy truck tire tread with rib element to manage irregular wear
JP2023124168A (ja) * 2022-02-25 2023-09-06 住友ゴム工業株式会社 タイヤ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166708A (ja) * 1985-01-19 1986-07-28 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JPS63297108A (ja) * 1987-05-28 1988-12-05 Sumitomo Rubber Ind Ltd 重車両用空気入りタイヤ
JPH01215603A (ja) * 1988-02-23 1989-08-29 Toyo Tire & Rubber Co Ltd 空気入りタイヤのトレッドパターン
JP2000177331A (ja) * 1998-12-15 2000-06-27 Bridgestone Corp 空気入りタイヤ
JP2000255217A (ja) 1999-03-11 2000-09-19 Bridgestone Corp 空気入りタイヤ
JP2001277818A (ja) * 2000-01-28 2001-10-10 Bridgestone Corp 空気入りタイヤ
JP2008174656A (ja) 2007-01-19 2008-07-31 Oshika:Kk 高度耐水性接着剤組成物

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL130257C (ja) * 1963-07-23 Michelin & Cie
GB1214629A (en) * 1967-03-17 1970-12-02 Dunlop Co Ltd Improved tyre construction
US5492161A (en) * 1985-01-19 1996-02-20 Toyo Tire & Rubber Company, Limited Pneumatic tire with groove steps having sipes
JPH01215604A (ja) * 1988-02-23 1989-08-29 Toyo Tire & Rubber Co Ltd 溝底にサイプを有する重荷重用空気入りラジアルタイヤ
US5154216A (en) * 1990-01-05 1992-10-13 Sumitomo Rubber Industries, Ltd. Radial tire for heavy duty vehicles
US5685927A (en) * 1992-09-30 1997-11-11 The Goodyear Tire & Rubber Company Run-flat tire with wet handling design
JP2643065B2 (ja) * 1992-10-19 1997-08-20 住友ゴム工業株式会社 空気入りタイヤ
JP3901743B2 (ja) * 1993-12-22 2007-04-04 住友ゴム工業株式会社 空気入りタイヤ
JP2644970B2 (ja) * 1993-12-27 1997-08-25 住友ゴム工業株式会社 空気入りタイヤ
JP2799137B2 (ja) * 1993-12-29 1998-09-17 住友ゴム工業株式会社 空気入りタイヤ
US5837074A (en) * 1995-12-29 1998-11-17 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP3784907B2 (ja) * 1997-02-17 2006-06-14 株式会社ブリヂストン 空気入りタイヤ
US6439284B1 (en) * 1997-10-03 2002-08-27 The Goodyear Tire & Rubber Company Tread for a pneumatic tire including aquachannel
US6123130A (en) * 1997-11-11 2000-09-26 Bridgestone/Firestone, Inc. Tire having improved wet stopping capability
US6340041B1 (en) * 1998-12-11 2002-01-22 Sumitomo Rubber Industries Pneumatic tire including two wide circumferential grooves
JP3493177B2 (ja) * 2000-12-19 2004-02-03 住友ゴム工業株式会社 空気入りタイヤ
JP5366539B2 (ja) * 2006-03-31 2013-12-11 株式会社ブリヂストン 空気入りタイヤ
JP5148102B2 (ja) * 2006-11-24 2013-02-20 東洋ゴム工業株式会社 空気入りタイヤ
JP4488055B2 (ja) * 2007-11-02 2010-06-23 横浜ゴム株式会社 空気入りタイヤ
JP5160870B2 (ja) * 2007-12-10 2013-03-13 東洋ゴム工業株式会社 空気入りタイヤ
DE102008037497A1 (de) * 2008-10-30 2010-05-06 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166708A (ja) * 1985-01-19 1986-07-28 Toyo Tire & Rubber Co Ltd 空気入りタイヤ
JPS63297108A (ja) * 1987-05-28 1988-12-05 Sumitomo Rubber Ind Ltd 重車両用空気入りタイヤ
JPH01215603A (ja) * 1988-02-23 1989-08-29 Toyo Tire & Rubber Co Ltd 空気入りタイヤのトレッドパターン
JP2000177331A (ja) * 1998-12-15 2000-06-27 Bridgestone Corp 空気入りタイヤ
JP2000255217A (ja) 1999-03-11 2000-09-19 Bridgestone Corp 空気入りタイヤ
JP2001277818A (ja) * 2000-01-28 2001-10-10 Bridgestone Corp 空気入りタイヤ
JP2008174656A (ja) 2007-01-19 2008-07-31 Oshika:Kk 高度耐水性接着剤組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2308695A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235741A (ja) * 2010-05-10 2011-11-24 Bridgestone Corp タイヤ
US20130167998A1 (en) * 2010-09-09 2013-07-04 Bridgestone Corporation Tire
EP2614967A4 (en) * 2010-09-09 2015-12-16 Bridgestone Corp TIRE
US9233579B2 (en) * 2010-09-09 2016-01-12 Bridgestone Corporation Tire
US9809062B2 (en) 2012-06-19 2017-11-07 Bridgestone Corporation Tire
WO2020032276A1 (ja) * 2018-08-10 2020-02-13 横浜ゴム株式会社 空気入りタイヤ
JP2020026222A (ja) * 2018-08-10 2020-02-20 横浜ゴム株式会社 空気入りタイヤ
JP7147354B2 (ja) 2018-08-10 2022-10-05 横浜ゴム株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
CN102076508A (zh) 2011-05-25
KR20110013538A (ko) 2011-02-09
EP2308695A4 (en) 2011-08-31
EP2308695B1 (en) 2012-11-21
RU2466878C2 (ru) 2012-11-20
JP2010012931A (ja) 2010-01-21
CN102076508B (zh) 2013-12-18
US9079460B2 (en) 2015-07-14
RU2011103726A (ru) 2012-08-10
US20110146863A1 (en) 2011-06-23
EP2308695A1 (en) 2011-04-13
JP5294735B2 (ja) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5294735B2 (ja) 空気入りタイヤ
CN108146154B (zh) 轮胎
JP5102711B2 (ja) 空気入りタイヤ
RU2471640C2 (ru) Пневматическая шина
CN108382134B (zh) 轮胎
US9555669B2 (en) Pneumatic tire
JP4581732B2 (ja) 空気入りタイヤ
JP5140115B2 (ja) 空気入りタイヤ
JP4048058B2 (ja) 空気入りタイヤ
CN108688411B (zh) 充气轮胎
CN1750948A (zh) 充气轮胎
CN107639975B (zh) 轮胎
WO2017187740A1 (ja) 空気入りタイヤ
CN108621710B (zh) 充气轮胎
JP6097261B2 (ja) 空気入りタイヤ
JP5478284B2 (ja) タイヤ
CN110091676B (zh) 轮胎
WO2021054261A1 (ja) タイヤ
JP2010247549A (ja) 空気入りタイヤ
JP4721892B2 (ja) 空気入りタイヤ
CN113580850A (zh) 轮胎
JP7176320B2 (ja) タイヤ
JP5357662B2 (ja) タイヤ
JP4421432B2 (ja) 空気入りタイヤ
WO2021124969A1 (ja) タイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125549.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107029519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009773363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011103726

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13002167

Country of ref document: US