WO2009157155A1 - 円筒ころ軸受 - Google Patents

円筒ころ軸受 Download PDF

Info

Publication number
WO2009157155A1
WO2009157155A1 PCT/JP2009/002750 JP2009002750W WO2009157155A1 WO 2009157155 A1 WO2009157155 A1 WO 2009157155A1 JP 2009002750 W JP2009002750 W JP 2009002750W WO 2009157155 A1 WO2009157155 A1 WO 2009157155A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical roller
tapered
ring
roller bearing
inner ring
Prior art date
Application number
PCT/JP2009/002750
Other languages
English (en)
French (fr)
Inventor
伊藤秀司
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112009001535.2T priority Critical patent/DE112009001535B4/de
Priority to CN2009801232287A priority patent/CN102066781B/zh
Priority to US12/737,222 priority patent/US8414194B2/en
Publication of WO2009157155A1 publication Critical patent/WO2009157155A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/60Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings
    • F16C33/605Raceways; Race rings divided or split, e.g. comprising two juxtaposed rings with a separate retaining member, e.g. flange, shoulder, guide ring, secured to a race ring, adjacent to the race surface, so as to abut the end of the rolling elements, e.g. rollers, or the cage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/30Angles, e.g. inclinations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius

Definitions

  • the present invention relates to a cylindrical roller bearing used for industrial machines and the like that require high speed rotation and high thrust load capability.
  • providing a crowned portion having an ideal cross-sectional profile on the end surface of the cylindrical roller equalizes the contact surface pressure between the flange surface and the cylindrical roller in the contact portion when a thrust load is applied. It is effective.
  • the above-described conventional technique is effective for obtaining an ideal contact state between the flange surface and the cylindrical roller.
  • the cross-sectional outer shape of the end surface of the cylindrical roller is a curved shape
  • Increased man-hours in terms of curvilinear shape management that is, in order to manage the curved shape, a commercially available shape measuring instrument is used, or as an alternative, for example, an enlarged portion B of the cylindrical roller 25 in FIG. 9A is shown in FIG.
  • the amount of drop Y1, Y2 in the axial direction at each position X1, X2 deviated from the roller outer diameter edge position on the roller end face to the roller axis side needs to be measured. Become.
  • An object of the present invention is to provide a cylindrical roller bearing that can improve the load capacity with respect to a thrust load and can easily manage the shape of the cylindrical roller.
  • a cylindrical roller bearing according to the present invention includes an inner ring and an outer ring, and a plurality of cylindrical rollers that are rotatably interposed between raceway surfaces of the inner and outer rings, and either or both of the inner ring and the outer ring are shafts.
  • a cylindrical roller bearing having flanges on both sides or one side in the direction, and when the outer diameter of the cylindrical roller is Da, the diameter 0.12 Da extending from the outer diameter edge of the cylindrical roller to the roller axis side
  • a surface area in the range of -0.20 Da is a tapered crowned portion having an inclination angle of 0.25 ° -1 ° with respect to a plane perpendicular to the roller axis.
  • the tapered crowned portion having the above-mentioned angle is provided in the surface area of the end surface of the cylindrical roller, the load capacity against the thrust load can be improved. Moreover, since the crowning portion is tapered, the shape of the cylindrical roller can be easily managed.
  • the inner ring includes an inner ring race ring having a flange portion at one end and a raceway surface formed on the outer periphery, and a saddle ring disposed adjacent to the other end portion of the inner ring race ring, and the outer ring Is formed of an integral part having a flange part at both ends and having a raceway surface on the inner periphery, and has a saddle angle inclined with respect to a plane perpendicular to the inner ring axis of the inner side surface of the flange part of the inner ring raceway ring.
  • ⁇ i is the angle of inclination of the inner surface of the flange of the outer ring that is inclined with respect to the plane perpendicular to the axis of the outer ring, ⁇ o, of the flange that protrudes on the outer diameter side of the raceway of the inner ring raceway in the saddle wheel
  • this configuration even if there is a difference between the inclination angles, a sufficient effect can be obtained in improving the load capacity with respect to the thrust load.
  • the runout of the tapered crowned portion on the end face of the cylindrical roller may be 0.003 mm or less. In the case of this configuration, there is an effect in suppressing the load capacity hindrance of the thrust load due to the dimensional error of the tapered crowned portion.
  • the end face runout of the flat part excluding the tapered crowned part on the end face of the cylindrical roller may be 0.002 mm or less.
  • the runout of the tapered crowned portion was measured in the same manner as the end face runout measurement method according to JIS B1506: 2005.
  • the outer diameter surface of the said cylindrical roller is a crowning process part.
  • the bearing dimensions can be reduced if the conventional product has a small load capacity for thrust load. Even for applications that must be increased, the bearing dimensions can be reduced.
  • a crowned portion is also provided on the outer diameter surface of the cylindrical roller, thereby ensuring the load capacity of the radial load.
  • the tapered crowned portion on the end surface of the cylindrical roller is composed of a plurality of tapered surface portions following the roller outer diameter side, and the inclination angle of the tapered surface portion of each step is larger as it is closer to the roller outer diameter side. You may do it.
  • a tapered crowned portion with a plurality of tapered surface portions local edge stress can be suppressed at the boundary between the tapered crowned portion and the chamfered portion following the outer diameter side. Can be improved.
  • the inclination angle of the tapered surface portion closest to the roller inner diameter side in the tapered crowned portion may be the angle ⁇ r in which the respective expressions of the previous invention are established.
  • a difference in inclination angle between adjacent tapered surface portions in the tapered crowned portion may be 1 ° or less.
  • the difference in the inclination angle between adjacent tapered surface portions should be within about 1 °. Is good.
  • the runout of the tapered surface portion closest to the roller inner diameter side in the tapered crowned portion may be 0.003 mm or less.
  • (A) is an expanded sectional view of the outer ring collar part in the cylindrical roller bearing
  • (B) is an enlarged sectional view of the collar ring collar part
  • (C) is an enlarged sectional view of the inner ring collar part.
  • It is a graph of the test result which compared the rise temperature reduction effect of the cylindrical roller bearing with the conventional product.
  • It is explanatory drawing of an example of a cylindrical roller bearing in case the end surface dimension error of a cylindrical roller is large.
  • It is explanatory drawing of the other example of a cylindrical roller bearing in case the end surface dimension error of a cylindrical roller is large.
  • This cylindrical roller bearing includes an inner ring 1 having flanges 7a and 8a at both ends and a raceway surface 3 formed on the outer periphery, and an outer ring having flanges 9a and 9a at both ends and a raceway surface 4 formed on the inner periphery. 2, a plurality of cylindrical rollers 5 interposed between the raceway surface 3 of the inner ring 1 and the raceway surface 4 of the outer ring 2, and a cage for guiding the cylindrical rollers 5 to equidistant positions in the circumferential direction. 6.
  • the inner ring 1 includes an inner ring race 7 having a flange 7 a at one end and a raceway surface 3 formed on the outer periphery, and a saddle ring 8 disposed adjacent to the other end of the inner ring 7.
  • the inner side surface 7 aa facing the one end surface of the cylindrical roller 5 is a flange surface that guides the cylindrical roller 5 in the axial direction.
  • the inner side surface 8aa facing the other end surface of the cylindrical roller 5 guides the cylindrical roller 5 in the axial direction.
  • the outer ring 2 is formed of an integral part having flanges 9a, 9a at both ends and a raceway surface 4 formed on the inner periphery.
  • each inner side surface 9aa facing the end surface of the cylindrical roller 5 is a flange surface that guides the cylindrical roller 5 in the axial direction.
  • the diameter 0.12 Da -0 extending from the outer diameter edge on the end surface of the cylindrical roller 5 to the roller axis O side. .20 Da (preferably 0.15 ⁇ 0.02 Da) is in the range of 0.25 ° to 1 ° (preferably 0.25 ° to 0.75) with respect to the plane perpendicular to the roller axis O.
  • a tapered crowned portion 10 having an inclination angle ⁇ r of 0 ° is provided.
  • a chamfered portion 11 continues on the outer diameter side of the crowned portion 10, and continues from the chamfered portion 11 to the outer diameter surface.
  • the chamfered portion 11 may be tapered or arcuate in cross section.
  • An inner side surface 9aa which is a flange surface in the flange portion 9a of the outer ring 2 has a tapered shape having a slight inclination angle ⁇ o with respect to a plane perpendicular to the axis of the outer ring, as shown in an enlarged cross-sectional view in FIG. It is said that.
  • the inner side surface 8aa which is the flange surface of the flange portion 8a of the saddle wheel 8 is also a taper having a slight inclination angle ⁇ 1 with respect to a plane perpendicular to the center axis of the saddle wheel, as shown in an enlarged sectional view in FIG. It is made into a shape.
  • the inner side surface 7aa which is a flange surface of the flange portion 7a of the inner ring raceway ring 7, also has a slight inclination angle ⁇ i with respect to a plane perpendicular to the inner ring axis as shown in the enlarged sectional view of FIG. It becomes the taper shape which becomes.
  • the inclination angles ⁇ o, ⁇ 1, and ⁇ i are set to values in the range of 0.15 ° to 0.85 ° (preferably 0.25 ° to 0.6 °).
  • the projecting height of the flanges 7a, 8a, 9a protruding in the radial direction from the races 3, 4 is in the range of 0.16 Da to 0.25 Da when the outer diameter of the cylindrical roller 5 is Da. Is set to a value within
  • the runout of the tapered crowned portion 10 on the end face of the cylindrical roller 5, that is, the tolerance is set to 0.003 mm or less. Further, the runout of the flat portion 12 excluding the tapered crowned portion 10 on the end surface of the cylindrical roller 5, that is, the tolerance is set to 0.002 mm or less.
  • FIG. 4 shows a result of a temperature rise test in which a plurality of samples whose shape dimensions and inclination angles fall within the ranges of the above values as a cylindrical roller bearing of this embodiment were compared with a conventional product. It is a graph to show.
  • Radial load 5KN
  • Thrust load 2KN
  • Lubricating oil Turbine oil Rotational speed (inner ring rotation): 2000 to 10000 min -1 Under these conditions, the bearing temperature rise at each rotational speed was recorded.
  • the tapered crowned portion 10 is provided on the end face of the cylindrical roller 5 as in the embodiment, it is extremely difficult to perform pinpoint processing with respect to the dimensions targeted in actual processing in consideration of mass production. . Therefore, in the above test, the inclination angle ⁇ r of the tapered crowned portion 10 is arbitrarily set, and the difference in the effect is confirmed.
  • the flanges of the flanges 7a, 8a, and 9a should be considered unless skew and tilt are taken into consideration. It is desirable to make the inclination angles ⁇ i, ⁇ 1, and ⁇ o of the inner side surfaces 7aa, 8aa, and 9aa that are surfaces equal to the inclination angle ⁇ r of the tapered crowned portion 10.
  • the inclination angle ⁇ o ⁇ 0.25 ° at the outer ring flange portion 9a, the inclination angle ⁇ i ⁇ 0.5 ° at the inner ring flange portion 7a, and the inclination angle ⁇ r of the tapered crowned machining portion 10 is 0.25 ° to Using samples with different inclination angles of 1 °, the effect on the effect was also confirmed. According to the test results, it was confirmed that the temperature rise is lower than that of the conventional product.
  • the position at which the cylindrical roller 5 in the cylindrical roller bearing rotates depends on the rotational speed, the load, the viscosity of the lubricant, the type and material of the cage 6, and must be accurately determined. It is difficult.
  • the cylindrical roller bearing of this embodiment limited to the numerical range described above can improve the load capacity against the thrust load as compared with the conventional product.
  • the tapered crowned portion 10 on the end face of the cylindrical roller 5 has the shape shown in FIG. 2B is exemplified, but as shown in FIG. It is good also as the taper-shaped crowning process part 10 which consists of the surface parts 10a and 10b.
  • the inclination angle ⁇ r1 of the tapered surface portion 10b close to the roller outer diameter side is set to be larger than the inclination angle ⁇ r of the taper surface portion 10a far from the roller outer diameter side ( ⁇ r1> ⁇ r).
  • the tapered crowned portion 10 by forming the tapered crowned portion 10 with the two-step tapered surface portions 10a and 10b, local at the boundary between the tapered crowned portion 10 and the chamfered portion 11 following the outer diameter side thereof. Further suppression of edge stress can be further improved.
  • the said taper surface part may be made into multiple steps
  • the difference in inclination angle between adjacent tapered surface portions be within about 1 °. That is, for example, in the case of the example of FIG. 5 in which the tapered crowned portion 10 is formed by the two-step tapered surface portions 10a and 10b, ⁇ r1- ⁇ r ⁇ 1 ° (3) It is good to do. Further, in this case, the inclination angle of the tapered surface portion 10a closest to the roller inner diameter side in the tapered crowned portion 10 is preferably set to the inclination angle ⁇ r that satisfies the above equations (1) and (2).
  • an R-shaped crowning processing portion having a monotonous cross-sectional shape or a logarithm at both ends of the outer diameter surface of the cylindrical roller 5 It is desirable to simultaneously provide a curved crowning section (see JP-A-2005-155663).
  • the cylindrical roller bearing provided with a crowned portion having a curved cross-sectional outer shape on the end surface of the cylindrical roller also has an outer diameter surface of the cylindrical roller as described above.
  • a thrust load can be applied by the contact of the flange surface of each flange portion 7a, 8a, 9a and the end surface of the cylindrical roller 5, but the shape is appropriate at the contact portion.
  • the difference in roller length in the bearing and the dimensional error of the roller end face are also important factors.
  • the contact traces of the flange surface of the flange portion 9a in the outer ring 2 which is a fixed ring are not uniform on the circumference, and the contact traces are conspicuous with the load area due to the radial load being substantially centered It turned out that it became. From this, it is considered that the cylindrical roller 5 that actually applies the thrust load is the cylindrical roller 5 that exists in the direction of the radial load region.
  • FIG. 6A and 6B show the state of the cylindrical roller 5 that applies a thrust load and the cylindrical roller 5 in a non-load region that makes a phase difference of 180 ° from the radial load direction in the cylindrical roller bearing.
  • the represented front view and sectional drawing are shown.
  • the non-load region there is a radial internal clearance as indicated by reference numerals C1 and C2 in FIG. 6A, so that the cylindrical roller 5 can be tilted.
  • the thrust load is reduced. No load. Accordingly, one cylindrical roller 5 repeatedly passes through the load area and the non-load area due to revolution.
  • cylindrical rollers of grade 2 to 5 are often used for cylindrical roller bearings that are not precision products, and the tolerance in this case is 0.006 mm to 0.015 mm. Therefore, in the cylindrical roller 5 as shown in FIGS. 7 and 8, the amount of change in the axial length of the portion sandwiched between the flanges corresponds to the amount of deflection in the worst case, which is very large. .
  • the runout of the tapered crowned portion 10 at the end face of the cylindrical roller 5 is set to 0.003 mm or less. Is desirable.
  • the runout in the case of use in applications requiring low vibration and low noise such as an electric motor, it is preferable to set the runout to a level of 0.002 mm or less.
  • the deflection of the tapered surface portion 10a closest to the inner diameter side may be 0.003 mm or less.
  • the vibration of the tapered crowned portion 10 at the end face of the cylindrical roller 5 is referred to.
  • the flat portion 12 see, for example, FIG. 2B
  • the boundary between the tapered crowning part 10 and the flat part 12 is the circumference. It meanders or becomes elliptical. When such processing is performed, first, it becomes difficult to ensure the radial width dimension of the tapered crowned portion 10.
  • the portion of the end surface of the cylindrical roller 5 that contacts the flange surface is the tapered crowning portion. Since it becomes a boundary part of 10 and the flat part 12, the smooth contact state at the time of rotation will be impaired.
  • the end face runout of the flat portion 12 at the end face of the cylindrical roller 5 is set to 0.003 mm or less (preferably 0.002 mm or less). Is desirable.
  • the case of the cylindrical roller bearing including the inner ring raceway ring 7, the outer ring 2, the saddle ring 8, the cylindrical roller 5, and the cage 6 has been illustrated, but in this invention, the saddle face and the end face of the cylindrical roller 5 are illustrated. Since the load performance of the thrust load is improved by optimizing the deflection of the tapered crowned portion 10 and the roller end face, the cylindrical roller is brought into one of the axial directions by axial deflection, although the thrust load is not applied. The effect of lowering the contact resistance can also be expected during one-sided running.
  • Bearing types to which the present invention can be applied include NU type that does not have a collar on the inner ring, with inner ring flanges, with both outer ring flanges (NJ type), inner ring flanges, flange assembly, and outer ring flanges.
  • NJ type outer ring flanges
  • NUP type with both inner ring collars, without outer ring collar
  • N type with both inner ring collars, with one outer ring collar
  • NF type with both inner ring collars, one outer ring collar, one collar assembled type
  • the present invention can also be applied to a full-roller cylindrical roller bearing without a cage.
  • Examples of the processing method of the tapered crowned portion 10 on the end face of the cylindrical roller 5 include a method of processing by contacting a grindstone.
  • a grindstone formed in advance into the outer shape of the tapered crowned portion 10 by dressing is used.
  • the grindstone dress is not a complicated shape, it is simply formed linearly, and the error is very small. For this reason, the bus bar shape of the tapered crowned portion 10 to be processed does not vary greatly.
  • the roughness may be improved by applying tumbler processing as the final processing for the purpose of suppressing initial wear and the like.
  • tumbler processing By performing tumbler processing in this way, an effect of removing an edge portion formed at the boundary between the tapered crowned portion 10 and the flat portion 12 on the end face of the cylindrical roller 5 can be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 スラスト荷重に対する負荷能力を向上させることができ、円筒ころの形状管理も容易に行うことができる円筒ころ軸受を提供する。内輪(1)と、外輪(2)と、複数の円筒ころ(5)とを備える。内輪(1)および外輪(2)は、いずれか片方または両方が、鍔を有する。円筒ころ(5)の外径寸法をDa としたとき、円筒ころ(5)の端面における外径縁からころ軸心側へ及ぶ径寸法0.12Da ~0.20Da の範囲の面域を、ころ軸心に垂直な平面に対して0.25°~1°の傾斜角度(θr)をなすテーパー状のクラウニング加工部(10)とする。

Description

円筒ころ軸受 関連出願
 本願は2008年6月24日出願の特願2008-163939の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 この発明は、高速回転、高スラスト負荷能力を必要とする産業機械等に用いられる円筒ころ軸受に関する。
 円筒ころ軸受のスラスト荷重に対する負荷能力を向上させる方法として、従来より各種の技術が提案されている。
 例えば、特許文献1に開示の円筒ころ軸受では、スラスト荷重が負荷されたときのエッジロードを抑制するために、円筒ころの端面に断面外形が指数関数で表される曲線形状のクラウニング加工部を設けている。また、特許文献2に開示の円筒ころ軸受でも、円筒ころの端面に同様のクラウニング加工部を設けている。
 上記したように、円筒ころの端面に断面外形が理想的な曲線形状となるクラウニング加工部を設けることは、スラスト荷重の負荷時に鍔面と円筒ころとの接触面圧を接触部内で平準化するうえで有効である。
特開2004-353744号公報 特開2002-195272号公報
 このように、上記した従来の技術では、鍔面と円筒ころの間に理想的な接触状態を得るのには有効であるが、円筒ころの端面の断面外形を曲線形状とすることから、その曲線形状の管理面において工数増となる。すなわち、前記曲線形状を管理するには、市販の形状測定器を用いるか、これに代わるものとして、例えば図9(A)における円筒ころ25のB部を拡大して示す図9(B)のように、ころ端面におけるころ外径縁位置からころ軸心側に偏った各位置X1,X2における軸方向へのドロップ量Y1,Y2を測定することになるなど、複数箇所での測定が必要となる。
 この発明の目的は、スラスト荷重に対する負荷能力を向上させることができ、円筒ころの形状管理も容易に行うことができる円筒ころ軸受を提供することである。
 この発明の円筒ころ軸受は、内輪および外輪と、これら内外輪の軌道面の間に転動自在に介在させた複数の円筒ころとを備え、前記内輪および外輪のいずれか一方または両方が、軸方向の両側または片側に鍔部を有する円筒ころ軸受であって、前記円筒ころの外径寸法をDa としたとき、円筒ころの端面における外径縁からころ軸心側へ及ぶ径寸法0.12Da ~0.20Da の範囲の面域を、ころ軸心に垂直な平面に対して0.25°~1°の傾斜角度をなすテーパー状のクラウニング加工部としている。
 この構成によると、円筒ころの端面における上記面域に、上記角度のテーパー状クラウニング加工部を設けたため、スラスト荷重に対する負荷能力を向上させることができる。また、クラウニング加工部はテーパー状であるため、円筒ころの形状管理も容易に行うことができる。
 この発明において、前記内輪が、一端部に鍔部を有し外周に軌道面を形成した内輪軌道輪、およびこの内輪軌道輪の他端部に隣接して配置される鍔輪からなり、前記外輪が、両端部に鍔部を有し内周に軌道面を形成した一体の部品からなり、前記内輪軌道輪の鍔部の内側面の内輪軸心に垂直な平面に対して傾斜する鍔角度をθi 、前記外輪の鍔部の内側面の外輪軸心に垂直な平面に対して傾斜する鍔角度をθo 、前記鍔輪における前記内輪軌道輪の軌道面よりも外径側に突出する鍔部の内側面の鍔輪軸心に垂直な平面に対して傾斜する鍔角度をθ1 、前記円筒ころのテーパー状クラウニング加工部の傾斜角度をθr としたとき、これらの各角度を、
 (θi +θo )-2・θr =-1.25°~0.25°
および、
 (θ1 +θo )-2・θr =-1.25°~0.25°の各式が成り立つように設定しても良い。
 この構成の場合、前記各傾斜角度間に差があっても、スラスト荷重に対する負荷能力を向上させるうえで十分な効果を上げることができる。
 この発明において、前記円筒ころの端面における前記テーパー状クラウニング加工部の振れを0.003mm以下としても良い。この構成の場合、テーパー状クラウニング加工部の寸法誤差によるスラスト荷重の負荷能力阻害を抑制するうえで効果がある。
 この発明において、前記円筒ころの端面における前記テーパー状クラウニング加工部を除く平坦部の端面振れを0.002mm以下としても良い。この構成の場合、加工時におけるテーパー状クラウニング加工部の振れ精度の確保、および回転時における円滑な接触状態を損なう要因をなくすうえで効果がある。なお、テーパー状クラウニング加工部の振れはJIS B 1506:2005による端面振れの測定方法と同じ要領で測定されたものである。
 この発明において、前記円筒ころの外径面をクラウニング加工部としても良い。
 この発明の円筒ころ軸受では、円筒ころの端面にテーパー状クラウニング加工部を設けたことにより駆動時の温度上昇を抑制することできることから、スラスト荷重の負荷能力の小さい従来品であれば軸受寸法を大きくしなければならないような応用面に対しても、軸受寸法を小さくして対応できる。しかし、スラスト荷重の負荷能力を確保できる程度まで軸受寸法を小さくした場合には、ラジアル荷重の負荷能力にも配慮が必要となる。そこで、円筒ころの外径面にもクラウニング加工部を設けており、これによりラジアル荷重の負荷能力も確保することができる。
 この発明において、前記円筒ころの端面における前記テーパー状クラウニング加工部は、ころ外径側に続く複数段のテーパー面部からなり、各段のテーパー面部の傾斜角度をころ外径側に近いものほど大きくしても良い。
 このように、複数段のテーパー面部でテーパー状クラウニング加工部を形成することにより、テーパー状クラウニング加工部と、その外径側に続く面取部との境界での局部的なエッジ応力の抑制を向上させることができる。
 この発明において、前記テーパー状クラウニング加工部におけるころ内径側に最も近いテーパー面部の傾斜角度を、先の発明の各式が成り立つ角度θr としても良い。
 この発明において、前記テーパー状クラウニング加工部における隣り合うテーパー面部の傾斜角度の差を1°以下としても良い。
 複数段のテーパー面部でテーパー状クラウニング加工部を形成した場合、隣り合うテーパー面部の境界でのエッジ応力の発生が懸念されるので、隣り合うテーパー面部の傾斜角度の差は1°程度以内としておくのが良い。
 この発明において、前記テーパー状クラウニング加工部におけるころ内径側に最も近いテーパー面部の振れを0.003mm以下としても良い。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の一実施形態にかかる円筒ころ軸受の断面図である。 (A)は同円筒ころ軸受に用いられる円筒ころの正面図、(B)は(A)におけるB部の拡大図である。 (A)は同円筒ころ軸受における外輪鍔部の拡大断面図、(B)は鍔輪鍔部の拡大断面図、(C)は内輪鍔部の拡大断面図である。 同円筒ころ軸受の上昇温度低減効果を従来品と比較した試験結果のグラフである。 同円筒ころ軸受における円筒ころ端面のテーパー状クラウニング加工部の一例の拡大図である。 同円筒ころ軸受における非負荷域と負荷域の状態説明図である。 円筒ころの端面寸法誤差が大きい場合の円筒ころ軸受の一例の説明図である。 円筒ころの端面寸法誤差が大きい場合の円筒ころ軸受の他の例の説明図である。 従来例の説明図である。
 この発明の一実施形態を図1ないし図8と共に説明する。この円筒ころ軸受は、両端部に鍔部7a,8aを有し外周に軌道面3を形成した内輪1と、両端部に鍔部9a,9aを有し内周に軌道面4を形成した外輪2と、これら内輪1の軌道面3と外輪2の軌道面4の間に転動自在に介在させた複数の円筒ころ5と、これら円筒ころ5を円周方向等配位置に案内する保持器6とを備える。
 内輪1は、一端部に鍔部7aを有し外周に軌道面3を形成した内輪軌道輪7と、この内輪軌道輪7の他端部に隣接して配置される鍔輪8とでなる。内輪軌道輪7の鍔部7aでは、その前記円筒ころ5の一端面に対向する内側面7aaが、円筒ころ5を軸方向に案内する鍔面とされている。鍔輪8の前記内輪軌道輪7の軌道面3よりも外径側に突出する鍔部8aでは、その前記円筒ころ5の他端面に対向する内側面8aaが、円筒ころ5を軸方向に案内する鍔面とされている。
 外輪2は、両端部に鍔部9a,9aを有し内周に軌道面4を形成した一体の部品からなる。外輪2の各鍔部9aでは、その前記円筒ころ5の端面に対向する各内側面9aaが、円筒ころ5を軸方向に案内する鍔面とされている。
 円筒ころ5の外径寸法をDa としたとき、図2(B)に拡大して示すように、円筒ころ5の端面における外径縁からころ軸心O側へ及ぶ径寸法0.12Da ~0.20Da (好ましくは0.15±0.02Da )の範囲の面域には、ころ軸心Oに垂直な平面に対して0.25°~1°(好ましくは0.25°~0.75°)の傾斜角度θr をなすテーパー状のクラウニング加工部10が設けられている。クラウニング加工部10の外径側には面取部11が続き、この面取部11から外径面に続いている。面取部11は、テーパー状であっても、断面円弧状であってもよい。
 前記外輪2の鍔部9aにおける鍔面となる内側面9aaは、図3(A)に拡大断面図で示すように、外輪軸心に垂直な平面に対して僅かな傾斜角度θo となるテーパー状とされている。前記鍔輪8の鍔部8aにおける鍔面となる内側面8aaも、図3(B)に拡大断面図で示すように、鍔輪軸心に垂直な平面に対して僅かな傾斜角度θ1 となるテーパー状とされている。また、内輪軌道輪7の鍔部7aにおける鍔面となる内側面7aaも、図3(C)に拡大断面図で示すように、内輪軸心に垂直な平面に対して僅かな傾斜角度θi となるテーパー状とされている。この場合、これらの傾斜角度θo ,θ1 ,θi は、0.15°~0.85°(好ましくは0.25°~0.6°)の範囲内の値に設定されている。
 また、前記各鍔部7a,8a,9aの軌道輪3,4から径方向に突出する突出高さは、円筒ころ5の外径寸法をDa としたとき、0.16Da ~0.25Da の範囲内の値に設定されている。
 また、この実施形態では、前記円筒ころ5の端面におけるテーパー状クラウニング加工部10の振れ、つまり公差は0.003mm以下に設定されている。また、円筒ころ5の端面におけるテーパー状クラウニング加工部10を除く平坦部12の振れ、つまり公差は0.002mm以下に設定されている。
 図4は、この実施形態の円筒ころ軸受として、形状寸法や傾斜角度が上記各値の範囲内に入る複数のサンプルを作製し、これらを従来品と比較して温度上昇試験を行なった結果を示すグラフである。この試験においては、以下の試験条件、
 内径φ35mm、外径φ80mm、幅21mmのサイズの軸受
 ラジアル荷重:5KN
 スラスト荷重:2KN
 潤滑油:タービン油
 回転速度(内輪回転):2000~10000min -1
のもとで、各回転速度毎の軸受温度上昇値を記録した。
 この試験結果から、円筒ころ5の端面にテーパー状クラウニング加工部10を設けたこの実施形態の円筒ころ軸受では、従来品に比べて温度上昇が低下していることが認められた。つまり、この実施形態の円筒ころ軸受によると、スラスト荷重に対する負荷能力を向上させることができる。
 円筒ころ5の端面を理想的な曲面クラウニングに加工することは、理論的には有効であると考えられるが、上記した試験結果からも明らかなように、実際の円筒ころ軸受では、この実施形態のようにテーパー状クラウニング加工部10で代用しても、十分にスラスト荷重に対する負荷能力を向上させることができる。また、テーパー状クラウニング加工部10の傾斜角度θr に多少の幅があっても、一定の限度内であれば大きな性能差が出ないことも上記試験結果から確認された。
 実施形態のようにテーパー状クラウニング加工部10を円筒ころ5の端面に設ける場合でも、実際の加工上で狙った寸法に対してピンポイントで加工するのは、量産を考慮すると非常に困難を伴う。そこで、上記試験では、テーパー状クラウニング加工部10の傾斜角度θr を任意に設定して、その効果の違いについて確認を行なっている。
 前記各鍔部7a,8a,9aと円筒ころ5の端面との間の接触面圧を均等化するためには、スキューやチルトを考慮しないとすれば、各鍔部7a,8a,9aの鍔面である内側面7aa,8aa,9aaの傾斜角度θi ,θ1 ,θo をテーパー状クラウニング加工部10の傾斜角度θr と等しくすることが望ましい。上記試験では、外輪鍔部9aでの傾斜角度θo ≒0.25°、内輪鍔部7aでの傾斜角度θi ≒0.5°、テーパー状クラウニング加工部10の傾斜角度θr を0.25°~1°とした各傾斜角度が互いに異なるサンプルを用いて、その場合の効果への影響についても確認を行なった。その試験結果によると、この場合にも従来品より温度上昇が低下することが確認された。
 また、上記試験においては、各鍔部7a,8a,9aの鍔面と円筒ころ5の端面との間の接触状況も確認したが、各鍔部7a,8a,9aの鍔面の傾斜角度θi ,θ1 ,θo とテーパー状クラウニング加工部10の傾斜角度θr から、形状的に接触が予想される箇所以外にも接触痕が認められた。このことから、内輪鍔部7aの鍔面の傾斜角度θi 、外輪鍔部9aの鍔面の傾斜角度θo 、テーパー状クラウニング加工部10の傾斜角度θr が多少異なっていても、円筒ころ5はある程度姿勢を変えた状態で負荷荷重を受けながら回転することができるものと考えられる。
 円筒ころ軸受における円筒ころ5がどのような位置で回転するかについては、回転速度、荷重、あるいは潤滑剤の粘度、保持器6の形式や材料によって左右されると考えられるので、正確に求めることは困難である。しかし、上記した数値範囲に限定したこの実施形態の円筒ころ軸受であれば、従来品に比べてスラスト荷重に対する負荷能力を向上させることができる。この場合に、内輪鍔部7aの鍔面の傾斜角度θi ,外輪鍔部9aの鍔面の傾斜角度θo 、およびテーパー状クラウニング加工部10の傾斜角度θr の間に、
 (θi +θo )- 2・θr =-1.25°~0.25°  ……(1)
の関係が成立する範囲であれば、前記各傾斜角度間に差があっても十分な効果を上げることができる。
 なお、上式(1)の左辺の値が、-1.25°よりも小さい場合は、ころと鍔部の内側面7aa、8aa、9aaの軌道面から最も離れた位置である7bb、8bb、9bbの接触が顕著となり、この部分での面圧が過大となって焼付きが生じる恐れがある。
0.25を超える場合は、ころと鍔部の内側面7aa、8aa、9aaの軌道面に最も近い位置である7cc、8cc、9ccの接触が顕著となり、この部分での面圧が過大となって焼付きが生じる恐れがある。
 また、鍔輪鍔部8aの鍔面の傾斜角度θ1 、外輪鍔部9aの鍔面の傾斜角度θo 、およびテーパー状クラウニング加工部10の傾斜角度θr の間についても、
 (θ1 +θo )- 2・θr =-1.25°~0.25°  ……(1)
の関係が成立する範囲であれば、前記各傾斜角度間に差があっても十分な効果を上げることができる。
 以上の説明では、円筒ころ5の端面のテーパー状クラウニング加工部10が図2(B)に示す形状の場合を例示したが、図5に示すように、ころ外径側に続く2段のテーパー面部10a,10bからなるテーパー状クラウニング加工部10としても良い。この場合、ころ外径側に近いテーパー面部10bの傾斜角度θr1が、ころ外径側から遠いテーパー面部10aの傾斜角度θr より大きくなるように(θr1>θr )されている。
 このように、2段のテーパー面部10a,10bでテーパー状クラウニング加工部10を形成することにより、テーパー状クラウニング加工部10と、その外径側に続く面取部11との境界での局部的なエッジ応力の抑制をさらに向上させることができる。なお、前記テーパー面部は3段以上の複数段とし、各段のテーパー面部の傾斜角度をころ外径側に近いものほど大きくしても良い。
 このように複数段のテーパー面部でテーパー状クラウニング加工部10を形成した場合、隣り合うテーパー面部の境界でのエッジ応力の発生が懸念される。このため、隣り合うテーパー面部の傾斜角度の差は1°程度以内としておくのが良い。すなわち、例えば2段のテーパー面部10a,10bでテーパー状クラウニング加工部10を形成した図5の例の場合では、
 θr1-θr ≦1°  ……(3)
とするのが良い。また、この場合、テーパー状クラウニング加工部10におけるころ内径側に最も近いテーパー面部10aの傾斜角度を、先の各式(1),(2)が成り立つ傾斜角度θr とするのが良い。
 この円筒ころ軸受では、円筒ころ5の端面にテーパー状クラウニング加工部10を設けたことにより駆動時の温度上昇を抑制することできることから、スラスト荷重の負荷能力の小さい従来品であれば軸受寸法を大きくしなければならないような応用面に対しても、軸受寸法を小さくして対応できる。しかし、スラスト荷重の負荷能力を確保できる程度まで軸受寸法を小さくした場合には、ラジアル荷重の負荷能力にも配慮が必要となる。そこで、ラジアル荷重の負荷能力を確保するために、上記した実施形態の円筒ころ軸受において、円筒ころ5の外径面における両端部に、例えば断面外形が単調なR形状のクラウニング加工部や、対数曲線のクラウニング加工部(特開2005-155763号公報参照)を同時に設けておくことが望ましい。
 なお、この実施形態の円筒ころ軸受とは異なるが、円筒ころの端面に断面外形が曲線状のクラウニング加工部を設けた円筒ころ軸受の場合にも、上記したように円筒ころの外径面に同時にクラウニング加工部を設けることにより、スラスト荷重の負荷能力とラジアル荷重の負荷能力を併せて確保できる。
 上記したように、円筒ころ軸受では、各鍔部7a,8a,9aの鍔面と円筒ころ5の端面とが接触することでスラスト荷重を負荷することができるが、その接触部での形状適正化の他に、軸受内のころ長さの相互差やころ端面の寸法誤差も重要な要素となる。
 上記した試験に用いたサンプルを確認したところ、固定輪である外輪2における鍔部9aの鍔面の接触痕は円周上で均一ではなく、ラジアル荷重による負荷域を略中心として接触痕が顕著になっていることが判った。このことから、スラスト荷重を実際に負荷している円筒ころ5は、ラジアル負荷の負荷域方向に存在する円筒ころ5と考えられる。
 図6(A),(B)には、円筒ころ軸受において、スラスト荷重を負荷する円筒ころ5と、ラジアル荷重方向とは180°の位相差をなす非負荷域の円筒ころ5との状態を表した正面図と断面図とを示している。非負荷域には、図6(A)に符号C1,C2で示すようなラジアル内部すきまが存在するので、これにより円筒ころ5はチルトすることができる。この場合、外輪鍔部9aの鍔面と内輪鍔部7aの鍔面の間の軸方向距離よりも、円筒ころ5の両端面の接触部間の軸方向長さが短くなるため、スラスト荷重が負荷しなくなる。したがって、1つの円筒ころ5は、公転によって負荷域と非負荷域を繰り返し通過することになる。
 その結果、円筒ころ軸受において、1つの円筒ころ5の軸長が他の円筒ころ5よりも長い場合、負荷域におけるスラスト荷重の負荷がその1つの円筒ころ5に集中してしまう事態が生じ得る。また、軸長の長い円筒ころ5が非負荷域から負荷域に急激に進入することにより、内輪軌道輪7と外輪2が軸方向に急激に広げられる事態や、その反力により円筒ころ5の姿勢が不安定となって振動を引き起こす事態も生じ得る。
 このような観点から、1つの円筒ころ軸受内における各円筒ころ5間での軸長の相互差は適正な範囲内の値に留めておくことが望ましい。円筒ころの軸長の相互差についての配慮の必要性については、特許文献(特開2002-89548号公報)にも開示されている。
 上記説明では、円筒ころの軸長の相互差への配慮の必要性について言及したが、円筒ころの精度に関する項目には、このほかにJIS B 1506で規定されているころ端面振れがある。この端面振れを、JIS B 1506ではころ端面部におけるころラジアル平面に対する端面の狂いと規定している。この振れ精度が、この実施形態の円筒ころ軸受におけるテーパー状クラウニング加工部10での振れ精度によるものとみなした場合、その振れ精度が大きくなり過ぎると、円筒ころの軸長の相互差が大きい場合と同様の事態が生じる。
 例えば、この実施形態の円筒ころ軸受の円筒ころ5が、図7や図8に示すようにころ端面に大きな寸法誤差を有する形状に加工された場合、1つの円筒ころ5において、内輪鍔部7aと外輪鍔部9aで挟まれた部分の軸方向長さが円周上で異なることになる。このような円筒ころ5が、非負荷域から負荷域に進入する場合に、最も軸方向長さが長い部分から進入すると、軸長の長い円筒ころ5が進入する場合と同様の事態が生じる。また、このような円筒ころ5が負荷域内で自転すると、負荷域内で1つの円筒ころ5の両端面接触部間の軸長が変化することとなるので、荷重集中による過大荷重の発生や振動の原因となる。
 精度品ではない円筒ころ軸受には、一般的に等級2~5(JIS B 1506)の円筒ころが使用されることが多く、この場合の公差は0.006mm~0.015mmとなる。
 そこで、図7や図8のような円筒ころ5では、鍔部で挟まれた部分の軸方向長さの変化量は最悪形状の場合、振れ量に相当することとなり、非常に大きなものとなる。このような要因によるスラスト荷重の負荷能力阻害を抑制するためには、この実施形態における円筒ころ軸受では、その円筒ころ5の端面でのテーパー状クラウニング加工部10の振れを0.003mm以下とするのが望ましい。とくに、電動機など低振動、低騒音を必要とする応用面での使用の場合には、前記振れを0.002mm以下のレベルとするのが好ましい。図5に示したように、複数段のテーパー面部10a,10bでテーパー状クラウニング加工部10が形成される場合には、内径側に最も近いテーパー面部10aの振れを0.003mm以下としても良い。
 上記説明では、円筒ころ5の端面におけるテーパー状クラウニング加工部10の振れについて言及したが、円筒ころ5の端面におけるテーパー状クラウニング加工部10を除く平坦部12(例えば図2(B)参照)においても端面振れは小さくしておく必要がある。円筒ころ5の加工において、テーパー状クラウニング部10および前記平坦部12のいずれを先に加工した場合でも、双方の端面振れが大きいと、テーパー状クラウニング加工部10と平坦部12の境界が円周上で蛇行したり楕円状になる。このような加工が行なわれた場合、第1に、テーパー状クラウニング加工部10の径方向幅寸法の確保が難しくなる。第2に、鍔面の傾斜角度θi ,θ1 ,θo に対して、テーパー状クラウニング加工部10の傾斜角度θr が大きい場合、円筒ころ5の端面における鍔面と接触する部分がテーパー状クラウニング加工部10と平坦部12の境界部分となるため、回転時における円滑な接触状態を損なうことになる。このような事態が生じるのを防ぐためには、この実施形態における円筒ころ軸受では、その円筒ころ5の端面での平坦部12の端面振れを0.003mm以下(好ましくは0.002mm以下)とするのが望ましい。
 なお、上記実施形態では、内輪軌道輪7、外輪2、鍔輪8、円筒ころ5、保持器6からなる円筒ころ軸受の場合を例示したが、この発明では、鍔面と円筒ころ5の端面との接触状態をテーパー状クラウニング加工部10やころ端面の振れの適正化によってスラスト荷重の負荷性能を向上させていることから、スラスト荷重は負荷しないが軸たわみによって円筒ころが軸方向の一方に片走りする際にも、接触抵抗を低下させる効果を期待できる。
 この発明を適用できる軸受形式としては、内輪に鍔部を有しないNU型を始めとする、内輪片鍔付き,外輪両鍔付き(NJ型)、内輪片鍔,鍔輪組付け,外輪両鍔付き(NUP型)、内輪両鍔付き,外輪鍔なし(N型)、内輪両鍔付き,外輪片鍔つき(NF型)、内輪両鍔付き,外輪片鍔,鍔輪組付け型(NP型)等の単列型の円筒ころ軸受や、円筒ころの列数が複数の円筒ころ軸受などが挙げられる。また、保持器の無い総ころ型の円筒ころ軸受にも適用可能である。
 前記円筒ころ5の端面におけるテーパー状クラウニング加工部10の加工方法としては、例えば砥石を接触させて加工する方法が挙げられる。この場合の砥石には、ドレス加工によって予めテーパー状クラウニング加工部10の外形形状に成形したものを使用する。砥石のドレスは複雑な形状ではなく、単に直線的に成形するものであり、誤差は非常に小さいものである。このため、加工されるテーパー状クラウニング加工部10の母線形状も大きくばらつくことがない。このような加工方法を採用することにより、テーパー状クラウニング加工部10の角度管理においては、円筒ころ5の端面の外径側から面取部11より僅かにテーパー状クラウニング加工部10に入った位置を測定点とし、この部分における平坦部12からのドロップ量を管理するのみで十分である。この管理方法であれば、ダイヤルゲージと簡単なころ位置決め装置を用意するだけで、加工と並行して寸法管理を容易に行うことができる。
 なお、上記加工において、初期摩耗の抑制などを目的として、最終加工としてタンブラー加工を施すことにより、粗さ向上を図っても良い。このようにタンブラー加工を施すことにより、円筒ころ5の端面におけるテーパー状クラウニング加工部10と平坦部12の境界に形成されるエッジ部を除去する効果も期待できる。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1 内輪
2 外輪
3,4 軌道面
5 円筒ころ
7 内輪軌道輪
7a 鍔部
7aa 内輪鍔部の内側面(鍔面)
8 鍔輪
8a 鍔部
8aa 鍔輪鍔部の内側面(鍔面)
9 外輪
9a 鍔部
9aa 外輪鍔部の内側面(鍔面)
10 テーパー状クラウニング加工部
10a,10b テーパー面部
12 平坦部

Claims (9)

  1.  内輪および外輪と、これら内外輪の軌道面の間に転動自在に介在させた複数の円筒ころとを備え、前記内輪および外輪のいずれか一方または両方が、軸方向の両側または片側に鍔部を有する円筒ころ軸受であって、
     前記円筒ころの外径寸法をDa としたとき、円筒ころの端面における外径縁からころ軸心側へ及ぶ径寸法0.12Da ~0.20Da の範囲の面域を、ころ軸心に垂直な平面に対して0.25°~1°の傾斜角度をなすテーパー状のクラウニング加工部とした円筒ころ軸受。
  2.  請求項1において、前記内輪が、一端部に鍔部を有し外周に軌道面を形成した内輪軌道輪、およびこの内輪軌道輪の他端部に隣接して配置される鍔輪からなり、前記外輪が、両端部に鍔部を有し内周に軌道面を形成した一体の部品からなり、前記内輪軌道輪の鍔部の内側面の内輪軸心に垂直な平面に対して傾斜する鍔角度をθi 、前記外輪の鍔部の内側面の外輪軸心に垂直な平面に対して傾斜する鍔角度をθo 、前記鍔輪における前記内輪軌道輪の軌道面よりも外径側に突出する鍔部の内側面の鍔輪軸心に垂直な平面に対して傾斜する鍔角度をθ1 、前記円筒ころのテーパー状クラウニング加工部の傾斜角度をθr としたとき、これらの各角度を、
     (θi +θo )-2・θr =-1.25°~0.25°
    および、
     (θ1 +θo )-2・θr =-1.25°~0.25°
    の各式が成り立つように設定した円筒ころ軸受。
  3.  請求項2において、前記円筒ころの端面における前記テーパー状クラウニング加工部の振れを0.003mm以下とした円筒ころ軸受。
  4.  請求項3において、前記円筒ころの端面における前記テーパー状クラウニング加工部を除く平坦部の端面振れを0.002mm以下とした円筒ころ軸受。
  5.  請求項1において、前記円筒ころの外径面をクラウニング加工部とした円筒ころ軸受。
  6.  請求項1において、前記円筒ころの端面における前記テーパー状クラウニング加工部は、ころ外径側に続く複数段のテーパー面部からなり、各段のテーパー面部の傾斜角度をころ外径側に近いものほど大きくした円筒ころ軸受。
  7.  請求項6において、前記テーパー状クラウニング加工部におけるころ内径側に最も近いテーパー面部の傾斜角度を、請求項2に記載の各式が成り立つ角度θr とした円筒ころ軸受。
  8.  請求項6において、前記テーパー状クラウニング加工部における隣り合うテーパー面部の傾斜角度の差を1°以下とした円筒ころ軸受。
  9.  請求項6において、前記テーパー状クラウニング加工部におけるころ内径側に最も近いテーパー面部の振れを0.003mm以下とした円筒ころ軸受。
PCT/JP2009/002750 2008-06-24 2009-06-17 円筒ころ軸受 WO2009157155A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009001535.2T DE112009001535B4 (de) 2008-06-24 2009-06-17 Zylinder-Rollenlager Anordnung
CN2009801232287A CN102066781B (zh) 2008-06-24 2009-06-17 圆柱滚子轴承
US12/737,222 US8414194B2 (en) 2008-06-24 2009-06-17 Cylindrical roller bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008163939A JP5455329B2 (ja) 2008-06-24 2008-06-24 円筒ころ軸受
JP2008-163939 2008-06-24

Publications (1)

Publication Number Publication Date
WO2009157155A1 true WO2009157155A1 (ja) 2009-12-30

Family

ID=41444228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002750 WO2009157155A1 (ja) 2008-06-24 2009-06-17 円筒ころ軸受

Country Status (5)

Country Link
US (1) US8414194B2 (ja)
JP (1) JP5455329B2 (ja)
CN (1) CN102066781B (ja)
DE (1) DE112009001535B4 (ja)
WO (1) WO2009157155A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334665B2 (ja) * 2009-04-24 2013-11-06 Ntn株式会社 円すいころ軸受およびその設計方法
JP5148656B2 (ja) * 2010-04-30 2013-02-20 三菱重工業株式会社 回転機械
JP5654798B2 (ja) * 2010-07-30 2015-01-14 住友重機械工業株式会社 ローラのリテーナ及び揺動内接噛合型の歯車装置
JP5518008B2 (ja) * 2011-07-29 2014-06-11 株式会社椿本チエイン コンベヤチェーン
JP2013117249A (ja) * 2011-12-02 2013-06-13 Ntn Corp ころ軸受
JP2014066335A (ja) * 2012-09-27 2014-04-17 Nsk Ltd スラストころ軸受
EP2963305B1 (en) * 2014-06-30 2019-04-17 Aktiebolaget SKF Process for manufacturing a hollow roller, hollow roller obtainable via such a process and roller bearing including such a roller
WO2016040821A1 (en) 2014-09-11 2016-03-17 Koyo Bearings North America Llc Axle wheel end axial thrust assembly
DE102015215528A1 (de) * 2015-08-14 2017-02-16 Aktiebolaget Skf Wälzlager mit konischem Führungsbord
US10883542B2 (en) 2019-05-21 2021-01-05 Raytheon Technologies Corporation Cylindrical roller bearing containing a crowned inner ring shoulder
US12117042B2 (en) 2021-03-31 2024-10-15 Nsk Ltd. Roller bearing, roller bearing unit, motor, method for manufacturing roller bearing, and method for silencing roller bearing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4711861U (ja) * 1971-03-09 1972-10-12
JPS57114026A (en) * 1980-12-29 1982-07-15 Nippon Seiko Kk Tubular roller bearing and manufacturing method
JPS5822515U (ja) * 1981-08-06 1983-02-12 エヌ・テ−・エヌ東洋ベアリング株式会社 円筒ころ軸受
JPS59106719A (ja) * 1982-12-08 1984-06-20 Koyo Seiko Co Ltd 円筒ころ軸受
JP2000304038A (ja) * 1999-04-20 2000-10-31 Nsk Ltd ころ軸受
JP2003254328A (ja) * 2001-12-28 2003-09-10 Nsk Ltd ころ軸受
JP2006112559A (ja) * 2004-10-15 2006-04-27 Ntn Corp 円すいころ軸受

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE349368B (ja) 1970-11-16 1972-09-25 Skf Ind Trading & Dev
JPS5913369Y2 (ja) * 1979-07-18 1984-04-20 日本精工株式会社 円筒ころ軸受
JPS5822515A (ja) 1981-07-29 1983-02-09 バブコツク日立株式会社 探傷ケ−ブル插入装置
JP2002089548A (ja) 2000-09-18 2002-03-27 Nsk Ltd 鍔付円筒ころ軸受
JP2002181053A (ja) * 2000-12-13 2002-06-26 Nsk Ltd ころ軸受
JP2002195272A (ja) 2000-12-27 2002-07-10 Nsk Ltd 鍔付円筒ころ軸受
CN1302962A (zh) 2001-01-05 2001-07-11 陈世业 双锥对称圆柱滚动体及其在双锥对称圆柱滚子轴承中的应用
JP2002310160A (ja) * 2001-04-10 2002-10-23 Ntn Corp 円筒ころ軸受
JP2003021145A (ja) 2001-07-05 2003-01-24 Nsk Ltd ころ軸受
CN100375853C (zh) * 2001-11-06 2008-03-19 日本精工株式会社 径向滚子轴承
US20050058381A1 (en) * 2001-12-28 2005-03-17 Manriyou Kiyo Roller bearing
JP2004251323A (ja) * 2003-02-18 2004-09-09 Ntn Corp 円筒ころ軸受
JP2004353744A (ja) 2003-05-28 2004-12-16 Nsk Ltd ころ軸受
EP1632685B1 (en) * 2003-06-12 2013-07-10 NSK Ltd. Cylindrical roller bearing
JP2005069276A (ja) 2003-08-28 2005-03-17 Nsk Ltd 鉄道車両用ころ軸受
JP4364610B2 (ja) 2003-11-25 2009-11-18 Ntn株式会社 ころ軸受
JP2006112568A (ja) 2004-10-15 2006-04-27 Nsk Ltd 円筒ころ軸受
US7841773B2 (en) 2004-10-15 2010-11-30 Ntn Corporation Tapered roller bearing
JP2006194320A (ja) * 2005-01-12 2006-07-27 Nsk Ltd ころ軸受の製造方法及びころ軸受
CN2918853Y (zh) 2005-12-31 2007-07-04 瓦房店轴承集团有限责任公司 一种冲压保持架圆柱滚子轴承
US7770400B2 (en) 2006-12-26 2010-08-10 General Electric Company Non-linear fuel transfers for gas turbines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4711861U (ja) * 1971-03-09 1972-10-12
JPS57114026A (en) * 1980-12-29 1982-07-15 Nippon Seiko Kk Tubular roller bearing and manufacturing method
JPS5822515U (ja) * 1981-08-06 1983-02-12 エヌ・テ−・エヌ東洋ベアリング株式会社 円筒ころ軸受
JPS59106719A (ja) * 1982-12-08 1984-06-20 Koyo Seiko Co Ltd 円筒ころ軸受
JP2000304038A (ja) * 1999-04-20 2000-10-31 Nsk Ltd ころ軸受
JP2003254328A (ja) * 2001-12-28 2003-09-10 Nsk Ltd ころ軸受
JP2006112559A (ja) * 2004-10-15 2006-04-27 Ntn Corp 円すいころ軸受

Also Published As

Publication number Publication date
CN102066781A (zh) 2011-05-18
CN102066781B (zh) 2013-06-19
US8414194B2 (en) 2013-04-09
JP5455329B2 (ja) 2014-03-26
US20110091145A1 (en) 2011-04-21
DE112009001535B4 (de) 2021-02-11
JP2010007678A (ja) 2010-01-14
DE112009001535T5 (de) 2011-05-26

Similar Documents

Publication Publication Date Title
JP5455329B2 (ja) 円筒ころ軸受
JP5750901B2 (ja) 転がり軸受
US20190368540A1 (en) Rolling bearing cage and rolling bearing
JP6565366B2 (ja) アンギュラ玉軸受
WO1996024778A1 (en) Roller with cage
JP2017089845A (ja) 転がり軸受
JP4326159B2 (ja) 玉軸受
EP1696143A2 (en) Double split bearing
JP2017089844A (ja) 転がり軸受
JP2015102144A (ja) 自動調心ころ軸受
JP2011094716A (ja) スラストころ軸受
JP5095630B2 (ja) ベアリングレース
WO2014115821A1 (ja) 円すいころ軸受
JP2009019701A (ja) 分割型針状ころ軸受
US20160178002A1 (en) Double-row spherical roller bearing
JP5499327B2 (ja) 転がり軸受
EP2202417A1 (en) Roller bearing
JP2022144638A (ja) 針状ころ軸受
JP2003120683A (ja) スラストころ軸受
JP2019173888A (ja) アンギュラ玉軸受
JP7483809B2 (ja) 転がり軸受
JP6829522B2 (ja) 自動調心ころ軸受
JP7360875B2 (ja) 軸受装置
JP2014159846A (ja) ころ軸受及び定着装置
CN115413311A (zh) 滚子轴承、滚子轴承单元、电动机、滚子轴承的制造方法及滚子轴承的静音方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980123228.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12737222

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 9111/DELNP/2010

Country of ref document: IN

RET De translation (de og part 6b)

Ref document number: 112009001535

Country of ref document: DE

Date of ref document: 20110526

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 09769865

Country of ref document: EP

Kind code of ref document: A1