JP2006032183A - 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。 - Google Patents

電気伝導性材料及びこれを用いた固体酸化物形燃料電池。 Download PDF

Info

Publication number
JP2006032183A
JP2006032183A JP2004210981A JP2004210981A JP2006032183A JP 2006032183 A JP2006032183 A JP 2006032183A JP 2004210981 A JP2004210981 A JP 2004210981A JP 2004210981 A JP2004210981 A JP 2004210981A JP 2006032183 A JP2006032183 A JP 2006032183A
Authority
JP
Japan
Prior art keywords
powder material
air electrode
conductive material
current collector
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004210981A
Other languages
English (en)
Inventor
Itaru Shibata
格 柴田
Hiromi Sugimoto
博美 杉本
Kazufumi Takeuchi
和史 竹内
Tatsuya Yaguchi
竜也 矢口
Mitsugi Yamanaka
貢 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004210981A priority Critical patent/JP2006032183A/ja
Publication of JP2006032183A publication Critical patent/JP2006032183A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Ceramic Products (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】電気伝導性、耐高温酸化性に優れると共に、成膜性に優れ、例えば空気極用の集電体として、空気極上にも容易に成膜することができる電気伝導性材料と、このような材料を空気極用集電体として備えた固体酸化物形燃料電池を提供する。
【解決手段】導電性を有する炭化物、ほう化物及び窒化物(例えばCr、CrB、CrN、TaC、TaN、ZrB、ZrN)から選ばれた少なくとも1種の化合物から成る第1の粉末材料5aと、導電性酸化物(例えばBi、SiO、Al、B、MnO)から選ばれた少なくとも1種の酸化物から成る第2の粉末材料5bを含む混合物を焼結して電気伝導性材料とし、この電気伝導性材料を集電体層5として固体酸化物形燃料電池1の空気極4の上に成膜する。
【選択図】図1

Description

本発明は、高温時の耐酸化性に優れた導電性セラミックス材料に係わり、とくに多孔質化してガス透過性を付与することによって、固体酸化物形燃料電池における酸化剤側触媒電極(以下、「空気極」と称す)用の集電体として好適に用いられる電気伝導性材料に関するものである。
固体酸化物形燃料電池(SOFC)は、例えばイットリア安定化ジルコニア(YSZ)のような固体酸化物から成る電解質と、この固体電解質を間に挟んで互いに対向する状態に配置された燃料極と空気極から基本的に構成され、例えば600℃を超えるような高温において作動する電池であって、燃料極側に水素などの燃料ガスを供給する一方、空気極側に空気などの酸化性ガスを供給することによって電気化学反応に基づく直流電力を得ることができる。
したがって、空気極側に配設される集電体には、電気伝導性と共に、耐熱性及び耐酸化性が要求され、例えばランタンクロマイト系の酸化物材料や、ステンレス又はNi基耐熱合金などの金属材料が使用されていた(例えば、特許文献2参照)。
特開平9−161820号公報
しかしながら、上記ランタンクロマイト系の酸化物材料の電気伝導度は、700℃において数十S/cmの低い値に過ぎない。また、このようなランタンクロマイト系酸化物は、空気極の上に直接成膜することができず、空気極/集電体間の接触抵抗が発生すると言う問題点もある。
一方、ステンレスや耐熱合金などの金属材料においては、電気伝導性は十分に高いものであるものの、酸化雰囲気中で長時間使用すると、その表面に非導電性又は低導電性の皮膜が形成されるという問題点があった。
非金属材料の中で、高い導電性を有するものとしては、導電性炭化物、ほう化物、窒化物が知られており、例えば、Cr(電気伝導度:1330S/cm)、CrB(電気伝導度:2200S/cm)、CrN(電気伝導度:1200S/cm)、TaC(電気伝導度:4500S/cm)、TaN(電気伝導度:510S/cm)、ZrB(電気伝導度:10000S/cm)、ZrN(電気伝導度:5500S/cm)は、700℃までの温度での耐酸化性をも備えている。
しかしながら、これら炭化物、ほう化物、窒化物を燃料電池の集電体として使用する場合、これらの成膜性が劣り、通常の印刷法による成膜が困難である一方、スパッタリングや蒸着などによる真空成膜法では、組成のずれが生じ易く、いずれにしても目的とする導電性を備えた集電体膜を得ることが極めて困難であった。
本発明は、固体酸化物形燃料電池の空気極用集電体における上記課題を解決すべくなされたものであって、その目的とするところは、電気伝導性、耐高温酸化性に優れると共に、成膜性に優れ、例えば空気極用の集電体として、空気極上にも容易に成膜することができる電気伝導性材料と、このような材料を空気極用集電体として備えた固体酸化物形燃料電池を提供することにある。
本発明者らは、導電性を備えた上記炭化物、ほう化物、窒化物の成膜性を改善すべく、成膜法やその条件、焼結条件等について鋭意検討を重ねた結果、酸化物の焼結助剤としての機能に着目し、導電性酸化物を混合して焼結することによって、上記導電性化合物の焼結性が向上し、成膜が可能になることを見出し、本発明を完成するに到った。
本発明は上記知見に基づくものであって、本発明の電気伝導性材料は、導電性を有する炭化物、ほう化物及び窒化物、例えばCr、CrB、CrN、TaC、TaN、ZrB、及びZrNから成る群から選ばれた少なくとも1種の化合物である第1の粉末材料100重量部と、導電性酸化物、例えばBi、SiO、Al、B及びMnOから成る群から選ばれた少なくとも1種の酸化物である第2の粉末材料3〜10重量部を含む混合物を焼結して成ることを特徴としている。
また、本発明の固体酸化物形燃料電池は、本発明の上記電気伝導性材料を空気極用の集電体として、空気極上に、望ましくはガス透過性を備えた多孔質体として成膜したことを特徴としている。
本発明によれば、導電性を有する炭化物、ほう化物及び窒化物から選ばれた少なくとも1種の化合物である第1の粉末材料と、導電性を備えた酸化物から選ばれた少なくとも1種の酸化物である第2の粉末材料を含んだ混合物を焼結するようにしており、当該第2の粉末材料が一種のバインダーとして働くことから、第1の粉末材料だけでは不十分な焼結性が向上し、主成分である第1の粉末材料の導電性、耐高温酸化性を活かして、耐熱性、耐酸化性に優れ、しかも成膜可能な電気伝導性材料とすることができる。
また、このような電気伝導性材料を固体酸化物形燃料電池の空気極上に成膜することにより、当該電気伝導性材料が空気極の集電体として機能し、その導電性と耐高温酸化性によって、長期に亘って安定な集電機能を果すと共に、空気極に直接成膜されていることから、空気極/集電体間の接触抵抗が実質的に発生せず、集電ロスを低減して電池性能を最大限に引き出すことができるという極めて優れた効果がもたらされる。
以下、本発明の電気伝導性材料に関して、その製造方法や用途などについてさらに詳細に説明する。
本発明の電気伝導性材料は、上記したように、導電性、耐高温酸化性を備えた主成分である第1の粉末材料(炭化物、ほう化物、窒化物)の焼結性を導電性酸化物の添加によって向上させ、成膜を可能としたものであるが、これら粉末材料の混合比率としては、第1の粉末材料100重量部に対する第2の粉末材料の添加量を3〜10重量部とする必要がある。
これは、第2の粉末材料の混合比率が3%に満たない場合には、焼結助剤としての機能が十分に得られず、結合力が不足し、逆に10%を超えると耐熱性が損なわれることによる。
上記第1の粉末材料としては、Cr、Ta及びZrの炭化物、ほう化物及び窒化物、より具体的には、上記したように、Cr、CrB、CrN、TaC、TaN、ZrB若しくはZrN、またはこれら化合物の2種以上を任意に組み合わせて使用することができる。なお、これらは、上記したように、電気伝導性及び耐高温酸化性に優れることによる。
第2の粉末材料としては、Bi、Si及びBの酸化物、例えば、上記したようなBi、SiO、Al、B及びMnOを単独で、あるいはこれらの2種以上を任意に組み合わせて使用することができる。
これらの酸化物の導電性は、10〜50S/cmであって、必ずしも高くはないが、添加量が比較的少量(3〜10重量部)であることから、最終製品の導電性に対する影響はさほど大きくはない。また、これらの酸化物同士をブレンドすることによって、焼結温度に応じて当該酸化物の軟化点を550〜800℃程度の範囲に調整することができ、第1の粉末材料の周囲に介在して、これら主成分粉末同士や、成膜する場合には成膜基板との間を機械的、電気的に結合することができる。
なお、本発明の電気伝導性材料を燃料電池空気極の集電体として使用する場合には、空気極に対して電子を注入できるという電気化学的効果をも得ることができる。
上記第1及び第2の粉末材料の粒子径については、第1の粉末材料については5〜30μm、第2の粉末材料については5μm以下とすることが望ましい。すなわち、第1粉末材料の粒子径が5μmに満たないときには、集電体として緻密になり良好なガス透過性およびガス拡散性が不十分となり、逆に30μmを超えた場合には、集電体として脆くなる傾向があり、第2粉末材料の粒子径が5μmを超えると第1の粉末材料の粉間を塞ぎ集電体として緻密になり良好なガス透過性およびガス拡散性が不十分となる傾向があって好ましくない。
本発明の電気伝導性材料を例えば、固体酸化物形燃料電池の空気極上に成膜する場合には、上記第1及び第2の粉末材料に有機バインダーや溶媒、界面活性剤などを加えることによって導電性インキやペーストを調合し、これをスクリーン印刷などの手法によって塗布した後、例えば大気雰囲気中において、700〜850℃程度の温度範囲で、1時間程度焼結するようになす。
また、本発明の電気伝導性材料を燃料電池空気極の集電体として使用する場合には、空気極に酸素を供給する必要性から、当該電気伝導性材料を多孔質化してガス透過性を確保することが望ましい。このような場合には、例えば、上記インキやペーストに造孔剤としての炭素粉末や樹脂粉末をあらかじめ添加しておくことによって多孔性の導電性膜を形成することができる。
なお、電気伝導性材料をメッシュ状に成膜することによっても、空気極へのガス透過性を確保することができる。
さらに、本発明の電気伝導性材料は、上記したような燃料電池の空気極用集電体としての用途のみならず、高温の酸化性雰囲気内で使用される可能性のある各種の電気・電子部品用の導電性セラミックス材料として広く使用することができる。
この場合には、上記のような導電性ペーストや導電性塗料として、部品の所望部位に塗布して焼成したり、セラミックスの一般的な成形方法によって所望の部品形状に成形した後、焼成したりすることによって使用することができる。
本発明の固体酸化物形燃料電池は、上記の電気伝導性材料を空気極用の集電体として、空気極上に成膜したものであって、例えば、図1(a)に示すような構造を有している。
図において、本発明の固体酸化物形燃料電池1は、例えばYSZ、SSZ(スカンジウム安定化ジルコニア)、SDC(サマリウムドープトセリア)、LSGM(ランタンガレート)などから成る電解質2の一方の面(図中下側)に、例えばPt、Ni、Cuなどの金属材料や、Ni−SDC、Ni−YSZ、Ni−CGO(セリウム−ガリウム複合酸化物)、Cu−CeO(セリア)などのサーメット材料などから成る燃料極3を形成すると共に、上記電解質2の他方の面(図中上側)に、例えばPt、Agといった金属材料や、LSM(La1−XSrMnO)、LCM(La1−XCaMnO)、LSC(La1−XSrCoO)、SSC(Sm1−XSrCoO)などの複合酸化物などから成る空気極4を形成し、さらに上記空気極4の上には、上記電気伝導性材料から成る集電体層5が成膜されている。
図1(b)は、上記の集電体層5の拡大概念図であって、当該集電体層5は、第1の粉末材料5a(例えば、Cr、CrB、CrN、TaC、TaN、ZrB、ZrN)と、第2の粉末材料5b(例えば、Bi、SiO、Al、B及びMnO)の多孔質焼結体であって、第1の粉末材料5aの大径粒子間、及び第1の粉末材料5aと空気極4の間に小径の第2の粉末材料5bが介在した構造を有している。
以下、本発明を実施例に基づいて具体的に説明する。なお、本発明は、これらの実施例のみに限定されないことは言うまでもない。
実施例1
(1)セルの形成
電解質2として、厚さ150μmの8YSZ(8モル%イットリウム添加安定化ジルコニア)から成る基板を使用し、この一方の面上にNi−8YSZサーメット(Ni:8YSZ=50:50)を30μmの厚さに形成して燃料極3とすると共に、他方の面上にLSM(La0.8Sr0.2MnO)を50μmの厚さに形成して空気極4とした。
(2)導電性ペーストの調整
平均粒径15μmのCr粉末(第1の粉末材料)と平均粒径1μmのBi、SiO、Bの混合粉末(第2の粉末材料)とを95:5の質量比で混合した粉末と、エチルセルロースと、造孔材として平均粒径5μmの炭素粉とを45:50:5の質量比で混合することにより、導電性ペーストを調整した。
(3)導電性ペーストの塗布
(2)で調整した導電性ペーストをスクリーン印刷の手法によって、(1)で作製したセルの空気極4の上に110μmの厚さに塗布した。
(4)集電体膜の焼成
空気極4に導電性ペーストを塗布したセルを焼成することによって、平均粒径15μmの第1の粉末材料5aと平均粒径1μmの第2の粉末材料5bの質量比が95:5(第1の粉末材料100重量部に対して第2の粉末材料5.3重量部)図1に示すように、La−Sr−Ga−Mg複合酸化物(La:Sr:Ga:Mg=9:1:8:2)であって、気孔率が67%の電気伝導性材料から成る集電体層5を70μmの厚さに形成し、図1に示したような固体酸化物形燃料電池1を得た。
(5)評価
(4)で形成された集電体層5の電気伝導度を測定した結果、420S/cmであった。この値は、バルク値に対して約3割程度に相当するが、これは多孔質化によるものと考えられる。
さらに、600℃において上記燃料電池1の発電性能を測定した結果、発電出力は45mW/cmであり、空気極側の抵抗は15Ωcmであった。
比較例1
上記実施例1と同様に作製したセルの空気極4に上記のような集電体層5を成膜する代わりに、図2示すように、白金メッシュ10を空気極4に押し付け、同様に電池性能を評価した結果、発電出力は8mW/cm、空気極側の抵抗は43Ωcmであった。
比較例2
上記実施例1で用いた第1の粉末材料と第2の粉末材料の質量比を85:15(第1の粉末材料100重量部に対して第2の粉末材料17.65重量部)とした導電性ペーストを同様の方法により調整し、これを上記実施例1と同様に作製したセルの空気極4に同様に塗布及び焼成することによって、気孔率が58%の集電体層5を70μmの厚さに形成した。
得られた燃料電池1について、同様の評価を実施した結果、集電体層5の電気伝導度は450S/cmで、上記実施例1とほぼ同等の結果が得られたが、600℃における発電出力は30mW/cm、空気極側の抵抗は43Ωcmであった。
これは、導電性酸化物(第2の粉末材料)過剰に基づく集電体層及び空気極の緻密化によるものと考えられる。
比較例3
上記実施例1で用いた第1の粉末材料と第2の粉末材料の質量比を99:1(第1の粉末材料100重量部に対して第2の粉末材料1.01重量部)とした導電性ペーストを同様の方法により調整し、これを上記実施例1と同様に作製したセルの空気極4に同様に塗布及び焼成することによって、気孔率が58%の集電体層5を70μmの厚さに形成した。
得られた燃料電池1について、同様の評価を実施した結果、集電体層5の電気伝導度は200S/cmであって、上記実施例1に較べて著しく導電性が低下した。これは、導電性酸化物(第2の粉末材料)の不足に基づく集電体層5内のとほぼ道央の結果が得られたが、発電出力は30mW/cm、空気極側の抵抗は43Ωcmであった。これは、導電性酸化物(第2の粉末材料)の不足によって、集電体層5内におけるCr粉末同士の結合やCr粉末と空気極4の結合が十分なものとなっていないことによるものと考えられる。
なお、600℃における発電出力は12mW/cm、空気極側の抵抗は38Ωcmであった。
(a)本発明の電気伝導性材料を空気極の集電体層として用いた固体酸化物形燃料電池の構造を示す断面図である。(b)図1(a)に示した集電体層の構造を説明する拡大概念図である。 比較例1における電池性能の評価要領を示す断面図である。
符号の説明
1 固体酸化物形燃料電池
2 電解質
3 燃料極
4 空気極
5 集電体層
5a 第1の粉末材料
5b 第2の粉末材料

Claims (8)

  1. 導電性を有する炭化物、ほう化物及び窒化物の中から選ばれた少なくとも1種の化合物から成る第1の粉末材料100重量部と、導電性を有する酸化物の中から選ばれた少なくとも1種から成る第2の粉末材料3〜10重量部を含む混合物を焼結して成ることを特徴とする電気伝導性材料。
  2. 上記第1の粉末材料がCr、Ta及びZrの炭化物、ほう化物及び窒化物から成る群から選ばれた少なくとも1種であることを特徴とする請求項1に記載の電気伝導性材料。
  3. 上記第1の粉末材料がCr、CrB、CrN、TaC、TaN、ZrB、及びZrNから成る群から選ばれた少なくとも1種であることを特徴とする請求項2に記載の電気伝導性材料。
  4. 上記第2の粉末材料がBi、Si、Al、B及びMnから成る群から選ばれた少なくとも1種であることを特徴とする請求項1〜3のいずれか1つの項に記載の電気伝導性材料。
  5. 上記第2の粉末材料がBi、SiO、Al、B及びMnOから成る群から選ばれた少なくとも1種であることを特徴とする請求項4に記載の電気伝導性材料。
  6. 上記第1の粉末材料の粒径が5〜30μm、第2の粉末材料の粒径が5μm以下であることを特徴とする請求項1〜5のいずれか1つの項に記載の電気伝導性材料。
  7. ガス透過性を有することを特徴とする請求項1〜6のいずれか1つの項に記載の電気伝導性材料。
  8. 請求項1〜7のいずれか1つの項に記載の電気伝導性材料を空気極に成膜して成ることを特徴とする固体酸化物型燃料電池。
JP2004210981A 2004-07-20 2004-07-20 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。 Pending JP2006032183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210981A JP2006032183A (ja) 2004-07-20 2004-07-20 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210981A JP2006032183A (ja) 2004-07-20 2004-07-20 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。

Publications (1)

Publication Number Publication Date
JP2006032183A true JP2006032183A (ja) 2006-02-02

Family

ID=35898267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210981A Pending JP2006032183A (ja) 2004-07-20 2004-07-20 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。

Country Status (1)

Country Link
JP (1) JP2006032183A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338983A (ja) * 2005-06-01 2006-12-14 Univ Of Electro-Communications 透明導電性成形物及びその製造方法
WO2009131180A1 (ja) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 固体酸化物形燃料電池用セル
JP2010135283A (ja) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池とその作製方法
WO2010109530A1 (ja) * 2009-03-26 2010-09-30 トヨタ自動車株式会社 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
US8859116B2 (en) 2006-04-26 2014-10-14 Technical University Of Denmark Multi-layer coating

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338983A (ja) * 2005-06-01 2006-12-14 Univ Of Electro-Communications 透明導電性成形物及びその製造方法
JP4570152B2 (ja) * 2005-06-01 2010-10-27 国立大学法人電気通信大学 透明導電性成形物及びその製造方法
US8859116B2 (en) 2006-04-26 2014-10-14 Technical University Of Denmark Multi-layer coating
WO2009131180A1 (ja) * 2008-04-24 2009-10-29 大阪瓦斯株式会社 固体酸化物形燃料電池用セル
JP4659136B2 (ja) * 2008-04-24 2011-03-30 大阪瓦斯株式会社 固体酸化物形燃料電池用セル
US8865373B2 (en) 2008-04-24 2014-10-21 Osaka Gas Co., Ltd. Cell for solid oxide fuel cell
JP2010135283A (ja) * 2008-11-07 2010-06-17 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池とその作製方法
WO2010109530A1 (ja) * 2009-03-26 2010-09-30 トヨタ自動車株式会社 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
KR101175581B1 (ko) 2009-03-26 2012-08-21 도요타 지도샤(주) 전해질막의 형성 방법, 막전극 접합체 및 막전극 접합체의 제조 방법
JP5152322B2 (ja) * 2009-03-26 2013-02-27 トヨタ自動車株式会社 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
US8835080B2 (en) 2009-03-26 2014-09-16 Toyota Jidosha Kabushiki Kaisha Electrolyte mebrane formation method, membrane-electerode assembly, and membrane-electrode assembly manufacturing method

Similar Documents

Publication Publication Date Title
Xia et al. Microstructures, conductivities, and electrochemical properties of Ce0. 9Gd0. 1O2 and GDC–Ni anodes for low-temperature SOFCs
AU2004216002B2 (en) Porous electrode, solid oxide fuel cell, and method of producing the same
KR100648144B1 (ko) 고성능 연료극지지형 고체산화물 연료전지
US7740772B2 (en) Ceramic anodes and method of producing the same
US20050214612A1 (en) Solid state electrochemical composite
JP5160131B2 (ja) 電解質・電極接合体及びその製造方法
JP2008519404A (ja) 電気化学的電池構造体および制御粉末法によるその製造方法
US20140170532A1 (en) Solid-oxide fuel cell
JPWO2017013868A1 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
Kong et al. A cost-effective process for fabrication of metal-supported solid oxide fuel cells
Zhou et al. Novel architectured metal-supported solid oxide fuel cells with Mo-doped SrFeO3− δ electrocatalysts
JP6370696B2 (ja) セル構造体、電解質膜−電極接合体、および、燃料電池
JP3924772B2 (ja) 固体電解質型燃料電池の空気極集電体
JP2015088284A (ja) 固体酸化物形燃料電池
CA2486276C (en) Solid electrolytic fuel cell having oxygen electrode layer on solid electrolytic layer via reaction preventing layer
JP2002280026A (ja) 固体電解質型燃料電池の空気極集電体
CA2735868C (en) Optimized cell configurations for stable lscf-based solid oxide fuel cells
JP2006032183A (ja) 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。
JP5365123B2 (ja) 固体酸化物形燃料電池用電解質、及びこれを用いた固体酸化物形燃料電池
JP2008234915A (ja) 固体酸化物形燃料電池の集電体材料、空気極集電体及び固体酸化物形燃料電池
JP4849774B2 (ja) 固体電解質形燃料電池セル及び固体電解質形燃料電池
JP6088949B2 (ja) 燃料電池単セルおよびその製造方法
JP2016085921A (ja) セル支持体および固体酸化物形燃料電池
JP2008226762A (ja) 固体酸化物形燃料電池セルおよび固体酸化物形燃料電池
JP2005005025A (ja) 燃料電池用電極、これを用いた固体酸化物形燃料電池及びその製造方法