WO2009131180A1 - 固体酸化物形燃料電池用セル - Google Patents

固体酸化物形燃料電池用セル Download PDF

Info

Publication number
WO2009131180A1
WO2009131180A1 PCT/JP2009/058079 JP2009058079W WO2009131180A1 WO 2009131180 A1 WO2009131180 A1 WO 2009131180A1 JP 2009058079 W JP2009058079 W JP 2009058079W WO 2009131180 A1 WO2009131180 A1 WO 2009131180A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
air electrode
oxide
film
cell
Prior art date
Application number
PCT/JP2009/058079
Other languages
English (en)
French (fr)
Inventor
井上修一
野中英正
上野山覚
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to CA2722549A priority Critical patent/CA2722549C/en
Priority to DK09734441.0T priority patent/DK2276094T3/da
Priority to EP09734441.0A priority patent/EP2276094B1/en
Priority to US12/989,103 priority patent/US8865373B2/en
Priority to JP2010509219A priority patent/JP4659136B2/ja
Publication of WO2009131180A1 publication Critical patent/WO2009131180A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell (hereinafter referred to as “SOFC”) appropriately formed by joining an alloy or oxide containing Cr (chromium) (hereinafter sometimes referred to as “alloy or the like”) and an air electrode. ").
  • SOFC solid oxide fuel cell
  • Such an SOFC cell has a single cell in which an air electrode is joined to one surface side of an electrolyte membrane and a fuel electrode is joined to the other surface side of the electrolyte membrane. It has a structure sandwiched between a pair of electron conductive alloys and the like.
  • Such a SOFC cell operates at an operating temperature of, for example, about 700 to 900 ° C., and the oxide ions move from the air electrode side to the fuel electrode side through the electrolyte membrane. An electromotive force is generated in the meantime, and the electromotive force can be taken out and used.
  • An alloy used in such a SOFC cell is made of a material containing Cr that is excellent in electronic conductivity and heat resistance. Further, the heat resistance of such an alloy is derived from a dense film of chromia (Cr 2 O 3 ) formed on the surface of the alloy.
  • the SOFC cell has a stacking state of 1000 ° C. to a temperature higher than the operating temperature for the purpose of minimizing the contact resistance between the alloy and the air electrode and the fuel electrode in the manufacturing process.
  • a baking treatment is performed at a baking temperature of about 1250 ° C. (see, for example, Patent Document 1).
  • an n-type semiconductor film formed by doping impurities into a single oxide is formed on the surface of the alloy used in the SOFC cell, and is included in the alloy by performing such a film forming process.
  • a technique for suppressing the oxidation of Cr into a hexavalent oxide that easily scatters see, for example, Patent Document 2.
  • the oxygen partial pressure is reduced as much as possible in a vacuum or an inert gas atmosphere, so that chromia (Cr 2 O 3 ) on the surface of the alloy is converted to Cr (VI) or the surface of the alloy or the like is Even when the oxidation of Cr (III) oxide to Cr (VI) is suppressed and the occurrence of Cr poisoning at the time of manufacture is suppressed, there is air supplied to the air electrode during the subsequent operation. By being exposed to high temperature in an oxidizing atmosphere, oxidation to Cr (VI) proceeds and the above-mentioned Cr poisoning may occur.
  • the present invention has been made in view of the above-mentioned problems, and the object thereof is to improve the occurrence of Cr poisoning of the air electrode in a SOFC cell formed by joining an alloy containing Cr and the air electrode. And a SOFC cell that can suppress the progress of oxidative deterioration due to Cr withering of an alloy or the like.
  • a characteristic configuration of a solid oxide fuel cell according to the present invention is a solid oxide fuel cell obtained by joining an alloy or oxide containing Cr and an air electrode, the alloy or the oxide.
  • the object is to form a film containing a spinel oxide composed of a second single oxide having a lower equilibrium dissociation oxygen partial pressure at 750 ° C. than that of the single oxide.
  • the equilibrium dissociated oxygen partial pressure at 750 ° C. is in the range of 1.83 ⁇ 10 ⁇ 20 to 3.44 ⁇ 10 ⁇ 13 atm.
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • the first single oxide is more stable than existing as a single oxide.
  • the spinel oxides Since spinel oxides hardly change the valence of the constituent elements (in other words, the oxidizing power is small), as a result, the oxidation of Cr (III) oxide to Cr (VI) can be suppressed. . Further, the spinel oxide has a characteristic that the diffusion of cations (including the oxide of Cr) is slow due to its crystal structure.
  • the lower limit (1.83 ⁇ 10 ⁇ 20 atm) of the equilibrium dissociated oxygen partial pressure is the equilibrium dissociated oxygen partial pressure at 750 ° C. of WO 3 which is one of the single oxides conventionally used as a coating. This is the upper limit value in the prior art.
  • the upper limit value (3.44 ⁇ 10 ⁇ 13 atm) of the equilibrium dissociated oxygen partial pressure is the upper limit value when the film containing the spinel oxide of the present invention is used.
  • the oxide (or oxy) of vapor phase Cr (VI) from the alloy side to the air electrode side or the interface between the air electrode and the electrolyte is obtained.
  • (Hydroxide) diffusion can be suppressed, and the occurrence of Cr poisoning of the air electrode can be satisfactorily suppressed.
  • the scattering of Cr from the alloy or the like side is suppressed, the progress of oxidation deterioration of the alloy or the like due to Cr withering can be suppressed.
  • the first single oxide may be Fe 2 O 3 , FeO, NiO, CoO, Ni 2 O 3 , Mn 2 O 3, and Co 2 O 3.
  • it is selected from the group consisting of
  • the solid oxide fuel cell of the present configuration as the first single-system oxide that is the oxide having the higher equilibrium dissociated oxygen partial pressure at 750 ° C. constituting the spinel-based oxide, Therefore, the diffusion of gas phase Cr (VI) oxide (or oxyhydroxide) from the alloy side to the air electrode side or the interface between the air electrode and the electrolyte is suppressed. Thus, the occurrence of Cr poisoning of the air electrode can be satisfactorily suppressed. Moreover, since the scattering of Cr from the alloy or the like side is suppressed, the progress of oxidation deterioration of the alloy or the like due to Cr withering can be suppressed.
  • the spinel oxide may be NiCo 2 O 4 , (Zn x Co 1-x ) Co 2 O 4 (0.45 ⁇ x ⁇ 1.00), FeMn 2 O 4 , NiMn 2 O 4 , CoMn 2 O 4 , MnFe 2 O 4 , MnNi 2 O 4 , MnCo 2 O 4 , Mn (Mn 0.25 Co 0.75 ) 2 O 4 , (Mn 0.5 Co 0.5 ) Co 2 O 4 , TiCo 2 O 4 , ZnFe 2 O 4 , FeCo 2 O 4 , CoFe 2 O 4 , MgCo 2 O 4 , Co 3 O 4 and a mixture of two or more thereof Is preferably selected from.
  • the alloy or the like side to the air electrode side or the interface between the air electrode and the electrolyte is used. It is possible to suppress the occurrence of Cr poisoning of the air electrode by suppressing the diffusion of the oxide (or oxyhydroxide) of Cr (VI) in the gas phase. Moreover, since the scattering of Cr from the alloy or the like side is suppressed, the progress of oxidation deterioration of the alloy or the like due to Cr withering can be suppressed.
  • the preferred spinel oxides listed above have a thermal expansion coefficient of ferritic stainless steel (thermal expansion coefficient: 11 ⁇ 10 ⁇ 6 K ⁇ 1 ), which is mainly used as a base material, and bonded.
  • (La, Sr) (Co, Fe) O 3 thermo expansion coefficient: 15 to 21 ⁇ 10 ⁇ 6 K ⁇ 1
  • (La, Sr) MnO 3 thermal expansion coefficient: 11 ⁇ 10 ⁇ 6 K ⁇ 1 ).
  • the thermal expansion coefficient of ZnCo 2 O 4 is 9.3 ⁇ 10 ⁇ 6 K ⁇ 1 and the thermal expansion coefficient of (Zn 0.45 Co 0.55 ) Co 2 O 4 is 10.7 ⁇ 10 ⁇ 6.
  • the coating film containing the spinel oxide of this structure is a coating film excellent in durability without being easily peeled off from the alloy or the like even when the alloy or the air electrode is thermally expanded.
  • Zn—Co-based ones can obtain a dense film having a high oxygen barrier property at a relatively low temperature compared to other materials when forming a film by sintering. Industrially preferable.
  • Zn—Co-based materials have the advantage that resistance increase at a relatively low temperature (for example, 650 ° C.) is small, and high performance can be easily maintained even if the operating conditions of SOFC are shifted to low temperatures.
  • the coating preferably has a thickness of 0.1 to 100 ⁇ m.
  • the thickness of the coating formed on the surface of the alloy or the like is set to 0.1 to 100 ⁇ m, so that the air electrode side or the air electrode and the electrolyte can be formed from the alloy side. Diffusion of gas phase Cr (VI) oxide (or oxyhydroxide) to the interface with the. As a result, the occurrence of Cr poisoning of the air electrode can be reliably suppressed. Moreover, since the scattering of Cr from the alloy or the like side is suppressed, the progress of oxidation deterioration of the alloy or the like due to Cr withering can be suppressed.
  • the coating is preferably fired by adding a sintering aid.
  • the coating when forming a coating on the surface of the alloy or the like, the coating is further densified by adding a sintering aid and firing. As a result, the electrical resistance of the coating is lowered and the performance of the coating as an oxygen barrier is improved. Therefore, the performance as a solid oxide fuel cell can be enhanced, and further, the effect of suppressing the oxidation of Cr (III) oxide to Cr (VI), and the decrease in Cr content of alloys and the like (Cr The effect of suppressing withering can be improved. As a result, a decrease in heat resistance of the alloy itself is suppressed.
  • disassembly state of each element of the cell for SOFC Diagram explaining the operating principle of SOFC cell The figure which shows Cr distribution after baking of the cell for SOFC of Example 1.
  • the figure which shows Cr distribution after baking of the cell for SOFC of the comparative example 1 The figure which shows Cr distribution after baking of the cell for SOFC of Example 2-1.
  • the figure which shows Cr distribution after baking of the cell for SOFC of Example 3-2 The figure which shows Cr distribution after baking of the cell for SOFC of Example 4.
  • the figure which shows Cr distribution after baking of the cell for SOFC of Example 5 The figure which shows Cr distribution after baking of the cell for SOFC of Example 6-1
  • the figure which shows Cr distribution after baking of the cell for SOFC of Example 6-2 The figure which shows Cr distribution after baking of the cell for SOFC of Example 7-1
  • the figure which shows Cr distribution after baking of the cell for SOFC of Example 7-2 The figure which shows Cr distribution after baking of the cell for SOFC of Example 8.
  • the figure which shows Cr distribution after baking of the cell for SOFC of Example 11 The figure which shows Cr distribution after baking of the cell for SOFC of Example 12.
  • the SOFC cell C shown in FIGS. 1 and 2 has an air electrode made of an oxide ion and an electron conductive porous body on one side of an electrolyte membrane 30 made of a dense oxide oxide conductive solid oxide. 31 and a single cell 3 formed by joining a fuel electrode 32 made of an electron conductive porous body to the other surface side of the electrolyte membrane 30. Further, the SOFC cell C exchanges electrons with the single cell 3 with respect to the air electrode 31 or the fuel electrode 32, and at the same time, a pair of electronically conductive elements in which grooves 2 for supplying air and hydrogen are formed.
  • the groove 2 on the air electrode 31 side functions as an air flow path 2a for supplying air to the air electrode 31 by arranging the air electrode 31 and the interconnect 1 in close contact, while the fuel electrode
  • the groove 2 on the 32 side functions as a fuel flow path 2 b for supplying hydrogen to the fuel electrode 32 by arranging the fuel electrode 32 and the interconnect 1 in close contact with each other.
  • yttria-stabilized zirconia (YSZ) can be used, and yttria-stabilized zirconia (YSZ) can be used as the material of the electrolyte membrane 30.
  • the material of the interconnect 1 is a perovskite oxide such as LaCrO 3 based material which is excellent in electronic conductivity and heat resistance, or ferritic stainless steel. Alloys or oxides containing Cr are used, such as Fe—Cr alloys, Fe—Cr—Ni alloys that are austenitic stainless steels, and Ni—Cr alloys that are nickel-based alloys.
  • the interconnects 1 arranged at both ends in the stacking direction may be any one in which only one of the fuel flow path 2b or the air flow path 2a is formed, and the other interconnect arranged in the middle. 1 may use a fuel channel 2b formed on one surface and an air channel 2a formed on the other surface.
  • the interconnect 1 may be called a separator.
  • An SOFC having such a cell stack structure is generally called a flat-plate SOFC. In the present embodiment, a flat SOFC will be described as an example. However, the present invention is applicable to SOFCs having other structures.
  • the SOFC cell C has an operating temperature in a state in which they are stacked in order to reduce the contact resistance between the interconnect 1 and the air electrode 31 and the fuel electrode 32 as much as possible in the manufacturing process.
  • a baking treatment is performed in which baking is performed at a higher baking temperature of about 1000 ° C. to 1150 ° C.
  • the interconnect 1 made of an alloy containing Cr or the like and the air electrode 31 are joined as described above, the interconnect is exposed to a high temperature during firing or operation. There is a problem that Cr contained in 1 is oxidized and evaporated and scattered to the air electrode 31 side, and Cr poisoning of the air electrode 31 occurs.
  • such Cr poisoning includes Cr contained in the interconnect 1 and Cr 2 O 3, which is an oxide of Cr (III) generated by oxidation of the Cr, on the air electrode 31 side or the like.
  • CrO 3 or CrO 2 (OH) 2 which is an oxide of Cr (VI) in a gas phase, is generated, and the oxide of Cr (VI) is on the air electrode 31 side.
  • CrO 2 (OH) 2 is likely to be generated and Cr (VI) is likely to be scattered.
  • the SOFC cell C according to the present invention has characteristics for satisfactorily suppressing the occurrence of Cr poisoning of the air electrode 31 and suppressing Cr withering of an alloy or the like, the details of which will be described below. .
  • Such SOFC suppresses the formation of Cr (VI) oxide in Cr contained in the interconnect 1, so that Co (III) at the SOFC operating temperature (usually 750 ° C.) is formed on the surface of the interconnect 1.
  • a film containing a spinel oxide composed of a second single oxide having a low dissociated oxygen partial pressure is formed, and the interconnect 1 and the air electrode 31 are joined to each other at about 1000 ° C. to 1150 ° C. It is produced by performing a baking process for baking at a baking temperature.
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • the lower limit of the equilibrium dissociation oxygen partial pressure of the first single oxide which is one of the oxides constituting the spinel oxide used for film formation is 1.83 ⁇ 10 ⁇ 20 atm at 750 ° C. To do. This lower limit is a value corresponding to the equilibrium dissociated oxygen partial pressure at 750 ° C. of WO 3 which is one of single oxides conventionally used as a coating.
  • Patent Document 2 which is a conventional technique, the arrangement is performed with the equilibrium dissociated oxygen partial pressure, but this is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram). And this lower limit is an upper limit in the prior art.
  • the second single oxide which is the other oxide constituting the spinel oxide, has a condition that the equilibrium dissociated oxygen partial pressure at the operating temperature is lower than that of the first single oxide. Any one can be adopted as long as it is satisfied.
  • “Spinel-based oxide” is a composite oxide containing two kinds of metals, and is generally represented by the chemical formula AB 2 O 4 (A and B are metal elements).
  • the coating film containing the spinel oxide is formed on the surface of the alloy flat plate made of ferritic stainless steel to be the interconnect 1 by a wet film forming method or a dry film forming method.
  • the surface of the alloy flat plate was polished to # 600 with sandpaper. A dipping method was adopted as the wet film formation method.
  • zirconia balls were added to spinel oxide powder, alcohol (1-methoxy-2-propanol), and binder (hydroxypropylcellulose), and mixed using a paint shaker.
  • the alloy flat plate was dipped in a mixed solution containing spinel oxide powder, pulled up, and then dried in a thermostat adjusted to 50 ° C. And the alloy flat plate after drying was baked at 1000 degreeC for 2 hours using the electric furnace, and it cooled after that, and obtained the alloy sample.
  • Sputtering was employed as the dry film formation method. Examples of the type of sputtering include high frequency sputtering, reactive direct current magnetron sputtering, and the like. In the present specification, for convenience, referred to as "coating comprising spinel oxide (e.g., coatings containing NiCo 2 O 4)" to "spinel oxide film (e.g., NiCo 2 O 4 film)".
  • the voltage drop (electrical resistance) of the alloy sample on which the film was formed was measured. By measuring the voltage drop of the alloy sample, it can be determined whether the performance as the SOFC is ensured.
  • a firing process was performed for 2 hours at a firing temperature of 1000 to 1150 ° C. in an air atmosphere.
  • the alloy sample was continuously supplied with a direct current of 0.3 A / cm 2 at an operating temperature of 750 ° C. in an air atmosphere, and this state was maintained for 50 hours.
  • the voltage drop (mV) was measured about the alloy sample (alloy + film) after holding for 50 hours. Further, the Cr distribution in the cross section near the joint between the alloy sample and the air electrode was measured. By this Cr distribution measurement, it can be determined whether or not Cr poisoning of the air electrode has occurred.
  • an alloy sample was fired in an air atmosphere at a firing temperature of 1000 to 1150 ° C. for 2 hours.
  • the Cr distribution in the cross section in the vicinity of the junction between the sintered alloy sample and the air electrode was analyzed by an electron beam microanalyzer (EPMA).
  • EPMA electron beam microanalyzer
  • NiCo 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, a NiCo 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the NiCo 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of NiO, which is the second single oxide constituting the NiCo 2 O 4 film is 2.72 ⁇ 10 ⁇ 16 atm, and the equilibrium dissociation oxygen partial pressure of Co 2 O 3 Lower than.
  • this NiCo 2 O 4 coating is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the NiCo 2 O 4 coating Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the NiCo 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 1 A cell for SOFC manufactured by forming a NiCo 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the first embodiment (Example) Regarding 1), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below. Moreover, the experimental result which observed Cr distribution of the cross section of the junction part vicinity of an alloy and an air electrode about the cell for SOFC (comparative example 1) manufactured without forming a film on the surface of an alloy is shown below. This Comparative Example 1 is also a comparative example for Examples 2 to 16 described later.
  • the wet film forming method for forming the NiCo 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the NiCo 2 O 4 film is about 5 to 30 ⁇ m. .
  • FIG. 3 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 1
  • FIG. 4 shows the analysis result of Cr distribution after holding at the operating temperature of the SOFC cell of Comparative Example 1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawings, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • the Cr concentration in the region close to the alloy in the air electrode (the dark gray region in the air electrode in FIG. 4). It is about 10% to 14%, and it is about 2% to 10% even in a region slightly away from the alloy than that region, and the Cr poisoning at the air electrode is very advanced. It could be confirmed.
  • (Zn x Co 1-x ) Co 2 O 4 (0.45 ⁇ x ⁇ 1.00) is selected as the spinel oxide.
  • a (Zn x Co 1-x ) Co 2 O 4 film was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium dissociation oxygen partial pressure of ZnO is 5.94 ⁇ 10 ⁇ 26 atm, which is sufficiently smaller than the equilibrium dissociation oxygen partial pressure of 1.83 ⁇ 10 ⁇ 20 atm at 750 ° C. of WO 3 , and the Cr (III) It does not give any problem to the effect of suppressing the oxidation of the oxide to Cr (VI). Therefore, in the range of 0 ⁇ x ⁇ 1.00, since the spinel structure is the main phase at any composition ratio, it is considered that the same physical properties are exhibited and it can be advantageously used as a SOFC cell. However, 0.45 ⁇ x ⁇ 1.00 is preferable because the equilibrium dissociated oxygen partial pressure is particularly low and the effect of suppressing the oxidation of Cr is considered to be large.
  • the crystal structure of (Zn x Co 1-x ) Co 2 O 4 is in the temperature range (room temperature to 750 ° C.) mainly used in the operation of SOFC, Since the spinel single phase structure is maintained without becoming a mixed crystal with hexagonal crystals, it is considered to be more preferable.
  • Example 2-1 The SOFC cell manufactured by forming a ZnCo 2 O 4 film on the surface (both sides) of the alloy used for the interconnect or the like by a wet film formation method before performing the firing treatment as in the second embodiment (implementation)
  • Example 2-1 the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the dipping method is used as the wet film forming method for forming the ZnCo 2 O 4 film on the surface of the alloy, and the thickness of the ZnCo 2 O 4 film is about 5 to 30 ⁇ m. It was.
  • FIG. 5 shows the analysis results of Cr distribution after firing of the SOFC cell of Example 2-1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 2-2 When forming a film on the surface of the alloy or the like, if the sintering aid is added and baked, the film becomes denser. As a result, it is considered that the electric resistance of the coating is lowered and the performance as a solid oxide fuel cell can be improved. Therefore, in the second embodiment, when forming the ZnCo 2 O 4 film, the SOFC cell is fired by adding 2 wt% of a sintering aid composed of B 2 O 3 and ZnO to ZnCo 2 O 4 . For Example 2-2, the Cr distribution in the cross section near the joint between the alloy and the air electrode was observed. The experimental results are shown below.
  • Example 2-2 The method of forming a film in Example 2-2, the thickness of the formed film, and the like are the same as in Example 2-1 above.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 6 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 2-2.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 2-3 (Zn 0.45 Co 0.55 ) Co 2 O 4 film is formed on the surface (both sides) of the alloy used for the interconnect or the like by the wet film formation method before the firing treatment as in the second embodiment.
  • the experimental results of observing the Cr distribution in the cross section in the vicinity of the joint between the alloy and the air electrode for the SOFC cell manufactured as described above are shown below.
  • a dipping method is used as a wet film forming method for forming a (Zn 0.45 Co 0.55 ) Co 2 O 4 film on the surface of the alloy, and (Zn 0.45 Co 0.55 )
  • the thickness of the Co 2 O 4 coating was about 5-30 ⁇ m.
  • the voltage drop at 750 ° C. of the interconnect (alloy + (Zn 0.45 Co 0.55 ) Co 2 O 4 coating) was measured according to the above-described procedure for confirming the effect, and found to be 10.8 mV.
  • the conductivity of the (Zn 0.45 Co 0.55 ) Co 2 O 4 sintered body was 1.04 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 7 shows the analysis results of Cr distribution after firing of the SOFC cell of Example 2-3.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • FIG. 35 shows a phase diagram of a Zn—Co-based oxide.
  • ZnCo 2 O 4 is in a coexisting state of two phases of a spinel phase and a ZnO phase at 750 ° C. near the operating temperature, and phase separation occurs during temperature rise from room temperature.
  • (Zn x Co 1-x ) Co 2 O 4 is in the range of x ⁇ 0.60 containing (Zn 0.45 Co 0.55) Co 2 O4, spinel phase isolated in the region of room temperature ⁇ 750 ° C. The phase can be maintained. From the viewpoint of durability, it is desirable that the material constituting the fuel cell has high stability, and it is preferable that the spinel structure does not change easily.
  • ZnCo 2 O 4 has a high Cr scattering suppression effect even if phase separation occurs, and can be used without any problem in practice. However, when long-term use such as 10 years or more is considered, phase separation is more effective. It is considered that (Zn 0.45 Co 0.55 ) Co 2 O 4 , which is hard to occur, can be used more suitably from the viewpoint of the stability of the spinel structure.
  • the ease of oxidation of Cr (III) oxide to Cr (VI) is determined by the magnitude of the equilibrium dissociated oxygen partial pressure of the alloy coating material.
  • the equilibrium dissociated oxygen partial pressure at 750 ° C. is high (first single system)
  • the oxide is Co 2 O 3 and the equilibrium dissociation oxygen partial pressure is 3.44 ⁇ 10 ⁇ 13 atm (the equilibrium dissociation oxygen partial pressure of Co 3 O 4 is used instead).
  • the equilibrium dissociated oxygen partial pressure (second single oxide) is ZnO, and the equilibrium dissociated oxygen partial pressure is 5.94 ⁇ 10 ⁇ 26 atm.
  • the second single oxide is ZnCo 2 O 4 : ZnO (5.94 ⁇ 10 ⁇ 26 atm) 100% (Zn 0.45 Co 0.55 ) Co 2 O 4 : ZnO (5.94 ⁇ 10 ⁇ 26 atm) 45%, CoO (2.9 ⁇ 10 ⁇ 17 atm) 55% It is.
  • (Zn x Co 1-x ) Co 2 O 4 is required to have a large value of x from the viewpoint of equilibrium dissociated oxygen partial pressure, while from the viewpoint of stability of the spinel structure, The smaller the value of x, the better.
  • (Zn x Co 1-x ) Co 2 O 4 preferably satisfies 0.45 ⁇ x ⁇ 1.00.
  • FeMn 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, an FeMn 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Fe 2 O 3 that is the first single oxide constituting the FeMn 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is 1.31 ⁇ 10 ⁇ 19 atm.
  • the equilibrium dissociation oxygen partial pressure of Mn 2 O 3 which is the second single oxide constituting the FeMn 2 O 4 film, is 2.31 ⁇ 10 ⁇ 24 atm, and the equilibrium dissociation of Fe 2 O 3 . Lower than oxygen partial pressure.
  • this FeMn 2 O 4 coating is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side through the FeMn 2 O 4 coating Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the FeMn 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 3-1 An SOFC cell manufactured by forming a FeMn 2 O 4 film on the surface (one side) of an alloy used for an interconnect or the like by a dry film formation method before performing the firing treatment as in the third embodiment (Example) For 3-1), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the dry film forming method for forming the FeMn 2 O 4 film on the surface of the alloy employs sputtering, and the thickness of the FeMn 2 O 4 film is about 2 ⁇ m.
  • FIG. 8 shows the analysis results of Cr distribution after firing of the SOFC cell of Example 3-1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 3-2 An SOFC cell manufactured by forming a FeMn 2 O 4 film on a surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the third embodiment (Example) Regarding 3-2), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film formation method for forming the FeMn 2 O 4 coating on the surface of the alloy employs a dipping method, and the thickness of the FeMn 2 O 4 coating is about 5 to 30 ⁇ m. It was.
  • FIG. 9 shows the analysis results of Cr distribution after firing of the SOFC cell of Example 3-2.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • NiMn 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, a NiMn 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium dissociated oxygen content of NiO which is the first single oxide constituting the NiMn 2 O 4 coating.
  • the pressure is 2.72 ⁇ 10 ⁇ 16 atm.
  • the equilibrium dissociation oxygen partial pressure of Mn 2 O 3 which is the second single oxide constituting the NiMn 2 O 4 film, is 2.31 ⁇ 10 ⁇ 24 atm, and the equilibrium dissociation oxygen partial pressure of NiO. Lower than.
  • this NiMn 2 O 4 coating is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the NiMn 2 O 4 coating Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the NiMn 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 4 An SOFC cell manufactured by forming a NiMn 2 O 4 film on a surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the fourth embodiment (Example) Regarding 4), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the NiMn 2 O 4 coating on the surface of the alloy employs a dipping method, and the thickness of the NiMn 2 O 4 coating is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + NiMn 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 19.4 mV.
  • the electric conductivity of the NiMn 2 O 4 sintered body was 4.32 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 10 the analysis result of Cr distribution after baking of the cell for SOFC of Example 4 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • CoMn 2 O 4 is selected as the spinel oxide.
  • a CoMn 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium dissociated oxygen content of CoO which is the first single oxide constituting the CoMn 2 O 4 coating.
  • the pressure is 2.90 ⁇ 10 ⁇ 17 atm.
  • the equilibrium dissociation oxygen partial pressure of Mn 2 O 3 which is the second single oxide constituting the CoMn 2 O 4 film is 2.31 ⁇ 10 ⁇ 24 atm, and the equilibrium dissociation oxygen partial pressure of CoO. Lower than.
  • this CoMn 2 O 4 film has excellent heat resistance and a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the CoMn 2 O 4 film Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the CoMn 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 5 A cell for SOFC manufactured by forming a CoMn 2 O 4 film on a surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the fifth embodiment (Example) Regarding 5), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the CoMn 2 O 4 coating on the surface of the alloy employs a dipping method, and the thickness of the CoMn 2 O 4 coating is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + CoMn 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 17.9 mV.
  • the electrical conductivity of the CoMn 2 O 4 sintered body was 0.81 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 11 the analysis result of Cr distribution after baking of the cell for SOFC of Example 5 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • MnFe 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, a MnFe 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Fe 2 O 3 that is the first single oxide constituting the MnFe 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is 1.31 ⁇ 10 ⁇ 19 atm.
  • the equilibrium dissociation oxygen partial pressure of MnO, which is the second single oxide constituting the MnFe 2 O 4 film is 2.38 ⁇ 10 ⁇ 32 atm, and the equilibrium dissociation oxygen partial pressure of Fe 2 O 3. Lower than.
  • this MnFe 2 O 4 coating is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the MnFe 2 O 4 coating Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the MnFe 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 6-1 An SOFC cell manufactured by forming a MnFe 2 O 4 film on the surface (one side) of an alloy used for interconnects or the like by a dry film formation method before performing the firing treatment as in the sixth embodiment (Example) Regarding 6-1), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the dry film forming method for forming the MnFe 2 O 4 film on the surface of the alloy employs sputtering, and the thickness of the MnFe 2 O 4 film is about 2 ⁇ m.
  • FIG. 12 shows the analysis result of the Cr distribution after firing of the SOFC cell of Example 6-1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 6-2 A cell for SOFC manufactured by forming a MnFe 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the sixth embodiment (Example) Regarding 6-2), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film formation method for forming the MnFe 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the MnFe 2 O 4 film is about 5 to 30 ⁇ m. It was.
  • FIG. 13 shows the analysis results of Cr distribution after firing of the SOFC cell of Example 6-2.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • MnNi 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, a MnNi 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium dissociated oxygen content of NiO which is the first single-system oxide constituting the MnNi 2 O 4 film.
  • the pressure is 2.72 ⁇ 10 ⁇ 16 atm.
  • the equilibrium dissociation oxygen partial pressure of MnO 2 which is the second single oxide constituting the MnNi 2 O 4 film is 9.04 ⁇ 10 ⁇ 18 atm, which is higher than the equilibrium dissociation oxygen partial pressure of NiO. Low.
  • this MnNi 2 O 4 film has excellent heat resistance and a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side through the MnNi 2 O 4 film Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the MnNi 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 7-1 An SOFC cell manufactured by forming a MnNi 2 O 4 film on the surface (one side) of an alloy used for interconnects or the like by a dry film-forming method before firing treatment as in the seventh embodiment (Example) Regarding 7-1), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the dry film forming method for forming the MnNi 2 O 4 coating on the surface of the alloy employed sputtering was about 2 ⁇ m.
  • FIG. 14 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 7-1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 7-2 An SOFC cell manufactured by forming a MnNi 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the seventh embodiment (Example) Regarding 7-2), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the MnNi 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the MnNi 2 O 4 film is about 5 to 30 ⁇ m. It was.
  • FIG. 15 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 7-2.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • MnCo 2 O 4 is selected as the spinel oxide. Prior to performing the firing treatment, an MnCo 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the MnCo 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of MnO, which is the second single oxide constituting the MnCo 2 O 4 film is 2.38 ⁇ 10 ⁇ 32 atm, and the equilibrium dissociation oxygen partial pressure of Co 2 O 3 is 2. Lower than.
  • this MnCo 2 O 4 film is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the MnCo 2 O 4 film Furthermore, the movement of the oxide of Cr (VI) to the air electrode 31 side through the MnCo 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 8 An SOFC cell manufactured by forming a MnCo 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film-forming method before performing the firing treatment as in the eighth embodiment (Example) Regarding 8), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the dipping method was used as the wet film forming method for forming the MnCo 2 O 4 film on the surface of the alloy, and the thickness of the MnCo 2 O 4 film was about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + MnCo 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 15.6 mV.
  • the electrical conductivity of the MnCo 2 O 4 sintered body was 10.1 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 16 the analysis result of Cr distribution after baking of the cell for SOFC of Example 8 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Mn (Mn 0.25 Co 0.75 ) 2 O 4 is selected as the spinel oxide.
  • a Mn (Mn 0.25 Co 0.75 ) 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1 a (see FIG. 2) with respect to the air electrode 31.
  • the Mn (Mn 0.25 Co 0.75 ) 2 O 4 coating is excellent in heat resistance and has a dense structure, so its Mn (Mn 0.25 Co 0.75 ) 2 O
  • the supply of oxygen or water vapor as an oxidant to the interconnect 1 side through the 4 coating is blocked, and further, the air electrode 31 side through the same Mn (Mn 0.25 Co 0.75 ) 2 O 4 coating Migration of Cr (VI) oxide into As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 9 As in the ninth embodiment, a Mn (Mn 0.25 Co 0.75 ) 2 O 4 film is formed on the surface (both sides) of an alloy used for an interconnect or the like by a wet film forming method before performing the firing treatment.
  • the experimental results of observing the Cr distribution in the cross section in the vicinity of the joint between the alloy and the air electrode for the SOFC cell (Example 9) manufactured as described above are shown below.
  • the dipping method was used as the wet film forming method for forming the Mn (Mn 0.25 Co 0.75 ) 2 O 4 film on the surface of the alloy, and Mn (Mn 0 .25 Co 0.75 ) 2 O 4 coating thickness was about 5-30 ⁇ m.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 1 As a result of such an experiment, in the SOFC cell in which the Mn (Mn 0.25 Co 0.75 ) 2 O 4 film of Example 9 was formed on the surface of the alloy, as shown in FIG. In Example 1, the Cr concentration was about 0%, and Cr poisoning at the air electrode was hardly observed.
  • (Mn 0.5 Co 0.5 ) Co 2 O 4 is selected as the spinel oxide.
  • a (Mn 0.5 Co 0.5 ) Co 2 O 4 film was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • Example 10 (Mn 0.5 Co 0.5 ) Co 2 O 4 coating is formed on the surface (both sides) of the alloy used for the interconnect or the like by the wet film formation method before the firing treatment as in the tenth embodiment.
  • the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode for the SOFC cell (Example 10) manufactured as described above are shown below.
  • the dipping method is used as the wet film forming method for forming the (Mn 0.5 Co 0.5 ) Co 2 O 4 film on the surface of the alloy, and (Mn 0.
  • the thickness of the 5 Co 0.5 ) Co 2 O 4 coating was about 5-30 ⁇ m.
  • the voltage drop at 750 ° C. of the interconnect (alloy + (Mn 0.5 Co 0.5 ) Co 2 O 4 coating) was measured according to the above-described procedure for confirming the effect, and found to be 24.3 mV.
  • the electrical conductivity of the (Mn 0.5 Co 0.5 ) Co 2 O 4 sintered body was 35.6 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA. In FIG. 18, the analysis result of Cr distribution after baking of the cell for SOFC of Example 10 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, a light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 1 As a result of such an experiment, in the SOFC cell in which the (Mn 0.5 Co 0.5 ) Co 2 O 4 film of Example 10 was formed on the surface of the alloy, as shown in FIG. In Example 1, the Cr concentration was about 0%, and Cr poisoning at the air electrode was hardly observed.
  • TiCo 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, a TiCo 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium dissociated oxygen content of CoO which is the first single oxide constituting the TiCo 2 O 4 film.
  • the pressure is 2.90 ⁇ 10 ⁇ 17 atm.
  • the equilibrium dissociation oxygen partial pressure of TiO 2 which is the second single oxide constituting the TiCo 2 O 4 film, is 1.86 ⁇ 10 ⁇ 39 atm, which is higher than the equilibrium dissociation oxygen partial pressure of CoO. Low.
  • this TiCo 2 O 4 film is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the TiCo 2 O 4 film Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the TiCo 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 11 An SOFC cell manufactured by forming a TiCo 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the eleventh embodiment (Example) Regarding 11), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the TiCo 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the TiCo 2 O 4 film is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + TiCo 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 63.8 mV.
  • the electrical conductivity of the TiCo 2 O 4 sintered body was 0.17 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 19 the analysis result of Cr distribution after baking of the cell for SOFC of Example 11 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • ZnFe 2 O 4 is selected as the spinel oxide.
  • a ZnFe 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Fe 2 O 3 that is the first single oxide constituting the ZnFe 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 1.31 ⁇ 10 ⁇ 19 atm.
  • the equilibrium dissociation oxygen partial pressure of ZnO, which is the second single oxide constituting the ZnFe 2 O 4 film is 5.94 ⁇ 10 ⁇ 26 atm, and the equilibrium dissociation oxygen partial pressure of Fe 2 O 3. Lower than.
  • this ZnFe 2 O 4 film is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the ZnFe 2 O 4 film Furthermore, the movement of the oxide of Cr (VI) to the air electrode 31 side through the ZnFe 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 12 An SOFC cell manufactured by forming a ZnFe 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the twelfth embodiment (Example) Regarding 12), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the ZnFe 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the ZnFe 2 O 4 film is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + ZnFe 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 34.2 mV.
  • the electrical conductivity of the ZnFe 2 O 4 sintered body was 0.21 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 20 the analysis result of Cr distribution after baking of the cell for SOFC of Example 12 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • FeCo 2 O 4 is selected as the spinel oxide. Before performing the firing treatment, an FeCo 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the FeCo 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of FeO, which is the second single oxide constituting the FeCo 2 O 4 film is 6.20 ⁇ 10 ⁇ 21 atm, and the equilibrium dissociation oxygen partial pressure of Co 2 O 3 is. Lower than.
  • this FeCo 2 O 4 coating is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the FeCo 2 O 4 coating Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the FeCo 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 13 An SOFC cell manufactured by forming a FeCo 2 O 4 coating on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the thirteenth embodiment (Example) Regarding 13), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film forming method for forming the FeCo 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the FeCo 2 O 4 film is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + FeCo 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 13.8 mV.
  • the electrical conductivity of the FeCo 2 O 4 sintered body was 2.36 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 21 the analysis result of Cr distribution after baking of the cell for SOFC of Example 13 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • CoFe 2 O 4 is selected as the spinel oxide.
  • a CoFe 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the CoFe 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of FeO, which is the second single oxide constituting the CoFe 2 O 4 film is 6.20 ⁇ 10 ⁇ 21 atm, and the equilibrium dissociation oxygen partial pressure of Co 2 O 3 is. Lower than.
  • this CoFe 2 O 4 film is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the CoFe 2 O 4 film Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the CoFe 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 14 An SOFC cell manufactured by forming a CoFe 2 O 4 film on the surface (both sides) of an alloy used for an interconnect or the like by a wet film formation method before performing the firing treatment as in the fourteenth embodiment (Example) Regarding 14), the experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode are shown below.
  • the wet film formation method for forming the CoFe 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the CoFe 2 O 4 film is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + CoFe 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 25.2 mV.
  • the electric conductivity of the CoFe 2 O 4 sintered body was 0.21 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 22 the analysis result of Cr distribution after baking of the cell for SOFC of Example 14 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • MgCo 2 O 4 is selected as the spinel oxide. Prior to the firing treatment, an MgCo 2 O 4 coating was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the MgCo 2 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of MgO, which is the second single oxide constituting the MgCo 2 O 4 film is 7.96 ⁇ 10 ⁇ 51 atm, and the equilibrium dissociation oxygen partial pressure of Co 2 O 3 is. Lower than.
  • this MgCo 2 O 4 film is excellent in heat resistance and has a dense structure, supply of oxygen or water vapor as an oxidant to the interconnect 1 side via the MgCo 2 O 4 film Further, the movement of the oxide of Cr (VI) to the air electrode 31 side through the MgCo 2 O 4 coating is blocked. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 15 The SOFC cell manufactured by forming the MgCo 2 O 4 film on the surface (both sides) of the alloy used for the interconnect or the like by the wet film forming method before performing the firing treatment as in the fifteenth embodiment.
  • the experimental results of observing the Cr distribution in the cross section in the vicinity of the junction between the air electrode and the air electrode are shown below.
  • the wet film formation method for forming the MgCo 2 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the MgCo 2 O 4 film is about 5 to 30 ⁇ m. .
  • the voltage drop at 750 ° C. of the interconnect (alloy + MgCo 2 O 4 coating) was measured according to the procedure of the effect confirmation test described above, it was 18.5 mV.
  • the electrical conductivity of the MgCo 2 O 4 sintered body was 0.46 S / cm in the air at 750 ° C.
  • the Cr distribution in the cross section near the joint between the alloy and the air electrode was analyzed by EPMA.
  • FIG. 23 the analysis result of Cr distribution after baking of the cell for SOFC of Example 15 is shown.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Co 3 O 4 is selected as the spinel oxide.
  • a Co 3 O 4 film was formed on the surface of the interconnect 1 including at least the boundary surface 1a (see FIG. 2) with respect to the air electrode 31.
  • the equilibrium of Co 2 O 3 that is the first single oxide constituting the Co 3 O 4 film is obtained.
  • the dissociated oxygen partial pressure is estimated to be 3.44 ⁇ 10 ⁇ 13 atm when the equilibrium dissociated oxygen partial pressure of Co 3 O 4 is substituted.
  • the equilibrium dissociation oxygen partial pressure of MgO, which is the second single oxide constituting the Co 3 O 4 film is 7.96 ⁇ 10 ⁇ 51 atm, and the equilibrium dissociation oxygen partial pressure of Co 3 O 4 Lower than.
  • the Co3O4 film since a dense structure on which has excellent heat resistance, the Co 3 O 4 supply of oxygen or water vapor as the oxidizing agent to the interconnect 1 side through the film is blocked Furthermore, the movement of the oxide of Cr (VI) to the air electrode 31 side through the Co 3 O 4 coating is prevented. As a result, even when the interconnect 1 is exposed to a high temperature during firing or operation during manufacturing, Cr poisoning of the air electrode 31 is satisfactorily suppressed.
  • Example 16-1 The SOFC cell manufactured by forming a Co 3 O 4 film on the surface (both sides) of the alloy used for the interconnect or the like by the wet film-forming method before performing the firing treatment as in the sixteenth embodiment.
  • the experimental results of observing the Cr distribution in the cross section in the vicinity of the junction between the air electrode and the air electrode are shown below.
  • the wet film formation method for forming the Co 3 O 4 film on the surface of the alloy employs a dipping method, and the thickness of the Co 3 O 4 film is about 5 to 30 ⁇ m. It was.
  • FIG. 24 shows the analysis result of the Cr distribution after firing of the SOFC cell of Example 16-1.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 16-2 After forming metal Co by electroless plating on the surface (both sides) of an alloy used for an interconnect or the like before performing the firing treatment as in the sixteenth embodiment, oxidation treatment is performed in the atmosphere at 800 ° C. for 1 hour. went.
  • FIG. 36 shows the result of phase identification by X-ray diffraction of the electroless plating layer on the surface before and after the oxidation treatment. From the figure, it can be seen that the oxidized surface layer was changed from Co in the metallic state to Co 3 O 4 .
  • the experimental results of observing the Cr distribution in the cross section in the vicinity of the joint between the alloy and the air electrode for the SOFC cell produced by forming a Co 3 O 4 film by such treatment are shown below.
  • the film formation method for forming the Co 3 O 4 film on the surface of the alloy employs a treatment that oxidizes in the atmosphere after electroless plating, and Co 3 O 4
  • the thickness of the coating was about 3 to 20 ⁇ m.
  • FIG. 25 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 16-2.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 16-3 Before the firing treatment as in the sixteenth embodiment, metal Co is formed by electroplating on the surface (both sides) of the alloy used for the interconnect and the like, and then the oxidation treatment is performed in the atmosphere at 800 ° C. for 1 hour. It was. The experimental results of observing the Cr distribution in the cross section near the joint between the alloy and the air electrode for the SOFC cell produced by forming a Co 3 O 4 film by such treatment are shown below.
  • the film formation method for forming the Co 3 O 4 film on the surface of the alloy employs a treatment that oxidizes in the air after electroplating, and the Co 3 O 4 film
  • the thickness was about 3 to 20 ⁇ m.
  • FIG. 26 shows the analysis result of Cr distribution after firing of the SOFC cell of Example 16-3.
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 17 In the SOFC cell, a ZnCo 2 O 4 film was formed on the surface (both sides) of the alloy by dipping. Next, the SOFC cell on which the ZnCo 2 O 4 film was formed was held for 135 hours in an atmosphere of 950 ° C. humidified to a humidity of 10 to 20% after the air electrode was baked. And about this cell for SOFC after 135 hours hold
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • the Cr concentration was kept low in the majority of the air electrode, Cr poisoning at the air electrode was at a level causing no practical problems.
  • the ZnCo 2 O 4 film of Example 17 has practically sufficient durability.
  • Example 18 In the SOFC cell, a CoMn 2 O 4 coating was formed on the surface (one side) of the alloy by sputtering. Next, the SOFC cell on which the CoMn 2 O 4 film was formed was held for 300 hours in an atmosphere of 900 ° C. humidified to a humidity of 10 to 20% after baking the air electrode. And about this SOFC cell after 300-hour holding
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 19 In the SOFC cell was formed (Zn 0.45 Co 0.55) Co 2 O 4 coating by dipping the surface (both sides) of the alloy. Next, the SOFC cell on which this (Zn 0.45 Co 0.55 ) Co 2 O 4 film was formed was baked in an air electrode and then humidified so that the humidity became 10 to 20%. For 135 hours. And about this cell for SOFC after 135 hours hold
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 19 (Zn 0.45 Co 0.55) Co 2 O 4 coating has a practically sufficient durability.
  • Example 20 In the SOFC cell, a Mn (Mn 0.25 Co 0.75 ) 2 O 4 coating was formed on the surface (one side) of the alloy by dipping. Next, the SOFC cell on which this Mn (Mn 0.25 Co 0.75 ) 2 O 4 film was formed was baked in an air electrode and then humidified so that the humidity would be 10 to 20%. For 135 hours. And about this cell for SOFC after 135 hours hold
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 20 As a result of such an experiment, in the SOFC cell in which the Mn (Mn 0.25 Co 0.75 ) 2 O 4 film of Example 20 was formed on the surface of the alloy, as shown in FIG. 30, most of the air electrode In Example 1, the Cr concentration was kept low, and the Cr poisoning at the air electrode was at a level causing no problem in practice. Thus, the Mn (Mn 0.25 Co 0.75 ) 2 O 4 coating of Example 20 has practically sufficient durability.
  • Example 21 In the SOFC cell, a Co 3 O 4 film was formed on the surface (one side) of the alloy by dipping. Next, the SOFC cell on which the Co 3 O 4 film was formed was held for 135 hours in an atmosphere of 950 ° C. humidified so that the humidity became 10 to 20% after the air electrode was baked. And about this cell for SOFC after 135 hours hold
  • the Cr concentration in the alloy is about 22%
  • the Cr concentration in the lightest color region in the air electrode is approximately 0% (in the drawing, the light gray region in the air electrode).
  • the lateral width of the photographic diagram corresponds to about 130 ⁇ m.
  • Example 1 The results of Examples 1 to 16 and Comparative Example 1 are summarized in the table of FIG.
  • the relationship between the temperature of the spinel oxide used in Examples 1 to 16 and the chemical potential of oxygen for forming the metal oxide is shown in the Ellingham diagram of FIG.
  • the horizontal axis represents temperature
  • the vertical axis represents the Gibbs energy of reaction per mole of oxygen.
  • the chemical potential of each spinel oxide plotted in FIG. 37 does not represent the value of the spinel oxide itself, but the first single oxide constituting the spinel oxide.
  • the value of the first single oxide having the higher equilibrium dissociated oxygen partial pressure among the second single oxides are summarized in the table of FIG.
  • the relationship between the temperature of the spinel oxide used in Examples 1 to 16 and the chemical potential of oxygen for forming the metal oxide is shown in the Ellingham diagram of FIG.
  • the horizontal axis represents temperature
  • the vertical axis represents the Gibbs energy of reaction per mole of oxygen.
  • the relationship between the temperature and the equilibrium dissociated oxygen partial pressure (PO 2 ) in the spinel oxide used in Examples 1 to 16 is shown in FIG.
  • the horizontal axis represents temperature
  • the vertical axis represents equilibrium dissociated oxygen partial pressure (PO 2 ).
  • the equilibrium dissociated oxygen partial pressure (PO 2 ) of each spinel oxide plotted in FIG. 38 does not represent the value of the spinel oxide itself, but the first constituting the spinel oxide.
  • the value of the 1st single system oxide which has the higher equilibrium dissociation oxygen partial pressure among 1 single system oxide and the 2nd single system oxide is expressed.
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • an oxide made of a simple substance such as metal and oxygen that is, a value calculated from an Ellingham diagram.
  • the metal oxides of the single oxides Al 2 O 3 , Ag 2 O, and WO 3 ) that are not the spinel oxides described in the above embodiment are used.
  • the data on the chemical potential of the oxygen produced and the equilibrium dissociated oxygen partial pressure are also shown.
  • Comparative Example 2 the Cr distribution after firing of an SOFC cell in which (La, Sr) CoO 3 , which is a lanthanum cobaltite-based material for an air electrode, is formed on the surface of an alloy or the like as a conventional coating is shown in FIG. Show. Furthermore, as Comparative Example 3, Ag 2 O, which is one of the other single oxides, is formed on the surface of an alloy or the like by sputtering to a thickness of 0.8 ⁇ m and joined to the air electrode material.
  • FIG. 33 shows the result of EPMA analysis of the Cr distribution in the cross section in the vicinity of the bonded portion between the alloy and the air electrode with respect to what was held at 800 ° C. for 200 hours after being fired.
  • the first single unit having an equilibrium dissociated oxygen partial pressure at 750 ° C. in the range of 1.83 ⁇ 10 ⁇ 20 to 3.44 ⁇ 10 ⁇ 13 atm employed in the SOFC cell of the present invention is obtained.
  • a film comprising a spinel oxide composed of a system oxide and a second single system oxide having a lower equilibrium dissociated oxygen partial pressure at 750 ° C. than that of the first single system oxide ” it was found that Cr poisoning in the air electrode 31 is at a level where there is no problem in practical use, and furthermore, oxidation deterioration due to Cr withering of an alloy or the like constituting the interconnect 1 can be suppressed.
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • the voltage drop at 750 ° C. was not drastically reduced as compared with an alloy or the like that did not form a film as a comparative example, and it was also confirmed that there was no problem in performance as SOFC.
  • adopted in the cell for SOFC of this invention is each used individually in the above-mentioned embodiment, even if it uses it with the form of the mixture which mixed 2 or more types of spinel type oxides.
  • the equilibrium dissociated oxygen partial pressure at 750 ° C. is in the range of 1.83 ⁇ 10 ⁇ 20 to 3.44 ⁇ 10 ⁇ 13 atm.
  • the lower limit (1.83 ⁇ 10 ⁇ 20 atm) of the range of the equilibrium dissociated oxygen partial pressure is the equilibrium dissociated oxygen partial pressure at 750 ° C. of WO 3 shown as one of single oxides.
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • Cr poisoning in the air electrode 31 was observed as shown in FIG. It was confirmed that the progress of oxidative degradation due to Cr withering of the alloy constituting the connect 1 could not be suppressed.
  • single-system oxidation having an equilibrium dissociated oxygen partial pressure outside the range specified by the present invention (the equilibrium dissociated oxygen partial pressure at 750 ° C. is 1.83 ⁇ 10 ⁇ 20 to 3.44 ⁇ 10 ⁇ 13 atm).
  • the equilibrium dissociated oxygen partial pressure is a value when a single oxide is reduced to a metal.
  • the equilibrium dissociated oxygen partial pressure is a value obtained from the standard free energy of formation of an oxide made of a simple substance such as metal and oxygen (that is, a value calculated from an Ellingham diagram).
  • (La, Sr) CoO 3 which is a conventional coating material is not sufficient to prevent the scattering of Cr from the alloy or the like.
  • the SOFC cell according to the present invention is a SOFC cell formed by joining an alloy containing Cr and an air electrode, and suppresses the occurrence of Cr poisoning of the air electrode, and is due to Cr withering of the alloy etc. It can be effectively used as an SOFC cell capable of suppressing the progress of oxidative degradation.
  • Interconnect alloy or oxide
  • Interface 2a Air channel 2: Groove 2b: Fuel channel 3: Single cell 30: Electrolyte membrane 31: Air electrode 32: Fuel electrode C: Cell for SOFC (cell for solid oxide fuel cell)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】Crを含有する合金等と空気極とを接合してなるSOFC用セルにおいて、空気極のCr被毒の発生を良好に抑制するとともに、合金等のCr枯れによる酸化劣化の進行を抑制し得るSOFC用セルを提供する。 【解決手段】Crを含有する合金又は酸化物1と空気極31を接合してなる固体酸化物形燃料電池用セルであって、前記合金又は酸化物1の表面に、750°Cでの平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内にある第1の単一系酸化物と、当該第1の単一系酸化物よりも750°Cでの平衡解離酸素分圧が低い第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜を形成してなる。

Description

固体酸化物形燃料電池用セル
 本発明は、Cr(クロム)を含有する合金又は酸化物(以下、「合金等」と呼ぶ場合がある。)と空気極とを接合してなる固体酸化物形燃料電池(以下、適宜「SOFC」と記載する。)用セルに関する。
 かかるSOFC用セルは、電解質膜の一方面側に空気極を接合すると共に、同電解質膜の他方面側に燃料極を接合してなる単セルを、空気極又は燃料極に対して電子の授受を行う一対の電子電導性の合金等により挟み込んだ構造を有する。
 そして、このようなSOFC用セルでは、例えば700~900℃程度の作動温度で作動し、空気極側から燃料極側への電解質膜を介した酸化物イオンの移動に伴って、一対の電極の間に起電力が発生し、その起電力を外部に取り出し利用することができる。
 このようなSOFC用セルで利用される合金は、電子電導性及び耐熱性に優れたCrを含有する材料で製作される。また、このような合金の耐熱性は、この合金の表面に形成されるクロミア(Cr)の緻密な被膜に由来する。
 また、SOFC用セルは、その製造工程において、合金等と空気極及び燃料極との間の接触抵抗をできるだけ小さくするなどの目的で、それらを積層した状態で、作動温度よりも高い1000℃~1250℃程度の焼成温度で焼成する焼成処理を行う場合がある(例えば、特許文献1を参照。)。
 一方、SOFC用セルで利用される合金の表面に、単一系酸化物に不純物をドープしてなるn型半導体被膜を形成し、このような被膜形成処理を行うことによって、合金中に含まれるCrが飛散し易い6価の酸化物へと酸化されることを抑制しようとする技術もあった(例えば、特許文献2を参照。)。
特開2004-259643号公報 国際公開WO2007/083627号パンフレット
 上述したようにCrを含有する合金等と空気極とを接合してなるSOFC用セルでは、作動時等において合金等が高温にさらされることで、その合金等に含まれるCrが空気極側に飛散して、空気極のCr被毒が発生するという問題がある。
 このような空気極のCr被毒は、空気極における酸化物イオンの生成のための酸素の還元反応を阻害し、空気極の電気抵抗を増加させ、更には合金等のCr濃度を減少させることにより合金等自体の耐熱性の低下などの問題を引き起こし、結果、SOFCの性能低下を招く場合がある。
 更に、SOFCの製造時においても、特許文献1のように、合金等と空気極とを接合した状態で焼成する焼成処理を行う場合には、作動温度よりも高い焼成温度にさらされることにより、Cr(VI)の酸化物が生成され、蒸発して空気極と反応して、Cr化合物が生成され、空気極のCr被毒が発生する場合がある。また、この焼成処理において、真空又は不活性ガス雰囲気等で酸素分圧をできるだけ小さくすることで、合金の表面のクロミア(Cr)のCr(VI)への酸化又は合金等の表面のCr(III)の酸化物のCr(VI)への酸化を抑制し、製造時における上記Cr被毒の発生を抑制した場合でも、後の作動時において、空気極に供給される空気が存在する酸化雰囲気で高温にさらされることにより、Cr(VI)への酸化が進行して、上記Cr被毒が発生する場合がある。
 一方、Cr(III)の酸化物のCr(VI)への酸化を抑制するべく、合金等の表面に単一系酸化物被膜を形成することも考えられている。ところが、酸化力の小さい(平衡解離酸素分圧の小さい)単一系酸化物は、電気抵抗が高いため、実際には特許文献2のように半導体化(すなわち、不純物のドーピング)等を行って導電率を向上させる必要がある。この場合、SOFC用セルの製造工程が増大し、コストアップの原因となり得る。一方、酸化力の大きい(平衡解離酸素分圧の大きい)単一系酸化物は、電気抵抗が低いものが多いが、Cr(III)の酸化物のCr(VI)への酸化を抑制することができない。従って、別の解決策が望まれている。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、Crを含有する合金等と空気極とを接合してなるSOFC用セルにおいて、空気極のCr被毒の発生を良好に抑制するとともに、合金等のCr枯れによる酸化劣化の進行を抑制し得るSOFC用セルを提供する点にある。
 本発明に係る固体酸化物形燃料電池用セルの特徴構成は、Crを含有する合金又は酸化物と空気極とを接合してなる固体酸化物形燃料電池用セルであって、前記合金又は酸化物の表面に、750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内にある第1の単一系酸化物と、当該第1の単一系酸化物よりも750℃での平衡解離酸素分圧が低い第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜を形成してなることにある。
 上述したように、固体酸化物形燃料電池用セルにあっては、合金又は酸化物(合金等)側からのCrの飛散による空気極のCr被毒を防止することが求められている。また、合金等に含まれるCrの減少(Cr枯れ)に起因する合金等の酸化劣化の進行を防止する必要もある。
 この点、本構成の固体酸化物形燃料電池用セルによれば、750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内にある第1の単一系酸化物と、当該第1の単一系酸化物よりも750℃での平衡解離酸素分圧が低い第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜を合金等側の表面に形成している。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。ここで、第1の単一系酸化物は、それ単独では合金等の表面におけるCr(III)の酸化物のCr(VI)への酸化を抑制することは困難である。しかし、この第1の単一系酸化物を第2の単一系酸化物と組み合わせてスピネル系酸化物を構成することで、単一系酸化物として存在するよりも安定化する。スピネル系酸化物は、構成する元素の価数変化が起こり難いので(言い換えると、酸化力が小さい)、結果としてCr(III)の酸化物のCr(VI)への酸化を抑制することがきる。また、スピネル系酸化物は、結晶構造上、カチオン(Crの酸化物も含む)の拡散が遅いという特性を有する。
 平衡解離酸素分圧の下限値(1.83×10-20atm)は、従来被膜として用いられていた単一系酸化物の一つであるWOの750℃における平衡解離酸素分圧であり、これが従来技術にあっては上限値となる。また、平衡解離酸素分圧の上限値(3.44×10-13atm)は、本発明のスピネル系酸化物を含む被膜を用いた場合の上限値となる。
 このように、単一系酸化物をスピネル系酸化物化して安定化すると、合金等側から空気極側或いは空気極と電解質との界面への気相のCr(VI)の酸化物(又はオキシ水酸化物)の拡散を抑制して、空気極のCr被毒の発生を良好に抑制することができる。また、合金等側からのCrの飛散が抑制されるので、Cr枯れに起因する合金等の酸化劣化の進行を抑制することができる。
 本発明に係る固体酸化物形燃料電池用セルにおいて、前記第1の単一系酸化物は、Fe、FeO、NiO、CoO、Ni、Mn及びCoからなる群から選択されることが好ましい。
 本構成の固体酸化物形燃料電池用セルによれば、スピネル系酸化物を構成する750℃での平衡解離酸素分圧が高い方の酸化物である第1の単一系酸化物として、上記の好適な酸化物が採用されるため、合金等側から空気極側或いは空気極と電解質との界面への気相のCr(VI)の酸化物(又はオキシ水酸化物)の拡散を抑制して、空気極のCr被毒の発生を良好に抑制することができる。また、合金等側からのCrの飛散が抑制されるので、Cr枯れに起因する合金等の酸化劣化の進行を抑制することができる。
 本発明に係る固体酸化物形燃料電池用セルにおいて、前記スピネル系酸化物は、NiCo、(ZnCo1-x)Co(0.45≦x≦1.00)、FeMn、NiMn、CoMn、MnFe、MnNi、MnCo、Mn(Mn0.25Co0.75、(Mn0.5Co0.5)Co、TiCo、ZnFe、FeCo、CoFe、MgCo、Co及びこれらの2種以上の混合物からなる群から選択されることが好ましい。
 本構成の固体酸化物形燃料電池用セルによれば、スピネル系酸化物として、上記の好適な酸化物が採用されるため、合金等側から空気極側或いは空気極と電解質との界面への気相のCr(VI)の酸化物(又はオキシ水酸化物)の拡散を抑制して、空気極のCr被毒の発生を良好に抑制することができる。また、合金等側からのCrの飛散が抑制されるので、Cr枯れに起因する合金等の酸化劣化の進行を抑制することができる。
 また、上に列挙した好適なスピネル系酸化物は、その熱膨張率が、主に基材として使用されるフェライト系ステンレス鋼(熱膨張率:11×10-6-1)や、接合して使用される空気極材料である(La,Sr)(Co,Fe)O(熱膨張率:15~21×10-6-1)、(La,Sr)MnO(熱膨張率:11×10-6-1)に比較的近いものである。例えば、ZnCoの熱膨張率は9.3×10-6-1であり、(Zn0.45Co0.55)Coの熱膨張率は10.7×10-6-1であり、MnCoの熱膨張率は11.8×10-6-1である。従って、本構成のスピネル系酸化物を含む被膜は、合金等や空気極が熱膨張しても合金等から容易に剥がれ落ちることがなく、耐久性に優れた被膜であるといえる。
 尚、上記固体酸化物のうちZn-Co系のものは、焼結による製膜を行う際に、他の材料に比べて比較的低温で、緻密な酸素バリア性の高い膜を得られるので、工業的に好ましい。また、Zn-Co系のものは、比較的低温(例えば650℃)における抵抗増大が小さく、SOFCの運転条件を低温にシフトさせても高い性能を維持しやすいという利点がある。
 本発明に係る固体酸化物形燃料電池用セルにおいて、前記被膜は、0.1~100μmの厚みを有することが好ましい。
 本構成の固体酸化物形燃料電池用セルによれば、合金等側の表面に形成する被膜の厚みを、0.1~100μmとすることにより、合金等側から空気極側或いは空気極と電解質との界面への気相のCr(VI)の酸化物(又はオキシ水酸化物)の拡散を確実に抑制することができる。その結果、空気極のCr被毒の発生を確実に抑制することができる。また、合金等側からのCrの飛散が抑制されるので、Cr枯れに起因する合金等の酸化劣化の進行を抑制することができる。
 本発明に係る固体酸化物形燃料電池用セルにおいて、前記被膜は、焼結助剤を添加して焼成されたものであることが好ましい。
 本構成の固体酸化物形燃料電池用セルによれば、合金等側の表面に被膜を形成する際に、焼結助剤を添加して焼成することで、被膜がより緻密化する。その結果、被膜の電気抵抗が低下するとともに、被膜の酸素バリアとしての性能が向上する。従って、固体酸化物形燃料電池としての性能を高めることができ、さらに、Cr(III)の酸化物のCr(VI)への酸化を抑制する効果や、合金等のCr含有量の低下(Cr枯れ)を抑制する効果を向上させることができる。その結果、合金等自体の耐熱性の低下が抑制される。
SOFC用セルの各要素の分解状態を示す概略斜視図 SOFC用セルの作動原理を説明する図 実施例1のSOFC用セルの焼成後のCr分布を示す図 比較例1のSOFC用セルの焼成後のCr分布を示す図 実施例2-1のSOFC用セルの焼成後のCr分布を示す図 実施例2-2のSOFC用セルの焼成後のCr分布を示す図 実施例2-3のSOFC用セルの焼成後のCr分布を示す図 実施例3-1のSOFC用セルの焼成後のCr分布を示す図 実施例3-2のSOFC用セルの焼成後のCr分布を示す図 実施例4のSOFC用セルの焼成後のCr分布を示す図 実施例5のSOFC用セルの焼成後のCr分布を示す図 実施例6-1のSOFC用セルの焼成後のCr分布を示す図 実施例6-2のSOFC用セルの焼成後のCr分布を示す図 実施例7-1のSOFC用セルの焼成後のCr分布を示す図 実施例7-2のSOFC用セルの焼成後のCr分布を示す図 実施例8のSOFC用セルの焼成後のCr分布を示す図 実施例9のSOFC用セルの焼成後のCr分布を示す図 実施例10のSOFC用セルの焼成後のCr分布を示す図 実施例11のSOFC用セルの焼成後のCr分布を示す図 実施例12のSOFC用セルの焼成後のCr分布を示す図 実施例13のSOFC用セルの焼成後のCr分布を示す図 実施例14のSOFC用セルの焼成後のCr分布を示す図 実施例15のSOFC用セルの焼成後のCr分布を示す図 実施例16-1のSOFC用セルの焼成後のCr分布を示す図 実施例16-2のSOFC用セルの焼成後のCr分布を示す図 実施例16-3のSOFC用セルの焼成後のCr分布を示す図 実施例17の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す図 実施例18の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す図 実施例19の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す図 実施例20の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す図 実施例21の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す図 (La,Sr)CoOを合金等の表面に形成したSOFC用セル(比較例2)の焼成後のCr分布を示す図 AgO被膜を形成した合金(比較例3)と空気極との接合部付近の断面のCr分布を示す図 実施例1~16及び比較例1の結果一覧を示す表 Zn-Co系の酸化物の状態図 実施例16-2の無電解めっき層表面の酸化処理前後のX線回折による相同定の結果を示す図 実施例1~16で用いたスピネル系酸化物、及び単一系酸化物における温度と金属酸化物の生成の酸素の化学ポテンシャルとの関係を示す図(エリンガム図) 実施例1~16で用いたスピネル系酸化物、及び単一系酸化物における温度と平衡解離酸素分圧との関係を示す図
 本発明に係るSOFC用セルの実施の形態について、図面に基づいて説明する。
 図1及び図2に示すSOFC用セルCは、酸化物イオン電導性の固体酸化物の緻密体からなる電解質膜30の一方面側に、酸化物イオン及び電子電導性の多孔体からなる空気極31を接合すると共に、同電解質膜30の他方面側に電子電導性の多孔体からなる燃料極32を接合してなる単セル3を備える。
 更に、SOFC用セルCは、この単セル3を、空気極31又は燃料極32に対して電子の授受を行うと共に空気及び水素を供給するための溝2が形成された一対の電子電導性の合金又は酸化物からなるインタコネクト1により、適宜外周縁部においてガスシール体を挟持した状態で挟み込んだ構造を有する。そして、空気極31側の上記溝2が、空気極31とインタコネクト1とが密着配置されることで、空気極31に空気を供給するための空気流路2aとして機能し、一方、燃料極32側の上記溝2が、燃料極32とインタコネクト1とが密着配置されることで、燃料極32に水素を供給するための燃料流路2bとして機能する。
 尚、上記SOFC用セルCを構成する各要素で利用される一般的な材料について説明を加えると、例えば、上記空気極31の材料としては、LaMO(例えばM=Mn,Fe,Co)中のLaの一部をアルカリ土類金属AE(AE=Sr,Ca)で置換した(La,AE)MOのペロブスカイト型酸化物を利用することができ、上記燃料極32の材料としては、Niとイットリア安定化ジルコニア(YSZ)とのサーメットを利用することができ、更に、電解質膜30の材料としては、イットリア安定化ジルコニア(YSZ)を利用することができる。
 更に、これまで説明してきたSOFC用セルCでは、インタコネクト1の材料としては、電子電導性及び耐熱性の優れた材料であるLaCrO系等のペロブスカイト型酸化物や、フェライト系ステンレス鋼であるFe-Cr合金や、オーステナイト系ステンレス鋼であるFe-Cr-Ni合金や、ニッケル基合金であるNi-Cr合金などのように、Crを含有する合金又は酸化物が利用されている。
 そして、複数のSOFC用セルCが積層配置された状態で、複数のボルト及びナットにより積層方向に押圧力を与えて挟持され、セルスタックとなる。
 このセルスタックにおいて、積層方向の両端部に配置されたインタコネクト1は、燃料流路2b又は空気流路2aの一方のみが形成されるものであればよく、その他の中間に配置されたインタコネクト1は、一方の面に燃料流路2bが形成され他方の面に空気流路2aが形成されるものを利用することができる。尚、かかる積層構造のセルスタックでは、上記インタコネクト1をセパレータと呼ぶ場合がある。
 このようなセルスタックの構造を有するSOFCを一般的に平板型SOFCと呼ぶ。本実施形態では、一例として平板型SOFCについて説明するが、本願発明は、その他の構造のSOFCについても適用可能である。
 そして、このようなSOFC用セルCを備えたSOFCの作動時には、図2に示すように、空気極31に対して隣接するインタコネクト1に形成された空気流路2aを介して空気を供給すると共に、燃料極32に対して隣接するインタコネクト1に形成された燃料流路2bを介して水素を供給し、例えば750℃程度の作動温度で作動する。すると、空気極31においてOが電子eと反応してO2-が生成され、そのO2-が電解質膜30を通って燃料極32に移動し、燃料極32において供給されたHがそのO2-と反応してHOとeとが生成されることで、一対のインタコネクト1の間に起電力Eが発生し、その起電力Eを外部に取り出し利用することができる。
 また、このSOFC用セルCは、その製造工程において、インタコネクト1と空気極31及び燃料極32との間の接触抵抗をできるだけ小さくするなどの目的で、それらを積層配置した状態で、作動温度よりも高い1000℃~1150℃程度の焼成温度で焼成する焼成処理を行う場合がある。
 そして、上記のようにCrを含有する合金等からなるインタコネクト1と空気極31とを接合してなるSOFC用セルCでは、焼成処理時又は作動時において、高温にさらされることで、インタコネクト1に含まれるCrが酸化蒸発して空気極31側に飛散し、その空気極31のCr被毒が発生するという問題がある。
 また、このようなCr被毒は、インタコネクト1に含まれるCrやそのCrが酸化して生成されたCr(III)の酸化物であるCrが、空気極31側等に存在するOやHOにより酸化して、気相状態のCr(VI)の酸化物であるCrOやCrO(OH)が生成され、そのCr(VI)の酸化物が空気極31側に移動して電解質膜30との界面付近や電極内で還元されてCrとして、又は空気極31との反応によるCr化合物として析出することで発生する。尚、水蒸気存在下では、CrO(OH)が生じやすく、Cr(VI)が飛散しやすくなる。
 そして、このように空気極31のCr被毒が発生すると、作動時において、空気極31と電解質膜30との界面や電極内部で起こるO2-の生成のための酸素の還元反応が阻害されてしまい、更には、このCrが空気極31にドープされているSrやCaなどを奪ってSrCr、SrCrOやCaCr、CaCrOなどの高抵抗化合物が形成され、また、SrやCaが無くなることによる空気極31自身の電気抵抗が増加することで、SOFCの性能低下を招く場合がある。また、合金等に含有されているCr量が減少し(Cr枯れ)、合金等自体の耐熱性が低下する場合もある。
 本発明に係るSOFC用セルCでは、空気極31のCr被毒の発生を良好に抑制し、且つ合金等のCr枯れを抑制するための特徴を有しており、その詳細について以下に説明する。
 かかるSOFCは、インタコネクト1に含まれるCrにおけるCr(VI)の酸化物の生成を抑制するべく、インタコネクト1の表面に、SOFCの作動温度(通常は、750℃)におけるCo(III)の平衡解離酸素分圧(3.44×10-13atm)以下の平衡解離酸素分圧を有する第1の単一系酸化物と、この第1の単一系酸化物よりも前記作動温度における平衡解離酸素分圧が小さい第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜を形成し、インタコネクト1と空気極31とを接合した状態で1000℃~1150℃程度の焼成温度で焼成する焼成処理を行って作製されるものである。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。また、被膜形成に用いるスピネル系酸化物を構成する一方の酸化物である第1の単一系酸化物の平衡解離酸素分圧の下限値は、750℃において1.83×10-20atmとする。この下限値は、従来被膜として用いられていた単一系酸化物の一つであるWOの750℃における平衡解離酸素分圧に相当する値である。従来技術である特許文献2において、平衡解離酸素分圧での整理が行われているが、単一系酸化物が金属まで還元されるとしたときの値である。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。そして、この下限値は、従来技術においては上限値となっている。また、スピネル系酸化物を構成する他方の酸化物である第2の単一系酸化物は、第1の単一系酸化物よりも前記作動温度での平衡解離酸素分圧が低いという条件を満たす限り、任意のものを採用することができる。単一系酸化物をスピネル系酸化物化すれば、単一系酸化物として存在する場合よりも熱力学的に安定となり、価数変化が起こり難くなると考えられる。
 よって、この焼成処理では、インタコネクト1に含まれるCrが、価数が6のCr(VI)となって酸化することが抑制されるので、気相状態のCr(VI)の酸化物であるCrOやCrO(OH)の生成が充分に抑制され、そのCr(VI)の酸化物の空気極31側への移動に起因する空気極31のCr被毒の発生を良好に抑制することができる。また、合金等のCr含有量の低下(Cr枯れ)も抑制できるため、合金等自体の耐熱性の低下も抑制できる。
 次に、インタコネクト1に含まれるCrにおけるCr(VI)の酸化物の生成を抑制するために形成する本発明のスピネル系酸化物を含む被膜の実施例、及び比較例について、以下に詳細に説明する。
〔被膜を形成した合金サンプルの準備〕
 「スピネル系酸化物」は、2種の金属を含む複合酸化物であり、一般に、化学式AB(A及びBは金属元素)で表される。
 本発明では、湿式成膜法、又は乾式成膜法により、スピネル系酸化物を含む被膜を、インタコネクト1となるフェライト系ステンレス鋼からなる合金平板の表面に形成した。合金平板の表面は、サンドペーパーで#600まで研磨したものを使用した。
 湿式成膜法は、ディッピング法を採用した。先ず、スピネル系酸化物粉末、アルコール(1-メトキシ-2-プロパノール)、及びバインダ(ヒドロキシプロピルセルロース)に、ジルコニアボールを加え、ペイントシェーカーを用いて混合した。次に、スピネル系酸化物粉末を含む混合液に合金平板をディップし、引き上げ後、50℃に調整した恒温槽中で乾燥させた。そして、乾燥後の合金平板を、電気炉を使用して1000℃で2時間焼成し、その後除冷して合金サンプルを得た。
 乾式成膜法は、スパッタリングを採用した。スパッタリングの種類としては、高周波スパッタリング、反応性直流マグネトロンスパッタリング等が挙げられる。
 なお、本明細書では、便宜上、「スピネル系酸化物を含む被膜(例えば、NiCoを含む被膜)」を「スピネル系酸化物被膜(例えば、NiCo被膜)」と略称する。
〔効果確認試験〕
 本発明の効果を確認するために、被膜を形成した合金サンプルの電圧降下(電気抵抗)を測定した。合金サンプルの電圧降下を測定することにより、SOFCとしての性能が確保されているかを判定することができる。具体的な試験方法としては、先ず、合金サンプルと空気極材料とを接合した状態で、大気雰囲気中において1000~1150℃の焼成温度で2時間焼成処理を行った。次に、合金サンプルを、SOFCの作動時を想定して、大気雰囲気中で750℃の作動温度で0.3A/cmの直流電流を流し続け、この状態を50時間保持した。そして、この50時間保持後の合金サンプル(合金+被膜)について電圧降下(mV)を測定した。
 また、合金サンプルと空気極との接合部付近の断面のCr分布を測定した。このCr分布測定により、空気極のCr被毒の発生の有無を判定することができる。具体的な試験方法としては、先ず、合金サンプルに対し、大気雰囲気中で1000~1150℃の焼成温度で2時間焼成処理を行った。この焼成処理を施した合金サンプルと空気極との接合部付近の断面のCr分布を、電子線マイクロアナライザー(EPMA)により分析した。
 なお、これらの効果確認試験では、実施例及び比較例とも、合金としてFe-Cr系合金(Cr含有量:22wt%)、空気極として(La,Sr)(Co,Fe)Oを使用した。
〔第1実施形態〕
 本第1実施形態では、スピネル系酸化物としてNiCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、NiCo被膜を形成した。
 即ち、インタコネクト1の境界面1aにNiCo被膜が形成されているSOFC用セルCでは、NiCo被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、NiCo被膜を構成する第2の単一系酸化物であるNiOの平衡解離酸素分圧は、2.72×10-16atmであり、Coの平衡解離酸素分圧よりも低い。なお、このNiCo被膜は、耐熱性に優れている上に緻密な構造を有することから、そのNiCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同NiCo被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例1〕
 上記第1実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりNiCo被膜を形成して製造したSOFC用セル(実施例1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 また、合金の表面に被膜を形成せずに製造したSOFC用セル(比較例1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。なお、この比較例1は、以後に説明する実施例2~16に対しても比較例となる。
 上記実施例1のSOFC用セルにおいて、合金の表面にNiCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、NiCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+NiCo被膜)の750℃での電圧降下を測定したところ、13.1mVであった。因みに、NiCo焼結体の導電率は、750℃の大気中において、2.06S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図3に、実施例1のSOFC用セルの焼成後のCr分布の分析結果を、図4に、比較例1のSOFC用セルの作動温度での保持後のCr分布の分析結果を示す。尚、これらの図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例1のNiCo被膜を合金の表面に形成したSOFC用セルでは、図3に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
 一方、比較例1の被膜を合金に形成しなかったSOFC用セルでは、図4に示すように、空気極において合金に近い領域(図4において空気極での濃いグレーの領域)ではCr濃度が約10%~14%程度と高くなっており、その領域よりも合金から若干離れた領域でも2%~10%程度となっており、空気極におけるCr被毒が非常に進行しているのが確認できた。
〔第2実施形態〕
 本第2実施形態では、スピネル系酸化物として(ZnCo1-x)Co(0.45≦x≦1.00)を選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、(ZnCo1-x)Co被膜を形成した。
 即ち、インタコネクト1の境界面1aに(ZnCo1-x)Co被膜が形成されているSOFC用セルCでは、(ZnCo1-x)Co被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、(ZnCo1-x)Co被膜を構成する第2の単一系酸化物であるZnOの平衡解離酸素分圧は、5.94×10-26atmであり、Coの平衡解離酸素分圧よりも低い。なお、この(ZnCo1-x)Co被膜は、耐熱性に優れている上に緻密な構造を有することから、その(ZnCo1-x)Co被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同(ZnCo1-x)Co被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
 (ZnCo1-x)Coとしては、x=1であるZnCo(実施例2-1,2-2)、および、x=0.45である(Zn0.45Co0.55)Co(実施例2-3)を選択した。
 尚、(ZnCo1-x)Coは、後述のZn-Co系の酸化物の状態図(図35)より、200-800℃の範囲でスピネル系構造が主成分で、組成によってはZnOを少量含んだ状態である。ZnOの平衡解離酸素分圧は、5.94×10-26atmであり、WOの750℃における平衡解離酸素分圧の1.83×10-20atmよりも十分小さく、Cr(III)の酸化物のCr(VI)への酸化抑制効果に問題を与えるものではない。よって0≦x≦1.00の範囲では、いかなる組成比でもスピネル系構造を主な相とするため、同様の物性を示すものと考えられ、SOFC用セルとして有利に利用可能であると考えられるが、0.45≦x≦1.00であれば、特に平衡解離酸素分圧が充分低く、Crの酸化抑制効果が大きいと考えられるため好ましい。
 さらに0.45≦x≦0.6であれば、(ZnCo1-x)Coの結晶構造が、SOFCの運転で主に使用される温度領域(室温~750℃)で、六方晶との混晶になること無くスピネル単相構造を維持するので、より好ましいと考えられる。
〔実施例2-1〕
 上記第2実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法により、ZnCo被膜を形成して製造したSOFC用セル(実施例2-1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例2-1のSOFC用セルにおいて、合金の表面にZnCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、ZnCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+ZnCo被膜)の750℃での電圧降下を測定したところ、13.2mVであった。因みに、ZnCo焼結体の導電率は、750℃の大気中において、0.36S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図5に、実施例2-1のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例2-1のZnCo被膜を合金の表面に形成したSOFC用セルでは、図5に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例2-2〕
 合金等側の表面に被膜を形成する際に、焼結助剤を添加して焼成すると、被膜がより緻密化する。その結果、被膜の電気抵抗が低下し、固体酸化物形燃料電池としての性能を高めることができると考えられる。
 そこで、上記第2実施形態において、ZnCo被膜を形成する際に、B及びZnOからなる焼結助剤をZnCoに対して2wt%添加して焼成したSOFC用セル(実施例2-2)について、合金と空気極との接合部付近の断面のCr分布を観察した。その実験結果を以下に示す。
 実施例2-2における被膜形成方法、及び形成した被膜の厚み等は、上記実施例2-1と同様である。
 実施例2-2のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図6に、実施例2-2のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例2-2のZnCo被膜を合金の表面に形成したSOFC用セルでは、図6に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
 また、上述の効果確認試験の手順に従って、インタコネクト(合金+焼結助剤添加ZnCo被膜)の750℃での電圧降下を測定したところ、10.7mVであった。この値は、焼結助剤を添加していない実施例2-1の電圧降下(13.2mV)よりも小さい値である。つまり、焼結助剤の添加により被膜の電気抵抗が低下することが確認された。
〔実施例2-3〕
 上記第2実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法により(Zn0.45Co0.55)Co被膜を形成して製造したSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例2-3のSOFC用セルにおいて、合金の表面に(Zn0.45Co0.55)Co被膜を形成するための湿式成膜法は、ディッピング法を採用し、(Zn0.45Co0.55)Co被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+(Zn0.45Co0.55)Co被膜)の750℃での電圧降下を測定したところ、10.8mVであった。因みに、
(Zn0.45Co0.55)Co焼結体の導電率は、750℃の大気中において、1.04S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図7に、実施例2-3のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例2-3の(Zn0.45Co0.55)Co被膜を合金の表面に形成したSOFC用セルでは、図7に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
 図35にZn-Co系の酸化物の状態図を示す。
 図のように、ZnCoは、作動温度付近である750℃では、スピネル相とZnO相の2相の共存状態となり、室温からの昇温中に相分離が起こる。一方、(ZnCo1-x)Coは、(Zn0.45Co0.55)CoO4を含むx≦0.60の範囲で、室温~750℃の領域でスピネル相単相を維持することができる。
 耐久性の観点からは、燃料電池用セルを構成する材料は、安定性が高いほうが望ましく、スピネル系構造についても容易に変化しないほうが好ましいと考えられる。
 すなわち、ZnCoは、相分離が起こったとしても高いCr飛散抑制効果を持っており、実用上問題なく使用できているが、10年以上といった長期使用を考えたとき、より相分離がおきにくい、(Zn0.45Co0.55)Coのほうが、スピネル系構造の安定性の観点からは、より好適に使用できるものと考えられる。
 基本的に、Cr(III)の酸化物のCr(VI)への酸化のしやすさは、合金被膜材料の平衡解離酸素分圧の大きさにより決まる。(ZnCo1-x)Co(0.45≦x≦1.00)において、構成する酸化物のうち、750℃での平衡解離酸素分圧が高い(第1の単一系酸化物)はCoであり、平衡解離酸素分圧は、3.44×10-13atmである(Coの平衡解離酸素分圧を代用)。一方、それより平衡解離酸素分圧が低い(第2の単一系酸化物)は、ZnOであり、平衡解離酸素分圧は、5.94×10-26atmである。
 そこで、ZnCoと、(Zn0.45Co0.55)Coを比べてみると、
第2の単一系酸化物は、
ZnCo:ZnO(5.94×10-26atm)100%
(Zn0.45Co0.55)Co:ZnO(5.94×10-26atm) 45%、CoO(2.9×10-17atm) 55% 
である。
 したがって、(ZnCo1-x)Coとして表される化合物としては、(Zn0.45Co0.55)Co(x=0.45)より、ZnCoO4(x=1)のほうが平衡解離酸素分圧が小さく、Cr(III)の酸化物のCr(VI)への酸化が進行しにくいといえる。
 つまり、第2の単一系酸化物の平衡解離酸素分圧の観点からは、xが大きくなるほど、平衡解離酸素分圧が小さくなり、Cr(III)の酸化物のCr(VI)への酸化を抑制する効果が高くなると言える。従って、x=0.45の(Zn0.45Co0.55)Coに充分なCr酸化抑制効果が確認できた(実施例20参照)のであるから、これより平衡解離酸素分圧が小さくなる0.45≦x≦1.00であれば、(ZnCo1-x)CoにもCr(III)の酸化物のCr(VI)への酸化を抑制する効果が認められると考えられる。
 したがって、(ZnCo1-x)Coとしては、平衡解離酸素分圧の観点から、xの値がある程度大きいことが求められる、一方、スピネル系構造の安定性という観点からは、xの値は小さいほど良いことになる。その結果(ZnCo1-x)Coとしては、0.45≦x≦1.00をとることが好ましい。
〔第3実施形態〕
 本第3実施形態では、スピネル系酸化物としてFeMnを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、FeMn被膜を形成した。
 即ち、インタコネクト1の境界面1aにFeMn被膜が形成されているSOFC用セルCでは、FeMn被膜を構成する第1の単一系酸化物であるFeの平衡解離酸素分圧は、1.31×10-19atmである。一方、FeMn被膜を構成する第2の単一系酸化物であるMnの平衡解離酸素分圧は、2.31×10-24atmであり、Feの平衡解離酸素分圧よりも低い。なお、このFeMn被膜は、耐熱性に優れている上に緻密な構造を有することから、そのFeMn被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同FeMn被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例3-1〕
 上記第3実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(片面)に乾式成膜法によりFeMn被膜を形成して製造したSOFC用セル(実施例3-1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を以下に示す。
 上記実施例3-1のSOFC用セルにおいて、合金の表面にFeMn被膜を形成するための乾式成膜法は、スパッタリングを採用し、FeMn被膜の厚みを約2μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+FeMn被膜)の750℃での電圧降下を測定したところ、37.8mVであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図8に、実施例3-1のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例3-1のFeMn被膜を合金の表面に形成したSOFC用セルでは、図8に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例3-2〕
 上記第3実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりFeMn被膜を形成して製造したSOFC用セル(実施例3-2)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例3-2のSOFC用セルにおいて、合金の表面にFeMn被膜を形成するための湿式成膜法は、ディッピング法を採用し、FeMn被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+FeMn被膜)の750℃での電圧降下を測定したところ、25.9mVであった。因みに、FeMn焼結体の導電率は、750℃の大気中において、0.62S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図9に、実施例3-2のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例3-2のFeMn被膜を合金の表面に形成したSOFC用セルでは、図9に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第4実施形態〕
 本第4実施形態では、スピネル系酸化物としてNiMnを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、NiMn被膜を形成した。
 即ち、インタコネクト1の境界面1aにNiMn被膜が形成されているSOFC用セルCでは、NiMn被膜を構成する第1の単一系酸化物であるNiOの平衡解離酸素分圧は、2.72×10-16atmである。一方、NiMn被膜を構成する第2の単一系酸化物であるMnの平衡解離酸素分圧は、2.31×10-24atmであり、NiOの平衡解離酸素分圧よりも低い。なお、このNiMn被膜は、耐熱性に優れている上に緻密な構造を有することから、そのNiMn被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同NiMn被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例4〕
 上記第4実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりNiMn被膜を形成して製造したSOFC用セル(実施例4)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例4のSOFC用セルにおいて、合金の表面にNiMn被膜を形成するための湿式成膜法は、ディッピング法を採用し、NiMn被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+NiMn被膜)の750℃での電圧降下を測定したところ、19.4mVであった。因みに、NiMn焼結体の導電率は、750℃の大気中において、4.32S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図10に、実施例4のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例4のNiMn被膜を合金の表面に形成したSOFC用セルでは、図10に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第5実施形態〕
 本第5実施形態では、スピネル系酸化物としてCoMnを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、CoMn被膜を形成した。
 即ち、インタコネクト1の境界面1aにCoMn被膜が形成されているSOFC用セルCでは、CoMn被膜を構成する第1の単一系酸化物であるCoOの平衡解離酸素分圧は、2.90×10-17atmである。一方、CoMn被膜を構成する第2の単一系酸化物であるMnの平衡解離酸素分圧は、2.31×10-24atmであり、CoOの平衡解離酸素分圧よりも低い。なお、このCoMn被膜は、耐熱性に優れている上に緻密な構造を有することから、そのCoMn被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同CoMn被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例5〕
 上記第5実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりCoMn被膜を形成して製造したSOFC用セル(実施例5)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例5のSOFC用セルにおいて、合金の表面にCoMn被膜を形成するための湿式成膜法は、ディッピング法を採用し、CoMn被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+CoMn被膜)の750℃での電圧降下を測定したところ、17.9mVであった。因みに、CoMn焼結体の導電率は、750℃の大気中において、0.81S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図11に、実施例5のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例5のCoMn被膜を合金の表面に形成したSOFC用セルでは、図11に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第6実施形態〕
 本第6実施形態では、スピネル系酸化物としてMnFeを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、MnFe被膜を形成した。
 即ち、インタコネクト1の境界面1aにMnFe被膜が形成されているSOFC用セルCでは、MnFe被膜を構成する第1の単一系酸化物であるFeの平衡解離酸素分圧は、1.31×10-19atmである。一方、MnFe被膜を構成する第2の単一系酸化物であるMnOの平衡解離酸素分圧は、2.38×10-32atmであり、Feの平衡解離酸素分圧よりも低い。なお、このMnFe被膜は、耐熱性に優れている上に緻密な構造を有することから、そのMnFe被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同MnFe被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例6-1〕
 上記第6実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(片面)に乾式成膜法によりMnFe被膜を形成して製造したSOFC用セル(実施例6-1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例6-1のSOFC用セルにおいて、合金の表面にMnFe被膜を形成するための乾式成膜法は、スパッタリングを採用し、MnFe被膜の厚みを約2μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MnFe被膜)の750℃での電圧降下を測定したところ、36.1mVであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図12に、実施例6-1のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例6-1のMnFe被膜を合金の表面に形成したSOFC用セルでは、図12に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例6-2〕
 上記第6実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりMnFe被膜を形成して製造したSOFC用セル(実施例6-2)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例6-2のSOFC用セルにおいて、合金の表面にMnFe被膜を形成するための湿式成膜法は、ディッピング法を採用し、MnFe被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MnFe被膜)の750℃での電圧降下を測定したところ、15.9mVであった。因みに、MnFe焼結体の導電率は、750℃の大気中において、0.11S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図13に、実施例6-2のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例6-2のMnFe被膜を合金の表面に形成したSOFC用セルでは、図13に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第7実施形態〕
 本第7実施形態では、スピネル系酸化物としてMnNiを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、MnNi被膜を形成した。
 即ち、インタコネクト1の境界面1aにMnNi被膜が形成されているSOFC用セルCでは、MnNi被膜を構成する第1の単一系酸化物であるNiOの平衡解離酸素分圧は、2.72×10-16atmである。一方、MnNi被膜を構成する第2の単一系酸化物であるMnOの平衡解離酸素分圧は、9.04×10-18atmであり、NiOの平衡解離酸素分圧よりも低い。なお、このMnNi被膜は、耐熱性に優れている上に緻密な構造を有することから、そのMnNi被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同MnNi被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例7-1〕
 上記第7実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(片面)に乾式成膜法によりMnNi被膜を形成して製造したSOFC用セル(実施例7-1)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例7-1のSOFC用セルにおいて、合金の表面にMnNi被膜を形成するための乾式成膜法は、スパッタリングを採用し、MnNi被膜の厚みを約2μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MnNi被膜)の750℃での電圧降下を測定したところ、39.4mVであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図14に、実施例7-1のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例7-1のMnNi被膜を合金の表面に形成したSOFC用セルでは、図14に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例7-2〕
 上記第7実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりMnNi被膜を形成して製造したSOFC用セル(実施例7-2)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例7-2のSOFC用セルにおいて、合金の表面にMnNi被膜を形成するための湿式成膜法は、ディッピング法を採用し、MnNi被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MnNi被膜)の750℃での電圧降下を測定したところ、20.2mVであった。因みに、MnNi焼結体の導電率は、750℃の大気中において、5.47S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図15に、実施例7-2のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例7-2のMnNi被膜を合金の表面に形成したSOFC用セルでは、図15に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第8実施形態〕
 本第8実施形態では、スピネル系酸化物としてMnCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、MnCo被膜を形成した。
 即ち、インタコネクト1の境界面1aにMnCo被膜が形成されているSOFC用セルCでは、MnCo被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、MnCo被膜を構成する第2の単一系酸化物であるMnOの平衡解離酸素分圧は、2.38×10-32atmであり、Coの平衡解離酸素分圧よりも低い。なお、このMnCo被膜は、耐熱性に優れている上に緻密な構造を有することから、そのMnCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同MnCo被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例8〕
 上記第8実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりMnCo被膜を形成して製造したSOFC用セル(実施例8)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例8のSOFC用セルにおいて、合金の表面にMnCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、MnCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MnCo被膜)の750℃での電圧降下を測定したところ、15.6mVであった。因みに、MnCo焼結体の導電率は、750℃の大気中において、10.1S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図16に、実施例8のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例8のMnCo被膜を合金の表面に形成したSOFC用セルでは、図16に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第9実施形態〕
 本第9実施形態では、スピネル系酸化物としてMn(Mn0.25Co0.75を選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、Mn(Mn0.25Co0.75被膜を形成した。
 即ち、インタコネクト1の境界面1aにMn(Mn0.25Co0.75被膜が形成されているSOFC用セルCでは、Mn(Mn0.25Co0.75被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、Mn(Mn0.25Co0.75被膜を構成する第2の単一系酸化物であるMnOの平衡解離酸素分圧は、2.38×10-32atmであり、Coの平衡解離酸素分圧よりも低い。なお、このMn(Mn0.25Co0.75被膜は、耐熱性に優れている上に緻密な構造を有することから、そのMn(Mn0.25Co0.75被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同Mn(Mn0.25Co0.75被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例9〕
 上記第9実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりMn(Mn0.25Co0.75被膜を形成して製造したSOFC用セル(実施例9)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例9のSOFC用セルにおいて、合金の表面にMn(Mn0.25Co0.75被膜を形成するための湿式成膜法は、ディッピング法を採用し、Mn(Mn0.25Co0.75被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+Mn(Mn0.25Co0.75被膜)の750℃での電圧降下を測定したところ、24.3mVであった。因みに、Mn(Mn0.25Co0.75焼結体の導電率は、750℃の大気中において、35.6S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図17に、実施例9のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例9のMn(Mn0.25Co0.75被膜を合金の表面に形成したSOFC用セルでは、図17に示すように、空気極の大部分においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第10実施形態〕
 本第10実施形態では、スピネル系酸化物として(Mn0.5Co0.5)Coを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、(Mn0.5Co0.5)Co被膜を形成した。
 即ち、インタコネクト1の境界面1aに(Mn0.5Co0.5)Co被膜が形成されているSOFC用セルCでは、(Mn0.5Co0.5)Co被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、(Mn0.5Co0.5)Co被膜を構成する第2の単一系酸化物であるMnOの平衡解離酸素分圧は、2.38×10-32atmであり、Coの平衡解離酸素分圧よりも低い。なお、この(Mn0.5Co0.5)Co被膜は、耐熱性に優れている上に緻密な構造を有することから、その(Mn0.5Co0.5)Co被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同(Mn0.5Co0.5)Co被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例10〕
 上記第10実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法により(Mn0.5Co0.5)Co被膜を形成して製造したSOFC用セル(実施例10)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例10のSOFC用セルにおいて、合金の表面に(Mn0.5Co0.5)Co被膜を形成するための湿式成膜法は、ディッピング法を採用し、(Mn0.5Co0.5)Co被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+(Mn0.5Co0.5)Co被膜)の750℃での電圧降下を測定したところ、24.3mVであった。因みに、(Mn0.5Co0.5)Co焼結体の導電率は、750℃の大気中において、35.6S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図18に、実施例10のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例10の(Mn0.5Co0.5)Co被膜を合金の表面に形成したSOFC用セルでは、図18に示すように、空気極の大部分においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第11実施形態〕
 本第11実施形態では、スピネル系酸化物としてTiCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、TiCo被膜を形成した。
 即ち、インタコネクト1の境界面1aにTiCo被膜が形成されているSOFC用セルCでは、TiCo被膜を構成する第1の単一系酸化物であるCoOの平衡解離酸素分圧は、2.90×10-17atmである。一方、TiCo被膜を構成する第2の単一系酸化物であるTiOの平衡解離酸素分圧は、1.86×10-39atmであり、CoOの平衡解離酸素分圧よりも低い。なお、このTiCo被膜は、耐熱性に優れている上に緻密な構造を有することから、そのTiCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同TiCo被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例11〕
 上記第11実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりTiCo被膜を形成して製造したSOFC用セル(実施例11)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例11のSOFC用セルにおいて、合金の表面にTiCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、TiCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+TiCo被膜)の750℃での電圧降下を測定したところ、63.8mVであった。因みに、TiCo焼結体の導電率は、750℃の大気中において、0.17S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図19に、実施例11のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例11のTiCo被膜を合金の表面に形成したSOFC用セルでは、図19に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。
〔第12実施形態〕
 本第12実施形態では、スピネル系酸化物としてZnFeを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、ZnFe被膜を形成した。
 即ち、インタコネクト1の境界面1aにZnFe被膜が形成されているSOFC用セルCでは、ZnFe被膜を構成する第1の単一系酸化物であるFeの平衡解離酸素分圧は、1.31×10-19atmであると推定される。一方、ZnFe被膜を構成する第2の単一系酸化物であるZnOの平衡解離酸素分圧は、5.94×10-26atmであり、Feの平衡解離酸素分圧よりも低い。なお、このZnFe被膜は、耐熱性に優れている上に緻密な構造を有することから、そのZnFe被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同ZnFe被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例12〕
 上記第12実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりZnFe被膜を形成して製造したSOFC用セル(実施例12)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例12のSOFC用セルにおいて、合金の表面にZnFe被膜を形成するための湿式成膜法は、ディッピング法を採用し、ZnFe被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+ZnFe被膜)の750℃での電圧降下を測定したところ、34.2mVであった。因みに、ZnFe焼結体の導電率は、750℃の大気中において、0.21S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図20に、実施例12のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例12のZnFe被膜を合金の表面に形成したSOFC用セルでは、図20に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第13実施形態〕
 本第13実施形態では、スピネル系酸化物としてFeCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、FeCo被膜を形成した。
 即ち、インタコネクト1の境界面1aにFeCo被膜が形成されているSOFC用セルCでは、FeCo被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、FeCo被膜を構成する第2の単一系酸化物であるFeOの平衡解離酸素分圧は、6.20×10-21atmであり、Coの平衡解離酸素分圧よりも低い。なお、このFeCo被膜は、耐熱性に優れている上に緻密な構造を有することから、そのFeCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同FeCo被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例13〕
 上記第13実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりFeCo被膜を形成して製造したSOFC用セル(実施例13)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例13のSOFC用セルにおいて、合金の表面にFeCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、FeCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+FeCo被膜)の750℃での電圧降下を測定したところ、13.8mVであった。因みに、FeCo焼結体の導電率は、750℃の大気中において、2.36S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図21に、実施例13のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例13のFeCo被膜を合金の表面に形成したSOFC用セルでは、図21に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第14実施形態〕
 本第14実施形態では、スピネル系酸化物としてCoFeを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、CoFe被膜を形成した。
 即ち、インタコネクト1の境界面1aにCoFe被膜が形成されているSOFC用セルCでは、CoFe被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、CoFe被膜を構成する第2の単一系酸化物であるFeOの平衡解離酸素分圧は、6.20×10-21atmであり、Coの平衡解離酸素分圧よりも低い。なお、このCoFe被膜は、耐熱性に優れている上に緻密な構造を有することから、そのCoFe被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同CoFe被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例14〕
 上記第14実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりCoFe被膜を形成して製造したSOFC用セル(実施例14)について、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例14のSOFC用セルにおいて、合金の表面にCoFe被膜を形成するための湿式成膜法は、ディッピング法を採用し、CoFe被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+CoFe被膜)の750℃での電圧降下を測定したところ、25.2mVであった。因みに、CoFe焼結体の導電率は、750℃の大気中において、0.21S/cmであった。
 次に、夫々のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図22に、実施例14のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例14のCoFe被膜を合金の表面に形成したSOFC用セルでは、図22に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第15実施形態〕
 本第15実施形態では、スピネル系酸化物としてMgCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、MgCo被膜を形成した。
 即ち、インタコネクト1の境界面1aにMgCo被膜が形成されているSOFC用セルCでは、MgCo被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、MgCo被膜を構成する第2の単一系酸化物であるMgOの平衡解離酸素分圧は、7.96×10-51atmであり、Coの平衡解離酸素分圧よりも低い。なお、このMgCo被膜は、耐熱性に優れている上に緻密な構造を有することから、そのMgCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同MgCo被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例15〕
 上記第15実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりMgCo被膜を形成して製造したSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例15のSOFC用セルにおいて、合金の表面にMgCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、MgCo被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+MgCo被膜)の750℃での電圧降下を測定したところ、18.5mVであった。因みに、MgCo焼結体の導電率は、750℃の大気中において、0.46S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図23に、実施例15のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例15のMgCo被膜を合金の表面に形成したSOFC用セルでは、図23に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔第16実施形態〕
 本第16実施形態では、スピネル系酸化物としてCoを選択した。焼成処理を行う前に、インタコネクト1の少なくとも空気極31に対する境界面1a(図2参照)を含む表面に、Co被膜を形成した。
 即ち、インタコネクト1の境界面1aにCo被膜が形成されているSOFC用セルCでは、Co被膜を構成する第1の単一系酸化物であるCoの平衡解離酸素分圧は、Coの平衡解離酸素分圧を代用すると、3.44×10-13atmであると推定される。一方、Co被膜を構成する第2の単一系酸化物であるMgOの平衡解離酸素分圧は、7.96×10-51atmであり、Coの平衡解離酸素分圧よりも低い。なお、このCo3O4被膜は、耐熱性に優れている上に緻密な構造を有することから、そのCo被膜を介したインタコネクト1側への酸化剤としての酸素や水蒸気の供給が阻止され、更には、同Co被膜を介した空気極31側へのCr(VI)の酸化物の移動が阻止される。その結果、製造時の焼成処理や作動時において、インタコネクト1が高温にさらされた場合でも、空気極31のCr被毒が良好に抑制される。
〔実施例16-1〕
 上記第16実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に湿式成膜法によりCo被膜を形成して製造したSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例16-1のSOFC用セルにおいて、合金の表面にCo被膜を形成するための湿式成膜法は、ディッピング法を採用し、Co被膜の厚みを約5~30μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+Co被膜)の750℃での電圧降下を測定したところ、18.5mVであった。因みに、Co焼結体の導電率は、750℃の大気中において、0.46S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図24に、実施例16-1のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例16-1のCo被膜を合金の表面に形成したSOFC用セルでは、図24に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例16-2〕
 上記第16実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に無電解めっきにより金属Coを形成した後、大気中で800℃において1時間酸化処理を行った。酸化処理前後の表面の無電解めっき層のX線回折による相同定の結果を図36に示す。図より、酸化処理された表面層は、金属状態のCoから、Coに変化したことがわかる。
 このような処理によりCo被膜を形成して製造したSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例16-2のSOFC用セルにおいて、合金の表面にCo被膜を形成するための成膜法は、無電解めっき後、大気中で酸化する処理を採用し、Co被膜の厚みを約3~20μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+Co被膜)の750℃での電圧降下を測定したところ、18.5mVであった。因みに、Co焼結体の導電率は、750℃の大気中において、3.93S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図25に、実施例16-2のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例16-2のCo被膜を合金の表面に形成したSOFC用セルでは、図25に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔実施例16-3〕
 上記第16実施形態のように焼成処理を行う前にインタコネクト等に使用される合金の表面(両面)に電気めっきにより金属Coを形成した後、大気中で800℃において1時間酸化処理を行った。
 このような処理によりCo被膜を形成して製造したSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布を観察した実験結果を、以下に示す。
 上記実施例16-3のSOFC用セルにおいて、合金の表面にCo被膜を形成するための成膜法は、電気めっき後、大気中で酸化する処理を採用し、Co被膜の厚みを約3~20μmとした。
 上述の効果確認試験の手順に従って、インタコネクト(合金+Co被膜)の750℃での電圧降下を測定したところ、23.1mVであった。因みに、Co焼結体の導電率は、750℃の大気中において、3.93S/cmであった。
 次に、SOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図26に、実施例16-3のSOFC用セルの焼成後のCr分布の分析結果を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例16-3のCo被膜を合金の表面に形成したSOFC用セルでは、図26に示すように、空気極の略全体においてCr濃度が約0%であり、空気極におけるCr被毒が殆ど認められなかった。
〔耐久性評価試験〕
 次に、上記のEPMAによる分析結果より、空気極におけるCr被毒の発生が無いと判断したスピネル系酸化物被膜について更なる耐久性を調べるため、耐久性評価試験を実施した。この耐久性評価試験は、該当するスピネル系酸化物被膜のうち、代表として、ZnCo被膜、及びCoMn被膜、(Zn0.45Co0.55)Co被膜、Mn(Mn0.25Co0.75被膜、Co被膜について実施した。なお、これらの耐久性評価試験を、夫々実施例17(ZnCo被膜)、及び実施例18(CoMn被膜)、実施例19((Zn0.45Co0.55)Co被膜)、実施例20(Mn(Mn0.25Co0.75被膜)、実施例21(Co被膜)とする。
〔実施例17〕
 SOFC用セルにおいて、合金の表面(両面)にディッピング法によりZnCo被膜を形成した。次いで、このZnCo被膜を形成したSOFC用セルを、空気極を焼き付けた後、湿度が10~20%となるように加湿した950℃の雰囲気中で135時間保持した。そして、この135時間保持後のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図27に、実施例17の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例17のZnCo被膜を合金の表面に形成したSOFC用セルでは、図27に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。このように、実施例17のZnCo被膜は、実用上充分な耐久性を備えている。
〔実施例18〕
 SOFC用セルにおいて、合金の表面(片面)にスパッタリングによりCoMn被膜を形成した。次いで、このCoMn被膜を形成したSOFC用セルを、空気極を焼き付けた後、湿度が10~20%となるように加湿した900℃の雰囲気中で300時間保持した。そして、この300時間保持後のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図28に、実施例18の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例18のCoMn被膜を合金の表面に形成したSOFC用セルでは、図28に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。このように、実施例18のCoMn被膜は、実用上充分な耐久性を備えている。
〔実施例19〕
 SOFC用セルにおいて、合金の表面(両面)にディッピング法により(Zn0.45Co0.55)Co被膜を形成した。次いで、この(Zn0.45Co0.55)Co被膜を形成したSOFC用セルを、空気極を焼き付けた後、湿度が10~20%となるように加湿した950℃の雰囲気中で135時間保持した。そして、この135時間保持後のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図29に、実施例19の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例19の(Zn0.45Co0.55)Co被膜を合金の表面に形成したSOFC用セルでは、図29に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。このように、実施例19の(Zn0.45Co0.55)Co被膜は、実用上充分な耐久性を備えている。
〔実施例20〕
 SOFC用セルにおいて、合金の表面(片面)にディッピングによりMn(Mn0.25Co0.75被膜を形成した。次いで、このMn(Mn0.25Co0.75被膜を形成したSOFC用セルを、空気極を焼き付けた後、湿度が10~20%となるように加湿した950℃の雰囲気中で135時間保持した。そして、この135時間保持後のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図30に、実施例20の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例20のMn(Mn0.25Co0.75被膜を合金の表面に形成したSOFC用セルでは、図30に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。このように、実施例20のMn(Mn0.25Co0.75被膜は、実用上充分な耐久性を備えている。
〔実施例21〕
 SOFC用セルにおいて、合金の表面(片面)にディッピングによりCo被膜を形成した。次いで、このCo被膜を形成したSOFC用セルを、空気極を焼き付けた後、湿度が10~20%となるように加湿した950℃の雰囲気中で135時間保持した。そして、この135時間保持後のSOFC用セルについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した。
 図31に、実施例21の耐久性評価試験後におけるSOFC用セルの分析結果(Cr分布)を示す。尚、この図面において、合金におけるCr濃度は約22%であり、空気極において色調が最も薄い領域のCr濃度は略0%(図面において空気極での薄いグレーの領域)である。また、これら分布を示す図面において、写真図の横幅が約130μmに相当している。
 このような実験の結果、実施例21のCo被膜を合金の表面に形成したSOFC用セルでは、図31に示すように、空気極の大部分においてCr濃度が低く抑えられており、空気極におけるCr被毒は実用上問題のないレベルであった。このように、実施例21のCo被膜は、実用上充分な耐久性を備えている。
 実施例1~16及び比較例1の結果を、図34の表にまとめた。
 また、実施例1~16で用いたスピネル系酸化物における温度と金属酸化物の生成の酸素の化学ポテンシャルとの関係を図37のエリンガム図に示した。この図37において、横軸は温度であり、縦軸は酸素1モル当たりの反応のギブスエネルギーである。なお、図37中にプロットしている各スピネル系酸化物の化学ポテンシャルは、スピネル系酸化物自体の値を表しているのではなく、スピネル系酸化物を構成する第1の単一系酸化物及び第2の単一系酸化物のうち、平衡解離酸素分圧が高い方である第1の単一系酸化物の値を表している。
 さらに、実施例1~16で用いたスピネル系酸化物における温度と平衡解離酸素分圧(PO)との関係を図38に示した。この図38において、横軸は温度であり、縦軸は平衡解離酸素分圧(PO)である。なお、図38中にプロットしている各スピネル系酸化物の平衡解離酸素分圧(PO)は、スピネル系酸化物自体の値を表しているのではなく、スピネル系酸化物を構成する第1の単一系酸化物及び第2の単一系酸化物のうち、平衡解離酸素分圧が高い方である第1の単一系酸化物の値を表している。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。
 また、参考として、図37及び図38においては、上記実施形態で説明したスピネル系酸化物ではない単一系酸化物(Al、AgO、及びWO)についての金属酸化物の生成の酸素の化学ポテンシャル、及び平衡解離酸素分圧に関するデータも合わせて示した。また比較例2として、従来の被膜として空気極用のランタンコバルタイト系材料である(La,Sr)CoOを合金等の表面に形成したSOFC用セルの焼成後のCr分布を、図32に示す。さらに、比較例3として、上記の他の単一系酸化物の一つであるAgOをスパッタリングにより合金等の表面に0.8μmの膜厚で形成し、空気極用材料と接合した状態で焼成した後、800℃で200hr保持したものについて、合金と空気極との接合部付近の断面のCr分布をEPMAにより分析した結果を図33に示す。
 以上の結果から、本発明のSOFCセルにおいて採用する「750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内にある第1の単一系酸化物と、当該第1の単一系酸化物よりも750℃での平衡解離酸素分圧が低い第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜」は、いずれも、空気極31におけるCr被毒は実用上全く問題がないレベルであり、さらに、インタコネクト1を構成する合金等のCr枯れによる酸化劣化を抑制できていることが判明した。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。さらに、750℃における電圧降下についても、比較例である被膜を形成しない合金等と比べて極端に低下しておらず、よって、SOFCとしての性能に問題がないことも確認された。尚、本発明のSOFC用セルにおいて採用するスピネル系酸化物は、上述の実施形態では夫々単独で使用しているが、2種以上のスピネル系酸化物を混合した混合物の形態で使用しても構わない。
 一方、比較例1及び単一系酸化物については、図38から分かるように、「750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内」という本発明の範囲から逸脱する結果となった。ここで、上記平衡解離酸素分圧の範囲の下限値(1.83×10-20atm)は、単一系酸化物の一つとして示したWOの750℃における平衡解離酸素分圧である。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。
 実際に、比較例1の合金サンプルを用いて、上記実施例14~16と同様の効果確認試験を行うと、図4に示すように、空気極31におけるCr被毒が見られ、さらに、インタコネクト1を構成する合金等のCr枯れによる酸化劣化の進行を抑制できないことを確認した。
 また、本発明で規定する範囲(750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atm)から外れた平衡解離酸素分圧を有する単一系酸化物(例えば、図38中のAgO)で合金等の表面を被覆した場合では、図33に示すように、空気極31におけるCr被毒が見られ、さらに、インタコネクト1を構成する合金等のCr枯れによる酸化劣化の進行を抑制できないことを確認した。なお、ここでの平衡解離酸素分圧は、単一系酸化物が金属まで還元されるとしたときの値としている。また、平衡解離酸素分圧とは、金属と酸素などの単体から作られる酸化物の標準生成自由エネルギーから求められる値である(すなわち、エリンガム図から算出される値である)。
 さらに、図32から分かるように、従来の被膜材料である(La,Sr)CoOについても、合金等からのCrの飛散を防止することは充分でないことが再確認された。
 本発明にかかるSOFC用セルは、Crを含有する合金等と空気極とを接合してなるSOFC用セルにおいて、空気極のCr被毒の発生を良好に抑制するとともに、合金等のCr枯れによる酸化劣化の進行を抑制し得るSOFC用セルとして有効に利用可能である。
1:インタコネクト(合金又は酸化物)
1a:境界面
2a:空気流路
2:溝
2b:燃料流路
3:単セル
30:電解質膜
31:空気極
32:燃料極
C:SOFC用セル(固体酸化物形燃料電池用セル)

Claims (5)

  1.  Crを含有する合金又は酸化物と空気極とを接合してなる固体酸化物形燃料電池用セルであって、
     前記合金又は酸化物の表面に、750℃での平衡解離酸素分圧が1.83×10-20~3.44×10-13atmの範囲内にある第1の単一系酸化物と、当該第1の単一系酸化物よりも750℃での平衡解離酸素分圧が低い第2の単一系酸化物とから構成されるスピネル系酸化物を含む被膜を形成してなる固体酸化物形燃料電池用セル。
  2.  前記第1の単一系酸化物は、Fe、FeO、NiO、CoO、Ni、Mn及びCoからなる群から選択される請求項1に記載の固体酸化物形燃料電池用セル。
  3.  前記スピネル系酸化物は、NiCo、(ZnCo1-x)Co(0.45≦x≦1.00)、FeMn、NiMn、CoMn、MnFe、MnNi、MnCo、Mn(Mn0.25Co0.75、(Mn0.5Co0.5)Co、TiCo、ZnFe、FeCo、CoFe、MgCo、Co及びこれらの2種以上の混合物からなる群から選択される請求項1に記載の固体酸化物形燃料電池用セル。
  4.  前記被膜は、0.1~100μmの厚みを有する請求項1~3の何れか一項に記載の固体酸化物形燃料電池用セル。
  5.  前記被膜は、焼結助剤を添加して焼成されたものである請求項1~4の何れか一項に記載の固体酸化物形燃料電池用セル。
PCT/JP2009/058079 2008-04-24 2009-04-23 固体酸化物形燃料電池用セル WO2009131180A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2722549A CA2722549C (en) 2008-04-24 2009-04-23 Cell for solid oxide fuel cell
DK09734441.0T DK2276094T3 (da) 2008-04-24 2009-04-23 Celle til fastoxidbrændsels-batteri
EP09734441.0A EP2276094B1 (en) 2008-04-24 2009-04-23 Cell for solid oxide fuel battery
US12/989,103 US8865373B2 (en) 2008-04-24 2009-04-23 Cell for solid oxide fuel cell
JP2010509219A JP4659136B2 (ja) 2008-04-24 2009-04-23 固体酸化物形燃料電池用セル

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008114315 2008-04-24
JP2008-114315 2008-04-24
JP2008195189 2008-07-29
JP2008-195189 2008-07-29
JP2008267607 2008-10-16
JP2008-267607 2008-10-16

Publications (1)

Publication Number Publication Date
WO2009131180A1 true WO2009131180A1 (ja) 2009-10-29

Family

ID=41216909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058079 WO2009131180A1 (ja) 2008-04-24 2009-04-23 固体酸化物形燃料電池用セル

Country Status (7)

Country Link
US (1) US8865373B2 (ja)
EP (1) EP2276094B1 (ja)
JP (1) JP4659136B2 (ja)
KR (1) KR101553270B1 (ja)
CA (1) CA2722549C (ja)
DK (1) DK2276094T3 (ja)
WO (1) WO2009131180A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062145A (ja) * 2008-08-28 2010-03-18 General Electric Co <Ge> インターコネクト用バリア皮膜、関連装置及び形成方法
JP2011098874A (ja) * 2009-11-09 2011-05-19 Ngk Insulators Ltd 接合体
CN102108552A (zh) * 2010-11-15 2011-06-29 复旦大学 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
JP2011192546A (ja) * 2010-03-15 2011-09-29 Osaka Gas Co Ltd 燃料電池用インターコネクタの製造方法
WO2012132894A1 (ja) * 2011-03-30 2012-10-04 株式会社村田製作所 燃料電池
WO2012132893A1 (ja) * 2011-03-30 2012-10-04 株式会社村田製作所 燃料電池
JP2012212651A (ja) * 2011-03-22 2012-11-01 Osaka Gas Co Ltd 保護膜形成方法、セル接続部材および固体酸化物形燃料電池用セル
JP2013012473A (ja) * 2011-06-03 2013-01-17 Osaka Gas Co Ltd 固体酸化物型燃料電池および固体酸化物型燃料電池の製造方法
JP2013051151A (ja) * 2011-08-31 2013-03-14 Kyocera Corp 固体酸化物形燃料電池セル、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2013118177A (ja) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd 固体酸化物形燃料電池
JP2013118178A (ja) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd 固体酸化物形燃料電池
JP2014067491A (ja) * 2012-09-24 2014-04-17 Osaka Gas Co Ltd 保護膜形成方法、セル接続部材および固体酸化物型燃料電池用セル
JP2014112499A (ja) * 2012-12-05 2014-06-19 Osaka Gas Co Ltd セル間接続部材の製造方法および固体酸化物型燃料電池
JP2015201422A (ja) * 2014-04-01 2015-11-12 大阪瓦斯株式会社 固体酸化物形燃料電池用セルの製造方法、セル間接続部材接合方法、および接合方法
JP5996137B1 (ja) * 2016-03-17 2016-09-21 大阪瓦斯株式会社 セル間接続部材および固体酸化物形燃料電池用セル
US10219395B2 (en) 2013-11-28 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2019139894A (ja) * 2018-02-08 2019-08-22 日本特殊陶業株式会社 導電性部材、電気化学反応単位および電気化学反応セルスタック
US10727465B2 (en) 2013-11-15 2020-07-28 Semiconductor Energy Laboratory Co., Ltd. Nonaqueous secondary battery
JP2020161478A (ja) * 2019-03-22 2020-10-01 大阪瓦斯株式会社 固体酸化物形燃料電池の製造方法及び固体酸化物形燃料電池
JP2020161479A (ja) * 2019-03-22 2020-10-01 大阪瓦斯株式会社 固体酸化物形燃料電池の製造方法及び固体酸化物形燃料電池
US10833309B2 (en) 2012-12-28 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Method and system for replacing electrolyte solution of secondary battery
WO2022113411A1 (ja) 2020-11-26 2022-06-02 京セラ株式会社 導電部材、セル、セルスタック装置、モジュールおよびモジュール収容装置
WO2022220268A1 (ja) 2021-04-13 2022-10-20 京セラ株式会社 導電部材、電気化学セル装置、モジュール、モジュール収容装置、スラリー、導電部材の製造方法、導電性材料および導電性粉体材料
WO2023286749A1 (ja) 2021-07-12 2023-01-19 京セラ株式会社 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023033091A1 (ja) 2021-08-31 2023-03-09 京セラ株式会社 電気化学セル装置、モジュールおよびモジュール収容装置
US11799095B2 (en) 2020-11-26 2023-10-24 Kyocera Corporation Conductive member, cell, cell stack device, module, and module housing device

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9070932B2 (en) * 2011-10-11 2015-06-30 Massachusetts Institute Of Technology Carbon electrodes
WO2013090601A2 (en) 2011-12-16 2013-06-20 Massachusetts Institute Of Technology Compact nanoparticles for biological applications
KR20150129024A (ko) * 2013-03-15 2015-11-18 엘지 퓨얼 셀 시스템즈 인코포레이티드 크롬을 포획하도록 구성된 연료 전지 시스템
CN103184451B (zh) * 2013-03-28 2015-08-05 常州大学 一种抗氧化导电尖晶石涂层的制备工艺
JP5522870B1 (ja) * 2013-04-12 2014-06-18 日本碍子株式会社 燃料電池セル
KR101392684B1 (ko) * 2013-05-13 2014-05-27 한국과학기술원 인터코넥트 코팅 기반 금속지지체 고체산화물 연료전지 제작방법 및 이에 의하여 제조된 고체산화물 연료전지
US9559384B2 (en) 2013-05-15 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for restoring capacity of secondary battery
CN103579638B (zh) * 2013-11-11 2016-04-27 上海中聚佳华电池科技有限公司 锂空气电池的空气电极催化剂及其制备方法
JP6220296B2 (ja) * 2014-03-19 2017-10-25 日本碍子株式会社 耐熱性部材及びその製造方法
JP6699994B2 (ja) 2014-05-23 2020-05-27 株式会社半導体エネルギー研究所 二次電池
CA2956069A1 (en) 2014-07-21 2016-01-28 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode
CN104659360A (zh) * 2015-03-19 2015-05-27 武汉大学 一种镍钴氧氧化物电极材料及其制备方法和应用
US10115974B2 (en) 2015-10-28 2018-10-30 Lg Fuel Cell Systems Inc. Composition of a nickelate composite cathode for a fuel cell
US20190067708A1 (en) * 2016-01-28 2019-02-28 Kyocera Corporation Electroconductive member, cell stack, module, and module storage device
KR102148077B1 (ko) * 2017-09-08 2020-08-26 주식회사 엘지화학 고체산화물 연료 전지용 연결재, 그 제조방법 및 고체 산화물 연료 전지
CN108010732B (zh) * 2017-11-30 2019-04-30 济南大学 一种应用于超级电容器的纳米复合材料的制备方法
CN108166246A (zh) * 2017-12-25 2018-06-15 济南大学 一种应用于电催化析氧的新型纳米复合材料的制备方法
JP2022119078A (ja) * 2021-02-03 2022-08-16 東芝エネルギーシステムズ株式会社 保護層付きインターコネクタ、この保護層付きインターコネクタを具備するセルスタックならびに燃料電池
CN114772656B (zh) * 2022-03-02 2023-07-04 重庆理英新能源科技有限公司 低成本高首效富锂锰基正极材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501764A (ja) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド 燃料電池インタコネクタデバイス
JP2001196077A (ja) * 2000-01-13 2001-07-19 Tokyo Gas Co Ltd 固体電解質型燃料電池のセパレータ
JP2004259643A (ja) 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 固体酸化物燃料電池
JP2006032183A (ja) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。
JP2007016297A (ja) * 2005-07-11 2007-01-25 Hitachi Metals Ltd 固体酸化物型燃料電池セパレータ用鋼
JP2007162132A (ja) * 2005-11-28 2007-06-28 General Electric Co <Ge> 中温用途に使用される組成物、その製造方法及びそれを含む物品
WO2007083627A1 (ja) 2006-01-17 2007-07-26 Osaka Gas Co., Ltd. 固体酸化物形燃料電池用セル及びその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202089A (en) * 1981-06-05 1982-12-10 Matsushita Electric Ind Co Ltd Sheathed heater
AU2001230356A1 (en) * 2000-01-28 2001-08-07 Catalytic Electrodes Limited Carbon monoxide detector
DE10306649A1 (de) 2003-02-18 2004-09-02 Forschungszentrum Jülich GmbH Schutzschicht für hochtemperaturbelastete Substrate, sowie Verfahren zur Herstellung derselben
DE102005015755A1 (de) * 2005-04-06 2006-10-12 Forschungszentrum Jülich GmbH Verfahren zur Herstellung einer Chromverdampfungsschutzschicht für chromoxidbildende Metallsubstrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501764A (ja) * 1995-03-15 1999-02-09 セラミック・フューエル・セルズ・リミテッド 燃料電池インタコネクタデバイス
JP2001196077A (ja) * 2000-01-13 2001-07-19 Tokyo Gas Co Ltd 固体電解質型燃料電池のセパレータ
JP2004259643A (ja) 2003-02-27 2004-09-16 Sanyo Electric Co Ltd 固体酸化物燃料電池
JP2006032183A (ja) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。
JP2007016297A (ja) * 2005-07-11 2007-01-25 Hitachi Metals Ltd 固体酸化物型燃料電池セパレータ用鋼
JP2007162132A (ja) * 2005-11-28 2007-06-28 General Electric Co <Ge> 中温用途に使用される組成物、その製造方法及びそれを含む物品
WO2007083627A1 (ja) 2006-01-17 2007-07-26 Osaka Gas Co., Ltd. 固体酸化物形燃料電池用セル及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2276094A4 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062145A (ja) * 2008-08-28 2010-03-18 General Electric Co <Ge> インターコネクト用バリア皮膜、関連装置及び形成方法
JP2011098874A (ja) * 2009-11-09 2011-05-19 Ngk Insulators Ltd 接合体
JP2011192546A (ja) * 2010-03-15 2011-09-29 Osaka Gas Co Ltd 燃料電池用インターコネクタの製造方法
CN102108552B (zh) * 2010-11-15 2013-05-01 复旦大学 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
CN102108552A (zh) * 2010-11-15 2011-06-29 复旦大学 一种NiCo2O4纳米晶体薄膜的制备方法及其在制备半导体光电器件的应用
JP2012212651A (ja) * 2011-03-22 2012-11-01 Osaka Gas Co Ltd 保護膜形成方法、セル接続部材および固体酸化物形燃料電池用セル
WO2012132894A1 (ja) * 2011-03-30 2012-10-04 株式会社村田製作所 燃料電池
WO2012132893A1 (ja) * 2011-03-30 2012-10-04 株式会社村田製作所 燃料電池
JPWO2012132893A1 (ja) * 2011-03-30 2014-07-28 株式会社村田製作所 燃料電池
US9287575B2 (en) 2011-03-30 2016-03-15 Murata Manufacturing Co., Ltd. Fuel cell
JPWO2012132894A1 (ja) * 2011-03-30 2014-07-28 株式会社村田製作所 燃料電池
JP5418722B2 (ja) * 2011-03-30 2014-02-19 株式会社村田製作所 燃料電池
JP5418723B2 (ja) * 2011-03-30 2014-02-19 株式会社村田製作所 燃料電池
JP2013012473A (ja) * 2011-06-03 2013-01-17 Osaka Gas Co Ltd 固体酸化物型燃料電池および固体酸化物型燃料電池の製造方法
JP2013051151A (ja) * 2011-08-31 2013-03-14 Kyocera Corp 固体酸化物形燃料電池セル、セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2013118177A (ja) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd 固体酸化物形燃料電池
JP2013118178A (ja) * 2011-10-31 2013-06-13 Osaka Gas Co Ltd 固体酸化物形燃料電池
JP2014067491A (ja) * 2012-09-24 2014-04-17 Osaka Gas Co Ltd 保護膜形成方法、セル接続部材および固体酸化物型燃料電池用セル
JP2014112499A (ja) * 2012-12-05 2014-06-19 Osaka Gas Co Ltd セル間接続部材の製造方法および固体酸化物型燃料電池
US10833309B2 (en) 2012-12-28 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Method and system for replacing electrolyte solution of secondary battery
US10727465B2 (en) 2013-11-15 2020-07-28 Semiconductor Energy Laboratory Co., Ltd. Nonaqueous secondary battery
US11769902B2 (en) 2013-11-15 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Nonaqueous secondary battery
US10219395B2 (en) 2013-11-28 2019-02-26 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2015201422A (ja) * 2014-04-01 2015-11-12 大阪瓦斯株式会社 固体酸化物形燃料電池用セルの製造方法、セル間接続部材接合方法、および接合方法
JP2017168358A (ja) * 2016-03-17 2017-09-21 大阪瓦斯株式会社 セル間接続部材および固体酸化物形燃料電池用セル
JP5996137B1 (ja) * 2016-03-17 2016-09-21 大阪瓦斯株式会社 セル間接続部材および固体酸化物形燃料電池用セル
JP2019139894A (ja) * 2018-02-08 2019-08-22 日本特殊陶業株式会社 導電性部材、電気化学反応単位および電気化学反応セルスタック
JP2020161479A (ja) * 2019-03-22 2020-10-01 大阪瓦斯株式会社 固体酸化物形燃料電池の製造方法及び固体酸化物形燃料電池
JP2020161478A (ja) * 2019-03-22 2020-10-01 大阪瓦斯株式会社 固体酸化物形燃料電池の製造方法及び固体酸化物形燃料電池
WO2022113411A1 (ja) 2020-11-26 2022-06-02 京セラ株式会社 導電部材、セル、セルスタック装置、モジュールおよびモジュール収容装置
US11799095B2 (en) 2020-11-26 2023-10-24 Kyocera Corporation Conductive member, cell, cell stack device, module, and module housing device
WO2022220268A1 (ja) 2021-04-13 2022-10-20 京セラ株式会社 導電部材、電気化学セル装置、モジュール、モジュール収容装置、スラリー、導電部材の製造方法、導電性材料および導電性粉体材料
WO2023286749A1 (ja) 2021-07-12 2023-01-19 京セラ株式会社 電気化学セル、電気化学セル装置、モジュールおよびモジュール収容装置
WO2023033091A1 (ja) 2021-08-31 2023-03-09 京セラ株式会社 電気化学セル装置、モジュールおよびモジュール収容装置

Also Published As

Publication number Publication date
US20110287341A1 (en) 2011-11-24
EP2276094A4 (en) 2012-04-11
EP2276094B1 (en) 2014-04-16
CA2722549C (en) 2016-10-04
JP4659136B2 (ja) 2011-03-30
EP2276094A1 (en) 2011-01-19
CA2722549A1 (en) 2009-10-29
KR101553270B1 (ko) 2015-09-15
KR20110020781A (ko) 2011-03-03
JPWO2009131180A1 (ja) 2011-08-18
DK2276094T3 (da) 2014-05-12
US8865373B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
WO2009131180A1 (ja) 固体酸化物形燃料電池用セル
JP5607903B2 (ja) インターコネクト用バリア皮膜、関連装置及び形成方法
US10446854B2 (en) Coatings for metal interconnects to reduce SOFC degradation
JP5260052B2 (ja) 固体酸化物型燃料電池
EP1976045B1 (en) Cell for solid oxide fuel cell and process for producing the same
JP5090800B2 (ja) インターコネクタ及び固体酸化物形燃料電池
JP5770659B2 (ja) 固体酸化物形燃料電池用セルおよびセル間接続部材
JP2013118178A (ja) 固体酸化物形燃料電池
JP5778711B2 (ja) セル間接続部材の製造方法およびセル間接続部材および固体酸化物形燃料電池用セル
JP2013118177A (ja) 固体酸化物形燃料電池
US20080131750A1 (en) Ceramic electrolyte structure and method of forming; and related articles
JP5215443B2 (ja) 固体酸化物形燃料電池
JP6188372B2 (ja) 固体酸化物形燃料電池用セルおよび燃料電池用セル間接続部材
JP2009266582A (ja) 固体酸化物形燃料電池用セル
JP6947297B2 (ja) 固体酸化物燃料電池用連結材、その製造方法および固体酸化物燃料電池
JP6910172B2 (ja) セル間接続部材の製造方法
JP2009021181A (ja) 固体酸化物形燃料電池用セル及びその製造方法
Shao et al. Interconnect materials for IT-SOFCs
Yu The Performance of Spinel-Based Interconnect Coating and Cathode-Side Contact Layer for Solid Oxide Fuel Cell
JP6948791B2 (ja) セル間接続部材の製造方法、および固体酸化物形燃料電池用セルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09734441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2722549

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009734441

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107026307

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12989103

Country of ref document: US