WO2009144957A1 - 同期電動機駆動システム - Google Patents

同期電動機駆動システム Download PDF

Info

Publication number
WO2009144957A1
WO2009144957A1 PCT/JP2009/002392 JP2009002392W WO2009144957A1 WO 2009144957 A1 WO2009144957 A1 WO 2009144957A1 JP 2009002392 W JP2009002392 W JP 2009002392W WO 2009144957 A1 WO2009144957 A1 WO 2009144957A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
synchronous motor
stator
winding
Prior art date
Application number
PCT/JP2009/002392
Other languages
English (en)
French (fr)
Inventor
田米正樹
西山典禎
近藤康宏
北畠真
風間俊
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US12/934,968 priority Critical patent/US8497648B2/en
Priority to JP2010512027A priority patent/JP4601723B2/ja
Publication of WO2009144957A1 publication Critical patent/WO2009144957A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a synchronous motor drive system, and more particularly to an inverter control technique for supplying a drive current to a synchronous motor.
  • the synchronous motor is supplied with a three-phase alternating current from the inverter, and energizes the windings arranged in the stator to generate a field in the stator and rotate the rotor.
  • the rotor can be driven freely by appropriately controlling the current supplied to the winding in accordance with the position of the magnetic pole of the rotor.
  • Torque pulsation has a pulsating component having a plurality of cycles, but in general, a pulsating component having a cycle of 60 degrees in electrical angle is significant.
  • Such periodicity of the pulsation component depends on the shape of the stator and the rotor, that is, the combination of the number of slots of the stator and the number of poles of the rotor, and the pulsation is manifested when the current waveform deviates from the sine wave. It is known that
  • Patent Document 1 discloses a motor drive system in which a booster circuit is added between a DC power supply and an inverter to increase the voltage applied to the inverter and the motor. Since the motor output improves almost in proportion to the applied voltage, the motor output can be easily increased by increasing the voltage applied to the motor by the boosting operation of the booster circuit.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a synchronous motor drive system capable of reducing vibration and noise while maintaining high output.
  • a synchronous motor driving device includes a plurality of three-phase inverters that convert a DC current into a three-phase AC current, and an energization control unit that controls the operations of the plurality of three-phase inverters.
  • a synchronous motor driven by a plurality of three-phase alternating currents supplied from the plurality of three-phase inverters, the synchronous motor having a plurality of three-phase winding groups that receive the supply of the three-phase alternating currents
  • the energization control unit individually determines the current phase angle and current amount of the three-phase alternating current to be output for each of the plurality of three-phase inverters, and each of the plurality of three-phase inverters includes the energization control unit.
  • a three-phase alternating current is supplied to different three-phase winding groups with the current phase and the current amount determined in (1).
  • the current phase angle is an angle formed by the direction of the interlinkage magnetic flux of the rotating magnetic field with respect to the q axis in the rotating coordinate system d-q fixed to the rotor of the synchronous motor.
  • a plurality of three-phase inverters supply current to different winding groups to rotate the synchronous motor. Therefore, in the synchronous motor drive system according to the present invention, the induced voltage generated by the rotation of the synchronous motor can be divided by the respective three-phase inverters, so that the voltage of the DC power supply need not be boosted by the booster circuit. High output can be achieved. Further, since it is not necessary to apply a high voltage to the three-phase inverter and the motor, the three-phase inverter does not need to use a switching element having a high withstand voltage characteristic, and is caused by the use of a switching element having a high withstand voltage characteristic.
  • a decrease in inverter efficiency such as an increase in on-voltage or an increase in switching loss due to a high-voltage switching operation can be avoided, and in a synchronous motor, an increase in iron loss due to application of a high voltage can be avoided.
  • the in-phase windings are individually wound and the motor is driven by the same number of three-phase inverters, the time constant described above becomes small as a result. That is, even when the electric motor rotates at high speed, a desired current waveform with small distortion can be obtained, and the torque pulsation can be sufficiently reduced.
  • the plurality of three-phase inverters can supply three-phase alternating currents having different current phase angles and different current amounts, the phases of torque pulsations generated in the plurality of winding groups are shifted to each other. It is possible to cancel out pulsations, and as a result, it is possible to reduce pulsation of torque generated in the entire motor drive.
  • the synchronous motor drive system since the difference in the current phase angle between the plurality of three-phase inverters determined by the energization control unit is variable, the synchronous motor drive system according to the present invention does not intentionally make the inductance of each winding intentionally uniform at the time of design.
  • the synchronous motor can be driven with an optimum current phase difference even if it is not homogeneous due to manufacturing errors or the like.
  • optimum field-weakening control can be performed in accordance with the change in inductance accompanying the change in the motor drive state.
  • FIG. 3 is a detailed view of the synchronous motor of FIG. 2. It is a figure for demonstrating the connection of the stator winding
  • the positional relationship of the stator and rotor of the 1st Embodiment of this invention is shown, (a), (b), (c) shows the rotor 2 being 2 degrees (electrical angle) in a counterclockwise direction, respectively. ( ⁇ / 9 radians)
  • the positional relationship between the stator and the rotor when rotated is shown.
  • FIG. 5 is a flowchart showing a flow of inverter control processing in an energization control unit 52. It is a figure which shows the relationship between the rotational speed of a synchronous motor, and the induced voltage by a permanent magnet. It is the figure which showed the time change of the electric current which an inverter flows into each stator winding at the time of low speed drive. It is a figure which shows the torque waveform when the inverter 101,102,103 energizes as shown in FIG. It is a basic vector diagram of a terminal voltage and a motor current in a synchronous motor. It is a figure which shows the relationship between the electric current phase and torque at the time of making an electric current into a constant value in a magnet embedded type synchronous motor.
  • FIG. 4 is a detailed view of the synchronous motor 44.
  • FIG. It is a figure for demonstrating the connection of the stator winding
  • (A), (b), and (c) are the mechanical angle of the rotor 2 in the counterclockwise direction by 2 ° (electrical angle ⁇ / 9 radians).
  • FIG. 5 is a flowchart showing a flow of inverter control processing in an energization control unit 53. It is the figure which showed the time change of the electric current sent through each stator winding
  • FIG. 5 is a flowchart showing a flow of inverter control processing in an energization control unit 55. It is the figure which showed the time change of the electric current which an inverter flows into each stator coil
  • FIG. 1 is a diagram showing an overall configuration of a synchronous motor drive system of the present invention.
  • the synchronous motor drive system includes a DC power source 1, an inverter module 100, a synchronous motor 41, and an energization control unit 52.
  • the inverter module 100 includes inverters 101, 102, and 103, and the inverters 101, 102, and 103 perform orthogonal transformation operations according to the gate control signals G 1 uvw, G 2 uvw, and G 3 uvw, respectively, and supply three-phase AC to the synchronous motor 41.
  • all the switching elements constituting the inverters 101, 102, and 103 are housed in a single module.
  • the output currents 101a, 101b, and 101c of the inverter 101 are out of phase by 2 ⁇ / 3 radians. The same applies to the output currents 102a, 102b, and 102c of the inverter 102, and the same applies to the output currents 103a, 103b, and 103c of the inverter 103.
  • the synchronous motor 41 includes winding groups 200a, 200b, and 200c.
  • the winding group 200a includes three-phase windings 81a, a ', 81b, b', 81c, and c ', and the output currents 101a, 101b, and 101c of the inverter 101 are input to each of them.
  • the winding group 200b includes three-phase windings 82a, a ', 82b, b', 82c, and c ', and the output currents 102a, 102b, and 102c of the inverter 102 are input to the winding group 200b.
  • the winding group 200c includes three-phase windings 83a, a ', 83b, b', 83c, and c ', and the output currents 103a, 103b, and 103c of the inverter 103 are input to the winding group 200c.
  • the power wiring for supplying power from the inverter 101 to the winding group 200a is provided with a current detector 301a for detecting the U-phase current and a current detector 301c for detecting the W-phase current.
  • the power wiring for supplying power from the inverter 102 to the winding group 200b is provided with a current detector 302a for detecting the U-phase current and a current detector 302c for detecting the W-phase current.
  • a power detector for detecting the U-phase current and a current detector 303c for detecting the W-phase current are provided on the power wiring for supplying power to the winding group 200c.
  • the synchronous motor 41 includes a position detector 51 that detects the position of the rotor, and the position detection signal ⁇ r detected by the position detector 51 is output to the energization control unit 52.
  • the energization control unit 52 is a microcomputer system that controls the operation of the inverters 101, 102, and 103 by outputting gate control signals G1uvw, G2uvw, and G3uvw. More specifically, the energization control unit 52 receives a current command signal Is and a rotation speed command signal ⁇ r for instructing the synchronous motor 41 to be driven with a desired torque and rotation speed. Further, the ROM in the energization control unit 52 has a map in which the current phase angle ⁇ and the current amount Ia of the three-phase alternating current output to the inverter are associated with the values of the current command signal Is and the rotation speed command signal ⁇ r.
  • the energization control unit 52 determines the current phase angle ⁇ and the current amount Ia corresponding to the input current command signal Is and the rotation speed command signal ⁇ r for each of the inverters 101, 102, and 103 with reference to the map data.
  • FIG. 2 is a plan view of the synchronous motor constituting the synchronous motor drive system according to the first embodiment of the present invention
  • FIG. 3 is a detailed view of the synchronous motor of FIG.
  • the synchronous motor 41 includes a rotor 2 and a stator 43.
  • the rotor 2 includes a rotor core 4 and a plurality of permanent magnets 5.
  • the permanent magnets 5 are arranged on the rotor core 4 at equal intervals in the circumferential direction of the rotor.
  • the synchronous motor 41 is a so-called magnet-embedded synchronous motor (IPM motor), and the permanent magnet 5 is disposed inside the rotor core.
  • the magnetic pole 6 constituted by the permanent magnet 5 constitutes a magnetic pole pair in which N poles and S poles are alternately arranged with respect to the stator 43.
  • the magnetic pole pair N pole and S pole have an electrical angle of 2 ⁇ radians, and the arrangement interval of adjacent magnetic poles has an electrical angle of ⁇ radians.
  • the rotor has 20 magnetic poles, and the electrical angle is 10 times the mechanical angle.
  • the stator 43 includes a plurality of stator teeth 47 arranged to face the rotor 2 and a stator winding 9 wound around each stator tooth 47 in a concentrated manner.
  • the plurality of stator teeth 47 constitutes a stator tooth group 48 in units of three arranged in the circumferential direction of the stator. In the present embodiment, six sets of stator teeth 48 are arranged at equal intervals of 60 ° in mechanical angle.
  • the number of magnetic poles arranged in the circumferential direction of the rotor 2 is 20 in total, and the number of stator teeth is 18 in total, which are shifted by 10/9 per half circumference.
  • stator teeth set 48b when the counterclockwise rotation direction is the + direction, the stator teeth set 48b is arranged with a mechanical angle of ⁇ 60 ° and an electrical angle of + 2 ⁇ / 3 radians with respect to the stator teeth set 48a.
  • stator teeth group 48c is arranged with a mechanical angle of + 60 ° and an electrical angle of + 4 ⁇ / 3 radians ( ⁇ 2 ⁇ / 3 radians) with respect to the stator teeth group 48a. Therefore, the stator teeth group 48a, the stator teeth group 48b, and the stator teeth group 48c are arranged at an electrical angle of 2 ⁇ / 3 radians.
  • the combination of the stator teeth group 48a, the stator teeth group 48b, and the stator teeth group 48c is two sets in the circumferential direction (the stator teeth group 48a ′ and the stator teeth group 48b ′). , Stator teeth group 48c ′) is repeated arrangement.
  • the configuration of the stator tooth group 48a will be described in detail with reference to FIG. Hereinafter, the mechanical angle between the stator windings will be discussed, and the angle between the centers (one-dot chain lines) of the stator teeth around which the respective stator windings are wound is expressed.
  • the stator teeth group 48a is composed of three adjacent stator teeth 61a, 62a, 63a.
  • the stator teeth 61a, 62a, 63a are arranged with stator windings 81a, 82a, 83a wound in concentrated winding so that the winding directions are opposite to each other.
  • stator teeth 61a around which the stator winding 81a is wound are arranged at a mechanical angle of + 20 ° with respect to the stator teeth 62a around which the stator winding 82a is wound. That is, they are arranged with a deviation of + ⁇ / 9 radians from the electrical angle ⁇ radians (mechanical angle 18 °), which is the magnetic pole spacing.
  • stator winding 83a is disposed at a mechanical angle of ⁇ 20 ° with respect to the stator winding 82a. That is, they are arranged with a deviation of ⁇ / 9 radians from the electrical angle ⁇ radians, which is the magnetic pole interval.
  • stator teeth set 48a the other two sets of stator teeth sets 48b and 48c shown in FIG. 2 are electrically connected from the electrical angle ⁇ radians in which the three windings are magnetic pole intervals. The corners are offset by + ⁇ / 9 radians and ⁇ / 9 radians.
  • FIG. 4 is a diagram for explaining the connection of the stator windings of the synchronous motor shown in FIG.
  • the a, b, and c at the end of the illustrated winding terminal numbers correspond to the windings constituting the stator tooth groups 48a, 48b, and 48c, respectively.
  • the respective winding terminals 31a, 32a, 33a of the three stator windings 81a, 82a, 83a in the stator tooth set 48a are individually connected to the outside, and the U phase of the inverters 101, 102, 103 is provided. Are connected individually to the connection terminals.
  • the three winding terminals 31b, 32b, 33b in the stator teeth set 48b and the three winding terminals 31c, 32c, 33c in the stator teeth set 48c are individually brought out to the outside.
  • the terminals of the stator windings having a phase difference of 2 ⁇ / 3 radians in different stator tooth groups 48a, 48b, 48c are commonly connected to the neutral point. That is, the winding terminal 34a, the winding terminal 34b, and the winding terminal 34c are connected to the first neutral point, and the winding terminal 35a, the winding terminal 35b, and the winding terminal 35c are connected to the second neutral point.
  • the winding terminal 36a, the winding terminal 36b, and the winding terminal 36c are connected to the third neutral point.
  • the first, second and third neutral points are electrically separated, but any two neutral points or all neutral points may be electrically connected. Good.
  • stator teeth 48a there are two sets of stator teeth 48a, stator teeth 48b, and stator teeth 48c. Are in the same positional relationship in terms of electrical angle. For this reason, a neutral point connection may be configured between three adjacent stator teeth groups among the six stator teeth groups, or a neutral point connection between every other three stator teeth groups. Further, the neutral point connection may be constituted by all six sets of stator teeth.
  • the configuration of the synchronous motor constituting the synchronous motor drive system according to the first embodiment of the present invention has been described above.
  • the 18 stator teeth are arranged at intervals different from the rotor magnetic pole interval, and constitute a stator teeth group in units of 3 arranged in the circumferential direction. Further, the three stator windings in each stator tooth group are individually connected to independent external terminals.
  • stator windings included in different stator teeth groups may be connected in common if the conditions permit. For example, currents of the same phase are supplied to the stator winding 81a included in the stator teeth set 48a and the stator winding 81a ′ included in the stator teeth set 48a ′. It is good also as connecting to the external terminal. Of course, there is no problem even if it is individually connected to the external terminal.
  • the synchronous motor drive system includes a drive device that supplies currents having different phases to a plurality of winding terminals of the synchronous motor.
  • FIG. 5 shows the positional relationship between the stator and the rotor according to the first embodiment of the present invention.
  • FIGS. 5 (a), 5 (b), and 5 (c) show that the rotor 2 is counterclockwise.
  • the positional relationship between the stator and the rotor when rotated by 2 ° in mechanical angle ( ⁇ / 9 radians in electrical angle) is shown.
  • the distance between the magnetic poles of the rotor is indicated by 10 and 11.
  • the distance between the magnetic poles 10 and 11 of the rotor means the position of the magnetic neutral point between the magnetic pole N and the magnetic pole S which are composed of permanent magnets arranged on the rotor. Here, it is mechanically located between the magnets.
  • the distance between the magnetic poles changing from the N pole to the S pole as viewed in the counterclockwise direction is indicated by 10, and the distance between the magnetic poles changing from the S pole to the N pole as viewed in the counterclockwise direction is indicated as 11.
  • the inter-magnetic pole 11 ′ is at the same electrical angle as the inter-magnetic pole 11 but at a different mechanical angle.
  • FIG. 5 (a) as indicated by the alternate long and short dash line, the center of the stator teeth 63a and the rotor magnetic poles 11 face each other in a positional relationship.
  • the magnet torque which is the torque generated by the permanent magnet, is maximized.
  • the angle between adjacent magnetic poles (18 °) and the angle between adjacent stator teeth (20 °) are different.
  • FIG. 5B the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle of ⁇ / 9 radians) from FIG. 5A, and the stator teeth are shown as indicated by a one-dot chain line.
  • the center of 62a and the rotor magnetic pole 10 face each other in a positional relationship that coincides.
  • the magnet torque which is the torque generated by the permanent magnet, is maximized.
  • the center of the stator teeth 63a and 11 between the rotor magnetic poles, and the center of the stator teeth 61a and 11 'between the rotor magnetic poles face each other in a shifted positional relationship.
  • the rotor is rotated counterclockwise by 2 ° in mechanical angle ( ⁇ / 9 radians in electrical angle) from FIG. 5 (b), and as shown by the one-dot chain line, the stator teeth.
  • the center of 61a and the rotor magnetic pole 11 ' are opposed to each other in a matching positional relationship.
  • the magnet torque which is the torque generated by the permanent magnet, is maximized.
  • the center of the stator teeth 63a and 11 between the rotor magnetic poles, and the center of the stator teeth 62a and 10 between the rotor magnetic poles face each other in a shifted positional relationship.
  • the interval between the rotor magnetic poles is 18 ° mechanical angle (electrical angle ⁇ radians), whereas the interval between the three stator teeth in the stator teeth group is 18 ° mechanical angle.
  • the mechanical angle is 20 ° which is deviated from °°.
  • the stator teeth in the stator tooth group are arranged to have a phase difference of ⁇ / 9 radians with respect to the electrical angle ⁇ radians, and the stator wound around each stator tooth.
  • the torque generated by each stator tooth can be made the same, so torque pulsation with ⁇ / 3 radians as the fundamental period can be generated. Since the torque generated by each stator tooth can be maximized, the overall torque can be increased.
  • the synchronous motor of the first embodiment is a so-called magnet-embedded synchronous motor in which permanent magnets are arranged inside the rotor core, and uses reluctance torque due to a difference in magnetic resistance in addition to magnet torque due to the magnet.
  • the current phase can be advanced from the phase at which the center of the stator teeth and the rotor magnetic pole coincide and face each other at the position where the maximum current is present. It may be valid.
  • FIG. 6 is a flowchart showing a flow of inverter control processing in the energization control unit 52.
  • the energization control unit 52 repeats the loop from step S1 to step S6, thereby monitoring the position of the rotor obtained from the position detection signal ⁇ r and the detection value of each current detector and the current value of each power wiring as needed.
  • Appropriate gate control signals G1uvw, G2uvw, and G3uvw are output.
  • the present invention is characterized by a change in either the current command signal Is or the rotation speed command signal ⁇ r input in step S1 (step S2: Yes), step S3, In S4 and S5, the map data held in the internal ROM is referred to, and the current phase angle ⁇ 1 and current amount Ia1 for the inverter 101 and the current for the inverter 102 are determined according to the current command signal Is and the rotational speed command signal ⁇ r.
  • the phase angle ⁇ 2 and the current amount Ia2 and the current phase angle ⁇ 3 and the current amount Ia3 for the inverter 103 are individually determined for each of the inverters 101, 102, and 103.
  • different map data are used in steps S3, S4, and S5.
  • steps S3, S4 In any of the map data for the inverter 101, the map data for the inverter 102, and the map data for the inverter 103 used in S5, the current phase angle ⁇ and the current amount Ia having the same value are mapped.
  • the map data for the inverter 101, the map data for the inverter 102, and the map data for the inverter 103 are different.
  • the current phase angle ⁇ and the current amount Ia are mapped.
  • the output of currents having different current phase angle ⁇ and current amount Ia for each inverter during driving at a high rotational speed is intended to appropriately perform so-called field weakening control.
  • the high rotational speed means a high-speed rotation in which the induced voltage ( ⁇ ⁇ ⁇ a) generated in the winding by the magnetic field of the permanent magnet of the rotor exceeds the power supply voltage of the DC power supply 1 as shown in FIG. It means the number of rotations in the area.
  • the low rotational speed means the rotational speed in a low-speed rotational region where the induced voltage ( ⁇ ⁇ ⁇ a) generated in the winding by the magnetic field of the permanent magnet does not exceed the power supply voltage of the DC power supply 1.
  • is the electrical angular velocity
  • ⁇ a is the flux linkage of the permanent magnet
  • the induced voltage ( ⁇ ⁇ ⁇ a) increases proportionally as the rotational speed increases.
  • the energization control unit 52 performs field weakening control in the high-speed rotation region in the figure.
  • FIG. 8 is a diagram showing the change over time of the current that the inverter passes through each stator winding during low-speed drive.
  • the times indicated by (a), (b), and (c) in FIG. 8 correspond to the positional relationships shown in FIGS. 5 (a), 5 (b), and 5 (c), respectively.
  • FIG. 8 currents flowing through the winding terminals 31a, 32a, and 33a (currents flowing through the stator windings 81a, 82a, and 83a) are shown on the vertical axis, and time is shown on the horizontal axis.
  • the current that the inverter 103 flows to the winding terminal 33a is advanced by ⁇ / 9 radians relative to the current that the inverter 102 flows to the winding terminal 32a, and the current that the inverter 102 flows to the winding terminal 32a.
  • the current flowing through the inverter 101 to the winding terminal 31a is delayed by ⁇ / 9 radians.
  • the stator winding 83a is arranged with a deviation of ⁇ / 9 radians from ⁇ radians in electrical angle with respect to the stator winding 82a. With such an arrangement relationship, the current passed through the stator winding 83a is advanced by ⁇ / 9 radians relative to the current passed through the stator winding 82a.
  • the stator winding 81a is arranged with a deviation of + ⁇ / 9 radians from ⁇ radians in electrical angle with respect to the stator winding 82a. With such an arrangement relationship, the current flowing through the stator winding 81a is delayed by ⁇ / 9 radians with respect to the current flowing through the stator winding 82a.
  • the current phase angles ⁇ 1, ⁇ 2, and ⁇ 3 of the currents output from the inverters 101, 102, and 103 are all 0 degrees, and the current flowing through the stator winding 83a is maximized in the positional relationship of FIG.
  • the phase is adjusted so that the current flowing through the stator winding 82a is maximized.
  • the stator winding is adjusted. The current is supplied by adjusting the phase so that the current flowing through 81a is maximized. As a result, the magnet torque generated by each of the stator teeth is maximized, and high torque is achieved as a whole.
  • Synchronous motors generally generate magnet torque by being energized with three-phase alternating current from an inverter and are rotationally driven.
  • Torque pulsation with a period of 60 degrees is generated.
  • FIG. 8 when the inverters 101, 102, 103 flow current with a phase difference of ⁇ / 9 radians (20 degrees), three-phase alternating current is supplied from the inverters 101, 102, 103.
  • the winding groups 200a, 200b, and 200c generate magnet torque as shown by torque waveforms tr1, tr2, and tr3, respectively.
  • Each of the torque waveforms tr1, tr2, tr3 has a torque pulsation whose main component is a cycle of 60 degrees. However, since the waveforms tr1, tr2, tr are out of phase with each other by 20 degrees, the torque pulsations cancel each other, and the combined torque Ta generated in the entire synchronous motor 41 that combines the waveforms tr1, tr2, tr3, Torque pulsation is greatly reduced.
  • the torque pulsation is greatly reduced by canceling out the pulsation component having a period of 60 degrees in electrical angle. Further, the vibration and noise of the synchronous motor can be reduced. In addition, the achievement of low vibration and low noise of the synchronous motor provides an effect that the need for anti-vibration and soundproof measures is eliminated in the incorporation of the synchronous motor drive system according to the present embodiment.
  • FIG. 10 is a basic vector diagram of terminal voltage and motor current in a synchronous motor.
  • the q axis and the d axis in the vector diagram are orthogonal to each other in electrical angle.
  • the broken line is the voltage limiting circle
  • is the electrical angular velocity
  • ⁇ a is the flux linkage of the permanent magnet
  • Lq is the q-axis component of the inductance
  • Ld is the d-axis component of the inductance
  • Ra is the winding resistance
  • Ia is the winding current.
  • Iq is a q-axis component of the winding current
  • Id is a d-axis component of the winding current.
  • the terminal voltage Va necessary for driving the electric motor includes an induced voltage ( ⁇ ⁇ ⁇ a) caused by a permanent magnet, a voltage drop (Ra ⁇ Ia) at a winding, and an induced voltage ( ⁇ ⁇ Lq ⁇ Iq + ⁇ ⁇ Ld) caused by a rotating magnetic field.
  • XId induced voltage
  • the synchronous motor can be driven only under the condition that the terminal voltage Va is within the voltage limit circle determined by the power supply voltage.
  • the terminal voltage Va can be expressed by the following equation.
  • the electrical angular velocity ⁇ increases proportionally as the rotational speed of the rotor increases. Therefore, as the rotational speed increases, the induced voltage ( ⁇ ⁇ ⁇ a) by the permanent magnet in FIG. 10 increases proportionally, and the terminal voltage Va required for driving also increases accordingly. That is, when the rotational speed of the rotor becomes high, the terminal voltage Va deviates from the voltage limit circle.
  • the phase of the winding current is advanced with respect to the q axis (that is, a current that cancels the magnetic flux without contributing to torque is applied), so that the winding current q
  • the terminal voltage Va can be suppressed within the voltage limit circle by freely controlling the axial component and the d-axis component, and further freely controlling ⁇ ⁇ Lq ⁇ Iq and ⁇ ⁇ Ld ⁇ Id. This is what is called field weakening control.
  • the electrical angular velocity ⁇ , the flux linkage ⁇ a, the q-axis component of the inductance, the d-axis component of the inductance, the winding resistance Ra, and the winding current Ia are always Single.
  • the inverters 101, 102, and 103 since the inverters 101, 102, and 103 supply power to different winding groups, the inverters 101, 102, and 103 are electrically All parameters other than the angular velocity ⁇ are different. That is, even at the same rotation speed, the current phase angle ⁇ optimum for field-weakening control differs among the inverters 101, 102, and 103. For this reason, when all the inverters 101, 102, and 103 supply the same current phase angle, the number of revolutions restricted by the power supply voltage is different for each inverter, and the ability of the synchronous motor can be utilized. Disappear.
  • the map data for the inverter 101, the map data for the inverter 102, and the map for the inverter 103 so that appropriate field-weakening control can be performed for each inverter at the rotation speed at which field-weakening control is required.
  • different values of the current phase angle ⁇ are mapped.
  • FIG. 11 is a diagram showing the relationship between the current phase and torque when the current is set to a constant value in the magnet-embedded synchronous motor.
  • the current phase is shown on the horizontal axis and the torque is shown on the vertical axis.
  • the magnet torque generated by the permanent magnet in the synchronous motor adjusts the current phase angle so that the current flowing through the stator winding is maximized in the positional relationship where the center of the stator teeth and the rotor magnetic poles face each other. It becomes the maximum by doing. Therefore, as shown in the figure, the magnet torque becomes maximum when the current phase is 0 °.
  • reluctance torque due to a difference in magnetic resistance can be used in addition to magnet torque by a magnet.
  • the total torque of the IPM motor is a torque obtained by combining the magnet torque and the reluctance torque, and is maximized when the current phase angle ⁇ is in the range of 0 ° to 45 °.
  • FIG. 12 is a diagram showing the relationship between the current phase angle and the total torque.
  • the current phase angle is shown on the horizontal axis, and the torque is shown on the vertical axis.
  • the current phase angle that generates the maximum torque is 30 degrees.
  • the IPM motor uses the reluctance torque to the maximum extent, the generated torque greatly depends on the current phase angle. Further, the dependence varies depending on the amount of current.
  • the current phase angle ⁇ is 10 degrees, 30 degrees, and the winding groups 200a, 200b, and 200c, respectively.
  • the torque Tb generated in the winding groups 200a and 200c there is a difference between the torque Tb generated in the winding groups 200a and 200c and the torque Ta generated in the winding group 200b, so that the torque pulsations of each other are effectively canceled out. Absent. In such a case, as shown in FIG. 13, by making the amount of current supplied to the winding groups 200a and 200c larger than the amount of current supplied to the winding group 200b, the winding groups 200a, 200b, The torque generated at 200c is equal.
  • the current phase angle ⁇ of the current supplied by each inverter is different, and furthermore, the torque is equalized in the winding group to which each inverter supplies current.
  • the map data for the inverter 101, the map data for the inverter 102, and the map data for the inverter 103 different amounts of current Ia are mapped.
  • the energization control unit 52 outputs a gate control signal G2uvw that instructs the inverter 102 that supplies current at a current phase angle of 30 degrees to set the amount of current to be supplied to Ia11.
  • the gate control signal that instructs the inverter 101 that supplies current at a current phase angle of 10 degrees and the inverter 103 that supplies current at a current phase angle of 50 degrees to set the amount of current to be supplied to Ia2 larger than Ia1.
  • the terminal voltage is appropriately controlled for each inverter, and the motor characteristics can be utilized to the maximum.
  • the above is the description of the operation of the inverters 101, 102, 103 when the synchronous motor 41 is driven at a high rotational speed.
  • the current phase angle ⁇ of the current supplied from the inverters 101, 102, and 103 is individually determined so that the field-weakening control can be performed appropriately in accordance with the characteristics of the winding group to which each is connected. Furthermore, a current distribution control unit 52 is provided with a mapping table that individually determines the amount of current to be supplied to each of the winding groups 200a, 200b, and 200c that receive current supply from each inverter so that the torque generated in each winding group becomes equal. In the internal ROM. According to such a mapping table, the energization control unit 52 outputs a gate control signal, so that torque pulsation can be reduced while increasing torque generated in the synchronous motor 41.
  • the amount of current supplied to each of the winding groups 200a, 200b, and 200c is individually determined so that the torques generated in the winding groups 200a, 200b, and 200c are equal.
  • the torque generated in at least two winding groups May be configured to individually determine the amount of current supplied to each of them so that they are equal.
  • the torque generated in at least two three-phase winding groups becomes equivalent. By shifting these phases, the torque pulsations of the synchronous motor as a whole can be reduced. It becomes possible.
  • FIG. 14 is a diagram showing an overall configuration of a synchronous motor drive system according to this modification.
  • the synchronous motor drive system includes the DC power source 1, the inverter module 104, the synchronous motor 44, and the energization control unit 53.
  • the inverter module 104 includes inverters 105 and 106 inside, and the inverters 105 and 106 perform orthogonal transform operation according to the gate control signals G1uvw, G2uvw, and G3uvw, respectively, and supply three-phase alternating current to the synchronous motor 44.
  • the energization control unit 53 is a microcomputer system that controls the operations of the inverters 105 and 106 by outputting gate control signals G1uvw and G2uvw.
  • map data in which the current phase angle ⁇ and the current amount Ia of the three-phase alternating current to be output to the inverter are associated with the values of the current command signal Is and the rotation speed command signal ⁇ r.
  • the inverters 105 and 106 are held.
  • the energization control unit 52 refers to the map data in steps S13 and S14 as shown in FIG. 18, and determines the current phase angle ⁇ and the current amount Ia according to the input current command signal Is and the rotation speed command signal ⁇ r.
  • each inverter 105 and 106 While determining each of the inverters 105 and 106 and monitoring the position of the rotor and the current value of each power wiring so that each inverter outputs a three-phase alternating current having the determined current phase angle ⁇ and current amount Ia.
  • the gate control signals G1uvw and G2uvw are output.
  • the synchronous motor 44 has two winding groups, a winding group 200d and a winding group 200e.
  • FIG. 15 is a detailed view of the synchronous motor 44.
  • the configuration of the stator tooth group 48a will be described in detail with reference to FIG.
  • the stator teeth group 48a is composed of three adjacent stator teeth 71a, 72a, 73a.
  • the stator teeth 71a are arranged at a mechanical angle of + 20 ° with respect to the stator teeth 72a. That is, they are arranged with a deviation of + ⁇ / 9 radians from the electrical angle ⁇ radians (mechanical angle 18 °), which is the magnetic pole spacing.
  • the stator teeth 73a are disposed at a mechanical angle of ⁇ 20 ° with respect to the stator teeth 72a. That is, they are arranged with a deviation of ⁇ / 9 radians from the electrical angle ⁇ radians, which is the magnetic pole interval.
  • a portion (number of turns N1) of the stator winding 91a is wound around the stator teeth 71a, and a portion (number of turns N2) of the stator winding 92a is wound around the stator teeth 73a.
  • the remaining portion of the stator winding 91a (the number of turns N21) and the remaining portion of the stator winding 92a (the number of turns N22) are wound around the teeth 72a.
  • the stator winding 91a generates magnetic fields having opposite polarities between the portions wound around the stator teeth 71a and 72a.
  • the portions wound around the stator teeth 72a and 73a generate magnetic fields having opposite polarities.
  • the portions wound around the stator teeth 72a generate magnetic fields having the same polarity.
  • N1 N2
  • the maximum value of the magnetic flux generated in the stator teeth 71a, 72a, 73a can be made equal.
  • the equal symbol includes a match that uses an integer close to the decimal, and further includes a match that can be ignored as a design error.
  • stator teeth 48b and 48c adjacent to both sides of the stator teeth set 48a shown in FIG. 15 have the same configuration as the stator teeth set 48a shown in FIG.
  • FIG. 16 is a diagram for explaining the connection of the stator windings of the synchronous motor shown in FIG.
  • the a, b, and c at the end of the illustrated winding terminal numbers correspond to the windings constituting the stator tooth groups 48a, 48b, and 48c, respectively.
  • the respective winding terminals 21a and 23a of the two stator windings 91a and 92a in the stator tooth set 48a are individually connected to the outside and are individually connected to the connection terminals of the inverter which is a driving device. ing.
  • the two winding terminals 21b and 23b in the stator teeth set 48b and the two winding terminals 21c and 23c in the stator teeth set 48c are individually brought out to the outside, It is individually connected to the connection terminal of a certain inverter.
  • the terminals of the stator windings having a phase difference of 2 ⁇ / 3 radians in different stator tooth groups 48a, 48b, 48c are commonly connected to the neutral point. That is, the winding terminal 22a, the winding terminal 22b, and the winding terminal 22c are connected to the first neutral point, and the winding terminal 24a, the winding terminal 24b, and the winding terminal 24c are connected to the second neutral point. ing. In this example, the first and second neutral points are electrically separated, but they may be electrically connected.
  • stator teeth 48a there are two sets of stator teeth 48a, stator teeth 48b, and stator teeth 48c. Are in the same positional relationship in terms of electrical angle. For this reason, a neutral point connection may be configured between three adjacent stator teeth groups among the six stator teeth groups, or a neutral point connection between every other three stator teeth groups. Further, the neutral point connection may be constituted by all six sets of stator teeth.
  • the configuration of the synchronous motor 44 has been described above.
  • the 18 stator teeth are arranged at a different arrangement interval from the magnetic pole interval of the rotor, and constitute a stator teeth group in units of 3 arranged in the circumferential direction. Further, the two stator windings in each stator tooth group are individually connected to independent external terminals.
  • stator windings included in different stator teeth groups may be connected in common if the conditions permit. For example, a current of the same phase is supplied to the stator winding 91a included in the stator teeth set 48a and the stator winding 91a ′ included in the stator teeth set 48a ′. It is good also as connecting to the external terminal. Of course, there is no problem even if it is individually connected to the external terminal.
  • the synchronous motor drive system includes a drive device that supplies currents having different phases to the plurality of winding terminals of the synchronous motor. Next, the drive device and the energization method will be described.
  • FIG. 17 shows the positional relationship between the stator and the rotor of this modification.
  • FIGS. 17 (a), 17 (b), and 17 (c) show that the rotor 2 has a mechanical angle of 2 in the counterclockwise direction. The positional relationship between the stator and the rotor when rotated by ⁇ (9 / radian in electrical angle) is shown.
  • FIG. 19 is a diagram showing a time change of the current flowing through each stator winding in the present modification. The times indicated by (a), (b), and (c) in FIG. 19 correspond to the positional relationships shown in FIGS. 17 (a), 17 (b), and 17 (c), respectively.
  • FIG. 15 shows the distance between the magnetic poles of the rotor as 10 and 11.
  • the distance between the magnetic poles 10 and 11 of the rotor means the position of the magnetic neutral point between the magnetic pole N and the magnetic pole S which are composed of permanent magnets arranged on the rotor. Here, it is mechanically located between the magnets.
  • the distance between the magnetic poles changing from the N pole to the S pole as viewed in the counterclockwise direction is indicated by 10
  • the distance between the magnetic poles changing from the S pole to the N pole as viewed in the counterclockwise direction is indicated as 11.
  • the inter-magnetic pole 11 ′ is at the same electrical angle as the inter-magnetic pole 11 but at a different mechanical angle.
  • FIG. 17 (a) as indicated by the alternate long and short dash line, the center of the stator teeth 73a and the rotor magnetic poles 11 face each other in a positional relationship.
  • the phase is adjusted so that the current flowing through the stator winding 93a is maximized in this positional relationship, the magnet torque, which is the torque generated by the permanent magnet, is maximized.
  • the angle between adjacent magnetic poles (18 °) is different from the angle between adjacent stator teeth (20 °), so the center of the stator teeth 73a and the rotor magnetic pole 11 Are opposed to each other in a positional relationship that coincides with each other, the center of the stator tooth 72a and the rotor magnetic pole 10 and the center of the stator tooth 71a and the rotor magnetic pole 11 'are opposed to each other with a shifted positional relationship.
  • FIG. 17B the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle ⁇ / 9 radians) from FIG. 17A, and the stator teeth are indicated by the one-dot chain line.
  • the center of 72a and the rotor magnetic pole 10 are opposed to each other in a matching positional relationship.
  • the center of the stator teeth 73a and 11 between the rotor magnetic poles, and the center of the stator teeth 71a and 11 'between the rotor magnetic poles are opposed to each other in a shifted positional relationship.
  • the rotor is rotated counterclockwise by a mechanical angle of 2 ° (electrical angle ⁇ / 9 radians) from FIG. 17 (b).
  • the center of 71a and the rotor magnetic pole 11 ' are opposed to each other in a matching positional relationship.
  • the current is supplied by adjusting the phase so that the current flowing through the stator winding 91a is maximized in this positional relationship, the magnet torque that is the torque generated by the permanent magnet is maximized.
  • the center of the stator teeth 73a and 11 between the rotor magnetic poles, and the center of the stator teeth 72a and 10 between the rotor magnetic poles face each other in a shifted positional relationship.
  • FIG. 19 the current flowing through the winding terminals 21 a and 23 a (current flowing through the stator windings 91 a and 92 a) is shown on the vertical axis, and the time is shown on the horizontal axis. As shown in FIG. 19, the current flowing through the winding terminal 23a is advanced by 2 ⁇ / 9 radians relative to the current flowing through the winding terminal 21a.
  • the stator teeth 73a are arranged with a deviation of ⁇ / 9 radians from ⁇ radians in electrical angle with respect to the stator teeth 72a.
  • the stator teeth 71a are arranged with a deviation of + ⁇ / 9 radians from ⁇ radians in electrical angle with respect to the stator teeth 72a.
  • FIG. 20 is a diagram illustrating an overall configuration of a synchronous motor drive system according to Modification 2.
  • the synchronous motor drive system shown in this figure is different from that shown in FIG. 1 in that the energization control unit 52 is replaced with an energization control unit 52a and the current detectors 302a, 302c, 303a, and 303c are removed. ing.
  • the current amount and current phase of one three-phase winding are monitored, so that the current of other three-phase windings also depends on the structure of the synchronous motor.
  • the quantity and current phase can be estimated.
  • the current amount and the current phase of the power wiring corresponding to the inverter 101 monitored by the current detectors 301a and 301c are used to determine the power wiring corresponding to the inverters 102 and 103.
  • the current amount and the current phase are estimated, and each inverter is feedback-controlled.
  • the estimation of the amount of current and the current phase can be easily realized by using the on-voltage of the switching elements constituting the inverter.
  • FIG. 21 is a diagram showing the relationship between current phase and torque at various current amounts.
  • the current amount in the example shown in FIG. 11 is set to 100%, and the relationship between the current phase and the torque in each case of the current amounts of 100%, 70%, and 20% is shown.
  • the current phases a, b, and c that generate the maximum torque are different in each of the cases where the current amounts are 100%, 70%, and 20%.
  • the relationship between the current amount and the current phase and the torque generated in the synchronous motor 1 is measured during the manufacturing process, and the torque normalized with the current amount 100% and the torque at the current phase 0 ° as a representative value is obtained.
  • the map data shown in FIG. 22 can be generated.
  • the energization control unit 52 holds such map data in the internal ROM, and when determining the current amount and the current phase for each of the inverters 101, 102, and 103, 3 output from each inverter. A current amount and a current phase associated with the normalized torque of the same value in the map data are selected so that the torque generated by the phase alternating current becomes equal.
  • the energization control unit 52 causes the inverter 101 to output a three-phase AC current with a current amount of 100% and a current phase of ⁇ 20 °, and the inverter 102 with the current amount.
  • a three-phase alternating current is output at a current amount of 80% and a current phase of 0 °, and the inverter 103 is output with a current amount of 60% and a current phase of + 20 °.
  • FIG. 23 is a diagram showing the relationship between the lead angle of the current phase with respect to the q-axis and the inductance of the stator winding.
  • the d-axis component Ld of the inductance has little change with respect to the lead angle, but the q-axis component Lq of the inductance is greatly influenced by the lead angle, and the difference between Lq and Ld increases as the lead angle increases. growing.
  • stator windings of the synchronous motor it is difficult to make all the stator windings of the synchronous motor strictly uniform for manufacturing reasons. For this reason, the inductance characteristics of the stator windings as shown in FIG. 23 differ between the stator windings.
  • the torque of the magnet-embedded synchronous motor is generally expressed by the following equation.
  • the first term on the right side represents the magnet torque
  • the second term represents the reluctance torque. From the above formula, it can be seen that the reluctance torque is affected by the difference between Lq and Ld. As described above, the stator winding inductance of the synchronous motor is uniform in all stator windings. is not.
  • the energization control unit 52 calculates the inductance of each of the winding groups 200a, 200b, and 200c from the rate of change of the current value detected by the current detectors 301a, 301c, 302a, 302c, 303a, and 303c.
  • the command values are individually determined for each of the inverters 101, 102, and 103, the amount of current is determined based on the calculated inductance so that the torque generated in each winding group is equal from the above torque equation.
  • stator windings of different numbers of turns are wound around the stator teeth 61a, 62a, 63a that constitute the stator teeth group of the synchronous motor 1.
  • the number of turns of the stator winding 81a shown in FIG. 3 is N
  • the number of turns of the stator winding 82a is 2N
  • the number of turns of the stator winding 83a is N.
  • the energization control unit 52 energizes the inverter 101 that energizes the stator winding 81a, the inverter 102 that energizes the stator winding 82a, and the stator winding 83a.
  • the amount of current is determined so that the ratio of the amounts of the three-phase alternating current output from the inverter 103 is 2: 1: 2.
  • the inverters 101, 102, and 103 detect the voltage, current, and heat of the internal switching elements, respectively, and detect an overload state (set in advance). If the overload threshold is exceeded), the inverter operation is temporarily or continuously stopped.
  • the energization control unit 52 monitors the inverters 101, 102, and 103, and when at least one inverter enters an operation stop state, the power supply control unit 52 starts from the stopped inverter.
  • the other inverter is controlled so that the torque to be generated in the winding group that receives the supply of the phase alternating current is immediately generated in the other three-phase winding group. In that case, it is desirable to temporarily cancel the stop function based on the overload threshold value in the remaining inverters. By doing so, an unstable state of the synchronous motor drive system can be avoided, and the operation of the synchronous motor drive system can be continued.
  • the control is immediately compensated with the remaining inverters to avoid an unstable state of the synchronous motor drive system, and the synchronous motor drive system is connected. It is possible to avoid secondary damage to the existing equipment.
  • At least one of a plurality of inverters has failed by using the synchronous motor drive system according to the present modification in an auxiliary system such as an electric power steering and an electric brake of an automobile that requires high reliability. Even in this case, the drive system can be operated by another inverter that has not failed.
  • FIG. 24 is a diagram showing an overall configuration of a synchronous motor drive system according to the second embodiment of the present invention.
  • the synchronous motor drive system shown in FIG. 24 replaces the synchronous motor 41 and the energization control unit 52 of the synchronous motor drive system shown in FIG. 1 with the synchronous motor 42 and the energization control unit 55, respectively, and further adds a position detection unit 54. This is the configuration.
  • a configuration different from the synchronous motor drive system according to the first embodiment will be described below.
  • the position detection unit 54 sequentially measures changes in the induced voltage generated between the windings in the winding groups 203a and 203c for each rotation operation of the rotor, and specifies the position of the rotor from the measured induced voltage.
  • the line voltage in the winding groups 203a and 203c is measured in a non-energized section in which no current is supplied when the inverters 101 and 103 operate in a rectangular wave power system.
  • the resolution of the position detection signal by the line voltage is about 60 degrees, but in the configuration of the synchronous motor drive system of the present invention, the motor is configured by a plurality of winding groups.
  • the winding groups are independent of each other, it is possible to increase the resolution of the position detection signal.
  • the synchronous motor 42 is provided with winding groups 203a, 203b, and 203c composed of three-phase windings.
  • FIG. 25 is a detailed view of the synchronous motor 42.
  • the mechanical angle between the stator windings will be discussed, and represents the angle between the centers (one-dot chain lines) of the stator teeth around which the respective stator windings are wound.
  • the synchronous motor 42 is different from that of the synchronous motor 44 shown in FIG. 3 in the arrangement interval of the three stator teeth 61a, 62a and 63a constituting the stator tooth group.
  • three stator teeth 62a, 63a, 64a constituting a stator tooth set are arranged at intervals of a mechanical angle of 18 °.
  • Adjacent stator teeth sets are arranged with a mechanical angle of 60 ° and an electrical angle of + 2 ⁇ / 3 radians. Therefore, the stator teeth 64a constituting the adjacent stator teeth group with respect to the stator teeth 63a are arranged at a mechanical angle of 24 °.
  • stator teeth belonging to the same stator tooth group have the same phase shift with respect to the magnets facing each other.
  • stator teeth 62a, 63a, 64a all have the same center between the magnetic poles.
  • the energization control unit 55 maps the map data in which the current phase angle ⁇ and the current amount Ia of the three-phase alternating current to be output to the inverter with respect to the values of the current command signal Is and the rotation speed command signal ⁇ r are associated with the inverters 101 and 102. , 103 are held individually.
  • the energization control unit 55 operates by referring to this map table. Specifically, as shown in FIG. 26, when the synchronous motor is rotated at a speed lower than the rated speed (step S22: No), the electrical angle 2 ⁇ radians is the same as in the energization control unit 52 in the first embodiment.
  • Gate control signals G1uvw, G2uvw, and G3uvw for operating the inverter by a sine wave energization method that energizes through all the sections are output to the inverters 101, 102, and 103, respectively (step S27).
  • the rotor position is obtained by a conventional position sensorless calculation using the current value change detected by the current detectors 301a, 301c, 302a, 302c, 303a, 303c.
  • step S22 when the synchronous motor is rotated at the rated rotation speed or higher (step S22: Yes), the inverter 102 is operated with a sine wave energization method in which the inverter is operated in a sine wave energization method that energizes all sections of the electrical angle 2 ⁇ radians.
  • G2uvw is output
  • gate control signals G4uvw and G5uvw for operating the inverter in a rectangular wave energization method in which only a part of the electrical angle of 2 ⁇ radians is energized are output to the inverters 101 and 103 (step S32).
  • Inverters 101 and 103 output a current by a rectangular wave energization method according to the gate control signals G4uvw and G5uvw.
  • a part of the section that is not energized has an electrical angle of 60 degrees, and the operation is repeated alternately with the electrical angle of 120 degrees of the section that is energized.
  • the position of the rotor is not the sensorless calculation using the current value change, but the winding group 203a connected to the inverters 101 and 103 operating in the rectangular wave energization method.
  • 203c the one specified by the position detector 54 based on the induced voltage generated in the winding is used.
  • FIG. 27 is a diagram showing the time change of the in-phase current that the inverter flows through the stator windings when the synchronous motor is driven at the rated rotation speed or higher.
  • the current flowing through the inverters 101, 102, 103 is shown on the vertical axis, and the time is shown on the horizontal axis.
  • the current waveform of the current output from the inverter 102 is a sine wave
  • the current waveform of the current output from the inverters 101 and 103 is a rectangular wave.
  • the current flowing through the inverter 103 is delayed by 2 ⁇ / 9 radians (30 °) with respect to the current flowing through the inverter 101.
  • An electric motor driven by a rectangular wave energization method generally has an extremely large torque pulsation than an electric motor driven by a sine wave energization method, which is an important issue such as vibration and noise in a synchronous motor drive system.
  • a gate control signal for operating the inverter in a sine wave energization method that energizes through all sections of the electrical angle and a rectangular wave energization method that energizes only a part of the electrical angle is an important issue such as vibration and noise in a synchronous motor drive system.
  • the phase can be individually controlled so that torque pulsations generated by at least two inverter outputs driven by the rectangular wave energization method cancel each other.
  • the currents output from the inverters 101 and 103 have a phase difference of 30 °, torque pulsations with a cycle of 60 ° cancel each other, and the pulsation of torque generated in the entire synchronous motor can be reduced.
  • the inverter driven by the rectangular wave energization method since only a part of the section is not energized, the induced voltage generated in the windings in each winding group can be measured in the section. The position of the rotor can be detected from the voltage. Therefore, a synchronous motor drive system with low vibration, low noise, and high efficiency can be provided. Further, since the number of position detectors can be reduced, the cost of the synchronous motor drive system can be reduced.
  • each internal switching element performs a high-frequency switching operation to generate a three-phase AC corresponding to the electrical frequency.
  • a high switching frequency is required when the rotational speed of the rotor becomes high.
  • a relatively low switching frequency may be used. In this case, switching loss in the inverter can be reduced. Also, high frequency noise can be reduced.
  • the rotation speed switched by the energization control unit is set to the rated rotation speed as a threshold value.
  • the inverter operation is controlled by the first gate control signal that instructs the sine wave energization method that is lower vibration and noise, acceleration / deceleration is required, and the operation can be performed in a short time.
  • the inverter operation is controlled by a second gate control signal that indicates a rectangular wave energization method.
  • the position sensorless calculation is not described in detail, but generally, when the switching frequency is increased, the load on the microcomputer increases, which hinders sensorless control.
  • the two inverters are operated by a rectangular wave energization method, so that the switching frequency can be reduced and the switching loss in the inverter can be suppressed while driving at high speed.
  • the position of the rotor can be detected by detecting the induced voltage generated between the windings in the winding that is energized by the rectangular wave energization method, a high-accuracy position sensor that is expensive is used. It can be removed or replaced with a relatively inexpensive low-accuracy position sensor.
  • the number of position sensors is reduced, there is no possibility of abnormal operation due to problems with the position sensor and the reliability of the entire system is improved. Therefore, cost reduction, low vibration, low noise, high efficiency, and high reliability of the synchronous motor drive system can be achieved.
  • a synchronous motor drive system with high efficiency, low cost, and high reliability can be realized by applying an energization method suitable for the driving state of the motor.
  • Such a synchronous motor drive system can be used for both applications that require low noise during high-rotation driving and applications that require a load reduction in position sensorless computation during high-rotation driving.
  • the sine wave energization method is used as the first energization method for energizing through the entire section of electrical angle 2 ⁇ radians, and the rectangular wave is used as the second energization method for energizing only a part of the electrical angle 2 ⁇ radians.
  • the first energization method and the second energization method are not limited to these examples.
  • the first energization method may be an energization method with an overmodulated period instead of a strict sine wave
  • the second energization method may be a wide-angle energization method.
  • a configuration without a position detector has been described.
  • a simple position detector may be used in combination with a position detection method using an induced voltage, in which case a relatively expensive optical type is used.
  • the position detectors such as encoders and resolvers with Hall elements.
  • the cost can be reduced, and the position detection accuracy can be improved, thereby reducing the cost and performance of the synchronous motor drive system.
  • IGBT, MOSFET switching elements
  • diodes inside the inverter from Si devices to SiC (silicon carbide) devices and GaN (gallium nitride) devices, it is possible to significantly reduce the loss, and the inverter cooling device, No radiation fins are required.
  • FIG. 28 is a diagram showing a schematic configuration of an electric vehicle equipped with the synchronous motor drive system of the present invention.
  • the main part of the electric vehicle according to the present embodiment mainly includes a main battery 400, an inverter module 401, a motor 402, a drive shaft 403, a differential 404, wheels 405a and 405b, an auxiliary battery 406, and an energization control unit 411. Yes.
  • the inverter module 401 is connected to the auxiliary battery 406, the main battery 400, and the motor 402, respectively, and the DC power output from the main battery 400 is orthogonally converted by the inverter module 401 and input to the motor 402 as AC power.
  • the motor 402 generates driving force by converting electrical energy supplied from the inverter module 401 into mechanical energy. Further, since the motor 402 is connected to the wheels 405a and 405b via the drive shaft 403 and the differential 404, the wheels 405a and 405b are also rotationally driven when the motor 403 is rotationally driven. As a result, the electric vehicle can travel according to the operation of the motor 403.
  • the inverter module 401, the motor 402, and the energization control unit 411 constitute the synchronous motor drive system described in the first embodiment, and the inverter module 401 includes three three-phase inverters therein.
  • the motor 402 includes the stator shown in FIG. 2 characterized by a winding arrangement that is divided and adjacent to each other so that three three-phase inverters are connected to each other.
  • the energization control unit 411 monitors each three-phase inverter constituting the inverter module 401 and detects the occurrence of an overload in any of the three-phase inverters. In this case, the inverter module 401 is controlled so that the three-phase inverter that has become overloaded is stopped, and the driving force that is lacking along with that is supplemented by the winding group fed from the remaining three-phase inverter.
  • both the inverter and the motor are composed of one, if an abnormality occurs in either the inverter or the motor, the electric vehicle cannot run.
  • the motor 402 when an abnormality occurs in any of the three-phase inverters constituting the inverter module 401, the motor 402 can be continuously driven to rotate by the remaining three-phase inverters. The electric vehicle can keep running without stopping.
  • the motor 402 also has three divided winding groups, so that if any abnormality occurs in any of the winding groups, the motor 402 can be continuously driven with the remaining winding groups. As a result, the electric vehicle does not stop and can keep running.
  • the cost can be greatly reduced as compared with an electric vehicle using a plurality of motors and inverters.
  • each three-phase inverter constituting the inverter module 401 is monitored, and when at least one three-phase inverter is stopped due to some abnormality, the other three-phase inverter Also, control may be performed so that the operation is stopped.
  • the electric vehicle according to the present invention becomes coasting when an abnormality occurs in the synchronous motor drive system, and can be safely operated and stopped.
  • FIG. 29 is a diagram showing a schematic configuration of a hybrid electric vehicle equipped with the synchronous motor drive system of the present invention.
  • the main parts of the hybrid electric vehicle according to this modification are a main battery 400, inverter modules 401a and 401b, motors 402a and 402b, drive shafts 403a and 403b, differentials 404a and 404b, wheels 405a to 405d, an engine 407, and a power split mechanism. 408 and an energization control unit 411.
  • Each of the inverter modules 401a and 401b includes three three-phase inverters, and is connected to the main battery 400 and the motors 402a and 402b.
  • the DC power output from the main battery 400 is converted by the inverter modules 401a and 401b. It is orthogonally transformed and input as AC power to the motors 402a and 402b.
  • the motors 402a and 402b generate driving force by converting electrical energy supplied from the inverter modules 401a and 401b into mechanical energy.
  • the motor 402a is connected to the wheels 405a and 405b via the drive shaft 403a and the differential 404a, and the motor 402b is connected to the wheels 405c and 405d via the drive shaft 403b and the differential 404b.
  • the wheels 405a to 405d are also rotationally driven by the rotational driving of 402b.
  • the hybrid electric vehicle according to the modification of the present embodiment can travel according to the operation of the motors 402a and 402b.
  • the hybrid vehicle it is possible to travel with the driving force generated by the engine 407 other than the motors 402a and 402b as described above. In that case, the hybrid vehicle is caused to travel by switching the mechanical connection with the drive shaft 403b by the motor 402b and the engine 407 by the power split mechanism 408.
  • the inverter module 401a and the motor 402a constitute the synchronous motor drive system described in the first embodiment under the control of the energization control unit 411. Furthermore, the inverter module 401b and the motor 402b also receive the control of the energization control unit 411 and configure the synchronous motor drive system described in the first embodiment.
  • FIG. 30 is a diagram showing a schematic configuration of an in-wheel motor electric vehicle equipped with the synchronous motor drive system of the present invention.
  • the in-wheel motor electric vehicle 410 mainly includes a main battery 400, inverter modules 401a to 401d, motors 402a to 402d, gears 409a to 409d, and wheels 405a to 405d.
  • Each of the inverter modules 401a, 401b, 401c, and 401d includes three three-phase inverters therein, orthogonally transforms the DC power supplied from the main battery 400, and supplies AC power to the motors 402a, 402b, 402c, and 402d, respectively.
  • the motors 402a to 402d generate driving force by converting electrical energy supplied from the inverter modules 401a to 401d into mechanical energy.
  • each motor is connected to the wheel via a gear, the wheel is also rotationally driven at a rotational speed reduced by the gear when the motor is rotationally driven. As a result, the in-wheel electric vehicle can travel according to the operation of the motor.
  • each of the inverter modules 401a to 401d and the motors 402a to 402d is controlled by the energization controller 411, and the four synchronous motor drive systems described in the first embodiment are configured. Yes.
  • in-wheel motor electric vehicles have the advantage of being able to achieve driving performance that could not be realized with conventional vehicle systems, but because the wheels are driven independently, there is an abnormality in the system that drives any of the wheels. If this happens, the vehicle becomes uncontrollable and the driver becomes in danger.
  • the in-wheel motor electric vehicle equipped with the synchronous motor drive system of the present invention if an abnormality occurs in any of the three three-phase inverters constituting the inverter module, the motor is continuously operated by the remaining three-phase inverters. Since the in-wheel electric vehicle does not stop, traveling can be maintained.
  • the load on the three-phase inverter that is in an overload state is reduced, and the insufficient driving force is thereby reduced.
  • the remaining three-phase inverter can be controlled by the energization control unit so as to compensate.
  • the synchronous motor drive system described in the first embodiment is used as the synchronous motor drive system of the electric vehicle. You may use the structure demonstrated by embodiment and the modification. (Other variations) As mentioned above, although the synchronous motor drive system which concerns on this invention was demonstrated based on embodiment, this invention is not limited to these embodiment. For example, the following modifications can be considered. (1) In the embodiment, the configuration having two or three inverters has been described. However, the present invention is applicable to any synchronous motor drive system having two or more inverters. The effect is obtained. (2) In the embodiment, the outer rotor type synchronous motor in which the rotor is arranged outside the stator is described.
  • the inner rotor type synchronous motor in which the rotor is arranged inside the stator, and the rotation Needless to say, a so-called face-facing axial gap synchronous motor in which the child and the stator are arranged with a gap in the axial direction and a synchronous motor having a structure in which a plurality of them are combined have the same effect.
  • IPM embedded permanent magnet motor
  • SPM surface permanent magnet motor
  • the present invention can provide a synchronous motor drive system having a small size, high output, low vibration, low noise, and high efficiency, and is particularly useful for automobile applications that require low vibration and low noise.
  • the first, second, and third embodiments and the modified examples may be combined.
  • the present invention can be used in a synchronous motor drive system for a compressor, an electric vehicle, a hybrid vehicle, a fuel cell vehicle, etc., which is small and highly efficient and requires low vibration and low noise.

Abstract

高出力でありながら、低振動及び低騒音化が図れる同期電動機駆動システムを提供することを目的とする。  直流電流を3相の交流電流に変換するインバータ101、102、103と、3相インバータの動作を制御する通電制御部52と、複数の3相インバータから供給される複数の3相交流電流で駆動する同期電動機41とを備え、同期電動機41は、3相交流電流の供給を受ける3相巻線群200a~cを有し、通電制御部52は、出力させる3相交流電流の電流位相角及び電流量を、インバータのそれぞれについて個別に決定し、3相インバータのそれぞれは、通電制御部52において決定された電流位相及び電流量で、それぞれ異なる3相巻線群に3相交流電流を供給する。

Description

同期電動機駆動システム
 本発明は、同期電動機駆動システムに関し、特に、同期電動機に駆動電流を供給するインバータの制御技術に関する。
 同期電動機は、インバータから3相交流電流の供給を受け、固定子に配置されている巻線に電流を通電することで固定子に界磁を発生させ、ロータを回転させる。このとき回転子の磁極の位置に応じて、巻線に通電される電流を適切に制御することにより、回転子を自在に駆動することができる。
 しかし同期電動機では、固定子及び回転子の形状などから決定される磁気回路や、巻線に通電される電流の波形などにより、発生するトルクは一定にはならず、所定周期をもった脈動が生じる。トルク脈動には、複数の周期をもった脈動成分があるが、一般に電気角で60度の周期を持つ脈動成分が顕著である。このような脈動成分の周期性は、固定子及び回転子の形状、つまり固定子のスロット数と回転子の極数の組み合わせに依存しており、電流波形が正弦波からずれることで脈動が顕在化することが知られている。
 ところで近年、パワーエレクトロニクスの進歩により、同期電動機の用途拡大が見られる。電源が直流電源である車両用電動機においても、交流電流の供給により駆動する同期
電動機の採用が主流となりつつある。こうしたハイブリッド電気自動車や電気自動車などの車両用途では、電動機駆動システムのさらなる高出力化や高性能化(低振動及び低騒音)、低コスト化が強く要求される。また、車両用途では、高信頼性は勿論のこと、仮にシステムの一部に不具合が発生しても致命的なことにならないようなフェールセーフが必要とされる。
 例えば、特許文献1には、直流電源とインバータの間に昇圧回路を追加し、インバータ及び電動機に印加する電圧を高電圧化する電動機駆動システムが開示されている。電動機出力は印加電圧にほぼ比例して向上するため、電動機に印加する電圧を昇圧回路の昇圧動作により高電圧化することで、電動機出力を容易に高出力化できる。
特開平10-66383号公報
 しかしながら、高電圧印加により電動機出力を高出力化する場合、電動機の回転数も高くなり、それに伴い給電電流の電気周波数も高くなる。そのため、電気周波数の高周波化に伴い、インバータで必要なスイッチング周波数も高くなる。しかし、スイッチング素子が高周波スイッチング動作をしているインバータでは、電動機機器乗数(インダクタンス及び巻線抵抗)により決定する時定数がある程度大きいと、理想的な正弦波の電流波形を生成することが困難となる。
 特に、車両駆動用などの電動機は、高トルクかつ高出力なため、時定数が大きくなることが多い。そのため、所望の電流波形が得られず電流波形に歪が生じ、電動機におけるトルク脈動が大きくなり、振動及び騒音の問題が顕著になるという問題がある。
 本発明はかかる問題に鑑み、高出力でありながら、低振動及び低騒音化が図れる同期電動機駆動システムを提供することを目的とする。
 上記目的を達成するために、本発明に係る同期電動機駆動装置は、直流電流を3相の交流電流に変換する複数の3相インバータと、前記複数の3相インバータの動作を制御する通電制御部と、前記複数の3相インバータから供給される複数の3相交流電流で駆動される同期電動機とを備え、前記同期電動機は、3相交流電流の供給を受ける3相巻線群を複数有し、前記通電制御部は、出力させる3相交流電流の電流位相角及び電流量を、前記複数の3相インバータのそれぞれについて個別に決定し、前記複数の3相インバータのそれぞれは、前記通電制御部において決定された電流位相及び電流量で、それぞれ異なる3相巻線群に3相交流電流を供給することを特徴とする。
 ここで電流位相角とは、同期電動機の回転子に対して固定された回転座標系d-qにおいて、回転磁界の鎖交磁束方向がq軸に対してなす角である。
 本発明に係る同期電動機駆動システムは、課題を解決するための手段に記載の構成により、複数の3相インバータが、それぞれ異なる巻線群に電流を供給して同期電動機を回転させる。そのため、本発明に係る同期電動機駆動システムでは、同期電動機が回転することにより発生する誘起電圧を、それぞれの3相インバータで分圧することができるので、直流電源の電圧を昇圧回路で昇圧しなくとも、高出力化を達成するができる。また、高電圧を3相インバータ及びモータに印加する必要がないので、3相インバータにおいては、高耐圧特性を有するスイッチング素子を使用する必要がなく、高耐圧特性を有するスイッチング素子の使用により引き起こされるオン電圧増大や、高電圧スイッチング動作によるスイッチング損失の増大等といったインバータ効率の低下を避けることができ、同期電動機においては、高電圧印加による鉄損の増大を避けることができる。また、同相の巻線を個別に巻回し、その数と同じだけの3相インバータにより電動機を駆動しているため、結果的に上述した時定数は小さくなる。つまり、電動機の高速回転時においても、所望の歪の小さい電流波形を得ることができ、トルク脈動を十分に小さくすることができる。また、複数の3相インバータは、互いに電流位相角が異なり、かつ電流量が異なる3相交流電流を供給することができるため、複数の巻線群で生じるトルク脈動の位相をずらして、互いの脈動を打ち消しあわせることが可能となり、その結果、電動機駆動全体で発生するトルクの脈動を低減することができる。
 従って、本発明に係る同期電動機駆動システムによれば、高出力でありながら、低振動化及び低騒音化を図ることができる。
 また、通電制御部により決定される複数の3相インバータ間の電流位相角の差が可変であるため、本発明に係る同期電動機駆動システムでは、各巻線のインダクタンスを設計時に意図的に均質にしなくとも、又は製造誤差等で均質でなくとも、最適な電流位相差で同期電動機を駆動させることが可能となる。また、モータ駆動状態の変化に伴うインダクタンスの変化に合わせて、最適な弱め界磁制御を実施することができる。
第1の実施形態に係る同期電動機駆動システムの全体構成を示す図である。 本発明の第1の実施形態に係る同期電動機駆動システムを構成する同期電動機の平面図である。 図2の同期電動機の詳細図である。 図2に示した同期電動機の固定子巻線の結線を説明するための図である。 本発明の第1の実施形態の固定子と回転子の位置関係を示し、(a)、(b)、(c)は回転子2が反時計方向に各々機械角で2°(電気角でπ/9ラジアン)回転したときの固定子および回転子の位置関係を示している。 通電制御部52におけるインバータ制御の処理の流れを示すフローチャートである。 同期電動機の回転速度と永久磁石による誘起電圧との関係を示す図である。 低回転数駆動時にインバータが各固定子巻線に流す電流の時間変化を示した図である。 インバータ101、102、103が図8に示すように電流を通電した際のトルク波形を示す図である。 同期電動機における端子電圧と電動機電流の基本ベクトル図である。 磁石埋込み型同期電動機において電流を一定値にした場合の電流位相とトルクとの関係を示す図である。 磁石埋込み型同期電動機における電流位相角とトルクの関係を示す図である。 高回転数駆動時にインバータが各固定子巻線に流す電流の時間変化を示した図である。 本変形例に係る同期電動機駆動システムの全体構成を示す図である。 同期電動機44の詳細図である。 図15に示した同期電動機の固定子巻線の結線を説明するための図である。 本変形例の固定子と回転子の位置関係を示し、(a)、(b)、(c)は回転子2が反時計方向に各々機械角で2°(電気角でπ/9ラジアン)回転したときの固定子および回転子の位置関係を示している。 通電制御部53におけるインバータ制御の処理の流れを示すフローチャートである。 本変形例において各固定子巻線に流した電流の時間変化を示した図である。 変形例2に係る同期電動機駆動システムの全体構成を示す図である。 様々な電流量での電流位相とトルクとの関係を示す図である。 電流量100%、電流位相0°でのトルクを代表値として正規化したトルクを、電流量及び電流位相に対応させたマップデータの一例である。 電流位相のq軸に対する進み角と固定子巻線のインダクタンスとの関係を示す図である。 本発明の第2の実施形態に係る同期電動機駆動システムの全体構成を示す図である。 同期電動機42の詳細図である。 通電制御部55におけるインバータ制御の処理の流れを示すフローチャートである。 定格回転数以上で同期電動機を駆動させる場合に、インバータが各固定子巻線に流す電流の時間変化を示した図である。 本発明の同期電動機駆動システムを搭載した電気自動車の概略構成を示す図である。 本発明の同期電動機駆動システムを搭載したハイブリッド電気自動車の概略構成を示す図である。 本発明の同期電動機駆動システムを搭載したインホイールモータ電気自動車の全体構成を示す図である。
 以下、本発明に係る同期電動機駆動システムの実施の形態について、図を用いて説明する。
(第1の実施形態)
 先ず始めに、本発明の同期電動機駆動システムの全体構成について説明する。図1は、本発明の同期電動機駆動システムの全体構成を示す図である。
 同期電動機駆動システムは、直流電源1、インバータモジュール100、同期電動機41、及び通電制御部52とから構成されている。
 インバータモジュール100は、内部にインバータ101、102、103を含み、インバータ101、102、103がそれぞれゲート制御信号G1uvw、G2uvw、G3uvwに従って直交変換動作を行い、3相交流を同期電動機41に供給する。ここでインバータ101、102、103を構成する全てのスイッチング素子は、単一のモジュール内に納められていることを特徴とする。インバータ101の出力電流101a、101b、101cはそれぞれ2π/3ラジアンずつ位相がずれている。インバータ102の出力電流102a、102b、102cについても同様であり、インバータ103の出力電流103a、103b、103cについても同様である。
 同期電動機41は、巻線群200a、200b、200cを備える。巻線群200aは、3相の巻線81a、a’、81b、b’、81c、c’で構成されており、それぞれにインバータ101の出力電流101a、101b、101cが入力される。巻線群200bは、3相の巻線82a、a’、82b、b’、82c、c’で構成されており、それぞれにインバータ102の出力電流102a、102b、102cが入力される。巻線群200cは、3相の巻線83a、a’、83b、b’、83c、c’で構成されており、それぞれにインバータ103の出力電流103a、103b、103cが入力される。インバータ101から巻線群200aに電力を供給するためのパワー配線には、U相電流を検出する電流検出器301aとW相電流を検出する電流検出器301cとが設けられている。インバータ102から巻線群200bに電力を供給するためのパワー配線にも同様にU相電流を検出する電流検出器302aとW相電流を検出する電流検出器302cが設けられており、インバータ103から巻線群200cに電力を供給するためのパワー配線にはU相電流を検出する電流検出器303aとW相電流を検出する電流検出器303cが設けられている。また、同期電動機41は、回転子の位置を検出する位置検出器51を備え、位置検出器51において検出された位置検出信号θrは、通電制御部52へ出力される。
 通電制御部52は、ゲート制御信号G1uvw、G2uvw、G3uvwを出力することでインバータ101、102、103の動作を制御するマイコンシステムである。さらに詳細に説明すると、通電制御部52には、同期電動機41を所望のトルク及び回転数で駆動させることを指示する電流指令信号Is及び回転数指令信号ωrが入力される。また、通電制御部52内部のROMには、電流指令信号Is及び回転数指令信号ωrの値に対して、インバータに出力させる3相交流電流の電流位相角β及び電流量Iaを対応させたマップデータが、インバータ101、102、103のぞれぞれについて保持されている。通電制御部52では、このマップデータを参照して、入力された電流指令信号Is及び回転数指令信号ωrに応じた電流位相角β及び電流量Iaを、インバータ101、102、103のそれぞれについて決定し、決定された電流位相角β及び電流量Iaの3相交流電流を各インバータが出力するように、回転子の位置や各パワー配線の電流値をモニタしながら、ゲート制御信号G1uvw、G2uvw、G3uvwを出力している。
 以上が本発明に係る同期電動機駆動システムの全体構成についての説明である。
 次に、同期電動機41の詳細について説明する。
 図2は、本発明の第1の実施形態に係る同期電動機駆動システムを構成する同期電動機の平面図、図3は、図2の同期電動機の詳細図である。
 同期電動機41は回転子2および固定子43から構成される。
 回転子2は、回転子コア4および複数の永久磁石5を含み、永久磁石5は回転子コア4に回転子の周方向に等間隔に配置されている。ここで同期電動機41は、いわゆる磁石埋込み型同期電動機(IPM電動機)であり、永久磁石5は回転子コア内部に配置されている。永久磁石5によって構成される磁極6は、固定子43に対してN極、S極が交互に配置された磁極対を構成している。磁極対N極、S極は電気角で2πラジアンとなり、隣り合う磁極の配置間隔は電気角でπラジアンとなる。本実施形態では、回転子の磁極は20極であり、機械角に対して電気角が10倍の関係となっている。
 固定子43は、回転子2に対向配置されている複数の固定子ティース47および各固定子ティース47に集中的に巻回された固定子巻線9を含む。複数の固定子ティース47は、固定子の周方向に並ぶ3個単位で固定子ティース組48を構成している。本実施形態では、固定子ティース組48が6組、機械角で60°の等間隔で配置されている。
 回転子2の周方向に並べられた磁極数は全部で20極であり、固定子ティースの数は全部で18となっており、半周当り10/9でずれて配置されている。
 図2において、反時計回転方向を+方向とすると、固定子ティース組48aに対して、固定子ティース組48bは機械角で-60°、電気角で+2π/3ラジアンずれて配置されている。また、固定子ティース組48aに対して、固定子ティース組48cは機械角で+60°、電気角で+4π/3ラジアン(-2π/3ラジアン)ずれて配置されている。よって、固定子ティース組48a、固定子ティース組48b、固定子ティース組48cは互いに電気角で2π/3ラジアンの間隔の配置となる。
 なお、本実施形態の同期電動機は、固定子ティース組48a、固定子ティース組48b、固定子ティース組48cの組み合わせが周方向に2組、(固定子ティース組48a’、固定子ティース組48b’、固定子ティース組48c’)繰り替えされた配置となる。
 図3を用いて、固定子ティース組48aの構成を詳細に述べる。以下、固定子巻線の間の機械角を論ずるが、それぞれの固定子巻線が巻回された固定子ティースの中心(一点鎖線)間の角度を表す。固定子ティース組48aは、3個の隣接した固定子ティース61a、62a、63aから構成されている。固定子ティース61a、62a、63aには互いの巻回方向が逆向きとなるように集中巻に巻回された固定子巻線81a、82a、83aが配置されている。固定子巻線82aが巻回された固定子ティース62aに対して、固定子巻線81aが巻回された固定子ティース61aは、機械角で+20°の位置に配置されている。すなわち磁極間隔である電気角πラジアン(機械角18°)からさらに+π/9ラジアンずれて配置されている。また、同様に固定子巻線82aに対して、固定子巻線83aは、機械角で-20°の位置に配置されている。すなわち磁極間隔である電気角πラジアンからさらに-π/9ラジアンずれて配置されている。ここで、固定子ティースは、周方向に等間隔で360/18=20°の間隔で並べられている。一方、回転子の磁極は周方向に等間隔で20個並べられており、360/20=18°の間隔となる。
 図2に示した他の2組の固定子ティース組48b、48cも上記固定子ティース組48a同様に、固定子ティース組内において、3個の巻線が磁極間隔である電気角πラジアンから電気角で+π/9ラジアンと-π/9ラジアンずれて配置されている。
 図4は、図2に示した同期電動機の固定子巻線の結線を説明するための図である。
 図示した巻線端子番号末尾のa、b、cは、それぞれ固定子ティース組48a、48b、48cを構成する巻線に対応している。
 固定子ティース組48a内の3個の固定子巻線81a、82a、83aのそれぞれの巻線端子31a、32a、33aは、個別に外部に出されていて、インバータ101、102、103のU相の接続端子に個別に接続されている。固定子ティース組48b内の3個の巻線端子31b、32b、33b、および、固定子ティース組48cの3個の巻線端子31c、32c、33cも同様に、個別に外部に出されていて、それぞれインバータ101、102、103のV相、W相の接続端子に個別に接続されている。
 また、異なる固定子ティース組48a、48b、48cで位相差が2π/3ラジアンとなる固定子巻線の端子は共通に中性点に接続されている。すなわち巻線端子34aと巻線端子34bと巻線端子34cは第1の中性点に接続され、巻線端子35aと巻線端子35bと巻線端子35cは第2の中性点に接続され、巻線端子36aと巻線端子36bと巻線端子36cは第3の中性点に接続されている。この例では第1,第2および第3の中性点を電気的に分離させているが、このうちのいずれか2つの中性点あるいは全ての中性点を電気的に接続することとしてもよい。
 また、本実施形態では固定子ティース組48a、固定子ティース組48b、固定子ティース組48cが2組ずつあり、末尾のa、b、cが同じ固定子ティース組どうしは回転子の磁極に対して電気角で同じ位置関係にある。そのため6組の固定子ティース組のうち隣接した3組の固定子ティース組どうしで中性点接続を構成してもよいし、一つ置きの3組の固定子ティース組どうしで中性点接続を構成してもよい、また、6組の全ての固定子ティース組で中性点接続を構成してもよい。
 以上、本発明の第1の実施形態に係る同期電動機駆動システムを構成する同期電動機の構成について説明した。18個の固定子ティースは、回転子の磁極間隔と異なる配置間隔で並び、かつ、周方向に並ぶ3個単位で固定子ティース組を構成している。また各固定子ティース組内の3個の固定子巻線は、それぞれ独立した外部端子に個別に接続されている。
 ここで「個別」とは、ひとつの固定子ティース組に含まれている固定子巻線どうしの関係を示すものであり、異なる固定子ティース組にそれぞれ含まれている固定子巻線どうしの関係を示すものではない。従って、異なる固定子ティース組に含まれる固定子巻線どうしは、条件が許せば共通に接続される場合もある。例えば、固定子ティース組48aに含まれている固定子巻線81aと固定子ティース組48a’に含まれている固定子巻線81a’には同じ位相の電流が供給されるため、これらを共通の外部端子に接続することとしてもよい。もちろん個別に外部端子に接続することとしても何ら問題はない。
 本発明の第1の実施形態に係る同期電動機駆動システムは、上記同期電動機の複数の巻線端子に互いに位相の異なる電流を供給する駆動装置を備えている。次に、図2、図3に構造を示した同期電動機41を回転駆動させる通電方法の一例を説明する。
 図5は、本発明の第1の実施形態の固定子と回転子の位置関係を示し、図5(a)、図5(b)、図5(c)は回転子2が反時計方向に各々機械角で2°(電気角でπ/9ラジアン)回転したときの固定子および回転子の位置関係を示している。
 図2、図3に、回転子の磁極間を10、11で示した。回転子の磁極間10、11は、回転子に配置された永久磁石で構成された磁極Nと磁極Sとの間の磁気中立点の位置を意味する。ここでは、機械的にも磁石と磁石との間の位置となっている。反時計方向にみてN極からS極に変わる磁極間を10、反時計方向にみてS極からN極に変わる磁極間を11と示している。なお、磁極間11’は、磁極間11に対して電気角では同じ位置であるが機械角では異なる位置にある。
 図5(a)では、一点鎖線で示したように、固定子ティース63aの中心と回転子磁極間11とが一致する位置関係で対向している。この位置関係のときにインバータ103が接続する固定子巻線83aに流れる電流が最大になるように位相を調整して電流を供給すると、永久磁石によるトルクであるマグネットトルクが最大となる。なお図3で説明したように隣接する磁極どうしのなす角度(18°)と隣接する固定子ティースどうしのなす角度(20°)が異なるため、固定子ティース63aの中心と回転子磁極間11とが一致する位置関係で対向していれば、固定子ティース62aの中心および回転子磁極間10、ならびに固定子ティース61aの中心および回転子磁極間11’はずれた位置関係で対向することになる。
 図5(b)では、図5(a)から回転子が反時計方向に機械角で2°(電気角でπ/9ラジアン)回転しており、一点鎖線で示したように、固定子ティース62aの中心と回転子磁極間10とが一致する位置関係で対向している。この位置関係のときにインバータ102が接続する固定子巻線82aに流れる電流が最大になるように位相を調整して電流を供給すると、永久磁石によるトルクであるマグネットトルクが最大となる。このとき固定子ティース63aの中心および回転子磁極間11、ならびに固定子ティース61aの中心および回転子磁極間11’はずれた位置関係で対向している。
 図5(c)では、図5(b)から回転子が反時計方向に機械角で2°(電気角でπ/9ラジアン)回転しており、一点鎖線で示したように、固定子ティース61aの中心と回転子磁極間11’とが一致する位置関係で対向している。この位置関係のときにインバータ101が接続する固定子巻線81aに流れる電流が最大になるように位相を調整して電流を供給すると、永久磁石によるトルクであるマグネットトルクが最大となる。このとき固定子ティース63aの中心および回転子磁極間11、ならびに固定子ティース62aの中心および回転子磁極間10はずれた位置関係で対向している。
 図5(a)、(b)、(c)に示した位置関係となる各時間に、すなわち、固定子ティース61a、62a、63aの固定子ティース中心が回転子磁極間と対向している各時間に、固定子巻線81a、82a、83aに流れる電流がそれぞれ最大になるように位相を調整して電流を供給する。そうすると固定子ティース毎にマグネットトルクを最大とすることができ、全体として高トルク化を図ることができる。
 以上説明したとおり、同期電動機41では、回転子磁極の間隔が機械角18°(電気角πラジアン)であるのに対し、固定子ティース組内の3個の固定子ティースの間隔は機械角18°度からずれた機械角20°としている。このように機械的な位相差をもたせることにより、無通電時のトルク脈動であるコギングトルクを低減することができる。
 また同期電動機41では、固定子ティース組内の固定子ティースは電気角πラジアンに対して各々π/9ラジアンの位相差をもつ配置となっており、各固定子ティースに巻回された固定子巻線にはπ/9ラジアンの位相差を持たせた電流を流すことで、各々の固定子ティースにより発生するトルクを同じにすることができるのでπ/3ラジアンを基本周期とするトルク脈動を打ち消すことができ、かつ、各々の固定子ティースにより発生するトルクを最大にすることができるので全体のトルクを高めることができる。
 なお、図5では永久磁石による発生するマグネットトルクのみを考慮していたので、固定子ティースの中心と回転子磁極間とが一致して対向した位置関係において固定子巻線に流れる電流が最大となるように電流の位相を調整している。しかしながら第1の実施形態の同期電動機は、回転子コア内部に永久磁石を配置した、いわゆる磁石埋込み型同期電動機であり、磁石によるマグネットトルクに加えて、磁気抵抗の差によるリラクタンストルクを利用することができる同期電動機である。そのためマグネットトルクとリラクタンストルクの両者を生かして最大トルクを得るために、固定子ティースの中心と回転子磁極間とが一致して対向する位置で最大電流となる位相よりも電流位相を進めることが有効な場合もある。
 以上が同期電動機41の詳細についての説明である。
 次に、通電制御部52によるインバータ制御の詳細について説明する。
図6は通電制御部52におけるインバータ制御の処理の流れを示すフローチャートである。
 通電制御部52は、ステップS1からステップS6のループを繰り返すことで、位置検出信号θr及び各電流検出器の検出値により得られる回転子の位置や各パワー配線の電流値をモニタしながら、随時適切なゲート制御信号G1uvw、G2uvw、G3uvwを出力している。この処理の流れにおいて本発明の特徴となるのは、ステップS1で入力される電流指令信号Is、回転数指令信号ωrの何れかに変化が生じた場合に(ステップS2:Yes)、ステップS3、S4、S5において、内部ROMに保持しているマップデータを参照し、電流指令信号Is及び回転数指令信号ωrに応じて、インバータ101用の電流位相角β1及び電流量Ia1、インバータ102用の電流位相角β2及び電流量Ia2、インバータ103用の電流位相角β3及び電流量Ia3を、インバータ101、102、103のそれぞれについて個別に決定することである。ここで特に、ステップS3、S4、S5では、それぞれ異なるマップデータが用いられる。
 本実施形態では具体的には、回転数指令信号ωrの値が低回転数での駆動を指示するものである場合、電流指令信号Is及び回転数指令信号ωrに対して、ステップS3、S4、S5で用いられるインバータ101用のマップデータ、インバータ102用のマップデータ、及びインバータ103用のマップデータの何れにおいても、同じ値の電流位相角β及び電流量Iaがマッピングされている。しかし、回転数指令信号ωrの値が高回転数での駆動を指示するものになるにつれ、インバータ101用のマップデータ、インバータ102用のマップデータ、及びインバータ103用のマップデータのそれぞれにおいて、異なる値の電流位相角β及び電流量Iaがマッピングされている。高回転数での駆動時に、インバータ毎に異なる電流位相角β及び電流量Iaの電流を出力させるのは、いわゆる弱め界磁制御を適切に行うことを意図したものである。
 尚、本実施形態において高回転数とは、図7に示すように、回転子の永久磁石の磁界により巻線に生じる誘起電圧(ω×Φa)が、直流電源1の電源電圧を超える高速回転領域での回転数を意味する。逆に低回転数とは、永久磁石の磁界により巻線に生じる誘起電圧(ω×Φa)が、直流電源1の電源電圧を超えない低速回転領域での回転数を意味する。本図においてωは電気角速度、Φaは永久磁石の鎖交磁束であり、誘起電圧(ω×Φa)は、回転数が高速になるにつれ比例的に増大する。通電制御部52は、図中の高速回転領域において、弱め界磁制御を実施する。
 以下に、通電制御部52の制御を受けて、インバータ101、102、103がどのように動作するかを具体的に説明する。先ず、同期電動機41を低回転数で駆動させる場合のインバータ101、102、103の動作について説明する。
 図8は、低回転数駆動時にインバータが各固定子巻線に流す電流の時間変化を示した図である。図8中の(a)(b)(c)で示される時間は、それぞれ図5(a)、図5(b)、図5(c)に示される位置関係に対応している。
 図8では、巻線端子31a、32a、33aに流した電流(固定子巻線81a、82a、83aに流した電流)が縦軸に、時間が横軸に示されている。図8に示すように、巻線端子32aにインバータ102が流す電流に対して巻線端子33aにインバータ103が流す電流はπ/9ラジアン進めてあり、巻線端子32aにインバータ102が流す電流に対して巻線端子31aにインバータ101が流す電流はπ/9ラジアン遅らせてある。
 各固定子巻線の配置関係と各固定子巻線に流す電流とは以下の関係がある。
 固定子巻線82aに対して固定子巻線83aは、電気角でπラジアンからさらに-π/9ラジアンずれて配置されている。このような配置関係であれば、固定子巻線82aに流す電流に対して固定子巻線83aに流す電流は、π/9ラジアン進めることとする。一方、固定子巻線82aに対して固定子巻線81aは、電気角でπラジアンからさらに+π/9ラジアンずれて配置されている。このような配置関係であれば、固定子巻線82aに流す電流に対して固定子巻線81aに流す電流は、π/9ラジアン遅らせることとする。
 すなわちインバータ101、102、103が出力する電流の電流位相角β1、β2、β3は何れも0度であり、図5(a)の位置関係では、固定子巻線83aに流れる電流が最大になるように位相を調整し、図5(b)の位置関係では、固定子巻線82aに流れる電流が最大になるように位相を調整し、図5(c)の位置関係では、固定子巻線81aに流れる電流が最大になるように位相を調整して電流を供給している。そうするとそれぞれの固定子ティースが生じさせるマグネットトルクがそれぞれ最大となり、全体として高トルク化が実現されている。
 また、同期電動機は一般に、インバータから3相交流を通電されることによりマグネットトルクを発生し回転駆動するが、1つのインバータから3相交流電流の給電を受ける3相の巻線群において、電気角で60度の周期をもったトルク脈動が発生する。ここで、図8に示すようにインバータ101、102、103がπ/9ラジアン(20度)ずつ位相差をつけて電流を流す場合、インバータ101、102、103から3相交流電流が供給される巻線群200a、200b、200cは、図9に示すように、それぞれトルク波形tr1、tr2、tr3のようにマグネットトルクを生じさせる。トルク波形tr1,tr2,tr3は、何れも60度周期が主成分のトルク脈動をもっている。しかし、波形tr1,tr2,trは、互いに位相が20度ずつずれているため、各々のトルク脈動が互いに打ち消しあい、波形tr1,tr2,tr3を合成した同期電動機41全体で生じる合成トルクTaでは、トルク脈動が大幅に低減している。
 このように、インバータ101、102、103が図8に示すように電流を供給するよう動作することで、電気角で60度周期をもった脈動成分を打ち消すことにより、大幅にトルク脈動を低減し、さらには同期電動機の低振動化及び低騒音化が図れる。また、同期電動機の低振動化及び低騒音化の達成により、本実施形態に係る同期電動機駆動システムの組み込みに、防振及び防音対策の必要がなくなるという効果が得られる。
 以上が、同期電動機41を低回転数で駆動させる場合のインバータ101、102、103の動作についての説明である。
 次に、同期電動機41を高回転数で駆動させる場合のインバータ101、102、103の動作について説明する。一般に、同期電動機では、巻線において生じる誘起電圧が高回転数駆動の阻害要因となる。図10を用いて、誘起電圧と回転速度の関係を説明する。
 図10は、同期電動機における端子電圧と電動機電流の基本ベクトル図である。ここで、ベクトル図におけるq軸、d軸は、各々は電気角において直交している。図中の破線は電圧制限円、ωは電気角速度、Φaは永久磁石の鎖交磁束、Lqはインダクタンスのq軸成分、Ldはインダクタンスのd軸成分、Raは巻線抵抗、Iaは巻線電流、Iqは巻線電流のq軸成分、Idは巻線電流のd軸成分である。電動機を駆動させるために必要な端子電圧Vaは、永久磁石による誘起電圧(ω×Φa)、巻線での電圧降下(Ra×Ia)、及び回転磁界による誘起電圧(ω×Lq×Iq+ω×Ld×Id)の合計となり、同期電動機は、端子電圧Vaが、電源電圧により決定する電圧制限円内である条件でのみ駆動することができる。一般的に端子電圧Vaは、以下の式で表現することができる。
Figure JPOXMLDOC01-appb-M000001
 ここで電気角速度ωは、回転子の回転数が高速になるにつれ、比例的に増大する。そのため回転数が高速になるにつれて、図10中の永久磁石による誘起電圧(ω×Φa)が比例的に増大し、それに応じて駆動に要する端子電圧Vaも増大することになる。つまり、回転子の回転数が高速になると、端子電圧Vaが、電圧制限円内から外れることになる。
 そこで、このような状態を回避するために、巻線電流の位相をq軸に対して進めることにより(つまり、トルクに寄与せず磁束を打ち消すような電流を通電する)、巻線電流のq軸成分及びd軸成分を自在に制御し、さらには、ω×Lq×Iq及びω×Ld×Idを、自在に制御することで、端子電圧Vaを電圧制限円内に抑えることができる。これがいわゆる弱め界磁制御といわれるものである。
 ここで同期電動機が単一のインバータにより給電されて駆動する場合は、電気角速度ω、鎖交磁束Φa、インダクタンスのq軸成分、インダクタンスのd軸成分、巻線抵抗Ra、巻線電流Iaは常に単一である。しかし、本実施形態に係る同期電動機システムでは、インバータ101、102、103がそれぞれ異なる巻線群に給電しているため、設計面及び製造面などから、インバータ101、102、103のそれぞれについて、電気角速度ω以外のパラメータは全て異なっている。すなわち、同じ回転数であっても、弱め界磁制御に最適な電流位相角βはインバータ101、102、103のそれぞれで異なる。そのため、インバータ101、102、103の全てで同じ電流位相角の電流を供給した場合、電源電圧により制約される回転数が、インバータごとに相違することにつながり、同期電動機の能力を活かすことができなくなる。
 そこで、本実施形態では、弱め界磁制御が必要となる回転数では、インバータ毎に適切な弱め界磁制御が実施できるように、インバータ101用のマップデータ、インバータ102用のマップデータ、及びインバータ103用のマップデータのそれぞれにおいて、異なる値の電流位相角βがマッピングされている。これにより、本実施形態に係る同期電動機駆動システムでは、高回転で駆動する際に、それぞれのインバータ毎に端子電圧が適切に制御され、電動機特性を最大限に活かすことができる。
 ここで、図11、図12を用いて磁石埋込み型同期電動機における電流位相角βとトルクの関係を説明する。
 図11は、磁石埋込み型同期電動機において電流を一定値にした場合の電流位相とトルクとの関係を示す図である。電流位相が横軸に、トルクが縦軸に示されている。同期電動機において永久磁石により発生するマグネットトルクは、固定子ティースの中心と回転子磁極間とが一致して対向した位置関係において固定子巻線に流れる電流が最大となるように電流位相角を調整することで最大となる。そのため本図に示すように、マグネットトルクは電流位相が0°である時に最大となる。しかしながらIPM電動機では、磁石によるマグネットトルクに加えて、磁気抵抗の差によるリラクタンストルクを利用することができる。リラクタンストルクは、電流位相角が45°近傍であるときに最大となる。そのため、IPM電動機の総トルクは、マグネットトルクとリラクタンストルクとを合せたトルクとなり、電流位相角βが0°から45°近傍の範囲で最大となる。
 図12は、電流位相角と総トルクとの関係を示す図である。本図において電流位相角が横軸に、トルクが縦軸に示されている。図12に示す例では、最大トルクを発生する電流位相角は30度である。このように、IPM電動機ではリラクタンストルクを最大限利用するため、発生するトルクが電流位相角に大きく依存する。また、その依存性は、電流量などにより異なる。
 従って、インバータ毎に電流位相角βが異なる電流を供給する場合、異なるインバータに接続された3つの巻線群でトルク脈動を効率よく打ち消しあうようにするためには、各巻線群に給電される電流の電流量を電流位相角βに応じて変化させ、発生するトルクを等しくすることが望ましい。
 例えば、同期電動機41の巻線群200a、200b、200cが何れも図12に示す関係でトルクを生じる場合、巻線群200a、200b、200cに、それぞれ電流位相角βが10度、30度、50度で同じ電流量の電流が供給されると、巻線群200a、200cで生じるトルクTbと、巻線群200bで生じるトルクTaとに差があるため、互いのトルク脈動が効率よく打ち消されない。このような場合には、図13に示すように、巻線群200a、200cに給電する電流量を、巻線群200bに給電する電流量よりも多くすることで、巻線群200a、200b、200cで生じるトルクが等しくなる。
 そこで本実施形態では、弱め界磁制御が必要となる回転数では、各インバータが供給する電流の電流位相角βがことなり、さらに、各インバータが電流を供給する巻線群でトルクが等しくなるように、インバータ101用のマップデータ、インバータ102用のマップデータ、及びインバータ103用のマップデータのそれぞれにおいて、異なる値の電流量Iaがマッピングされている。このようなマッピングデータを用いることで、通電制御部52は、電流位相角30度で電流を供給するインバータ102には、供給する電流量をIa11とするように指示するゲート制御信号G2uvwを出力し、一方、電流位相角10度で電流を供給するインバータ101、電流位相角50度で電流を供給するインバータ103には、供給する電流量をIa1よりも大きなIa2とするように指示するゲート制御信号G1uvw、G3uvwを出力する。
 これにより、本実施形態に係る同期電動機駆動システムでは、高回転で駆動する際に、それぞれのインバータ毎に端子電圧が適切に制御され、電動機特性を最大限に活かすことができる。以上が、同期電動機41を高回転数で駆動させる場合のインバータ101、102、103の動作についての説明である。
 以上説明したように、インバータ101、102、103が供給する電流の電流位相角βを、それぞれが接続された巻線群の特性に合わせた適切な弱め界磁制御ができる値となるよう個別に決定し、さらに、各インバータから電流の供給を受ける巻線群200a、200b、200cにおいて生じるトルクが等しくなるように、それぞれに給電される電流の電流量を個別に決定したマッピングテーブルを、通電制御部52の内部ROMに記録している。このようなマッピングテーブルに従って、通電制御部52がゲート制御信号を出力することで、同期電動機41で発生するトルクを高めつつ、トルクの脈動を低減することができる。
 尚、第1の実施形態では、巻線群200a、200b、200cにおいて生じるトルクが等しくなるように、それぞれに給電される電流量を個別に決定するとしたが、少なくとも2つの巻線群において生じるトルクが等しくなるように、それぞれに給電される電流量を個別に決定するよう構成してもよい。これにより、少なくとも2つの3相巻線群で生じるトルクが同等なものになり、これらの位相を互いにずらすことで、互いのトルク脈動が打ち消され、同期電動機全体としてのトルク脈動を低減することが可能となる。
 また、本実施形態では、インバータ101、102、103を構成するスイッチング素子を、単一のモジュール内に格納した構成とした。これにより複数のインバータで構成されていることによるインバータのコストアップ及びインバータと電動機の配線の複雑さなどを大幅に低減できる。また、本発明に係る同期電動機駆動システムでは、各インバータ毎に電流位相角を相違させることができるので、単一のモジュールに格納された構成であっても、個々のスイッチング素子の発熱が時間的に分散しており、効率的に放熱することができる。

(第1の実施形態の変形例1)
 以下に、2つのインバータを有する同期電動機駆動システムに本発明を適用した変形例について説明する。図14は、本変形例に係る同期電動機駆動システムの全体構成を示す図である。
 本変形例では、同期電動機駆動システムは、直流電源1、インバータモジュール104、同期電動機44、及び通電制御部53とから構成されている。
 インバータモジュール104は、内部にインバータ105、106を含み、インバータ105、106がそれぞれゲート制御信号G1uvw、G2uvw、G3uvwに従って直交変換動作を行い、3相交流を同期電動機44に供給する。
 通電制御部53は、ゲート制御信号G1uvw、G2uvwを出力することでインバータ105、106の動作を制御するマイコンシステムである。通電制御部53内部のROMには、電流指令信号Is及び回転数指令信号ωrの値に対して、インバータに出力させる3相交流電流の電流位相角β及び電流量Iaを対応させたマップデータが、インバータ105、106のぞれぞれについて保持されている。通電制御部52では、図18に示すように
ステップS13、14においてこのマップデータを参照し、入力された電流指令信号Is及び回転数指令信号ωrに応じた電流位相角β及び電流量Iaを、インバータ105、106のそれぞれについて決定し、決定された電流位相角β及び電流量Iaの3相交流電流を各インバータが出力するように、回転子の位置や各パワー配線の電流値をモニタしながら、ゲート制御信号G1uvw、G2uvwを出力している。
 同期電動機44は、巻線群200d及び巻線群200eの2つの巻線群を有する。
 図15は、同期電動機44の詳細図である。図15を用いて、固定子ティース組48aの構成を詳細に述べる。以下、固定子巻線の間の機械角を論ずるが、それぞれの固定子巻線が巻回された固定子ティースの中心(一点鎖線)間の角度を表す。固定子ティース組48aは、3個の隣接した固定子ティース71a、72a、73aから構成されている。
 固定子ティース72aに対して固定子ティース71aは、機械角で+20°の位置に配置されている。すなわち磁極間隔である電気角πラジアン(機械角18°)からさらに+π/9ラジアンずれて配置されている。また、同様に固定子ティース72aに対して固定子ティース73aは、機械角で-20°の位置に配置されている。すなわち磁極間隔である電気角πラジアンからさらに-π/9ラジアンずれて配置されている。ここで、固定子ティースは、周方向に等間隔で360/18=20°の間隔で並べられている。一方、回転子の磁極は周方向に等間隔で20個並べられており、360/20=18°の間隔となる。
 固定子ティース71aには固定子巻線91aの一部(巻回数N1)が巻回され、固定子ティース73aには固定子巻線92aの一部(巻回数N2)が巻回され、固定子ティース72aには固定子巻線91aの残余の部分(巻回数N21)および固定子巻線92aの残余の部分(巻回数N22)が巻回されている。
 固定子巻線91aは、固定子ティース71a、72aにそれぞれ巻回されている部分どうしが互いに逆極性の磁場を発生させる。同様に、固定子巻線92aは、固定子ティース72a、73aにそれぞれ巻回されている部分どうしが互いに逆極性の磁場を発生させる。さらに固定子巻線91a、92aに同位相の電流が供給されたとき固定子ティース72aに巻回されている部分どうしは同じ極性の磁場を発生させる。
 また固定子巻線91a、92aの巻回数に関しては、以下の関係が満たされている。
  N1=N2
  N21=N22=(N1)/{2cos(π/9)}
 上記関係を満たすことにより固定子ティース71a、72a、73aに生じる磁束の最大値を同等にすることができる。なおここでは便宜上イコール記号(=)を用いているが、実際には完全に一致させることが困難な場合が多い。上記のイコール記号は、右辺が小数になる場合にはその小数に近い整数を採用する程度の一致を含み、さらには、設計上誤差として無視できる程度の一致を含むこととする。
 図15に示した固定子ティース組48aの両隣に隣接する他の2組の固定子ティース組48b、48cも図15に示した固定子ティース組48aと同様の構成を有している。
 図16は、図15に示した同期電動機の固定子巻線の結線を説明するための図である。
 図示した巻線端子番号末尾のa、b、cは、それぞれ固定子ティース組48a、48b、48cを構成する巻線に対応している。
 固定子ティース組48a内の2個の固定子巻線91a、92aのそれぞれの巻線端子21a、23aは、個別に外部に出されていて、駆動装置であるインバータの接続端子に個別に接続されている。固定子ティース組48b内の2個の巻線端子21b、23b、および、固定子ティース組48cの2個の巻線端子21c、23cも同様に、個別に外部に出されていて、駆動装置であるインバータの接続端子に個別に接続されている。
 また、異なる固定子ティース組48a、48b、48cで位相差が2π/3ラジアンとなる固定子巻線の端子は共通に中性点に接続されている。すなわち巻線端子22aと巻線端子22bと巻線端子22cは第1の中性点に接続され、巻線端子24aと巻線端子24bと巻線端子24cは第2の中性点に接続されている。この例では第1および第2の中性点を電気的に分離されているが、これらを電気的に接続することとしてもよい。
 また、本実施形態では固定子ティース組48a、固定子ティース組48b、固定子ティース組48cが2組ずつあり、末尾のa、b、cが同じ固定子ティース組どうしは回転子の磁極に対して電気角で同じ位置関係にある。そのため6組の固定子ティース組のうち隣接した3組の固定子ティース組どうしで中性点接続を構成してもよいし、一つ置きの3組の固定子ティース組どうしで中性点接続を構成してもよい、また、6組の全ての固定子ティース組で中性点接続を構成してもよい。
 以上、同期電動機44の構成について説明した。18個の固定子ティースは、回転子の磁極間隔と異なる配置間隔で並び、かつ、周方向に並ぶ3個単位で固定子ティース組を構成している。また各固定子ティース組内の2個の固定子巻線は、それぞれ独立した外部端子に個別に接続されている。
 ここで「個別」とは、ひとつの固定子ティース組に含まれている固定子巻線どうしの関係を示すものであり、異なる固定子ティース組にそれぞれ含まれている固定子巻線どうしの関係を示すものではない。従って、異なる固定子ティース組に含まれる固定子巻線どうしは、条件が許せば共通に接続される場合もある。例えば、固定子ティース組48aに含まれている固定子巻線91aと固定子ティース組48a’に含まれている固定子巻線91a’には同じ位相の電流が供給されるため、これらを共通の外部端子に接続することとしてもよい。もちろん個別に外部端子に接続することとしても何ら問題はない。
 本変形例に係る同期電動機駆動システムは、上記同期電動機の複数の巻線端子に互いに位相の異なる電流を供給する駆動装置を備えている。次に、駆動装置および通電方法に関して説明する。
 図17は、本変形例の固定子と回転子の位置関係を示し、図17(a)、図17(b)、図17(c)は回転子2が反時計方向に各々機械角で2°(電気角でπ/9ラジアン)回転したときの固定子および回転子の位置関係を示している。また、図19は、本変形例において各固定子巻線に流した電流の時間変化を示した図である。図19中の(a)(b)(c)で示される時間は、それぞれ図17(a)、図17(b)、図17(c)に示される位置関係に対応している。
 図15に、回転子の磁極間を10、11で示した。回転子の磁極間10、11は、回転子に配置された永久磁石で構成された磁極Nと磁極Sとの間の磁気中立点の位置を意味する。ここでは、機械的にも磁石と磁石との間の位置となっている。反時計方向にみてN極からS極に変わる磁極間を10、反時計方向にみてS極からN極に変わる磁極間を11と示している。なお、磁極間11’は、磁極間11に対して電気角では同じ位置であるが機械角では異なる位置にある。
 図17(a)では、一点鎖線で示したように、固定子ティース73aの中心と回転子磁極間11とが一致する位置関係で対向している。この位置関係のときに固定子巻線93aに流れる電流が最大になるように位相を調整して電流を供給すると、永久磁石によるトルクであるマグネットトルクが最大となる。なお図15で説明したように隣接する磁極どうしのなす角度(18°)と隣接する固定子ティースどうしのなす角度(20°)が異なるため、固定子ティース73aの中心と回転子磁極間11とが一致する位置関係で対向していれば、固定子ティース72aの中心および回転子磁極間10、ならびに固定子ティース71aの中心および回転子磁極間11’はずれた位置関係で対向することになる。
 図17(b)では、図17(a)から回転子が反時計方向に機械角で2°(電気角でπ/9ラジアン)回転しており、一点鎖線で示したように、固定子ティース72aの中心と回転子磁極間10とが一致する位置関係で対向している。このとき固定子ティース73aの中心および回転子磁極間11、ならびに固定子ティース71aの中心および回転子磁極間11’はずれた位置関係で対向している。
 図17(c)では、図17(b)から回転子が反時計方向に機械角で2°(電気角でπ/9ラジアン)回転しており、一点鎖線で示したように、固定子ティース71aの中心と回転子磁極間11’とが一致する位置関係で対向している。この位置関係のときに固定子巻線91aに流れる電流が最大になるように位相を調整して電流を供給すると、永久磁石によるトルクであるマグネットトルクが最大となる。このとき固定子ティース73aの中心および回転子磁極間11、ならびに固定子ティース72aの中心および回転子磁極間10はずれた位置関係で対向している。
 図17(a)、(c)に示した位置関係となる各時間に、すなわち、固定子ティース71a、73aの固定子ティース中心が回転子磁極間と対向している各時間に、固定子巻線91a、92aに流れる電流がそれぞれ最大になるように位相を調整して電流を供給する。そうすると図17(a)に示した位置関係となるとき、すなわち固定子ティース73aの中心が回転子磁極間11と一致して対向しているときに、固定子巻線92aに流れる電流が最大となり、固定子ティース73aが生じさせるマグネットトルクが最大となる。また図(b)に示した位置関係になるとき、すなわち固定子ティース72aの中心が回転子磁極間10と一致して対向しているときに、固定子巻線91a、92aの電流のベクトル合成が最大となり、固定子ティース72aが生じさせるマグネットトルクが最大となる。また図17(c)に示した位置関係となるとき、すなわち固定子ティース71aの中心が回転子磁極間11’と一致して対向しているときに、固定子巻線91aに流れる電流が最大となり、固定子ティース71aが生じさせるマグネットトルクが最大となる。これにより固定子ティース毎にマグネットトルクを最大とすることができ、全体として高トルク化を図ることができる。
 図19では、巻線端子21a、23aに流した電流(固定子巻線91a、92aに流した電流)が縦軸に、時間が横軸に示されている。図19に示すように、巻線端子21aに流す電流に対して巻線端子23aに流す電流は2π/9ラジアン進めてある。
 各固定子巻線の配置関係と各固定子巻線に流す電流とは以下の関係がある。
 固定子ティース72aに対して固定子ティース73aは、電気角でπラジアンからさらに-π/9ラジアンずれて配置されている。一方、固定子ティース72aに対して固定子ティース71aは、電気角でπラジアンからさらに+π/9ラジアンずれて配置されている。このような配置関係であれば、固定子巻線91aに流す電流に対して固定子巻線93aに流す電流は、2π/9ラジアン進めることとする。
 以上説明したように、本変形例に係る同期電動機駆動システムでは、2つのインバータそれぞれについてのマッピングテーブルを用いて、個別に電流位相角β及び電流量Iaを決定したゲート制御信号を出力することで、同期電動機44で発生するトルクを高めつつ、トルクの脈動を低減することができる。

(第1の実施形態の変形例2)
 図20は、変形例2に係る同期電動機駆動システムの全体構成を示す図である。本図に示す同期電動機駆動システムは、図1に示すものと比較して、通電制御部52を通電制御部52aに置換し、電流検出器302a、302c、303a、303cを取り除いた点が相違している。
 図1に示す同期電動機駆動システムの通電制御部52では、インバータ101、102、及び103のそれぞれに対応するパワー配線で電流量及び電流位相をモニタすることでインバータの動作状態を確認しながら、各インバータをフィードバック制御していた。
 しかしながら、一般に、複数の3相巻線を有する同期電動機では、1つの3相巻線について電流量及び電流位相をモニタすることで、他の3相巻線についても同期電動機の構造に応じて電流量及び電流位相を推定することが可能である。
 そこで、変形例2に係る通電制御部52aでは、電流検出器301a、301cにおいてモニタしたインバータ101に対応するパワー配線の電流量及び電流位相を用いて、インバータ102、及び103に対応するパワー配線の電流量及び電流位相を推定し、各インバータをフィードバック制御する。電流量及び電流位相の推定においては、インバータを構成するスイッチング素子のオン電圧を利用することで、容易に実現できる。
 このような構成により電流検出器の数を減らし、システム全体でのコスト低減を図ることができる。

(第1の実施形態の変形例3)
 以下に、通電制御部52における制御の変形例を説明する。以降の変形例では、図1に示す同期電動機駆動システムと同様の構成において、通電制御部52が第1の実施形態のものと異なる制御を実施する。
 図21は、様々な電流量での電流位相とトルクとの関係を示す図である。
本図では、図11に示した例での電流量を100%として、電流量100%、70%、及び20%の各場合での電流位相とトルクとの関係を示している。
本図に示すよに、電流量100%、70%、及び20%の各場合において最大トルクを発生する電流位相a、b、及びcは異なる。
 こうした電流量及び電流位相と同期電動機1において発生するトルクとの関係を製造過程で測定し、電流量100%、電流位相0°でのトルクを代表値として正規化したトルクを、電流量及び電流位相に対応付けることで、図22に示すマップデータを生成することができる。
 本変形例において通電制御部52は、このようなマップデータを内部ROMに保持し、インバータ101、102、103のそれぞれについて電流量及び電流位相を決定する際には、各インバータから出力される3相交流電流により生じるトルクが等しくなるよう、マップデータにおいて同じ値の正規化トルクが対応づけられた電流量及び電流位相を選択する。
 例えば、正規化トルク0.8で同期電動機を駆動させる場合、通電制御部52は、インバータ101に電流量100%、電流位相-20°で3相交流電流を出力させ、インバータ102に電流量を電流量80%、電流位相0°で3相交流電流を出力させ、インバータ103を電流量に電流量60%、電流位相+20°で3相交流電流を出力させる。これにより、各インバータから3相交流電流を給電される3相巻線群で発生するトルクが等しくなり、同期電動機全体でのトルク脈動を抑えることができる。

(第1の実施形態の変形例4)
 図23は、電流位相のq軸に対する進み角と固定子巻線のインダクタンスとの関係を示す図である。本図に示すように、インダクタンスのd軸成分Ldは、進み角に対する変化は少ないが、インダクタンスのq軸成分Lqは、進み角の影響が大きく、進み角が大きいほどLqとLdとの差は大きくなる。
 ただし、製造面での理由から同期電動機の全ての固定子巻線を厳密に均質なものとすることは困難である。そのため、図23に示すような固定子巻線のインダクタンスの特性は、固定子巻線間で差が生じている。
 ここで、磁石埋め込み型同期電動機のトルクは、一般に以下の式で表現される。
Figure JPOXMLDOC01-appb-M000002
 上記の式において右辺第1項はマグネットトルク、第2項はリラクタンストルクを表わしている。上記の式からリラクタンストルクには、LqとLdとの差が影響を及ぼしていることが分かるが、上述のように同期電動機の固定子巻のインダクタンスは、全ての固定子巻線で均質なものではない。
 そこで、本変形例において通電制御部52は、電流検出器301a、301c、302a、302c、303a、303cにおいて検出した電流値の変化率から巻線群200a、200b、200cのそれぞれのインダクタンスを算出し、インバータ101、102、及び103のそれぞれについて指令値を個別に決定する際に、算出したインダクタンスに基づいて、上記のトルク式から各巻線群で生じるトルクが等しくなるように電流量を決定する。
 本変形例によれば、同期電動機の動作中の電流変化率から各巻線群のインダクタンス値を算出して、各インバータへの指令値決定にフィードバックすることで、高いロバスト性が得られる。

(第1の実施形態の変形例5)
 固定子巻線の巻回数に応じて電流量を決定する変形例について説明する。
 本変形例では、同期電動機1の固定子ティース組を構成する固定子ティース61a、62a、63aに、異なる巻回数の固定子巻線が巻回されている。
 具体的には、図3に示す固定子巻線81aの巻回数がN、固定子巻線82aの巻回数が2N、固定子巻線83aの巻回数がNとなっている。
 このような同期電動機を有する構成において、本変形例において通電制御部52は、固定子巻線81aへ通電するインバータ101、固定子巻線82aへ通電するインバータ102、及び固定子巻線83aへ通電するインバータ103の出力する3相交流電流の電流量の比が2:1:2となるように電流量を決定する。
 これにより、各インバータから3相交流電流を給電される3相巻線群で発生するマグネットトルクが等しくなり、同期電動機全体でのトルク脈動を抑えることができる。さらに、本変形例では、固定子ティース組でもっとも熱が集中しやすい中央の固定子巻線82aに通電する電流量が、他の固定子巻線よりも小さくなり、固定子巻線82a自体の発熱量が低く抑えられる。

(第1の実施形態の変形例6)
 以下に、同期電動機駆動システムの動作安定性を向上させた変形例について説明する。
 本変形例では、図1に示す同期電動機駆動システムと同様の構成において、インバータ101、102、及び103はそれぞれ、内部のスイッチング素子の電圧、電流、熱を検出し、過負荷状態(予め設定している過負荷しきい値以上)になった場合、インバータ動作を一時的もしくは継続的に停止する。
 また、通電制御部52は、第1の実施形態で説明した制御に加えて、インバータ101、102、及び103を監視し、少なくとも1つのインバータが動作停止状態になった場合、停止したインバータから3相交流電流の供給を受ける巻線群で発生させるべきトルクを、即座に、他の3相巻線群で発生させるように他のインバータを制御する。その場合、一時的に、残りのインバータでの過負荷しきい値に基づいた停止機能を解除することが望ましい。このようにすることで、同期電動機駆動システムの不安定な状態を回避し、同期電動機駆動システムの動作を継続させることができる。
 また、少なくとも1つのインバータが動作停止状態になった場合、即座に、残りのインバータで補うように制御することで、同期電動機駆動システムの不安定な状態を回避し、同期電動機駆動システムが接続されている機器への2次被害などを免れることができる。
 以上、本変形例に係る同期電動機駆動システムを、高信頼性が要求される自動車の電動パワーステアリング及び電動ブレーキなどの補機システムに使用することで、複数のインバータの内、少なくとも1つが故障した場合においても、故障していない他のインバータで、駆動システムを動作させることができる。
 尚、通電制御部52による他の制御方法として、インバータ101、102、及び103を監視し、少なくとも1つのインバータが動作停止状態になった場合、他のインバータも停止状態になるように制御してもよい。

(第2の実施形態)
 図24は、本発明の第2の実施形態に係る同期電動機駆動システムの全体構成を示す図である。図24に示す同期電動機駆動システムは、図1に示す同期電動機駆動システムの同期電動機41及び通電制御部52を、それぞれ同期電動機42、及び通電制御部55に置換し、さらに位置検出部54を追加した構成である。以下に第1の実施形態に係る同期電動機駆動システムと相違する構成について説明する。
 位置検出部54は、巻線群203a、203cにおいて巻線間に発生する誘起電圧の変化を、回転子の回転動作ごとに順次計測し、計測した誘起電圧から回転子の位置を特定する。巻線群203a、203cにおける線間電圧は、インバータ101、103が、矩形波電方式で動作した場合に、電流が供給されない無通電区間内に測定される。ここで、従来の電動機構成においては、線間電圧による位置検出信号の分解能は約60度であったが、本発明の同期電動機駆動システムの構成においては、電動機が複数の巻線群により構成されていて、かつ巻線群は各々独立しているため、位置検出信号を高分解能化することが可能である。さらに、複数の巻線群において測定した線間電圧を組み合わせて位置検出信号として用いることにより、さらなる高分解能化が図れる。これにより、回転子の位置を確実に検出することができ、回転子の位置に応じた最適な弱め界磁制御が実施できる。
 同期電動機42は、3相の巻線からなる巻線群203a、203b、203cを備える。
 図25は、同期電動機42の詳細図である。固定子巻線の間の機械角を論ずるが、それぞれの固定子巻線が巻回された固定子ティースの中心(一点鎖線)間の角度を表す。
 同期電動機42は、固定子ティース組を構成する3つの固定子ティース61a、62a、63aの配置間隔が、図3に示す同期電動機44のものと相違している。同期電動機42では、固定子ティース組を構成する3つの固定子ティース62a、63a、64aが、機械角18°の間隔で配置されている。また、隣接する固定子ティース組同士は機械角で60°、電気角で+2π/3ラジアンずれて配置されている。そのため、固定子ティース63aに対して、隣接する固定子ティース組を構成する固定子ティース64aは、機械角で24°の位置に配置されている。このような構成により、同じ固定子ティース組に属する固定子ティースは、それぞれが対向する磁石に対して位相のずれが同じになる。本図の例では、固定子ティース62a、63a、64aは、何れも中心が磁極間と一致している。
 次に、通電制御部55について説明する。通電制御部55は、電流指令信号Is及び回転数指令信号ωrの値に対してインバータに出力させる3相交流電流の電流位相角β及び電流量Iaを対応させたマップデータを、インバータ101、102、103のぞれぞれについて個別に保持している。 通電制御部55は、このマップテーブルを参照して動作する。具体的には、図26に示すように、同期電動機を定格回転数未満で回転させる場合(ステップS22:No)には、第1の実施形態における通電制御部52と同様に、電気角2πラジアンの全区間を通じて通電する正弦波通電方式でインバータを動作させるゲート制御信号G1uvw,G2uvw,G3uvwが、それぞれインバータ101、102、103へ出力される(ステップS27)。このとき回転子の位置は、電流検出器301a、301c、302a、302c、303a、303cにおいて検出した電流値変化を用いて従来の位置センサレス演算により求められたものが使用される。
 これに対して、同期電動機を定格回転数以上で回転させる場合(ステップS22:Yes)、インバータ102には、電気角2πラジアンの全区間を通じて通電する正弦波通電方式でインバータを動作させるゲート制御信号G2uvwが出力されるが、インバータ101、103には、電気角2πラジアンの一部区間のみ通電する矩形波通電方式でインバータを動作させるゲート制御信号G4uvw,G5uvwが出力される(ステップS32)。インバータ101、103では、ゲート制御信号G4uvw,G5uvwに応じて、矩形波通電方式で電流を出力する。ここで、一般的な矩形波通電の場合、通電しない一部区間は電気角で60度となり、通電する区間の電気角120度と交互に動作を繰り返す。なお、同期電動機を定格回転数以上で回転させる場合、回転子の位置は、電流値変化を用いたセンサレス演算ではなく、矩形波通電方式で動作するインバータ101、103に接続された巻線群203a、203cにおいて巻線巻に生じる誘導電圧を基に位置検出部54で特定されたものが使用される。
 図27は、定格回転数以上で同期電動機を駆動させる場合に、インバータが各固定子巻線に流す同相の電流の時間変化を示した図である。図27では、インバータ101、102、103が流した電流が縦軸に、時間が横軸に示されている。図27に示すように、インバータ102が出力する電流の電流波形は正弦波であり、インバータ101、103が出力する電流の電流波形は矩形波である。また、インバータ101が流す電流に対してインバータ103が流す電流は2π/9ラジアン(30°)遅らせてある。
 矩形波通電方式により駆動される電動機においては、一般的に、正弦波通電方式により駆動される電動機よりも、トルク脈動が極端に大きく、同期電動機駆動システムにおける振動及び騒音などの重要な課題になる。しかしながら、本実施形態に係る同期電動機駆動システムにおいては、電気角の全区間を通じて通電する正弦波通電方式でインバータを動作させるゲート制御信号と、電気角の一部区間のみ通電する矩形波通電方式でインバータを動作させるゲート制御信号とを、複数かつ選択出力できる通電制御部55を有し、複数のインバータのうち少なくとも2ヶは、通電制御部55の出力により、矩形波通電方式で動作するため、矩形波通電方式により駆動される少なくとも2つのインバータ出力により発生するトルク脈動を互いに打ち消すように、個別に位相を制御することができる。本実施形態では、インバータ101、103が出力する電流に30°の位相差があるため、60°周期のトルク脈動は互いに打ち消され、同期電動機全体で生じるトルクの脈動を低減することができる。
 また、矩形波通電方式で駆動されるインバータにおいては、一部区間のみ通電しないので、その区間内に、各々の巻線群で巻線に発生する誘起電圧をに測定することができ、線間電圧から回転子の位置を検出することができる。ゆえに、低振動、低騒音、高効率な同期電動機駆動システムを提供することができる。さらに、位置検出器を削減することができるため、同期電動機駆動システムの低コスト化を図ることができる。
 以上が通電制御部55についての説明である。
 なお、インバータは、直流交流変換するために、内部のスイッチング素子で各々、高周波スイッチング動作を実施し、電気周波数に応じた3相交流を生成している。ここで、電気周波数は回転子の回転速度に比例して高周波になるため、回転子の回転数が高速になると、高いスイッチング周波数が必要になる。逆に、回転子の回転が低速である場合は、比較的低いスイッチング周波数でよく、その場合、インバータにおけるスイッチング損失の低減が図れる。また、高周波ノイズの低減も図れる。しかしながら、低速での駆動する際に、矩形波通電方式などの一部のみ通電する通電方式で電流を供給すると、同期電動機の回転による騒音及び振動などの影響が顕著になる場合がある。
 そこで本実施形態では、通電制御部により切替える回転数は、定格回転数を閾値としている。つまり、常用域である定格回転数未満では、より低振動及び低騒音である正弦波通電方式を指示する第1ゲート制御信号によりインバータ動作を制御し、加減速を要求され、かつ短時間動作である定格回転数以上では、矩形波通電方式を指示する第2ゲート制御信号によりインバータ動作を制御する。
 この結果、回転子の回転数が低速である場合には、正弦波通電方式で全てのインバータが動作する。回転子の回転数が低速であるため、スイッチング周波数を低周波にすることができ、スイッチング損失の低減を図ることができる。さらには、スイッチング周波数ごとに電流及び電流変化率を検出することで、マイコンなどが位置センサレス演算をする負荷を低減することができる。(ここでは、位置センサレス演算について詳細に説明しないが、一般的にスイッチング周波数が高くなると、マイコン負荷が増大し、センサレス制御に支障をきたす。)
 一方、回転子の回転数が高速である場合には、2つのインバータを、矩形波通電方式で動作させるので、高速駆動でありながらスイッチング周波数を低減し、インバータでのスイッチング損失を抑えることができる。また、矩形波通電方式で通電している巻線において、巻線間に発生する誘起電圧を検出することで、回転子の位置を検出することができるため、価格の高い高精度な位置センサを取り除いたり、比較的安価な低精度位置センサに置換することができる。また位置センサを削減した場合には、位置センサの不具合などによる動作異常の恐れがなくなりシステム全体の信頼性が向上する。したがって、同期電動機駆動システムの低コスト化及び低振動、低騒音、高効率、高信頼性が図れる。
 以上のように、モータの駆動状態に適した通電方式を適用することで、高効率、安価、高信頼性の同期電動機駆動システムを実現できる。このような同期電動機駆動システムは、高回転駆動時に低騒音であること必要な用途にも、高回転駆動時に位置センサレス演算の負荷低減が求められる用途の何れにも用いることができる。
 なお、上記第2の実施形態では、電気角2πラジアンの全区間を通じて通電する第1通電方式として正弦波通電方式を用い、電気角2πラジアンの一部区間のみ通電する第2通電方式として矩形波通電方式を用いたが、第1通電方式、第2通電方式はこれらの例に限定されるものではない。例えば、第1通電方式としては厳密な正弦波ではなく周期を過変調とした通電方式を用いても良い、また、第2通電方式としては、広角通電方式を用いても良い。
 また、第2の実施形態では、位置検出器を備えない構成で説明したが、簡易的な位置検出器を誘起電圧による位置検出方式と併用してもよく、その場合、比較的高価な光学式エンコーダやレゾルバなどの位置検出器をホール素子などに替えて構成することで安価にでき、さらには、位置検出精度を向上させることができるため、同期電動機駆動システムの低コスト化及び高性能化を図ることができる。

(第3の実施形態)
 インバータ内部のスイッチング素子(IGBT、MOSFET)やダイオードを、Siデバイスから、SiC(炭化珪素)デバイスやGaN(窒化ガリウム)デバイスにすることで、大幅な低損失化が可能となり、インバータの冷却装置、放熱フィンが不要となる。また、Siデバイスに比べて、高耐熱特性ももち合わせているため、デバイスレイアウトの自由度向上が期待できる。冷却装置が小型化でき、デバイス自身の耐熱性が向上できることにより、デバイスを、例えばモータの巻線の近くに配置できるため、インバータとモータを接続するケーブルのインピーダンスを大幅に低減することができる。高速スイッチングとケーブルのインピーダンスの影響による過大なサージ電圧発生を、抑制できる。

(第4の実施形態)
 先ず始めに、本発明の同期電動機駆動システムを搭載した電気自動車の全体構成について説明する。図28は、本発明の同期電動機駆動システムを搭載した電気自動車の概略構成を示す図である。
 本実施形態に係る電気自動車の主要部は、主電池400、インバータモジュール401、モータ402、駆動軸403、デフ404、車輪405a及び405b、補助電池406、通電制御部411とから主に構成されている。
 インバータモジュール401は、補助電池406と主電池400とモータ402にそれぞれ接続されており、主電池400が出力する直流電力が、インバータモジュール401で直交変換され、モータ402に交流電力として入力される。モータ402は、インバータモジュール401から供給された電気エネルギーを機械エネルギーに変換することで、駆動力を発生させる。また、モータ402は駆動軸403とデフ404を介し、車輪405a及び405bに接続されているため、モータ403が回転駆動することで車輪405a及び405bも回転駆動する。その結果、電気自動車は、モータ403の動作に応じて、走行することができる。
 ここで、インバータモジュール401、モータ402、及び通電制御部411は、第1の実施形態において説明した同期電動機駆動システムを構成するものであり、インバータモジュール401は、内部に3つの3相インバータを備え、モータ402は、3つの3相インバータがそれぞれ接続されるように、分割され隣り合った巻線配置を特徴とした図2に示す固定子を備えている。また、通電制御部411は、第1の実施形態において説明したインバータ制御に加えて、インバータモジュール401を構成する各3相インバータを監視し、3相インバータの何れかで過負荷の発生を検出した場合には、過負荷状態となった3相インバータを停止させ、それに伴って不足した駆動力を、残りの3相インバータから給電される巻線群で補うように、インバータモジュール401を制御する。
 一般的な電気自動車においては、インバータ及びモータともに1つで構成されているため、インバータもしくはモータのいずれかに異常が発生した場合には、電気自動車は走行不可能となる。しかしながら、本実施形態に係る電気自動車においては、インバータモジュール401を構成する3相インバータのいずれかに異常が発生した場合、残りの3相インバータで継続してモータ402を回転駆動することができるので、電気自動車が停止することなく、走行を維持できる。
 モータ402においても、3つの分割された巻線群を有する構成であることにより、いずれかの巻線群に異常が発生した場合、残りの巻線群で継続してモータ402を駆動させることができ、結果として、電気自動車が停止することはなく、走行を維持できる。
 以上のように、本発明に係る同期電動機駆動システムを搭載することにより、信頼性の高い電気自動車を提供することが出来る。また、複数のモータ及びインバータを用いる電気自動車と比べて、大幅なコスト低減を図れる。
 尚、通電制御部52による他の制御方法として、インバータモジュール401を構成する各3相インバータを監視し、少なくとも1つの3相インバータが何らかの異常により動作停止状態になった場合、他の3相インバータも動作停止状態になるように制御してもよい。これにより、本発明に係る電気自動車は、同期電動機駆動システムに異常が発生した場合に惰性運転となり安全な操作、停車が可能となる。

(第4の実施形態の変形例1)
 次に、本発明に係る同期電動機駆動システムをハイブリッド電気自動車に搭載した変形例ついて説明する。図29は、本発明の同期電動機駆動システムを搭載したハイブリッド電気自動車の概略構成を示す図である。
 本変形例に係るハイブリッド電気自動車の主要部は、主電池400、インバータモジュール401a及び401b、モータ402a及び402b、駆動軸403a及び403b、デフ404a及び404b、車輪405a乃至405d、エンジン407、動力分割機構408、及び通電制御部411とから構成されている。
 インバータモジュール401a及び401bは、それぞれ内部に3つの3相インバータを含み、主電池400とモータ402a及びに402bにそれぞれ接続されており、主電池400が出力する直流電力が、インバータモジュール401a及び401bで直交変換され、モータ402a及び402bに交流電力として入力される。モータ402a及び402bは、インバータモジュール401a及び401bから供給された電気エネルギーを機械エネルギーに変換することで、駆動力を発生させる。また、モータ402aは駆動軸403aとデフ404aを介し、車輪405a及び405bに接続され、また、モータ402bは駆動軸403bとデフ404bを介し、車輪405c及び405dに接続されているため、モータ402a及び402bが回転駆動することで車輪405a乃至405dも回転駆動する。その結果、本実施形態の変形例に係るハイブリッド電気自動車は、モータ402a及び402bの動作に応じて、走行することができる。
 ハイブリッド自動車においては、上記のようにモータ402a及び402b以外のエンジン407で発生する駆動力で走行することも可能である。その場合、動力分割機構408により、駆動軸403bとの機械的な接続を、モータ402bとエンジン407で切替えることで、ハイブリッド車両を走行させる。
 ここで、インバータモジュール401a、及びモータ402aは、通電制御部411の制御を受けることにより、第1の実施形態において説明した同期電動機駆動システムを構成している。さらに、インバータモジュール401b、及びモータ402bについても、通電制御部411の制御を受けて、第1の実施形態において説明した同期電動機駆動システムを構成している。
 本発明の同期電動機駆動システムを搭載したハイブリッド電気自動車においては、電気自動車と同様に、単体のモータ及びインバータを搭載した場合よりも、低コストかつ高い信頼性というメリットを得ることができる。

(第4の実施形態の変形例2)
 次に、本発明に係る同期電動機駆動システムをインホイールモータ電気自動車に搭載した他の変形例ついて説明する。図30は、本発明の同期電動機駆動システムを搭載したインホイールモータ電気自動車の概略構成を示す図である。
 本変形例に係るインホイールモータ電気自動車410は、主電池400、インバータモジュール401a乃至401d、モータ402a乃至402d、ギア409a乃至409d、車輪405a乃至405dから主に構成されている。
 インバータモジュール401a、401b、401c、及び401dは、それぞれ内部に3つの3相インバータを含み、主電池400から供給される直流電力を直交変換し、モータ402a、402b、402c、及び402dにそれぞれ交流電力を供給する。モータ402a乃至402dは、インバータモジュール401a乃至401dから供給された電気エネルギーを機械エネルギーに変換することで、それぞれ駆動力を発生させる。また、各モータはギアを介し、車輪に接続されているため、各モータが回転駆動することで車輪もギアにより減速した回転数で回転駆動する。その結果、インホイール電気自動車は、モータの動作に応じて、走行することができる。
 ここで、インバータモジュール401a乃至401dとモータ402a乃至402dとは、それぞれ接続された組が通電制御部411の制御を受け、第1の実施形態において説明した同期電動機駆動システムを、4つ構成している。
 一般にインホイールモータ電気自動車においては、従来の車両システムでは実現不可能であった走行性能が実現できるなどのメリットがあるが、車輪が独立駆動されるため、いずれかの車輪を駆動するシステムに異常が発生した場合に、車両がコントロール不能になり、運転者が危険な状態になる。しかしながら、本発明の同期電動機駆動システムを搭載したインホイールモータ電気自動車においては、インバータモジュールを構成する3つの3相インバータのいずれかに異常が発生した場合、残りの3相インバータで継続してモータを回転駆動することができるので、インホイール電気自動車が停止することなく、走行を維持できる。また、1つのインバータモジュールを構成する3つの3相インバータのいずれかの過負荷を検出した場合には、過負荷状態となった3相インバータの負荷を軽減し、それにより不足した駆動力を、残りの3相インバータにより、補うよう通電制御部が制御することも可能となる。
 ゆえに、本発明に係る同期電動機駆動システムを搭載することにより、信頼性の高いインホイールモータ電気自動車を提供することが出来る。
 尚、本実施形態、及びその変形例では、電気自動車の同期電動機駆動システムとして、第1の実施形態で説明した同期電動機駆動システムを用いたが、電気自動車の同期電動機駆動システムとしては、他の実施形態や変形例で説明した構成を用いてもよい。

(その他の変形例)
 以上、本発明に係る同期電動機駆動システムについて、実施形態に基づいて説明したが、本発明はこれらの実施形態に限られない。例えば、以下のような変形例が考えられる。
(1)実施形態では2、又は3個のインバータを有する構成について説明したが、本発明は、2以上のインバータを有する同期電動機駆動システムであれば適用可能である、このような構成においても同様の効果が得られる。
(2)実施形態では、回転子が固定子の外側に配置されたアウターロータ型の同期電動機で説明しているが、回転子を固定子の内側に配置したインナーロータ型の同期電動機や、回転子と固定子とが軸方向に空隙を持って配置された、いわゆる面対向のアキシャルギャップ式同期電動機や、それらを複数組み合わせた構造の同期電動機でも同じ効果があることは言うまでもない。
(3)実施形態では、埋込み永久磁石型電動機(いわゆる、IPM)で説明しているが、表面永久磁石型電動機(いわゆる、SPM)でもよく、回転子に永久磁石を使用しないリラクタンス型電動機でも同じ効果があることは言うまでもない。
(4)本発明は、小型、高出力、低振動、低騒音、高効率な同期電動機駆動システムを提供することができ、低振動、低騒音性が要求される自動車用途に特に有用である。
(5)上記第1、第2、第3実施形態及び上記変形例をそれぞれ組み合わせるとしてもよい。
 本発明は、小型高効率で低振動低騒音性が要求される、コンプレッサ用、電気自動車、ハイブリッド自動車、燃料電池自動車等の同期電動機駆動システムに利用可能である。
    1  直流電源
    2  回転子
    4  回転子コア
    5  永久磁石
    6  磁極
    9  固定子巻線
   10  回転子磁極間
   11  回転子磁極間
   21a~c 巻線端子
   22a~c 巻線端子
   23a~c 巻線端子
   24a~c 巻線端子
   31a~c 巻線端子
   32a~c 巻線端子
   33a~c 巻線端子
   34a~c 巻線端子
   35a~c 巻線端子
   36a~c 巻線端子
   41  同期電動機
   42  同期電動機
   43  固定子
   44  同期電動機
   47  固定子ティース
   48  固定子ティース組
   48a~c 固定子ティース組
   51  位置検出器
   52  通電制御部
   53  通電制御部
   54  位置検出部
   55  通電制御部
   61~64a 固定子ティース
   71~73a 固定子ティース
   81a 固定子巻線
   82a 固定子巻線
   83a 固定子巻線
   91a 固定子巻線
   92a 固定子巻線
   93a 固定子巻線
  100  インバータモジュール
  101~103  インバータ
  104  インバータモジュール
  105、106  インバータ
  200a~e 巻線群
  203a~c 巻線群
  301a、c 電流検出器
  302a、c 電流検出器
  303a、c 電流検出器
  400 主電池
  401a乃至401d インバータモジュール
  402a乃至402d モータ
  403a及び403b 駆動軸
  404a及び404b デフ
  405a乃至405d 車輪
  406 補助電池
  407 エンジン
  408 動力分割機構
  409a乃至409d ギア
  410 インホイールモータ電気自動車
  411 通電制御部

Claims (24)

  1. 直流電流を3相の交流電流に変換する複数の3相インバータと、
     前記複数の3相インバータの動作を制御する通電制御部と、
     前記複数の3相インバータから供給される複数の3相交流電流で駆動される同期電動機とを備え、
     前記同期電動機は、3相交流電流の供給を受ける3相巻線群を複数有し、
     前記通電制御部は、出力させる3相交流電流の電流位相角及び電流量を、前記複数の3相インバータのそれぞれについて個別に決定し、
     前記複数の3相インバータのそれぞれは、前記通電制御部において決定された電流位相及び電流量で、それぞれ異なる3相巻線群に3相交流電流を供給する
    ことを特徴とする同期電動機駆動システム。
  2. 前記同期電動機は、
     複数の磁極を含み、前記複数の磁極が周方向に等間隔に配設された回転子と、
     集中巻に巻回された複数の固定子巻線を含み、前記複数の固定子巻線が周方向に並設された固定子とを備え、
     前記複数の固定子巻線は、周方向に並ぶm個単位で(mは2以上の整数)固定子巻線組を構成し、このように構成された複数の固定子巻線組は周方向に等間隔に並んでおり、
     各固定子巻線組において、m個の固定子巻線のうち少なくとも一対の隣り合う固定子巻線は、前記回転子の磁極間隔と異なる配置間隔で並び、かつ、それぞれ異なる3相巻線群に含まれることを特徴とする請求項1に記載の同期電動機駆動システム。
  3. 前記同期電動機は、
     複数の磁極を含み、前記複数の磁極が周方向に等間隔に配設された回転子と、
     複数の固定子ティースを含み、前記複数の固定子ティースが周方向に並設された固定子とを備え、
     前記複数の固定子ティースは、周方向に並ぶm個単位で(mは3以上の整数)固定子ティース組を構成し、このように構成された複数の固定子ティース組は周方向に等間隔に並んでおり、
     各固定子ティース組において、m個の固定子ティースのうち周方向に並んだ第1、第2および第3の固定子ティースは、これらの配置間隔の少なくともひとつが前記回転子の磁極間隔と異なるように配されており、
     前記第1の固定子ティースには、前記複数の3相巻線群のうちの一つに含まれる第1の固定子巻線の一部が巻回され、
     前記第3の固定子ティースには、前記複数の3相巻線群のうちの他の一つに含まれる第2の固定子巻線の一部が巻回され、
     前記第2の固定子ティースには、前記第1の固定子巻線の残余の部分と前記第2の固定子巻線の残余の部分とが巻回され、
     前記第1および第2の固定子巻線は、それぞれ異なる3相巻線群に含まれる
    ことを特徴とする請求項1に記載の同期電動機駆動システム。
  4. 前記通電制御部は、前記複数の3相インバータのうち少なくとも2つについて、互いに異なる電流位相角を決定し、前記決定された電流位相角に応じて、3相交流電流が供給される3相巻線群で生じるトルクが前記少なくとも2つの3相インバータ間で等しくなるように電流量を決定する
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  5. 前記通電制御部は、
     前記複数の3相インバータのうち少なくとも1つを、電気角2πラジアンの全区間を通じて通電する第1通電方式で動作させ、
     前記複数の3相インバータのうち少なくとも2つを、電気角2πラジアンの一部区間のみ通電する第2通電方式で動作させる
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  6. 前記同期電動機において回転子が回転駆動することにより3相巻線群で誘起される線間電圧を、前記第2通電方式で動作する3相インバータが通電しない区間内に、少なくとも1つの3相巻線群で計測し、計測した線間電圧を用いて前記回転子の位置を検出する位置検出部をさらに備え、
     前記通電制御部は、前記検出された回転子の位置に応じてインバータを制御する
    ことを特徴とする請求項5に記載の同期電動機駆動システム。
  7. 前記通電制御部は、前記少なくとも2つのインバータにおける動作を、前記同期電動機の駆動状態に応じて、前記第2通電方式から前記第1通電方式へ切り替える
    ことを特徴とする請求項5及び6の何れかに記載の同期電動機駆動システム。
  8. 前記複数の3相インバータを構成する複数のスイッチング素子が、単一のモジュール内に納められていることを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  9. 前記複数の3相インバータは複数のスイッチング素子を含んで構成され、
     前記スイッチング素子は、炭化珪素または窒化ガリウムを含むワイドバンドギャップ半導体により構成される
    ことを特徴とする請求項8に記載の同期電動機駆動システム。
  10. 前記通電制御部により決定される前記複数の3相インバータ間の電流位相角の差は可変である
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  11. 前記通電制御部は、弱め界磁制御を実施する場合に、前記複数の3相インバータのそれぞれについての前記3相交流電流の電流位相角及び電流量の個別決定を行う
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  12. 前記通電制御部は、前記同期電動機が有する永久磁石の磁界により前記3相巻線群において生じる誘起電圧が直流電源電圧を超える高速回転時に、前記複数の3相インバータのそれぞれについての前記3相交流電流の電流位相角及び電流量の個別決定を行う
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  13. 前記通電制御部は、少なくとも1つの3相インバータから出力される3相交流電流の電流位相角及び電流量に基づいて、他の3相インバータのそれぞれについて、出力させる3相交流電流の電流位相角及び電流量を個別に決定する
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  14. 前記通電制御部は、3相交流電流の電流位相角及び電流量に対して同期電動機で生じるトルクの大きさを対応付けたマップデータを有し、当該マップデータに基づいて、各3相インバータから出力される3相交流電流により生じるトルクが複数の3相インバータ間で等しくなるように、前記3相交流電流の電流位相角及び電流量の個別決定を行う
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  15. 前記同期電動機は、
     周方向に等間隔に配設された複数の磁極を含む回転子と、
     集中巻に巻回され、周方向に並設された複数の固定子巻線を含む固定子とを備え、
     前記複数の固定子巻線のうち少なくとも一対の隣り合う固定子巻線は、それぞれ異なる3相巻線群に含まれ、かつ、互いにインダクタンス値が異なり、
     前記通電制御部は、前記一対の隣り合う固定子巻線のぞれぞれが含まれる3相巻線群に3相交流電流を供給する2つの3相インバータについて、前記一対の隣り合う固定子巻線のそれぞれのインダクタンス値に応じて、前記3相交流電流の電流位相角及び電流量の個別決定を行う
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  16. 前記通電制御部は、前記一対の隣り合う固定子巻線のインダクタンス値を、それぞれの固定子巻線に対応する3相インバータから通電される3相交流電流の電流変化率から算出する
    ことを特徴とする請求項15に記載の同期電動機駆動システム。
  17. 前記同期電動機は、
     周方向に等間隔に配設された複数の磁極を含む回転子と、
     集中巻に巻回され、周方向に並設された複数の固定子巻線を含む固定子とを備え、
     前記複数の固定子巻線のうち少なくとも一対の隣り合う固定子巻線は、それぞれ異なる3相巻線群に含まれ、かつ、互いに巻回数が異なり、
     前記通電制御部は、前記一対の隣り合う固定子巻線のぞれぞれが含まれる3相巻線群に3相交流電流を供給する2つの3相インバータについて、前記一対の隣り合う固定子巻線の巻回数に基づいて、前記3相交流電流の電流量の個別決定を行う
    ことを特徴とする請求項1乃至3の何れかに記載の同期電動機駆動システム。
  18. 前記制御部は、3相インバータそれぞれの負荷状態を検出する検出手段を備え、検出手段において過負荷状態であることが検出された3相インバータの動作を停止させる
    ことを特徴とする請求項1に記載の同期電動機駆動システム。
  19. 前記制御部は、少なくとも1つの3相インバータが停止状態になった場合、停止した3相インバータから3相交流電流の供給を受ける3相巻線群で発生させるべきトルクを、他の3相巻線群で発生させるように他の3相インバータを制御する
    ことを特徴とする請求項1に記載の同期電動機駆動システム。
  20. 前記制御部は、少なくとも1つの3相インバータが停止状態になった場合、他の3相インバータも停止状態になるように制御する
    ことを特徴とする請求項1に記載の同期電動機駆動システム。
  21. 請求項1乃至20のいずれかに記載の同期電動機駆動システムを備えることを特徴とする自動車。
  22. 請求項1乃至20のいずれかに記載の同期電動機駆動システムを備えることを特徴とする電気自動車。
  23. 請求項1乃至20のいずれかに記載の同期電動機駆動システムを備えることを特徴とするハイブリッド電気自動車。
  24. 請求項1乃至20のいずれかに記載の同期電動機駆動システムを備えることを特徴とするインホイールモータ電気自動車。
PCT/JP2009/002392 2008-05-30 2009-05-29 同期電動機駆動システム WO2009144957A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/934,968 US8497648B2 (en) 2008-05-30 2009-05-29 Synchronous electric motor drive system
JP2010512027A JP4601723B2 (ja) 2008-05-30 2009-05-29 同期電動機駆動システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008142800 2008-05-30
JP2008-142800 2008-05-30

Publications (1)

Publication Number Publication Date
WO2009144957A1 true WO2009144957A1 (ja) 2009-12-03

Family

ID=41376846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002392 WO2009144957A1 (ja) 2008-05-30 2009-05-29 同期電動機駆動システム

Country Status (3)

Country Link
US (1) US8497648B2 (ja)
JP (1) JP4601723B2 (ja)
WO (1) WO2009144957A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847965A (zh) * 2010-04-28 2010-09-29 乐山华发电子科技股份有限公司 电动汽车电动机电流开关
WO2011102114A1 (ja) * 2010-02-16 2011-08-25 パナソニック株式会社 同期電動機駆動システム
CN102278294A (zh) * 2010-06-11 2011-12-14 日立空调·家用电器株式会社 容积式压缩机
FR2966301A1 (fr) * 2010-10-13 2012-04-20 Messier Bugatti Procede de gestion d'actionneurs electromecaniques a double bobinage.
WO2013054522A1 (ja) * 2011-10-13 2013-04-18 パナソニック株式会社 車両用駆動装置
JP2014113048A (ja) * 2014-03-14 2014-06-19 Mitsubishi Electric Corp 電動機のベクトル制御装置および車両駆動システム
JP2014201198A (ja) * 2013-04-04 2014-10-27 トヨタ自動車株式会社 電動パワーステアリング装置
JP2015073352A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 電力変換装置および電力変換システム
US9246428B2 (en) 2011-09-30 2016-01-26 Mitsubishi Electric Corporation Vector control device for an electric motor that controls an electric power converter that converts DC power to AC power, electric motor, vehicle drive system, and vector control method for electric motor
JP2016525857A (ja) * 2013-06-11 2016-08-25 ゲム モータース ディーオーオー モジュール式多相電動機
WO2016135858A1 (ja) * 2015-02-24 2016-09-01 三菱電機株式会社 電気車の制御装置
JP2017017914A (ja) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 電動モータの固定子及び電動モータ
JP2017063518A (ja) * 2015-09-24 2017-03-30 学校法人 東洋大学 回転電機システム
WO2017056289A1 (ja) * 2015-10-01 2017-04-06 新電元工業株式会社 始動発電装置および始動発電方法
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法
JP2017175813A (ja) * 2016-03-24 2017-09-28 株式会社デンソー 回転電機の制御装置
WO2018025331A1 (ja) * 2016-08-02 2018-02-08 三菱電機株式会社 モータ駆動装置、冷蔵庫及び空気調和機
WO2019163097A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 回転電機の制御方法、回転電機の制御装置、及び駆動システム
WO2019163098A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 回転電機の制御方法、回転電機の制御装置、及び駆動システム
JP2019165532A (ja) * 2018-03-19 2019-09-26 日産自動車株式会社 電動車両の損失制御方法、および損失制御装置
CN112389214A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
WO2023286606A1 (ja) * 2021-07-15 2023-01-19 株式会社日立製作所 回転電機、電動ホイール及び車両

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462948B (en) * 2009-10-15 2011-08-31 Protean Holdings Corp Method and system for measuring a characteristic of an electric motor
JP5341005B2 (ja) * 2010-03-29 2013-11-13 日立建機株式会社 建設機械
EP2498381B1 (en) * 2011-03-08 2018-10-10 Siemens Aktiengesellschaft Stator coil segment for an electro mechanical transducer, in particular a generator and electro mechanical transducer, in particular electric generator
JP2013143878A (ja) * 2012-01-12 2013-07-22 Panasonic Corp インバータ制御装置
JP2013143879A (ja) * 2012-01-12 2013-07-22 Panasonic Corp インバータ制御装置
KR20130109650A (ko) * 2012-03-28 2013-10-08 삼성전기주식회사 스테이터 코어 어셈블리 및 이를 구비하는 스핀들 모터
JP5922509B2 (ja) * 2012-06-29 2016-05-24 アイダエンジニアリング株式会社 永久磁石モータの制御装置
JP5590076B2 (ja) * 2012-07-04 2014-09-17 株式会社デンソー 多相回転機の制御装置
JP6429453B2 (ja) * 2013-11-26 2018-11-28 キヤノン株式会社 モータ制御装置及び画像形成装置
DE102014209868A1 (de) 2014-05-23 2015-11-26 Schaeffler Technologies AG & Co. KG Steuerverfahren und Schaltungsanordnung zum Betrieb einer Antriebsmaschine
EP2955841B1 (de) * 2014-06-13 2017-08-30 Siemens Aktiengesellschaft Motorvorrichtung mit separaten Wicklungssystemen und Mastermodul
DE102014223224A1 (de) 2014-11-13 2015-08-27 Schaeffler Technologies AG & Co. KG Antriebseinrichtung und Verfahren zum Betrieb einer Antriebseinrichtung
CN107251406B (zh) * 2015-03-09 2019-05-03 新电元工业株式会社 起动发电装置、以及起动发电方法
FR3034923B1 (fr) * 2015-04-08 2017-05-05 Valeo Equip Electr Moteur Dispositif de commande d'onduleurs et procede associe
US20170096072A1 (en) * 2015-10-01 2017-04-06 Caterpillar Inc. Induction motor for a work machine
US10348168B2 (en) * 2016-06-01 2019-07-09 Abb Schweiz Ag Inverter cell arrangement for brushless electrical machine
DE102016209989A1 (de) * 2016-06-07 2017-12-07 Heidelberger Druckmaschinen Ag Druckmaschine mit einzeln angetriebenen Zylindern
CN109314484B (zh) * 2016-06-17 2022-01-11 三菱电机株式会社 马达系统、马达驱动装置、制冷循环装置以及空气调节机
CN105896868A (zh) * 2016-06-29 2016-08-24 李勇 一种多极低速三相交流同步电动机
JP6282331B1 (ja) * 2016-10-31 2018-02-21 三菱電機株式会社 電力変換装置
EP3531554B1 (en) * 2016-11-14 2021-05-05 Mitsubishi Electric Corporation Motor control device and electric power steering control device equipped with said motor control device
EP4120515A1 (en) * 2017-02-16 2023-01-18 Mitsubishi Electric Corporation Rotary electrical machine
US10967743B2 (en) 2017-02-21 2021-04-06 Ford Global Technologies, Llc Hybrid drive system
JP6615919B2 (ja) * 2018-02-06 2019-12-04 本田技研工業株式会社 回転電機システム、及び回転電機システムを搭載した車両
DE102018211459B4 (de) * 2018-07-11 2021-10-21 Rolls-Royce Deutschland Ltd & Co Kg Luftfahrzeug-Antriebssystem
US11387764B2 (en) * 2018-07-12 2022-07-12 Zunum Aero, Inc. Multi-inverter system for electric machine
US11296569B2 (en) 2018-07-12 2022-04-05 Zunum Aero, Inc. Multi-filar coil winding for electric machine
MX2021001496A (es) * 2018-08-07 2021-07-15 Tau Motors Inc Motores electricos.
US10875450B2 (en) * 2018-09-06 2020-12-29 Ford Global Technologies, Llc Electrified vehicle and method for providing driver feedback by producing torque ripple
US11872978B2 (en) 2019-10-31 2024-01-16 Cummins Inc. Method and system for controlling a pole switch in an electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039932A (ja) * 2003-07-14 2005-02-10 Yaskawa Electric Corp 9相モータ駆動装置
JP2007151366A (ja) * 2005-11-30 2007-06-14 Hitachi Ltd モータ駆動装置及びそれを用いた自動車
JP2008043046A (ja) * 2006-08-07 2008-02-21 Aida Eng Ltd サーボモータの制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426611A (en) * 1982-04-28 1984-01-17 General Electric Company Twelve pulse load commutated inverter drive system
JP3746334B2 (ja) 1996-08-22 2006-02-15 トヨタ自動車株式会社 永久磁石型同期モータの駆動制御装置及び方法
JP3551164B2 (ja) * 2001-07-09 2004-08-04 日産自動車株式会社 回転電機の電流検出装置
JP2004064837A (ja) 2002-07-26 2004-02-26 Toyota Central Res & Dev Lab Inc モータ駆動制御装置
JP4876743B2 (ja) 2005-07-19 2012-02-15 パナソニック株式会社 水素吸蔵合金粉末およびその製造方法とそれを用いたアルカリ蓄電池
JP4876661B2 (ja) * 2006-03-24 2012-02-15 株式会社デンソー 車両用発電電動装置
JP2008092739A (ja) 2006-10-04 2008-04-17 Nissan Motor Co Ltd 電力変換装置及びその制御方法
US8002056B2 (en) * 2007-07-30 2011-08-23 GM Global Technology Operations LLC Double-ended inverter system with isolated neutral topology

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005039932A (ja) * 2003-07-14 2005-02-10 Yaskawa Electric Corp 9相モータ駆動装置
JP2007151366A (ja) * 2005-11-30 2007-06-14 Hitachi Ltd モータ駆動装置及びそれを用いた自動車
JP2008043046A (ja) * 2006-08-07 2008-02-21 Aida Eng Ltd サーボモータの制御方法

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102114A1 (ja) * 2010-02-16 2011-08-25 パナソニック株式会社 同期電動機駆動システム
US8896178B2 (en) 2010-02-16 2014-11-25 Panasonic Corporation Synchronous electric motor drive system having slit windings
CN101847965B (zh) * 2010-04-28 2011-11-30 乐山华发电子科技股份有限公司 电动汽车电动机电流开关
CN101847965A (zh) * 2010-04-28 2010-09-29 乐山华发电子科技股份有限公司 电动汽车电动机电流开关
CN102278294A (zh) * 2010-06-11 2011-12-14 日立空调·家用电器株式会社 容积式压缩机
JP2011259646A (ja) * 2010-06-11 2011-12-22 Hitachi Appliances Inc 容積形圧縮機
FR2966301A1 (fr) * 2010-10-13 2012-04-20 Messier Bugatti Procede de gestion d'actionneurs electromecaniques a double bobinage.
US9246428B2 (en) 2011-09-30 2016-01-26 Mitsubishi Electric Corporation Vector control device for an electric motor that controls an electric power converter that converts DC power to AC power, electric motor, vehicle drive system, and vector control method for electric motor
WO2013054522A1 (ja) * 2011-10-13 2013-04-18 パナソニック株式会社 車両用駆動装置
JP2013090357A (ja) * 2011-10-13 2013-05-13 Panasonic Corp 車両用駆動装置
US9379593B2 (en) 2011-10-13 2016-06-28 Panasonic Intellectual Property Management Co., Ltd. Vehicle drive device
JP2014201198A (ja) * 2013-04-04 2014-10-27 トヨタ自動車株式会社 電動パワーステアリング装置
US9742335B2 (en) 2013-06-11 2017-08-22 Gem Motors D.O.O. Modular multi-phase electric machine
JP2016525857A (ja) * 2013-06-11 2016-08-25 ゲム モータース ディーオーオー モジュール式多相電動機
JP2015073352A (ja) * 2013-10-02 2015-04-16 株式会社デンソー 電力変換装置および電力変換システム
JP2014113048A (ja) * 2014-03-14 2014-06-19 Mitsubishi Electric Corp 電動機のベクトル制御装置および車両駆動システム
WO2016135858A1 (ja) * 2015-02-24 2016-09-01 三菱電機株式会社 電気車の制御装置
JPWO2016135858A1 (ja) * 2015-02-24 2017-11-24 三菱電機株式会社 電気車の制御装置
JP2017017914A (ja) * 2015-07-03 2017-01-19 日立オートモティブシステムズエンジニアリング株式会社 電動モータの固定子及び電動モータ
JP2017063518A (ja) * 2015-09-24 2017-03-30 学校法人 東洋大学 回転電機システム
CN108141167A (zh) * 2015-10-01 2018-06-08 新电元工业株式会社 起动发电装置、以及起动发电方法
WO2017056289A1 (ja) * 2015-10-01 2017-04-06 新電元工業株式会社 始動発電装置および始動発電方法
CN108141167B (zh) * 2015-10-01 2020-08-14 新电元工业株式会社 起动发电装置、以及起动发电方法
US10355628B2 (en) 2015-10-01 2019-07-16 Shindengen Electric Manufacturing Co., Ltd. Starting power generation apparatus and starting power generation method
JPWO2017056289A1 (ja) * 2015-10-01 2018-05-24 新電元工業株式会社 始動発電装置および始動発電方法
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法
JP2017175813A (ja) * 2016-03-24 2017-09-28 株式会社デンソー 回転電機の制御装置
US10658966B2 (en) 2016-08-02 2020-05-19 Mitsubishi Electric Corporation Motor driving apparatus, refrigerator, and air conditioner
CN109478865A (zh) * 2016-08-02 2019-03-15 三菱电机株式会社 马达驱动装置、冰箱以及空气调节机
WO2018025331A1 (ja) * 2016-08-02 2018-02-08 三菱電機株式会社 モータ駆動装置、冷蔵庫及び空気調和機
JPWO2018025331A1 (ja) * 2016-08-02 2018-10-18 三菱電機株式会社 モータ駆動装置、冷蔵庫及び空気調和機
CN109478865B (zh) * 2016-08-02 2022-02-22 三菱电机株式会社 马达驱动装置、冰箱以及空气调节机
WO2019163097A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 回転電機の制御方法、回転電機の制御装置、及び駆動システム
JPWO2019163097A1 (ja) * 2018-02-23 2020-06-11 三菱電機株式会社 回転電機の制御方法、回転電機の制御装置、及び駆動システム
WO2019163098A1 (ja) * 2018-02-23 2019-08-29 三菱電機株式会社 回転電機の制御方法、回転電機の制御装置、及び駆動システム
JP2019165532A (ja) * 2018-03-19 2019-09-26 日産自動車株式会社 電動車両の損失制御方法、および損失制御装置
JP7031400B2 (ja) 2018-03-19 2022-03-08 日産自動車株式会社 電動車両の損失制御方法、および損失制御装置
CN112389214A (zh) * 2019-08-15 2021-02-23 比亚迪股份有限公司 能量转换装置及车辆
CN112389214B (zh) * 2019-08-15 2022-09-06 比亚迪股份有限公司 能量转换装置及车辆
WO2023286606A1 (ja) * 2021-07-15 2023-01-19 株式会社日立製作所 回転電機、電動ホイール及び車両

Also Published As

Publication number Publication date
JPWO2009144957A1 (ja) 2011-10-06
JP4601723B2 (ja) 2010-12-22
US20110057591A1 (en) 2011-03-10
US8497648B2 (en) 2013-07-30

Similar Documents

Publication Publication Date Title
JP4601723B2 (ja) 同期電動機駆動システム
JP4625147B2 (ja) 同期電動機駆動システム
JP5672278B2 (ja) 3相回転機の制御装置
JP5880793B1 (ja) 電動機、電動パワーステアリング装置および車両
JP5930131B2 (ja) 電動機制御装置、電動パワーステアリング装置および車両
WO2014136258A1 (ja) 多重多相巻線交流モータ、及び電動パワーステアリング装置
US20080218023A1 (en) Brushless motor and electric power steering device having brushless motor
US11283385B2 (en) Motor system provided with both motor having multiple-phase stator windings and control device controlling the motor
CN110235356B (zh) 电机及其控制装置
US9985559B2 (en) Control apparatus for rotating machine
JP5653898B2 (ja) 永久磁石モータ制御装置
CN110537325B (zh) 电机
JP4960748B2 (ja) アキシャルギャップ型モータ
US8664902B2 (en) Polyphase AC motor, driving device and driving method therefor
JP2006050709A (ja) 電動パワーステアリング装置
JP4801548B2 (ja) 車両用回転電機を搭載した車両
JP2006050705A (ja) 電動機制御装置
JP2007195387A (ja) インバータ
JP6891755B2 (ja) 多相回転機の制御装置
JP7319459B2 (ja) モータ制御装置、電動車両、およびモータ制御方法
JP2013132101A (ja) 回転電機の駆動制御装置およびこれを備えた回転電機の駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754465

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010512027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934968

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754465

Country of ref document: EP

Kind code of ref document: A1