WO2009131346A2 - Mems 프로브 카드 및 그의 제조 방법 - Google Patents

Mems 프로브 카드 및 그의 제조 방법 Download PDF

Info

Publication number
WO2009131346A2
WO2009131346A2 PCT/KR2009/002059 KR2009002059W WO2009131346A2 WO 2009131346 A2 WO2009131346 A2 WO 2009131346A2 KR 2009002059 W KR2009002059 W KR 2009002059W WO 2009131346 A2 WO2009131346 A2 WO 2009131346A2
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
low temperature
probe card
insulating film
mems probe
Prior art date
Application number
PCT/KR2009/002059
Other languages
English (en)
French (fr)
Other versions
WO2009131346A3 (ko
WO2009131346A9 (ko
Inventor
김상희
Original Assignee
(주)탑엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080036755A external-priority patent/KR20090111142A/ko
Priority claimed from KR1020080039573A external-priority patent/KR20090113705A/ko
Priority claimed from KR1020080043597A external-priority patent/KR20090117508A/ko
Application filed by (주)탑엔지니어링 filed Critical (주)탑엔지니어링
Priority to US12/988,857 priority Critical patent/US20110089967A1/en
Priority to JP2011506187A priority patent/JP2011518336A/ja
Publication of WO2009131346A2 publication Critical patent/WO2009131346A2/ko
Publication of WO2009131346A3 publication Critical patent/WO2009131346A3/ko
Publication of WO2009131346A9 publication Critical patent/WO2009131346A9/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C99/00Subject matter not provided for in other groups of this subclass
    • B81C99/0035Testing
    • B81C99/005Test apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a micro electro mechanical systems (MEMS) probe card and a method of manufacturing the same, and in particular, a resistive conductor in a low temperature cofired ceramic (hereinafter referred to as low temperature co-fired ceramics) multilayer substrate.
  • MEMS not only can obtain stable resistance ratio, but also can be used for large power change, and it is possible to easily design required power power by using Ru 2 0 3 oxide having stable property on substrate surface as resistive conductor.
  • a probe card used in an electronic device test apparatus such as a semiconductor chip is a device including a predetermined substrate and probes arranged on the substrate.
  • the probe card inspects an electrical characteristic and an abnormal operation of the chip on the semiconductor wafer. Used to
  • the semiconductor chip is provided with pads on its surface for mutual signal communication with an external electronic device. That is, the semiconductor chip receives an electrical signal through the pads, performs a predetermined operation, and then transfers the processed result back to the external electronic device through the pads.
  • the probe card forms an electrical path between the semiconductor chip and an external electronic device (eg, a test device), thereby enabling electrical testing of the semiconductor chip.
  • the semiconductor chip test apparatus adopts a MEMS probe type to which a fine probe forming technology using a semiconductor MEMS technology is applied, rather than the conventional pin type, due to the trend toward larger and faster speeds due to the development of semiconductor technology.
  • the probe also requires a multi-channel probe.
  • the probe card is applied by the multi-junction pin, excessive current flows excessively into one channel to spark at the probe terminal. Since poor sex can be generated, countermeasures are required.
  • FIG. 1 is a cross-sectional view and a plan view showing a structure of a resistance conductive line in a conventional MEMS probe card.
  • a conventional MEMS probe card forms a conductive line 10 on a surface of high temperature co-fired ceramics (HTCC) substrate.
  • a via filler conductor 11 is filled in the via hole formed in the line 10, and the thin film resistor 12 and the thin film conductive line 13 for the MEMS probe are formed on the surface of the conductive line 10. to be.
  • a resistance conductive line is formed by the via filler conductor 11, a thin film resistor 12, and a thin film conductive line 13, and an excessive current speed and amount of current are controlled by the resistance conductive line.
  • reference numeral 14 denotes a bump pad
  • reference numeral 15 denotes an adhesive
  • reference numeral 16 denotes a MEMS probe
  • reference numeral 17 denotes a probe tip.
  • the thin film resistor 12 is connected in series in the X or Y direction to the thin film conductive line 13 of the conventional MEMS probe card as described above, the circuit directivity is lowered. It gets even worse when designing.
  • the thin film resistor 12 when the thin film resistor 12 is designed to have the same or narrower width as the thin film conductive line 13, it is difficult to apply to a MEMS probe card requiring high power.
  • the HTCC substrate is heat-treated at a temperature of 1500 °C or more to form a multi-layer wiring board.
  • the insulating material of HTCC substrate is 94% or more of alumina as a main raw material, a small amount of silica as an additive, and the conductive wire mainly uses tungsten (W) capable of high temperature firing.
  • W tungsten
  • an LTCC substrate may be used instead of the above-described HTCC substrate, and the LTCC substrate is heat-treated at a temperature of 1000 ° C. or lower to form a multilayer wiring board.
  • This LTCC multilayer substrate uses a lot of low melting point silica and uses a relatively small amount of alumina for use at low temperature below 1000 ° C.
  • silver (Ag) or copper (Cu) having excellent electrical conductivity is used as the electrical conductor material while the firing temperature is 1000 ° C or lower.
  • LTCC multilayer substrates have a rough surface, making it difficult to form thin film resistors having a thickness of several tens to hundreds of nm on the surface of the multilayer substrate.
  • Another object of the present invention is to provide a MEMS probe card and a method of manufacturing the same, which can easily adjust the ratio of resistance values.
  • Another object of the present invention is to provide a MEMS probe card and a method of manufacturing the same, which can easily design and manufacture the required power power using Ru 2 0 3 oxide having compatibility with LTCC multilayer substrates and LTCC processes and having stable properties even at high temperatures. To provide.
  • Another object of the present invention is to provide a MEMS probe card and a method of manufacturing the same, which can easily manufacture a MEMS probe card.
  • a method of manufacturing a MEMS probe card includes the steps of (a) providing a first to nth layer low temperature cofired ceramic (LTCC) substrate having via holes formed therein, (b) in the via holes. Filling via via conductors or resistors, (c) laminating the first to nth layer low temperature cofired ceramic substrates and firing at 1000 ° C. or lower to provide a low temperature cofired ceramic multilayer substrate, and (d) the low temperature. Forming an insulating film on the surface of the co-fired ceramic multilayer substrate; and (d) forming a thin film conductive line on the surfaces of the insulating film and the via filler conductor.
  • LTCC low temperature cofired ceramic
  • the via filler conductor is filled in the via hole of the first layer low temperature cofired ceramic substrate, and the resistor is filled in the via hole of the second layer low temperature cofired ceramic substrate. It is characterized by.
  • the via filler conductor and the resistor are connected by a conductive line.
  • the via filler conductor is characterized in that it is made of any one of Ag, Pd or Pt metal.
  • the resistor is characterized in that it is made of any one of ruthenium (Ru), ruthenium oxide or Ru / ruthenium oxide.
  • the insulating film is a high-k dielectric of any one of Al 2 O 3 , HfO 2 , TiO 2 , ZrO 2 , Y 2 O 3 , Ta 2 O 5 , La 2 O 3 . Characterized in that made of a material.
  • the insulating film is a fast ion deposition PVD method, PVD method of E-Beam Evaporation technology, PLD (Plus Laser Deposition) method Or it is characterized in that formed in any one of aerosol deposition (Aerosol Deposition) method.
  • the thin film conductive line is a composite metal, characterized in that composed of Ti, Pd, Cu or Al, Cu, Au.
  • the insulating film and the thin film conductive line are formed by a wet etching method or an ion milling method.
  • a first to nth layer low temperature cofired ceramic substrate filled with a via filler conductor or a resistor in a via hole is laminated, and a low temperature cofired ceramic (LTCC) multilayer formed by firing at 1000 ° C. or less.
  • LTCC low temperature cofired ceramic
  • a thin film conductive line formed on a surface of the substrate, an insulating film formed on the surface of the low temperature cofired ceramic multilayer substrate, and the insulating film and the via filler conductor surface is laminated, and a low temperature cofired ceramic (LTCC) multilayer formed by firing at 1000 ° C. or less.
  • LTCC low temperature cofired ceramic
  • the method for producing a resistive conductive wire for a MEMS probe comprises the steps of (a) providing a low temperature co-fired ceramic (LTCC) substrate fired at 1000 °C or less, (b) the low temperature Forming a thick film resistive layer on the fired ceramic substrate, (c) forming an insulating film on the thick film resistive layer, and (d) forming a thin film conductive line on the insulating film and the thick film resistive layer. It is characterized by.
  • LTCC low temperature co-fired ceramic
  • the thick film resistive layer is formed on a via filler conductor provided on the low temperature co-fired ceramic substrate.
  • the thick film resistive layer is formed on the conductive line provided on the low temperature cofired ceramic substrate.
  • the thick film resistive layer is formed by a printing technique and then fired.
  • the method for producing a resistive conductive wire for a MEMS probe characterized in that it further comprises the step of heat-treating the low temperature co-fired ceramic substrate before the step (b).
  • the insulating film is a high dielectric material such as Al 2 O 3 , HfO 2 , TiO 2 , ZrO 2 , Y 2 O 3 , Ta 2 O 5 , La 2 O 3, or the like. It characterized in that the (K) (High-k) material.
  • the insulating film may be formed using ion assistant PVD, PVD, PLD (Plus Laser Deposition), or E-Beam Evaporation. It is characterized in that formed in the aerosol deposition (Aerosol Deposition) method.
  • the thick film resistive layer is formed of Ru 2 O 3 oxide.
  • the thin film conductive line is made of Ti, Pd, Cu or Al, Cu, Au as a composite metal.
  • the thick film resistive layer, the insulating film, and the thin film conductive line may be formed by a wet etching method or an ion milling method.
  • the resistive conductive wire for MEMS probe is a thick film resistive layer formed on a low temperature co-fired ceramic (LTCC) substrate fired at 1000 °C or less, an insulating film formed on the thick film resistive layer and the And an insulating film and a thin film conductive line formed on the thick film resistive layer.
  • LTCC low temperature co-fired ceramic
  • a probe card As another method of manufacturing a probe card according to the present invention, forming a first conductive pad on the surface of the substrate, forming a resistor on the surface of the substrate and the first conductive pad and the surface of the substrate and the resistor surface Forming a second conductive pad in the.
  • the probe card may include a first conductive pad formed on the substrate surface, a resistor formed on the substrate surface and the first conductive pad surface, and a second conductive pad formed on the substrate surface and the resistor surface.
  • FIG. 1 is a cross-sectional view and a plan view showing the structure of a conventional MEMS probe card.
  • FIG. 2 is a view showing a manufacturing process flow of a MEMS probe card according to Embodiment 1 of the present invention.
  • 3 to 10 are diagrams illustrating each process shown in FIG. 2.
  • FIG. 11 is a view showing a manufacturing process flow of a MEMS probe card according to Embodiment 2 of the present invention.
  • FIG. 22 illustrates a probe card according to another embodiment of the present invention.
  • FIG. 2 is a view showing a manufacturing process flow of the MEMS probe card according to the present invention
  • FIGS. 3 to 10 are diagrams for explaining each process of FIG.
  • n LTCC substrates are first prepared to obtain the LTCC multilayer substrate 100 (S10).
  • the number of layers of the LTCC substrate may vary depending on the design of the substrate and the like, and about 20 to 30 layers are preferable according to the inspection conditions of the semiconductor chip.
  • the metal wiring metal used is mostly Ag, but its composition may be changed if necessary.
  • the ceramic material used in the LTCC substrate is more than 60 to 70% of the glass component, most of the remaining may be composed of alumina, the thickness of each of these LTCC substrate can have a variety of ranges, depending on customer requirements, Usually, about 4-7 mm is preferable.
  • each LTCC substrate a via hole 1 penetrating the LTCC substrate and a conductive line 2 are formed on the front surface or the rear surface of each LTCC substrate.
  • a via filler conductor 4 is filled in the via hole 1 formed in the first layer LTCC substrate (S20), and a resistor 5 is filled in the via hole 1 formed in the second layer LTCC substrate ( S30), the via filler conductor 4 and the resistor 5 are connected by the conductive line 2.
  • the via filler conductor 4 is preferably made of any one of Ag, Pd, or Pt metal, and Pd or Pt metal is suitable in consideration of conductivity and the like.
  • 3 illustrates a structure in which the via filler conductor 4 is filled only in the first layer LTCC substrate, but the present invention is not limited thereto.
  • the via filler conductor may also be filled in the third layer and the fourth layer LTCC substrate.
  • the resistor 5 is made of any one of ruthenium (Ru), ruthenium oxide (for example, RuO 2, Ru 2 O 3 ) or Ru / ruthenium oxide.
  • the resistor 5 is filled in the via hole 1 by, for example, chemical vapor deposition (hereinafter referred to as CVD) or monolayer deposition (hereinafter referred to as ALD). .
  • CVD chemical vapor deposition
  • ALD monolayer deposition
  • the LTCC substrates of the first layer, the second layer to the nth layer are laminated, and simultaneously sintered at 1000 ° C. or lower, preferably 850 to 900 ° C., thereby manufacturing the LTCC multilayer substrate 100 (S40).
  • the surface of the LTCC multilayer substrate 100 sintered as described above is combined with the glass component and the alumina component, the surface is rough (S50).
  • a polishing process is performed on the surface of the LTCC substrate.
  • the substrate is preferably formed thicker than the polishing thickness, and then polishing is performed. The polishing is usually carried out at about 50 to 100 mu m, and then the substrate surface is thermally annealed according to the application.
  • Al 2 O 3 , HfO 2 , TiO 2 , ZrO 2 , Y 2 O 3 , Ta 2 O 5 , La 2 O 3, and the like are formed on the surface of the first layer substrate of the LTCC multilayer substrate 100 illustrated in FIG. 3.
  • a dry photoresist Photoresistor (PR: photoresist) ⁇
  • PR photoresistor
  • the lamination process is carried out thickly (S60). At this time, the pressure, temperature and speed of the laminator must be adjusted well to remove the pores. If pores occur in the PR, rework is required. It is important to make the thickness of PR as thick as possible, and generally 120 ⁇ m or more is used.
  • the UV exposure 1 process (S70) is performed.
  • a pattern is formed by irradiating UV light onto the PR (see FIGS. 2 and 4).
  • a mask pattern is designed in order to polymerize the light-receiving part, and the PR is exposed to light using a dual exposure device, for example.
  • Important variables here are the power and exposure time of the UV light source. If the power of the UV light source is strong and the exposure time is long, it becomes under-develop to form a larger pattern than the desired pattern. If the UV light source is weak and the exposure time is short, it becomes over-develop. A pattern smaller than the desired pattern is formed.
  • the PR development 1 step (S80) is executed, which is formed on the pattern (6) DL via filler conductor 4 of PR (see Figs. 2 and 5).
  • the accurate pattern 6 can be obtained in a shorter time.
  • Important variables include the concentration of the developer, the temperature, the pressure of the nozzle being injected, and the belt speed of the conveyor. If the variables of concentration, temperature, pressure and speed of the solution are not well controlled, it is difficult to obtain an accurate pattern.
  • a plasma device is used to perform a decom under vacuum O 2 plasma gas.
  • the discom refers to an operation of additionally removing a small amount of the photosensitive liquid residue remaining after the developing operation is not removed.
  • an insulating film 7 forming step S90 is performed on the LTCC multilayer substrate 100 (see FIGS. 2 and 6).
  • the LTCC multilayer substrate 100 contains a large amount of voids, and is poor in chemical resistance because the surface of the substrate is composed of a glass component.
  • an excellent insulating film is formed on the surface of the LTCC multilayer substrate 100.
  • Al 2 O 3 , ion assistant PVD method, PVD method, PLD (Plus Laser Deposition) method, or aerosol deposition method (Aerosol Deposition method), which have a high deposition rate, are used.
  • a stabilized ZrO 2 or TiO 2 film was formed at 5-10 ⁇ m.
  • the temperature of the LTCC multilayer substrate 100 is room temperature, and the density of the carrier gas (He, O 2 ), the pressure in the vacuum chamber and the structure and shape of the nozzle are well controlled to improve the density of the insulating film 7. .
  • a process (S100) of removing the trace insulating film formed on the PR pattern 6 and the PR pattern 6 for the opening of the via filler conductor 4 is performed (see FIGS. 2 and 7).
  • This process is eliminated using, for example, PR strip equipment.
  • PR strip it is easy to remove PR by controlling the concentration of the stripper solution and the nozzle pressure well and simultaneously supplying ultrasonic waves. At this time, the control of the ultrasonic power is very important.
  • a thin film conductive line forming step S110 for depositing the thin film conductive line 8 on the via filler conductor 4 and the insulating film 7 is then performed (FIGS. 2 and 8). Reference).
  • the Ti or Al metal layer having excellent adhesion is sputtered in a range of 2000 kV to 5000 kPa, preferably 3000 kPa.
  • a thickness of 50 kPa to 200 kPa, preferably about 70 kPa is formed on the Ti or Al metal layer and serves as a barrier between Cu layers.
  • the Cu metal layer which is the main conductive line, is 2500 kPa to 10000 kPa.
  • the thin film conductive line 8 formed in the above-described forming process of the thin film conductive line 8 is preferably made of Ti, Pd, Cu and Au or Al, Cu, Ni and Au as a composite metal.
  • the Ni metal may be removed when the Au metal layer is 5 ⁇ m or more, preferably 5 ⁇ m to 10 ⁇ m to prevent diffusion of the interface between the Cu layer and the Au layer.
  • a wet etching method using a chemical solution or an ion milling device and a dry etching method using Ar, Xe or another reactive gas may be used. (Dry etching) method can be used.
  • a metal etching solution is selectively sprayed onto the surface of the LTCC substrate, and the D.I Water washing and drying are performed.
  • the ion milling method which is a dry etching method, has a disadvantage in that the equipment is expensive, but it is an essential process technology for manufacturing precision parts.
  • the resistance wire for the MEMS probe according to the present invention is completed by the conductive wire 2, the via filler conductor 4, the resistor 5, the insulating film 7, and the thin film conductive line 8.
  • the MEMS probe 16 and the probe tip 17 are sequentially fixed using the adhesive 15. This completes the MEMS probe card according to the present invention (S120).
  • the resistor 5 formed in the via hole of the second layer LTCC substrate increases the height or diameter of the resistor 5 according to the thickness of the second layer LTCC substrate or the diameter of the via hole. Since it is possible to design, various resistance values can be designed according to a use.
  • FIG. 11 is a view showing a manufacturing process flow of the MEMS probe card according to the embodiment of the present invention
  • Figures 12 to 21 is a view for explaining each process of FIG.
  • the LTCC multilayer substrate 100 composed of N layers is provided (S10).
  • the number of layers may vary depending on the substrate design and the like, and is generally composed of about 20 to 30 layers.
  • the metal wiring metal used is mostly Ag and the composition can be changed if necessary. More than 60% to 70% of the ceramic material is glass and most of it is made of alumina.
  • the thickness of the substrate is varied according to the customer's requirements, usually 4-7 mm.
  • reference numeral 1 denotes a via hole (through hole) formed on the substrate
  • reference numeral 2 denotes a conductive line formed in the substrate.
  • LTCC multilayer substrate 100 is printed by wiring to each of the N green sheets (layer), laminated all the layers are manufactured by simultaneous sintering at 1000 °C or less, preferably 850 ⁇ 900 °C about the surface of the substrate Since the and alumina components are separated and bonded to each other, the surface is rough. In order to form a thin film pattern, the substrate surface roughness requires roughness of about 1 ⁇ m or less, and thus, a mechanical polishing process is performed. In designing the substrate, it is desirable to form the substrate thicker than the polishing thickness in consideration of the warpage of the substrate, and then perform polishing. Usually, polishing is carried out at about 50 to 100 ⁇ m. Thereafter, the substrate surface is thermally annealed (S20).
  • a conductive line 3 and a via filler conductor 4 are formed on the LTCC multilayer substrate 100, and Ru 2 0 3 having stable characteristics as shown in FIG. 14.
  • An oxide is formed as the thick film resistive layer 5.
  • the thick film resistive layer 5 is formed by printing and then fired (S30).
  • a high dielectric material such as Al 2 O 3 , HfO 2 , TiO 2 , ZrO 2 , Y 2 O 3 , Ta 2 O 5 , La 2 O 3, or the like is formed on the conductive line 3 and the thick film resistive layer 5.
  • a dry photoresist Photoresistor (PR: photoresist)
  • Step 1 is executed (S40).
  • the pressure, temperature and speed of the laminator must be adjusted well to remove the pores. If pores occur in the PR, they must be reworked. It is important to make the PR as thick as possible. Generally 120 micrometers or more are used.
  • the process shown in FIG. 15 is a UV exposure process 1 (S50), for forming a pattern by irradiating light of a photosensitive agent.
  • Mask1 is a process of designing a mask 1 pattern so that the light-receiving part is polymerized, and for example, by using a dual exposure equipment to sensitize the photoresist.
  • Important variables here are the power of the UV light source and the exposure time. If the power of the light source is strong and the exposure time is long, it becomes under-develop and a larger pattern is formed than the desired pattern. If the UV light source is weak and the exposure time is short, it becomes over-develop. A pattern smaller than the desired pattern is formed.
  • the process shown in FIG. 16 is the development 1 process (S60), and the PR pattern 6 of the photosensitive agent is formed on a part of the surface of the thick film resistive layer 5.
  • the formation of the PR pattern 6 enables the accurate PR pattern 6 to be obtained in a shorter time by spraying the developer through the nozzle onto the substrate.
  • Important variables here are the concentration of the developer, the temperature, the pressure of the injection being sprayed and the belt speed of the conveyor. If the variables of concentration, temperature, pressure and speed of the solution are not well controlled, it is difficult to obtain an accurate pattern.
  • the discom refers to an operation of additionally removing a small amount of the photosensitive liquid residue remaining after the developing operation is not removed.
  • a step of forming the insulating film 7 on both sides on the LTCC multilayer wiring board shown in FIG. 17 is performed (S70).
  • the LTCC substrate contains a large amount of voids, and the chemical resistance is poor because the surface of the substrate is composed of a glass component.
  • alumina and stabilized zirconia films with excellent insulation are formed on the LTCC substrate surface.
  • a stabilized ZrO 2 or TiO 2 film was formed at 5-10 ⁇ m.
  • an aerosol deposition method is used.
  • the substrate temperature is room temperature
  • the carrier gas (He, O 2 ) the pressure in the vacuum chamber and the structure and shape of the nozzle are well controlled to improve the density of the insulating film (7).
  • the process shown in FIG. 18 is a step (S80) of removing the insulating film 7 on the PR pattern 6 and PR as a photoresist for the opening of the thick film resistive layer 5.
  • the insulating film 7 is removed by mechanical scrubbing, and then removed using a PR strip device.
  • PR strip it is easy to remove PR by controlling the concentration of the stripper solution and the nozzle pressure well and simultaneously supplying ultrasonic waves. At this time, the control of the ultrasonic power is very important.
  • the process shown in FIG. 19 is a process (S90) for depositing the thin film conductive line 8 on the thick film resistive layer 5 and the insulating film 7.
  • a Ti or Al metal layer having excellent adhesion is deposited by sputtering at a thickness of 2000 kPa to 5000 kPa, preferably 3000 kPa.
  • a Pd (palladium) metal layer serving as a barrier between the Cu layers directly on the Ti or Al metal layer is formed from 50 kPa to 200 kPa, preferably about 70 kPa, and finally the Cu metal layer, which is the main conductive wire, is 2500 kPa to 10000 kPa, preferably The film is formed over 9000 GPa to form a base metal layer.
  • a lamination process of coating the photosensitive agent for forming the thin film conductive line 8 on both sides of the substrate is performed (S100).
  • the photoresist used in this case uses a PR of the same form or different form as the lamination 1 process depending on the type of the pattern or the working conditions.
  • PR developing process of the photosensitive agent is performed (S120).
  • the developer equipment can use the same equipment and the working conditions are different.
  • a PR decom process removes the remaining PR residues on the surface of the substrate, and this process generally uses an oxygen gas plasma.
  • this process generally uses an oxygen gas plasma.
  • the formation process of the thin film conductive line 8 is a plating process of forming a thick metal film by an electroplating method to thicken the metal wiring film in order to reduce the electrical conductivity of the thin film wiring and the electrical resistance of the high frequency line.
  • the thin film conductive line 8 is made of Ti, Pd, Cu, and Au or Al, Cu, Ni, and Au as a composite metal.
  • Cu is usually 10 to 25 ⁇ m as the main conductive wire, 2 to 4 ⁇ m for Ni metal, and less than 5 ⁇ m for Au metal.
  • Metal thickness may vary depending on the application.
  • the Ni metal may be selectively removed. This is because the Ni metal may be removed when the Au metal layer is 5 ⁇ m or more, preferably 5 ⁇ m to 10 ⁇ m to prevent diffusion of the interface between the Cu layer and the Au layer.
  • the MEMS probe card according to the present invention is completed by the via filler conductor 4, the thick film resistive layer 5, the insulating film 7, and the thin film conductive line 8.
  • the bump pad 14, the adhesive 15, the MEMS probe 16, and the probe tip 17 are used for the electronic device test apparatus according to the present invention.
  • the probe card is completed.
  • a wet etching method or an ion milling equipment using a chemical solution, and Ar, Xe or another Dry etching using a reactive gas may be used.
  • a metal etching solution is selectively sprayed on both sides of the substrate by a spray method, and D.I water washing and drying are performed.
  • an undercut phenomenon occurs, and in the case of a high-frequency component, an ion milling method capable of reducing the undercut phenomenon can form a high precision microstrip line.
  • the dry etching method of ion milling is disadvantageous in that the equipment is expensive, but it is an essential process technology for producing precision parts.
  • a first conductive pad 210, a surface of the substrate 100, and the first conductive pad 210 formed on a surface of the substrate 100 are provided.
  • the resistance is designed to be an integral multiple of the sheet resistance.
  • the resistor and the electrode are designed on the same surface to reduce the conductive pad area. 2) It is possible to design high density circuit because it can be removed, and 2) it is possible to design the conductive line of laminated structure without separate conductive line when connected with continuous conductive line.
  • the present invention can be designed very useful when designing a resistance of several ohms or less, the existing protective film is not required by the surface of the self-resistance, and eco-friendly circuit design is possible by the raw material saving effect.
  • the first conductive pad 210 is formed on the surface of the substrate 100.
  • the resistor 300 is formed on the surface of the substrate 100 and the surface of the first conductive pad 210.
  • a second conductive pad 220 is formed on the surface of the substrate 100 and the surface of the resistor 300.
  • the first conductive pad 210 formed by primary printing is an Ag paste containing a small amount of Ag, Pd, Pt, Ti, or the like as the primary conductor.
  • the printing process may be a general screen printing process.
  • the resistor 300 formed by the secondary printing is made of Ru 2 O 3 oxide, the electrical resistance can be used 10K ⁇ 10M Ohm resistance, in the present invention was used 3 ⁇ 8M ⁇ .
  • the number of prints is 3 to 7 times, which can be changed according to the required resistance value.
  • heat processing temperature is between about 500-900 degreeC.
  • the second conductive pad 220 formed by tertiary printing may have the same condition as the primary printing.
  • the MEMS probe card and the manufacturing method thereof according to the present invention since the resistor is filled in the via hole, a stable resistance value can be obtained, and the ratio of the resistance value can be easily adjusted. The effect that it can be used stably even with a power change is acquired.
  • the existing manufacturing process of the LTCC multilayer substrate can be used as it is without the pattern and additional process for forming the resistive conductive line.
  • the MEMS probe card and the manufacturing method thereof according to the present invention the effect of easily designing and manufacturing power power in the electronic device test apparatus is obtained.
  • substrate is acquired.

Abstract

본 발명은 MEMS(Micro Electro Mechanical Systems) 프로브 카드(Probe card) 및 그의 제조 방법에 관한 것으로, (a) 비아 홀이 형성된 제1 내지 제n층 저온 동시소성 세라믹(LTCC) 기판을 마련하는 단계, (b) 상기 비아 홀에 비아 필러 전도체 또는 저항체를 충전하는 단계, (c) 상기 제1 내지 제n층 저온 동시소성 세라믹 기판을 적층하고, 1000℃ 이하에서 소성하여 저온 동시소성 세라믹 다층 기판을 마련하는 단계, (d) 상기 저온 동시소성 세라믹 다층 기판의 표면에 절연막을 형성하는 단계 및 (d) 상기 절연막 및 상기 비아 필러 전도체 표면에 박막 전도선을 형성하는 단계를 포함하는 것을 특징으로 한다.

Description

 MEMS 프로브 카드 및 그의 제조 방법
본 발명은 MEMS(Micro Electro Mechanical Systems) 프로브 카드(Probe card) 및 그의 제조 방법에 관한 것으로, 특히 저온 동시소성 세라믹{이하, LTCC(low temperature co-fired ceramics)라 한다} 다층 기판 내에 저항 전도선을 형성하여 안정된 저항비를 얻을 수 있을 뿐만 아니라 큰 전력 변화에도 사용할 수 있고, 기판 표면에 안정된 특성을 갖는 Ru203 산화물을 저항성 전도선으로 사용하여 요구되는 전력 파워를 쉽게 설계할 수 있는 MEMS 프로브 카드 및 그의 제조 방법에 관한 것이다.
일반적으로 반도체 칩 등의 전자소자 테스트 장치에 사용되는 프로브 카드(probe card)는 소정의 기판 및 기판상에 배열된 프로브들을 포함하는 장치로서, 반도체 웨이퍼 상에서 칩의 전기적 특성과 동작의 이상 유무를 검사하기 위해 사용된다.
상기 반도체 칩에는 외부 전자 장치와의 상호 신호 전달을 위해 그 표면에 패드들이 구비된다. 즉, 반도체 칩은 패드들을 통해 전기적 신호를 입력받아 소정의 동작을 수행한 후, 처리한 결과를 다시 패드들을 통해 외부 전자장치로 전달한다. 이때, 상기 프로브 카드는 반도체 칩과 외부 전자장치(예를 들면, 테스트 장치) 사이의 전기적 경로를 형성함으로써, 반도체 칩에 대한 전기적 테스트를 가능하게 한다.
한편, 최근 반도체 칩이 고집적화됨에 따라 상기 반도체 칩의 패드들은 미세화될 뿐만 아니라, 이들 사이의 간격 역시 감소하고 있다. 이에 따라, 프로브 카드 역시 반도체 칩의 고집적화에 대응하여 미세하게 제작되야 하지만, 이러한 미세화의 요구는 상기 프로브 카드를 제작하는 과정을 어렵게 만든다.
즉, 반도체 칩 테스트 장치는 반도체 기술의 발전에 따른 대형화, 고속화 추세로 인해 기존의 핀(pin) 형보다는 반도체 MEMS 기술을 이용한 미세 프로브 형성 기술이 적용되는 MEMS 프로브 형을 채택하고 있다.
그런데 반도체 칩의 I/O 핀이 증대됨에 따라 프로브도 다중 채널형 프로브가 요구되는데, 다중 접합 핀에 의한 프로브 카드 적용시 1 채널만이 단락되더라도 과도한 전류가 한 채널로 과도하게 흘러 프로브 단자에서 스파크성 불량이 발생될 수 있으므로 이에 대한 대책이 요구되고 있다.
최근 전술한 대책의 일환으로써 저항 전도선으로 프로브 단자를 연결하여 과도한 전류가 갑자기 흐르는 것을 방지하는 기술이 제안된 바 있다.
도 1은 종래의 MEMS 프로브 카드에서 저항 전도선의 구조를 나타내는 단면도 및 평면도이다.
도 1에 도시된 바와 같이, 종래의 MEMS 프로브 카드는 고온 동시소성 세라믹(HTCC : high temperature co-fired ceramics, 이하 'HTCC'라 한다) 기판의 표면에 전도선(10)을 형성하고, 상기 전도선(10)에 형성된 비아 홀에 비아 필러(via filler) 전도체(11)를 충전하고, 상기 전도선(10) 표면에 박막 저항(12)과 MEMS 프로브용 박막 전도선(13)을 형성한 구조이다.
상기 비아 필러 전도체(11), 박막 저항(12) 및 박막 전도선(13)에 의해 저항 전도선이 이루어지며, 상기 저항 전도선에 의해 과도한 전류의 속도 및 전류량 제어가 이루어진다.
여기서, 미설명한 부호 14는 범프 패드이고, 부호 15는 접착제이고, 부호 16은 MEMS 프로브이며, 부호 17은 프로브 팁(probe tip)이다.
그런데, 상기와 같은 종래의 MEMS 프로브 카드의 박막 전도선(13)에는 박막 저항(12)이 X 혹은 Y 방향으로 직렬 연결되므로 회로 직접도가 떨어지는데, 이러한 경향은 박막 저항(12)을 바 형태로 설계할 때 더욱 심해지게 된다.
또한 도 1에 도시한 바와 같이, 박막 저항(12)을 박막 전도선(13) 폭과 동일하거나 좁게 설계하는 경우에는 고전력이 요구되는 MEMS 프로브 카드에 적용하기에 어렵다는 문제점도 있다.
한편, 상기 HTCC 기판은 1500℃ 이상의 온도에서 열처리하여 다층 배선 기판을 형성한다. HTCC 기판의 절연 재료는 94% 이상의 알루미나를 주원료로 사용하고, 첨가제로 소량의 실리카를 사용하며, 전도선은 고온 소성이 가능한 텅스텐(W)을 주로 사용한다. 이러한 HTCC 기판은 기계적 강도 및 내화학성 특성이 우수하여 기판 표면에 박막 전도선을 형성하여 고집적화 패키지로 많이 응용되고 있다.
그러나, 고온 소성된 텅스텐(W) 전도선의 전기전도도가 은(Ag) 혹은 동(Cu)에 비해 낮아서 고주파수 특성이 나쁜 단점과 열팽창 계수가 실리콘 반도체 소자에 비해 2배 정도로 높아 열팽창계수의 정합(Matching)이 요구되는 응용 분야에서는 큰 문제점이 되고 있다.
한편 전술한 HTCC 기판 대신에 LTCC 기판을 사용하는 경우가 있는데, 상기 LTCC 기판은 1000℃ 이하 온도에서 열처리하여 다층 배선 기판을 형성한다. 이 LTCC 다층 기판은 1000℃ 이하의 저온에서 사용하기 위해 용융점이 낮은 실리카를 많이 사용하고, 알루미나를 상대적으로 적게 사용한다. 또 LTCC 다층 기판에서는 소성 온도가 1000℃ 이하로 되면서 전기전도체 재료로서 전기 전도도가 우수한 은(Ag) 또는 동(Cu)을 사용한다.
그러나 LTCC 다층 기판은 상기와 같은 장점에도 불구하고, 그 표면이 거칠어서 다층 기판의 표면에 수십 내지 수백 ㎚ 두께의 박막 저항을 형성하는 것이 곤란하다.
본 발명의 목적은 상기와 같은 종래의 문제점을 해결하기 위해 이루어진 것으로서, 고온에서도 안정된 저항비를 얻을 수 있고, 큰 전력 변화에도 안정적으로 사용할 수 있는 MEMS 프로브 카드 및 그의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 저항값의 비를 용이하게 조절할 수 있는 MEMS 프로브 카드 및 그의 제조 방법을 제공하는 것이다.
또한 본 발명의 다른 목적은, LTCC 다층 기판과 LTCC 공정과의 호환성이 있고 고온에서도 안정된 특성을 갖는 Ru203 산화물을 사용하여 요구되는 전력 파워를 쉽게 설계, 제조 가능한 MEMS 프로브 카드 및 그의 제조 방법을 제공하는 것이다.
또한 본 발명의 다른 목적은, MEMS 프로브 카드를 쉽게 제조할 수 있는 MEMS 프로브 카드 및 그의 제조 방법을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명에 따른 MEMS 프로브 카드의 제조 방법은 (a) 비아 홀이 형성된 제1 내지 제n층 저온 동시소성 세라믹(LTCC) 기판을 마련하는 단계, (b) 상기 비아 홀에 비아 필러 전도체 또는 저항체를 충전하는 단계, (c) 상기 제1 내지 제n층 저온 동시소성 세라믹 기판을 적층하고 1000℃ 이하에서 소성하여 저온 동시소성 세라믹 다층 기판을 마련하는 단계, (d) 상기 저온 동시소성 세라믹 다층 기판의 표면에 절연막을 형성하는 단계 및 (d) 상기 절연막 및 상기 비아 필러 전도체의 표면에 박막 전도선을 형성하는 단계를 포함하는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 비아 필러 전도체는 제1층 저온 동시소성 세라믹 기판의 비아 홀에 충전되고, 상기 저항체는 제2층 저온 동시소성 세라믹 기판의 비아 홀에 충전되는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 비아 필러 전도체와 저항체는 전도선에 의해 연결되는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 비아 필러 전도체는 Ag, Pd 또는 Pt 금속 중의 어느 하나로 이루어진 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 저항체는 루테늄(Ru), 루테늄 산화물 또는 Ru/루테늄 산화물 중의 어느 하나로 이루어진 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 절연막은 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 중 어느 하나의 고유전 물질로 이루어진 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 절연막은 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식 중 어느 하나의 방식으로 형성되는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 박막 전도선은 복합 금속으로 Ti, Pd, Cu 또는 Al, Cu, Au로 구성되는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드의 제조 방법에 있어서, 상기 절연막 및 박막 전도선은 습식 에칭 방식 또는 이온 밀링 방식으로 형성되는 것을 특징으로 한다.
또 본 발명에 따른 MEMS 프로브 카드는 비아 홀에 비아 필러 전도체 또는 저항체가 충전된 제1 내지 제n층 저온 동시소성 세라믹 기판을 적층하고, 1000℃ 이하에서 소성하여 형성된 저온 동시소성 세라믹(LTCC) 다층 기판, 상기 저온 동시소성 세라믹 다층 기판 표면에 형성된 절연막, 상기 절연막 및 상기 비아 필러 전도체 표면에 형성된 박막 전도선을 포함하는 것을 특징으로 한다.
한편, 상기 목적을 달성하기 위해, 본 발명에 따른 MEMS 프로브용 저항성 전도선의 제조 방법은 (a) 1000℃ 이하에서 소성된 저온동시소성 세라믹(LTCC) 기판을 마련하는 단계, (b) 상기 저온동시소성 세라믹 기판상에 후막 저항층을 형성하는 단계, (c) 상기 후막 저항층 상에 절연막을 형성하는 단계 및 (d) 상기 절연막 및 상기 후막 저항층 상에 박막 전도선을 형성하는 단계를 포함하는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 비아 필러 전도체 상에 형성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 전도선 상에 형성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 (b)단계에서 상기 후막 저항층은 인쇄 기법으로 형성된 후 소성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 (b)단계 전에 상기 저온동시소성 세라믹 기판을 열처리하는 단계를 더 포함하는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 절연막은 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 등과 같은 고유전 물질인 하이 케이(High-k) 물질로 이루어진 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 절연막은 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식으로 형성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 후막 저항층은 Ru203 산화물로 형성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 박막 전도선은 복합 금속으로 Ti, Pd, Cu 또는 Al, Cu, Au로 구성되는 것을 특징으로 한다.
또, MEMS 프로브용 저항성 전도선의 제조 방법에 있어서, 상기 후막 저항층, 절연막 및 박막 전도선은 습식 에칭 방식 또는 이온 밀링 방식으로 형성되는 것을 특징으로 한다.
또한, 상기 목적을 달성하기 위해 본 발명에 따른 MEMS 프로브용 저항성 전도선은 1000℃ 이하에서 소성된 저온동시소성 세라믹(LTCC) 기판상에 형성된 후막 저항층, 상기 후막 저항층 상에 형성된 절연막 및 상기 절연막 및 상기 후막 저항층 상에 형성된 박막 전도선을 포함한다.
한편, 본 발명에 따른 다른 프로브 카드의 제조방법으로서, 기판 표면에 제1 전도패드를 형성하는 단계, 상기 기판 표면 및 상기 제1 전도패드 표면에 저항체를 형성하는 단계 및 상기 기판 표면 및 상기 저항체 표면에 제2 전도패드를 형성하는 단계를 포함하는 것을 특징으로 한다.
이 경우, 프로브 카드는 기판 표면에 형성된 제1 전도패드, 상기 기판 표면 및 상기 제1 전도패드 표면에 형성된 저항체 및 상기 기판 표면 및 상기 저항체 표면에 형성된 제2 전도패드를 포함하는 것을 특징으로 한다.
도 1은 종래의 MEMS 프로브 카드의 구조를 나타내는 단면도 및 평면도.
도 2는 본 발명의 실시예 1에 따른 MEMS 프로브 카드의 제조공정 흐름을 나타내는 도면.
도 3 내지 도 10은 도 2에 도시된 각각의 공정을 설명하는 도면.
도 11은 본 발명의 실시예 2에 따른 MEMS 프로브 카드의 제조공정 흐름을 나타내는 도면.
도 12 내지 도 21은 도 11에 도시된 각각의 공정을 설명하는 도면.
도 22는 본 발명의 다른 실시예에 따른 프로브 카드를 나타내는 도면이다.
이하, 본 발명의 바람직한 실시예들에 대하여 도면을 참조하여 설명한다.
<실시예 1>
도 2는 본 발명에 따른 MEMS 프로브 카드의 제조공정 흐름을 나타내는 도면이며, 도 3 내지 도 10은 도 2의 각각의 공정을 설명하는 도면이다.
도 2 및 도 3에 도시된 바와 같이, 본 발명의 실시예에 있어서는 먼저 LTCC 다층 기판(100)을 얻기 위해 n개의 LTCC 기판을 준비한다(S10). 여기서 LTCC 기판의 층수는 기판 설계 등에 따라서 달라질 수 있는데, 반도체 칩의 검사 조건에 따라 20~30층 정도가 바람직하다. 이때 사용된 금속 배선 금속은 Ag가 대부분이나, 필요 시 그 조성은 변경될 수 있다. 또한 LTCC 기판에 사용되는 세라믹 재료는 60~70% 이상이 유리성분이고, 나머지 대부분은 알루미나로 구성될 수 있으며, 이들 각각의 LTCC 기판의 두께는 고객의 요구사항에 따라 다양한 범위를 가질 수 있으며, 통상 4~7㎜ 정도가 바람직하다.
한편, 상기 각각의 LTCC 기판에는 LTCC 기판을 관통하는 비아 홀(1)과 각각의 LTCC 기판의 표면 또는 이면에 전도선(2)이 형성된다.
또, 상기 제1층 LTCC 기판에 형성된 비아 홀(1)에는 비아 필러 전도체(4)가 충전되고(S20), 제2층 LTCC 기판에 형성된 비아 홀(1)에는 저항체(5)가 충전되며(S30), 비아 필러 전도체(4)와 저항체(5)는 상기 전도선(2)에 의해 연결된다.
상기 비아 필러 전도체(4)는 Ag, Pd 또는 Pt 금속 중 어느 하나로 이루어지는 것이 바람직하며, 전도도 등을 고려할 때 Pd 또는 Pt 금속이 적합하다. 또한 도 3에는 제1층 LTCC 기판에만 비아 필러 전도체(4)가 충전된 구조에 대해 설명하였지만 이에 한정되는 것은 아니며, 제3층이나 제4층 LTCC 기판 등에도 비아 필러 전도체가 충전될 수 있다.
또한, 저항체(5)는 루테늄(Ru), 루테늄 산화물(예를 들어, RuO2, Ru2O3) 또는 Ru/루테늄 산화물 중 어느 하나로 이루어진다. 이러한 저항체(5)는 예를 들어 화학기상증착법(Chemical Vapor Deposition, 이하, CVD라 함) 또는 단원자층증착법(Automic Layer Deposition, 이하, ALD라 함) 등의 방법으로 비아 홀(1) 내에 충전된다.
다음에 상기 제1층, 제2층 내지 제n층의 LTCC 기판을 적층하여 1000℃이하, 바람직하게는 850~900℃ 정도에서 동시에 소결하여 LTCC 다층 기판(100)을 제조한다(S40).
이와 같이 소결된 LTCC 다층 기판(100)의 표면은 유리성분과 알루미나 성분이 서로 결합되어 그 표면이 거칠기 때문에 폴리싱 공정을 실행한다(S50).
즉, LTCC 다층 기판(100)의 표면에 박막 패턴을 형성하기 위해서는 LTCC 기판 표면이 약 1㎛ 정도 이하의 거칠기를 가질 것이 요구되므로, LTCC 기판 표면에 대해 폴리싱(Polishing) 공정을 실행한다. 여기서 LTCC 기판의 휨을 고려하여 폴리싱 두께보다 두껍게 기판을 형성한 후 폴리싱을 실시하는 것이 바람직하다. 통상 50~100㎛ 정도로 폴리싱하고, 그 후 용도에 따라 기판 표면을 열처리(thermal annealing)한다.
그리고, 도 3에 도시한 LTCC 다층 기판(100)의 제1층 기판의 표면에 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 등과 같은 고유전 물질{하이 케이(High-k) 물질}의 절연막을 형성하기 위해서 표면 세척한 후, 드라이(Dry) 형태의 포토레지스트{Photoresistor(PR:감광제)}를 라미네이터(Laminator) 장비를 이용해 기판 표면에 두껍게 라미네이션 하는 공정을 실행한다(S60). 이때 라미네이터의 압력, 온도 및 속도를 잘 조정하여야 기공을 없앨 수 있다. 만약 PR 내에 기공이 발생되면 재 작업을 하여야 한다. PR의 두께는 가능하면 두껍게 하는 것이 중요하며, 일반적으로 120㎛ 이상을 사용한다.
PR 라미네이션 1 공정이 완료되면, UV 노광 1 공정(S70)을 실행하게 되는데, 상기 UV 노광 1 공정에서는 PR에 UV 광을 조사하여 패턴(Pattern)을 형성한다(도 2 및 도 4 참조). 이때 빛이 받는 부분이 고분자화가 되도록 하기 위해 Mask 패턴을 설계하고, 예를 들어 이중 노광(Dual expose) 장비를 이용하여 PR을 감광시킨다. 여기서 중요한 변수는 UV 광원의 파워(Power)와 노광 시간이다. 만약 UV 광원의 파워가 강하고 노광 시간이 길어지면 언더 디벨롭(Under-develop)이 되어 원하는 패턴보다 더 큰 패턴이 형성되고, UV광원이 약하고 노광 시간이 짧으면 오버 디벨롭(Over-develop)이 되어서 원하는 패턴보다 작은 패턴이 형성된다.
상기 UV 노광 1 공정이 완료되면, PR 현상 1 공정(S80)을 실행하는 데, 본 공정에 의해 PR의 패턴(6)DL 비아 필러 전도체(4) 위에 형성된다(도 2 및 도 5 참조). 한편, LTCC 기판에 현상액을 분사하므로서 보다 짧은 시간에 정확한 패턴(6)을 얻을 수 있다. 이때 중요한 변수로는 현상액의 농도, 온도, 분사되는 노즐의 압력과 컨베이어(Conveyor)의 벨트 속도 등을 들 수 있다. 만약 용액의 농도, 온도, 압력 및 속도의 변수가 잘 조절되지 못하면 정확한 패턴을 얻기가 힘들다.
한편, 현상된 상기 LTCC 다층 기판(100)의 표면 즉, 제1층 LTCC 기판의 표면에 PR의 찌꺼기(Scum)가 잔존해 있으면 LTCC 기판 표면에서 절연막의 형성이 잘 되지 않기 때문에 LTCC 기판의 표면에 잔존하는 미량의 감광제 찌꺼기를 제거하기 위해 플라즈마(Plasma) 장비를 이용하여 진공의 O2 플라즈마 가스 상태에서 디스컴을 실시한다. 여기서, 디스컴은 현상작업 후 제거되지 않고 남아있는 미량의 감광액 찌꺼기를 추가로 건식 제거하는 작업을 의미한다.
다음, LTCC 다층 기판(100) 위에 절연막(7) 형성 공정(S90)을 실행한다(도 2 및 도 6 참조). LTCC 다층 기판(100)은 다량의 보이드(Void)를 포함하고 있고, 기판 표면이 유리성분으로 구성되어 있기 때문에 내화학성이 나쁘다. 이러한 단점을 보완하기 위해서 LTCC 다층 기판(100)의 표면에 절연성이 우수한 막을 형성한다. 본 발명에서는 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식으로 Al2O3, 안정화 ZrO2 또는 TiO2막을 5~10㎛ 형성하였다. 이때 LTCC 다층 기판(100)의 온도는 상온이며, 캐리어 가스(carrier gas : He, O2) 량, 진공 챔버 내의 압력과 노즐의 구조 및 모양을 잘 조절하여 절연막(7)의 치밀도를 향상시켰다.
다음에는 상기 비아 필러 전도체(4)의 개구를 위해서 PR 패턴(6)과 PR 패턴(6) 위에 형성된 미량의 절연막을 제거하는 공정(S100)을 실행한다(도 2 및 도 7참조). 이러한 공정은 예를 들어 PR 스트립(Strip) 장비를 이용해 제거한다. PR 스트립 시, 스트리퍼(Stripper) 용액의 농도 및 노즐 압력을 잘 조절하고, 또한 초음파를 동시에 공급하면 쉽게 PR을 제거할 수 있다. 이때 초음파 파워의 조절이 매우 중요하다.
그리고 PR 패턴 제거 공정이 완료되면, 이어서 비아 필러 전도체(4)와 절연막(7) 상에 박막 전도선(8)을 증착하기 위한 박막 전도선 형성 공정(S110)을 실행한다(도 2 및 도 8 참조). 여기서, 상기 박막 전도선(8)과 절연막(7) 및 비아 필러 전도체(4)와의 표면의 밀착력을 증진하기 위해 밀착력 우수한 Ti 또는 Al 금속층을 스퍼터링(sputtering) 방식으로 2000Å 내지 5000Å, 바람직하게는 3000Å 두께로 증착하고, 상기 Ti 또는 Al 금속층 위에 Cu 층간의 배리어(Barrier) 역할을 하는 Pd(팔라듐) 금속층을 50Å 내지 200Å, 바람직하게는 70Å 정도 성막하고, 마지막으로 주 전도선인 Cu 금속층을 2500Å 내지 10000Å, 바람직하게는 9000Å 이상 성막하여 베이스 금속 층을 형성하는 것이 좋다.
한편 전술한 상기 박막 전도선(8)의 형성 공정에서 형성되는 박막 전도선(8)은 복합 금속으로 Ti, Pd, Cu 및 Au 또는 Al, Cu, Ni 및 Au로 구성되는 것이 바람직하다. 이때 Ni 금속은 Cu 층과 Au 층간의 계면의 확산(Diffusion)을 방지하기 위함으로 Au 금속 층이 5㎛ 이상, 바람직하게는 5㎛~10㎛일 경우 제거할 수도 있다.
또한 상기 절연막(7) 및 박막 전도선(8)을 형성하는 과정에서는 화학 용액을 사용한 습식 에칭(Wet etching) 방식 또는 이온 밀링(Ion milling) 장비 및 Ar, Xe 혹은 또 다른 반응성 가스를 이용한 건식 에칭(Dry etching) 방법을 사용할 수 있다.
습식 에칭 방식에서는 LTCC 기판의 표면에 금속 에칭 용액을 선택적으로 스프레이 방식으로 분사하고, D.I 워터(Water) 세척 및 건조를 실시한다.
습식 에칭 방식은 언더 컷(Under cut)이란 현상이 발생되므로, 고주파용 에서는 언더 컷 현상을 줄일 수 있는 이온 밀링 방식을 적용하면 고정밀의 마이크로 스트립 라인을 형성할 수가 있다. 하지만 건식 에칭 방식인 이온 밀링 방식은 장비가 고가인 것이 단점이지만 정밀 부품 제작에는 필수적인 공정기술이다
상술한 바와 같이, 전도선(2), 비아 필러 전도체(4), 저항체(5), 절연막(7) 및 박막 전도선(8)에 의해 본 발명에 따른 MEMS 프로브용 저항 전도선이 완성된다.
다음 도 9에 도시한 바와 같이, 상기 박막 전도선(8) 위에 범프 패드(14)를 형성한 후, 접착제(15)를 이용하여 MEMS 프로브(16) 및 프로브 팁(17)을 순차적으로 고정시키는 것에 의해 본 발명에 따른 MEMS 프로브 카드가 완성된다(S120).
한편 본 발명에 의하면 도 10에 도시한 바와 같이, 제2층 LTCC 기판의 비아 홀에 형성된 저항체(5)는 제2층 LTCC 기판의 두께 또는 비아 홀의 직경에 따라 저항체(5)의 높이나 직경을 확대할 수 있으므로, 용도에 따라 저항값을 다양하게 설계할 수 있다.
<실시예 2>
도 11은 본 발명의 실시예에 따른 MEMS 프로브 카드의 제조공정 흐름을 나타내는 도면이며, 도 12 내지 도 21은 도 11의 각각의 공정을 설명하는 도면이다.
먼저, 도 12에 도시한 바와 같이, 본 실시예에 있어서는 N개의 층으로 구성된 LTCC 다층 기판(100)을 마련한다(S10). 이 층수는 기판 설계 등에 따라서 달라질 수 있는데, 일반적으로 20~30층 정도로 구성되어 있다. 이때 사용된 금속 배선 금속은 Ag가 대부분이고 필요 시 조성은 변경될 수 있다. 세라믹 재료는 60~70% 이상이 유리성분이고 나머지 대부분은 알루미나로 구성되어 있다. 기판의 두께는 고객의 요구사항에 따라 다양화되며, 통상 4~7㎜ 정도이다. 도 12에 있어서, 부호 (1)은 기판상에 형성된 비아 홀(관통 구멍)이고, 부호 (2)는 기판 내에 형성된 전도선을 나타낸다.
LTCC 다층 기판(100)은 N개의 그린시트(Green sheet) 각각에 배선을 인쇄하고, 모든 층을 적층하여 1000℃이하, 바람직하게는 850~900℃ 정도에서 동시 소결하여 제조하면 기판 표면이 유리성분과 알루미나 성분이 구분되어 서로 결합되어 있으므로 표면이 거칠다. 박막 패턴을 형성하기 위해서는 기판 표면 거칠기가 약 1㎛ 정도 이하의 거칠기가 요구되므로, 기계적인 폴리싱(Polishing) 공정을 진행한다. 기판 설계 시에는 기판의 휨을 고려하여 폴리싱 두께보다 두껍게 기판을 형성한 후 폴리싱을 실시하는 것이 바람직하다. 통상 50~100㎛ 정도로 폴리싱한다. 그 후, 기판 표면을 열처리(thermal annealing)한다(S20).
다음에 도 13에 도시된 바와 같이, LTCC 다층 기판(100)의 상부에 전도선(3)과 비아 필러 전도체(4)를 형성하고, 도 14에 도시된 바와 같이 안정된 특성을 갖는 Ru203 산화물을 후막 저항층(5)으로서 형성한다.
이러한 후막 저항층(5)은 인쇄 기법으로 형성된 후 소성된다(S30).
다음에 전도선(3)과 후막 저항층(5) 상에 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 등과 같은 고유전 물질(하이 케이(High-k) 물질)인 절연막을 형성하기 위해서 표면 세척한 후, 드라이(Dry) 형태의 포토레지스트(Photoresistor(PR:감광제))를 라미네이터(Laminator) 장비를 이용해 기판 양면에 두껍게 PR을 라미네이션 1공정을 실행한다(S40). 이때 라미네이터의 압력, 온도 및 속도를 잘 조정하여야 기공을 없앨 수 있다. 만약 PR내에 기공이 발생되면 재 작업을 하여야 한다. PR의 두께는 가능하면 두껍게 하는 것이 중요하다. 일반적으로 120㎛ 이상을 사용한다.
도 15에 도시된 공정은 UV 노광 1 공정(S50)으로서, 감광제의 빛을 조사하여 패턴(Pattern)을 형성하기 위함이다. Mask1은 빛이 받는 부분이 고분자화가 되도록하기 위해 Mask 1 패턴을 설계하고, 예를 들어 이중 노광(Dual expose) 장비를 이용하여 감광제를 감광시키는 공정이다. 이때 중요한 변수는 UV광원의 파워(Power), 노광 시간이다. 만약 광원의 파워가 강하고, 노광 시간이 길어지면 언더 디벨롭(Under-develop)이 되어 원하는 패턴보다 더 큰 패턴이 형성되고, UV광원이 약하고 노광 시간이 짧으면 오버 디벨롭(Over-develop)이 되어서 원하는 패턴보다 작은 패턴이 형성된다.
도 16에 도시된 공정은 현상 1 공정(S60)으로서, 감광제의 PR 패턴(6)을 후막 저항층(5)의 일부 표면에 형성한다. 이러한 PR 패턴(6)의 형성은 기판에 노즐을 통한 현상액을 분사하므로서 보다 짧은 시간에 정확한 PR 패턴(6)을 얻을 수 있다. 이때 중요한 변수로는 현상액의 농도, 온도, 분사되는 노출의 압력과 컨베이어(Conveyor)의 벨트 속도이다. 만약 용액의 농도, 온도, 압력 및 속도의 변수가 잘 조절되지 못하면 정확한 패턴을 얻기가 힘들다.
그 후, 현상된 기판에 감광재의 찌꺼기(Scum)가 기판에 잔존해 있으면, 기판 표면에서 절연막의 형성이 잘 되지 않기 때문에 기판에 잔존하는 미량의 감광제 찌꺼기를 제거하기 위해 플라즈마(Plasma) 장비를 이용하여 진공의 O2 플라즈마 가스 상태에서 디스컴을 실시한다. 여기서, 디스컴은 현상작업 후 제거되지 않고 남아있는 미량의 감광액 찌꺼기를 추가로 건식 제거하는 작업을 의미한다.
다음에 도 17에 도시된 LTCC 다층 배선 기판 위의 양면의 절연막(7) 형성 공정을 실행한다(S70). LTCC 기판은 다량의 보이드(Void)를 포함하고 있고, 기판 표면이 유리성분으로 구성되어 있기 때문에 내화학성이 나쁘다. 이러한 단점을 보완하기 위해서 LTCC 기판 표면에 절연성이 우수한 알루미나 및 안정화 지르코니아 막을 형성한다. 본 발명에서는 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식으로 Al2O3, 안정화 ZrO2 또는 TiO2막을 5~10㎛ 형성하였다. 바람직하게는 에어로솔 퇴적 방식을 사용한다. 이때 기판 온도는 상온이며, 캐리어 가스(carrier gas : He, O2) 량, 진공 챔버 내의 압력과 노츨의 구조 및 모양을 잘 조절하여 절연막(7)의 치밀도를 향상시켰다.
도 18에 도시된 공정은 후막 저항층(5)의 개구를 위해서 PR 패턴(6) 위의 절연막(7)과 감광제인 PR을 제거하는 공정(S80)이다. 절연막(7)은 기계적 스크러빙(Mechanical scrubbing) 방식으로 제거한 후, PR 스트립(Strip) 장비를 이용해 제거한다. PR 스트립 시, 스트리퍼(Stripper) 용액의 농도 및 노즐 압력을 잘 조절하고, 또한 초음파를 동시에 공급하면 쉽게 PR을 제거할 수 있다. 이때 초음파 파워의 조절이 매우 중요하다.
도 19에 도시된 공정은 후막 저항층(5)과 절연막(7) 상에 박막 전도선(8)을 증착하기 위한 공정(S90)이다. 박막 전도선(8)과 절연막(7) 및 후막 저항(5)과의 표면의 밀착력을 증진하기 위해 밀착력 우수한 Ti 또는 Al 금속층을 스퍼터링(sputtering) 방식으로 2000Å 내지 5000Å, 바람직하게는 3000Å 두께로 증착하고, 바로 Ti 또는 Al 금속층 위에 Cu 층간의 배리어(Barrier) 역할을 하는 Pd(팔라듐) 금속층을 50Å 내지 200Å, 바람직하게는 70Å 정도 성막하고, 마지막으로 주 전도선인 Cu 금속층을 2500Å 내지 10000Å, 바람직하게는 9000Å 이상 성막하여 베이스 금속 층을 형성한다.
그 후 박막 전도선(8)을 형성하기 위한 감광제를 기판 양면에 입히는 라미네이션 2 공정을 실행한다(S100). 이때 사용되는 감광제는 패턴의 종류나 작업 조건에 따라 라미네이션(Lamination) 1 공정과 동일 형태 또는 다른 형태의 PR을 사용한다.
다음에 UV 노광 2 공정(S110)으로서, 드라이 형태의 네가티브(Negative : 음성) 감광제를 사용하므로, 마스크 패턴이 Mask 1과 다른 Mask 2를 사용한다. 작업 변수는 UV 노광 1 조건과 동일하지만, 작업 조건을 PR 두께에 따라 다른 값을 갖는다.
다음에 PR의 감광제의 현상 공정을 실행한다(S120). 디벨롭 장비는 동일한 장비를 사용할 수 있으며, 작업 조건은 다르다.
그 후 필요에 따라 PR 디스컴 공정으로 기판 표면에 잔존하는 PR 찌꺼기를 제거하며, 이 공정은 일반적으로 산소 가스 플라즈마를 이용한다. 상술한 바와 같은 공정에 의해 도 19에 도시된 바와 같은 박막 전도선(8)이 형성된다.
또한 상기 박막 전도선(8)의 형성 공정은 박막 배선의 전기전도도 및 고주파 선로의 전기저항을 줄이기 위해 금속 배선막을 두껍게 하기 위해 전기도금 방법으로 금속 막을 두껍게 성막하는 도금 공정이다. 이때 박막 전도선(8)은 복합 금속으로 Ti, Pd, Cu 및 Au 또는 Al, Cu, Ni 및 Au로 구성되어 있다. Cu는 주 전도선으로 통상 10~25㎛이고, Ni 금속은 2~4㎛, 그리고 Au 금속은 5㎛ 미만으로 성막한다. 금속 두께는 응용 제품에 따라 달라질 수 있다. 이때 Ni 금속은 선택적으로 제거할 수도 있다. 왜냐하면 Ni 금속은 Cu 층과 Au 층간의 계면의 확산(Diffusion)을 방지하기 위함으로 Au 금속 층이 5㎛ 이상, 바람직하게는 5㎛~10㎛일 경우 제거할 수도 있다.
상술한 바와 같이, 비아 필러 전도체(4), 후막 저항층(5), 절연막(7) 및 박막 전도선(8)에 의해 본 발명에 따른 MEMS 프로브 카드가 완성된다.
다음에 도 20 및 도 21에 도시된 바와 같이, 범프 패드(14), 접착제(15), MEMS 프로브(16), 프로브 팁(17)을 형성하는 것에 의해 본 발명에 따른 전자 소자 테스트 장치에 사용되는 프로브 카드가 완성된다.
또한 후막 저항층(5), 절연막(7) 및 박막 전도선(8)을 형성하는 과정에서는 화학 용액을 사용한 습식 에칭(Wet etching) 방식 또는 이온 밀링(Ion milling) 장비 및 Ar, Xe 혹은 또 다른 반응성 가스를 이용한 건식 에칭(Dry etching) 방법을 사용할 수 있다.
습식 에칭 방식으로 제거하기 위해서는 금속 에칭 용액을 선택적으로 스프레이 방식으로 기판 양면에 분사하고, D.I 워터(Water) 세척 및 건조를 실시한다.
습식 에칭 방식은 언더 컷(Under cut)이란 현상이 발생되므로, 고주파용 부품인 경우는 언더 컷 현상을 줄일 수 있는 이온 밀링 방식을 적용하면 고정밀의 마이크로 스트립 라인을 형성할 수가 있다. 하지만 건식 에칭 방식인 이온 밀링은 장비가 고가인 것이 단점이지만 정밀 부품 제작에는 필수적인 공정기술이다.
<기타 실시예>
도 22에 도시한 바와 같이, 본 발명에 따른 프로브 카드의 다른 실시예로서, 기판(100) 표면에 형성된 제1 전도패드(210), 상기 기판(100) 표면 및 상기 제1 전도패드(210) 표면에 형성된 저항체(300) 및 상기 기판(100) 표면 및 상기 저항체(300) 표면에 형성된 제2 전도패드(220)를 포함하는 구성이 있다.
즉, 제1 전도패드(210)와 제2 전도패드(220) 사이에 저항체(300)가 형성된 SWR(Sand-Wich Resistor)로 되어 있다.
이와 같이 구성하면, 저항을 설계할 때 시트(Sheet) 저항의 정수배로 구성하게 되는데, 바(Bar) 형 저항에 비해서, 1) 저항체와 전극을 동일한 면에 설계함으로써 전도패드(Pad) 면적을 줄이거나 제거가 가능하여 고밀도 회로 설계가 가능하고, 2) 연속되는 전도선과 연결시 별도의 전도선이 없이 적층 구조의 전도선을 설계할 수 있게 된다.
또한 본 발명에 따르면 수 옴 이하 저항 설계시 매우 유용하게 설계가 가능하고, 자체 저항 표면 보호로 기존의 보호막이 필요 없게 되며, 원재료 절감 효과로 친환경적 회로 설계가 가능하다.
또한 박막, 후막 저항 설계시에 반영이 가능하고, 고밀도 회로 설계가 가능하며, 캐패시터(Capacitor) 위에 저항 설계가 가능하다.
이하, 도 2에 도시된 하이브리드 집적회로의 형성 방법에 대해 설명한다.
먼저 기판(100)의 표면에 제1 전도패드(210)를 형성한다.
디음, 상기 기판(100) 표면 및 상기 제1 전도패드(210) 표면에 저항체(300)를 형성한다.
그 후, 상기 기판(100) 표면 및 상기 저항체(300) 표면에 제2 전도패드(220)를 형성한다.
1차 인쇄로 형성되는 상기 제1 전도패드(210)는 1차 전도체로서 Ag, Pd, Pt, Ti 등이 약간 양 포함된 Ag 페이스트이다.
상기 인쇄 공정은 일반적인 스크린 프린팅(Screen printing) 공정이 적용될 수 있다.
2차 인쇄로 형성되는 상기 저항체(300)는 Ru2O3 산화물로 이루어지고, 전기 저항은 10K~10M옴 저항을 사용할 수 있는데, 본 발명에서는 3~8㏁을 사용하였다.
인쇄 회수는 3~7회까지이며, 이는 요구하는 저항값에 따라서 변경 가능하다.
또, 열처리 온도는 대략 500~900℃ 사이이다.
3차 인쇄로 형성되는 제2 전도패드(220)는 1차 인쇄와 동일한 조건으로 하면 된다.
이상 본 발명자에 의해서 이루어진 발명을 상기 실시예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시예에 한정되는 것은 아니고 특허청구범위에 기재된 기술적 범위를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 물론이다.
상술한 바와 같이, 본 발명에 따른 MEMS 프로브 카드 및 그의 제조 방법에 의하면, 비아 홀 내에 저항체를 충전하므로 안정된 저항값을 얻을 수 있고, 저항값의 비 조절이 용이하며, 반도체 칩 등의 테스트 시 큰 전력 변화에도 안정적으로 사용할 수 있다는 효과가 얻어진다.
또, 본 발명에 따른 MEMS 프로브 카드 및 그의 제조 방법에 의하면, 저항 전도선의 형성을 위한 패턴 및 추가 공정 없이 기존의 LTCC 다층 기판의 제조 공정을 그대로 사용할 수 있다는 효과도 얻어진다.
또, 본 발명에 따른 MEMS 프로브 카드 및 그의 제조 방법에 의하면, 전자 소자 테스트 장치에서 전력 파워를 쉽게 설계 및 제조할 수 있다는 효과가 얻어진다.
또, 본 발명에 따른 MEMS 프로브 카드 및 그의 제조 방법에 의하면, LTCC 다층 기판의 고온에서도 안정적인 특성을 갖게 할 수 있다는 효과도 얻어진다.

Claims (33)

  1. (a) 비아 홀이 형성된 제1 내지 제n층 저온 동시소성 세라믹(LTCC) 기판을 마련하는 단계,
    (b) 상기 비아 홀에 비아 필러 전도체 또는 저항체를 충전하는 단계,
    (c) 상기 제1 내지 제n층 저온 동시소성 세라믹 기판을 적층하고, 1000℃ 이하에서 소성하여 저온 동시소성 세라믹 다층 기판을 마련하는 단계,
    (d) 상기 저온 동시소성 세라믹 다층 기판의 표면에 절연막을 형성하는 단계 및
    (d) 상기 절연막 및 상기 비아 필러 전도체 표면에 박막 전도선을 형성하는 단계를 포함하는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  2. 제1항에 있어서,
    상기 비아 필러 전도체는 제1층 저온 동시소성 세라믹 기판의 비아 홀에 충전되고,
    상기 저항체는 제2층 저온 동시소성 세라믹 기판의 비아 홀에 충전되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 비아 필러 전도체와 저항체는 전도선에 의해 연결되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  4. 제3항에 있어서,
    상기 비아 필러 전도체는 Ag, Pd 또는 Pt 금속 중의 어느 하나로 이루어진 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  5. 제3항에 있어서,
    상기 저항체는 루테늄(Ru), 루테늄 산화물 또는 Ru/루테늄 산화물 중의 어느 하나로 이루어진 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  6. 제5항에 있어서,
    상기 저항체가 형성된 제2층 기판의 비아 홀의 높이 및 직경은 가변인 것을
    특징으로 하는 MEMS 프로브용 카드의 제조 방법.
  7. 제1항에 있어서,
    상기 절연막은 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 중 어느 하나의 고유전 물질로 이루어진 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  8. 제7항에 있어서,
    상기 절연막은 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식 중 어느 하나의 방식으로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  9. 제1항에 있어서,
    상기 박막 전도선은 복합 금속으로 Ti, Pd, Cu 또는 Al, Cu, Au로 구성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  10. 제9항에 있어서,
    상기 절연막 및 박막 전도선은 습식 에칭 방식 또는 이온 밀링 방식으로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  11. 비아 홀에 비아 필러 전도체 또는 저항체가 충전된 제1 내지 제n층 저온 동시소성 세라믹(LTCC) 기판을 적층하고, 1000℃ 이하에서 소성하여 형성된 저온 동시소성 세라믹 다층 기판,
    상기 저온 동시소성 세라믹 다층 기판의 표면에 형성된 절연막,
    상기 절연막 및 상기 비아 필러 전도체의 표면에 형성된 박막 전도선을 포함하는 것을 특징으로 하는 MEMS 프로브 카드.
  12. 제11항에 있어서,
    상기 비아 필러 전도체는 제1층 저온 동시소성 세라믹 기판의 비아 홀에 충전되고,
    상기 저항체는 제2층 저온 동시소성 세라믹 기판의 비아 홀에 충전되는 것을 특징으로 하는 MEMS 프로브 카드.
  13. 제11항 또는 제12항에 있어서,
    상기 비아 필러 전도체와 저항체를 연결하는 전도선을 더 포함하는 것을 특징으로 하는 MEMS 프로브 카드.
  14. (a) 1000℃ 이하에서 소성된 저온동시소성 세라믹(LTCC) 기판을 마련하는 단계,
    (b) 상기 저온동시소성 세라믹 기판상에 후막 저항층을 형성하는 단계,
    (c) 상기 후막 저항층 상에 절연막을 형성하는 단계 및
    (d) 상기 절연막 및 상기 후막 저항층 상에 박막 전도선을 형성하는 단계를 포함하는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  15. 제 14항에 있어서,
    상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 비아 필러 전도체 상에 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  16. 제15항에 있어서,
    상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 전도선 상에 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  17. 제14항에 있어서,
    상기 (b)단계에서 상기 후막 저항층은 인쇄 기법으로 형성된 후 소성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  18. 제14항에 있어서,
    상기 (b)단계 전에 상기 저온동시소성 세라믹 기판을 열처리하는 단계를 더 포함하는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  19. 제14항에 있어서,
    상기 절연막은 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 등과 같은 고유전 물질인 하이 케이(High-k) 물질로 이루어진 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  20. 제19항에 있어서,
    상기 절연막은 성막 속도가 빠른 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식으로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  21. 제14항에 있어서,
    상기 후막 저항층은 Ru203 산화물로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  22. 제14항에 있어서,
    상기 박막 전도선은 복합 금속으로 Ti, Pd, Cu 또는 Al, Cu, Au로 구성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  23. 제14항에 있어서,
    상기 후막 저항층, 절연막 및 박막 전도선은 습식 에칭 방식 또는 이온 밀링 방식으로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  24. 1000℃ 이하에서 소성된 저온동시소성 세라믹(LTCC) 기판상에 형성된 후막 저항층,
    상기 후막 저항층 상에 형성된 절연막 및
    상기 절연막 및 상기 후막 저항층 상에 형성된 박막 전도선을 포함하는 것을 특징으로 하는 MEMS 프로브 카드.
  25. 제 24항에 있어서,
    상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 비아 필러 전도체를 더 포함하고,
    상기 후막 저항층은 상기 비아 필러 전도체 상에 형성되는 것을 특징으로 하는 MEMS 프로브 카드.
  26. 제24항에 있어서,
    상기 후막 저항층은 상기 저온동시소성 세라믹 기판의 상부에 마련된 전도선 상에 형성되는 것을 특징으로 하는 MEMS 프로브 카드.
  27. 제24항에 있어서,
    상기 후막 저항층은 인쇄 기법으로 형성된 후 소성되는 것을 특징으로 하는 MEMS 프로브 카드.
  28. 제24항에 있어서,
    상기 절연막은 Al2O3, HfO2, TiO2, ZrO2, Y2O3, Ta2O5 , La2O3 등과 같은 고유전 물질인 하이 케이(High-k) 물질로 이루어진 것을 특징으로 하는 MEMS 프로브 카드.
  29. 제28항에 있어서,
    상기 절연막은 이온 어스시탄트(Ion assistant) PVD 방식, 전자빔 증착(E-Beam Evaporation) 기술인 PVD 방식, PLD(Plused Laser Deposition)방식 또는 에어로솔 퇴적(Aerosol Deposition) 방식으로 형성되는 것을 특징으로 하는 MEMS 프로브 카드.
  30. 제24항에 있어서,
    상기 후막 저항층은 Ru203 산화물로 형성되는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  31. 제24항에 있어서,
    상기 박막 전도선은 복합 금속으로 Ti, Pd, Cu 또는 Al, Cu, Au로 구성되는 것을 특징으로 하는 MEMS 프로브 카드.
  32. 기판 표면에 제1 전도패드를 형성하는 단계,
    상기 기판 표면 및 상기 제1 전도패드 표면에 저항체를 형성하는 단계 및
    상기 기판 표면 및 상기 저항체 표면에 제2 전도패드를 형성하는 단계를 포함하는 것을 특징으로 하는 MEMS 프로브 카드의 제조 방법.
  33. 기판 표면에 형성된 제1 전도패드,
    상기 기판 표면 및 상기 제1 전도패드 표면에 형성된 저항체 및
    상기 기판 표면 및 상기 저항체 표면에 형성된 제2 전도패드를 포함하는 것을 특징으로 하는 MEMS 프로브 카드.
PCT/KR2009/002059 2008-04-21 2009-04-21 Mems 프로브 카드 및 그의 제조 방법 WO2009131346A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/988,857 US20110089967A1 (en) 2008-04-21 2009-04-21 Mems probe card and manufacturing method thereof
JP2011506187A JP2011518336A (ja) 2008-04-21 2009-04-21 Memsプローブカード及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2008-0036755 2008-04-21
KR1020080036755A KR20090111142A (ko) 2008-04-21 2008-04-21 Mems 프로브용 저항성 전도선 및 그의 제조 방법
KR1020080039573A KR20090113705A (ko) 2008-04-28 2008-04-28 Mems 프로브 카드 및 그의 제조 방법
KR10-2008-0039573 2008-04-28
KR10-2008-0043597 2008-05-09
KR1020080043597A KR20090117508A (ko) 2008-05-09 2008-05-09 하이브리드 집적회로 및 그 제조 방법

Publications (3)

Publication Number Publication Date
WO2009131346A2 true WO2009131346A2 (ko) 2009-10-29
WO2009131346A3 WO2009131346A3 (ko) 2010-01-21
WO2009131346A9 WO2009131346A9 (ko) 2010-12-29

Family

ID=41217246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002059 WO2009131346A2 (ko) 2008-04-21 2009-04-21 Mems 프로브 카드 및 그의 제조 방법

Country Status (4)

Country Link
US (1) US20110089967A1 (ko)
JP (1) JP2011518336A (ko)
TW (1) TW201000910A (ko)
WO (1) WO2009131346A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721708A (zh) * 2011-03-31 2012-10-10 南京邮电大学 一种低温共烧结陶瓷的测量装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI403620B (zh) * 2010-05-13 2013-08-01 Nat Univ Tsing Hua An anti-sticking coating structure widget
TWI484191B (zh) 2012-09-28 2015-05-11 Hermes Epitek Corp 電路測試探針卡
TWI560452B (en) * 2012-09-28 2016-12-01 Hermes Epitek Corp Probe card for circuit-testing
TWI560451B (en) * 2012-09-28 2016-12-01 Hermes Epitek Corp Probe card for circuit-testing
JP2014236093A (ja) * 2013-05-31 2014-12-15 サンケン電気株式会社 シリコン系基板、半導体装置、及び、半導体装置の製造方法
CN103412164B (zh) * 2013-07-16 2015-12-23 上海交通大学 基于弹性基底和背面引线的微机电系统探针卡和制备方法
US9435849B2 (en) * 2014-06-30 2016-09-06 Infineon Technologies Ag Method for testing semiconductor dies and a test apparatus
KR101720300B1 (ko) 2015-07-21 2017-03-28 주식회사 오킨스전자 접촉성이 개선된 범프를 포함하는 테스트 소켓용 mems 필름
CN105628889A (zh) * 2015-12-28 2016-06-01 东莞市铱伦实业有限公司 一种带温度检测功能的tds探头的制作方法
CN105548771B (zh) * 2016-01-19 2018-11-20 深圳振华富电子有限公司 Ltcc滤波器测试板以及测试夹具
US10426043B2 (en) 2016-08-19 2019-09-24 Honeywell Federal Manufacturing & Technologies, Llc Method of thin film adhesion pretreatment
US11850416B2 (en) * 2018-06-22 2023-12-26 The Regents Of The University Of Michigan Method of manufacturing a probe array
CN111208327B (zh) * 2018-11-21 2022-03-15 台湾中华精测科技股份有限公司 探针卡装置及其调节式探针
KR102210841B1 (ko) * 2020-10-27 2021-02-02 (주)샘씨엔에스 저 열팽창 특성을 가지는 프로브 카드용 세라믹 기판
TWI804378B (zh) * 2022-07-06 2023-06-01 中華精測科技股份有限公司 探針卡設備及其扣合式電路板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034924A (ko) * 1998-11-17 2000-06-26 제닌 엠. 데이비스 저온 동시소성 다층세라믹내 수동 전자소자들
KR20020087144A (ko) * 2001-05-14 2002-11-22 한국과학기술연구원 저온소성 다층기판용 유전체 세라믹 조성물의 제조방법
KR20030040431A (ko) * 2000-09-01 2003-05-22 지멘스 악티엔게젤샤프트 유리 세라믹 물질 및 상기 유리 세라믹 물질의 용도
KR20060099859A (ko) * 2005-03-15 2006-09-20 삼성전기주식회사 기판의 치수변형을 최소화할 수 있는 ltcc기판의제조방법 및 이로부터 제조된 ltcc기판

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262501A (ja) * 1985-09-12 1987-03-19 株式会社東芝 厚膜基板装置
JPH06104575A (ja) * 1992-09-22 1994-04-15 Sumitomo Kinzoku Ceramics:Kk 抵抗体付きセラミックス回路基板
JP3067580B2 (ja) * 1995-04-04 2000-07-17 株式会社村田製作所 絶縁ペースト及びそれを用いた厚膜印刷多層回路
JP3780386B2 (ja) * 1996-03-28 2006-05-31 株式会社村田製作所 セラミック回路基板及びその製造方法
JPH09298368A (ja) * 1996-05-09 1997-11-18 Ngk Spark Plug Co Ltd セラミック配線基板
JPH1164377A (ja) * 1997-08-20 1999-03-05 Jsr Corp 積層型コネクターおよび回路基板検査用アダプター装置
US6171921B1 (en) * 1998-06-05 2001-01-09 Motorola, Inc. Method for forming a thick-film resistor and thick-film resistor formed thereby
JP3865989B2 (ja) * 2000-01-13 2007-01-10 新光電気工業株式会社 多層配線基板、配線基板、多層配線基板の製造方法、配線基板の製造方法、及び半導体装置
EP1717195B1 (en) * 2001-11-09 2011-09-14 WiSpry, Inc. Trilayered beam MEMS switch and related method
US20040163234A1 (en) * 2003-02-24 2004-08-26 Terry Provo Resistive vias in a substrate
JP4190358B2 (ja) * 2003-06-16 2008-12-03 富士通株式会社 回路基板、受動部品、電子装置、及び回路基板の製造方法
US7294929B2 (en) * 2003-12-30 2007-11-13 Texas Instruments Incorporated Solder ball pad structure
US7198358B2 (en) * 2004-02-05 2007-04-03 Hewlett-Packard Development Company, L.P. Heating element, fluid heating device, inkjet printhead, and print cartridge having the same and method of making the same
US7262444B2 (en) * 2005-08-17 2007-08-28 General Electric Company Power semiconductor packaging method and structure
JP2008089461A (ja) * 2006-10-03 2008-04-17 Tohoku Univ 半導体集積回路検査用プローバ
US7736544B2 (en) * 2007-04-26 2010-06-15 E. I. Du Pont De Nemours And Company Electrically conductive composition for via-holes
JP5012191B2 (ja) * 2007-05-14 2012-08-29 株式会社日本マイクロニクス 多層配線板およびその製造方法並びにプローブ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000034924A (ko) * 1998-11-17 2000-06-26 제닌 엠. 데이비스 저온 동시소성 다층세라믹내 수동 전자소자들
KR20030040431A (ko) * 2000-09-01 2003-05-22 지멘스 악티엔게젤샤프트 유리 세라믹 물질 및 상기 유리 세라믹 물질의 용도
KR20020087144A (ko) * 2001-05-14 2002-11-22 한국과학기술연구원 저온소성 다층기판용 유전체 세라믹 조성물의 제조방법
KR20060099859A (ko) * 2005-03-15 2006-09-20 삼성전기주식회사 기판의 치수변형을 최소화할 수 있는 ltcc기판의제조방법 및 이로부터 제조된 ltcc기판

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721708A (zh) * 2011-03-31 2012-10-10 南京邮电大学 一种低温共烧结陶瓷的测量装置

Also Published As

Publication number Publication date
WO2009131346A3 (ko) 2010-01-21
JP2011518336A (ja) 2011-06-23
WO2009131346A9 (ko) 2010-12-29
US20110089967A1 (en) 2011-04-21
TW201000910A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
WO2009131346A2 (ko) Mems 프로브 카드 및 그의 제조 방법
WO2010027145A1 (ko) Mems 프로브용 카드 및 그의 제조 방법
WO2019004609A1 (ko) 다층 세라믹 기판 및 그의 제조 방법
WO2013137668A1 (en) The printed circuit board and the method for manufacturing the same
JP3061282B2 (ja) セラミック多層回路板および半導体モジュール
Muller et al. Technology benchmarking of high resolution structures on LTCC for microwave circuits
KR20090074456A (ko) Mems프로브 카드용 다층 박막 기판의 제조 방법
KR20090111142A (ko) Mems 프로브용 저항성 전도선 및 그의 제조 방법
KR20110020098A (ko) 프로브 카드용 스페이스 트랜스포머 및 그 제조방법
KR20090113705A (ko) Mems 프로브 카드 및 그의 제조 방법
US6471805B1 (en) Method of forming metal contact pads on a metal support substrate
WO2019088637A1 (ko) 양면 세라믹 기판 제조방법, 그 제조방법에 의해 제조되는 양면 세라믹 기판 및 이를 포함하는 반도체 패키지
JPH0575255A (ja) 混成基板とこれを搭載する回路モジユールおよびその製造方法
Elshabini et al. Overview of Ceramic Interconnect Technolgy
KR20090093211A (ko) 다층 박막 기판의 제조 방법
JP2001072473A (ja) セラミック基板の製造方法
JP4071908B2 (ja) 多層配線基板およびその製造方法
JP2004031699A (ja) セラミック回路基板及びその製造方法
WO2023277452A1 (ko) 전기 전도성 접촉핀 및 이의 제조방법
JPH0745931A (ja) 微細配線の形成方法及び該方法に用いられる導体ペースト
KR20090110510A (ko) 박막 다층 ltcc 기판의 제조 방법
JP4355090B2 (ja) 回路基板
KR20100028852A (ko) Mems 프로브용 카드 및 그의 제조 방법
JP4711641B2 (ja) 複合シートの製造方法、積層体の製造方法および積層部品の製造方法
JP2001264384A (ja) 電気特性の測定用基板及びその測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735121

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011506187

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12988857

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09735121

Country of ref document: EP

Kind code of ref document: A2