WO2010109530A1 - 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法 - Google Patents

電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法 Download PDF

Info

Publication number
WO2010109530A1
WO2010109530A1 PCT/JP2009/001361 JP2009001361W WO2010109530A1 WO 2010109530 A1 WO2010109530 A1 WO 2010109530A1 JP 2009001361 W JP2009001361 W JP 2009001361W WO 2010109530 A1 WO2010109530 A1 WO 2010109530A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
layer
forming
electrode
membrane
Prior art date
Application number
PCT/JP2009/001361
Other languages
English (en)
French (fr)
Inventor
伊藤直樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020107002434A priority Critical patent/KR101175581B1/ko
Priority to CN2009801003714A priority patent/CN101919093B/zh
Priority to JP2010504341A priority patent/JP5152322B2/ja
Priority to EP09842148.0A priority patent/EP2278649B1/en
Priority to PCT/JP2009/001361 priority patent/WO2010109530A1/ja
Priority to US12/677,944 priority patent/US8835080B2/en
Publication of WO2010109530A1 publication Critical patent/WO2010109530A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for forming an electrolyte membrane used in a solid oxide fuel cell and a method for producing a membrane electrode assembly.
  • a solid oxide fuel cell In a solid oxide fuel cell (SOFC), a solid oxide is used as an electrolyte membrane, and the electrolyte membrane is made thinner in order to increase ion permeability in the electrolyte membrane. As the electrolyte membrane becomes thinner, it becomes difficult for the electrolyte membrane to stand by itself.
  • SOFC solid oxide fuel cell
  • a technique for forming an electrode and an electrolyte membrane on a support plate made of a metal porous body is known.
  • the sintered electrolyte membrane peels off from the support plate or on the support plate.
  • the solid oxide shrinks by about 50% by volume and by 15 to 35% in the XYZ direction of width and width.
  • the metal support plate does not substantially shrink during sintering.
  • This problem is not limited to the electrolyte membrane, but may also occur in the same manner for the electrode formed between the metal support plate and the electrolyte membrane.
  • the present invention has been made in view of the above problems, and an object thereof is to suppress or prevent film peeling and damage during the formation of a film used in a solid oxide fuel cell.
  • the present invention has been made to solve at least a part of the above-described problems, and the first aspect provides a method for forming an electrolyte membrane.
  • a first layer is formed on a porous metal support on which a first electrode is formed, and the first layer is formed on the first layer.
  • the first layer is formed on the porous metal support on which the first electrode is formed, and the first layer is formed on the first layer.
  • the second layer having higher fluidity is formed, and the first and second layers are baked to form the electrolyte membrane. Therefore, when the membrane used for the solid oxide fuel cell is formed, Damage can be suppressed or prevented.
  • the green density of the second layer may be lower than the green density of the first layer.
  • the fluidity of the second layer can be made higher than the fluidity of the first layer.
  • the second layer is formed using a material having a lower green density than the material forming the first layer because of the high fluidity of the second layer. It may be realized by doing. In this case, the fluidity of the second layer can be made higher than the fluidity of the first layer.
  • the high fluidity of the second layer may be realized by forming the second layer by a film forming method that reduces the green density.
  • the fluidity of the second layer can be made higher than the fluidity of the first layer.
  • the high fluidity of the second layer is obtained by forming the second layer using a material having lower sinterability than the first layer. It may be realized. In this case, the fluidity during firing of the second layer can be made higher than the fluidity of the first layer.
  • the first layer having higher adhesion than the second layer is formed on the porous metal support on which the first electrode is formed. Since the second layer is formed on the first layer and the first and second layers are baked to form the electrolyte membrane, the membrane is peeled off when the membrane used in the solid oxide fuel cell is formed. Damage can be suppressed or prevented.
  • the high adhesion of the first layer may be realized by mixing an adhesive with the material forming the first layer.
  • the adhesion of the first layer can be made higher than the adhesion of the second layer.
  • the high adhesion of the first layer is obtained by using a film formation method that provides higher adhesion than the film formation method of forming the second layer. It may be realized by forming the first layer. In this case, the adhesion of the first layer can be made higher than the adhesion of the second layer.
  • the high adhesion of the first layer uses particles having a surface rougher than the material forming the second layer as the material forming the first layer. It may be realized by. In this case, the adhesion of the first layer can be made higher than the adhesion of the second layer.
  • the third aspect provides a method for producing a membrane electrode assembly.
  • a first electrode is formed on a porous metal support, a first layer is formed on the first electrode, and the first electrode is formed.
  • a second layer having higher fluidity than the first layer is formed, and the first and second layers are baked to form an electrolyte membrane, and a second layer is formed on the electrolyte membrane. Forming an electrode.
  • the first layer is formed on the porous metal support on which the first electrode is formed, and the first layer is formed on the first layer.
  • the second layer having higher fluidity than the first layer is formed, and the first and second layers are baked to form the electrolyte membrane, so that the electrolyte capable of suppressing or preventing the peeling and damage of the membrane
  • a membrane electrode assembly including a membrane can be provided.
  • the manufacturing method of the membrane electrode assembly according to the third aspect may have the following configuration.
  • a first electrode is formed on a porous metal support, a first layer having higher adhesion than the second layer is formed on the first electrode, and a second layer is formed on the first layer.
  • the first layer having higher adhesion than the second layer is formed on the porous metal support on which the first electrode is formed, and the second layer is formed on the first layer.
  • a 4th aspect provides the membrane electrode assembly formed on the porous metal support body.
  • a membrane electrode assembly according to a fourth aspect is a first electrode formed on the porous metal support and an electrolyte membrane formed on the first electrode, wherein the first electrode An electrolyte membrane obtained by firing a first layer deposited thereon and a second layer having a higher fluidity than the first layer deposited on the first layer; And a second electrode formed on the electrolyte membrane.
  • Membrane electrode assembly is a first electrode formed on the porous metal support and an electrolyte membrane formed on the first electrode, wherein the first electrode An electrolyte membrane obtained by firing a first layer deposited thereon and a second layer having a higher fluidity than the first layer deposited on the first layer; And a second electrode formed on the electrolyte membrane.
  • the membrane electrode assembly according to the fourth aspect may have the following configuration.
  • Second electrode since the first layer having higher adhesion than the second layer and the electrolyte film obtained by firing the second layer are provided, peeling or damage of the film is suppressed or A membrane electrode assembly including an electrolyte membrane that can be prevented can be provided.
  • FIG. 1 is an explanatory view schematically showing a cross-sectional configuration of a membrane electrode assembly formed on a porous metal support according to this example.
  • FIG. 2 is an explanatory view schematically showing a schematic configuration of the fuel cell according to the present embodiment.
  • the membrane electrode assembly 10 according to the present embodiment is a solid electrolyte type membrane electrode assembly, and includes a first electrode 30, an electrolyte membrane 40, and a second electrode 35, and one side surface of the porous metal support 20. Formed on top. Specifically, the first electrode 30 is formed on one surface of the porous metal support 20, the electrolyte membrane 40 is formed on the first electrode 30, and the second electrode 35 is formed on the electrolyte membrane 40. Is formed.
  • the porous metal support 20 is a porous metal support plate made of a plate-like porous metal.
  • the porous metal support 20 is not particularly limited as long as it is a porous metal material having a porosity that functions as a gas flow path, for example.
  • Materials include various stainless steels, high heat resistant metal materials (Ni-base alloys, Co-base alloys, Fe-base alloys, Inconel, Hastelloy, Stellite, Crofer (Magnex product name)), ZMG (Hitachi Metals product name), etc.
  • the metal material can be used.
  • foam metal porous sintered metal obtained by sintering metal particles, non-woven fabric obtained by sintering or braiding metal fibers, or a metal plate in which holes are formed by etching, machining or laser processing can be used.
  • a structure in which these are combined may be used.
  • the first electrode 30 is an anode, and is made of a metal material such as Pt, Ni, or Cu, 30 vol% Ni and 70 vol% YSZ (Ytnia stabilized zirconia), or 50 vol% Ni and 50 vol% GDC (GaS). It is composed of a cermet material such as Dorinim doped ceria) or a mixed material thereof.
  • the ratio of Ni is generally 30 to 60 vol%.
  • the second electrode is a cathode, and a metal material such as Pt or Ag, or a perovskite type complex oxide such as LSM (lanthanum strontium manganate) or LSC (lanthanum strontium cobaltite) is used.
  • a metal material such as Pt or Ag
  • a perovskite type complex oxide such as LSM (lanthanum strontium manganate) or LSC (lanthanum strontium cobaltite) is used.
  • the separator 50 may be shared by adjacent membrane electrode assemblies 10 except for the separators located at both ends of the laminated body. In this case, the adjacent separators 50a and 50b in FIG. It becomes.
  • FIG. 3 is a process diagram showing a manufacturing process of a membrane electrode assembly including a film forming process of an electrolyte membrane according to the present embodiment.
  • the porous metal support 20 is prepared (step S100), and the first electrode 30 as an anode is formed on one surface of the porous metal support 20 (step S110).
  • the first electrode 30 is formed by depositing the above-described material on one surface of the porous metal support 20.
  • a film forming method for example, a slurry made of the above-described material is applied to one surface of the porous metal support 20 by a paste application method or a screen printing method and sintered, or a porous metal A method of forming a film on the one surface of the support 20 by the PVD method such as the sputtering method or the vapor deposition method or the thermal spraying method can be used.
  • a first electrolyte film is formed on the formed first electrode 30 as an anode (step S120), and a second electrolyte film is formed on the formed first electrolyte film (step S130).
  • the fluidity of the second electrolyte membrane is higher than the fluidity of the first electrolyte membrane, or the adhesiveness of the first electrolyte membrane is made higher than the adhesiveness of the second electrolyte membrane.
  • the first and second electrolyte membranes are formed. A detailed method for forming the first and second electrolyte membranes will be described later.
  • the first electrolyte film and the second electrolyte film thus formed are baked to form an electrolyte film (step S140). That is, the electrolyte membrane in the present embodiment is formed by a firing process.
  • the cathode as the second electrode 35 is formed on the formed electrolyte membrane (step S150), and the membrane electrode assembly 10 is manufactured.
  • the second electrode 35 is formed by a method similar to the method for forming the first electrode.
  • the fuel cell can be obtained by disposing the manufactured membrane electrode assembly 10 between a pair of cathodes 50a and 50b or by stacking a plurality of membrane electrode assemblies sandwiched between the pair of cathodes 50a and 50b. 100 can be obtained.
  • FIG. 4 is an explanatory view schematically showing the state of the electrolyte membrane before firing in the first example of the first electrolyte membrane formation step according to the present embodiment.
  • FIG. 5 is an explanatory view schematically showing a state of the electrolyte membrane after firing in the first example of the first electrolyte membrane forming step according to the present embodiment.
  • FIG. 6 is an explanatory view schematically showing a state of the electrolyte membrane before firing in the second example of the first electrolyte membrane forming step according to the present embodiment.
  • FIG. 7 is an explanatory view schematically showing the state of the electrolyte membrane after firing in the second example of the first electrolyte membrane formation step according to the present embodiment.
  • the first electrolyte membrane formation method is characterized in that the fluidity of the second electrolyte membrane 42a is higher than the fluidity of the first electrolyte membrane 41a in the film formation state before firing.
  • the fluidity means the ease of flow of the material particles having the composition of the electrolyte membrane, as will be apparent to those skilled in the art. If the fluidity is high, movement during sintering is likely to occur (easy to flow). When the fluidity is low, it means that movement during sintering hardly occurs (hardly flows).
  • the fluidity can be quantified by a method known to those skilled in the art and can be compared. Furthermore, when comparing the fluidity in this example, it is desirable to compare the fluidity at a temperature during firing.
  • At least the composition material of the second electrolyte membrane 42a only needs to have a relatively higher fluidity than the composition material of the first electrolyte membrane 41a.
  • a method for realizing this feature for example, there are the following methods.
  • the second electrolyte is higher than the density of the first electrolyte membrane 41a formed in direct contact with the first electrode 30 formed on the porous metal support 20.
  • the second electrolyte membrane is formed so that the density of the membrane 42a is lowered.
  • the material particles are schematically shown by circles, and the density is lower as the number of circles is smaller.
  • the second material particles 420a forming the second electrolyte membrane 42a are compared with the first material particles 410a forming the first electrolyte membrane 41a. Increases fluidity.
  • the second material particles 420a move (flow) to a region where the first material particles 410a do not form a film, and the front surface of the first electrode 30 is the first material particles 410a and the second material particles.
  • the electrolyte membrane 40a sintered in a state covered with 420a can be obtained.
  • the size of the electrolyte membrane before firing constituted by the first electrolyte membrane 41a and the second electrolyte membrane 42a is horizontal (in a plane parallel to the surface of the first electrode 30) by firing treatment. There is no change, and the electrolyte membrane 40a is shortened in the vertical direction (the thickness direction of the first and second electrolyte membranes 41a and 42a). As a result, it is possible to suppress or prevent cracking of the electrolyte membrane that occurs when the surface of the first electrode 30 (the contact surface with the first electrolyte membrane 41a) is not covered with the first material particles 410a.
  • the first material particles 410a do not move greatly, adhesion to the first electrode 30 is ensured, and peeling of the sintered electrolyte membrane from the first electrode 30 can be suppressed or prevented.
  • the first electrolyte membrane 41 a has general adhesion to the first electrode 30.
  • the CIP process Cold Isostatic Press
  • a method of forming the second electrolyte membrane 42a after increasing the thickness As a film formation method for the first electrolyte film 41a, a film formation method for increasing the green density, for example, using a colloidal spray method, and as a film formation method for the second electrolyte film 42a, a film formation method for decreasing the green density. For example, a method using a screen printing method.
  • the first electrolyte membrane 41a is made of material particles 410a in which small and large diameter particles are mixed to increase the green density
  • the second electrolyte membrane 42a is made of large particle particles 420a.
  • the fluidity of the second electrolyte membrane 42 a can be made higher than the fluidity of the first electrolyte membrane 41 a, and the fired electrolyte membrane 40 a is free from cracks, and from the first electrode 30. There is no peeling.
  • a method of adding a sintering aid for inducing liquid sintering to the second electrolyte membrane 42a By adding a sintering aid, it becomes possible to induce liquid sintering of the second electrolyte membrane 42a at the time of sintering, and the second material particles 420a are easy to flow, so the second electrolyte membrane 42a. The fluidity of can be increased. As a result, it is possible to obtain a baked electrolyte membrane 40a that is free from cracks and peeled off from the first electrode 30.
  • the sintering aid for example, oxides such as Fe 2 O 3 , Co 3 O 4 , Al 2 O 3 , MgO, and Y 2 O 3 can be used.
  • a material having lower sinterability than the material of the first electrolyte membrane 41a is a sintered pair having a relative density lower than that of a material having high sinterability even when sintered under the same sintering conditions (temperature, atmosphere, time). Appropriate with the material.
  • the second electrolyte membrane 42a (second material particles 420a) can flow even after the first electrolyte membrane 41a is sintered.
  • the portion where the first electrolyte membrane 41a is not sintered can be filled.
  • the following method is available.
  • the material which comprises the 1st electrolyte membrane 41a and the material which comprises the 2nd electrolyte membrane 42a are changed.
  • GDC having a sintering temperature of about 1100 ° C.
  • YSZ having a sintering temperature of about 1350 ° C.
  • first material particles 410a having a small particle diameter and second material particles 420a having a large particle diameter are used. This method will be described with reference to FIG. 6 and FIG.
  • the first material particles constituting the first electrolyte membrane 41b formed in direct contact with the first electrode 30 formed on the porous metal support 20 are formed.
  • particles having a particle diameter smaller than that of the second material particles 420b constituting the second electrolyte membrane 42b are used.
  • the first electrolyte membrane 41b composed of the first material particles 410b having a small particle size is sintered first, and the second material particles 420b are sintered by the first material particles 410b. It is possible to flow and sinter in the unexposed area. As a result, it is possible to obtain a baked electrolyte membrane 40b that is free from cracks and peeled off from the first electrode 30.
  • Add a sintering inhibitor to the second electrolyte membrane 42b to the second electrolyte membrane 42b.
  • the first electrolyte membrane 41b is relatively sintered first.
  • the second electrolyte membrane 42b can maintain fluidity even when the first electrolyte membrane 41b is sintered.
  • the sintering inhibitor for example, BaCO 3 , C (carbon), and phosphate (YPO 4 ) ZrO 2 can be used.
  • FIG. 8 is an explanatory view schematically showing the state of the electrolyte membrane before firing in the first example of the second electrolyte membrane forming step according to the present embodiment.
  • FIG. 9 is an explanatory view schematically showing the state of the electrolyte membrane after firing in the first example of the second electrolyte membrane forming step according to the present embodiment.
  • symbol is attached
  • the second electrolyte membrane formation method is characterized in that the first electrolyte membrane has higher adhesion than the second electrolyte membrane.
  • the adhesion means the difficulty of peeling from a non-contact target, for example, the first electrode 30, and in this embodiment, at least the composition material of the first electrolyte membrane is more than the composition material of the second electrolyte membrane. As long as it has relatively high adhesion.
  • the adhesion can be compared including numerical values by methods known to those skilled in the art.
  • the first electrolyte membrane 41c is deposited by a deposition method with higher adhesion.
  • a deposition method with higher adhesion For example, it can be realized by forming the first electrolyte film 41c by a PLD method (pulse laser deposition method), a sputtering method, or a spraying method, and forming the second electrolyte film 42b by a colloidal spray method or a screen printing method. it can.
  • the first electrolyte film 41c shown in FIG. 8 is formed by, for example, a sputtering method
  • the second electrolyte film 42c is formed by, for example, a screen printing method. After the sintering, as shown in FIG.
  • the first material particles 410c constituting the first electrolyte membrane 41c are sintered without moving (flowing) (or hardly moving) at all, and the second electrolyte membrane
  • the second material particles 420c constituting 42c are sintered so as to fill the gaps between the sintered first material particles 410c.
  • the first material particles 410c do not move at all, adhesion to the first electrode 30 is ensured, and peeling of the sintered electrolyte membrane 40c from the first electrode 30 can be suppressed or prevented. it can.
  • the second electrolyte membrane 42c has a general fluidity sufficient to fill the space between the sintered first electrolyte membranes 41c.
  • Adhesive is mixed only in the first electrolyte membrane 41c.
  • the first material particles 410c are sintered in a state of being fixed or adhered to the first electrode 30, and the second The material particles 420c flow and sinter in the gaps where the first material particles 410c are not sintered.
  • the first material particles 410c constituting the first electrolyte membrane 41c particles having many corners (particles having a rough surface) are used.
  • the corners and protrusions which are physical characteristics of the first material particles 410c, bite into the first electrode 30, thereby improving the adhesion of the first electrolyte membrane 41c to the first electrode 30.
  • the second material particles 420c flow in a space where the first material particles 410c do not exist. As a result, it is possible to obtain a baked electrolyte membrane 40 c that is free from cracks and peeled off from the first electrode 30.
  • a heater is brought into contact with the porous metal support 20 to heat the first electrolyte membrane 41c via the first electrode 30, and the ambient temperature during the sintering (second electrolyte membrane 42c).
  • This can be realized by firing the first electrolyte membrane 41c at a temperature higher than the firing temperature.
  • the electrolyte membrane forming method, membrane electrode assembly, membrane electrode assembly manufacturing method, and fuel cell according to the present embodiment described above, cracking of the baked electrolyte membrane 40a can be suppressed or prevented.
  • the peeling of the electrolyte membrane 40a from the first electrode 30 can be suppressed or prevented.
  • the fluidity of the second electrolyte membrane 42a is made higher than the fluidity of the first electrolyte membrane 41a, so that The second electrolyte membrane 42a can flow in the gap between the first electrolyte membrane 41a that is sintered in close contact, and the first electrode 30 that is not covered by the first electrolyte membrane 41a.
  • the contact surface can obtain the electrolyte membrane 40a covered with the second electrolyte membrane 42a. Therefore, cracking of the baked electrolyte film 40a can be suppressed or prevented, and peeling of the electrolyte film 40a from the first electrode 30 can be suppressed or prevented.
  • the first electrode 30 is made higher by making the adhesion of the first electrolyte membrane 41b higher than the adhesion of the second electrolyte membrane 42b. It is possible to improve the adhesion of the first electrolyte membrane 41b to the first electrolyte membrane 41b, and the second electrolyte membrane 42b flows in a region where the first electrolyte membrane 42b does not exist. As a result, peeling of the electrolyte membrane 40b from the first electrode 30 can be suppressed or prevented, and cracking of the baked electrolyte membrane 40b can be suppressed or prevented.
  • FIG. 10 is an explanatory view schematically showing the state of the electrolyte membrane before firing in the electrolyte membrane forming step according to the conventional example.
  • FIG. 11 is an explanatory view schematically showing a first state of the electrolyte membrane after firing in the electrolyte membrane forming step according to the conventional example.
  • FIG. 12 is an explanatory view schematically showing a second state of the electrolyte membrane after firing in the electrolyte membrane deposition step according to the conventional example.
  • FIG. 10 shows an example in which a material having high fluidity (low adhesion to the porous metal support) is used as the material of the electrolyte membrane.
  • the entire electrolyte membrane 41x flows during sintering, and after sintering, The electrolyte membrane 40x contracted in the horizontal direction is obtained.
  • the adhesion between the first electrode 30 is lowered by the flow of the material particles 410x constituting the electrolyte membrane 41x, and the sintered electrolyte membrane 40x Peels from the first electrode 30.
  • FIG. 12 shows an example in which a material having high adhesion to the porous metal support (low fluidity) is used as the material of the electrolyte membrane.
  • the electrolyte membrane 41x does not flow during sintering and the first electrode Since it adheres closely to 30, a cracked electrolyte membrane 40 x is obtained after sintering. Therefore, since the adhesion between the electrolyte membrane 40x and the first electrode 30 is maintained, the separation between the electrolyte membrane 40x and the first electrode 30 does not occur, but the material particles 410x constituting the electrolyte membrane 41x flow. By not doing so, the entire surface of the first electrode 30 cannot be covered with the electrolyte membrane 40x, and the sintered electrolyte membrane 40x is damaged such as cracks.
  • FIGS. 11 and 12 None of the conventional examples shown in FIGS. 11 and 12 can be used as a membrane electrode assembly, and a method for forming an electrolyte membrane free from peeling or cracking has been desired.
  • the first electrolyte membrane 41a and the second electrolyte having higher fluidity than the first electrolyte membrane 41a as the electrolyte membrane before firing are used as the first forming method.
  • An electrolyte membrane composed of two layers of the membrane 42a is formed, and the electrolyte membrane is formed by baking treatment. That is, by forming an electrolyte film before firing using two first layers and second layers having different fluidity, the first electrolyte film 41a that is difficult to flow is discretely formed into the first electrode 30.
  • the second electrolyte membrane 42a can obtain the electrolyte membrane 40a in which the space between the plurality of sintered first electrolyte membranes 41a is filled. Therefore, damage generated in the electrolyte membrane 40a can be prevented or suppressed.
  • an electrolyte film composed of a second electrolyte film 42c and a first electrolyte film 41c2 layer having higher adhesion than the second electrolyte film 42c is formed as an electrolyte film before firing, and is fired.
  • an electrolyte membrane is formed. That is, the adhesion of the first electrolyte membrane 41c to the first electrode 30 is enhanced by forming an electrolyte membrane before firing using two first layers and second layers having different adhesion. Can do. Therefore, peeling of the electrolyte membrane 40c can be suppressed or prevented. Furthermore, the space between the plurality of sintered first electrolyte membranes 41c can be filled with the second electrolyte membrane 42c.
  • the electrolyte membrane 40 without peeling from the first electrode 30, the electrolyte membrane without damage 40, the expected performance of the membrane electrode assembly 10 or the fuel cell 100 can be exhibited. Moreover, the yield of the membrane electrode assembly 10 or the fuel cell 100 can be improved.
  • FIG. 13 is an explanatory view schematically showing the state of the electrolyte membrane before firing in the electrode film forming step according to another embodiment.
  • FIG. 14 is an explanatory view schematically showing the state of the electrolyte membrane after firing in the electrode film forming step according to another embodiment.
  • the first electrode 30a when the first electrode 30a is formed, an electrode before sintering composed of two layers of the first layer 31a and the second layer 31b is formed, and the first electrode 30a after sintering is formed.
  • an electrode contains a metal as a composition component
  • the sintering shrinkage rate is lower than that of the solid electrolyte even during sintering, and the porous metal support 20 is hardly peeled off.
  • the sintering shrinkage rate may increase.
  • the first layer 31a and the second layer 31b having higher fluidity than the first layer 31a are formed and sintered as shown in FIG. It is possible to obtain the first electrode 30a that is not damaged and does not peel from the porous metal support 20.
  • a film forming method in which a first layer is formed on a porous metal support, and a second fluid having higher fluidity than the first layer is formed on the first layer. And forming the first film by firing the first and second layers, and can be defined as a method of forming a film. Further, in this forming method, a first electrode is formed on the porous metal support, and the first layer is formed on the first electrode. It may be defined.
  • the electrolyte membrane may be obtained by forming three or more electrolyte membranes and firing them.
  • film formation may be performed so that the fluidity increases as the distance from the first electrode increases, or film formation may be performed such that the adhesion increases as the distance from the first electrode is approached.
  • high adhesion may be imparted to the layer that is in direct contact with the first electrode, or high fluidity may be imparted to a layer other than the layer that is in direct contact with the first electrode.
  • the characteristics of the first electrolyte membrane and the second electrolyte membrane are defined from the viewpoint of fluidity and adhesion, but the sintering shrinkage that is the shrinkage rate of each electrolyte membrane during sintering. It may be defined using a rate.
  • a material having characteristics smaller than the sintering shrinkage rate of the second electrolyte membrane may be used as the material of the first electrolyte membrane, or sintering shrinkage as the first electrode is approached. Three or more layers may be formed so as to reduce the rate.
  • the anode is described as an example of the first electrode 30, but the first electrode 30 as a cathode may be used.
  • the composition of the first electrode 30, the electrolyte membrane 40, and the second electrode 35 in the above embodiment is merely an example, and it goes without saying that materials having various compositions can be used in addition to the composition described above. . Even in this case, after the first and second electrolyte membranes are formed as the electrolyte membrane 40, the above-described effects can be obtained by performing the baking treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 膜電極接合体10は、固体電解質型の膜電極接合体であり、第1の電極30、電解質膜40および第2の電極35を備え、多孔質金属支持体20の片側面上に形成されている。電解質膜40は、第1の電極30上に成膜された第1の電解質膜41aと第1の電解質膜41よりも流動性が高い第2の電解質膜42aとを焼成することによって得られる。

Description

電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
 本発明は、固体酸化物型燃料電池に用いられる電解質膜の形成方法、膜電極接合体の製造方法に関する。
 固体酸化物型燃料電池(SOFC)では、電解質膜として固体酸化物が用いられており、電解質膜におけるイオン透過性を高めるために電解質膜の薄膜化が図られている。電解質膜が薄くなるに連れて電解質膜の自立が容易でなくなるため、例えば、金属多孔体からなる支持プレート上に電極、電解質膜を成膜する技術が知られている。
 しかしながら、金属製の支持プレートと固体酸化物の電解質膜とでは電解質膜を焼結する際における焼結収縮率が異なるため、焼結された電解質膜が支持プレートから剥離したり、支持プレート上においてひび割れてしまうという問題があった。例えば、焼結時には、固体酸化物は、体積で50%、縦横幅のXYZ方向で15~35%程収縮することが知られている。一方、金属製支持プレートは実質的に焼結時に収縮しない。
 この問題は、電解質膜に限らず、金属製支持プレートと電解質膜との間に形成される電極についても同様に生じ得る問題である。
 本発明は、上記課題に鑑みてなされたものであり、固体酸化物燃料電池に用いられる膜の形成時における膜の剥離、損傷を抑制または防止することを目的とする。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、第1の態様は、電解質膜の形成方法を提供する。第1の態様に係る電解質膜の形成方法は、第1の電極が形成されている多孔質金属支持体上に第1の層を成膜し、前記第1の層上に、前記第1の層よりも流動性の高い第2の層を成膜し、前記第1および第2の層を焼成して電解質膜を形成することを備える。
 第1の態様に係る電解質の形成方法によれば、第1の電極が形成されている多孔質金属支持体上に第1の層を成膜し、第1の層上に、第1の層よりも流動性の高い第2の層を成膜し、第1および第2の層を焼成して電解質膜を形成するので、固体酸化物燃料電池に用いられる膜の形成時における膜の剥離、損傷を抑制または防止することができる。
 第1の態様に係る電解質膜の形成方法において、前記第2の層のグリーン密度は、前記第1の層のグリーン密度よりも低くても良い。この場合には、第2の層の流動性を第1の層の流動性よりも高くすることができる。
 第1の態様に係る電解質膜の形成方法において、前記第2の層の高い流動性は、前記第1の層をなす材料よりもグリーン密度が低い材料を用いて前記第2の層を成膜することによって実現されても良い。この場合には、第2の層の流動性を第1の層の流動性よりも高くすることができる。
 第1の態様に係る電解質膜の形成方法において、前記第2の層の高い流動性は、グリーン密度が低くなる成膜方法によって第2の層を成膜することによって実現されても良い。この場合には、第2の層の流動性を第1の層の流動性よりも高くすることができる。
 第1の態様に係る電解質膜の形成方法において、前記第2の層の高い流動性は、前記第1の層よりも焼結性の低い材料を用いて第2の層を成膜することによって実現されても良い。この場合には、第2の層の焼成中の流動性を第1の層の流動性よりも高くすることができる。
 第2の態様は、電解質膜の形成方法を提供する。第2の態様に係る電解質膜の形成方法は、第1の電極が形成されている多孔質金属支持体上に第2の層よりも密着性の高い第1の層を成膜し、前記第1の層上に、第2の層を成膜し、前記第1および第2の層を焼成して電解質膜を形成することを備える。
 第2の態様に係る電解質の形成方法によれば、第1の電極が形成されている多孔質金属支持体上に第2の層よりも密着性の高い第1の層を成膜し、第1の層上に、第2の層を成膜し、第1および第2の層を焼成して電解質膜を形成するので、固体酸化物燃料電池に用いられる膜の形成時における膜の剥離、損傷を抑制または防止することができる。
 第2の態様に係る電解質膜の形成方法において、前記第1の層の高い密着性は、前記第1の層をなす材料に接着剤を混合することによって実現されても良い。この場合には、第1の層の密着性を第2の層の密着性よりも高くすることができる。
 第2の態様に係る電解質膜の形成方法において、前記第1の層の高い密着性は、前記第2の層を形成する成膜法よりも高い密着性を提供する成膜法を用いて前記第1の層を形成することによって実現されても良い。この場合には、第1の層の密着性を第2の層の密着性よりも高くすることができる。
 第2の態様に係る電解質膜の形成方法において、前記第1の層の高い密着性は、前記第1の層をなす材料として前記第2の層をなす材料よりも表面の粗い粒子を用いることによって実現されても良い。この場合には、第1の層の密着性を第2の層の密着性よりも高くすることができる。
 第2の態様に係る電解質膜の形成方法において、前記第1の層の高い密着性は、前記第2の層を焼成する温度よりも高い温度若しくは長い時間で前記第1の層を焼成することによって実現されても良い。この場合には、第1の層の密着性を第2の層の密着性よりも高くすることができる。
 第3の態様は、膜電極接合体の製造方法を提供する。第3の態様に係る膜電極接合体の製造方法は、多孔質金属支持体上に第1の電極を形成し、前記第1の電極上に第1の層を成膜し、前記第1の層上に、前記第1の層よりも流動性の高い第2の層を成膜し、前記第1および第2の層を焼成して電解質膜を形成し、前記電解質膜上に第2の電極を形成することを備える。
 第3の態様に係る膜電極接合体の製造方法によれば、第1の電極が形成されている多孔質金属支持体上に第1の層を成膜し、第1の層上に、第1の層よりも流動性の高い第2の層を成膜し、第1および第2の層を焼成して電解質膜を形成するので、膜の剥離、損傷を抑制または防止することができる電解質膜を備える膜電極接合体を提供することができる。
 第3の態様に係る膜電極接合体の製造方法は以下の構成を備えていても良い。多孔質金属支持体上に第1の電極を形成し、前記第1の電極上に第2の層よりも密着性の高い第1の層を成膜し、前記第1の層上に第2の層を成膜し、前記第1および第2の層を焼成して電解質膜を形成し、前記電解質膜上に第2の電極を形成すること。この場合には、第1の電極が形成されている多孔質金属支持体上に第2の層よりも密着性の高い第1の層を成膜し、第1の層上に、第2の層を成膜し、第1および第2の層を焼成して電解質膜を形成するので、膜の剥離、損傷を抑制または防止することができる電解質膜を備える膜電極接合体を提供することができる。
 第4の態様は、多孔質金属支持体上に形成された膜電極接合体を提供する。第4の態様に係る膜電極接合体は、前記多孔質金属支持体上に形成された第1の電極と、前記第1の電極上に形成された電解質膜であって、前記第1の電極上に成膜された第1の層と、前記第1の層の上に成膜された前記第1の層よりも流動性の高い第2の層とを焼成して得られた電解質膜と、前記電解質膜上に形成された第2の電極とを備える。
膜電極接合体。
 第4の態様に係る膜電極接合体によれば、第1の層と、第1の層よりも流動性の高い第2の層とを焼成して得られた電解質膜を備えているので、膜の剥離、損傷を抑制または防止することができる電解質膜を備える膜電極接合体を提供することができる。
 第4の態様に係る膜電極接合体は以下の構成を備えていても良い。前記多孔質金属支持体上に形成された第1の電極と、前記第1の電極上に形成された電解質膜であって、前記第1の電極上に成膜された第1の層と、第2の層とを焼成して得られた電解質膜であって、前記第1の層の密着性は前記第2の層の密着性よりも高い、電解質膜と、前記電解質膜上に形成された第2の電極。この場合には、、第2の層よりも密着性の高い第1の層と、第2の層とを焼成して得られた電解質膜を備えているので、膜の剥離、損傷を抑制または防止することができる電解質膜を備える膜電極接合体を提供することができる。
 第5の態様は燃料電池を提供する。第5の態様に係る燃料電池は、第4の態様に係る膜電極接合体と、前記膜電極接合体の両側に配置される1対のセパレータとを備える。この場合には、膜の剥離、損傷を抑制または防止することができる電解質膜を備える膜電極接合体を備えた燃料電池を提供することができる。
本実施例に係る膜電極接合体の断面構成を模式的に示す説明図である。 本実施例に係る燃料電池の概略構成を模式的に示す説明図である。 本実施例に係る電解質膜の成膜工程を含む膜電極接合体の製造工程を示す工程図である。 本実施例に係る第1の電解質膜の成膜工程の第1の例における焼成前の電解質膜の状態を模式的に示す説明図である。 本実施例に係る第1の電解質膜の成膜工程の第1の例における焼成後の電解質膜の状態を模式的に示す説明図である。 本実施例に係る第1の電解質膜の成膜工程の第2の例における焼成前の電解質膜の状態を模式的に示す説明図である。 本実施例に係る第1の電解質膜の成膜工程の第2の例における焼成後の電解質膜の状態を模式的に示す説明図である。 本実施例に係る第2の電解質膜の成膜工程の第1の例における焼成前の電解質膜の状態を模式的に示す説明図である。 本実施例に係る第2の電解質膜の成膜工程の第1の例における焼成後の電解質膜の状態を模式的に示す説明図である。 従来例に係る電解質膜の成膜工程における焼成前の電解質膜の状態を模式的に示す説明図である。 従来例に係る電解質膜の成膜工程における焼成後の電解質膜の状態を模式的に示す説明図である。 従来例に係る電解質膜の成膜工程における焼成後の電解質膜の状態を模式的に示す説明図である。 他の実施例に係る電極の成膜工程における焼成前の電解質膜の状態を模式的に示す説明図である。 他の実施例に係る電極の成膜工程における焼成後の電解質膜の状態を模式的に示す説明図である。
 以下、本発明に係る電解質膜の成膜方法、膜電極接合体、膜電極接合体の製造方法、および燃料電池について、図面を参照しつついくつかの実施例に基づいて説明する。
 図1は本実施例に係る多孔質金属支持体上に形成された膜電極接合体の断面構成を模式的に示す説明図である。図2は本実施例に係る燃料電池の概略構成を模式的に示す説明図である。本実施例に係る膜電極接合体10は、固体電解質型の膜電極接合体であり、第1の電極30、電解質膜40および第2の電極35を備え、多孔質金属支持体20の片側面上に形成されている。具体的には、多孔質金属支持体20の一の面上に第1の電極30が形成され、第1の電極30上に電解質膜40が形成され、電解質膜40上に第2の電極35が形成されている。
 多孔質金属支持体20は、板状の多孔質金属によって構成されている多孔質金属支持プレートである。多孔質金属支持体20としては、例えば、ガス流路として機能する気孔率を有する多孔質金属材料であれば特に限定されることはない。材料としては、各種ステンレス、高耐熱金属材料(Ni基合金、Co基合金、Fe基合金、インコネル、ハステロイ、ステライト、Crofer(マグネクス社の製品名))、ZMG(日立金属社の製品名)等の金属材料を用いることができる。構造としては、発泡金属、金属粒子を焼結した多孔質焼結金属、金属繊維を焼結または編み込んだ不織布、その他、エッチング、機械加工またはレーザ加工により孔を形成した金属板を用いることができる。もちろん、これらを複合した構造としてもよい。
 第1の電極30は、アノードであり、Pt、Ni、Cu等の金属材料、30vol%のNiおよび70vol%のYSZ(イットニア安定化ジルコニア)、あるいは、50vol%のNiおよび50vol%のGDC(ガドリニムドープセリア)等のサーメット材料、あるいはこれらの混合材料から構成されている。なお、Niの比率は、一般的に30~60vol%である。
 電解質膜40は、固体酸化物によって形成されており、例えば、YSZ、GDC、SSZ(スカンジウム安定化ジルコニア)、SDC(サマリウムドープセリア)、LSGM(ランタンガレード)等が用いられる。
 第2の電極は、カソードであり、Pt、Ag等の金属材料、LSM(ランタンストロンチウムマンガネート)、LSC(ランタンストロンチウムコバルタイト)等のペロブスカイト型複合酸化物が用いられる。
 本実施例に係る燃料電池100は、一対のセパレータ50a、50bの間に上述した多孔質金属支持体20上に形成された膜電極接合体10を配置してなる最小構成の電池が複数積層された積層体として形成されている。積層体の両端にはエンドプレート(図示しない)が配置され、締結部材によってエンドプレートが結合されることによって、積層体は積層方向に固く締結される。なお、セパレータ50は、積層体の両端に位置するセパレータを除いて、隣接する膜電極接合体10によって共有されても良く、この場合には、図2において隣接するセパレータ50a、50bは一体のセパレータとなる。
 膜電極接合体の製造方法:
 図3は本実施例に係る電解質膜の成膜工程を含む膜電極接合体の製造工程を示す工程図である。多孔質金属支持体20を用意し(ステップS100)、多孔質金属支持体20の一の面上にアノードとしての第1の電極30を形成する(ステップS110)。第1の電極30は、既述の材料を多孔質金属支持体20の一の面上に成膜することによって形成される。成膜の方法としては、例えば、既述の材料からなるスラリーを多孔質金属支持体20の一の面上にペースト塗布法またはスクリーン印刷法によって塗布し、焼結する方法、あるいは、多孔質金属支持体20の一の面上へ既述の材料をスパッタ法、蒸着法といったPVD法、溶射法によって成膜する方法を用いることができる。
 形成されたアノードとしての第1の電極30上に第1の電解質膜を成膜し(ステップS120)、成膜した第1の電解質膜上に第2の電解質膜を成膜する(ステップS130)。本実施例では、第2の電解質膜の流動性を第1の電解質膜の流動性よりも高く、あるいは、第1の電解質膜の密着性を第2の電解質膜の密着性よりも高くするように、第1および第2の電解質膜が成膜される。第1および第2の電解質膜の詳細な成膜方法については、後述する。
 成膜された第1の電解質膜と第2の電解質膜に対して焼成処理を施し、電解質膜を形成する(ステップS140)。すなわち、本実施例における電解質膜は、焼成処理によって形成される。
 形成された電解質膜上に第2の電極35としてのカソードを形成して(ステップS150)、膜電極接合体10が製造される。第2の電極35は、第1の電極の形成方法と同様の方法によって形成される。なお、製造された膜電極接合体10を、一対のカソード50a、50bの間に配置することによって、あるいは、一対のカソード50a、50bに挟持された膜電極接合体を複数積層することによって燃料電池100を得ることができる。
 第1の電解質膜の形成方法:
 図4は本実施例に係る第1の電解質膜の成膜工程の第1の例における焼成前の電解質膜の状態を模式的に示す説明図である。図5は本実施例に係る第1の電解質膜の成膜工程の第1の例における焼成後の電解質膜の状態を模式的に示す説明図である。図6は本実施例に係る第1の電解質膜の成膜工程の第2の例における焼成前の電解質膜の状態を模式的に示す説明図である。図7は本実施例に係る第1の電解質膜の成膜工程の第2の例における焼成後の電解質膜の状態を模式的に示す説明図である。
 第1の電解質膜の形成方法では、焼成前の成膜状態において、第2の電解質膜42aの流動性が第1の電解質膜41aの流動性よりも高い点に特徴がある。ここで、流動性とは、当業者にとって明らかなように電解質膜の組成の材料粒子の流れやすさを意味し、流動性が高い場合には焼結中の移動が起こりやすく(流動しやすく)、流動性が低い場合には焼結中の移動が起こりにくい(流動しにくい)ことを意味する。また、流動性は当業者にとって既知の方法によって数値化することが可能であると共に、対比可能である。さらに、本実施例において流動性を対比する場合には、焼成時における温度下における流動性を対比することが望ましい。本実施例では、少なくとも、第2の電解質膜42aの組成材料が第1の電解質膜41aの組成材料よりも相対的に高い流動性を有していれば良い。この特徴を実現する方法としては、例えば、以下の方法がある。
(1)焼成前の密度であるグリーン密度を第1および第2の電解質膜41a、42aとで変える方法。この方法について、図4および図5を用いて説明する。この方法では、図4に示すように多孔質金属支持体20の上に形成された第1の電極30上に直接接して成膜される第1の電解質膜41aの密度よりも第2の電解質膜42aの密度が低くなるように第2の電解質膜が成膜される。図4では、丸によって材料粒子を模式的に示しており、丸の数が少ないほど密度が低いことを示している。
 第2の電解質膜42aの密度が低くなることにより、第2の電解質膜42aを形成する第2の材料粒子420aは、第1の電解質膜41aを形成する第1の材料粒子410aと比較して流動性が高くなる。焼成処理時には、第2の材料粒子420aが第1の材料粒子410aによっては成膜されない領域に移動(流動)し、第1の電極30の前面が第1の材料粒子410aおよび第2の材料粒子420aによって覆われた状態で焼結された電解質膜40aを得ることができる。すなわち、第1の電解質膜41aと第2の電解質膜42aによって構成されている焼成前の電解質膜は、焼成処理によって、水平方向(第1の電極30の面と平行な面内)の寸法は変化せず、垂直方向(第1および第2の電解質膜41a、42aの膜厚方向)の寸法が短くなった電解質膜40aとなる。この結果、第1の電極30の表面(第1の電解質膜41aとの接触面)が第1の材料粒子410aによって覆われないことによって発生する電解質膜のひび割れを抑制または防止することができる。さらに、第1の材料粒子410aは大きく移動しないので、第1の電極30に対する密着性も確保され、焼結された電解質膜の第1の電極30からの剥離も抑制または防止することができる。ここで、第1の電解質膜41aには、第1の電極30に対する一般的な密着性が備わっている。
 第2の電解質膜42aのグリーン密度を第1の電解質膜41aのグリーン密度よりも低くする方法としては、例えば、
 ・第1の電極30上に第1の電解質膜41aを成膜した後、成膜した第1の電解質膜41aに対してCIP処理(Cold Isostatic Press:冷間静水圧プレス)を実行して密度を高めた後に、第2の電解質膜42aを成膜する方法。
 ・第1の電解質膜41aの成膜方法として、グリーン密度が高くなる成膜法、例えば、コロイダルスプレー法を用い、第2の電解質膜42aの成膜方法として、グリーン密度が低くなる成膜法、例えば、スクリーン印刷法を用いる方法。
 ・バインダー、ポアフォーマーといった添加剤を用いる成膜法において、第2の電解質膜42aに対して、第1の電解質膜41aよりも、より多くの添加剤を添加得する方法。
 ・第1の電解質膜41aには、小径粒子と大径粒子が混合された材料粒子410aを用いてグリーン密度を高め、第2の電解質膜42aには、大径粒子の材料粒子420aを用いてグリーン密度を低くする方法。
が上げられる。
(2)第2の電解質膜42aを形成する材料として、第1の電解質膜41aを形成する材料の粒子よりも球形に近い粒子を含む材料を用いる方法。粒形の粒子は、非粒形の粒子よりも流動性に優れいていることは当業者にとって良く知られた事実であり、第2の材料粒子420aとして粒形または第1の材料粒子410aよりも粒形に近い粒子を用いることによって、第2の材料粒子420aの流動性を第1の材料粒子410aの流動性よりも高くすることが可能となる。この結果、第2の電解質膜42aの流動性を第1の電解質膜41aの流動性よりも高くすることが可能となり、焼成後の電解質膜40aはひび割れもなく、また、第1の電極30からの剥離もない。
(3)第2の電解質膜42aに対して液体焼結を誘発する焼結助剤を添加する方法。焼結助剤を添加することによって、焼結時には、第2の電解質膜42aの液体焼結を誘発することが可能となり、第2の材料粒子420aは流動しやすくなるため第2の電解質膜42aの流動性を高めることができる。この結果、ひび割れもなく、第1の電極30からの剥離もない、焼成後の電解質膜40aを得ることができる。焼結助剤としては、例えば、Fe、Co、Al、MgO、Yといった酸化物を用いることができる。
(4)第2の電解質膜42aの材料として、第1の電解質膜41aの材料よりも焼結性の低い材料を用いる方法。ここで、焼結性が低い材料とは、同じ焼結条件(温度、雰囲気、時間)で焼結しても、焼結性が高い材料の場合と比べ、相対密度が低い焼結対となる材料と適宜する。焼結性の低い第2の電解質膜42aの材料を用いることによって、第1の電解質膜41aが焼結した後も第2の電解質膜42a(第2の材料粒子420a)は流動することが可能となり、第1の電解質膜41aが焼結していない部分を埋めることができる。この結果、ひび割れもなく、第1の電極30からの剥離もない、焼成後の電解質膜40aを得ることができる。
 第2の電解質膜42aの材料として、第1の電解質膜41aの材料よりも焼結性の低い材料を用いる具体的方法として、例えば、以下の方法がある。
 ・第1の電解質膜41aを構成する材料と、第2の電解質膜42aを構成する材料とを変える。この場合には、例えば、第1の電解質膜41aとして焼結温度が、約1100℃のGDCを用い、第2の電解質膜42aとして焼結温度が約1350℃のYSZを用れば良い。
 ・同組成の材料を用いた上で、小粒径の第1の材料粒子410aと大粒径の第2の材料粒子420aを用いる。この方法について、図6よび図7を用いて説明する。この方法では、図6に示すように多孔質金属支持体20の上に形成された第1の電極30上に直接接して成膜される第1の電解質膜41bを構成する第1の材料粒子410bとして、第2の電解質膜42bを構成する第2の材料粒子420bよりも粒径が小さな粒子を用いている。この結果には、粒径の小さな第1の材料粒子410bによって構成されている第1の電解質膜41bが先に焼結し、第2の材料粒子420bは第1の材料粒子410bが焼結していない領域に流動して焼結することができる。この結果、ひび割れもなく、第1の電極30からの剥離もない、焼成後の電解質膜40bを得ることができる。
 ・第2の電解質膜42bに対して焼結阻害剤を添加する。この場合には、第2の電解質膜42bの焼結が抑制(阻害)されるため、同一の材料を用いた場合であっても、相対的に、第1の電解質膜41bが先に焼結し、第2の電解質膜を成42bは第1の電解質膜41bが焼結しても流動性を保持することができる。焼結阻害剤としては、例えば、BaCO、C(カーボン)、リン酸塩(YPO)ZrOを用いることができる。
 第2の電解質膜の形成方法:
 図8は本実施例に係る第2の電解質膜の成膜工程の第1の例における焼成前の電解質膜の状態を模式的に示す説明図である。図9は本実施例に係る第2の電解質膜の成膜工程の第1の例における焼成後の電解質膜の状態を模式的に示す説明図である。なお、第1の電極30、多孔質金属支持体20の構成に変更はないので、同一の符号を付して説明を省略する。
 第2の電解質膜の形成方法では、第1の電解質膜に対して、第2の電解質膜よりも高い密着性を持たせる点に特徴がある。密着性とは非接触対象、例えば、第1の電極30、からの剥がれにくさを意味し、本実施例では、少なくとも、第1の電解質膜の組成材料が第2の電解質膜の組成材料よりも相対的に高い密着性を有していれば良い。また、密着性は、当業者にとって既知の方法によって数値化を含めて対比することができる。さらに、本実施例において密着性を対比する場合には、焼成時における温度下における密着性を対比することが望ましい。この特徴を実現する方法としては、例えば、以下の方法がある。
(1)第1の電解質膜41cをより密着性の高い成膜法で成膜する。例えば、第1の電解質膜41cをPLD法(パルスレーザ堆積法)、スパッタ法、溶射法によって形成し、第2の電解質膜42bをコロイダルスプレー法、スクリーン印刷法によって形成することによって実現することができる。図8に示す第1の電解質膜41cは、例えば、スパッタ法によって成膜されており、第2の電解質膜42cは、例えば、スクリーン印刷法によって成膜されている。焼結後には、図9に示すように、第1の電解質膜41cを構成する第1の材料粒子410cは全く移動(流動)しない(またはほとんど移動しない)まま焼結され、第2の電解質膜42cを構成する第2の材料粒子420cが焼結された第1の材料粒子410cの隙間を埋めるようにして焼結する。 
 この結果、第1の材料粒子410cは全く移動しないので、第1の電極30に対する密着性も確保され、焼結された電解質膜40cの第1の電極30からの剥離も抑制または防止することができる。また、第1の電極30の表面(第1の電解質膜41cとの接触面)が第1の材料粒子410cによって覆われないことによって発生する電解質膜40cのひび割れを抑制または防止することができる。ここで、第2の電解質膜42cには、焼結した第1の電解質膜41c間を埋めるに足りる一般的な流動性は備わっている。
(2)第1の電解質膜41cにのみ接着剤を混合する。例えば、接着剤として結晶化ガラスを第1の電解質膜41cに対してのみ混合することによって、第1の材料粒子410cは第1の電極30に固着または接着された状態で焼結され、第2の材料粒子420cは第1の材料粒子410cが焼結していない隙間に流動して焼結される。この結果、ひび割れもなく、第1の電極30からの剥離もない、焼成後の電解質膜40cを得ることができる。
(3)第1の電解質膜41cを構成する第1の材料粒子410cとして、角の多い粒子(表面が粗い粒子)を用いる。この場合には、第1の材料粒子410cが有する物理的特徴である角、突部が第1の電極30に食い込むことによって第1の電極30に対する第1の電解質膜41cの密着性を向上させることができる。また、第1の材料粒子410cが存在しない空間には第2の材料粒子420cが流動する。この結果、ひび割れもなく、第1の電極30からの剥離もない、焼成後の電解質膜40cを得ることができる。
(4)第1の電解質膜41cの焼成温度を上げる。焼成温度を上昇させることによって、第1の電解質膜41cの焼成時間を短縮することが可能となり、第1の電解質膜41cと第1の電極30との密着性を向上させることができる。すなわち、第2の電解質膜42cの焼結よりも第1の電解質膜41cの焼結を早くすることによって、第1の電解質膜と第1の電極との焼結若しくは材料同士の反応が進み、より強固な結合が形成されることによって密着性が向上する。この方法は、例えば、多孔質金属支持体20にヒータを接触させて第1の電極30を介して第1の電解質膜41cを加熱して、焼結時における雰囲気温度(第2の電解質膜42cが焼成される温度)よりも高い温度で第1の電解質膜41cを焼成することによって実現することができる。
 以上説明した本実施例に係る電解質膜の形成方法、膜電極接合体、膜電極接合体の製造方法、燃料電池によれば、焼成された電解質膜40aのひび割れを抑制または防止することができると共に、第1の電極30からの電解質膜40aの剥離を抑制または防止することができる。具体的には、第1の電解質膜の形成方法によれば、第2の電解質膜42aの流動性を第1の電解質膜41aの流動性よりも高くすることによって、第1の電極30との密着した状態で焼結されている第1の電解質膜41aの隙間に、第2の電解質膜42aが流動することが可能となり、第1の電解質膜41aによって覆われていない第1の電極30の接触面は第2の電解質膜42aによって覆われた電解質膜40aを得ることができる。したがって、焼成された電解質膜40aのひび割れを抑制または防止することができると共に、第1の電極30からの電解質膜40aの剥離を抑制または防止することができる。
 また、本実施例に係る第2の電解質膜の形成方法によれば、第1の電解質膜41bの密着性を第2の電解質膜42bの密着性よりも高くすることによって、第1の電極30に対する第1の電解質膜41bの密着性を向上させることが可能となり、また、第1の電解質膜42bが存在しない領域には、第2の電解質膜42bが流動する。この結果、第1の電極30からの電解質膜40bの剥離を抑制または防止することができると共に、焼成された電解質膜40bのひび割れを抑制または防止することができる。
 従来例との対比を以下に行う。図10は従来例に係る電解質膜の成膜工程における焼成前の電解質膜の状態を模式的に示す説明図である。図11は従来例に係る電解質膜の成膜工程における焼成後の電解質膜の第1の状態を模式的に示す説明図である。図12は従来例に係る電解質膜の成膜工程における焼成後の電解質膜の第2の状態を模式的に示す説明図である。
 従来例では、図10に示すように単層の均一な電解質膜41xを第1の電極30上に成膜し、焼成処理を実行している。この結果、焼成後は図11または図12に示す問題が発生していた。図11は、流動性が高い(多孔質金属支持体に対する密着性が低い)材料を電解質膜の材料として用いた例を示しており、焼結時に電解質膜41x全体が流動し、焼結後には水平方向に収縮した電解質膜40xが得られる。したがって、電解質膜40xにはひび割れ等の損傷は生じないものの、電解質膜41xを構成する材料粒子410xの流動によって第1の電極30との間の密着性が低下し、焼結後の電解質膜40xは第1の電極30から剥離してしまう。
 図12は、多孔質金属支持体に対する密着性が高い(流動性が低い)材料を電解質膜の材料として用いた例を示しており、焼結時に電解質膜41xが流動せずに第1の電極30と密着するため、焼結後にはひび割れた電解質膜40xが得られる。したがって、電解質膜40xと第1の電極30との間の密着性は維持されるため電解質膜40xと第1の電極30との剥離は生じないものの、電解質膜41xを構成する材料粒子410xが流動しないことによって、第1の電極30の全面を電解質膜40xによって覆うことができず、焼結後の電解質膜40xにはひび等の損傷が生じてしまう。
 図11および図12に示すいずれの従来例も、膜電極接合体として用いることはできず、剥離やひび割れのない電解質膜の形成方法が望まれていた。
 そこで、本実施例に係る電解質膜の形成方法では、第1の形成方法として、焼成前の電解質膜として第1の電解質膜41aと第1の電解質膜41aよりも流動性の高い第2の電解質膜42aの2層からなる電解質膜を成膜し、焼成処理によって電解質膜を形成している。すなわち、流動性が異なる2つの第1の層と第2の層を用いて焼成前の電解質膜を成膜することによって、流動し難い第1の電解質膜41aが離散的に第1の電極30と密着して焼結されても、第2の電解質膜42aによって、焼結された複数の第1の電解質膜41a間が埋められた電解質膜40aを得ることができる。したがって、電解質膜40aに発生する損傷を防止または抑制することができる。
 第2の形成方法として、焼成前の電解質膜として第2の電解質膜42cと第2の電解質膜42cよりも密着性の高い第1の電解質膜41c2層からなる電解質膜を成膜し、焼成処理によって電解質膜を形成している。すなわち、密着性が異なる2つの第1の層と第2の層を用いて焼成前の電解質膜を成膜することによって、第1の電極30に対する第1の電解質膜41cの密着性を高めることができる。したがって、電解質膜40cの剥離を抑制または防止することができる。さらに、第2の電解質膜42cによって、焼結された複数の第1の電解質膜41c間を埋めることができる。
 さらに、第1または第2の形成方法によって形成された電解質膜を有する膜電極接合体10または燃料電池100によれば、第1の電極30からの剥がれのない電解質膜40、損傷のない電解質膜40を備えることができるので、膜電極接合体10または燃料電池100の所期の性能を発揮することができる。また、膜電極接合体10または燃料電池100の歩留まりを向上させることができる。
 その他の実施例:
 上記実施例では、電解質膜の形成について説明したが、多孔質金属支持体20上に直接形成される第1の電極30の形成に対して、上記実施例を適用しても良い。図13は他の実施例に係る電極の成膜工程における焼成前の電解質膜の状態を模式的に示す説明図である。図14は他の実施例に係る電極の成膜工程における焼成後の電解質膜の状態を模式的に示す説明図である。
 本実施例では、第1の電極30aを形成する際に、第1の層31aと第2の層31bの2層からなる焼結前の電極を成膜し、焼結後に第1の電極30aを得る。一般的に、電極には金属が組成成分として含まれているため、焼結時においても焼結収縮率は固体電解質と比較して低く、多孔質金属支持体20の剥離は生じにくい。しかしながら、組成成分によっては焼結収縮率が高くなる場合もある。そのような場合には、図13に示すように第1の層31aと第1の層31aよりも流動性の高い第2の層31bとを成膜し、焼結することによって、図14に示す、損傷もなく、多孔質金属支持体20から剥離しない第1の電極30aを得ることができる。
 なお、第2の層31bの流動性を高める代わりに、第1の層31aの密着性を高めても良い。この場合にも、上記実施例において説明したように、第1の電極30aの多孔質金属支持体20に対する密着性が向上されると共に、第1の電極30aにおけるひび割れ等の損傷を抑制または防止することができる。
 この場合には、膜の形成方法であって、多孔質金属支持体上に第1の層を成膜し、前記第1の層上に、前記第1の層よりも流動性の高い第2の層を成膜し、前記第1および第2の層を焼成して第1の膜を形成する膜の形成方法、として定義することができる。また、この形成方法において、前記多孔質金属支持体には第1の電極が形成されており、前記第1の層は前記第1の電極上に形成される、として、電解質膜の形成方法として定義しても良い。
(1)上記実施例では、第1の電解質膜と第2の電解質膜の2層を用いて説明したが、3層以上の電解質膜を成膜し、焼成して電解質膜を得ても良い。この場合には、第1の電極から遠ざかるに連れて流動性が高くなるように成膜し、あるいは、第1の電極に近づくに連れて密着性が高くなるように成膜すれば良い。あるいは、第1の電極に直接接する層に対して高い密着性を与え、若しくは、第1の電極に直接接する層以外の層に対して高い流動性を与えても良い。
(2)上記実施例では、流動性および密着性の観点から、第1の電解質膜と第2の電解質膜の特性を定義したが、焼結時における各電解質膜の収縮率である焼結収縮率を用いて定義しても良い。この場合には、第1の電解質膜の材料として、第2の電解質膜の焼結収縮率よりも小さい特性を有する材料を用いれば良い、あるいは、第1の電極に近づくに連れて焼結収縮率が小さくなるように3以上の層を成膜しても良い。この特性を備えることによって、第1の電極に近い側では密着性を有し、第1の電極から遠い側では緻密性を有する電解質膜を形成することができる。したがって、第1の電極からの剥離、剥がれ、電解質膜の損傷を抑制または防止することができる。
(3)上記実施例では、第1の電極30としてアノードを例にとって説明しているが、カソードしての第1の電極30が用いられても良い。
(4)上記実施例における第1の電極30、電解質膜40、第2の電極35の組成は一例であり、上記した組成以外にも種々の組成の材料を用いることができることはいうまでもない。この場合であっても、電解質膜40として、第1および第2の電解質膜を成膜した後に、焼成処理を実行することによって、上述した効果を得ることができる。
 以上、実施例、変形例に基づき本発明について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれる。

Claims (15)

  1.  電解質膜の形成方法であって、
     第1の電極が形成されている多孔質金属支持体上に第1の層を成膜し、
     前記第1の層上に、前記第1の層よりも流動性の高い第2の層を成膜し、
     前記第1および第2の層を焼成して電解質膜を形成する
    電解質膜の形成方法。
  2.  請求項1に記載の電解質膜の形成方法において、
     前記第2の層のグリーン密度は、前記第1の層のグリーン密度よりも低い、
    電解質膜の形成方法。
  3.  請求項2に記載の電解質膜の形成方法において、
     前記第2の層の高い流動性は、前記第1の層をなす材料よりもグリーン密度が低い材料を用いて前記第2の層を成膜することによって実現される、電解質膜の形成方法。
  4.  請求項1に記載の電解質膜の形成方法において、
     前記第2の層の高い流動性は、グリーン密度が低くなる成膜方法によって前記第2の層を成膜することによって実現される、
    電解質膜の形成方法。
  5.  請求項1に記載の電解質膜の形成方法において、
     前記第2の層の高い流動性は、前記第1の層よりも焼結性の低い材料を用いて第2の層を成膜することによって実現される、
    電解質膜の形成方法。
  6.  電解質膜の形成方法であって、
     第1の電極が形成されている多孔質金属支持体上に第2の層よりも密着性の高い第1の層を成膜し、
     前記第1の層上に、第2の層を成膜し、
     前記第1および第2の層を焼成して電解質膜を形成する
    電解質膜の形成方法。
  7.  請求項6に記載の電解質膜の形成方法において、
     前記第1の層の高い密着性は、前記第1の層をなす材料に接着剤を混合することによって実現される
    電解質膜の形成方法。
  8.  請求項6に記載の電解質膜の形成方法において、
     前記第1の層の高い密着性は、前記第2の層を形成する成膜法よりも高い密着性を提供する成膜法を用いて前記第1の層を形成することによって実現される
    電解質膜の形成方法。
  9.  請求項6に記載の電解質膜の形成方法において、
     前記第1の層の高い密着性は、前記第1の層をなす材料として前記第2の層をなす材料よりも表面の粗い粒子を用いることによって実現される
    電解質膜の形成方法。
  10.  請求項6に記載の電解質膜の形成方法において、
     前記第1の層の高い密着性は、前記第2の層を焼成する温度よりも高い温度若しくは長い時間で前記第1の層を焼成することによって実現される
    電解質膜の形成方法。
  11.  膜電極接合体の製造方法であって、
     多孔質金属支持体上に第1の電極を形成し、
     前記第1の電極上に第1の層を成膜し、
     前記第1の層上に、前記第1の層よりも流動性の高い第2の層を成膜し、
     前記第1および第2の層を焼成して電解質膜を形成し、
     前記電解質膜上に第2の電極を形成する
    膜電極接合体の製造方法。
  12.  膜電極接合体の製造方法であって、
     多孔質金属支持体上に第1の電極を形成し、
     前記第1の電極上に第2の層よりも密着性の高い第1の層を成膜し、
     前記第1の層上に第2の層を成膜し、
     前記第1および第2の層を焼成して電解質膜を形成し、
     前記電解質膜上に第2の電極を形成する
    膜電極接合体の製造方法。
  13.  多孔質金属支持体上に形成されている膜電極接合体であって、
     前記多孔質金属支持体上に形成された第1の電極と、
     前記第1の電極上に形成された電解質膜であって、前記第1の電極上に成膜された第1の層と、前記第1の層の上に成膜された前記第1の層よりも流動性の高い第2の層とを焼成して得られた電解質膜と、
     前記電解質膜上に形成された第2の電極とを備える
    膜電極接合体。
  14.  多孔質金属支持体上に形成されている膜電極接合体であって、
     前記多孔質金属支持体上に形成された第1の電極と、
     前記第1の電極上に形成された電解質膜であって、前記第1の電極上に成膜された第1の層と、第2の層とを焼成して得られた電解質膜であって、前記第1の層の密着性は前記第2の層の密着性よりも高い、電解質膜と、
     前記電解質膜上に形成された第2の電極とを備える
    膜電極接合体。
  15.  燃料電池であって、
     請求項13または14に記載された膜電極接合体と、
     前記膜電極接合体の両側に配置される1対のセパレータとを備える燃料電池。
PCT/JP2009/001361 2009-03-26 2009-03-26 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法 WO2010109530A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020107002434A KR101175581B1 (ko) 2009-03-26 2009-03-26 전해질막의 형성 방법, 막전극 접합체 및 막전극 접합체의 제조 방법
CN2009801003714A CN101919093B (zh) 2009-03-26 2009-03-26 电解质膜的形成方法、膜电极接合体及膜电极接合体的制造方法
JP2010504341A JP5152322B2 (ja) 2009-03-26 2009-03-26 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
EP09842148.0A EP2278649B1 (en) 2009-03-26 2009-03-26 Method for moulding electrolytic film, a film electrode connector and a method for manufacturing a film electrode connector
PCT/JP2009/001361 WO2010109530A1 (ja) 2009-03-26 2009-03-26 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
US12/677,944 US8835080B2 (en) 2009-03-26 2009-03-26 Electrolyte mebrane formation method, membrane-electerode assembly, and membrane-electrode assembly manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001361 WO2010109530A1 (ja) 2009-03-26 2009-03-26 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法

Publications (1)

Publication Number Publication Date
WO2010109530A1 true WO2010109530A1 (ja) 2010-09-30

Family

ID=42780245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001361 WO2010109530A1 (ja) 2009-03-26 2009-03-26 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法

Country Status (6)

Country Link
US (1) US8835080B2 (ja)
EP (1) EP2278649B1 (ja)
JP (1) JP5152322B2 (ja)
KR (1) KR101175581B1 (ja)
CN (1) CN101919093B (ja)
WO (1) WO2010109530A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509602A (ja) * 2016-03-18 2019-04-04 ユニバーシティー オブ メリーランド,カレッジ パーク 固体酸化物燃料電池用代替アノード材料
JP2020024847A (ja) * 2018-08-07 2020-02-13 東京瓦斯株式会社 燃料電池および燃料電池の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11450860B2 (en) * 2016-06-14 2022-09-20 California Institute Of Technology Nanofibers decorated with nanoparticles and methods of their manufacture
JP7048631B2 (ja) * 2017-04-13 2022-04-05 エンベー ベカルト ソシエテ アノニム ガス拡散層
CN109904498B (zh) * 2019-02-28 2021-03-23 武汉理工大学 一种用于低温固体氧化物燃料电池的矿物材料电解质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032183A (ja) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。
JP2006073230A (ja) * 2004-08-31 2006-03-16 Kyocera Corp 燃料電池セル
JP2007149439A (ja) * 2005-11-25 2007-06-14 Shinko Electric Ind Co Ltd 固体電解質燃料電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342703A (en) * 1991-07-19 1994-08-30 Ngk Insulators, Ltd. Solid electrolyte type fuel cell and method for producing the same
JPH11329463A (ja) * 1998-05-19 1999-11-30 Fuji Electric Corp Res & Dev Ltd 固体電解質型燃料電池およびその製造方法
US7163713B2 (en) * 1999-07-31 2007-01-16 The Regents Of The University Of California Method for making dense crack free thin films
CN1305864A (zh) * 2000-01-20 2001-08-01 普拉塞尔技术有限公司 电子传导相比例低的多相固体离子和电子传导膜及其制法
AU2001285902A1 (en) * 2000-08-24 2002-03-04 Siemens Aktiengesellschaft Method for producing a solid electrolyte layer on a substrate
JP3858261B2 (ja) * 2001-05-22 2006-12-13 日産自動車株式会社 燃料電池用セル板、その製造方法および固体電解質型燃料電池
JP3940946B2 (ja) * 2002-05-01 2007-07-04 日産自動車株式会社 燃料電池用セル体およびその製造方法
JP3978603B2 (ja) * 2002-10-01 2007-09-19 日産自動車株式会社 固体酸化物形燃料電池用セル板及びその製造方法
JP2005251611A (ja) 2004-03-05 2005-09-15 Nissan Motor Co Ltd 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池
GB0501590D0 (en) * 2005-01-25 2005-03-02 Ceres Power Ltd Processing of enhanced performance LSCF fuel cell cathode microstructure and a fuel cell cathode
US7462412B2 (en) * 2005-03-04 2008-12-09 Toto Ltd. Solid oxide fuel cell
JP5041194B2 (ja) 2005-09-21 2012-10-03 大日本印刷株式会社 固体酸化物形燃料電池
CN100456544C (zh) * 2006-08-18 2009-01-28 中国科学院上海硅酸盐研究所 固体氧化物燃料电池的阳极支撑型固体电解质复合膜及制备方法
AU2008279577B2 (en) * 2007-07-25 2013-01-31 The Regents Of The University Of California High temperature electrochemical device with interlocking structure
JP2011520740A (ja) * 2007-12-20 2011-07-21 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 焼結多孔性構造物及びその製法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032183A (ja) * 2004-07-20 2006-02-02 Nissan Motor Co Ltd 電気伝導性材料及びこれを用いた固体酸化物形燃料電池。
JP2006073230A (ja) * 2004-08-31 2006-03-16 Kyocera Corp 燃料電池セル
JP2007149439A (ja) * 2005-11-25 2007-06-14 Shinko Electric Ind Co Ltd 固体電解質燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019509602A (ja) * 2016-03-18 2019-04-04 ユニバーシティー オブ メリーランド,カレッジ パーク 固体酸化物燃料電池用代替アノード材料
JP7106047B2 (ja) 2016-03-18 2022-07-26 ユニバーシティ オブ メリーランド, カレッジ パーク 固体酸化物燃料電池用代替アノード材料
JP2020024847A (ja) * 2018-08-07 2020-02-13 東京瓦斯株式会社 燃料電池および燃料電池の製造方法
JP7088776B2 (ja) 2018-08-07 2022-06-21 東京瓦斯株式会社 燃料電池および燃料電池の製造方法

Also Published As

Publication number Publication date
EP2278649B1 (en) 2017-08-16
KR101175581B1 (ko) 2012-08-21
US20110262834A1 (en) 2011-10-27
JP5152322B2 (ja) 2013-02-27
KR20100128272A (ko) 2010-12-07
US8835080B2 (en) 2014-09-16
CN101919093A (zh) 2010-12-15
JPWO2010109530A1 (ja) 2012-09-20
CN101919093B (zh) 2012-11-14
EP2278649A4 (en) 2014-03-26
EP2278649A1 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP6800297B2 (ja) 電気化学素子、固体酸化物形燃料電池セル、およびこれらの製造方法
TWI577077B (zh) 高溫燃料電池用的陽極及其製造方法
JP5762309B2 (ja) 基本セルのスタックを含む高温型電解セルまたは高温型燃料電池を製作するための方法
WO2008016345A2 (en) Joined concentric tubes
US20130078448A1 (en) Method of making electrochemical device with porous metal layer
JP4899324B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP5152322B2 (ja) 電解質膜の形成方法、膜電極接合体および膜電極接合体の製造方法
US20140272665A1 (en) Ceramic Fuel Cell With Enhanced Flatness And Strength And Methods Of Making Same
JP2012221623A (ja) 燃料電池単セルの製造方法および燃料電池単セル
CN105047960A (zh) 互连和固体氧化物燃料电池装置
JP2015167128A (ja) 金属支持型固体酸化物形燃料電池用セル、該セルの製造方法および、該セルを用いた固体酸化物形燃料電池
US20140193743A1 (en) Method for the densification of ceramic layers, especially ceramic layers within solid oxide cell (soc) technology, and products obtained by the method
US20120082920A1 (en) Co-fired metal interconnect supported sofc
JP2013065518A (ja) 金属支持型電解質・電極接合体及びその製造方法
KR20190129841A (ko) 전기 화학 소자의 제조 방법 및 전기 화학 소자
JP5547188B2 (ja) 電解質・電極接合体の製造方法
JP2011009173A (ja) 電解質・電極接合体の製造方法
JP2012009232A (ja) 固体酸化物形燃料電池セルの製造方法、固体酸化物形燃料電池セル及び固体酸化物形燃料電池
JP6663470B1 (ja) 燃料電池セル及びセルスタック装置
JP5470281B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2011009174A (ja) 電解質・電極接合体の製造方法
JP4140652B2 (ja) 固体電解質型燃料電池用電解質、固体電解質型燃料電池セル及びこれらの製造方法
JP5591171B2 (ja) 金属支持型電解質・電極接合体の製造方法
KR20130075848A (ko) 금속 지지체형 고체 산화물 연료전지 및 그 제조방법
JP2007035395A (ja) ガス透過性基体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100371.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107002434

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010504341

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12677944

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009842148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009842148

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE