WO2020110942A1 - リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2020110942A1
WO2020110942A1 PCT/JP2019/045805 JP2019045805W WO2020110942A1 WO 2020110942 A1 WO2020110942 A1 WO 2020110942A1 JP 2019045805 W JP2019045805 W JP 2019045805W WO 2020110942 A1 WO2020110942 A1 WO 2020110942A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
ion secondary
lithium ion
less
Prior art date
Application number
PCT/JP2019/045805
Other languages
English (en)
French (fr)
Inventor
大輔 原田
浩文 井上
大輔 香野
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2020110942A1 publication Critical patent/WO2020110942A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery. More specifically, the present invention relates to a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery which are composed of artificial graphite and natural graphite as a negative electrode active material and have excellent large current characteristics and cycle characteristics.
  • Lithium-ion secondary batteries are used as power sources for portable electronic devices, and in recent years have also been used as power sources for power tools and electric vehicles.
  • electric vehicles such as battery electric vehicles (BEV) and hybrid electric vehicles (HEV)
  • BEV battery electric vehicles
  • HEV hybrid electric vehicles
  • high charge/discharge cycle characteristics should be maintained for more than 10 years, and large current load characteristics sufficient to drive high power motors.
  • PHEV plug-in hybrid vehicle
  • PHEV has a smaller battery capacity than an EV, and a trickle charge must be performed by driving a motor with a low-capacity battery, so that a large current load characteristic is important.
  • BEV battery electric vehicles
  • HEV hybrid electric vehicles
  • long-term cycle characteristics for more than 10 years and large current load characteristics for driving a high power motor are mainly required characteristics.
  • high energy density is required to extend the cruising range, which is severe compared to mobile applications.
  • a lithium salt such as lithium cobalt oxide is used for the positive electrode active material
  • a carbon-based material such as graphite material is used for the negative electrode active material.
  • Carbon-based materials are roughly classified into graphite materials having a high graphitization degree and amorphous carbon materials having a low graphitization degree, but both of them can be used as a negative electrode active material because they are capable of lithium insertion/desorption reaction. it can.
  • Graphite materials include natural graphite and artificial graphite. It is known that natural graphite is formed into spherical particles. Lithium-ion secondary batteries using natural graphite have some performance required as a power supply for portable electronic devices, but have reached the performance required as a power supply for electric vehicles and electric tools. Absent. However, due to its high degree of graphitization, it is possible to obtain a capacity such as a theoretical battery capacity phase and a high mixture layer density, and is widely used as a negative electrode material mainly for mobile applications.
  • artificial graphite is known as mesocarbon spheres and graphitized products such as petroleum pitch, coal pitch, petroleum coke, and coal coke. While these materials have excellent charge/discharge performance that meets the requirements for large currents and ultra-long-term cycle characteristics of large batteries, their degree of graphitization is lower than that of natural graphite, and they meet the requirements for capacity and mixture layer density. I haven't arrived.
  • the so-called hard carbon and the negative electrode material using soft carbon as the amorphous carbon material have excellent characteristics against large currents, and also have relatively good cycle characteristics.
  • the energy density is too low and the price is very expensive, so it is used only for some special large batteries.
  • Patent Document 1 discloses a negative electrode for a lithium ion battery in which pore-shaped artificial graphite is used and the pore size in the electrode is regulated.
  • Patent Document 2 discloses a multi-layered negative electrode having a plurality of layers in the horizontal direction with respect to the current collector foil and having different densities depending on the layers.
  • Patent Document 3 discloses a negative electrode in which two or more kinds of graphite, artificial graphite and natural graphite, are mixed. ..
  • Japanese Patent No. 3329162 Japanese Patent No. 5900113 (US Pat. No. 9,508,979) Japanese Patent No. 6154380
  • Patent Document 3 discloses a negative electrode for a lithium-ion battery in which a graphite material is composed of artificial graphite and natural graphite, but has a drawback that the mixture layer density is low and the capacity is low because of a high ratio of artificial graphite. Therefore, a battery satisfying the energy density cannot be obtained.
  • the present invention has the following configurations.
  • the anode active material and a negative electrode for a lithium ion secondary battery comprising a mixture layer comprising the density of the mixture layer is at 1.60 g / cm 3 or more 1.90 g / cm 3 or less
  • the mercury intrusion In the Log differential pore volume distribution of the mixture layer measured by the method there is a pore diameter D1 having a maximum value at 0.50 ⁇ m or more and 2.00 ⁇ m or less
  • the negative electrode active material contains artificial graphite and natural graphite
  • the mixing ratio of the artificial graphite is 20% by mass or more and 80% by mass or less with respect to the total of the artificial graphite and the natural graphite, and the circularity of the artificial graphite is 0.82 or more and 0.90 or less.
  • Negative electrode for secondary battery [2] The negative electrode for a lithium ion secondary battery as described in 1 above, further having a pore diameter D2 having a maximum value in the pore volume distribution of 0.10 ⁇ m or more and 0.25 ⁇ m or less. [3] In the pore volume distribution, the ratio of pore volume P1 of pore diameter D1 to pore volume P2 in pore diameter D2 (pore volume P1/pore volume P2) is 2.5 or more, or 1 3.
  • the natural graphite is natural graphite having a carbon coating layer on the surface.
  • the artificial graphite has an intensity ratio ID/IG of a peak intensity (ID) in the range of 1300 to 1400 cm ⁇ 1 and a peak intensity (IG) in the range of 1580 to 1620 cm ⁇ 1 measured by Raman spectroscopy. 6.
  • the natural graphite has an intensity ratio ID/IG of a peak intensity (ID) in the range of 1300 to 1400 cm ⁇ 1 and a peak intensity (IG) in the range of 1580 to 1620 cm ⁇ 1 measured by Raman spectroscopy. 7.
  • the negative electrode for a lithium ion secondary battery according to any one of 1 to 7 above, wherein an average interplanar spacing d002 of the artificial graphite by an X-ray diffraction method is 0.3354 nm or more and 0.3360 nm or less.
  • the artificial graphite has a BET specific surface area of 0.5 m 2 /g or more and 4.0 m 2 /g, and the natural graphite has a BET specific surface area of 1.5 m 2 /g or more and 7.0 m 2 /g or less.
  • the negative electrode for a lithium ion secondary battery according to any one of 1 to 8 above.
  • the negative electrode for a lithium ion secondary battery of the present invention has a negative electrode mixture layer (hereinafter referred to as a mixture layer).
  • a mixture layer a negative electrode mixture layer
  • Density of Mixture Layer The density of the mixture layer of the negative electrode in one embodiment of the present invention is preferably 1.60 g/cm 3 or more. When the density is 1.60 g/cm 3 or more, a battery having high energy density can be obtained.
  • the mixture layer density is preferably 1.90 g/cm 3 or less.
  • the density is 1.90 g/cm 3 or less, there are sufficient pores in the mixture layer, so that the electrolyte solution sufficiently penetrates into the mixture layer and the diffusion of lithium ions is improved, resulting in high current discharge.
  • the characteristics are improved.
  • the density is preferably 1.80 g / cm 3 or less, more preferably 1.75 g / cm 3 or less.
  • the negative electrode mixture layer in one embodiment of the present invention has a specific pore volume distribution. That is, when the Log differential pore volume distribution (hereinafter, simply referred to as pore volume distribution) of the mixture layer is evaluated by the mercury intrusion method, the mixture layer has a maximum pore diameter D1 of 0.50 ⁇ m or more. Preferably present. When the pore diameter D1 is 0.50 ⁇ m or more, lithium ions are smoothly transported in the mixture layer, and good large current discharge characteristics can be obtained. From the same viewpoint, it is more preferable that the pore diameter D1 is 0.51 ⁇ m or more. The pore size D1 is preferably 2.00 ⁇ m or less.
  • the pore diameter D1 is 2.00 ⁇ m or less, large local pores do not exist in the negative electrode, uniform pores are formed, and good large current discharge characteristics can be obtained. From the same viewpoint, the pore diameter D1 is more preferably 1.50 ⁇ m or less, further preferably 0.80 ⁇ m or less.
  • the pore volume distribution has a pore diameter D2 that exhibits a maximum value with a pore diameter smaller than the pore diameter D1.
  • the pore diameter D2 is more preferably 0.10 ⁇ m or more. When the pore diameter D2 is 0.10 ⁇ m or more, the large current discharge characteristics tend to be improved. From the same viewpoint, the pore diameter D2 is more preferably 0.11 ⁇ m or more, and most preferably 0.12 ⁇ m or more. The pore diameter D2 is preferably 0.25 ⁇ m or less. When the pore diameter D2 is 0.25 ⁇ m or less, the large current discharge characteristics tend to be improved. From the same viewpoint, the pore diameter D2 is more preferably 0.20 ⁇ m or less, and most preferably 0.18 ⁇ m or less.
  • the ratio (P1/P2) of the pore volume P1 in the pore diameter D1 to the pore volume P2 in the pore diameter D2 is preferably 2.5 or more.
  • the ratio is more preferably 2.7 or more.
  • the mixture layer of the negative electrode in one embodiment of the present invention contains a negative electrode active material, and the negative electrode active material contains both artificial graphite and natural graphite.
  • the mixture layer can contain a conductive auxiliary agent. By including the conductive auxiliary agent, conductivity is imparted to the electrode and the battery life is improved.
  • the conductive auxiliary agent is not particularly limited, and examples thereof include acetylene black, Ketjen Black (registered trademark), carbon fiber and the like.
  • the content of the conductive additive is preferably 0.1 to 15% by mass in the mixture layer.
  • the blending ratio of the artificial graphite is preferably 20% by mass or more with respect to the total of the artificial graphite and the natural graphite.
  • the proportion of the artificial graphite is 20% by mass or more, appropriate pores are formed around the artificial graphite, and the large current discharge characteristics are improved.
  • the proportion of artificial graphite is more preferably 25% by mass or more, further preferably 30% by mass or more.
  • the proportion of artificial graphite is preferably 80% by mass or less.
  • the proportion of the artificial graphite is 80% by mass or less, even if the artificial graphite having a high compression strength is mixed, the mixture layer is well filled by the pressure molding of the negative electrode, and the energy density of the negative electrode is improved.
  • the proportion of artificial graphite is more preferably 75% by mass or less, further preferably 70% by mass or less.
  • the artificial graphite and the natural graphite may have a carbon coating layer on their particle surfaces.
  • the carbon coating layer By having the carbon coating layer, the edge surface of graphite is reduced and the initial Coulombic efficiency is improved.
  • the carbon coating layer is an amorphous carbon layer. By having the amorphous carbon layer, the large current discharge characteristics can be improved.
  • the method for coating the surface of artificial graphite and natural graphite is not limited, but for example, an organic compound is attached to the surface of graphite particles, and the graphite is coated with amorphous carbon by firing in an inert atmosphere at a temperature range of 900 to 1500°C.
  • the organic compound is not particularly limited, but petroleum pitch, coal pitch, phenol resin, polyvinyl alcohol resin, furan resin, cellulose resin, polystyrene resin, polyimide resin and epoxy resin can be used.
  • the calcination equipment is not particularly limited, but a heat treatment apparatus such as a rotary kiln, a roller hearth kiln, or an electric tubular furnace can be used.
  • an organic compound is mixed with a solvent to form a liquid, which is mixed and kneaded with graphite, and then the solvent is volatilized and a baking treatment is performed, whereby the surface of the graphite particles can be coated with a carbon coating layer.
  • a method in which the organic compound and the graphite particles are simply mixed with each other and the mixture is heat-treated may be used.
  • the artificial graphite contained in the negative electrode in one embodiment of the present invention preferably has a circularity of 0.82 or more and 0.90 or less. Further, the circularity of the natural graphite contained in the negative electrode in one embodiment of the present invention is preferably 0.91 or more and 0.99 or less. By combining graphite having such a circularity range, the pore diameter and pore volume of the mixture layer in the negative electrode can be optimized, and the large current discharge characteristics can be improved. From the same viewpoint, the circularity of artificial graphite is more preferably 0.84 or more and 0.90 or less, the circularity of natural graphite is more preferably 0.91 or more and 0.96 or less, and the circularity of artificial graphite is 0.87.
  • the circularity of natural graphite is more preferably 0.91 or more and 0.94 or less.
  • the circularity is obtained by dividing the circumference of a circle having the same area as the observed area of a particle image by the circumference of the particle image, and the closer it is to 1, the closer it is to a perfect circle.
  • the circularity can be measured by the method described in the examples.
  • the artificial graphite contained in the negative electrode in one embodiment of the present invention preferably has a compressive strength of 0.1 MPa or more. This is the lower limit of detection.
  • the compressive strength of the artificial graphite is preferably 15 MPa or less. When the compression strength is 15 MPa or less, the mixture layer is well filled by pressure-molding the negative electrode, and the energy density of the negative electrode tends to increase. From the same viewpoint, the compressive strength is more preferably 13 MPa or less, further preferably 10 MPa or less.
  • the natural graphite contained in the negative electrode in one embodiment of the present invention preferably has a compressive strength of 0.1 MPa or more. This is the lower limit of detection.
  • the compressive strength of natural graphite is preferably 15 MPa or less. When the compression strength is 15 MPa or less, the mixture layer is well filled by pressure-molding the negative electrode, and the energy density of the negative electrode tends to increase. From the same viewpoint, the compressive strength is preferably 14 MPa or less, more preferably 13 MPa or less.
  • ⁇ Compressive strength is measured with a micro compression tester. The measurement is performed at 10 points, and the average value of the calculated compressive strengths is taken as the compressive strength of the material.
  • the 50% particle size (D50) in the volume-based cumulative particle size distribution of the artificial graphite contained in the negative electrode in one embodiment of the present invention is preferably 10 ⁇ m or more.
  • D50 of the artificial graphite is 10 ⁇ m or more, the number of active sites on the particle surface is small, and thus side reactions are reduced when the artificial graphite is used as a battery material.
  • D50 is more preferably 11 ⁇ m or more.
  • the D50 of the artificial graphite is preferably 30 ⁇ m or less. When D50 is 30 ⁇ m or less, the electric resistance of the electrode becomes small and the large current discharge characteristic is improved. From the same viewpoint, D50 is more preferably 20 ⁇ m or less, and most preferably 15 ⁇ m or less.
  • the D50 of the natural graphite contained in the negative electrode in one embodiment of the present invention is preferably 10 ⁇ m or more.
  • the D50 of natural graphite is 10 ⁇ m or more, the number of active sites on the particle surface is small, so that side reactions are reduced when used as a battery material.
  • D50 is more preferably 11 ⁇ m or more, and most preferably 12 ⁇ m or more.
  • the D50 of natural graphite is preferably 30 ⁇ m or less. When D50 is 30 ⁇ m or less, the electric resistance of the electrode can be reduced, and the large current discharge characteristic is improved. From the same viewpoint, 25 ⁇ m or less is more preferable, and 20 ⁇ m or less is most preferable.
  • D50 is measured by measuring the volume-based particle size distribution with a laser diffraction type particle size distribution measuring device, and obtaining the particle size with a cumulative 50%.
  • the artificial graphite contained in the negative electrode in one embodiment of the present invention preferably has a BET specific surface area of 0.5 m 2 /g or more.
  • BET specific surface area of the artificial graphite is 0.5 m 2 /g or more, the contact area with the electrolytic solution is increased and the characteristics are improved.
  • BET specific surface area is more preferably equal to or greater than 1.0 m 2 / g, most preferably at least 1.5 m 2 / g.
  • the BET specific surface area of artificial graphite is preferably 4.0 m 2 /g or less.
  • the BET specific surface area of the artificial graphite is 4.0 m 2 /g or less, the surface activity of the particles is suppressed, and there is a tendency that the deterioration of Coulomb efficiency and the deterioration of cycle characteristics due to decomposition of the electrolytic solution are suppressed. From the same viewpoint, BET specific surface area less, more preferably 3.5m 2 / g, 3.0m 2 / g or less is most preferred.
  • the BET specific surface area of the natural graphite contained in the negative electrode in one embodiment of the present invention is preferably 1.5 m 2 /g or more.
  • the BET specific surface area of the natural graphite is 1.5 m 2 /g or more, the contact area with the electrolytic solution increases and the large current discharge improves.
  • BET specific surface area is more preferably equal to or greater than 1.8m 2 / g, 2.1m 2 / g or more is most preferred.
  • the BET specific surface area of natural graphite is preferably 7.0 m 2 /g or less.
  • BET specific surface area is 7.0 m 2 /g or less
  • the surface activity of the particles is suppressed, and there is a tendency to suppress the deterioration of Coulomb efficiency and the deterioration of cycle characteristics due to decomposition of the electrolytic solution.
  • BET specific surface area less more preferably 5.0m 2 / g, 3.0m 2 / g or less is most preferred.
  • the BET specific surface area can be measured by the method described in the examples.
  • the average interplanar spacing d002 of the (002) planes by X-ray diffraction is preferably 0.3354 nm or more.
  • 0.3354 nm is the theoretical lower limit of d002 of graphite.
  • the artificial graphite d002 is preferably 0.3360 nm or less.
  • d002 is more preferably 0.3358 nm or less.
  • D002 of natural graphite contained in the negative electrode in one embodiment of the present invention is preferably 0.3354 nm or more.
  • 0.3354 nm is the theoretical lower limit of d002 of graphite.
  • the d002 of natural graphite is preferably 0.3357 nm or less. When d002 is 0.3357 nm or less, the crystallinity of graphite is high, and thus a battery having a large discharge capacity can be obtained.
  • d002 can be measured using the known powder X-ray diffraction (XRD) method (Michio Inagaki et al., Japan Society for the Promotion of Science, 117th Committee materials, 117-121-C-5 (1972), Michio Inagaki). , "Carbon", 1963, No. 36, pp. 25-34), Iwashita et al. , Carbon vol. 42 (2004), p. 701-714).
  • XRD powder X-ray diffraction
  • the artificial graphite contained in the negative electrode in one embodiment of the present invention preferably has an R value of 0.05 or more.
  • the R value of the artificial graphite is 0.05 or more, insertion/desorption of lithium ions between the graphite layers becomes easy, and the large-current discharge characteristics when used as an electrode material of a secondary battery are improved.
  • the R value is more preferably 0.07 or more, still more preferably 0.10 or more.
  • the R value of artificial graphite is preferably 0.50 or less. When the R value is 0.50 or less, the increase in compressive strength is suppressed, the graphite is easily filled, and the energy density is increased. From the same viewpoint, the R value is more preferably 0.30 or less, and most preferably 0.20 or less.
  • the R value of the natural graphite contained in the negative electrode in one embodiment of the present invention is preferably 0.05 or more.
  • the R value of natural graphite is 0.05 or more, insertion and desorption of lithium ions between the graphite layers are facilitated, and the large current discharge characteristics when used as an electrode material of a secondary battery are improved.
  • the R value is more preferably 0.12 or more, still more preferably 0.20 or more.
  • the R value of natural graphite is preferably 0.50 or less. When the R value is 0.50 or less, the increase in compressive strength is suppressed, the graphite is easily filled, and the energy density is increased. From the same viewpoint, the R value is more preferably 0.40 or less, most preferably 0.30 or less.
  • the R value is an intensity ratio ID between a peak intensity (ID) in the range of 1300 to 1400 cm -1 and a peak intensity (IG) in the range of 1580 to 1620 cm -1 measured by Raman spectroscopy. /IG, indicating that the higher the R value, the lower the crystallinity.
  • the artificial graphite contained in the negative electrode in one embodiment of the present invention is obtained by pulverizing a raw material such as petroleum coke or coal coke into a predetermined size and graphitizing the obtained pulverized product. It can be manufactured by processing.
  • the artificial graphite is more preferably particles having a non-aggregated structure. When it is a non-aggregated type, intra-particle peeling hardly occurs even after repeated expansion and contraction due to charge and discharge, and high temperature cycle characteristics and high temperature storage characteristics are excellent.
  • the non-aggregated type means a state in which the primary particles are not converted into the secondary particles.
  • Graphitization is performed by heating the raw material at high temperature.
  • the heating temperature is preferably 2500°C or higher, more preferably 2900°C or higher, and most preferably 3000°C or higher. By setting the heating temperature to 2500° C. or higher, graphite crystals develop and a high discharge capacity can be obtained.
  • the heating temperature is preferably 3300°C or lower. When the heating temperature is 3300° C. or lower, sublimation of carbon is suppressed, and a product can be obtained in high yield.
  • the natural graphite contained in the negative electrode in one embodiment of the present invention is preferably spherical natural graphite.
  • Natural graphite is usually scaly, and its edge surface is exposed. The edge surface easily reacts with the electrolytic solution, which causes a decrease in initial capacity efficiency. Therefore, it is preferable that the scaly natural graphite is processed into a spherical mass shape to reduce the edge surface to obtain spherical natural graphite.
  • the method of spheroidizing is not limited, but it is possible to use a method of using an impact type crusher, placing natural graphite in the air flow to collide with the wall surface in the device, and bending the ends to spheroidize. Further, it is also possible to use a method of pulverizing natural graphite and sieving only spherical particles, or a method of processing into a spherical shape by grinding.
  • Examples of the apparatus include a jet mill, a hybridization system (registered trademark: manufactured by Nara Machinery Co., Ltd.), a mechanofusion system (registered trademark: manufactured by Hosokawa Micron Co., Ltd.), and novirta (registered trademark: manufactured by Hosokawa Micron Co., Ltd.). ..
  • the mixture layer is formed on a current collector.
  • the current collector include a foil of nickel or copper, a mesh, or the like.
  • a method of manufacturing a negative electrode according to an embodiment of the present invention includes a step of obtaining a negative electrode paste containing a negative electrode active material, a step of applying the paste to a current collector, and a step of drying and press-molding the paste on the current collector. Including steps.
  • the mixture layer is a material layer pressure-molded on the current collector.
  • the negative electrode paste preferably contains a negative electrode active material, a binder, and a dispersion medium. Further, a conductive auxiliary agent can be included as an optional component.
  • the negative electrode paste can be obtained by kneading the negative electrode active material, the binder, the dispersion medium, and the conductive auxiliary agent as an optional component.
  • the negative electrode paste can be formed into a sheet shape, a pellet shape, or the like.
  • binder examples include polyethylene, polypropylene, ethylene propylene terpolymer, butadiene rubber, styrene butadiene rubber, butyl rubber, and polymer compounds having high ionic conductivity.
  • the polymer compound having a high ionic conductivity examples include polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like.
  • the amount of the binder used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the dispersion medium is not particularly limited, but examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, water and the like.
  • a binder that uses water as the dispersion medium it is preferable to use a thickening agent such as carboxymethyl cellulose together. The amount of the dispersion medium is adjusted so that the viscosity is such that it can be easily applied to the current collector.
  • the method for applying the obtained negative electrode paste to the current collector is not particularly limited, and it can be applied by, for example, a doctor blade or a bar coater.
  • the coating thickness of the paste is preferably 50 to 200 ⁇ m. If the coating thickness is too large, it becomes impossible to store the negative electrode in a standardized battery container, and the internal resistance of the battery increases due to an increase in the diffusion distance of lithium ions.
  • the applied paste is dried and then pressure-molded.
  • the pressure molding can be performed using a molding method such as roll pressing or press pressing.
  • the pressure at the time of pressure molding is preferably about 100 MPa to about 300 MPa (about 1 to 3 t/cm 2 ).
  • the lithium ion secondary battery in one embodiment of the present invention uses the above negative electrode as its negative electrode.
  • the lithium ion secondary battery has a structure in which a positive electrode and the negative electrode are immersed in an electrolytic solution or an electrolyte.
  • a lithium-containing transition metal oxide is usually used as the positive electrode active material, and preferably at least selected from Ti, V, Cr, Mn, Fe, Co, Ni, Mo and W.
  • An oxide mainly containing one kind of transition metal element and lithium wherein a compound having a molar ratio of lithium to the transition metal element of 0.3 to 2.2 is used, more preferably V, Cr, Mn,
  • a compound which is an oxide mainly containing at least one transition metal element selected from Fe, Co and Ni and lithium and in which the molar ratio of lithium to the transition metal is 0.3 to 2.2 is used.
  • N is Mn
  • E is Co, Ni, Fe, Mn, Al, Zn, Cu, Mo, Ag, W, Ga, In, Sn, Pb
  • the value of x is a value before the start of charging/discharging and increases/decreases due to charging/discharging.
  • the average particle size of the positive electrode active material is not particularly limited, but is preferably 0.1 to 50 ⁇ m.
  • the volume of particles of 0.5 to 30 ⁇ m is preferably 95% or more. It is further preferable that the volume occupied by the particle group having a particle diameter of 3 ⁇ m or less is 18% or less of the total volume, and the volume occupied by the particle group having 15 ⁇ m or more and 25 ⁇ m or less is 18% or less of the total volume.
  • the particle size here is calculated by the volume-based cumulative particle size distribution in the particle size distribution measurement by the laser diffraction method, and the average particle size is the particle size at a cumulative 50%.
  • the specific surface area is not particularly limited, but is preferably 0.01 to 50 m 2 /g by the BET method, and particularly preferably 0.2 to 10 m 2 /g.
  • the pH of the supernatant when 5 g of the positive electrode active material is dissolved in 100 ml of distilled water is preferably 7 or more and 12 or less.
  • the electrolytic solution used for the lithium ion secondary battery is not particularly limited.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , CH 3 SO 3 Li and CF 3 SO 3 Li may be used, for example, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, Examples include so-called organic electrolytes dissolved in non-aqueous solvents such as diethyl carbonate, propylene carbonate, butylene carbonate, acetonitrile, propionitrile, dimethoxyethane, tetrahydrofuran, ⁇ -butyrolactone, and so-called solid or gel polymer electrolytes. ..
  • an additive that shows a decomposition reaction when the lithium-ion secondary battery is first charged, to the electrolytic solution.
  • the additive include vinylene carbonate, biphenyl, propane sultone, and the like.
  • the addition amount is preferably 0.01 to 5% by mass.
  • a separator can be provided between the positive electrode and the negative electrode of the lithium ion secondary battery.
  • the separator include a nonwoven fabric containing polyolefin such as polyethylene and polypropylene as a main component, a cloth, a microporous film, or a combination thereof.
  • S the area of the particle image
  • the sample was purified by passing through a filter with an opening of 106 ⁇ m. 0.1 g of the obtained sample was added to 20 ml of ion-exchanged water, and 0.1 to 0.5% by mass of a surfactant was added to uniformly disperse the sample, thereby preparing a sample solution for measurement. The dispersion was performed by using an ultrasonic cleaner UT-105S (manufactured by Sharp Manufacturing System Co.) for 5 minutes.
  • UT-105S manufactured by Sharp Manufacturing System Co.
  • the obtained sample solution for measurement is put into a flow-type particle image analyzer FPIA-3000 (manufactured by Sysmex Corporation), 10,000 particles are analyzed in LPF mode to obtain the circularity of each particle, and the frequency distribution based on the number is analyzed. The median value of circularity was calculated by using the calculated value as circularity.
  • 50% particle size (D50) The 50% particle diameter (D50) was measured in a volume-based particle diameter distribution using a Malvern Mastersizer (registered trademark) as a laser diffraction particle size distribution analyzer.
  • the prepared dispersion liquid was applied onto a copper foil having a thickness of 20 ⁇ m using a roll coater so as to be uniform, and dried to obtain an electrode.
  • the density of the dried electrode was adjusted by roll pressing to obtain a battery evaluation negative electrode.
  • the mixture layer of the electrode was adjusted to 10 mg/cm 2 .
  • Pore Volume of Negative Electrode The pore volume was measured by mercury porosimetry using a mercury porosimeter Autopore IV9520 manufactured by Shimadzu Corporation.
  • the penetration amount V of mercury entering the pores of the negative electrode is measured while the pressure P is increased stepwise, and the horizontal axis represents the pore diameter ( ⁇ m) and the rate of change of the penetration amount of mercury ( ⁇ V / ⁇ P) was plotted on the vertical axis by a logarithmic plot.
  • the contact angle of mercury was 130°
  • the surface tension was 485 mN/m
  • Electrolyte Solution As a non-aqueous solvent, ethylene carbonate (EC) and ethylmethyl carbonate (EMC) were mixed in a volume ratio of 3:7, and lithium hexafluorophosphate (LiPF 6 ) was used as an electrolyte salt. What was dissolved at 0.0 mol/L was used as an electrolytic solution.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • spherical natural graphite 1 produced by mixing 2 parts by mass of petroleum-based pitch and firing it at 1200° C. in an inert atmosphere in an electric tubular furnace and applying an amorphous carbon coating treatment to the particle surface is shown in Table 1.
  • a negative electrode was produced by using the mass ratio described in. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1.
  • a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • the non-aggregated type means a state in which the primary particles are not converted into the secondary particles.
  • the non-aggregated artificial graphite 2 and the spherical natural graphite 1 produced by firing at 1200° C. in an inert atmosphere in a furnace and subjecting the surface of the particles to an amorphous carbon coating have the mass ratios shown in Table 1.
  • the physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1.
  • a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Example 5 A negative electrode was produced in the same manner as in Example 2 except that the pressure of the roll press was changed. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Example 6 A negative electrode was produced in the same manner as in Example 3 except that the pressure of the roll press was changed. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Comparative Example 1 A negative electrode was produced using artificial graphite 1 and natural graphite 1 in the mass ratios shown in Table 1. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Comparative example 2 A negative electrode was produced using only artificial graphite 1 as graphite. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Comparative Example 3 A negative electrode was produced using only natural graphite 1 as graphite. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • artificial graphite 5 which is a non-aggregated type and natural graphite 1 produced by firing at 1200° C. in an inert atmosphere and subjecting the surface of the particles to an amorphous carbon coating in a mass ratio shown in Table 1.
  • the negative electrode was produced. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1.
  • a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • Comparative Example 10 The artificial graphite 1 and the artificial graphite 3 were used at the mass ratios shown in Table 1 to prepare a negative electrode. The physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1. In addition, a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.
  • the physical properties of the obtained negative electrode were measured and evaluated, and the results are also shown in Table 1.
  • a lithium ion secondary battery was manufactured using the obtained negative electrode, and battery characteristics were evaluated. The results are shown in Table 2.

Abstract

本発明は、負極活物質を含む合剤層を備えたリチウムイオン二次電池用負極であって、合剤層の密度が1.60g/cm3以上1.90g/cm3以下であり、水銀圧入法により測定された合剤層のLog微分細孔容積分布において0.50μm以上2.00μm以下に極大値を示す細孔径D1が存在し、前記負極活物質は人造黒鉛と天然黒鉛を含み、前記人造黒鉛と前記天然黒鉛の合計に対して前記人造黒鉛の配合比率が20質量%以上80質量%以下であり、前記人造黒鉛の円形度は0.82以上0.90以下であり、前記天然黒鉛の円形度は0.91以上0.99以下であり、前記人造黒鉛及び前記天然黒鉛の圧縮強度が0.1MPa以上15MPa以下であり、前記人造黒鉛のD50は10μm以上30μm以下である、大電流放電特性とサイクル容量維持率に優れたリチウムイオン二次電池用負極に関する。

Description

リチウムイオン二次電池用負極及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。さらに詳細には、負極活材料として人造黒鉛及び天然黒鉛を用いて構成される、大電流特性とサイクル特性に優れたリチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
 リチウムイオン二次電池は携帯電子機器の電源として使用されているほか、近年では電動工具や電気自動車などの電源としても使用されている。バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)などの電気自動車においては、10年間以上に亘って高い充放電サイクル特性を維持すること、ハイパワーモーターを駆動させるために十分な大電流負荷特性を有すること、及び航続距離を伸ばすために高いエネルギー密度を有することが要求される。特にプラグインハイブリッド自動車(PHEV)は、搭載される電池容量がEVと比べ小さく、低容量の電池でモーターを駆動しトリクル充電を行わなければならないため、大電流負荷特性が重視される。
 従来、負極材としては黒鉛材料をはじめとする炭素系材料が主として用いられてきたが、最近では金属系負極材の開発も行われている。しかし、サイクル寿命や安定性等の問題があり、未だ課題が多く残されているのが現状である。
 特に、バッテリー電気自動車(BEV)、ハイブリッド電気自動車(HEV)等の自動車用途においては、10年間以上に亘る長期間のサイクル特性と、ハイパワーモーターを駆動させるための大電流負荷特性を主たる要求特性とし、さらに航続距離を伸ばすための高いエネルギー密度も要求され、モバイル用途に比して過酷なものとなっている。
 このリチウムイオン二次電池は、一般に、正極活物質にコバルト酸リチウムなどのリチウム塩が使用され、負極活物質に黒鉛材料などの炭素系材料が使用されている。
 炭素系材料には大きく分けて黒鉛化度の高い黒鉛材料、黒鉛化度の低いアモルファス炭素材料があるが、いずれもリチウムの挿入脱離反応が可能であることから、負極活物質に用いることができる。
 黒鉛材料には、天然黒鉛と人造黒鉛がある。天然黒鉛は球状に造粒してなるものが知られている。天然黒鉛を用いてなるリチウムイオン二次電池は、携帯電子機器の電源として要求される性能をある程度有しているが、電気自動車や電動工具などの電源として要求される性能には十分に達していない。しかし、黒鉛化度が高いことから理論電池容量相等の容量、高い合剤層密度を得ることができ、モバイル用途を中心に広く負極材として用いられている。
 一方、人造黒鉛は、メソカーボン小球体や、石油ピッチ、石炭ピッチ、石油コークス、石炭コークス等の黒鉛化品が知られている。これら材料は、大型電池の大電流、超長期サイクル特性といった要求を満たす優れた充放電性能を示す一方で、黒鉛化度は天然黒鉛に比べ低く、容量、合剤層密度の要求を満たすには至っていない。
 アモルファス炭素材料にはいわゆるハードカーボンや、ソフトカーボンを用いた負極材料は、大電流に対する特性に優れ、また、サイクル特性も比較的良好である。しかし、エネルギー密度があまりにも低く、また、価格も非常に高価なため、一部の特殊な大型電池にしか使用されていない。
 このように負極材料種によって電池性能は大きく左右されるが、電極構造の制御による電池特性の向上も検討されてきた。
 特許文献1には、鱗片状の人造黒鉛を用い、電極内の空孔サイズを規定したリチウムイオン電池用負極が開示されている。
 特許文献2には、集電箔に対して水平方向に複数層を有し、層によって密度が異なる多層構造の負極が開示されている。
 また、黒鉛材料を混合し人造黒鉛と天然黒鉛それぞれの特長を活かした検証もなされており、特許文献3には、人造黒鉛と天然黒鉛の2種以上の黒鉛を混合した負極が開示されている。
特許第3329162号公報 特許第5900113号公報(米国特許第9508979号明細書) 特許第6154380号公報
 上記のような従来の技術では、大電流特性と優れたサイクル特性を両立する十分な特性は得られていない。
 特許文献1に記載の負極は、黒鉛材料が鱗片状黒鉛であるため、黒鉛が集電箔に対して強く配向し、鉛直方向のリチウムイオンの拡散が悪く高い主力が得られない、充放電の際に一方向に膨張収縮を繰り返すため充放電サイクル寿命が不十分である、という問題がある。
 特許文献2に記載の多層構造を有する負極については、高密度層におけるリチウムイオンの拡散が律速となり、十分な出力を得ることができない。
 特許文献3には、黒鉛材料が人造黒鉛と天然黒鉛からなるリチウムイオン電池用負極が開示されているが、人造黒鉛の比率が高いために合剤層密度が低く、容量も低くなる欠点を持つため、エネルギー密度を満足する電池は得られない。
 本発明は以下の構成からなる。
[1]負極活物質を含む合剤層を備えたリチウムイオン二次電池用負極であって、合剤層の密度が1.60g/cm3以上1.90g/cm3以下であり、水銀圧入法により測定された合剤層のLog微分細孔容積分布において0.50μm以上2.00μm以下に極大値を示す細孔径D1が存在し、前記負極活物質は人造黒鉛と天然黒鉛を含み、前記人造黒鉛と前記天然黒鉛の合計に対して前記人造黒鉛の配合比率が20質量%以上80質量%以下であり、前記人造黒鉛の円形度は0.82以上0.90以下であり、前記天然黒鉛の円形度は0.91以上0.99以下であり、前記人造黒鉛及び前記天然黒鉛の圧縮強度が0.1MPa以上15MPa以下であり、前記人造黒鉛のD50は10μm以上30μm以下であるリチウムイオン二次電池用負極。
[2]前記細孔容積分布において0.10μm以上0.25μm以下に極大値を示す細孔径D2がさらに存在する前記1に記載のリチウムイオン二次電池用負極。
[3]前記細孔容積分布において、細孔径D2における細孔容積P2に対する細孔径D1の細孔容積P1の比(細孔容積P1/細孔容積P2)が2.5以上である前記1または前記2に記載のリチウムイオン二次電池用負極。
[4]前記人造黒鉛が、表面に炭素コーティング層を有する人造黒鉛である前記1~3のいずれかひとつに記載のリチウムイオン二次電池用負極。
[5]前記天然黒鉛が、表面に炭素コーティング層を有する天然黒鉛である前記1~4のいずれかひとつに記載のリチウムイオン二次電池用負極。
[6]前記人造黒鉛はラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGであるR値が0.05以上0.50以下である前記1~5のいずれかひとつに記載のリチウムイオン二次電池用負極。
[7]前記天然黒鉛はラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGであるR値が0.05以上0.50以下である前記1~6のいずれかひとつに記載のリチウムイオン二次電池用負極。
[8]前記人造黒鉛のX線回折法による平均面間隔d002が0.3354nm以上0.3360nm以下である前記1~7のいずれかひとつに記載のリチウムイオン二次電池用負極。
[9]前記人造黒鉛のBET比表面積が0.5m2/g以上4.0m2/gであり、前記天然黒鉛のBET比表面積が1.5m2/g以上7.0m2/g以下である前記1~8のいずれかひとつに記載のリチウムイオン二次電池用負極。
[10]前記人造黒鉛が、石油系コークス及び/または石炭系コークスを2500℃以上で熱処理したものである前記1~9のいずれかひとつに記載のリチウムイオン二次電池用負極。
[11]前記1~10のいずれかひとつに記載の負極を備えたリチウムイオン二次電池。
 本発明によれば、大電流放電特性と優れたサイクル特性を備えたリチウムイオン二次電池用負極を提供することができる。
 以下、本発明の実施形態を詳細に説明する。
[1]リチウムイオン二次電池用負極
 本発明のリチウムイオン二次電池用負極は、負極合剤層(以下、合剤層という。)を有してなる。
[1-1]合剤層の密度
 本発明の一実施態様における負極の合剤層密度は1.60g/cm3以上が好ましい。密度が1.60g/cm3以上であると、エネルギー密度の高い電池が得られる。合剤層密度は1.90g/cm3以下が好ましい。密度が1.90g/cm3以下であると、合剤層内の空孔が十分に存在するため、合剤層に電解液が十分に浸透する上にリチウムイオンの拡散が良くなり大電流放電特性が向上する。同様の観点から、密度は1.80g/cm3以下が好ましく、1.75g/cm3以下がさらに好ましい。
[1-2]合剤層の細孔容積分布
 本発明の一実施態様における負極の合剤層は特定の細孔容積分布を有する。すなわち、水銀圧入法により合剤層のLog微分細孔容積分布(以下、単に細孔容積分布という。)を評価した場合、合剤層には極大値を示す細孔径D1が0.50μm以上に存在することが好ましい。細孔径D1が0.50μm以上に存在すると、合剤層中で円滑なリチウムイオンの輸送がなされ良好な大電流放電特性が得られる。同様の観点から、細孔径D1は0.51μm以上に存在することがより好ましい。細孔径D1は2.00μm以下に存在することが好ましい。細孔径D1が2.00μm以下に存在することで、負極内に局所的な大きな空孔が存在せず、均一な細孔が形成され良好な大電流放電特性が得られる。同様の観点から、細孔径D1は1.50μm以下に存在することがより好ましく、0.80μm以下に存在することがさらに好ましい。
 本発明の一実施態様における負極の合剤層は、細孔容積分布において、細孔径D1より小さい細孔径で極大値を示す細孔径D2が存在することが好ましい。細孔径D2は0.10μm以上に存在することがより好ましい。細孔径D2が0.10μm以上に存在すると、大電流放電特性が向上する傾向にある。同様の観点から、細孔径D2は0.11μm以上に存在することがさらに好ましく、0.12μm以上に存在することが最も好ましい。細孔径D2は0.25μm以下に存在することが好ましい。細孔径D2が0.25μm以下に存在することで、大電流放電特性が向上する傾向がある。同様の観点から、細孔径D2は0.20μm以下に存在することがさらに好ましく、0.18μm以下に存在することが最も好ましい。
 前記の合剤層の細孔容積分布において、細孔径D2における細孔容積P2に対する細孔径D1における細孔容積P1の比(P1/P2)は2.5以上が好ましい。前記比が2.5以上であると、充放電にあまり使用されない空孔が少なくなり、電極密度向上に寄与する。同様の観点から、前記比は2.7以上がさらに好ましい。
[1-3]合剤層の組成
 本発明の一実施態様における負極の合剤層は負極活物質を含み、前記負極活物質は人造黒鉛及び天然黒鉛の両方を含む。
 合剤層は導電助剤を含むことができる。導電助剤を含むことにより、電極への導電性の付与がされ電池寿命も良くなる。導電助剤としては、特に制限はないが、アセチレンブラック、ケッチェンブラック(登録商標)、炭素繊維等が挙げられる。導電助剤の配合量は合剤層中0.1~15質量%が好ましい。
 前記人造黒鉛の配合割合は、前記人造黒鉛と前記天然黒鉛の合計に対して人造黒鉛の割合が20質量%以上が好ましい。人造黒鉛の割合が20質量%以上であると、人造黒鉛の周辺に適度な細孔が形成され、大電流放電特性が向上する。同様の観点から、人造黒鉛の割合は25質量%以上がより好ましく、30質量%以上がさらに好ましい。一方、人造黒鉛の割合は80質量%以下が好ましい。人造黒鉛の割合が80質量%以下であると、圧縮強度の高い人造黒鉛混合しても負極の加圧成形による合剤層の充填が良好となり、負極のエネルギー密度が向上する。同様の観点から、人造黒鉛の割合は75質量%以下がより好ましく、70質量%以下がさらに好ましい。
 前記人造黒鉛及び前記天然黒鉛は、その粒子表面に炭素コーティング層を有していてもよい。炭素コーティング層を有することで、黒鉛のエッジ面が減少し初回クーロン効率が向上する。炭素コーティング層はアモルファス炭素層であることがさらに好ましい。アモルファス炭素層を有することで、大電流放電特性を向上させることができる。
 人造黒鉛及び天然黒鉛の表面をコーティングする方法は限定されないが、例えば有機化合物を黒鉛粒子表面に付着させ、900~1500℃の温度範囲で不活性雰囲気下にて焼成することでアモルファス炭素によりコーティングする方法が挙げられる。
 有機化合物としては、特に限定されないが、石油系ピッチ、石炭系ピッチ、フェノール樹脂、ポリビニルアルコール樹脂、フラン樹脂、セルロース樹脂、ポリスチレン樹脂、ポリイミド樹脂及びエポキシ樹脂を用いることができる。
 焼成設備は特に限定されないが、ロータリーキルン、ローラーハースキルン、電気式管状炉等の熱処理装置を用いることができる。
 手順としては、有機化合物を溶剤と混ぜて液状にして黒鉛と混合及び混練し、その後に溶剤を揮発させ、焼成処理を行うことで黒鉛粒子表面を炭素コーティング層で被覆することができる。また、有機化合物と黒鉛粒子を粉体同士で単純に混合し、それを熱処理する方法でも良い。
[1-4]黒鉛の円形度
 本発明の一実施態様における負極に含有される人造黒鉛の円形度は0.82以上0.90以下が好ましい。また、本発明の一実施態様における負極に含有される天然黒鉛の円形度は0.91以上0.99以下が好ましい。この円形度の範囲にある黒鉛を組み合わせることにより、負極における合剤層の細孔径や細孔容積が最適化され、大電流放電特性を向上させることができる。同様の観点から、人造黒鉛の円形度は0.84以上0.90以下がより好ましく、天然黒鉛の円形度は0.91以上0.96以下がより好ましく、人造黒鉛の円形度は0.87以上0.90以下がさらに好ましく、天然黒鉛の円形度は0.91以上0.94以下がさらに好ましい。
 本明細書において円形度とは、観測された粒子像の面積と同面積を有する円の周長を粒子像の周長で割ったものであり、1に近いほど真円に近い。円形度は、実施例に記載の方法により測定することができる。
[1-5]黒鉛の圧縮強度
 本発明の一実施態様における負極に含有される人造黒鉛の圧縮強度は0.1MPa以上が好ましい。これは検出下限である。人造黒鉛の圧縮強度は15MPa以下が好ましい。圧縮強度が15MPa以下であると、負極の加圧成形による合剤層の充填が良好であり、負極のエネルギー密度が高くなる傾向にある。同様の観点から、圧縮強度は13MPa以下がより好ましく、10MPa以下がさらに好ましい。
 本発明の一実施態様における負極に含有される天然黒鉛の圧縮強度は0.1MPa以上が好ましい。これは検出下限である。天然黒鉛の圧縮強度は15MPa以下が好ましい。圧縮強度が15MPa以下であると、負極の加圧成形による合剤層の充填が良好であり、負極のエネルギー密度が高くなる傾向にある。同様の観点から、圧縮強度は14MPa以下が好ましく、13MPa以下がさらに好ましい。
 圧縮強度は微小圧縮試験機により測定する。10点の測定を行い、算出された各圧縮強度の平均値を材料の圧縮強度とする。
[1-6]黒鉛の平均粒径
 本発明の一実施態様における負極に含有される人造黒鉛の体積基準累積粒度分布における50%粒子径(D50)は10μm以上が好ましい。人造黒鉛のD50が10μm以上であると、粒子表面の活性点が少ないため電池材料として用いたときに副反応が減少する。同様の観点から、D50は11μm以上がより好ましい。人造黒鉛のD50は30μm以下が好ましい。D50が30μm以下であると、電極の電気抵抗が小さくなり、大電流放電特性が向上する。同様の観点から、D50は20μm以下がより好ましく、15μm以下が最も好ましい。
 本発明の一実施態様における負極に含有される天然黒鉛のD50は10μm以上が好ましい。天然黒鉛のD50が10μm以上であると、粒子表面の活性点が少ないため電池材料として用いたときに副反応が減少する。同様の観点から、D50は11μm以上がより好ましく、12μm以上が最も好ましい。天然黒鉛のD50は30μm以下が好ましい。D50が30μm以下であると、電極の電気抵抗が小さくでき、大電流放電特性が向上する。同様の観点から、25μm以下がより好ましく、20μm以下が最も好ましい。
 D50はレーザー回折式粒度分布測定装置により体積基準の粒子径分布を測定し、累積50%となる粒径を求めることで測定する。
[1-7]黒鉛の比表面積
 本発明の一実施態様における負極に含有される人造黒鉛のBET比表面積は0.5m2/g以上が好ましい。人造黒鉛のBET比表面積が0.5m2/g以上であると電解液との接触面積が増加し、特性が向上する。同様の観点から、BET比表面積は1.0m2/g以上がより好ましく、1.5m2/g以上が最も好ましい。人造黒鉛のBET比表面積は4.0m2/g以下が好ましい。人造黒鉛のBET比表面積が4.0m2/g以下であると粒子の表面活性を抑え、電解液の分解などによるクーロン効率の低下やサイクル特性の低下を抑制する傾向がある。同様の観点から、BET比表面積は3.5m2/g以下がより好ましく、3.0m2/g以下が最も好ましい。
 本発明の一実施態様における負極に含有される天然黒鉛のBET比表面積は1.5m2/g以上が好ましい。天然黒鉛のBET比表面積が1.5m2/g以上であると電解液との接触面積が増加し、大電流放電が向上する。同様の観点から、BET比表面積は1.8m2/g以上がより好ましく、2.1m2/g以上が最も好ましい。天然黒鉛のBET比表面積は7.0m2/g以下が好ましい。BET比表面積が7.0m2/g以下であると粒子の表面活性を抑え、電解液の分解などによるクーロン効率の低下やサイクル特性の低下を抑制する傾向がある。同様の観点から、BET比表面積は5.0m2/g以下がより好ましく、3.0m2/g以下が最も好ましい。
 BET比表面積は実施例に記載の方法により測定することができる。
[1-8]黒鉛のd002
 本発明の一実施態様における負極に含有される人造黒鉛の、X線回折法による(002)面の平均面間隔d002は0.3354nm以上が好ましい。0.3354nmは黒鉛のd002の理論下限値である。人造黒鉛のd002は0.3360nm以下が好ましい。d002が0.3360nm以下であると、黒鉛の結晶性が高くリチウムイオンがインターカレーション可能な空間が増加し容量が高くなる。同様の観点からd002は0.3358nm以下がより好ましい。
 本発明の一実施態様における負極に含有される天然黒鉛のd002は0.3354nm以上が好ましい。0.3354nmは黒鉛のd002の理論下限値である。天然黒鉛のd002は0.3357nm以下が好ましい。d002が0.3357nm以下であると、黒鉛の結晶性が高いため、放電容量の大きな電池が得られる。
 d002は、既知の粉末X線回折(XRD)法を用いて測定することができる(稲垣道夫他,日本学術振興会,第117委員会資料,117-121-C-5(1972)、稲垣道夫,「炭素」,1963,No.36,25-34頁参照)、Iwashita et al.,Carbon vol.42(2004),p.701-714参照)。
[1-9]黒鉛のR値
 本発明の一実施態様における負極に含有される人造黒鉛のR値は0.05以上であることが好ましい。人造黒鉛のR値が0.05以上であると、黒鉛層間へのリチウムイオンの挿入・脱離が容易になり、二次電池の電極材としたときの大電流放電特性が改善する。同様の観点から、R値は0.07以上がより好ましく、0.10以上がさらに好ましい。人造黒鉛のR値は0.50以下が好ましい。R値が0.50以下であると、圧縮強度の上昇を抑制し黒鉛の充填が容易となり、エネルギー密度が高くなる。同様の観点から、R値は0.30以下がさらに好ましく、0.20以下が最も好ましい。
 本発明の一実施態様における負極に含有される天然黒鉛のR値は0.05以上であることが好ましい。天然黒鉛のR値が0.05以上であると、黒鉛層間へのリチウムイオンの挿入・脱離が容易になり、二次電池の電極材としたときの大電流放電特性が改善する。同様の観点から、R値は0.12以上がより好ましく、0.20以上がさらに好ましい。天然黒鉛のR値は0.50以下が好ましい。R値が0.50以下であると、圧縮強度の上昇を抑制し黒鉛の充填が容易となり、エネルギー密度が高くなる。同様の観点から、R値は0.40以下がさらに好ましく、0.30以下が最も好ましい。
 本明細書において、R値とはラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGであり、R値が大きいほど結晶性が低いことを示す。
[1-10]黒鉛の製造方法
 本発明の一実施態様における負極に含有される人造黒鉛は、石油コークス、石炭コークス等の原料を所定の大きさに粉砕し、得られた粉砕品を黒鉛化処理することによって製造することができる。人造黒鉛は非凝集構造の粒子がさらに好ましい。非凝集型であると、充放電に伴う膨張収縮の繰り返しによっても粒子内剥離がほとんど起きず、高温サイクル特性、高温保存特性が優れる。なお、非凝集型とは二次粒子化していない一次粒子そのままの状態ものをいう。
 黒鉛化は原料を高温で加熱することで行われる。加熱温度は2500℃以上が好ましく、2900℃以上がさらに好ましく、3000℃以上が最も好ましい。加熱温度を2500℃以上にすることにより、黒鉛結晶が発達し高い放電容量が得られる。加熱温度は3300℃以下が好ましい。加熱温度が3300℃以下であると、炭素の昇華が抑えられ、高収率で製品が得られる。
 本発明の一実施態様における負極に含有される天然黒鉛は、球状天然黒鉛が好ましい。天然黒鉛は通常鱗片状であり、そのエッジ面が露出している。前記エッジ面は電解液と反応しやすく、初回容量効率を低下させる要因となっている。そのため、鱗片状の天然黒鉛は球塊状に加工しエッジ面を減少させて球状天然黒鉛とすることが好ましい。
 球状化の方法は限定されないが、衝撃式粉砕機を用い、天然黒鉛を気流に乗せて装置内で壁面に衝突させ、端部を折り曲げて球状化する方法を用いることができる。また、天然黒鉛を粉砕して球状粒子のみをふるいわけする方法や、擦り潰しにより球状に加工する方法を用いることもできる。装置としては、ジェットミル、ハイブリダイゼーションシステム(登録商標:株式会社奈良機械製作所製)、メカノフュージョシステム(登録商標:ホソカワミクロン株式会社製)、ノビルタ(登録商標:ホソカワミクロン株式会社製)などが挙げられる。
[2]リチウムイオン二次電池用負極の製造方法
 本発明の一実施態様におけるリチウムイオン二次電池用負極は、前記合剤層が集電体上に形成されてなる。集電体としては、例えばニッケル、銅等の箔、メッシュなどが挙げられる。
 本発明の一実施態様における負極の製造方法は、負極活物質を含む負極用ペーストを得る工程、前記ペーストを集電体に塗布する工程、及び集電体上のペーストを乾燥及び加圧成形する工程を含む。この場合、合剤層は集電体上に加圧成形された物質層である。
 負極用ペーストは、負極活物質、バインダー及び分散媒とを含んでなることが好ましい。さらに、任意成分として導電助剤を含むことができる。負極用ペーストは、負極活物質、バインダー、分散媒及び任意成分としての導電助剤とを混練することによって得ることができる。負極用ペーストは、シート状、ペレット状等の形状に成形することができる。
 バインダーとしては、例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンターポリマー、ブタジエンゴム、スチレンブタジエンゴム、ブチルゴム、イオン伝導率の大きな高分子化合物等が挙げられる。イオン伝導率の大きな高分子化合物としては、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が挙げられる。バインダーの使用量は、負極活物質100質量部に対して0.5~20質量部が好ましい。
 分散媒は、特に制限はないが、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、水等が挙げられる。分散媒として水を使用するバインダーの場合は、カルボキシメチルセルロースのような増粘剤を併用することが好ましい。分散媒の量は集電体に塗布しやすいような粘度となるように調整される。
 得られた負極用ペーストを集電体に塗布する方法は特に制限されず、例えば、ドクターブレードやバーコーター等により塗布することができる。ペーストの塗布厚は50~200μmが好ましい。塗布厚が大きくなりすぎると、規格化された電池容器に負極を収容できなくなったり、リチウムイオン拡散距離の増大による電池の内部抵抗の増加に繋がる。
 塗布したペーストを乾燥した後、加圧成形する。加圧成形は、ロール加圧、プレス加圧等の成形法を用いて行うことできる。加圧成形するときの圧力は約100MPa~約300MPa(1~3t/cm2程度)が好ましい。
[3]リチウムイオン二次電池
 本発明の一実施態様におけるリチウムイオン二次電池は、その負極に前記負極を用いてなる。リチウムイオン二次電池は、正極と前記負極とが電解液または電解質の中に浸漬された構造を有する。
 リチウムイオン二次電池の正極には、正極活物質として、通常、リチウム含有遷移金属酸化物が用いられ、好ましくはTi、V、Cr、Mn、Fe、Co、Ni、Mo及びWから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属元素のモル比が0.3~2.2の化合物が用いられ、より好ましくはV、Cr、Mn、Fe、Co及びNiから選ばれる少なくとも1種の遷移金属元素とリチウムとを主として含有する酸化物であって、リチウムと遷移金属のモル比が0.3~2.2の化合物が用いられる。なお、主として存在する遷移金属に対し30モル%未満の範囲でAl、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P、Bなどを含有していても良い。上記の正極活物質の中で、一般式LixMO2(MはCo、Ni、Fe、Mnの少なくとも1種、x=0.02~1.2。)、またはLiy24(Nは少なくともMnを含む。y=0.02~2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが好ましい。
 さらに、正極活物質はLiya1-a2(MはCo、Ni、Fe、Mnの少なくとも1種、DはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの中のM以外の少なくとも1種、y=0.02~1.2、a=0.5~1。)を含む材料、またはLiz(Nb1-b24(NはMn、EはCo、Ni、Fe、Mn、Al、Zn、Cu、Mo、Ag、W、Ga、In、Sn、Pb、Sb、Sr、B、Pの少なくとも1種、b=1~0.2、z=0.02~2。)で表されるスピネル構造を有する材料の少なくとも1種を用いることが特に好ましい。
 具体的には、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixCob1-bz、LixCobFe1-bO2、LixMn24、LixMncCo2-c4、LixMncNi2-c4、LixMnc2-c4、LixMncFe2-c4(ここでx=0.02~1.2、a=0.1~0.9、b=0.8~0.98、c=1.6~1.96、z=2.01~2.3。)が挙げられる。最も好ましいリチウム含有遷移金属酸化物としては、LixCoO2、LixNiO2、LixMnO2、LixCoaNi1-a2、LixMn24、LixCob1-bz(x=0.02~1.2、a=0.1~0.9、b=0.9~0.98、z=2.01~2.3。)が挙げられる。なお、xの値は充放電開始前の値であり、充放電により増減する。
 正極活物質の平均粒子サイズは特に限定されないが、0.1~50μmが好ましい。0.5~30μmの粒子の体積が95%以上であることが好ましい。粒径3μm以下の粒子群の占める体積が全体積の18%以下であり、かつ15μm以上25μm以下の粒子群の占める体積が、全体積の18%以下であることがさらに好ましい。ここでの粒子径は、レーザー回折法による粒度分布測定における体積基準累計粒度分布により算出したものであり、平均粒子径は累計50%における粒子径である。
 比表面積は特に限定されないが、BET法で0.01~50m2/gが好ましく、特に0.2~10m2/gが好ましい。また正極活物質5gを蒸留水100mlに溶かした時の上澄み液のpHとしては7以上12以下が好ましい。
 リチウムイオン二次電池に用いられる電解液は、特に制限されない。例えば、LiClO4、LiPF6、LiAsF6、LiBF4、LiSO3CF3、CH3SO3Li、CF3SO3Li等のリチウム塩を、例えばエチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、ブチレンカーボネート、アセトニトリル、プロピオニトリル、ジメトキシエタン、テトラヒドロフラン、γ-ブチロラクトン等の非水系溶媒に溶かしたいわゆる有機電解液や、固体若しくはゲル状のいわゆるポリマー電解質を挙げることができる。
 また、電解液には、リチウムイオン二次電池の初回充電時に分解反応を示す添加剤を少量添加することが好ましい。添加剤としては例えば、ビニレンカーボネート、ビフェニール、プロパンスルトン等が挙げられる。添加量としては0.01~5質量%が好ましい。
 リチウムイオン二次電池には正極と負極との間にセパレーターを設けることができる。セパレーターとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルムまたはそれらを組み合わせたものなどを挙げることができる。
 なお、上記以外の電池構成上必要な部材の選択についてはなんら制約を受けるものではない。
 以下、本発明に実施例を具体的に説明する。なお、これらは説明のための単なる例示であって、本発明は限定するものではない。
 なお、実施例及び比較例の電極の作成法、電極に使用した黒鉛材料についての形状、組成、物性及び電池特性の測定方法は以下の通りである。
[1]負極活物質の評価
[1-1]円形度
 円形度は粒子像の面積をS、周長をLとすると、以下の式で表すことができる。
 円形度=(4πS)1/2/L
 サンプルを目開き106μmのフィルターを通すことで精製した。得られたサンプル0.1gを20mlのイオン交換水中に添加し、界面活性剤0.1~0.5質量%を加えることによって均一に分散させ、測定用試料溶液を調製した。分散は超音波洗浄機UT-105S(シャープマニファクチャリングシステム社製)を用い、5分間処理することにより行った。得られた測定用試料溶液をフロー式粒子像分析装置FPIA-3000(シスメックス社製)に投入し、LPFモードで10000個の粒子を解析してそれぞれの円形度を求め、その個数基準の度数分布により円形度の中央値を算出し、それを円形度とした。
[1-2]圧縮強度
 圧縮強度は島津製作所製微小圧縮試験機MCT-510により測定した。下部圧子にサンプルを置き、光学顕微鏡視野よりD50に近い単粒子を選択し、上部圧子により加圧する圧縮試験を行った。St=2.8P/πd2(St:圧縮強度(MPa)、P:試験力(N)、d:粒子径(mm))の式から、サンプルの圧縮強度を算出した。10点の測定を行い、算出された各圧縮強度の平均値を材料の圧縮強度とした。上部圧子サイズは50μmを標準とするが、10μm以下のサンプルを測定する場合は20μmの圧子を選択した。
[1-3]ラマン分光分析
 レーザーラマン分光装置として日本分光株式会社NRS-5100を用い、励起波長532.36nmで測定を行った。
 ラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGを計算しR値とした。
[1-4]面間隔d002
 サンプルと標準シリコン(NIST製)が9対1の質量比になるように混ぜた混合物をガラス製試料板(試料板窓18×20mm、深さ0.2mm)に充填し、以下のような条件で測定を行った。
 XRD装置:リガク製SmartLab(登録商標)
 X線種:Cu-Kα線
 Kβ線除去方法:Niフィルター
 X線出力:45kV、200mA
 測定範囲:24.0~30.0deg.
 スキャンスピード:2.0deg./min.
 得られた波形に対し、学振法を適用し面間隔d002の値を求めた。
[1-5]50%粒子径(D50)
 50%粒子径(D50)はレーザー回折式粒度分布測定器としてマルバーン製マスターサイザー(Mastersizer;登録商標)を用い体積基準の粒子径分布において測定した。
[1-6]BET比表面積
 BET比表面積測定装置としてカンタクローム(Quantachrome)社製NOVA2200eを用い、サンプルセル(9mm×135mm)に3gのサンプルを入れ、300℃、真空条件下で1時間乾燥後、測定を行った。BET比表面積測定用のガスはN2を用いた。
[2]負極の作製
 複数種の黒鉛を用いる場合は、黒鉛を所定の混合比にてV型ブレンダーにて混合し負極活物質を得た。得られた負極活物質96.5gに導電助剤としてカーボンブラックを0.5g、増粘剤としてカルボキシメチルセルロース(CMC)1.5g、水を適宜加えて撹拌及び混合することにより粘度を調節後、固形分比40%のスチレン-アクリルポリマー微粒子(Polysol(登録商標)、昭和電工株式会社製)を含む水分散液3.8gを加え撹拌及び混合し、充分な流動性を有するスラリー状の分散液を作製した。
 作製した分散液を厚み20μmの銅箔上にロールコーターを用いて均一となるように塗布し、乾燥させ電極を得た。乾燥した電極はロールプレスにより密度を調製し、電池評価用負極を得た。電極の合剤層は10mg/cm2に調整した。
[3]負極の細孔容積
 細孔容積は島津製作所製水銀ポロシメーターオートポアIV9520を用い水銀圧入法により測定した。水銀ポロシメーターを用いた測定では、圧力Pを段階的に増加させながら負極の細孔に侵入する水銀の侵入量Vを測定し、横軸を孔径(μm)、水銀の侵入量の変化率(ΔV/ΔP)を縦軸に対数プロットした。ただし、水銀の接触角は130°、表面張力は485mN/m、細孔の孔径と圧力の関係は180/圧力=孔径と近似して算出を行った。
[4]電池の作製
[4-1]正極の作製
 Li3Ni1/3Mn1/3Co1/3を92g、導電助剤としてカーボンブラック(TIMCAL社製)3g及び気相成長炭素繊維1g(VGCF(登録商標)、昭和電工株式会社製)、及びバインダーとしてポリフッ化ビニリデン(PVdF)4gにN-メチル-ピロリドンを適宜加えながら攪拌・混合し、スラリー状の分散液を作製した。
 作製した分散液を厚さ20μmのアルミ箔上にロールコーターにより塗布し、乾燥させ、その後、ロールプレスにて加圧成形した。得られた正極の合剤層は19mg/cm2であり、合剤層密度は3.1g/cm3であった。
[4-2]電解液調製
 非水溶媒として、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)を体積比3:7で混合し、電解質塩として六フッ化リン酸リチウム(LiPF6)を1.0mol/L溶解させたものを電解液とした。
[4-3]電池作製
 上記負極及び正極を打ち抜いて面積20cm2の負極片及び正極片を得た。正極片のAl箔にAlタブを、負極片のCu箔にNiタブをそれぞれ取り付けた。ポリプロピレン製フィルム微多孔膜を負極片と正極片との間に挟み入れ、その状態でアルミラミネートにパックした。そして、それに電解液を500μL注液した。その後、開口部を熱融着によって封止して評価用の電池(設計容量50mAh)を作製した。
[5]電池の評価
[5-1]DC-IR
 満充電状態から5時間0.1CでCC放電し、電池の充電状態を50%に調整した。調整後1時間休止し、次いで25mAで5秒間放電し、このときの放電前後の電圧降下量を測定した。電圧降下量からオームの法則(R=ΔV/0.025)により電池内部抵抗を測定した。
[5-2]大電流放電試験
 セルを上限電圧4.2V、カットオフ電流値1mAとしてCC、CVモードにより5mAで充電後、下限電圧2.8VでCCモードにより3.0C(150mA)放電し、3.0Cにおける放電容量を算出した。0.1C放電容量(0.1C=約5mA)を基準として、3.0Cにおける放電容量の比を算出した。
(3.0C放電容量比(%))=(3.0C放電容量(mAh))/(0.1C放電容量(mAh))×100
[5-3]サイクル特性
 上限電圧4.2VとしてCC、CVモードで、1C(1C=50mA)で、カットオフ電流値2.5mAで充電を行った。
 下限電圧2.8Vとして、CCモードで2C放電を行った。
 上記条件で、500サイクル充放電を繰り返した。500サイクル時の放電容量を測定した。初回放電容量に対する500サイクル時放電容量の割合を算出し、それを放電容量維持率とした。
(500サイクル後放電容量維持率(%))=(500サイクル時放電容量)/(初回放電容量)×100
[5-4]放電容量、エネルギー密度
 上限電圧4.2VとしてCC(コンスタントカレント)、CV(コンスタントボルテージ)モードで、5mAで、カットオフ電流値1mAで充電を行った。
 下限電圧2.8Vとして、CCモードで0.1C(5mA)の放電を行って、放電容量を測定した。放電容量と電極密度の積をエネルギー密度とした。
実施例1~3
 針状の石油コークスをD50=12μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した非凝集型である人造黒鉛1及び、D50=12μmの球状天然黒鉛100質量部に対して石油系ピッチ2質量部を混合し、電気式管状炉を用い、不活性雰囲気下1200℃で焼成し粒子表面にアモルファス炭素コーティング処理を施すことにより製造した球状の天然黒鉛1を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
 なお、非凝集型とは二次粒子化していない一次粒子そのままの状態ものをいう。
実施例4
 針状の石油コークスをD50=12μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した黒鉛粒子100質量部に対して石油系ピッチ2質量部を混合し、電気式管状炉を用い、不活性雰囲気下1200℃で焼成し粒子表面にアモルファス炭素コーティング処理を施すことにより製造した非凝集型である人造黒鉛2、及び球状の天然黒鉛1を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
実施例5
 ロールプレスの圧力を変更した以外は実施例2と同様に負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
実施例6
 ロールプレスの圧力を変更した以外は実施例3と同様に負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例1
 人造黒鉛1及び天然黒鉛1を表1に記載の質量比率で用いて負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例2
 黒鉛として人造黒鉛1のみを用いて負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例3
 黒鉛として天然黒鉛1のみを用いて負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例4~6
 針状の石油コークスをD50=6μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した非凝集型である人造黒鉛3及び天然黒鉛1を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例7
 塊状の石油コークスをD50=22μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した非凝集型である人造黒鉛4及び天然黒鉛1を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例8
 塊状の石油コークスをD50=6μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した黒鉛粒子100質量部に対して石油系ピッチ2質量部を混合し、電気式管状炉を用い、不活性雰囲気下1200℃で焼成し粒子表面にアモルファス炭素コーティング処理を施すことにより製造した非凝集型である人造黒鉛5、及び天然黒鉛1を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例9
 人造黒鉛1、及びD50=12μmの球状天然黒鉛100質量部に対して石油系ピッチ5質量部を混合し、電気式管状炉を用い、不活性雰囲気下1200℃で焼成し粒子表面にアモルファス炭素コーティング処理を施すことにより製造した球状の天然黒鉛2を、表1に記載の質量比率で用いて、負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例10
 人造黒鉛1及び人造黒鉛3を表1に記載の質量比率で用いて負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
比較例11
 人造黒鉛1、及び針状の石炭コークスをD50=15μmに粉砕し、アルゴン雰囲気下の誘導加熱炉で3000℃の熱処理を行い製造した非凝集型である人造黒鉛6を表1に記載の質量比率で用いて負極を作製した。得られた負極について、物性を測定及び評価し、その結果を表1に併せて示す。また、得られた負極を用いてリチウムイオン二次電池を作製し、電池特性の評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1.  負極活物質を含む合剤層を備えたリチウムイオン二次電池用負極であって、合剤層の密度が1.60g/cm3以上1.90g/cm3以下であり、水銀圧入法により測定された合剤層のLog微分細孔容積分布において0.50μm以上2.00μm以下に極大値を示す細孔径D1が存在し、前記負極活物質は人造黒鉛と天然黒鉛を含み、前記人造黒鉛と前記天然黒鉛の合計に対して前記人造黒鉛の配合比率が20質量%以上80質量%以下であり、前記人造黒鉛の円形度は0.82以上0.90以下であり、前記天然黒鉛の円形度は0.91以上0.99以下であり、前記人造黒鉛及び前記天然黒鉛の圧縮強度が0.1MPa以上15MPa以下であり、前記人造黒鉛のD50は10μm以上30μm以下であるリチウムイオン二次電池用負極。
  2.  前記細孔容積分布において0.10μm以上0.25μm以下に極大値を示す細孔径D2がさらに存在する請求項1に記載のリチウムイオン二次電池用負極。
  3.  前記細孔容積分布において、細孔径D2における細孔容積P2に対する細孔径D1の細孔容積P1の比(細孔容積P1/細孔容積P2)が2.5以上である請求項1または請求項2に記載のリチウムイオン二次電池用負極。
  4.  前記人造黒鉛が、表面に炭素コーティング層を有する人造黒鉛である請求項1~3のいずれかひとつに記載のリチウムイオン二次電池用負極。
  5.  前記天然黒鉛が、表面に炭素コーティング層を有する天然黒鉛である請求項1~4のいずれかひとつに記載のリチウムイオン二次電池用負極。
  6.  前記人造黒鉛はラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGであるR値が0.05以上0.50以下である請求項1~5のいずれかひとつに記載のリチウムイオン二次電池用負極。
  7.  前記天然黒鉛はラマン分光スペクトルで測定される1300~1400cm-1の範囲にあるピーク強度(ID)と1580~1620cm-1の範囲にあるピーク強度(IG)との強度比ID/IGであるR値が0.05以上0.50以下である請求項1~6のいずれかひとつに記載のリチウムイオン二次電池用負極。
  8.  前記人造黒鉛のX線回折法による平均面間隔d002が0.3354nm以上0.3360nm以下である請求項1~7のいずれかひとつに記載のリチウムイオン二次電池用負極。
  9.  前記人造黒鉛のBET比表面積が0.5m2/g以上4.0m2/gであり、前記天然黒鉛のBET比表面積が1.5m2/g以上7.0m2/g以下である請求項1~8のいずれかひとつに記載のリチウムイオン二次電池用負極。
  10.  前記人造黒鉛が、石油系コークス及び/または石炭系コークスを2500℃以上で熱処理したものである請求項1~9のいずれかひとつに記載のリチウムイオン二次電池用負極。
  11.  請求項1~10のいずれかひとつに記載の負極を備えたリチウムイオン二次電池。
PCT/JP2019/045805 2018-11-26 2019-11-22 リチウムイオン二次電池用負極及びリチウムイオン二次電池 WO2020110942A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220117 2018-11-26
JP2018-220117 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110942A1 true WO2020110942A1 (ja) 2020-06-04

Family

ID=70853244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045805 WO2020110942A1 (ja) 2018-11-26 2019-11-22 リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2020110942A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113066977A (zh) * 2021-03-18 2021-07-02 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子设备
EP4174986A4 (en) * 2020-09-11 2023-11-29 LG Energy Solution, Ltd. NEGATIVE ELECTRODE MATERIAL AND NEGATIVE ELECTRODE AND SECONDARY BATTERY THEREFROM

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302725A (ja) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd リチウム二次電池用負極活物質、及びこれを含む負極、及びリチウム二次電池
JP2009004139A (ja) * 2007-06-20 2009-01-08 Hitachi Maxell Ltd リチウム二次電池
JP2011519143A (ja) * 2008-04-29 2011-06-30 エルエス エムトロン リミテッド リチウム二次電池用負極活物質、その製造方法、及びそれを負極として含むリチウム二次電池
JP2013211228A (ja) * 2012-03-30 2013-10-10 Sony Corp 電池、電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2014024473A1 (ja) * 2012-08-06 2014-02-13 昭和電工株式会社 リチウムイオン二次電池用負極材料
WO2014088084A1 (ja) * 2012-12-07 2014-06-12 昭和電工株式会社 リチウムイオン二次電池負極用スラリーの製造方法
JP2015220119A (ja) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 非水系二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302725A (ja) * 2004-04-12 2005-10-27 Samsung Sdi Co Ltd リチウム二次電池用負極活物質、及びこれを含む負極、及びリチウム二次電池
JP2009004139A (ja) * 2007-06-20 2009-01-08 Hitachi Maxell Ltd リチウム二次電池
JP2011519143A (ja) * 2008-04-29 2011-06-30 エルエス エムトロン リミテッド リチウム二次電池用負極活物質、その製造方法、及びそれを負極として含むリチウム二次電池
JP2013211228A (ja) * 2012-03-30 2013-10-10 Sony Corp 電池、電池用負極、電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2014024473A1 (ja) * 2012-08-06 2014-02-13 昭和電工株式会社 リチウムイオン二次電池用負極材料
WO2014088084A1 (ja) * 2012-12-07 2014-06-12 昭和電工株式会社 リチウムイオン二次電池負極用スラリーの製造方法
JP2015220119A (ja) * 2014-05-19 2015-12-07 トヨタ自動車株式会社 非水系二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4174986A4 (en) * 2020-09-11 2023-11-29 LG Energy Solution, Ltd. NEGATIVE ELECTRODE MATERIAL AND NEGATIVE ELECTRODE AND SECONDARY BATTERY THEREFROM
CN113066977A (zh) * 2021-03-18 2021-07-02 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子设备

Similar Documents

Publication Publication Date Title
KR101461220B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 그리고 이를 포함하는 음극 및 리튬 이차 전지
KR101368474B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
KR100446828B1 (ko) 흑연 입자 및 이를 음극으로 이용하는 리튬 2차 전지
KR101730956B1 (ko) 음극 활물질, 그 제조방법 및 이를 포함하는 리튬 전지
JP3262704B2 (ja) 非水系二次電池用炭素電極、その製造方法及びそれを用いた非水系二次電池
WO2014092141A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極シート及びリチウム二次電池
WO2012001845A1 (ja) 非水電解質二次電池用負極およびその製造方法
CN110870115A (zh) 负极活性材料、包含其的负极和锂二次电池
JP5155498B2 (ja) リチウム二次電池用正極活物質の製造方法
KR20150063620A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102321261B1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2022550820A (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
EP3683872B1 (en) Silicon-carbon composite and lithium secondary battery comprising same
KR20200047287A (ko) 입경이 상이한 흑연 및 실리콘계 소재를 포함하는 음극 및 이를 포함하는 리튬 이차전지
JPH10236809A (ja) 黒鉛粒子及びその製造法、黒鉛粒子を用いた黒鉛ペースト、リチウム二次電池用負極及びその製造法並びにリチウム二次電池
EP3754762B1 (en) Anode including graphite and silicon-based material having different diameters and lithium secondary battery including the same
JP4933092B2 (ja) リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP6723707B2 (ja) リチウムイオン電池用正極活物質、正極材料、正極、およびリチウムイオン電池
WO2020110942A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2020141573A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
KR102317512B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2001089118A (ja) 黒鉛粒子、その製造法、リチウム二次電池用負極及びリチウム二次電池
KR20150021406A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2020110943A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP