WO2009134047A1 - 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2009134047A1
WO2009134047A1 PCT/KR2009/002205 KR2009002205W WO2009134047A1 WO 2009134047 A1 WO2009134047 A1 WO 2009134047A1 KR 2009002205 W KR2009002205 W KR 2009002205W WO 2009134047 A1 WO2009134047 A1 WO 2009134047A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
carbon
active material
amorphous
negative electrode
Prior art date
Application number
PCT/KR2009/002205
Other languages
English (en)
French (fr)
Inventor
한정민
오정훈
김종성
염철
한경희
Original Assignee
엘에스엠트론 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스엠트론 주식회사 filed Critical 엘에스엠트론 주식회사
Priority to JP2011507342A priority Critical patent/JP2011519143A/ja
Priority to US12/990,177 priority patent/US20110262812A1/en
Priority to CN2009801248444A priority patent/CN102077398A/zh
Priority to EP09738953A priority patent/EP2282367A4/en
Publication of WO2009134047A1 publication Critical patent/WO2009134047A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for lithium secondary batteries, a method for manufacturing the same, and a lithium secondary battery including the same as a negative electrode, and more particularly, to a negative electrode active material for lithium secondary battery, a method for manufacturing the same, and a negative electrode for improving electrochemical characteristics thereof. It relates to a lithium secondary battery containing.
  • Lithium secondary batteries are powered by oxidation and reduction reactions when lithium ions are inserted / desorbed from the positive electrode and the negative electrode while an organic or polymer electrolyte is charged between the negative electrode and the positive electrode made of an active material capable of inserting and removing lithium ions. To produce energy.
  • a chalcogenide compound As a cathode active material of a lithium secondary battery, a chalcogenide compound is used. Examples thereof include a complex metal oxide such as LiCoO 2 , LiMn 2 O 4 , or LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1). It is used.
  • Lithium metal is used as a negative electrode active material of a lithium secondary battery.
  • a short circuit occurs due to the formation of dendrite, which may cause an explosion.
  • lithium metal has been replaced with a carbon-based material instead of lithium metal.
  • the carbon-based active material used as the negative electrode active material of the lithium secondary battery crystalline carbon such as natural graphite and artificial graphite and amorphous carbon such as soft carbon and hard carbon are used.
  • Amorphous carbon has an advantage of large capacity, but has a problem of large irreversibility in charging and discharging.
  • natural graphite As the crystalline carbon, natural graphite is typically used, and natural graphite has excellent initial capacity and a theoretical limit capacity of 372 mAh / g, which is relatively high, but suffers from severe deterioration and low charge and discharge efficiency and cycle capacity. This problem is known to be due to the electrolyte decomposition reaction in the highly crystalline natural graphite edge portion.
  • the low-crystalline carbon is surface-treated (coated) on natural graphite and heat-treated at 1000 ° C. or higher to coat low-crystalline carbide on the surface of natural graphite, thereby reducing the initial capacity by a small amount but charging / discharging efficiency
  • a method of obtaining a negative electrode active material having improved capacity characteristics of and a long cycle has been proposed.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and provides a negative electrode active material for a lithium secondary battery having excellent electrochemical properties, a method of manufacturing the same, and a lithium secondary battery including the same as an anode even when used at a high electrode density.
  • the purpose is.
  • the negative electrode active material for a lithium secondary battery according to the present invention is a negative electrode active material for a lithium secondary battery, wherein the negative electrode active material is carbon material coated with carbon fiber (VGCF) and amorphous graphite and natural It is characterized in that it is mixed with at least one other carbon material selected from graphite, artificial graphite, amorphous coated graphite, resin coated graphite and amorphous carbon.
  • VGCF carbon fiber
  • the diameter of the carbon fiber is preferably 1 to 1000nm
  • the carbon fiber is preferably contained in 0.5 to 5 parts by weight based on 100 parts by weight of the carbon material.
  • the amorphous graphite is preferably contained in 0.5 to 10 parts by weight based on 100 parts by weight of the carbon material.
  • the carbon material coated with the carbon fiber and amorphous graphite and at least one other carbon material selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon may have a weight ratio of 95: 5 to 80:20. Preference is given to mixing in proportions.
  • a method of manufacturing a negative active material for a lithium secondary battery comprising: adding and mixing carbon fiber (Vapor Growth Carbon Fiber, VGCF) and amorphous graphite to a carbon material; And heat-treating the carbon material mixed with the carbon fiber and amorphous graphite.
  • Vapor Growth Carbon Fiber Vapor Growth Carbon Fiber, VGCF
  • the method may further include mixing one or more other carbon materials selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon with the carbon material that is heat-treated by mixing the carbon fiber and amorphous graphite. desirable.
  • a lithium secondary battery having a negative electrode containing the negative electrode active material for the lithium secondary battery.
  • FIG. 1 is a schematic process diagram of a method of manufacturing a negative active material for a lithium secondary battery according to the present invention.
  • the negative electrode active material for a secondary battery is natural graphite, which is prepared by coating carbon fiber and amorphous graphite to satisfy electrochemical characteristics such as charge and discharge efficiency and cycle characteristics even at high electrode density. It is characterized by mixing at least one carbon material selected from artificial graphite, amorphous coated graphite, resin coated graphite and amorphous carbon.
  • FIG. 1 is a schematic process diagram of a method of manufacturing a negative active material for a lithium secondary battery according to the present invention.
  • carbon fiber Vapor Growth Carbon Fiber, VGCF
  • amorphous graphite is added and mixed (S100).
  • the carbon material may be natural graphite, artificial graphite, and a mixture of the two, preferably spherical natural graphite.
  • the mixture in which carbon fibers and amorphous graphite are uniformly mixed with the carbon material is heat-treated under any one of an oxidizing atmosphere, a reducing atmosphere, and a vacuum in a temperature range of 1000 to 2500 ° C. (S200).
  • the lower limit is less than the carbonization of the amorphous graphite and the specific surface area is not small, it is not preferable, if the upper limit is exceeded, it is not preferable because the sublimation of graphite may occur.
  • the carbon fiber preferably has a diameter of 1 to 1000 nm, and preferably includes 0.5 to 5 parts by weight with respect to 100 parts by weight of the carbon material.
  • the content limit of the carbon fiber when the lower limit is less than the lower limit, it is not preferable because the effect of adding the carbon fiber, such as improved conductivity, is not preferable, and when the upper limit is exceeded, the carbon fibers are agglomerated with each other, making it difficult to disperse uniformly. .
  • the amorphous graphite is preferably contained in 0.5 to 10 parts by weight with respect to 100 parts by weight of the carbon material.
  • the content limit of the amorphous graphite if the lower limit is less than the lower limit, it is not preferable because it does not inhibit the electrolyte decomposition reaction near the edge of the natural graphite, and if the upper limit is exceeded, the capacity decrease due to excessive coating of amorphous graphite Is not desirable because it can occur.
  • the carbon material when the carbon material is coated with amorphous graphite, the carbon material is prevented from damaging the conductive path and the electrolyte solution penetration path of the electrode even when a high electrode density is used, and the conductivity of the electrode is improved to improve the charge and discharge efficiency. Electrochemical properties such as cycle characteristics are improved.
  • the carbon material coated with carbon fiber and amorphous graphite is mixed with one or more carbon materials selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon. (S300)
  • the carbon material coated with carbon fiber and amorphous graphite and at least one carbon material selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon may have a weight ratio of 95: 5 to 80:20. It is preferable to mix with. In limiting the mixing ratio of at least one carbon material selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon, when the lower limit is less than the addition effect, it is difficult to show the addition effect, which is not preferable. If exceeded, the properties of the carbon material coated with carbon fiber and amorphous graphite may be impaired, which is undesirable.
  • the conductivity of the negative electrode active material may be further improved.
  • the electrode is manufactured to prevent fracture of carbon particles due to compression (press), even when a high electrode density is used, electrochemical properties such as charge and discharge efficiency and cycle characteristics of a lithium secondary battery may be improved.
  • the present invention provides a negative electrode active material for a lithium secondary battery in which a carbon material coated with carbon fiber and amorphous graphite and at least one carbon material selected from natural graphite, artificial graphite, amorphous coated graphite, resin coated graphite, and amorphous carbon are mixed. It provides a lithium secondary battery provided with.
  • the lithium secondary battery is a secondary battery including a separator and an electrolyte interposed between a positive electrode, a negative electrode, and a positive electrode, characterized in that it comprises a negative electrode active material for a lithium secondary battery prepared by the above-described manufacturing method as a negative electrode.
  • the method of manufacturing such a secondary battery is a conventional method widely known in the art, and may be prepared by putting a porous separator between an anode and a cathode and putting an electrolyte therein.
  • the surface of the carbon material is coated with carbon fiber and amorphous graphite having a diameter of 1 to 1000 nm, and then mixed with other carbon materials, so as to have a higher electrode density than the carbon material coated with conventional amorphous graphite only.
  • the electrode can be compressed, and the charge and discharge efficiency and cycle characteristics of the lithium secondary battery can be improved.
  • VPP Vapor Growth Carbon Fiber
  • the spherical natural graphite not coated on the prepared carbon material was uniformly mixed using a 50% rotary mixer.
  • 100 g of the negative electrode active material thus prepared was put into a 500 ml reactor, an aqueous solution of carboxymethyl cellulose (CMC) and an aqueous styrene-butadiene rubber (SBR) solution were added thereto, mixed using a mixer, and coated on a copper foil at a thickness of about 100 ⁇ m. It was. The resultant was then dried and molded through roll compression.
  • the density per volume of the prepared electrode was set to 1.7 g / cm 3. In order to evaluate the manufactured electrode, a coin cell was manufactured, and charge and discharge efficiency and cycle characteristics were evaluated.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 50% of spherical natural graphite coated on its entire surface or a portion thereof was mixed with amorphous graphite.
  • a negative electrode active material was prepared in the same manner as in Example 1, except that 20% of uncoated spun natural graphite was mixed.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 30% of spherical artificial graphite was mixed.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 30% of plate-like artificial graphite was mixed.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 510% pitch and 2% carbon fiber (VGCF) were used.
  • VPP Vapor Growth Carbon Fiber
  • aqueous solution of carboxymethyl cellulose (CMC) and an aqueous styrene-butadiene rubber (SBR) solution were added thereto, mixed using a mixer, and coated on a copper foil at a thickness of about 100 ⁇ m. It was. The resultant was then dried and molded through roll compression.
  • the density per volume of the prepared electrode was set to 1.7 g / cm 3. In order to evaluate the manufactured electrode, a coin cell was manufactured, and charge and discharge efficiency and cycle characteristics were evaluated.
  • a negative electrode active material was evaluated in the same manner as in Comparative Example 1 except that only 5% pitch was mixed and coated on spherical natural graphite.
  • a negative electrode active material was evaluated in the same manner as in Comparative Example 2, except that 50% of spherical natural graphite which was not coated was mixed.
  • a negative electrode active material was evaluated in the same manner as in Comparative Example 3, except that 20% of uncoated spun natural graphite was mixed.
  • the charge / discharge test regulates the potential in the range of 0 to 1.5V to charge until the charging current is 0.5V / cm 2 until it becomes 0.01V, and maintains the voltage of 0.01V until the charging current becomes 0.02mA / cm 2. Charging continued. The discharge current was discharged up to 1.5V at 0.5 mA / cm 2.
  • the carbon fiber is uniformly dispersed in the carbon material, coated with amorphous graphite, and then mixed with the other carbon material, even if a high electrode density is used. It can be seen that the electrochemical properties such as charge and discharge efficiency and cycle characteristics of the battery are improved.
  • the anode active material when the anode active material is manufactured, carbon fibers are uniformly dispersed, coated with amorphous graphite, and then mixed with other carbon materials to realize higher electrode density. Therefore, even when used at a high electrode density, it is possible to provide a negative electrode active material having excellent electrochemical characteristics such as charge and discharge efficiency and cycle characteristics of a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 포함하는 리튬 이차 전지에 관한 것으로서, 본 발명에 따른 음극 활물질은 리튬 이차 전지용 음극 활물질에 있어서, 음극 활물질은 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료와 혼합하여 이루어진 것을 특징으로 한다. 본 발명에 따르면, 음극 활물질 제조 시 탄소재료에 탄소섬유를 균일하게 분산하여 비정질 흑연과 함께 피복한 후 다른 탄소재료와 혼합함으로써, 더욱 향상된 고전극밀도를 구현할 수 있다. 따라서, 높은 전극밀도로 사용한 경우에도 리튬 이차 전지의 충방전 효율이나 사이클 특성과 같은 전기화학적 특성이 우수한 음극 활물질을 제공할 수 있다.

Description

리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
본 발명은 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지에 관한 것으로서, 보다 상세하게는 전기화학적 특성을 향상시킬 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지에 관한 것이다.
최근 PDA, 이동전화, 노트북 컴퓨터 등 정보통신을 위한 휴대용 전자 기기나 전기 자전거, 전기 자동차 등의 전원으로 충전과 방전을 거듭하며 사용하는 이차 전지의 수요가 급격하게 증가하고 있다. 특히, 휴대용 전자 기기나 전기 자동차와 같은 제품들의 성능은 핵심부품인 이차 전지에 의해 좌우되기 때문에 고성능 전지에 대한 요구는 대단히 크다. 이차 전지에 요구되는 특성은 충방전 특성, 수명, 고율특성과 고온에서의 안정성 등 여러 가지 측면이 있다. 리튬 이차 전지는 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이다.
리튬 이차 전지는 리튬 이온의 삽입 및 탈리가 가능한 활물질로 이루어진 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화, 환원 반응에 의해 전기 에너지를 생산한다.
리튬 이차 전지의 양극 활물질로는 칼코게나이드(chalcogenide) 화합물이 사용되고 있으며, 그 예로 LiCoO2, LiMn2O4, LiNi1-xCoxO2(0<x<1) 등의 복합 금속 산화물이 사용되고 있다.
리튬 이차 전지의 음극 활물질로는 리튬 금속을 사용하였으나, 리튬 금속을 사용할 경우 덴드라이트(dendrite) 형성으로 인한 전지 단락이 발생하여 폭발의 위험성이 있어 최근에는 리튬 금속 대신 탄소계 물질로 대체되어 가고 있다. 리튬 이차 전지의 음극 활물질로 사용되는 탄소계 활물질에는, 천연 흑연(graphite) 및 인조 흑연과 같은 결정질계 탄소와 소프트 카본(soft carbon) 및 하드 카본(hard carbon)과 같은 비정질계 탄소가 사용되고 있다.
비정질계 탄소는 용량이 큰 장점이 있지만, 충방전 과정에서 비가역성이 크다는 문제점이 있다.
결정질계 탄소는 천연 흑연이 대표적으로 사용되고 있으며, 천연 흑연은 초도 용량이 우수하고 이론 한계 용량이 372㎃h/g으로 비교적 높은 편이나, 열화가 심하고 충방전 효율과 사이클 용량이 떨어지는 문제점이 있다. 이러한 문제는 고결정성의 천연 흑연 에지(edge) 부분에서의 전해액 분해반응에 기인하는 것으로 알려져 있다.
이러한 문제점을 극복하기 위해, 천연 흑연에 저결정성 탄소를 표면처리(피복)하고 이를 1000℃ 이상에서 열처리하여 천연 흑연 표면에 결정성이 낮은 탄화물을 피복함으로써, 초도 용량은 소량 감소하나 충방전 효율과 장기 사이클의 용량 특성이 개선된 음극 활물질을 얻는 방법이 제시되었다.
또한, 효율과 사이클 용량 특성을 개선하기 위해, 천연 흑연에 비정질 흑연을 표면처리하고 다른 흑연과 혼합한 음극 활물질을 얻는 방법이 제시되었다.
그러나, 음극 활물질 제조 시 천연 흑연에 저결정성 탄소나 비정질 흑연을 표면처리하여도 1.7g/cc 이상의 고전극밀도를 구현할 수 없기 때문에 고용량임과 동시에 사이클 용량 특성을 충분히 만족시킬 수 없다는 문제점이 있다.
따라서, 전술한 종래 기술의 문제점을 해결하기 위한 노력이 관련 업계에서 지속되어 왔으며, 이러한 기술적 배경하에서 본 발명이 안출되었다.
본 발명은 상술한 종래기술의 문제점을 해결하기 위하여 창안된 것으로서, 높은 전극밀도로 사용한 경우에도 전기화학적 특성이 우수한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 구성의 조합에 의해 실현될 수 있다.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 리튬 이차 전지용 음극 활물질은 리튬 이차 전지용 음극 활물질에 있어서, 상기 음극 활물질은 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료와 혼합하여 이루어진 것을 특징으로 한다.
또한, 상기 탄소섬유의 직경은 1 내지 1000㎚인 것이 바람직하며, 상기 탄소섬유는 상기 탄소재료 100 중량부에 대해 0.5 내지 5 중량부로 포함된 것이 바람직하다.
아울러, 상기 비정질 흑연은 상기 탄소재료 100 중량부에 대해 0.5 내지 10 중량부로 포함된 것이 바람직하다.
한편, 상기 탄소섬유 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료는 중량비로 95:5 내지 80:20의 비율로 혼합된 것이 바람직하다.
본 발명의 다른 측면에 따른 리튬 이차 전지용 음극 활물질의 제조방법은 리튬 이차 전지용 음극 활물질의 제조방법에 있어서, 탄소재료에 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연을 첨가하여 혼합하는 단계; 및 상기 탄소섬유 및 비정질 흑연이 혼합된 탄소재료를 열처리하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 탄소섬유 및 비정질 흑연이 혼합되어 열처리된 탄소재료에 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료를 혼합하는 단계를 더 포함하는 것이 바람직하다.
한편, 본 발명의 또 다른 측면에 따르면 상기한 리튬 이차 전지용 음극 활물질을 포함하는 음극을 가지는 리튬 이차 전지를 제공한다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명에 따른 리튬 이차 전지용 음극 활물질 제조방법의 개략적인 공정도이다.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 바람직한 실시예에 따른 이차 전지용 음극 활물질은, 높은 전극밀도에서도 충방전 효율이나 사이클 특성과 같은 전기화학적 특성을 만족시키기 위해, 탄소섬유와 비정질흑연으로 피복하여 제조된 천연흑연에 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료를 혼합하는 것을 특징으로 한다.
도 1은 본 발명에 따른 리튬 이차 전지용 음극 활물질 제조방법의 개략적인 공정도이다.
도 1을 참조하여 본 발명에 따른 리튬 이차 전지용 음극 활물질의 제조방법을 설명하면 다음과 같다.
먼저, 탄소재료에 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연을 첨가하여 혼합한다(S100). 여기서, 탄소재료는 천연흑연, 인조흑연 및 이 둘의 혼합물이 될 수 있으며, 바람직하게는 구형의 천연흑연을 사용할 수 있다.
이어서, 탄소재료에 탄소섬유와 비정질 흑연이 균일하게 혼합된 혼합물을 1000 내지 2500℃의 온도 범위에서 산화성 분위기, 환원성 분위기 및 진공상태 중 어느 한 상태하에서 열처리한다(S200). 상기 열처리 온도범위에 있어서, 상기 하한가 미만일 경우에는 비정질 흑연의 탄소화가 되지 않고 비표면적이 작아지지 않아 바람직하지 않으며, 상기 상한가를 초과할 경우에는 흑연의 승화가 발생할 수 있어 바람직하지 않다.
상기 탄소섬유는 직경이 1 내지 1000㎚인 것이 바람직하며, 탄소재료 100 중량부에 대해 0.5 내지 5 중량부로 포함되는 것이 바람직하다. 상기 탄소섬유의 함량한정에 있어서, 상기 하한가 미만일 경우에는 도전성 향상 등 탄소섬유를 첨가한 효과가 나타나기 어려워 바람직하지 않으며, 상기 상한가를 초과할 경우에는 탄소섬유가 서로 뭉쳐 균일한 분산이 어려워 바람직하지 않다.
상기 비정질 흑연은 탄소재료 100 중량부에 대해 0.5 내지 10 중량부로 포함된 것이 바람직하다. 상기 비정질 흑연의 함량한정에 있어서, 상기 하한가 미만일 경우에는 천연흑연 에지(edge) 부근에서의 전해액 분해반응을 억제하지 못하여 바람직하지 않으며, 상기 상한가를 초과할 경우에는 과도한 비정질 흑연의 피복으로 인한 용량 저하가 발생할 수 있기 때문에 바람직하지 않다.
이와 같이, 탄소재료에 탄소섬유를 비정질 흑연과 함께 피복되면, 높은 전극밀도를 사용한 경우에도 전극의 도전 경로와 전해질 용액 침투 경로가 손상되는 현상을 방지하고, 전극의 도전성을 향상시켜 충방전 효율이나 사이클 특성과 같은 전기화학적 특성이 향상된다.
다음으로, 탄소섬유 및 비정질 흑연으로 피복된 탄소재료에 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연, 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료를 혼합한다.(S300)
여기서, 탄소섬유 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연, 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료는 중량비로 95:5 내지 80:20의 비율로 혼합된 것이 바람직하다. 상기 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연, 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료의 혼합비율 한정에 있어서, 상기 하한가 미만일 경우에는 첨가 효과가 나타나기 어려워 바람직하지 않으며, 상기 상한가를 초과할 경우에는 탄소섬유 및 비정질 흑연으로 피복된 탄소재료의 특성이 손상될 수 있어 바람직하지 않다.
이렇게 탄소섬유 및 비정질 흑연으로 피복된 탄소재료에 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료를 혼합하게 되면 음극 활물질의 도전성을 더욱 향상 시킬 수 있다. 또한, 전극 제조 시 압축(press)으로 인한 탄소입자의 파쇄를 방지하여 높은 전극밀도를 사용한 경우에도 리튬 이차 전지의 충방전 효율이나 사이클 특성과 같은 전기화학적 특성을 향상 시킬 수 있다.
한편, 본 발명은 탄소섬유 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 탄소재료가 혼합된 리튬 이차전지용 음극 활물질을 음극으로 구비하는 리튬 이차 전지를 제공한다. 상기 리튬 이차 전지는 양극, 음극, 양 전극 사이에 개재된 분리막 및 전해질을 포함하는 이차 전지에 있어서, 전술한 제조방법에 의하여 제조된 리튬 이차전지용 음극 활물질을 음극으로 구비하는 것을 특징으로 한다.
이러한 이차 전지의 제조 방법은 당해 기술 분야에서 널리 알려져 있는 통상적인 방법으로서, 양극과 음극 사이에 다공성 분리막을 넣고 전해질을 투입하여 제조할 수 있다.
상술한 바와 같이, 음극 활물질 제조 시 탄소재료의 표면을 직경이 1 내지 1000㎚인 탄소섬유와 비정질 흑연으로 피복한 후 다른 탄소재료와 혼합함으로써, 종래의 비정질 흑연만으로 피복한 탄소재료보다 고전극밀도로 전극을 압축할 수 있고, 리튬 이차 전지의 충방전 효율 및 사이클 특성을 향상시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(1~6)와 이에 대비되는 비교예(1~3)를 통하여 보다 구체적으로 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어 져서는 아니된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예 1
구상의 천연흑연에 5중량%의 피치와 2중량%의 탄소섬유(Vapor Growth Carbon Fiber, VGCF)를 고속으로 약 10분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1100℃와 2200℃에서 각각 1시간 동안 1, 2차 소성하였다. 그리고 나서, 분급하고 미분을 제거하여 피치와 탄소섬유가 균일하게 피복된 탄소재료를 제조하였다.
상기 제조된 탄소재료에 피복이 되지 않은 구상의 천연흑연을 50% 회전식 혼합기를 이용하여 균일하게 혼합하였다. 이렇게 제조된 음극 활물질 100g을 500ml 반응기에 넣고 카복시메틸 셀룰로오스(CMC) 수용액과 스티렌-부타디엔 고무(SBR) 수분산액을 투입한 후, 믹서를 이용하여 혼합하고, 약 100㎛ 두께로 구리호일상에 도포하였다. 이후, 결과물을 건조하고 롤압축을 통해 성형하였다. 제조된 전극의 부피당 밀도는 1.7g/㎤가 되도록 하였다. 제조된 전극을 평가하기 위해 코인전지(coincell)를 제조하고 충,방전 효율과 사이클 특성을 평가하였다.
실시예 2
비정질 흑연으로 그 전면 또는 일부가 피복된 구상의 천연흑연을 50% 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 3
피복되지 않은 편형의 천연흑연을 20% 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 4
구상의 인조흑연을 30% 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 5
판상의 인조흑연을 30% 혼합한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
실시예 6
510%의 피치와 2%의 탄소섬유(VGCF)를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다.
비교예 1
구상의 천연흑연에 5중량%의 피치와 2중량%의 탄소섬유(Vapor Growth Carbon Fiber, VGCF)를 고속으로 약 10분 건식 혼합하여 혼합물을 제조하고, 이 혼합물을 1100℃와 2200℃에서 각각 1시간 동안 1, 2차 소성하였다. 그리고 나서, 분급하고 미분을 제거하여 비정질 흑연으로 피복된 리튬 이차 전지용 음극 활물질을 제조하였다.
상기 제조된 음극 활물질 100g을 500ml 반응기에 넣고 카복시메틸 셀룰로오스(CMC) 수용액과 스티렌-부타디엔 고무(SBR) 수분산액을 투입한 후, 믹서를 이용하여 혼합하고, 약 100㎛ 두께로 구리호일상에 도포하였다. 이후, 결과물을 건조하고 롤압축을 통해 성형하였다. 제조된 전극의 부피당 밀도는 1.7g/㎤가 되도록 하였다. 제조된 전극을 평가하기 위해 코인전지(coincell)를 제조하고 충,방전 효율과 사이클 특성을 평가하였다.
비교예 2
구상의 천연흑연에 5%의 피치만을 혼합, 피복한 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 음극 활물질을 평가하였다.
비교예 3
피복되지 않은 구형의 천연흑연을 50% 혼합한 것을 제외하고, 상기 비교예 2와 동일한 방법으로 음극 활물질을 평가하였다.
비교예 4
피복되지 않은 편형의 천연흑연을 20% 혼합한 것을 제외하고, 상기 비교예 3과 동일한 방법으로 음극 활물질을 평가하였다.
상기 실시예(1~6)와 비교예(1~4)에서 제조된 코인전지를 이용하여 충/방전 특성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
전지특성 평가
상기 실시예 1 내지 6와 비교예 1 및 4에 제조된 코인전지에 대하여 충,방전 시험을 수행하였다. 충/방전 시험은 전위를 0∼1.5V의 범위로 규제하여 충전 전류 0.5㎃/㎠로 0.01V가 될 때까지 충전하고, 0.01V의 전압을 유지하며 충전전류가 0.02㎃/㎠가 될 때까지 충전을 계속하였다. 그리고, 방전전류는 0.5㎃/㎠로 1.5V까지의 방전을 행하였다.
이러한 실험 결과를 하기 표 1에 나타내었으며, 표에서 충방전 효율은 충전한 전기용량에 대해 방전한 전기용량의 비율을 나타낸다.
표 1
1st Cycle 방전용량(mAh/g) 1st Cycle 효율(%) 30 Cycle 용량유지율(%)
실시예1 356.7 94.0 93.3
실시예2 355.3 94.2 94.5
실시예3 357.1 93.8 93.9
실시예4 356.4 93.9 94.1
실시예5 354.8 94.1 92.8
실시예6 355.9 93.8 93.3
비교예1 350.4 92.1 80.5
비교예2 347.5 91.0 75.1
비교예3 348.2 90.5 73.7
비교예4 347.1 90.8 74.1
상기 표 1로부터 알 수 있는 바와 같이, 전반적으로 본 발명에 따른 음극 활물질을 이용한 코인전지가 종래의 음극 활물질을 이용한 비교예 1~4의 코인전지에 비해 높은 전극밀도를 사용한 경우에도 우수한 충방전 효율 및 사이클 특성을 나타내었다.
이와 같이, 상기 실시예(1~6)로부터 음극 활물질 제조시 탄소재료에 탄소섬유를 균일하게 분산하여 비정질 흑연과 함께 피복한 후 다른 탄소재료와 혼합하게 되면, 높은 전극밀도를 사용한 경우에도 리튬 이차 전지의 충방전 효율이나 사이클 특성과 같은 전기화학적 특성이 향상됨을 확인할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나,본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 발명에 따르면, 음극 활물질 제조 시 탄소재료에 탄소섬유를 균일하게 분산하여 비정질 흑연과 함께 피복한 후 다른 탄소재료와 혼합함으로써, 더욱 향상된 고전극밀도를 구현할 수 있다. 따라서, 높은 전극밀도로 사용한 경우에도 리튬 이차 전지의 충방전 효율이나 사이클 특성과 같은 전기화학적 특성이 우수한 음극 활물질을 제공할 수 있다.

Claims (8)

  1. 리튬 이차 전지용 음극 활물질에 있어서,
    상기 음극 활물질은 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료와 혼합하여 이루어진 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.
  2. 제 1항에 있어서,
    상기 탄소섬유의 직경은 1 내지 1000㎚인 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.
  3. 제 2항에 있어서,
    상기 탄소섬유는 상기 탄소재료 100 중량부에 대해 0.5 내지 5 중량부로 포함된 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.
  4. 제 1항에 있어서,
    상기 비정질 흑연은 상기 탄소재료 100 중량부에 대해 0.5 내지 10 중량부로 포함된 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.
  5. 제 1항에 있어서,
    상기 탄소섬유 및 비정질 흑연으로 피복된 탄소재료와 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료는 중량비로 95:5 내지 80:20의 비율로 혼합된 것을 특징으로 하는 리튬 이차 전지용 음극 활물질.
  6. 리튬 이차 전지용 음극 활물질의 제조방법에 있어서,
    탄소재료에 탄소섬유(Vapor Growth Carbon Fiber, VGCF) 및 비정질 흑연을 첨가하여 혼합하는 단계; 및
    상기 탄소섬유 및 비정질 흑연이 혼합된 탄소재료를 열처리하는 단계;를 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조방법.
  7. 제 6항에 있어서,
    상기 탄소섬유 및 비정질 흑연이 혼합되어 열처리된 탄소재료에 천연흑연, 인조흑연, 비정질 피복 흑연, 수지 피복 흑연 및 비정질 탄소 중에서 선택되는 1종 이상의 다른 탄소재료를 혼합하는 단계;를 더 포함하는 것을 특징으로 하는 리튬 이차 전지용 음극 활물질의 제조 방법.
  8. 제 1항 내지 제 7항 중 어느 한 항에 따른 음극 활물질을 포함하는 음극을 가지는 리튬 이차 전지.
PCT/KR2009/002205 2008-04-29 2009-04-28 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지 WO2009134047A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011507342A JP2011519143A (ja) 2008-04-29 2009-04-28 リチウム二次電池用負極活物質、その製造方法、及びそれを負極として含むリチウム二次電池
US12/990,177 US20110262812A1 (en) 2008-04-29 2009-04-28 Negative electrode active material for lithium secondary battery, preparation method of the same, and lithium secondary battery containing the same
CN2009801248444A CN102077398A (zh) 2008-04-29 2009-04-28 锂二次电池用阴极活性物质及其制造方法,以及以该阴极活性物质为阴极的锂二次电池
EP09738953A EP2282367A4 (en) 2008-04-29 2009-04-28 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING SAID MATERIAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020080039833A KR101031920B1 (ko) 2008-04-29 2008-04-29 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를음극으로 포함하는 리튬 이차 전지
KR10-2008-0039833 2008-04-29

Publications (1)

Publication Number Publication Date
WO2009134047A1 true WO2009134047A1 (ko) 2009-11-05

Family

ID=41255207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002205 WO2009134047A1 (ko) 2008-04-29 2009-04-28 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20110262812A1 (ko)
EP (1) EP2282367A4 (ko)
JP (1) JP2011519143A (ko)
KR (1) KR101031920B1 (ko)
CN (1) CN102077398A (ko)
WO (1) WO2009134047A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103618087B (zh) * 2013-11-21 2015-12-30 骆军 锂离子电池用复合石墨材料的制备方法
JP6492407B2 (ja) * 2014-03-25 2019-04-03 三菱ケミカル株式会社 非水系二次電池負極用炭素材、及び、非水系二次電池
KR101685832B1 (ko) * 2014-07-29 2016-12-12 주식회사 엘지화학 흑연 2차 입자 및 이를 포함하는 리튬 이차전지
CN104681860B (zh) * 2015-02-09 2017-03-01 惠州市豪鹏科技有限公司 一种可快速充放电的高电压锂离子电池及其制备方法
KR101640392B1 (ko) * 2015-02-13 2016-07-18 (주)포스코켐텍 리튬 이차 전지용 음극 활물질의 제조 방법
CN104916825A (zh) * 2015-06-26 2015-09-16 田东 一种锂电池高电压改性负极材料的制备方法
KR102426797B1 (ko) 2018-04-04 2022-07-29 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 음극, 및 리튬 이차전지
WO2020110943A1 (ja) * 2018-11-26 2020-06-04 昭和電工株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020110942A1 (ja) * 2018-11-26 2020-06-04 昭和電工株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040473A (ko) * 2001-09-25 2004-05-12 쇼와 덴코 가부시키가이샤 탄소재료, 그 제조방법 및 용도
KR20060069738A (ko) * 2004-12-18 2006-06-22 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR20070087866A (ko) * 2006-01-03 2007-08-29 엘에스전선 주식회사 2차 전지용 음극재 및 이를 이용한 2차 전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131508A (ja) * 1997-07-09 1999-02-02 Matsushita Electric Ind Co Ltd 非水電解液二次電池
KR19990030823A (ko) * 1997-10-06 1999-05-06 손욱 리튬 이온 이차 전지용 음극 활물질, 이를 사용하여 제조한 음극판 및 리튬 이온 이차 전지
JPH11204107A (ja) 1998-01-13 1999-07-30 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
US6733922B2 (en) * 2001-03-02 2004-05-11 Samsung Sdi Co., Ltd. Carbonaceous material and lithium secondary batteries comprising same
JP4040606B2 (ja) * 2003-06-06 2008-01-30 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2005340157A (ja) * 2004-04-26 2005-12-08 Sanyo Electric Co Ltd 非水電解質二次電池
JP5225690B2 (ja) * 2005-12-21 2013-07-03 昭和電工株式会社 複合黒鉛粒子及びそれを用いたリチウム二次電池
JP4989114B2 (ja) * 2006-06-02 2012-08-01 日本カーボン株式会社 リチウム二次電池用負極及び負極活物質

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040040473A (ko) * 2001-09-25 2004-05-12 쇼와 덴코 가부시키가이샤 탄소재료, 그 제조방법 및 용도
KR20060069738A (ko) * 2004-12-18 2006-06-22 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR20070087866A (ko) * 2006-01-03 2007-08-29 엘에스전선 주식회사 2차 전지용 음극재 및 이를 이용한 2차 전지

Also Published As

Publication number Publication date
KR101031920B1 (ko) 2011-05-02
US20110262812A1 (en) 2011-10-27
CN102077398A (zh) 2011-05-25
JP2011519143A (ja) 2011-06-30
EP2282367A1 (en) 2011-02-09
EP2282367A4 (en) 2012-01-04
KR20090114066A (ko) 2009-11-03

Similar Documents

Publication Publication Date Title
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
KR101445692B1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 음극으로 포함하는 리튬 이차 전지
WO2014119960A1 (ko) 구형 천연 흑연을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
WO2011062422A2 (ko) 리튬 이차전지용 음극 합제 및 이를 사용한 리튬 이차전지
KR101972187B1 (ko) 배터리 전극을 위한 구조적으로 안정한 활성 물질
WO2014042485A1 (ko) 개선된 전기화학 특성을 갖는 리튬이차전지 및 이의 제조방법
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
WO2013180411A1 (ko) 규소계 물질과 탄소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2010137753A1 (ko) 리튬 이차전지용 음극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
KR101626026B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2015099243A1 (ko) 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자
KR100758383B1 (ko) 리튬/유황이차전지용 탄소 코팅 유황전극
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2016153136A1 (ko) 이차 전지용 음극 활물질, 그리고 이를 포함하는 음극, 전극 조립체 및 이차전지
WO2009131303A1 (ko) 2차 전지용 음극 활물질, 이를 포함하는 2차 전지용 전극, 2차 전지 및 그 제조 방법
WO2014133372A1 (ko) 리튬 황 전지용 양극 및 이를 포함하는 리튬 황 전지
CN1120537C (zh) 二次电池
WO2018155746A1 (ko) 고비표면적의 니켈-코발트-망간 복합전구체의 제조 방법
WO2009131332A1 (ko) 리튬 이차전지용 탄소 음극재 및 그 제조방법과 이를 이용한 리튬 이차전지
WO2014193187A1 (ko) 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
CN100338795C (zh) 锂二次电池用负极及其制造方法以及使用其的锂二次电池
WO2015080357A1 (ko) 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법
WO2013183848A1 (ko) 리튬 이차 전지용 전극, 이의 형성 방법 및 리튬 이차 전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2011090235A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980124844.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09738953

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507342

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009738953

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12990177

Country of ref document: US