WO2015080357A1 - 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법 - Google Patents

리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2015080357A1
WO2015080357A1 PCT/KR2014/004177 KR2014004177W WO2015080357A1 WO 2015080357 A1 WO2015080357 A1 WO 2015080357A1 KR 2014004177 W KR2014004177 W KR 2014004177W WO 2015080357 A1 WO2015080357 A1 WO 2015080357A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
sulfur battery
protective film
lithium
electrode
Prior art date
Application number
PCT/KR2014/004177
Other languages
English (en)
French (fr)
Inventor
김철환
홍영진
정민영
최경린
김병주
박범우
Original Assignee
주식회사 오렌지파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 오렌지파워 filed Critical 주식회사 오렌지파워
Publication of WO2015080357A1 publication Critical patent/WO2015080357A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium sulfur battery including a lithium sulfur battery electrode protective film and a manufacturing method thereof, and more particularly to a lithium sulfur battery including a lithium sulfur battery electrode protective film capable of preventing the lithium polysulfide from eluting into an electrolyte solution. And to a method for producing the same.
  • the lithium sulfur battery is a secondary battery using a sulfur-based compound having a sulfur-sulfur bond as a positive electrode active material, and using an alkali metal such as lithium as a negative electrode active material.
  • the reduction reaction discharged
  • the SS bond is broken and the oxidation number of S decreases.
  • the oxidation reaction discharged
  • the oxidation-reduction reaction of the SS bond is formed by increasing the oxidation number of S and the electrical energy is stored and stored.
  • the lithium sulfur battery has an energy density of 3830 mAh / g when using lithium metal used as a negative electrode active material, and an energy density of 1675 mAh / g when using sulfur (S 8 ) used as a positive electrode active material. It is the most promising cell in terms of energy density.
  • the sulfur-based material used as the positive electrode active material has the advantage that it is cheap and environmentally friendly material.
  • lithium sulfur battery system there is no example of successful commercialization with a lithium sulfur battery system.
  • sulfur is leaked into the electrolyte during the oxidation-reduction reaction, thereby deteriorating the battery life, and when a suitable electrolyte is not selected, lithium polysulfide, which is a reducing substance of sulfur, is precipitated and no longer participates in the electrochemical reaction. Because. When lithium polysulfide is eluted and diffused from the sulfur anode, the amount of sulfur participating in the reaction at the anode decreases out of the electrochemical reaction region of the anode, resulting in capacity loss.
  • the dissolution of the polysulfide increases the viscosity of the electrolyte solution to reduce the life characteristics and to increase the electrical conductivity has a bad effect on the self discharge characteristics.
  • polysulfide reacts with lithium metal due to continuous charge / discharge reaction, thereby causing Li 2 S to adhere to the lithium metal surface, thereby lowering reaction activity and deteriorating dislocation characteristics.
  • An object of the present invention is to provide a lithium sulfur battery including a lithium sulfur battery electrode protective film capable of preventing the lithium polysulfide from being eluted with an electrolyte solution in order to solve the problems of the prior art as described above.
  • Another object of the present invention is to provide a method for producing a lithium sulfur battery including the lithium sulfur battery electrode protective film.
  • the present invention to solve the above problems,
  • a separator positioned between the positive electrode and the negative electrode
  • R 1 and R 2 are each independently (CH 2 ) n , n is 1 to 5, Y is any one selected from hydroxy group, aldehyde group, carboxyl group, amide group, cyan group M1 and m2 are integers from 1 to 1000)
  • the lithium sulfur battery electrode protective film according to the present invention includes a compound, a polymer, or an oligomer including a disulfide bond represented by Formula 1 or 2, and the compound prevents the polysulfide from eluting into the electrolyte.
  • the functional group represented by Y of the compound improves conductivity of lithium ions to facilitate diffusion of lithium ions.
  • the lithium sulfur battery of the present invention is characterized in that an XPS peak representing a binding energy of S (2P3 / 2) is represented at 162 to 164 eV by the polymer including the disulfide bond.
  • the present invention also provides
  • Forming a battery cell including the electrode and the separator It provides a method for producing a lithium sulfur battery comprising an electrode protective film according to the invention comprising a.
  • R 1 and R 2 are each independently (CH 2 ) n , n is 1 to 5, Y is any one selected from hydroxy group, aldehyde group, carboxyl group, amide group, cyan group )
  • Two thiol (-SH) groups and SS groups of the compound of Formula 3 or 4 included in the electrode protective film composition may be oxidized in the heat treatment step to form disulfide bonds.
  • an oligomer or polymer represented by Formula 1 or Formula 2 including a disulfide bond may be generated.
  • the compound represented by the formula (3) is characterized in that the alpha lipoic acid ( ⁇ -lipoic acid) represented by the formula (5) below.
  • activating the compound represented by Formula 3 or 4 applied to the surface of the electrode or separator activating the compound represented by Formula 3 or 4 applied to the surface of the electrode or separator.
  • a heat treatment or an appropriate voltage may be applied to activate the compound represented by Formula 3 or 4 above.
  • alpha-lipoic acid represented by Chemical Formula 5 forms a thiol compound through a ring-opening reaction as follows, and then by an ionic polymerization reaction as follows. To form disulfide polymers.
  • the two thiol (-SH) groups included in Chemical Formula 4 may form disulfide bonds while being oxidized upon application of an activation voltage for initial charging and discharging. Oligomers or polymers can be produced that include disulfide bonds.
  • the compound represented by the formula (3) or (4) in the step of preparing a composition for a lithium sulfur battery electrode protective film comprising a compound and a solvent represented by the formula (3) or 4 It is characterized in that it is included in a ratio of 1 to 20% by weight based on 100 parts by weight of the composition for lithium sulfur battery electrode protective film.
  • the heat treatment step of activating the compound represented by the formula (3) or 4 applied to the surface of the electrode or separator is characterized in that the heat treatment at 70 to 150 °C.
  • the lithium sulfur battery including a protective film for a lithium sulfur battery electrode according to the present invention includes an electrode protective film containing an oligomer or a polymer containing an SS bond, and the lithium sulfur battery including the protective film is a protective film of lithium polysulfide. It is possible to improve the initial charge and discharge efficiency and life characteristics by preventing the eluted to the electrolyte solution.
  • FIG. 1 shows charge and discharge characteristics of a lithium sulfur battery manufactured according to one embodiment and a comparative example of the present invention.
  • Figure 2 shows the life characteristics of the lithium sulfur battery prepared by one embodiment and comparative example of the present invention.
  • Figure 3 shows the result of measuring the XPS of the lithium sulfur battery including the electrode protective film prepared according to an embodiment of the present invention.
  • the slurry was coated on a carbon-coated aluminum current collector, and the slurry-coated current collector was dried in a vacuum oven at 60 ° C. for at least 12 hours to prepare a positive electrode plate of 0.65 mAh / cm 2 having a ⁇ 14 size.
  • alpha lipoic acid ( ⁇ -lipoic acid)
  • a solvent mixed with 1,3-dioxolane and dimethoxyethane in a ratio of 1: 1 in an electrode protective composition, and coated on the surface of the positive electrode plate After that, heat treatment was performed at 70 ° C. to activate the alpha lipoic acid.
  • a lithium sulfur battery was manufactured using the positive electrode plate and the lithium foil negative electrode. At this time, 1M LiTFSI was dissolved in 1,3-dioxolane and dimethoxyethane at a ratio of 1: 1 as an electrolyte solution.
  • a lithium sulfur battery of Comparative Example 1 was prepared in the same manner as in Example 1, except that alpha-lipoic acid was not added to the electrolyte.
  • Example 1 After charging and discharging the lithium sulfur battery prepared in Example 1 and Comparative Example 1 10 times, 50 times, and 100 times at 0.5C, the battery was disassembled and the electrolyte in the battery was diluted 30 times with dimethoxyethane (DME) solution.
  • DME dimethoxyethane
  • the absorbance of the electrolyte varies depending on the polysulfide eluted with the electrolyte.
  • the absorbance was measured at 405 nm of the diluted solution using a UV-Visible Spectrophotometer to measure the concentration of the polysulfide eluted in the electrolyte. Table 1 below.
  • X-ray photoelectron spectroscopy determined whether alpha lipoic acid ( ⁇ -lipoic acid) added to the positive electrode active material slurry in the lithium sulfur battery prepared in Example 1 and Comparative Example 1 formed a polymer by a polymerization reaction. The binding energy distribution was measured and the results are shown in FIG. 3.
  • a polymer is formed by a polymerization reaction, and peaks are detected in the range of 160 to 165 eV due to S-S bonding.
  • the protective film for a lithium sulfur battery electrode according to the present invention includes an oligomer or a polymer containing an SS bond, and a lithium sulfur battery including an electrode or a separator coated with the oligomer or the polymer is one in which lithium polysulfide is eluted with an electrolyte. It can prevent the initial charge and discharge efficiency and life characteristics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬 설퍼 전지 전극용 보호막, 이를 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 S-S 결합을 포함하는 올리고머 또는 폴리머 화합물에 의한 코팅층이 활물질층 표면 또는 분리막에 형성되어 이를 포함하는 리튬 설퍼 전지에서 리튬폴리설파이드의 전해액으로의 용출을 방지하여 초기 충방전 효율 및 수명특성이 향상된 리튬 설퍼 전지에 관한 것에 관한 것이다.

Description

리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법
본 발명은 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 리튬폴리설파이드가 전해액으로 용출되는 것을 방지할 수 있는 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법에 관한 것이다.
휴대 전자기기의 발전으로 가볍고 고용량 전지에 대한 요구가 갈수록 증가하고 있다. 이러한 요구를 만족시키는 이차 전지로 황계 물질을 양극 활물질로 사용하는 리튬 설퍼 전지에 대한 개발이 활발하게 진행되고 있다.
리튬 설퍼 전지는 황-황 결합(Sulfur-Sulfur bond)을 가지는 황 계열 화합물 을 양극 활물질로 사용하고, 리튬과 같은 알카리 금속을 음극 활물질로 사용하는 이차 전지이다. 환원 반응시(방전시) S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응시(충전시) S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성한다.
아래에서 보는 바와 같이 S8 이 Li2S까지 완전히 환원되었을 때(이용율 100%) 어느 화합물보다 큰 용량 밀도를 나타낸다. 리튬 설퍼 전지는 음극 활물질로 사용되는 리튬 금속을 사용할 경우 에너지 밀도가 3830 mAh/g이고, 양극 활물질로 사용되는 황(S8)을 사용할 경우 에너지 밀도가 1675 mAh/g으로, 현재까지 개발되고 있는 전지 중에서 에너지 밀도면에서 가장 유망한 전지이다. 또한 양극 활물질로 사용되는 황계 물질은 자체가 값싸고 환경친화적인 물질이라는 장점이 있다.
Figure PCTKR2014004177-appb-I000001
그러나, 아직 리튬 설퍼 전지 시스템으로 상용화에 성공한 예는 없는 실정이다. 리튬 설퍼 전지는 산화-환원 반응 시 황이 전해질로 유출되어 전지 수명이 열화되고, 적절한 전해액을 선택하지 못했을 경우 황의 환원 물질인 리튬폴리설파이드가 석출되어 더 이상 전기화학반응에 참여하지 못하게 되는 문제점이 있기 때문이다. 황 양극으로부터 리튬 폴리설파이드가 용출되어 확산되면 양극의 전기화학 반응 영역을 벗어나 양극에서 반응에 참여하는 황의 양이 감소하여 용량 감소 (capacity loss)로 나타난다. 또한, 폴리설파이드의 용출은 전해액의 점도를 증가시켜 수명 특성을 감소시키고 전기 전도성을 증가시켜 자기 방전 특성에도 나쁜 영향을 미친다. 또한, 지속적인 충방전 반응으로 폴리설파이드가 리튬 금속과 반응하여 리튬 금속 표면에 Li2S가 고착되어 반응 활성도가 낮아지고 전위 특성이 나빠지는 문제점이 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 리튬폴리설파이드가 전해액으로 용출되는 것을 방지할 수 있는 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지를 제공하는 것을 목적으로 한다.
본 발명은 또한, 상기 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법을 제공하는 것을 목적으로 한다.
본 발명은 상기와 같은 과제를 해결하기 위하여,
양극;
상기 양극과 대향하는 음극;
상기 양극과 음극 사이에 위치하는 세퍼레이터; 및
상기 양극과 상기 세퍼레이터 사이 또는 상기 음극과 상기 세퍼레이터 사이에 위치하고, 아래 화학식 1 또는 2 로 표시되는 화합물을 포함하는 보호막;을 구비하는 전극 보호막을 포함하는 리튬 설퍼 전지;를 제공한다.
화학식 1
Figure PCTKR2014004177-appb-C000001
화학식 2
Figure PCTKR2014004177-appb-C000002
(상기 화학식 1 또는 2 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나이고, m1 및 m2는 1 내지 1000의 정수임)
본 발명에 의한 리튬 설퍼 전지 전극 보호막은 상기 화학식 1 또는 2로 표시되는 디설파이드(disulfide) 결합을 포함하는 화합물, 폴리머 또는 올리고머를 포함하고, 상기 화합물이 폴리설파이드가 전해질로 용출되는 것을 방지한다.
또한 상기 화합물의 Y 로 표시되는 작용기는 리튬 이온의 전도도를 향상시켜 리튬이온의 확산을 용이하게 한다.
본 발명의 리튬 설퍼 전지는 상기 디설파이드(disulfide) 결합을 포함하는 고분자에 의해 S(2P3/2)의 결합 에너지를 나타내는 XPS 피크가 162 내지 164 eV 에서 나타나는 것을 특징으로 한다.
본 발명은 또한,
아래 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 전극 보호막용 조성물을 준비하는 단계;
전극 또는 분리막 표면에 상기 전극 보호막용 조성물을 도포하는 단계;
전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키는 단계; 및
상기 전극 및 분리막을 포함하는 전지 셀을 형성하는 단계; 를 포함하는 본 발명에 의한 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법을 제공한다.
화학식 3
Figure PCTKR2014004177-appb-C000003
화학식 4
Figure PCTKR2014004177-appb-C000004
(상기 화학식 3 또는 4 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나임)
전극 보호막용 조성물에 포함되는 상기 화학식 3 또는 4 의 화합물의 두개의 싸이올(-SH)기, S-S기는 상기 열처리 단계에서 산화되어 디설파이드(disulfide) 결합을 형성할 수 있으며, 이러한 반응이 연속적으로 일어나는 경우 아래와 같이 디설파이드(disulfide) 결합을 포함하는 상기 화학식 1 또는 화학식 2로 표시되는 올리고머 또는 폴리머를 생성할 수 있다.
Figure PCTKR2014004177-appb-I000002
본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 화학식 3 으로 표시되는 화합물은 아래 화학식 5 로 표시되는 알파 리포산(α-lipoic acid)인 것을 특징으로 한다.
화학식 5
Figure PCTKR2014004177-appb-C000005
본 발명에 있어서, 전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키는 단계를 포함한다.
본 발명에 있어서, 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키기 위해 열처리 또는 적절한 전압을 인가할 수 있다.
활성화를 위한 열처리시 상기 화학식 5로 표시되는 알파 리포산(α-lipoic acid)은 아래와 같은 개환 반응을 통해 싸이올(thiol) 화합물을 형성하고 이후 다음과 같은 이온성 고분자화 반응(ionic polymerization)에 의해 디설파이드(disulfide) 고분자를 형성한다.
Figure PCTKR2014004177-appb-I000003
상기 화학식 4 에 포함된 두 개의 싸이올(-SH)기는 열처리에 의해 활성화되는 방법 외에도 초기 충방전을 위한 활성화 전압 인가시 산화되면서 디설파이드(disulfide) 결합을 형성할 수 있으며, 이러한 반응이 연속적으로 일어나는 경우 디설파이드(disulfide) 결합을 포함하는 올리고머 또는 폴리머를 생성할 수 있다.
Figure PCTKR2014004177-appb-I000004
본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 상기 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 리튬 설퍼 전지 전극 보호막용 조성물을 준비하는 단계에서 상기 화학식 3 또는 화학식 4로 표시되는 화합물은 상기 리튬 설퍼 전지 전극 보호막용 조성물 100 중량부에 대하여 1 내지 20 중량% 의 비율로 포함되는 것을 특징으로 한다.
본 발명에 의한 리튬 설퍼 전지의 제조 방법에 있어서, 상기 전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키기 위하여 열처리 하는 단계에서는 70 내지 150℃ 에서 열처리하는 것을 특징으로 한다.
본 발명에 의한 리튬 설퍼 전지 전극용 보호막을 포함하는 리튬 설퍼 전지는 S-S 결합을 포함하는 올리고머 또는 폴리머를 포함하는 전극 보호막을 포함하고, 상기 보호막을 포함하는 리튬 설퍼 전지는 상기 보호막이 리튬폴리설파이드가 전해액으로 용출되는 것을 방지하여 초기 충방전 효율 및 수명특성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예 및 비교예에 의하여 제조된 리튬 설퍼 전지의 충방전 특성을 나타낸다.
도 2는 본 발명의 일 실시예 및 비교예에 의하여 제조된 리튬 설퍼 전지의 수명 특성을 나타낸다.
도 3은 본 발명의 일 실시예에 의하여 제조된 전극 보호막을 포함하는 리튬 설퍼 전지의 XPS를 측정한 결과를 나타낸다.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나, 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
< 실시예 1> 전극용 보호막을 포함하는 전지의 제조
황 원소 60 중량%, 도전재로 케첸 블랙 20 중량%, 바인더로 폴리비닐리덴플루오라이드 20 중량% 를 N-메틸피롤리돈 용매에서 혼합하여 리튬 설퍼 전지용 양극 활물질 슬러리를 제조하였다.
이 슬러리를 탄소-코팅된 알루미늄 전류 집전체에 코팅하고, 슬러리가 코팅된 전류 집전체를 12시간 이상 60℃ 진공 오븐에서 건조하여 Φ14 크기를 가진, 0.65 mAh/cm2 의 양극판을 제조하였다.
전극 보호막용 조성물로 알파 리포산(α-lipoic acid) 5 중량%를 1,3-디옥솔란, 디메톡시에탄에 1:1의 비율로 혼합된 용매에 용해시켜서 제조하고, 상기 양극판의 표면에 코팅한 후, 상기 알파 리포산(α-lipoic acid) 을 활성화시키기 위하여 70℃ 에서 열처리하였다.
상기 양극판과 리튬 호일 음극을 사용하여 리튬 설퍼 전지를 제조하였다. 이 때 전해액으로는 1M LiTFSI를 1,3-디옥솔란, 디메톡시에탄에 1:1의 비율로 용해시켜서 사용하였다.
<비교예 1>
전해액에 알파 리포산(α-lipoic acid)을 첨가하지 않은 것을 제외하고 상기 실시예 1과 동일하게 하여 비교예 1의 리튬 설퍼 전지를 제조하였다.
<실험예 1> 전지의 충방전 특성 평가
상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에 대해 충방전 특성을 측정하고 그 결과를 도 1에 나타내었다.
< 실험예 2> 전지의 수명 특성 평가
상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에 대해 수명 특성을 측정하고 그 결과를 도 2에 나타내었다.
<실험예 3> 전해액 내 용출된 폴리설파이드 측정
상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지를 0.5C에서 10회, 50회, 100회 충방전 후, 전지를 분해하여 전지 내 전해질을 dimethoxyethane (DME) 용액으로 30배 희석하였다.
리튬 설퍼 전지의 경우 전해액으로 용출된 폴리설파이드에 따라 전해액의 흡광도가 변화하므로 UV-Visible Spectrophotometer를 이용하여 희석된 용액의 405nm에서 흡광도를 측정하여 전해액 내 용출된 폴리설파이드의 농도를 측정하였으며 그 결과를 아래 표 1과 같다.
표 1
10회 충방전 후 50회 충방전 후 100회 충방전 후
비교예 1 0.35 0.40 0.42
실시예 1 0.11 0.14 0.17
상기 표 1에서 비교예 1의 경우 실시예 1 보다 흡광도가 높으며 충방전이 진행될수록 용출되는 폴리설파이드가 증가하여 흡광도가 증가하는 것을 알 수 있다.
<실험예 4> XPS(X-ray photoelectron spectroscopy) 분석
상기 실시예 1 및 비교예 1에서 제조된 리튬 설퍼 전지에서 양극활물질 슬러리에 첨가한 알파 리포산(α-lipoic acid)이 중합 반응에 의해 고분자를 형성하였는지 여부를 XPS(X-ray photoelectron spectroscopy)에 의한 결합 에너지 분포로 측정하고 그 결과를 도 3에 나타내었다.
도 3에서 보는 바와 같이 본 발명의 실시예에 의하여 제조된 리튬 설퍼 전지의 경우 중합 반응에 의해 고분자가 형성되어 S-S 결합에 의한 160 내지 165eV 범위에서 피크가 검출되는 것을 확인할 수 있다.
본 발명에 의한 리튬 설퍼 전지 전극용 보호막은 S-S 결합을 포함하는 올리고머 또는 폴리머를 포함하고, 상기 올리고머 또는 폴리머에 의해 코팅된 전극 또는 분리막을 포함하는 리튬 설퍼 전지는 리튬폴리설파이드가 전해액으로 용출되는 것을 방지하여 초기 충방전 효율 및 수명특성을 향상시킬 수 있다.

Claims (6)

  1. 양극;
    상기 양극과 대향하는 음극;
    상기 양극과 음극 사이에 위치하는 세퍼레이터; 및
    상기 양극과 상기 세퍼레이터 사이 또는 상기 음극과 상기 세퍼레이터 사이에 위치하고, 아래 화학식 1 또는 2 로 표시되는 화합물을 포함하는 보호막;을 구비하는 전극 보호막을 포함하는 리튬 설퍼 전지.
    화학식 1
    Figure PCTKR2014004177-appb-I000005
    화학식 2
    Figure PCTKR2014004177-appb-I000006
    (상기 화학식 1 또는 2 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 1 내지 5이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기로 이루어진 그룹에서 선택된 어느 하나이고, m1 및 m2는 1 내지 1000의 정수임)
  2. 제 1 항에 있어서,
    상기 전지는 S(2P3/2)의 결합 에너지를 나타내는 XPS 피크가 162 내지 164 eV 에서 나타나는 것인 리튬 설퍼 전지.
  3. 아래 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 전극 보호막용 조성물을 준비하는 단계;
    전극 또는 분리막 표면에 상기 전극 보호막용 조성물을 도포하는 단계;
    전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키는 단계; 및
    상기 전극 및 분리막을 포함하는 전지 셀을 형성하는 단계; 를 포함하는 제 1 항의 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
    화학식 3
    Figure PCTKR2014004177-appb-I000007
    화학식 4
    Figure PCTKR2014004177-appb-I000008
    (상기 화학식 3 또는 4 에서 R1 및 R2 는 각각 독립적으로 (CH2)n 이고, n은 0 내지 10 이고, Y는 하이드록시기, 알데하이드기, 카르복시기, 아마이드기, 시안기 로부터 선택된 어느 하나임)
  4. 제 3 항에 있어서,
    상기 화학식 3 으로 표시되는 화합물은 아래 화학식 5 로 표시되는 것인 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
    화학식 5
    Figure PCTKR2014004177-appb-I000009
  5. 제 3 항에 있어서,
    상기 화학식 3 또는 4 로 표시되는 화합물 및 용매를 포함하는 전극 보호막용 조성물을 준비하는 단계에서 상기 화학식 3 또는 화학식 4로 표시되는 화합물은 상기 보호막용 조성물 100 중량부에 대하여 1 내지 20 중량% 의 비율로 포함되는 것을 특징으로 하는 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
  6. 제 3 항에 있어서,
    상기 전극 또는 분리막 표면에 도포된 상기 화학식 3 또는 4로 표시되는 화합물을 활성화시키는 단계에서는 70 내지 150℃ 에서 열처리하는 것을 특징으로 하는 전극 보호막을 포함하는 리튬 설퍼 전지의 제조 방법.
PCT/KR2014/004177 2013-11-28 2014-05-09 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법 WO2015080357A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130146679A KR20150062084A (ko) 2013-11-28 2013-11-28 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법
KR10-2013-0146679 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080357A1 true WO2015080357A1 (ko) 2015-06-04

Family

ID=53199274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004177 WO2015080357A1 (ko) 2013-11-28 2014-05-09 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법

Country Status (2)

Country Link
KR (1) KR20150062084A (ko)
WO (1) WO2015080357A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328435A (zh) * 2018-05-10 2020-06-23 株式会社Lg化学 具有改进安全性的锂金属二次电池和包含其的电池模块
CN112740460A (zh) * 2019-07-16 2021-04-30 株式会社Lg化学 锂金属负极以及包含其的锂金属电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346842B1 (ko) * 2017-11-24 2022-01-03 주식회사 엘지에너지솔루션 리튬-황 전지용 양극, 그의 제조방법 및 그를 포함하는 리튬-황 전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497251B1 (ko) * 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
JP2005332606A (ja) * 2004-05-18 2005-12-02 Sakai Chem Ind Co Ltd リチウム二次電池のための電極界面保護皮膜形成剤とリチウム二次電池
KR100558842B1 (ko) * 2001-05-16 2006-03-10 에스케이씨 주식회사 유기전해액 및 이를 채용한 리튬 전지
KR20100017057A (ko) * 2008-08-05 2010-02-16 소니 가부시끼가이샤 전지 및 전극
KR20130040819A (ko) * 2010-04-12 2013-04-24 닛토덴코 가부시키가이샤 이온 전도성 유기 무기 복합 입자, 입자 함유 수지 조성물 및 이온 전도성 성형체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558842B1 (ko) * 2001-05-16 2006-03-10 에스케이씨 주식회사 유기전해액 및 이를 채용한 리튬 전지
KR100497251B1 (ko) * 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
JP2005332606A (ja) * 2004-05-18 2005-12-02 Sakai Chem Ind Co Ltd リチウム二次電池のための電極界面保護皮膜形成剤とリチウム二次電池
KR20100017057A (ko) * 2008-08-05 2010-02-16 소니 가부시끼가이샤 전지 및 전극
KR20130040819A (ko) * 2010-04-12 2013-04-24 닛토덴코 가부시키가이샤 이온 전도성 유기 무기 복합 입자, 입자 함유 수지 조성물 및 이온 전도성 성형체

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328435A (zh) * 2018-05-10 2020-06-23 株式会社Lg化学 具有改进安全性的锂金属二次电池和包含其的电池模块
CN111328435B (zh) * 2018-05-10 2023-07-14 株式会社Lg新能源 具有改进安全性的锂金属二次电池和包含其的电池模块
CN112740460A (zh) * 2019-07-16 2021-04-30 株式会社Lg化学 锂金属负极以及包含其的锂金属电池
CN112740460B (zh) * 2019-07-16 2024-02-09 株式会社Lg新能源 锂金属负极以及包含其的锂金属电池

Also Published As

Publication number Publication date
KR20150062084A (ko) 2015-06-05

Similar Documents

Publication Publication Date Title
WO2013141494A1 (ko) 유황을 포함하는 그래핀 복합체 양극을 포함하는 리튬-유황 이차전지 및 그의 제조 방법
WO2011159083A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2011159051A2 (ko) 전기화학소자용 전해질, 그 제조방법 및 이를 구비한 전기화학소자
WO2013100651A1 (ko) 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2010117219A2 (en) Lithium-sulfur battery
WO2017104996A1 (ko) 접착력이 개선된 리튬 이차전지용 전극 및 이의 제조방법
WO2014168327A1 (ko) 리튬 이차전지용 음극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2014204141A1 (ko) 리튬 이차전지용 음극활물질, 이를 포함하는 리튬 이차전지 및 상기 음극활물질의 제조방법
CN102694158A (zh) 一种含硅锂负极、其制备方法及包含该负极的锂硫电池
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2009134047A1 (ko) 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 음극으로 포함하는 리튬 이차 전지
WO2019093709A1 (ko) 리튬-황 전지용 전해질 복합체, 이를 포함하는 전기화학소자 및 그 제조방법
WO2020130442A1 (ko) 전고체 전지 및 이의 제조방법
WO2020214009A1 (ko) 고체 전해질 복합체 및 이를 포함하는 전고체 전지용 전극
WO2017171294A1 (ko) 전극의 제조방법
WO2020040338A1 (ko) 양극 소재, 그를 포함하는 양극과 나트륨이온전지 및 그의 제조 방법
WO2014133372A1 (ko) 리튬 황 전지용 양극 및 이를 포함하는 리튬 황 전지
WO2018097455A1 (ko) 전극 보호층을 포함하는 이차전지용 전극
WO2013089498A1 (ko) 케이블형 이차전지
WO2015080357A1 (ko) 리튬 설퍼 전지 전극 보호막을 포함하는 리튬 설퍼 전지 및 이의 제조 방법
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
WO2014193187A1 (ko) 이차전지용 도전재 및 이를 포함하는 리튬 이차전지용 전극
WO2017039149A1 (ko) 자성 물질을 포함하는 이차전지용 바인더
WO2014027841A1 (ko) 리튬-설퍼 전지용 양극의 제조 방법 및 리튬 설퍼 전지
WO2018131824A1 (ko) 리튬 메탈 표면의 불화리튬의 증착 및 이를 이용한 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14866611

Country of ref document: EP

Kind code of ref document: A1