WO2009128336A1 - 接合体、該接合体の製造方法、及び該接合体に用いられる異方性導電膜 - Google Patents
接合体、該接合体の製造方法、及び該接合体に用いられる異方性導電膜 Download PDFInfo
- Publication number
- WO2009128336A1 WO2009128336A1 PCT/JP2009/056268 JP2009056268W WO2009128336A1 WO 2009128336 A1 WO2009128336 A1 WO 2009128336A1 JP 2009056268 W JP2009056268 W JP 2009056268W WO 2009128336 A1 WO2009128336 A1 WO 2009128336A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- wiring
- conductive film
- conductive particles
- anisotropic conductive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/50—Fixed connections
- H01R12/51—Fixed connections for rigid printed circuits or like structures
- H01R12/55—Fixed connections for rigid printed circuits or like structures characterised by the terminals
- H01R12/57—Fixed connections for rigid printed circuits or like structures characterised by the terminals surface mounting terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/16—Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R11/00—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
- H01R11/01—Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/321—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
- H05K3/323—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83101—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/06—Polymers
- H01L2924/078—Adhesive characteristics other than chemical
- H01L2924/0781—Adhesive characteristics other than chemical being an ohmic electrical conductor
- H01L2924/07811—Extrinsic, i.e. with electrical conductive fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R4/00—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
- H01R4/04—Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09654—Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
- H05K2201/098—Special shape of the cross-section of conductors, e.g. very thick plated conductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
Definitions
- the present invention relates to an IC chip, an electronic component such as a liquid crystal panel (LCD panel) in a liquid crystal display (LCD) and a substrate, or a bonded body in which the substrates are electrically connected, a method for manufacturing the bonded body, and
- the present invention relates to an anisotropic conductive film used for the joined body.
- an anisotropic conductive adhesive film (ACF) has been used as a means for connecting electronic components and circuit boards.
- This anisotropic conductive adhesive film is used, for example, when connecting a terminal of a flexible printed circuit board (FPC) or an IC chip and an ITO (Indium Tin Oxide) electrode formed on a glass substrate of an LCD panel, It is used when various terminals are bonded and electrically connected.
- FPC flexible printed circuit board
- ITO Indium Tin Oxide
- an epoxy resin-based insulating adhesive layer in which conductive particles are dispersed is used.
- an IC chip terminal and an ITO electrode on a glass substrate are used. Between these, the conductive particles are sandwiched and crushed, thereby realizing electrical connection between the terminal of the IC chip and the ITO electrode.
- the area of the junction terminal has been reduced due to the fine pitch of the junction terminal. However, even when the terminal area is reduced, high particle capture and conduction reliability are ensured. Is required.
- the particle diameter of the conductive fine particles contained in the anisotropic conductive adhesive film is usually smaller than the width of the junction terminals such as bumps and wirings (for example, Patent Document 1) (FIG. 6). Therefore, when the fine pitch of the bonding terminals such as bumps and wiring is made, the conductive fine particles are averagely dispersed on the bonding terminals by reducing the particle diameter of the conductive fine particles. (FIG. 7), studies have been made to secure high particle trapping properties to obtain excellent conduction reliability and to prevent short circuits.
- the particle diameter of the conductive fine particles is made smaller with the fine pitch of the joining terminals, it is necessary to increase the pressure at the time of joining (crimping) in order to ensure sufficient particle crushing, and the material of the electronic component or substrate When a low-strength material such as glass is used, the electronic component or the substrate may be cracked during bonding (crimping). Further, in recent years, since electronic components or substrates have been made thinner, it is desired to perform bonding (crimping) at a lower pressure.
- the present invention makes it a subject to solve the said problem in the past and to achieve the following objectives. That is, the present invention can ensure sufficient particle crushing and obtain excellent conduction reliability even when a fine pitch substrate is bonded to an electronic component, etc. It is an object of the present invention to provide a bonded body capable of preventing the above, a method for producing the bonded body, and an anisotropic conductive film used for the bonded body.
- Means for solving the problems are as follows. That is, ⁇ 1> An anisotropic material including a first substrate and any one of a second substrate and an electronic component, wherein the first substrate and any one of the second substrate and the electronic component include conductive particles.
- the conductive particles that are pressure-bonded to the wiring in the first substrate protrude from the wiring in both width directions, and the distance between the wiring is
- the bonded body is characterized in that the average particle diameter of the conductive particles not crimped to the wiring is 3.5 times or more.
- conductive particles having a large average particle diameter are used so that the conductive particles that are pressure-bonded to the wiring in the first substrate protrude from the wiring in both width directions.
- the wiring interval (space width) in the first substrate is 3.5 times or more the average particle diameter of the conductive particles not crimped to the wiring, the wiring interval (space width) is sufficient. It is possible to prevent a short circuit between wirings in the same substrate by connecting conductive particles in a space between the wirings.
- An anisotropic material including a first substrate and any one of a second substrate and an electronic component, wherein the first substrate and any one of the second substrate and the electronic component include conductive particles.
- the average particle diameter of the conductive particles that are not pressure-bonded to the wiring in the first substrate is larger than the width of the wiring
- the joined body is characterized in that the interval is at least 3.5 times the average particle diameter of the conductive particles not crimped to the wiring.
- the wiring interval (space width) in the first substrate is 3.5 times or more the average particle diameter of the conductive particles not crimped to the wiring, the wiring interval (space width) is sufficient. It is possible to prevent the wirings in the same substrate from being short-circuited because conductive particles are continuous in the space between the wirings.
- ⁇ 4> A manufacturing method for manufacturing the joined body according to any one of ⁇ 1> to ⁇ 3>, wherein the anisotropic conductive film includes an anisotropic conductive film including conductive particles on a surface to be processed.
- a method of manufacturing a joined body comprising: a film forming step; and a joining step of joining the first substrate and any one of the second substrate and the electronic component through the anisotropic conductive film. is there.
- ⁇ 5> An anisotropic conductive film used in the joined body according to any one of ⁇ 1> to ⁇ 3>.
- the conventional problems can be solved, and even when a fine pitch substrate and an electronic component are joined, sufficient particle crushing is ensured and excellent conduction reliability is obtained.
- FIG. 1 is a schematic explanatory view showing conductive particles (substantially spherical) pressed onto the wiring of the first substrate in the joined body of the present invention.
- FIG. 2 is a schematic explanatory view showing conductive particles (indefinite shape) pressed onto the wiring of the first substrate in the joined body of the present invention.
- FIG. 3 is a schematic explanatory view showing conductive particles (secondary particles (aggregated particles)) pressure-bonded onto the wiring of the first substrate in the joined body of the present invention.
- FIG. 4 is a schematic explanatory diagram showing a line width (wiring width) L and a space width (wiring interval) S of the first substrate.
- FIG. 5 is a schematic explanatory diagram showing the structure of wiring on the first substrate.
- FIG. 6 is a schematic explanatory view showing a conventional joined body.
- FIG. 7 is a schematic explanatory view showing conductive particles crimped onto the wiring of the first substrate in the conventional joined body.
- the joined body of the present invention includes a first substrate and any one of the second substrate and the electronic component, and the first substrate and any one of the second substrate and the electronic component are electrically conductive particles. It is electrically joined through an anisotropic conductive film containing. That is, the conductive particles are sandwiched between the terminals (wirings) on the first substrate and the terminals on the electronic component or between the terminals (wirings) on the first and second substrates. As a result, conduction between the terminals is achieved.
- conductive particles crimped to the wiring on the first substrate (between the terminals on the first substrate and the terminals on the electronic component, or between the terminals on the first and second substrates) Conductive particles that are sandwiched and crushed) protrude from the wiring in the width direction of the wiring, and the interval between the wirings is not pressure-bonded to the wiring (terminal in the first substrate) And the terminals of the electronic component, or between the terminals of the first and second substrates, the average particle diameter of the conductive particles not being crushed) is 3.5 times or more, preferably 4 It is more than double.
- the conductive particles press-bonded to the wiring in the first substrate may have a substantially spherical shape (FIG. 1) or an irregular shape (FIG. 2).
- “projecting from the wiring in both width directions of the wiring” means that one conductive particle (primary particle) projects from the wiring in both width directions of the wiring as shown in FIGS. 1 and 2.
- a case where a plurality of conductive particles (secondary particles (aggregated particles)) protrude from the wiring in both width directions of the wiring is included.
- the “interval of the wiring” indicates the space width (wiring interval) S in FIG. 4 and indicates an average value of 10 measurement values measured with a microscope.
- L represents a line width (wiring width), and represents an average value of 10 measurement values measured with a microscope.
- the “average particle diameter of the conductive particles not crimped to the wiring” refers to conductive particles that are not crimped to the wiring (not deformed by bonding (crimping)) with a microscope (STM-UM; manufactured by Olympus). 10), the particle diameters of the observed conductive particles are respectively measured, and an average value of 10 measured values is shown.
- the space width (wiring interval) S in the first substrate is 3.5 times or more, preferably 4 times or more of the line width (wiring width) L in the first substrate.
- the average particle size of the conductive particles (including not only primary particles but also secondary particles (aggregated particles)) bonded to the wiring in the first substrate is larger than the line width (wiring width) L. It is essential.
- conductive particles that are pressure-bonded to the wiring on the first substrate protrude from the wiring in both width directions, and the space between the wirings (space width S) is pressure-bonded to the wiring. Since the average particle size of the conductive particles that are not applied is 3.5 times or more, preferably 4 times or more, even when a fine pitch substrate is bonded to an electronic component, sufficient particle collapse As a result, excellent conduction reliability can be obtained, and occurrence of a short circuit can be prevented.
- IC chip for example, the IC chip for liquid crystal screen control in a flat panel display (FPD), a liquid crystal panel etc. are mentioned.
- the anisotropic conductive film contains at least conductive particles, preferably further contains a binder resin, and further contains other components appropriately selected as necessary.
- the thickness of the anisotropic conductive film is preferably 10 to 50 ⁇ m.
- Conductive particles-- There is no restriction
- metal particles such as solder and nickel; resin particles, glass particles or ceramic particles coated with metal (nickel, gold, aluminum, copper, etc.) plating;
- Use of these conductive particles absorbs variations in the smoothness of terminals and board wiring to be joined, ensuring a process margin during manufacturing, and ensuring conduction even when the connection point is separated due to stress. And high reliability can be obtained.
- metal-coated resin particles for example, nickel gold-plated coated resin particles are preferable, and the metal-coated resin particles are insulated in that they can prevent a short circuit caused by the conductive particles entering between terminals. Insulating particles coated with a resin are more preferable.
- the binder resin is preferably made of at least one resin selected from epoxy resins and acrylic resins.
- the epoxy resin is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and novolak type epoxy resin. These may be used individually by 1 type and may use 2 or more types together.
- the acrylic resin is not particularly limited and may be appropriately selected depending on the intended purpose.
- These may be used individually by 1 type and may use 2 or more types together.
- what made the said acrylate into the methacrylate is mentioned, These may be used
- ingredients are not particularly limited as long as they do not impair the effects of the present invention, and can be appropriately selected from known additives according to the purpose.
- additives for example, fillers, softeners, accelerators, anti-aging Agents, colorants, flame retardants, silane coupling agents and the like.
- addition amount of the said other component According to the addition amount of the said electroconductive particle, the said binder resin, etc., it can select suitably.
- the method for producing a joined body of the present invention includes at least an anisotropic conductive film forming step and a joining step, and further includes other steps appropriately selected as necessary.
- the anisotropic conductive film forming step is a step of forming an anisotropic conductive film containing conductive particles on the surface to be processed.
- a method (coating method) of applying a coating liquid containing a resin composition in which conductive particles are dispersed in a binder resin on a surface to be processed, or one spraying means is used as the anisotropic conductive film forming step.
- a method in which conductive particles ejected using an electrostatic potential applied by an electrostatic potential applying unit and resin particles ejected using another spraying unit are sprayed simultaneously on a surface to be treated (spraying method) ).
- the bonding step is a step of bonding the first substrate and any one of the second substrate and the electronic component via the anisotropic conductive film.
- the bonding step is not particularly limited as long as the first substrate is bonded to any one of the second substrate and the electronic component via an anisotropic conductive film, and is appropriately selected depending on the purpose.
- the first substrate and any of the second substrate and the electronic component are placed at 100 to 300 ° C., 0.1 to 200 MPa, and 1 to 50 seconds through an anisotropic conductive film.
- pressure bonding For example, pressure bonding.
- Example 1 Provide of anisotropic conductive film (ACF1)- Bisphenol type liquid epoxy resin (“E828”; manufactured by Japan Epoxy Resin) as a binder resin, 20 parts by mass, Phenoxy resin (“PKHH”; manufactured by Inchem Co., Ltd.), 20 parts by mass, an amine latent curing agent (“HX3941”) "; Asahi Kasei Chemicals Co., Ltd.) 20 parts by mass, and Ni-Au plated resin particles (manufactured by Nippon Chemical Industry Co., Ltd., average particle diameter of 10 ⁇ m, hereinafter referred to as" gold particles ”) as 1,000 parts /
- the coating liquid containing a resin composition in which conductive particles were dispersed in a binder resin was prepared by adding toluene adjusted as the solvent, and adjusting the thickness to 2 mm.
- the average particle diameter of the gold particles is a 10-point average value of measurement values obtained by measurement with a microscope.
- a film (PET layer) made of polyethylene terephthalate (PET) was prepared as a target (the surface to be treated) to which a coating solution containing a resin composition in which conductive particles are dispersed in a binder resin is applied. Subsequently, the prepared coating solution was coated on a film (PET layer) using a bar coater under the following coating conditions.
- an epoxy resin coating film (the anisotropic conductive film) in which gold particles were dispersed in an epoxy resin was formed on the surface of the PET layer.
- the obtained epoxy resin coating film was heated in an oven at 70 ° C. for 5 minutes to evaporate toluene, and an epoxy resin film (thickness 18 ⁇ m) containing 1,000 gold particles / mm 2 was obtained. Obtained.
- the FPC (flexible printed circuit board) A and the ITO glass are stacked with an anisotropic conductive film so that the wiring of the FPC (flexible printed circuit board) A and the conductive pattern of the ITO glass face each other.
- pressure bonding was performed by applying pressure under the conditions of 1 MPa or 3 MPa for 20 seconds and a pressure bonding width of 2 mm to obtain a joined body.
- Example 1 In the production of the anisotropic conductive film of Example 1, Ni—Au plated resin particles having an average particle diameter of 5 ⁇ m were used as the conductive particles instead of Ni—Au plated resin particles having an average particle diameter of 10 ⁇ m. In the same manner as in Example 1, an anisotropic conductive film was produced and a joined body was produced.
- the anisotropic conductive film manufactured in Comparative Example 1 is ACF2.
- Example 2 An anisotropic conductive film was produced in the same manner as in Example 1 except that the following FPC (flexible printed circuit board) B was used instead of FPC (flexible printed circuit board) A in the production of the joined body of Example 1. A joined body was produced.
- FPC flexible printed circuit board
- the average particle diameter (10 ⁇ m) of the conductive particles is larger than the line width (wiring width) L (8 ⁇ m) of the FPC board A, and the conductive particles are pressure-bonded to the wiring on the FPC board A. Is projected from the wiring in both width directions of the wiring, and the space width (wiring interval) S (42 ⁇ m) is 4.2 times the average particle diameter (10 ⁇ m) of the conductive particles (3. 5 times or more), even when the FPC substrate A and ITO glass are bonded at a low pressure (1 MPa), sufficient particle crushing is ensured, and excellent conduction reliability (conduction resistance 2.. 0 ⁇ ) and the occurrence of short circuits between circuits (0 shorts) can be suppressed.
- Comparative Example 1 since the average particle diameter (5 ⁇ m) of the conductive particles is smaller than the line width (wiring width) L (8 ⁇ m) of the FPC board A, bonding between the FPC board A and the ITO glass is performed at a low pressure. When carried out at (1 MPa), it was found that sufficient particle crushing could not be ensured and excellent conduction reliability could not be obtained (conduction resistance 8.4 ⁇ ).
- the space width (wiring interval) S (27 ⁇ m) of the FPC board B is 2.7 times (less than 3.5 times) the average particle size (10 ⁇ m) of the conductive particles. It was found that short-circuiting occurred (5 shorts (1 MPa), 7 shorts (3 MPa)).
- the joined body of the present invention can ensure sufficient particle crushing and obtain excellent conduction reliability even when joining a fine pitch substrate and an electronic component, etc. Occurrence can be suppressed.
- the method for producing a joined body of the present invention can efficiently produce a joined body.
- the anisotropic conductive film of the present invention can be suitably used for joining various electronic components and the like, substrates, substrates, etc., for example, suitable for manufacturing IC tags, IC cards, memory cards, flat panel displays, etc. Can be used for
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
- Combinations Of Printed Boards (AREA)
- Wire Bonding (AREA)
Abstract
Description
近年、電子機器の小型化及び高機能化により、接合端子のファインピッチ化に伴う接合端子の面積が減少しているが、端子面積が狭くなっても、高い粒子捕捉性や導通信頼性の確保が求められている。
<1> 第1の基板と、第2の基板及び電子部品のいずれかとを備え、前記第1の基板と、前記第2の基板及び前記電子部品のいずれかとが、導電性粒子を含む異方性導電膜を介して、電気的に接合されてなる接合体において、前記第1の基板における配線に圧着された導電性粒子が前記配線から前記配線の両幅方向に突出し、前記配線の間隔が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であることを特徴とする接合体である。
該接合体においては、前記第1の基板における配線に圧着された導電性粒子が前記配線から前記配線の両幅方向に突出するように、平均粒径が大きい導電性粒子を用いているので、ファインピッチの基板と電子部品等との接合を行った場合であっても、十分な粒子潰れを確保して、優れた導通信頼性を得ることができる。また、前記第1の基板における配線の間隔(スペース幅)が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であるので、配線の間隔(スペース幅)を十分大きいものとし、配線間におけるスペースに導電性粒子が連なって、同一基板内の配線同士をショートすることを防止することができる。
<2> 第1の基板と、第2の基板及び電子部品のいずれかとを備え、前記第1の基板と、前記第2の基板及び前記電子部品のいずれかとが、導電性粒子を含む異方性導電膜を介して、電気的に接合されてなる接合体において、前記第1の基板における配線に圧着されていない導電性粒子の平均粒径が、前記配線の幅よりも大きく、前記配線の間隔が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であることを特徴とする接合体である。
該接合体においては、前記第1の基板における配線に圧着されていない導電性粒子の平均粒径が前記配線の幅よりも大きいので、ファインピッチの基板と電子部品等との接合を行った場合であっても、十分な粒子潰れを確保して、優れた導通信頼性を得ることができる。また、前記第1の基板における配線の間隔(スペース幅)が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であるので、配線の間隔(スペース幅)を十分大きいものとし、配線間におけるスペースに導電性粒子が連なって、同一基板内の配線同士をショートすることを防止することができる。
<3> 異方性導電膜がバインダー樹脂を含有してなり、該バインダー樹脂がエポキシ樹脂及びアクリル樹脂から選択される少なくとも1種を含む前記<1>から<2>に記載の接合体である。
<4> 前記<1>から<3>のいずれかに記載の接合体を製造する製造方法であって、被処理面上に導電性粒子を含む異方性導電膜を形成する異方性導電膜形成工程と、前記異方性導電膜を介して、第1の基板と、第2の基板及び電子部品のいずれかとを接合する接合工程とを含むことを特徴とする接合体の製造方法である。
<5> 前記<1>から<3>のいずれかに記載の接合体に用いられることを特徴とする異方性導電膜である。
本発明の接合体は、第1の基板と、第2の基板及び電子部品のいずれかとを備え、前記第1の基板と、前記第2の基板及び前記電子部品のいずれかとが、導電性粒子を含む異方性導電膜を介して、電気的に接合されてなる。即ち、前記第1の基板における端子(配線)と、前記電子部品における端子との間、或いは前記第1及び第2の基板同士における端子(配線)間に、前記導電性粒子が挟まれて潰されることにより、前記端子間の導通が図られている。
基板の種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ITOガラス基板、フレキシブル基板、リジッド基板、フレキシブルプリント基板などが挙げられる。
電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ICチップ、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップ、液晶パネルなどが挙げられる。
異方性導電膜は、導電性粒子を少なくとも含有してなり、好ましくは、バインダー樹脂をさらに含有してなり、更に必要に応じて適宜選択した、その他の成分を含有してなる。また、前記異方性導電膜の厚さとしては、10~50μmが好ましい。
導電性粒子としては、特に制限はなく、従来の異方性導電接着剤において用いられているものと同じ構成のものを使用することができる。例えば、半田、ニッケル等の金属粒子;金属(ニッケル、金、アルミニウム、銅等)メッキで被覆された、樹脂粒子、ガラス粒子あるいはセラミック粒子;更にこれらを絶縁被覆した粒子;などが挙げられる。これらの導電性粒子を用いると、接合する端子及び基板配線の平滑性のばらつきを吸収し、製造時のプロセスマージンを確保することができるほか、応力により接続点が離れた場合でも、導通を確保することができ、高い信頼性が得られる。
前記導電性粒子の中でも、金属被覆樹脂粒子、例えば、ニッケル金メッキ被覆樹脂粒子が好ましく、端子間に前記導電性粒子が入り込むことにより生じるショートを防止可能な点で、前記金属被覆樹脂粒子が、絶縁樹脂により被覆されてなる絶縁粒子がより好ましい。
バインダー樹脂は、エポキシ樹脂及びアクリル樹脂から選択される少なくとも1種の樹脂からなるのが好ましい。
また、前記アクリレートをメタクリレートにしたものが挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
その他の成分としては、本発明の効果を害さない限り特に制限はなく、目的に応じて公知の添加剤の中から適宜選択することができ、例えば、充填剤、軟化剤、促進剤、老化防止剤、着色剤、難燃剤、シランカップリング剤などが挙げられる。
前記その他の成分の添加量としては、特に制限はなく、前記導電性粒子、前記バインダー樹脂などの添加量との関係で、適宜選択することができる。
本発明の接合体の製造方法は、異方性導電膜形成工程と、接合工程とを少なくとも含み、更に必要に応じて適宜選択した、その他の工程を含む。
異方性導電膜形成工程は、被処理面上に導電性粒子を含む異方性導電膜を形成する工程である。前記異方性導電膜形成工程としては、バインダー樹脂中に導電性粒子が分散されてなる樹脂組成物を含む塗布液を被処理面上に塗布する方法(塗布法)や、一の噴霧手段を用いて噴出され、静電電位付与手段により静電電位が付与された導電性粒子と、他の噴霧手段を用いて噴出された樹脂粒子とを、被処理面上に同時に噴霧する方法(噴霧法)などが挙げられる。
接合工程は、異方性導電膜を介して、第1の基板と、第2の基板及び電子部品のいずれかとを接合する工程である。
-異方性導電膜(ACF1)の作製-
前記バインダー樹脂としてのビスフェノール型液状エポキシ樹脂(「E828」;ジャパンエポキシレジン製)20質量部、フェノキシ樹脂(「PKHH」;インケム(株)製)20質量部、アミン系潜在性硬化剤(「HX3941」;旭化成ケミカルズ製)20質量部、及び前記導電性粒子としてのNi-Auメッキ樹脂粒子(日本化学工業製、平均粒径10μm、以下、「金粒子」と称する。)を1,000個/mm2となるように調整して加え、前記溶剤としてのトルエンを加えて、バインダー樹脂中に導電性粒子が分散された樹脂組成物を含む塗布液を調製した。
なお、前記金粒子の平均粒径は、顕微鏡による測定により得られた測定値の10点平均値である。
次いで、前記調製した塗布液を下記塗布条件でフィルム(PET層)にバーコーターを用いて塗布した。
得られたエポキシ樹脂塗布膜を、70℃、5分間の条件にて、オーブン中で加熱し、トルエンを蒸発させ、金粒子を1,000個/mm2を含むエポキシ樹脂膜(厚み18μm)を得た。
前記作製した異方性導電膜(ACF1)を用いて、以下に示すFPC(フレキシブルプリント基板)Aと、ITOガラスとの接合体を作製した。
材質:ポリイミド、外寸:46mm×36mm、厚み:0.020mm
配線種類:金メッキ銅配線(図5)、ライン幅(配線幅)L(図4):8μm(顕微鏡による測定により得られた測定値の10点平均)、スペース幅(配線間隔)S(図4):42μm(顕微鏡による測定により得られた測定値の10点平均)、配線高さ:12μm
〔ITOガラス〕
厚み:0.7mm
ITO(10Ω□)
次いで、各接合体について、4端子法によって導通抵抗値(Ω)を測定し、2端子間のショート(個)を評価した。結果を表1に示す。なお、圧着直後の導通抵抗値(Ω)が5Ω以下であり、ショートの発生が無いことが好ましい。
実施例1の異方性導電膜の作製において、導電性粒子として、平均粒径10μmのNi-Auメッキ樹脂粒子の代わりに、平均粒径5μmのNi-Auメッキ樹脂粒子を用いた以外は、実施例1と同様にして、異方性導電膜を作製し、接合体を作製した。なお、比較例1で作製された異方性導電膜をACF2とする。
実施例1の接合体の作製において、FPC(フレキシブルプリント基板)Aの代わりに下記FPC(フレキシブルプリント基板)Bを用いた以外は、実施例1と同様にして、異方性導電膜を作製し、接合体を作製した。
材質:ポリイミド、外寸:43mm×36mm、厚み:0.020mm
配線種類:金メッキ銅配線(図5)、ライン幅(配線幅)L(図4):23μm(顕微鏡による測定により得られた測定値の10点平均)、スペース幅(配線間隔)S(図4):27μm(顕微鏡による測定により得られた測定値の10点平均)、配線高さ:12μm
比較例2の異方性導電膜の作製において、導電性粒子として、平均粒径10μmのNi-Auメッキ樹脂粒子の代わりに、平均粒径5μmのNi-Auメッキ樹脂粒子を用いた以外は、比較例2と同様にして、異方性導電膜を作製し、接合体を作製した。なお、比較例3で作製された異方性導電膜をACF2とする。
本発明の接合体の製造方法は、接合体を効率よく製造することができる。
本発明の異方性導電膜は、各種電子部品等と基板、基板同士などの接合に好適に使用することができ、例えば、ICタグ、ICカード、メモリーカード、フラットパネルディスプレイなどの製造に好適に使用することができる。
Claims (5)
- 第1の基板と、第2の基板及び電子部品のいずれかとを備え、前記第1の基板と、前記第2の基板及び前記電子部品のいずれかとが、導電性粒子を含む異方性導電膜を介して、電気的に接合されてなる接合体において、前記第1の基板における配線に圧着された導電性粒子が前記配線から前記配線の両幅方向に突出し、前記配線の間隔が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であることを特徴とする接合体。
- 第1の基板と、第2の基板及び電子部品のいずれかとを備え、前記第1の基板と、前記第2の基板及び前記電子部品のいずれかとが、導電性粒子を含む異方性導電膜を介して、電気的に接合されてなる接合体において、前記第1の基板における配線に圧着されていない導電性粒子の平均粒径が、前記配線の幅よりも大きく、前記配線の間隔が、前記配線に圧着されていない導電性粒子の平均粒径の3.5倍以上であることを特徴とする接合体。
- 異方性導電膜がバインダー樹脂を含有してなり、該バインダー樹脂がエポキシ樹脂及びアクリル樹脂から選択される少なくとも1種を含む請求項1から2のいずれかに記載の接合体。
- 請求項1から3のいずれかに記載の接合体を製造する製造方法であって、被処理面上に導電性粒子を含む異方性導電膜を形成する異方性導電膜形成工程と、前記異方性導電膜を介して、第1の基板と、第2の基板及び電子部品のいずれかとを接合する接合工程とを含むことを特徴とする接合体の製造方法。
- 請求項1から3のいずれかに記載の接合体に用いられることを特徴とする異方性導電膜。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009800004870A CN101690426B (zh) | 2008-04-18 | 2009-03-27 | 接合体及其制造方法、该接合体所使用的各向异性导电膜 |
US12/633,993 US20100085720A1 (en) | 2008-04-18 | 2009-12-09 | Joined structure, method for producing the same, and anisotropic conductive film used for the same |
HK10105570.5A HK1139818A1 (en) | 2008-04-18 | 2010-06-07 | Connector, manufacture method for connector and anisotropic conductive film to be used therein |
US13/408,418 US20120153008A1 (en) | 2008-04-18 | 2012-02-29 | Joined structure, method for producing the same, and anisotropic conductive film used for the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008109171A JP4814277B2 (ja) | 2008-04-18 | 2008-04-18 | 接合体、該接合体の製造方法、及び該接合体に用いられる異方性導電膜 |
JP2008-109171 | 2008-04-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/633,993 Continuation US20100085720A1 (en) | 2008-04-18 | 2009-12-09 | Joined structure, method for producing the same, and anisotropic conductive film used for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009128336A1 true WO2009128336A1 (ja) | 2009-10-22 |
Family
ID=41199035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/056268 WO2009128336A1 (ja) | 2008-04-18 | 2009-03-27 | 接合体、該接合体の製造方法、及び該接合体に用いられる異方性導電膜 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20100085720A1 (ja) |
JP (1) | JP4814277B2 (ja) |
KR (1) | KR101082238B1 (ja) |
CN (1) | CN101690426B (ja) |
HK (1) | HK1139818A1 (ja) |
TW (1) | TWI391763B (ja) |
WO (1) | WO2009128336A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102576748A (zh) | 2009-11-13 | 2012-07-11 | 三井-杜邦聚合化学株式会社 | 无定形硅太阳能电池组件 |
KR101219139B1 (ko) * | 2009-12-24 | 2013-01-07 | 제일모직주식회사 | 이방 도전성 페이스트, 필름 및 이를 포함하는 회로접속구조체 |
DE102011075009B4 (de) * | 2011-04-29 | 2019-11-14 | Continental Automotive Gmbh | Auf einem Träger angeordnete Kontaktfläche zur Verbindung mit einer auf einem weiteren Träger angeordneten Gegenkontaktfläche |
US9526285B2 (en) * | 2012-12-18 | 2016-12-27 | Intel Corporation | Flexible computing fabric |
CN105247737B (zh) * | 2013-05-29 | 2017-03-08 | 日本轻金属株式会社 | 导电构件 |
JP2015179831A (ja) * | 2014-02-27 | 2015-10-08 | デクセリアルズ株式会社 | 接続体、接続体の製造方法及び検査方法 |
KR102326117B1 (ko) * | 2014-10-28 | 2021-11-15 | 데쿠세리아루즈 가부시키가이샤 | 이방성 도전 필름, 그 제조 방법, 및 접속 구조체 |
JP6181038B2 (ja) * | 2014-12-26 | 2017-08-16 | 株式会社タムラ製作所 | 異方性導電性ペーストおよびそれを用いたプリント配線基板の製造方法 |
JP7185252B2 (ja) | 2018-01-31 | 2022-12-07 | 三国電子有限会社 | 接続構造体の作製方法 |
JP7046351B2 (ja) | 2018-01-31 | 2022-04-04 | 三国電子有限会社 | 接続構造体の作製方法 |
JP7160302B2 (ja) * | 2018-01-31 | 2022-10-25 | 三国電子有限会社 | 接続構造体および接続構造体の作製方法 |
AU2019200594B2 (en) | 2018-02-08 | 2020-05-28 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04342971A (ja) * | 1991-05-21 | 1992-11-30 | Sumitomo Metal Ind Ltd | 電気的接続部材の製造方法 |
JPH06283226A (ja) * | 1993-07-16 | 1994-10-07 | Hitachi Chem Co Ltd | 回路の接続構造体 |
JP2003051661A (ja) * | 2001-08-03 | 2003-02-21 | Sekisui Chem Co Ltd | 導電接続構造体の製造方法 |
JP2003092317A (ja) * | 2001-09-19 | 2003-03-28 | Jsr Corp | シート状コネクターおよびプローブ装置 |
JP2004342764A (ja) * | 2003-05-14 | 2004-12-02 | Sekisui Chem Co Ltd | 導電接続フィルム及び導電接続構造体 |
JP2007048589A (ja) * | 2005-08-10 | 2007-02-22 | Japan Aviation Electronics Industry Ltd | 電気接続用シート及びその製造方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0501358B1 (en) * | 1991-02-25 | 1997-01-15 | Canon Kabushiki Kaisha | Connecting method and apparatus for electric circuit components |
JP3035021B2 (ja) * | 1991-08-29 | 2000-04-17 | 株式会社リコー | 液晶表示素子およびその製造方法 |
TW281855B (en) * | 1993-12-21 | 1996-07-21 | Sharp Kk | Panel assembly structure and panel assembling method capable of achieving a highly reliable connection of electrode terminals even when the electrode terminals have a fine pitch |
US20010046021A1 (en) * | 1997-08-28 | 2001-11-29 | Takeshi Kozuka | A conductive particle to conductively bond conductive members to each other, an anisotropic adhesive containing the conductive particle, a liquid crystal display device using the anisotropic conductive adhesive, a method for manufacturing the liquid crystal display device |
JPH11163501A (ja) * | 1997-12-02 | 1999-06-18 | Rohm Co Ltd | 電子部品の実装方法、およびその方法によって製造された電子回路装置 |
JP3624729B2 (ja) * | 1998-04-06 | 2005-03-02 | セイコーエプソン株式会社 | Icチップ、ic構造体、液晶装置及び電子機器 |
TW570203U (en) * | 1998-08-03 | 2004-01-01 | Rohm Co Ltd | Liquid crystal display element |
JP2000294894A (ja) * | 1998-12-21 | 2000-10-20 | Seiko Epson Corp | 回路基板およびその製造方法ならびに回路基板を用いた表示装置および電子機器 |
US6284086B1 (en) * | 1999-08-05 | 2001-09-04 | Three - Five Systems, Inc. | Apparatus and method for attaching a microelectronic device to a carrier using a photo initiated anisotropic conductive adhesive |
JP3633422B2 (ja) * | 2000-02-22 | 2005-03-30 | ソニーケミカル株式会社 | 接続材料 |
KR100456064B1 (ko) * | 2001-07-06 | 2004-11-08 | 한국과학기술원 | 극미세 피치 cog 기술용 이방성 전도성 필름 |
JP3886401B2 (ja) * | 2002-03-25 | 2007-02-28 | ソニーケミカル&インフォメーションデバイス株式会社 | 接続構造体の製造方法 |
JP3722137B2 (ja) * | 2002-08-21 | 2005-11-30 | セイコーエプソン株式会社 | 半導体装置の実装方法、半導体装置の実装構造、電気光学装置、電気光学装置の製造方法及び電子機器 |
TWI285947B (en) * | 2002-10-11 | 2007-08-21 | Ind Tech Res Inst | Packaging structure by using micro-capsule adhesive material and its packaging method |
US7563487B2 (en) * | 2003-03-31 | 2009-07-21 | Sumitomo Electric Industries, Ltd. | Anisotropic electrically conductive film and method of producing the same |
KR20050079399A (ko) * | 2004-02-05 | 2005-08-10 | 삼성전자주식회사 | 이방성도전필름 및 범프와, 이를 갖는 반도체 칩의 실장구조체 |
JP4385794B2 (ja) * | 2004-02-26 | 2009-12-16 | ソニーケミカル&インフォメーションデバイス株式会社 | 異方性導電接続方法 |
WO2005122657A1 (ja) * | 2004-06-11 | 2005-12-22 | Ibiden Co., Ltd. | フレックスリジッド配線板とその製造方法 |
WO2006112383A1 (ja) * | 2005-04-14 | 2006-10-26 | Matsushita Electric Industrial Co., Ltd. | 電子回路装置およびその製造方法 |
JP2007165816A (ja) * | 2005-11-15 | 2007-06-28 | Mitsui Mining & Smelting Co Ltd | プリント配線基板、その製造方法およびその使用方法 |
KR100747336B1 (ko) * | 2006-01-20 | 2007-08-07 | 엘에스전선 주식회사 | 이방성 도전 필름을 이용한 회로기판의 접속 구조체, 이를위한 제조 방법 및 이를 이용한 접속 상태 평가방법 |
CN101574022B (zh) * | 2007-02-22 | 2011-04-20 | 夏普株式会社 | 电子电路装置及其制造方法以及显示装置 |
US8258625B2 (en) * | 2007-04-06 | 2012-09-04 | Hitachi, Ltd. | Semiconductor device |
-
2008
- 2008-04-18 JP JP2008109171A patent/JP4814277B2/ja active Active
-
2009
- 2009-03-27 WO PCT/JP2009/056268 patent/WO2009128336A1/ja active Application Filing
- 2009-03-27 KR KR1020097026365A patent/KR101082238B1/ko active IP Right Grant
- 2009-03-27 CN CN2009800004870A patent/CN101690426B/zh active Active
- 2009-04-17 TW TW098112864A patent/TWI391763B/zh active
- 2009-12-09 US US12/633,993 patent/US20100085720A1/en not_active Abandoned
-
2010
- 2010-06-07 HK HK10105570.5A patent/HK1139818A1/xx unknown
-
2012
- 2012-02-29 US US13/408,418 patent/US20120153008A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04342971A (ja) * | 1991-05-21 | 1992-11-30 | Sumitomo Metal Ind Ltd | 電気的接続部材の製造方法 |
JPH06283226A (ja) * | 1993-07-16 | 1994-10-07 | Hitachi Chem Co Ltd | 回路の接続構造体 |
JP2003051661A (ja) * | 2001-08-03 | 2003-02-21 | Sekisui Chem Co Ltd | 導電接続構造体の製造方法 |
JP2003092317A (ja) * | 2001-09-19 | 2003-03-28 | Jsr Corp | シート状コネクターおよびプローブ装置 |
JP2004342764A (ja) * | 2003-05-14 | 2004-12-02 | Sekisui Chem Co Ltd | 導電接続フィルム及び導電接続構造体 |
JP2007048589A (ja) * | 2005-08-10 | 2007-02-22 | Japan Aviation Electronics Industry Ltd | 電気接続用シート及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20100085720A1 (en) | 2010-04-08 |
HK1139818A1 (en) | 2010-09-24 |
JP4814277B2 (ja) | 2011-11-16 |
TWI391763B (zh) | 2013-04-01 |
CN101690426A (zh) | 2010-03-31 |
JP2009260131A (ja) | 2009-11-05 |
KR101082238B1 (ko) | 2011-11-09 |
US20120153008A1 (en) | 2012-06-21 |
KR20100009591A (ko) | 2010-01-27 |
CN101690426B (zh) | 2012-01-04 |
TW200949396A (en) | 2009-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4814277B2 (ja) | 接合体、該接合体の製造方法、及び該接合体に用いられる異方性導電膜 | |
KR101193757B1 (ko) | 이방성 도전막 및 그 제조 방법, 및 그 이방성 도전막을 이용한 접합체 | |
JP2010199087A (ja) | 異方性導電膜及びその製造方法、並びに、接合体及びその製造方法 | |
KR20180035135A (ko) | 전자 부품의 실장 방법, 전자 부품의 접합 구조, 기판 장치, 디스플레이 장치, 디스플레이 시스템 | |
JP6180159B2 (ja) | 異方性導電フィルム、接続方法、及び接合体 | |
JPH07157720A (ja) | 異方導電フィルム | |
JP5032961B2 (ja) | 異方性導電膜及びこれを用いた接合体 | |
JPH0750104A (ja) | 導電性粒子及びこの導電性粒子を用いた接続部材 | |
JP5209778B2 (ja) | 異方性導電膜及びこれを用いた接合体 | |
JP2010251336A (ja) | 異方性導電フィルム及びこれを用いた接続構造体の製造方法 | |
US20060261315A1 (en) | Insulation-coated electroconductive particles | |
JP5315031B2 (ja) | 異方性導電フィルム、並びに、接合体及びその製造方法 | |
JP7287275B2 (ja) | 接着剤組成物、及び接続体の製造方法 | |
US20110250395A1 (en) | Electrode connection structure, conductive adhesive used therefor, and electronic device | |
KR101157599B1 (ko) | 이방성 도전 필름용 도전 입자 및 이를 포함하는 이방성 도전 필름 | |
JP5796232B2 (ja) | 導電性粒子、異方性導電材料及び接続構造体 | |
JP2010174096A (ja) | 異方性導電接着剤 | |
JP2003318502A (ja) | 電極接続構造 | |
KR102207299B1 (ko) | 이방 도전성 필름, 이를 포함하는 디스플레이 장치 및/또는 이를 포함하는 반도체 장치 | |
JP2003197033A (ja) | 異方導電性接着剤及び回路板 | |
JP2007258184A (ja) | 電極の接続構造 | |
JP2003109436A (ja) | 異方導電フィルム | |
JP2003272445A (ja) | 導電性粒子及びこの導電粒子を用いた接続部材 | |
JP2003309341A (ja) | 導電性粒子を用いた接続部材の電極接続構造 | |
JP2016178029A (ja) | 異方性導電フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980000487.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09733574 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20097026365 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09733574 Country of ref document: EP Kind code of ref document: A1 |