WO2009125657A1 - 車輪用軸受装置 - Google Patents

車輪用軸受装置 Download PDF

Info

Publication number
WO2009125657A1
WO2009125657A1 PCT/JP2009/055138 JP2009055138W WO2009125657A1 WO 2009125657 A1 WO2009125657 A1 WO 2009125657A1 JP 2009055138 W JP2009055138 W JP 2009055138W WO 2009125657 A1 WO2009125657 A1 WO 2009125657A1
Authority
WO
WIPO (PCT)
Prior art keywords
convex
shaft
fitting
hole
wheel
Prior art date
Application number
PCT/JP2009/055138
Other languages
English (en)
French (fr)
Inventor
中川 亮
祐一 淺野
小澤 仁博
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008102374A external-priority patent/JP5683772B2/ja
Priority claimed from JP2008106776A external-priority patent/JP5683773B2/ja
Priority claimed from JP2008106766A external-priority patent/JP5398999B2/ja
Priority claimed from JP2008191070A external-priority patent/JP2010023800A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112009000811.9T priority Critical patent/DE112009000811B4/de
Priority to US12/922,939 priority patent/US9261145B2/en
Publication of WO2009125657A1 publication Critical patent/WO2009125657A1/ja
Priority to US14/989,311 priority patent/US10086648B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0005Hubs with ball bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0021Hubs for driven wheels characterised by torque transmission means from drive axle
    • B60B27/0026Hubs for driven wheels characterised by torque transmission means from drive axle of the radial type, e.g. splined key
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0015Hubs for driven wheels
    • B60B27/0036Hubs for driven wheels comprising homokinetic joints
    • B60B27/0042Hubs for driven wheels comprising homokinetic joints characterised by the fixation of the homokinetic joint to the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0078Hubs characterised by the fixation of bearings
    • B60B27/0084Hubs characterised by the fixation of bearings caulking to fix inner race
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B27/00Hubs
    • B60B27/0094Hubs one or more of the bearing races are formed by the hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B35/00Axle units; Parts thereof ; Arrangements for lubrication of axles
    • B60B35/12Torque-transmitting axles
    • B60B35/18Arrangement of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/062Dismounting of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • F16C35/0635Fixing them on the shaft the bore of the inner ring being of special non-cylindrical shape which co-operates with a complementary shape on the shaft, e.g. teeth, polygonal sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/108Quick-acting couplings in which the parts are connected by simply bringing them together axially having retaining means rotating with the coupling and acting by interengaging parts, i.e. positive coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/2237Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts where the grooves are composed of radii and adjoining straight lines, i.e. undercut free [UF] type joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/60Positive connections with threaded parts, e.g. bolt and nut connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22326Attachments to the outer joint member, i.e. attachments to the exterior of the outer joint member or to the shaft of the outer joint member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling

Definitions

  • the present invention relates to a wheel bearing device for rotatably supporting a wheel with respect to a vehicle body in a vehicle such as an automobile.
  • the wheel bearing device has evolved from a structure in which a double row rolling bearing called a first generation is used alone to a second generation in which a vehicle body mounting flange is integrated with an outer member.
  • the third generation in which one inner raceway surface of the double row rolling bearing is integrally formed on the outer periphery of the hub ring integrally having a ring, and further, the constant velocity universal joint is integrated with the hub ring.
  • 4th generation has been developed in which the other inner raceway surface of the double-row rolling bearing is integrally formed on the outer periphery of the outer joint member that constitutes.
  • Patent Document 1 describes what is called a third generation.
  • the wheel bearing device called the third generation includes a hub wheel 152 having a flange 151 extending in the outer diameter direction, and a constant velocity universal joint 154 to which an outer joint member 153 is fixed. And an outer member 155 disposed on the outer peripheral side of the hub wheel 152.
  • the constant velocity universal joint 154 includes an outer joint member 153, an inner joint member 158 disposed in the bowl-shaped portion 157 of the outer joint member 153, and the inner joint member 158 and the outer joint member 153.
  • a ball 159 to be disposed and a holder 160 for holding the ball 159 are provided.
  • a spline portion 161 is formed on the inner peripheral surface of the center hole of the inner joint member 158, and an end spline portion of a shaft (not shown) is inserted into the center hole, and the spline portion 161 on the inner joint member 158 side The spline portion on the shaft side is engaged.
  • the hub wheel 152 includes a cylindrical shaft portion 163 and the flange 151, and a short wheel and a brake rotor (not shown) are mounted on the outer end surface 164 (end surface on the outboard side) of the flange 151.
  • a cylindrical pilot portion 165 is provided so as to protrude.
  • the pilot portion 165 includes a large-diameter first portion 165a and a small-diameter second portion 165b.
  • a brake rotor is externally fitted to the first portion 165a, and a wheel is externally fitted to the second portion 165b.
  • the notch 166 is provided in the outer peripheral surface of the end part of the shaft part 163 on the side of the bowl-shaped part 157, and the inner ring 167 is fitted into the notch 166.
  • a first inner raceway surface 168 is provided near the flange on the outer peripheral surface of the shaft portion 163 of the hub wheel 152, and a second inner raceway surface 169 is provided on the outer peripheral surface of the inner ring 167.
  • a bolt mounting hole 162 is provided in the flange 151 of the hub wheel 152, and a hub bolt for fixing the wheel and the brake rotor to the flange 151 is mounted in the bolt mounting hole 162.
  • the outer member 155 is provided with two rows of outer raceways 170 and 171 on its inner periphery, and a flange (vehicle body mounting flange) 151 on its outer periphery. Then, the first outer raceway surface 170 of the outer member 155 and the first inner raceway surface 168 of the hub ring 152 face each other, and the second outer raceway surface 171 of the outer member 155 and the raceway surface 169 of the inner ring 167 are opposed to each other. Opposed and a rolling element 172 is interposed between them.
  • the stem shaft 173 of the outer joint member 153 is inserted into the shaft portion 163 of the hub wheel 152.
  • the shaft portion 173 has a threaded portion 174 formed at the end of the ridged portion, and a spline portion 175 is formed between the threaded portion 174 and the hooked portion 157.
  • a spline portion 176 is formed on the inner peripheral surface (inner diameter surface) of the shaft portion 163 of the hub wheel 152, and when the stem shaft 173 is inserted into the shaft portion 163 of the hub wheel 152, The spline portion 175 engages with the spline portion 176 on the hub wheel 152 side.
  • the spline portion 175 on the stem shaft 173 side and the spline portion 176 on the hub wheel 152 side are engaged with each other. For this reason, it is necessary to perform spline processing on both the stem shaft 173 side and the hub wheel 152 side, which increases the cost, and at the time of press-fitting, the spline portion 175 on the stem shaft 173 side and the spline portion 176 on the hub wheel 152 side. It is necessary to match the unevenness of the teeth. At this time, if the teeth are pressed by matching the tooth surfaces, the uneven teeth may be damaged (peeled).
  • the present invention can suppress circumferential backlash, and is excellent in connection workability between the hub wheel and the outer joint member of the constant velocity universal joint, and has a stable torque over a long period of time.
  • a wheel bearing device that can transmit power, can be separated from a hub wheel and an outer joint member of a constant velocity universal joint, has excellent maintainability, and can transmit torque stably over a long period of time.
  • the first wheel bearing device of the present invention has an outer member having a double row outer raceway surface formed on the inner circumference, and a double row inner raceway surface facing the outer raceway surface on the outer circumference.
  • An inner member comprising a hub ring and an inner ring provided with a flange for mounting on the inner ring, and a double row rolling element interposed between an outer raceway surface of the outer member and an inner raceway surface of the inner member;
  • a drive wheel bearing device in which the stem portion of the outer joint member of the constant velocity universal joint is fitted and joined to the inner diameter of the hub ring, and the inner diameter surface of the hole portion of the hub shaft and the stem shaft of the outer joint member A convex portion extending in the axial direction is provided on one of the two, and the convex portion is press-fitted into the other along the axial direction.
  • the concave and convex fitting structure in which the entire fitting contact portion between the concave portion and the concave portion is in close contact, and the hub wheel
  • the end part on the board side is swaged to the outer diameter side to form a swaged part, and the inner ring of the rolling bearing that is externally fitted to the hub ring is fixed by this swaged part, and preload is applied to the rolling bearing.
  • the caulking portion is brought into contact with the back surface of the mouth portion of the outer joint member of the constant velocity universal joint facing the caulking portion.
  • the stem is provided with the concave and convex fitting structure that integrates the hub wheel and the stem shaft of the outer joint member of the constant velocity universal joint that is inserted into the hole of the hub wheel.
  • Bolts or the like are not required for coupling the shaft and the hub wheel.
  • the entire fitting contact portion between the convex portion and the concave portion is in close contact with the concave-convex fitting structure, there is no gap between the radial direction and the circumferential direction.
  • a shaft portion retaining structure for restricting the stem shaft from coming off from the hub wheel between the stem shaft of the outer joint member of the constant velocity universal joint and the inner diameter surface of the hub wheel.
  • the shaft portion retaining structure is a hook structure in which a cylindrical portion provided at the shaft end portion of the stem shaft is plastically deformed radially outward by rocking caulking by a rocking caulking jig. . For this reason, the caulking load at the time of caulking can be reduced by pushing the caulking jig along the axial direction without swinging, compared with the case of expanding the diameter.
  • the concave / convex fitting structure can allow separation by applying an extraction force in the axial direction. That is, if an axial pulling force is applied to the stem shaft of the outer joint member, the outer joint member can be removed from the hole of the hub wheel. In addition, after the stem shaft of the outer joint member is pulled out from the hole of the hub wheel, if the stem shaft of the outer hand member is pressed again into the hole of the hub wheel, the entire fitting contact region between the convex part and the concave part
  • the concave-convex fitting structure can be configured to closely contact each other.
  • the hub wheel and the stem shaft of the outer joint member can be fixed via a bolt coupling means on a device shaft center having a screw hole and a bolt member screwed into the screw hole.
  • the hub wheel and the stem shaft of the outer joint member are fixed via the bolt coupling means, so that the axial disengagement of the stem shaft of the outer joint member from the hub wheel is restricted.
  • the bolt coupling means is provided with a shaft press-fitting guide structure portion of an outer joint member that guides the bolt member when re-pressing after separation.
  • the bolt member has a threaded portion and a non-threaded portion
  • the shaft press-fit guide structure portion has a bolt insertion hole through which the non-threaded portion of the bolt member is inserted.
  • the diameter difference between the hole diameter of the bolt insertion hole and the shaft diameter of the non-threaded portion of the bolt member is set to be smaller than the diameter difference between the stem shaft outer diameter of the outer joint member and the hub ring inner diameter in the concave-convex fitting structure.
  • the bolt insertion hole serves as a guide when the stem shaft of the outer joint member is press-fitted.
  • an inner wall for partitioning the inside of the hole of the hub wheel and a bolt insertion hole in the inner wall. This inner wall improves the rigidity of the shaft press-fitting guide structure.
  • a sealing material may be interposed therebetween.
  • the contact surface pressure between the caulking portion of the hub wheel and the back surface of the mouse portion is 100 MPa or less.
  • this contact surface pressure exceeds 100 MPa, there is a risk of generating abnormal noise. That is, there is a difference in the amount of twist between the outer joint member of the constant velocity universal joint and the hub ring when a large torque is applied, and this difference causes a sudden slip at the contact portion between the outer joint member of the constant velocity universal joint and the hub ring. Is generated and abnormal noise is generated.
  • the contact surface pressure is 100 MPa or less, it is possible to prevent a sudden slip, and to suppress the generation of abnormal noise.
  • a convex portion of the concave-convex fitting structure is provided on the stem shaft of the outer joint member of the constant velocity universal joint, and at least the hardness of the axial end portion of the convex portion is higher than the inner diameter portion of the hole portion of the hub wheel, By press-fitting the stem shaft into the hole of the hub wheel from the axial end side of the protrusion, a recess that closely fits to the protrusion on the inner diameter surface of the hole of the hub wheel is formed at the protrusion. You may comprise an uneven
  • a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and at least the hardness of the axial end portion of the convex portion is set to the outer diameter portion of the stem shaft of the outer joint member of the constant velocity universal joint.
  • the convex portion on the hub wheel side is press-fitted into the stem shaft of the outer joint member from its axial end side so that the convex portion projects on the outer diameter surface of the stem shaft of the outer joint member.
  • the concave-convex fitting structure may be formed by forming a concave portion that closely fits to the portion.
  • the projecting direction intermediate part of the convex part is arranged on the concave part forming surface before the concave part is formed.
  • the maximum diameter of the circle connecting the vertices of the plurality of convex portions is made larger than the inner diameter of the hub ring shaft hole where the concave portion is formed, and the valley between the convex portions is formed.
  • the diameter dimension of the connecting circle is made smaller than the inner diameter dimension of the shaft portion fitting hole of the hub wheel.
  • the outer diameter dimension of the stem shaft of the outer joint member is made larger than the minimum diameter dimension of the circle connecting the vertices of the plurality of convex portions provided in the hole portion of the hub wheel, and between the convex portions of the hub ring hole portion. It should be smaller than the diameter of the circle connecting the valley bottoms.
  • the circumferential thickness of the protruding portion intermediate portion of the convex portion is smaller than the circumferential dimension at a position corresponding to the intermediate portion between the convex portions adjacent in the circumferential direction.
  • the sum of the circumferential thicknesses of the projecting direction intermediate portions of the convex portions is the position corresponding to the intermediate portion in the mating convex portion that fits between the convex portions adjacent in the circumferential direction. Smaller than the sum of the circumferential thicknesses.
  • the concave-convex fitting structure it is preferable to arrange the concave-convex fitting structure at a position directly below the raceway surface of the rolling bearing. That is, if the shaft portion is press-fitted into the hole of the hub wheel, the hub wheel expands. This expansion generates a hoop stress on the raceway surface of the rolling bearing.
  • the hoop stress refers to a force for expanding the diameter in the outer diameter direction. For this reason, when a hoop stress is generated on the bearing raceway surface, there is a risk of causing a reduction in rolling fatigue life and occurrence of cracks. Therefore, by arranging the concave-convex fitting structure at a position directly below the raceway surface of the rolling bearing, generation of hoop stress on the bearing raceway surface can be suppressed.
  • a pocket portion for storing a protruding portion generated by forming a concave portion by press fitting It is preferable to provide a pocket portion for storing a protruding portion generated by forming a concave portion by press fitting.
  • a pocket portion for accommodating a protruding portion generated by forming a concave portion by press-fitting can be provided on the stem shaft or on the inner diameter surface of the hole portion of the hub wheel.
  • the protruding portion is the material of the capacity of the concave portion into which the concave portion fitting portion of the convex portion is fitted (fitted), and is extruded from the formed concave portion, or cut to form the concave portion. It is comprised from what was extruded, what was extruded, and what was cut.
  • a pocket portion for accommodating the protruding portion is provided on the press-fitting start end side of the convex portion of the stem shaft, and a collar portion for alignment with the hole portion of the hub wheel is provided on the axially opposite convex portion side of the pocket portion. Is preferred.
  • the wheel bearing device of the present invention has a concave and convex fitting structure that integrates the hub wheel and the stem shaft of the outer joint member of the constant velocity universal joint that is inserted into the hole of the hub ring.
  • the play in the circumferential direction of the structure portion can be eliminated.
  • a seal structure can be formed by this contact, foreign matter can be prevented from entering the concave-convex fitting structure from the caulking portion side of the hub wheel, and the concave-convex fitting structure can maintain a stable fitting state for a long time.
  • the stem shaft of the outer joint member can be press-fitted without considering the preload, and the connectivity (assembleability) between the hub wheel and the outer joint member can be improved.
  • the stem part retaining structure can effectively prevent the stem shaft of the outer joint member from coming off from the hole of the hub wheel in the axial direction. As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved. For this reason, a nut fastening work is not required in the connection between the stem shaft and the hub wheel. Therefore, the assembling work can be easily performed, the cost in the assembling work can be reduced, and the weight can be reduced.
  • the outer joint member By applying an axial pulling force to the stem shaft of the outer joint member, the outer joint member can be removed from the hole in the hub wheel, improving the workability (maintenability) of repair and inspection of each part. Can be planned.
  • the stem shaft of the outer joint member is press-fitted into the hole of the hub wheel again, thereby forming a concave / convex fitting structure in which the entire fitting contact portion between the convex portion and the concave portion is in close contact. Can do. For this reason, the wheel bearing device capable of stable torque transmission can be configured again.
  • the shaft portion retaining structure is a hook structure in which the cylindrical portion is plastically deformed radially outward, the conventional screw fastening can be omitted. For this reason, it is not necessary to form a screw portion protruding from the hole portion of the hub wheel in the shaft portion, and it is possible to reduce the weight and to omit the screw fastening operation and to improve the assembly workability. .
  • the caulking load during caulking is relatively small, and the thickness of the caulking portion can be increased, or the inner diameter surface of the hub ring and the caulking portion outer diameter surface can be reliably brought into contact with each other. Thereby, a stronger retaining mechanism (structure) can be provided.
  • the bending rigidity of the shaft portion is improved and the bending becomes strong. If the caulking load during caulking can be reduced, the load receiving portion (the load receiving portion of the outer joint member of the constant velocity universal joint, for example, a step surface provided on the outer diameter surface of the outer joint member) Or deformation of the opening side end surface of the outer joint member).
  • the diameter difference between the hole diameter of the bolt insertion hole and the shaft diameter of the non-threaded portion of the bolt member is set smaller than the diameter difference between the outer diameter of the stem shaft of the outer joint member and the inner diameter of the hub ring in the concave-convex fitting structure.
  • the bolt shaft hole serves as a guide for press-fitting the stem shaft of the outer joint member, and more stable re-press-fitting is possible.
  • the rigidity of the shaft press-fitting guide structure is improved by the inner wall of the hole of the hub wheel, and the press-fitting of the stem shaft of the outer joint member is more stable.
  • a sealing material is interposed between the caulking portion of the hub wheel and the opposing surface of the outer joint member facing the hub ring, rainwater, foreign matter, etc. can be prevented from entering the concave-convex fitting structure. Can do. Moreover, if a sealing material is interposed between the seat surface of the bolt shaft of the bolt coupling means and the receiving surface that receives this seat surface, intrusion of rainwater, foreign matter, etc. into the concave-convex fitting structure from this space is prevented. be able to.
  • a quiet wheel bearing device can be configured.
  • the hardness of the axial end of the convex part is higher than the inner diameter part of the hole of the hub wheel, If the stem shaft is press-fitted into the hole of the hub wheel from the axial end portion side of the convex portion, the hardness on the stem shaft side can be increased and the rigidity of the stem shaft can be improved.
  • a convex portion of the concave-convex fitting structure is provided on the inner diameter surface of the hole portion of the hub wheel, and the hardness of the axial end portion of the convex portion is determined by the outer diameter portion of the stem shaft of the outer joint member of the constant velocity universal joint.
  • the convex portion on the hub wheel side is press-fitted into the stem shaft of the outer joint member from the axial end portion side, there is no need to perform hardness treatment (heat treatment) on the stem shaft side. Excellent productivity of universal joint outer joint members.
  • the convex part on the side where the concave part is formed by making the circumferential thickness of the intermediate part in the protruding direction of the convex part smaller than the dimension at the position corresponding to the intermediate part between the convex parts adjacent in the circumferential direction (The thickness in the circumferential direction of the projecting intermediate portion of the convex portion between the concave portions formed can be increased. For this reason, the shear area of the convex part of the other party (the convex part having low hardness between the concave parts due to the formation of the concave parts) can be increased, and the torsional strength can be ensured. Moreover, since the tooth thickness of the convex portion on the higher hardness side is small, the press-fitting load can be reduced and the press-fitting property can be improved.
  • the concave / convex fitting structure By arranging the concave / convex fitting structure at a position directly under the raceway surface of the rolling bearing, the occurrence of hoop stress on the bearing raceway surface is suppressed. As a result, it is possible to prevent a bearing failure such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing can be provided.
  • the protruding portion By providing a pocket portion for storing the protruding portion generated by forming the concave portion by the press-fitting, the protruding portion can be held (maintained) in the pocket, and the protruding portion may enter the vehicle outside the apparatus. Absent. In other words, the protruding portion can be kept stored in the pocket portion, and it is not necessary to perform the removal processing of the protruding portion, the number of assembling work can be reduced, and the assembling workability can be improved and the cost can be reduced. Can be planned.
  • the protruding part in the pocket part does not protrude to the collar part side, and the protruding part is stored. Becomes more stable.
  • the collar portion is used for alignment, the stem shaft can be press-fitted into the hub wheel while preventing misalignment. For this reason, an outer joint member and a hub ring can be connected with high precision, and stable torque transmission becomes possible.
  • FIG. 18 is an end view of the outer hook-shaped locking portion that covers the entire circumference of the stem shaft of the outer ring of the wheel bearing device of FIG. 17.
  • FIG. 18 is an end view of an outer hook-like locking portion arranged at a predetermined pitch along the circumferential direction, showing an end surface of a stem shaft of an outer ring of the wheel bearing device of FIG. 17. It is a longitudinal cross-sectional view of the wheel bearing apparatus which shows 5th Embodiment of this invention. It is principal part sectional drawing of the wheel bearing apparatus which shows 6th Embodiment of this invention. It is principal part sectional drawing of the wheel bearing apparatus which shows 7th Embodiment of this invention. It is principal part sectional drawing of the wheel bearing apparatus which shows 8th Embodiment of this invention. It is a principal part expanded sectional view of the wheel bearing apparatus of the said FIG.
  • FIG. 28 is a cross-sectional view taken along the line WW in FIG. 27, showing a shaft press-fitting structure of the wheel bearing device shown in FIG. 26. It is an expanded sectional view showing the 1st modification of a shaft part press fit structure. It is an expanded sectional view showing the 2nd modification of a shaft part press fit structure. It is a principal part enlarged view of the wheel bearing apparatus shown in the said FIG. It is sectional drawing before the assembly of the wheel bearing apparatus shown in the said FIG.
  • FIG. 27 is a cross-sectional view of the wheel bearing device shown in FIG. 26 before reassembly. It is sectional drawing which shows the reassembly method of the wheel bearing apparatus shown in the said FIG. FIG. 27 is a cross-sectional view of a state immediately before press-fitting, showing a re-press-in method of the wheel bearing device shown in FIG. 26. It is sectional drawing in the middle of press injection, showing the re-press-in method of the wheel bearing apparatus shown in the said FIG. FIG. 27 is a cross-sectional view showing a press-fitting completion state of the re-press-fitting method of the wheel bearing device shown in FIG.
  • FIG. 1 shows a wheel bearing device according to a first embodiment.
  • This wheel bearing device is a hub wheel 1, a double row rolling bearing 2 and a constant velocity universal joint 3 integrated with each other. 1 and the stem shaft 12 of the outer joint member of the constant velocity universal joint 3 that is inserted into the hole 22 of the hub wheel 1 are coupled to each other through an uneven fitting structure M.
  • the constant velocity universal joint 3 includes a plurality of outer rings 5 serving as outer joint members, an inner ring 6 serving as an inner joint member disposed on the inner side of the outer ring 5, and a plurality of torque transmissions interposed between the outer ring 5 and the inner ring 6.
  • the ball 7 and the cage 8 that is interposed between the outer ring 5 and the inner ring 6 and holds the ball 7 are configured as main members.
  • the inner ring 6 is spline-fitted by press-fitting an end 10a of the shaft 10 into the shaft hole inner diameter 6a and is coupled to the shaft 10 so as to be able to transmit torque. Note that a retaining ring 9 for retaining the shaft is fitted to the end portion 10a of the shaft 10.
  • the outer ring 5 includes a mouse part 11 and a stem part (shaft part) 12.
  • the mouse part 11 has a bowl shape opened at one end, and a plurality of guide grooves (track grooves) extending in the axial direction on the inner spherical surface 13 thereof. 14 are formed at equal intervals in the circumferential direction.
  • the inner ring 6 has a plurality of guide grooves (track grooves) 16 extending in the axial direction formed on the outer spherical surface 15 at equal intervals in the circumferential direction.
  • the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 form a pair, and one ball 7 as a torque transmission element (torque transmission member) is provided for each of the tracks constituted by the pair of track grooves 14 and 16. It is incorporated so that it can roll.
  • the ball 7 is interposed between the track groove 14 of the outer ring 5 and the track groove 16 of the inner ring 6 to transmit torque.
  • the cage 8 is slidably interposed between the outer ring 5 and the inner ring 6, contacts the inner spherical surface 13 of the outer ring 5 at the outer spherical surface, and contacts the outer spherical surface 15 of the inner ring 6 at the inner spherical surface.
  • the constant velocity universal joint in this case is an undercut-free type having a straight straight portion at the bottom of each of the track grooves 14 and 16, but a Zepper having no straight straight portion at the bottom. Other constant velocity universal joints such as a mold may be used.
  • the boot 18 includes a large diameter portion 18a, a small diameter portion 18b, and a bellows portion 18c that connects the large diameter portion 18a and the small diameter portion 18b.
  • the large-diameter portion 18a is externally fitted to the opening of the mouse portion 11, and is fastened by the boot band 19a in this state, and the small-diameter portion 18b is externally fitted to the boot mounting portion 10b of the shaft 10, and in this state, the boot band 19b It is concluded.
  • the hub wheel 1 includes a cylindrical portion 20 and a flange 21 provided at an end portion of the cylindrical portion 20 on the outboard side.
  • the hole portion 22 of the tubular portion 20 includes a shaft portion fitting hole 22a, a tapered hole 22b on the outboard side, and a large diameter portion 22c on the inboard side.
  • a tapered portion (tapered hole) 22d is provided between the large diameter portion 22c and the shaft portion fitting hole 22a.
  • the tapered portion 22d is reduced in diameter along the press-fitting direction when the hub wheel 1 and the stem shaft 12 of the outer ring 5 are coupled.
  • the inclination angle ⁇ 1 of the tapered portion 22d is, for example, 15 ° to 75 °.
  • the outboard side is a side that is outside the vehicle when attached to the vehicle
  • the inboard side is a side that is inside the vehicle when attached to the vehicle.
  • the rolling bearing 2 includes an inner ring 24 that fits in a stepped portion 23 provided on the inboard side of the tubular portion 20 of the hub wheel 1, and an outer portion that is fitted over the tubular portion 20 through the inner ring 24 of the hub wheel 1. And a member 25.
  • the outer member 25 is provided with two rows of outer raceways (outer races) 26 and 27 on its inner circumference, and a first inner raceway (provided on the outer circumference of the first outer raceway 26 and the shaft portion of the hub wheel 1).
  • the inner race) 28 is opposed to the second outer raceway surface 27 and the second inner raceway surface (inner race) 29 provided on the outer peripheral surface of the inner ring 24 is opposed to the ball as the rolling element 30 therebetween. Is installed. For this reason, in this wheel bearing device, the hub ring 1 and the inner ring 24 constitute an inner member 39 of the rolling bearing 2. Seal members S1 and S2 are attached to both openings of the outer member 25.
  • a knuckle 34 (see FIG. 26 and the like) extending from a vehicle suspension device (not shown) is attached to the outer ring which is the outer member 25. That is, the entire outer surface of the outer member 25 is a cylindrical surface, and this cylindrical surface is a press-fitting surface 25a into which the knuckle 34 is press-fitted. Thus, the outer member 25 can be press-fitted into the cylindrical inner surface of the knuckle. In this case, it is preferable that the relative axial and circumferential deviation between the knuckle 34 and the outer member 25 be regulated by the tightening allowance between the knuckle press-fitting surface 25a and the knuckle inner diameter surface.
  • the fitting surface pressure between the outer member 25 and the knuckle 34 ⁇ the fitting area is defined as a fitting load
  • a value obtained by dividing the fitting load by the equivalent radial load of the wheel bearing is generated by creep.
  • the design coefficient of the outer member 25, that is, the fitting tightening margin between the outer member 25 and the knuckle, is set in consideration of the creep generation limit factor in advance.
  • creep means that the bearing surface slightly moves in the circumferential direction due to insufficient fitting tightening allowance or poor processing accuracy of the mating surface, and the mating surface becomes mirrored, and in some cases, seizure or welding occurs with galling.
  • circumferential grooves are provided in the knuckle press-fitting surface 25a of the outer member 25 and the inner diameter surface 34a of the knuckle 34, respectively, and retaining rings for retaining the gaps between these circumferential grooves.
  • 61 is preferably mounted.
  • the end portion on the inboard side of the hub wheel 1 is swaged, and the inner ring 24 is pressed toward the outboard side by the swaged portion 31 to apply a preload to the bearing 2.
  • the inner ring 24 can be fastened to the hub wheel 1.
  • the end surface 24 a on the inboard side of the inner ring 24 is pressed toward the outboard side along the axial direction, and the end surface 24 b on the outboard side of the inner ring 24 is in contact with or pressed against the end surface 23 a of the step portion 23.
  • the flange 21 of the hub wheel 1 is provided with a bolt mounting hole 32, and a hub bolt 33 for fixing the wheel and the brake rotor to the flange 21 is mounted in the bolt mounting hole 32.
  • the concave-convex fitting structure M includes, for example, a convex portion 35 provided on the stem shaft 12 and extending in the axial direction, and an inner diameter surface of the hole portion 22 of the hub wheel 1 (in this case, the shaft portion fitting).
  • the inner surface 37) of the hole 22a is formed with a recess 36, and the entire fitting contact portion 38 of the projection 35 and the recess 36 of the hub wheel 1 fitted into the projection 35 is in close contact.
  • a plurality of convex portions 35 are arranged at a predetermined pitch along the circumferential direction on the outer peripheral surface of the stem shaft 12 on the side opposite to the mouse portion, and the inner diameter surface of the shaft portion fitting hole 22a of the hole portion 22 of the hub wheel 1
  • a plurality of concave portions 36 into which the convex portions 35 are fitted to 37 are formed along the circumferential direction. That is, the convex part 35 and the concave part 36 fitted to this are tight-fitted over the entire circumference in the circumferential direction.
  • each convex portion 35 has a triangular shape (mountain shape) having a convex rounded apex in cross section, and the fitting contact portion (concave fitting portion) 38 of each convex portion 35 is shown in FIG. 2B. It is the range A shown, and is the range from the middle part of the mountain in the cross section to the summit. Further, a gap 40 is formed on the inner diameter side with respect to the inner diameter surface 37 of the hub wheel 1 between the adjacent convex portions 35 in the circumferential direction.
  • the hub wheel 1 and the stem shaft 12 of the outer ring 5 of the constant velocity universal joint 3 can be connected via the concave-convex fitting structure M.
  • the end portion on the inboard side of the hub wheel 1 is swaged and preload is applied to the rolling bearing 2 by the swaged portion 31, so that the mouth portion 11 of the outer ring 5 is applied to the mouth portion 11. Therefore, it is not necessary to apply a preload to the inner ring 24.
  • the end portion of the hub wheel 1 in this case, the outer end surface 31a of the crimping portion 31
  • the opposing surface of the outer ring 5 facing the same the back surface 11a of the mouse portion 11
  • the contact surface pressure in this case is 100 MPa or less.
  • the shaft portion retaining structure M1 is provided between the end portion of the stem shaft 12 of the outer ring 5 and the inner diameter surface 37 of the hub wheel 1.
  • the shaft portion retaining structure M1 includes a diameter-enlarged caulking portion (tapered locking piece) 65 that extends from the end of the stem shaft 12 of the outer ring 5 to the outboard side and is locked in the tapered hole 22b. That is, the diameter-enlarged caulking portion 65 is formed of a ring-shaped body that increases in diameter from the inboard side toward the outboard side, and at least a part of the outer peripheral surface 65a is in pressure contact with or in contact with the tapered hole 22b.
  • the foreign matter intrusion prevention means W to the concave / convex fitting structure M is arranged on the inboard side of the concave / convex fitting structure M (which is the inner side of the vehicle when attached to the vehicle) and the concave / convex. They are provided on the outboard side of the fitting structure M (the side that is outside the vehicle when attached to the vehicle).
  • the outboard-side foreign matter intrusion prevention means W2 is constituted by a sealing material (not shown) interposed between a tapered locking piece 65, which will be described later, which is an engaging portion, and an inner diameter surface of the tapered hole 22b. I can.
  • the sealing material is applied to the tapered locking piece 65. That is, it is only necessary to apply sealing materials (sealing agents) made of various resins that are cured after application and can exhibit sealing properties between the tapered locking piece 65 and the inner diameter surface of the tapered hole 22b.
  • this sealing material the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected.
  • the inboard foreign matter intrusion preventing means W1 can be configured by bringing the outer end surface 31a of the crimping portion 31 of the hub wheel 1 into contact with the back surface 11a of the mouse portion 11.
  • a sealing material may be applied to at least one of the outer end surface 31a and the back surface 11a.
  • a sealing material may be interposed in the fitting contact portion 38 and the gap 40 between the convex portion 35 and the concave portion 36, thereby forming the foreign matter intrusion prevention means W (W3).
  • a sealing material (sealant) made of various resins that can be cured after application and exhibit sealing properties at the fitting contact portion 38 may be applied to the surface of the convex portion 35.
  • the concave portion 36 is formed by the convex portion 35 by press-fitting the stem shaft 12 of the outer ring 5 into the hub wheel 1 as will be described later. If press-fitting is performed at this time, the material protrudes from the concave portion 36 formed by the convex portion 35 to form a protruding portion 45 (see FIG. 3).
  • the protruding portion 45 is the material of the capacity of the concave portion 36 into which the concave portion fitting portion of the convex portion 35 is inserted (fitted), and is extruded from the concave portion 36 to be formed, and is cut to form the concave portion 36. Or both extruded and cut. For this reason, in the wheel bearing device shown in FIG. 1 and the like, the pocket portion 50 for accommodating the protruding portion 45 is provided in the stem shaft 12.
  • the pocket portion 50 is formed by providing a circumferential groove 51 at the shaft end edge of the spline 41 of the stem shaft 12. On the side opposite to the spline from the circumferential groove 51, an end diameter enlarged caulking portion (tapered locking piece) 65 constituting the shaft portion retaining structure M1 is formed.
  • the outer diameter portion of the stem shaft 12 of the outer ring 5 of the constant velocity universal joint 3 is subjected to thermosetting treatment, and a convex portion 41 a and a concave portion 41 b along the axial direction are formed on the hardened layer H.
  • a spline 41 is formed.
  • the convex part 41a of the spline 41 is cured, and the convex part 41a becomes the convex part 35 of the concave-convex fitting structure M.
  • the range of the hardened layer H in this embodiment is from the outer end edge of the spline 41 to a part of the bottom wall of the mouth portion 11 of the outer ring 5 as shown by the cross hatched portion.
  • various heat treatments such as induction hardening and carburizing and quenching can be employed.
  • induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there.
  • carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of a low carbon material and then quenched.
  • a hardened layer H1 is formed on the outer diameter side of the hub wheel 1 by induction hardening, and the inner diameter side of the hub wheel 1 is left unfired.
  • the range of the hardened layer H1 in this embodiment is from the base portion of the flange 21 to the vicinity of the caulking portion of the step portion 23 into which the inner ring 24 is fitted, as shown by the cross-hatched portion.
  • the surface is hard, and the inside can be left as it is, so that the inner diameter side of the hub wheel 1 can be kept unfired.
  • an uncured portion (unburned state) where no thermosetting treatment is performed.
  • the hardness difference between the hardened layer H of the stem shaft 12 of the outer ring 5 and the uncured portion of the hub wheel 1 is 20 points or more in HRC. Specifically, the hardness of the hardened layer H is set to about 50 HRC to 65 HRC, and the hardness of the uncured portion is set to about 10 HRC to about 30 HRC.
  • the projecting direction intermediate portion of the convex portion 35 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface 37 of the hole 22 of the hub wheel 1) before the concave portion is formed. That is, as shown in FIG. 4, the inner diameter dimension D of the inner diameter surface 37 of the hole 22 is set to the maximum outer diameter of the convex portion 35, that is, the maximum of the circle connecting the vertices of the convex portion 35 that is the convex portion 41 a of the spline 41.
  • the spline 41 can be formed by various processing methods such as rolling processing, cutting processing, press processing, and drawing processing, which are known publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ
  • the diameter-enlarged caulking portion 65 is configured from the outer peripheral edge portion of the end surface 12 a of the stem shaft 12.
  • the cylindrical portion 66 for projecting is projected along the axial direction.
  • the outer diameter D4 of the cylindrical portion 66 is set smaller than the inner diameter D of the fitting hole 22a of the hole portion 22. That is, as will be described later, the cylindrical portion 66 serves as a guide portion for alignment when the stem shaft 12 is press-fitted into the hole 22 of the hub wheel 1.
  • the inner diameter D3 of the large-diameter portion 22c of the hub wheel 1 is set larger than the maximum diameter dimension (circumscribed circle diameter) D1.
  • the cylindrical portion 66 itself is press-fitted into the fitting hole 22a. At this time, if the center is misaligned, the convex portion 35 of the concave-convex fitting structure M is press-fit as it is, and the shaft portion 12 and the hub wheel are in a state where the shaft center of the stem shaft 12 and the shaft center of the hub wheel 1 are not aligned. 1 is connected. If the outer diameter D4 of the cylindrical portion 66 is too smaller than the hole diameter of the fitting hole 22a, it does not function for alignment. Therefore, it is preferable that the minute gap between the outer diameter surface of the cylindrical portion 66 and the inner diameter surface of the fitting hole 22a of the hole portion 22 is set to about 0.01 mm to 0.2 mm.
  • the stem shaft 12 of the outer ring 5 is inserted (press-fitted) into the hub wheel 1 in a state where the shaft center of the hub wheel 1 is aligned with the shaft center of the outer ring 5 of the constant velocity universal joint. Further, a sealing material is applied to the surface of the convex portion 35. At this time, since the tapered portion 22d having a reduced diameter along the press-fitting direction is formed in the hole portion 22 of the hub wheel 1, the tapered portion 22d can constitute a guide at the start of press-fitting.
  • the diameter D of the inner diameter surface 37 of the hole 22, the maximum diameter D1 of the protrusion 35, and the outer diameter (diameter dimension) D2 of the bottom of the recess of the spline 41 are as described above. Since the hardness of the convex portion 35 is 20 points or more larger than the hardness of the inner diameter surface 37 of the hole portion 22, if the shaft 10 is pressed into the hole portion 22 of the inner ring 6, the convex portion 35 bites into the inner diameter surface 37. Thus, the convex portion 35 forms the concave portion 36 into which the convex portion 35 is fitted along the axial direction.
  • the formed protruding portion 45 is housed in the pocket portion 50 while curling. That is, a part of the material scraped off or pushed out from the inner diameter surface of the hole portion 22 enters the pocket portion 50.
  • the entire fitting contact portion 38 between the convex portion 35 at the end of the stem shaft 12 and the concave portion 36 fitted therein is in close contact.
  • the shape of the convex portion 35 is transferred to the other-side concave portion forming surface (in this case, the inner diameter surface 37 of the hole portion 22).
  • the convex portion 35 bites into the inner diameter surface 37 of the hole portion 22, so that the hole portion 22 is slightly expanded in diameter, and the convex portion 35 is allowed to move in the axial direction.
  • the hole 22 is reduced in diameter to return to the original diameter.
  • the hub wheel 1 is elastically deformed in the radial direction when the convex portion 35 is press-fitted, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 35 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably formed.
  • a female spline 42 that is in close contact with the male spline 41 is formed on the inner diameter surface of the hole 22 of the hub wheel 1 by the spline (male spline) 41 on the stem shaft 12 side. Further, the fitting contact portion 38 between the convex portion 35 and the concave portion 36 is sealed with a sealing material applied to the surface of the convex portion 35.
  • the concave-convex fitting structure M is configured.
  • the concave-convex fitting structure M is arranged at a position directly below the raceway surfaces 26, 27, 28, 29 of the rolling bearing 2.
  • the direct under-position is a position that does not correspond to the radial direction with respect to the ball contact portion position of the raceway surfaces 26, 27, 28, and 29.
  • the height of the convex portion 35 provided on the outer diameter surface of the stem shaft 12 is h
  • the ratio is ⁇ d / 2h, 0.3 ⁇ d / 2h ⁇ 0.86.
  • a step surface G is provided on the outer diameter surface of the mouse part 11 of the outer ring 5 as shown in FIG.
  • the jig K may be engaged with the step surface G, and a press-fitting load (axial load) may be applied from the press-fitting jig K to the step surface G.
  • step difference surface G can be comprised by the circumferential direction groove
  • the press-fitting jig K can be constituted by a ring-shaped body 47 made of, for example, a split mold. That is, the ring-shaped body 47 includes a plurality (at least two) of segments 47a, and is formed in a ring shape by combining the segments 47a.
  • the ring-shaped body 47 formed by combining the segments 47a in a ring shape includes a main body annular portion 57, a tapered portion 58 connected to the main body annular portion 57, and an inner portion protruding from the tapered portion 58 toward the inner diameter side. It consists of a buttock 59.
  • the inner flange 59 of the press-fitting jig K is brought into contact with the step surface G formed by the circumferential groove, and in this state, the load (pressing force) in the direction of the arrow E (axial direction) in FIG. ) Is applied to the press-fitting jig 55.
  • this load can be applied to the outer ring 5 via the inner flange 53 engaged with the step surface G, and the stem shaft 12 of the outer ring 5 is press-fitted into the hole 22 of the hub wheel 1.
  • various axial reciprocating mechanisms such as a press mechanism, a cylinder mechanism, and a ball screw mechanism can be used to apply the axial load to the press-fitting jig K.
  • the stepped surface G can be constituted by a concave portion disposed at a predetermined pitch along the circumferential direction without being constituted by a circumferential groove, and moreover, it is not a groove or a concave portion. You may comprise by a convex part.
  • the stem shaft 12 is press-fitted into the hole 22 of the hub wheel 1
  • a method of applying a press-fitting load to the end surface 5a on the inboard side of the outer ring 5 may be used, and a stepped surface is formed on the outer diameter surface of the outer ring 5. It is possible to press-fit without providing G. That is, the jig K1 shown in FIG. 8 can be used.
  • the jig K1 can be composed of a bottomed short cylinder.
  • the jig K1 includes a main body 98 made of a cylindrical body and a bottom wall 99 that closes an opening on the inboard side of the main body 98.
  • 9 and 10 show the Zepper type constant velocity universal joints in which the groove bottoms of the track grooves 14 and 16 each have an arcuate portion.
  • Other constant velocity universal joints such as an undercut free type in which the groove bottoms of the track grooves 14 and 16 have straight straight portions may be used.
  • FIG. 6 shows a state in which the stem shaft 12 of the outer ring 5 and the hub wheel 1 are integrated through the concave and convex fitting structure M by press-fitting into the stem shaft 12 of the outer ring 5 and the hole 22 of the hub wheel 1.
  • the cylindrical portion 66 protrudes from the fitting hole 22a toward the tapered hole 22b.
  • the diameter of the cylindrical portion 66 is expanded using a jig 67 as shown in FIGS.
  • the crimping jig 67 includes a columnar main body portion 67a and a distal end bulging portion 67b provided on the distal end surface of the main body portion 67a.
  • the tip bulging portion 67b can be fitted into the cylindrical portion 66 in a loose fit.
  • the outer peripheral surface of the tip bulging portion 67b is a loose rounded portion on the main body side.
  • the tip bulging portion 67b of the caulking jig 67 is fitted into the cylindrical portion 66, and the caulking jig 67 is swung while being pressed in the direction of the arrow ⁇ as shown in FIGS. .
  • the swinging means swinging so that the jig axis O1 is inclined with respect to the apparatus axis O with the apparatus axis O as the rotation axis and the intersection of the jig axis O1 and the apparatus axis O as a fulcrum. Is.
  • the peripheral wall surface of the tip bulging portion 67b presses the inner diameter surface of the cylindrical portion 66 toward the outer diameter side.
  • the cylindrical portion 66 is plastically deformed radially outward to form an enlarged diameter crimped portion (tapered locking piece) 65 as shown in FIG. That is, in the shaft portion retaining structure M1, the cylindrical portion 66 provided at the shaft end portion of the stem shaft 12 is plastically deformed radially outward by rocking caulking by the rocking caulking jig 67. It is comprised by the hook structure which becomes.
  • the jig K as shown in FIG. 7 or the jig K1 as shown in FIG. 8 can be used.
  • the jig K can receive an axial load due to swing caulking through the inner flange portion 53 engaged with the step surface G.
  • the main body portion 98 is fitted to the opening side of the mouse portion 11 of the outer ring 5, and the inner surface 99a of the bottom wall 99 is brought into contact with the opening end surface 11b of the mouse portion 11, so It can receive the axial load by.
  • the concave-convex fitting structure M in which the entire fitting contact portion 38 between the convex portion 35 of the stem shaft 12 and the concave portion 36 of the hub wheel 1 is in close contact can be formed reliably. Moreover, it is not necessary to form a spline portion or the like on the member in which the concave portion 36 is formed, which is excellent in productivity, and does not require the phase alignment between the splines. The tooth surface can be prevented from being damaged, and a stable fitting state can be maintained.
  • the entire fitting contact portion 38 between the convex portion 35 and the concave portion 36 is in close contact with each other. Therefore, in the fitting structure M, there is no gap in which play occurs in the radial direction and the circumferential direction. . For this reason, all the fitting parts contribute to rotational torque transmission, stable torque transmission is possible, and no abnormal noise is generated.
  • the shaft part retaining structure M1 is a hook structure in which the cylindrical part is plastically deformed radially outward, the conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the stem axis
  • This shaft part retaining structure M1 can effectively prevent the stem shaft 12 of the outer joint member from coming off from the hole 22 of the hub wheel 1 in the axial direction. As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved.
  • the caulking load at the time of caulking is relatively small, and the caulking portion 65 is increased in thickness, or the caulking portion 65 is pressed against the inner diameter surface of the hub wheel through a large pressing force. be able to. Thereby, a stronger retaining mechanism (structure) can be provided. Further, by providing such a strong retaining mechanism (structure) M1, the bending rigidity of the stem shaft 12 is improved and the bending becomes strong.
  • the portion receiving the load (the load receiving portion of the outer joint member of the constant velocity universal joint 3, for example, a step provided on the outer diameter surface of the outer joint member) Deformation of the surface and the opening side end surface of the outer joint member).
  • the crimped portion 31 and the back surface 11a of the mouth portion 11 of the outer ring 5 By bringing the crimped portion 31 and the back surface 11a of the mouth portion 11 of the outer ring 5 into contact with each other, the bending rigidity in the axial direction is improved, the bending strength is improved, and a high-quality product excellent in durability is obtained. Become.
  • positioning at the time of press-fitting can be configured by this contact. As a result, the dimensional accuracy of the wheel bearing device can be stabilized, and the axial length of the concave-convex fitting structure M disposed along the axial direction can be ensured to be stable. Can be improved.
  • a seal structure can be formed by this contact, foreign matter can be prevented from entering the concave-convex fitting structure M from the crimping portion 31 side, and the concave-convex fitting structure M can maintain a stable fitting state for a long period of time.
  • the stem shaft 12 of the outer ring 5 can be press-fitted without considering the preload, and the connectivity (assembly property) between the hub wheel 1 and the outer ring 5 can be improved.
  • the contact surface pressure between the caulking portion 31 of the hub wheel 1 and the back surface 11a of the mouse portion 11 exceeds 100 MPa, abnormal noise may be generated. That is, when a large torque load is applied, a difference occurs in the amount of twist between the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1, and this difference causes a sudden contact between the outer ring 5 of the constant velocity universal joint 3 and the hub wheel 1. Slip occurs and abnormal noise occurs. On the other hand, if the contact surface pressure is 100 MPa or less as in the present invention, it is possible to prevent a sudden slip and to suppress the generation of abnormal noise. Thereby, a quiet wheel bearing device can be configured. In addition, even if the contact surface pressure is 100 MPa or less, it is preferable that the contact surface pressure be not less than the surface pressure that can constitute the seal structure.
  • the protruding portion 45 By providing the pocket portion 50 for storing the protruding portion 45 generated by forming the concave portion by the press-fitting, the protruding portion 45 can be held (maintained) in the pocket portion 50, and the protruding portion 45 is inside the vehicle outside the apparatus. There is no intrusion. That is, the protruding portion 45 can be kept stored in the pocket portion 50, and it is not necessary to perform the removal process of the protruding portion 45, the number of assembling operations can be reduced, and the assembling workability can be improved. Cost reduction can be achieved.
  • the protruding portion 45 in the pocket portion 50 does not protrude to the guide portion side.
  • the storage of the protruding portion 45 becomes more stable.
  • the guide portion is for alignment, the stem shaft 12 can be press-fitted into the hub wheel 1 while preventing misalignment. For this reason, the outer joint member and the hub wheel 1 can be connected with high accuracy, and stable torque transmission is possible.
  • the convex portion 35 bites into the concave portion forming surface during press-fitting, and the concave portion 36 is reliably formed. can do. That is, the press-fitting allowance with respect to the other side of the convex part 35 can be taken sufficiently. As a result, the formability of the concave-convex fitting structure M is stabilized, there is no variation in press-fit load, and a stable torsional strength is obtained.
  • the stem shaft 12 is provided with a guide portion for alignment, that is, a cylindrical portion 66, the stem shaft 12 can be press-fitted into the hub wheel 1 without misalignment, and the concave portion 36 formed by the convex portion 35. Formation can be performed stably. For this reason, the uneven fitting structure M can be configured with high accuracy. Further, since the taper portion 22d can constitute a guide at the start of press-fitting, the stem shaft 12 of the outer ring 5 can be press-fitted into the hole portion 22 of the hub wheel 1 without causing a deviation, and stable. Torque transmission is possible.
  • the convex portion 35 of the concave-convex fitting structure M is provided on the stem shaft 12 of the outer ring 5, and the hardness of the axial end portion of the convex portion 35 is set from the hole inner diameter portion of the hub wheel 1. If the stem shaft 12 is press-fitted into the hole portion 22 of the hub wheel 1, the hardness on the shaft portion side can be increased and the rigidity of the shaft portion can be improved.
  • the concave-convex fitting structure M By arranging the concave-convex fitting structure M at a position directly below the raceway surface of the rolling bearing 2, the occurrence of hoop stress on the bearing raceway surface is suppressed. As a result, it is possible to prevent a bearing failure such as a decrease in rolling fatigue life, occurrence of cracks, and stress corrosion cracking, and a high-quality bearing 2 can be provided.
  • the spline 41 formed on the stem shaft 12 uses small teeth with a module of 0.5 or less, so that the formability of the spline 41 can be improved and the press-fit load is reduced. Can be achieved.
  • the convex part 35 can be comprised with the spline normally formed in this kind of shaft, this convex part 35 can be easily formed at low cost.
  • the outer peripheral surface 25a of the outer member 25 of the bearing 2 is fitted and assembled into the knuckle 34 on the vehicle body side.
  • the fitting integration here means that the integration of both is completed by fitting the outer member 25 to the knuckle 34.
  • This incorporation can be performed, for example, by press-fitting the cylindrical outer peripheral surface 25 a of the outer member 25 into the cylindrical inner peripheral surface 34 a of the knuckle 34.
  • the difference between the outer diameter D1 of the stem shaft 12 and the inner diameter D of the hole 22 of the hub wheel 1 is ⁇ d
  • the height of the convex portion is h (see FIG. 4)
  • the ratio is ⁇ d / 2h.
  • 0.3 ⁇ d / 2h ⁇ 0.86, so that the press-fitting allowance of the convex portion 35 can be sufficiently taken. That is, when ⁇ d / 2h is 0.3 or less, the torsional strength is low, and when ⁇ d / 2h exceeds 0.86, the entire convex portion 35 is caused by a misalignment or a press-fit inclination at the time of a fine press-fit.
  • the tapered portion 22d can constitute a guide at the start of press-fitting, the stem shaft 12 of the outer ring 5 can be pressed into the hole portion 22 of the hub wheel 1 without causing displacement, and stable torque can be obtained. Communication is possible. Further, since the cylindrical portion 66 has an outer diameter D4 of the cylindrical portion 66 set smaller than the inner diameter D of the fitting hole 22a of the hole portion 22, the cylindrical portion 66 becomes a centering member and prevents stem misalignment. The shaft can be press-fitted into the hub wheel, enabling more stable press-fitting.
  • the stem part retaining structure M1 can effectively prevent the stem shaft 12 of the outer ring 5 from coming out of the hole part 22 of the hub wheel 1 (particularly in the axial direction to the shaft side). As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved. Moreover, since the shaft portion retaining structure M1 is the tapered locking piece 65, conventional screw fastening can be omitted. For this reason, it is not necessary to form the screw part which protrudes from the hole part 22 of the hub wheel 1 in the stem axis
  • a part of the stem shaft 12 of the outer ring 5 has only to be increased in diameter, and the shaft portion retaining structure M1 can be easily formed.
  • the movement of the outer ring 5 in the anti-joint direction of the stem shaft 12 requires a pressing force in a direction in which the stem shaft 12 is further press-fitted, and the positional deviation of the outer ring 5 in the anti-joint direction is extremely large.
  • the bottom of the mouth portion 11 of the outer ring 5 comes into contact with the crimped portion 31 of the hub wheel 1 and the stem shaft 12 of the outer ring 5 comes off from the hub wheel 1 even if it is misaligned in this direction. There is no.
  • the convex part 35 can be comprised with the spline normally formed in this kind of shaft, this convex part 35 can be easily formed at low cost.
  • work hardening occurs on the recess 36 side.
  • work hardening means that when plastic deformation (plastic processing) is applied to an object, the resistance to deformation increases as the degree of deformation increases, and it becomes harder than a material that has not undergone deformation. For this reason, by plastically deforming at the time of press-fitting, the inner diameter surface 37 of the hub wheel 1 on the concave portion 36 side is hardened, and the rotational torque transmission performance can be improved.
  • the inner diameter side of the hub wheel 1 is relatively soft. For this reason, it is possible to improve the fitting property (adhesion) when the convex portion 35 on the outer diameter surface of the stem shaft 12 of the outer ring 5 is fitted to the concave portion 36 on the inner diameter surface of the hole portion of the hub wheel 1. It is possible to accurately suppress the occurrence of play in the radial direction and the circumferential direction.
  • a seal structure (foreign matter intrusion prevention means W1) is formed by contact between the outer end surface 31a of the crimping portion 31 and the back surface 11a of the mouth portion 11 of the outer ring 5. This seal structure can prevent foreign matter from entering from the inboard side.
  • the foreign matter intrusion prevention means W1 and W2 are provided on the inboard side of the concave / convex fitting structure M and the outboard side of the concave / convex fitting structure M as in the above-described embodiment. Intrusion of foreign matters from both axial ends of M is prevented. For this reason, deterioration of adhesion can be avoided more stably over a long period of time.
  • the foreign matter intrusion prevention means W3 is provided in which a sealing material is interposed between the fitting contact portions 38 between the convex portions 35 and the concave portions 36, foreign matter can be prevented from entering between the fitting contact portions 38, Improves the reliability of foreign object entry prevention.
  • an axial pressing force can be applied to the outer ring 5 through the step surface G of the outer diameter surface of the outer ring 5 of the constant velocity universal joint 3. That is, it is possible to secure an axial direction pressing force application portion and to press the vicinity of the stem shaft of the outer ring 5 which is a press-fitting shaft, thereby enabling stable press-fitting.
  • a groove is provided on the outer diameter surface of the outer ring 5 of the constant velocity universal joint 3 and the radial end surface of the groove is a stepped surface G, a protrusion is provided on the outer diameter surface of the outer ring 5;
  • a stepped surface G may be used as the projection radial end surface. In these cases, the reliability of securing the axial pressing force application portion is improved, and a more stable press-fitting operation can be performed.
  • the outer ring 5 It is not necessary to provide the step surface G on the outer diameter surface, and press-fitting can be performed at low cost.
  • the jig 67 includes a columnar main body portion 68 and a truncated cone portion 69 that is connected to the distal end portion of the main body portion 68.
  • the truncated cone portion 69 of the jig 67 has an inclined surface 69a whose inclination angle is substantially the same as the inclination angle of the tapered hole 22b, and whose outer diameter is the same as or slightly cylindrical with the inner diameter of the cylindrical portion 66.
  • the dimension is set to be smaller than the inner diameter of the shaped portion 66.
  • a load in the direction of the arrow ⁇ is applied by inserting the truncated cone portion 69 of the jig 67 through the tapered hole 22b, whereby the cylindrical portion 66 is arranged on the inner diameter side of the cylindrical portion 66 shown in FIG.
  • a diameter expansion force in the direction of arrow ⁇ in which the diameter of 66 expands is applied.
  • at least a part of the cylindrical portion 66 is pressed to the inner diameter side of the tapered hole 22b by the truncated cone portion 69 of the jig 67, and foreign matter intrusion prevention means W2 is formed on the inner diameter surface of the tapered hole 22b.
  • the shaft part slip-off preventing structure M1 can be configured by being pressed or in contact with the sealing material.
  • the hub wheel 1, the constant velocity universal joint 3, etc. It is sufficient to receive a part of this by a fixing member.
  • the inner diameter surface of the cylindrical portion 66 may be tapered so as to increase in diameter toward the shaft end. If it is set as such a shape, it is also possible to shape
  • the cylindrical portion 66 may be notched, and the conical surface of the truncated cone portion 69 of the jig 67 is partially arranged in the circumferential direction. Things can be used. When a notch is made in the cylindrical portion 66, the cylindrical portion 66 can be easily expanded in diameter. Further, in the case where the conical surface of the truncated cone part 69 of the jig 67 is partially arranged in the circumferential direction, a part where the diameter of the cylindrical part 66 is enlarged becomes a part on the circumference. The indentation load can be reduced.
  • FIG. 13 shows a second embodiment.
  • a stepped surface 22e extending in the radial direction is formed between the tapered hole 22b and the shaft fitting hole 22a in the hole 22 of the hub wheel 1.
  • the diameter-enlarged caulking portion 65 is engaged with the stepped surface 22e.
  • the diameter-enlarged caulking portion 65 formed by plastic deformation radially outward by the rocking caulking by the rocking caulking jig 67 is formed. That is, the diameter-enlarged caulking portion 65 in this case is bent so as to be bent substantially at right angles to the device axis, and the end surface on the inboard side abuts or presses against the stepped surface 22e.
  • FIG. 12 Other configurations of the wheel bearing device shown in FIG. 12 are the same as those of the wheel bearing device shown in FIG. 1, and therefore, the same members as those in FIG. . For this reason, even if it is a wheel bearing apparatus shown in FIG. 13, there exists an effect similar to the wheel bearing apparatus shown in FIG.
  • FIG. 14 shows a third embodiment, and the shaft portion retaining structure M1 of the wheel bearing device has a part of the stem shaft 12 having an outer diameter without forming a cylindrical portion 66 as shown in FIG. A tapered locking piece 70 protruding in the direction is provided.
  • a jig 71 shown in FIG. 15 is used.
  • the jig 71 includes a columnar main body 72 and a short cylindrical portion 73 connected to the distal end of the main body 72, and a notch 74 is provided at the distal end of the outer peripheral surface of the short cylindrical portion 73.
  • a tip wedge portion 75 is formed in the jig 71.
  • the sectional shape of the tip wedge portion 75 is an inclined surface on the outer diameter side, and a notch that forms this inclined surface is formed.
  • the outer diameter side of the end portion of the stem shaft 12 is expanded by the portion 74.
  • the tapered locking piece 70 comes into pressure contact with or contacts the inner diameter surface of the tapered hole 22b.
  • the stem shaft 12 of the outer ring 5 extends axially from the hole 22 of the hub wheel 1 in the same manner as the tapered locking piece 65 shown in FIG. It can be effectively prevented from coming off.
  • the inner diameter surface of the tip wedge portion 75 may be tapered.
  • FIG. 17 shows a fourth embodiment, and the shaft portion retaining structure M1 of the wheel bearing device is formed by tightening a part of the stem shaft 12 so as to protrude in the outer diameter direction.
  • a piece 76 is used.
  • the hole portion 22 of the hub wheel 1 is provided with a stepped surface 22e between the fitting hole 22a and the tapered hole 22b, and the outer hook-shaped locking piece 76 is locked to the stepped surface 22e. is doing.
  • a jig 77 shown in FIG. 18 is used.
  • the jig 77 includes a cylindrical body 78.
  • the outer diameter D5 of the cylindrical body 78 is set larger than the outer diameter D7 of the end portion of the stem shaft 12, and the inner diameter D6 of the cylindrical body 78 is set smaller than the outer diameter D7 of the end portion of the stem shaft 12.
  • FIG. 13 the outer peripheral side of the end surface 12 a of the stem shaft 12 can be crushed to form an outer hook-like locking piece 76.
  • the outer hook-shaped locking piece 76 is locked to the stepped surface 22e, so that it is the same as the tapered locking piece 65 shown in FIG.
  • the stem shaft 12 of the outer ring 5 can be effectively prevented from coming off from the hole 22 of the hub wheel 1 in the axial direction. As a result, a stable connected state can be maintained, and the quality of the wheel bearing device can be improved.
  • the outer hook-like locking piece 76 is formed along the circumferential direction.
  • a predetermined pitch for example, 90 ° pitch
  • a plurality of outer hook-like locking pieces 76 are provided. Arranged at a predetermined pitch along the circumferential direction.
  • the outer hook-shaped locking pieces 76 are locked to the stepped surface 22e. Therefore, it is possible to effectively prevent the stem shaft 12 of the outer ring 5 from coming off from the hole 22 of the hub wheel 1 in the axial direction.
  • the seventh embodiment can be implemented by using a bolt and nut connection as shown in FIG. 21 of the fifth embodiment, or by using a retaining ring as shown in FIG. 22 of the sixth embodiment.
  • a coupling means such as welding may be used.
  • a screw shaft portion 80 is connected to the stem shaft 12, and a nut member 81 is screwed to the screw shaft portion 80.
  • the nut member 81 is in contact with the stepped surface 22 e of the hole 22. This restricts the stem shaft 12 from coming out from the hole 22 of the hub wheel 1 toward the shaft.
  • a shaft extension 83 is provided on the outboard side of the spline 41, a circumferential groove 84 is provided in the shaft extension 83, and a retaining ring 85 is fitted in the circumferential groove 84.
  • the stem shaft 12 is provided with a step portion 22f in the hole portion 22 of the hub wheel 1 between the fitting hole 22a and the tapered hole 22b to which the retaining ring 85 is locked. Accordingly, the retaining ring 85 is locked to the step portion 22f to restrict the stem shaft 12 from coming out from the hole portion 22 of the hub wheel 1 to the shaft side.
  • the outer peripheral surface of the end portion of the stem shaft 12 and the opening edge portion on the stepped surface 22e side of the fitting hole 22a are joined by welding. This restricts the stem shaft 12 from coming out from the hole 22 of the hub wheel 1 toward the shaft.
  • the welded portion 108 may be disposed at a predetermined pitch along the circumferential direction over the entire circumference.
  • the foreign matter intrusion preventing means W1, W2, and W3 can be configured.
  • the foreign matter intrusion prevention means W2 can be formed by interposing a sealing material between the enlarged diameter crimped portion 65 and the stepped surface 22e.
  • the foreign matter intrusion prevention means W2 can be formed by interposing a sealing material between the tapered locking piece 70 and the inner diameter surface of the tapered hole 22b.
  • the foreign substance intrusion prevention means W2 can be formed by interposing a sealing material between the outer hook-shaped locking piece 76 and the stepped surface 22e.
  • the foreign matter intrusion prevention means W2 can be formed by the retaining ring 85 to be fitted.
  • the foreign matter intrusion prevention means W2 can be formed by the welding site 108 over the entire circumference.
  • the foreign matter intrusion preventing means W1 and W3 are the same as the wheel bearing device shown in FIG.
  • a seal structure (foreign matter intrusion prevention means W1) is formed by contact between the outer end surface 31a of the crimping portion 31 and the back surface 11a of the mouth portion 11 of the outer ring 5. This seal structure can prevent foreign matter from entering from the inboard side.
  • the foreign matter intrusion prevention means W1 and W2 are provided on the inboard side of the concave / convex fitting structure M and the outboard side of the concave / convex fitting structure M as in the above-described embodiment. Intrusion of foreign matters from both axial ends of M is prevented. For this reason, deterioration of adhesion can be avoided more stably over a long period of time.
  • the foreign matter intrusion prevention means W3 is provided in which a sealing material is interposed between the fitting contact portions 38 between the convex portions 35 and the concave portions 36, foreign matter can be prevented from entering between the fitting contact portions 38, Improves the reliability of foreign object entry prevention.
  • the shaft portion retaining structure M1 may not be provided.
  • the circumferential groove 51 is a plane in which the side surface 51a on the spline 41 side is orthogonal to the axial direction, and the side surface 51b on the anti-spline side extends from the groove bottom 51c to the anti-spline. It is a taper surface which expands toward the side.
  • a disc-shaped flange portion 52 for alignment is provided on the side opposite to the spline from the side surface 51 b of the circumferential groove 51.
  • the outer diameter D4a of the flange 52 is set to be the same as the hole diameter of the fitting hole 22a of the hole 22 or slightly smaller than the hole diameter of the fitting hole 22a. In this case, a minute gap t is provided between the outer diameter surface 52 a of the flange portion 52 and the inner diameter surface of the fitting hole 22 a of the hole portion 22.
  • the protruding portion 45 in the pocket portion 50 does not protrude to the flange 52 side.
  • the storage of the protruding portion 45 becomes more stable.
  • the flange portion 52 is for alignment, the stem shaft 12 can be press-fitted into the hub wheel 1 while preventing misalignment. For this reason, the outer ring 5 and the hub wheel 1 can be connected with high accuracy, and stable torque transmission is possible.
  • the outer diameter is preferably set to be slightly smaller than the diameter of the fitting hole 22a of the hole 22 of the hub wheel 1. That is, if the outer diameter of the flange 52 is the same as the hole diameter of the fitting hole 22a or larger than the hole diameter of the fitting hole 22a, the flange 52 itself is press-fitted into the fitting hole 22a. At this time, if the center is misaligned, the convex portion 35 of the concave-convex fitting structure M is pressed in as it is, and the stem shaft 12 and the hub wheel are in a state where the shaft center of the stem shaft 12 and the shaft center of the hub wheel 1 are not aligned. 1 is connected.
  • the minute gap t between the outer diameter surface 52a of the flange 52 and the inner diameter surface of the fitting hole 22a of the hole portion 22 is preferably set to about 0.01 mm to 0.2 mm.
  • the flange portion 52 for aligning the stem shaft 12 may be omitted.
  • FIG. 26 shows that the hub wheel 1 and the stem shaft 12 of the outer joint member of the constant velocity universal joint 3 inserted into the hole 22 of the hub wheel 1 are detachably coupled via the concave-convex fitting structure M. It has been made.
  • the hub wheel 1 in this case has a cylindrical portion 20 and a flange 21 provided at an end portion of the cylindrical portion 20 on the outboard side, as shown in FIGS.
  • the hole portion 22 of the cylindrical portion 20 has a shaft portion fitting hole 22a and a tapered hole 22b on the outboard side, and protrudes in the inner diameter direction between the shaft portion fitting hole 22a and the tapered hole 22b.
  • An inner wall 22g is provided.
  • a recess 63 is provided on the end surface of the inner wall 22g on the side opposite to the shaft fitting hole.
  • the hole portion 22 has a large-diameter portion 22c on the opening side on the side opposite to the inner wall side from the shaft portion fitting hole 22a, and a small-diameter portion 48 on the inner wall side from the shaft portion fitting hole 22a.
  • a tapered portion 22d is provided between the large diameter portion 22c and the shaft portion fitting hole 22a. The tapered portion 22d is reduced in diameter along the press-fitting direction when the hub wheel 1 and the stem shaft 12 of the outer ring 5 are coupled.
  • the stem shaft 12 of the outer ring 5 is provided with a screw hole 64 that opens at the end surface on the outboard side at the axial center.
  • the screw hole 64 is a tapered portion 64a whose opening is expanded toward the opening.
  • a small-diameter portion 12b is provided at the end portion of the stem shaft 12 on the outboard side. That is, the stem shaft 12 includes a main body portion 12a having a large diameter and a small diameter portion 12b.
  • the bolt member 54 is screwed into the screw hole 64 of the stem shaft 12 from the outboard side.
  • the bolt member 54 includes a flanged head portion 54a and a screw shaft portion 54b.
  • the screw shaft portion 54b has a non-threaded portion 55a on the proximal end side and a threaded portion 55b on the distal end side.
  • a through hole 56 is provided in the inner wall 22g, the shaft portion 54b of the bolt member 54 is inserted into the through hole 56, and the screw portion 55b is screwed into the screw hole 64 of the stem shaft 12. As shown in FIG.
  • the hole diameter D12 of the through hole 56 is set slightly larger than the shaft diameter (outer diameter) D11 of the non-threaded portion 55a of the shaft portion 54b. Specifically, it is about 0.05 mm ⁇ d1-d2 ⁇ 0.5 mm. Note that the maximum outer diameter of the threaded portion 55b is the same as or slightly smaller than the outer diameter of the large non-threaded portion 55a.
  • a shaft press-fitting guide portion M6 that guides press-fitting of the stem shaft 12 during press-fitting is provided on the convex press-fitting start side.
  • it consists of a female spline 44 provided in the tapered portion 22 d of the hole portion 22. That is, as shown in FIG. 28A, guide concave portions 44a are provided at a predetermined pitch (in this case, the same pitch as the arrangement pitch of the convex portions 35) on the shaft portion fitting hole 22a side of the tapered portion 22d.
  • the bottom diameter D16 of the guide recess 44a is the maximum outer diameter of the projection 35, that is, the maximum diameter of the circle connecting the vertices of the projection 35 which is the projection 41a of the spline 41.
  • (Diameter of circumscribed circle) (shaft outer diameter) D1 a radial clearance C1 is formed between the top of the convex portion 35 and the bottom of the guide concave portion 44a as shown in FIG. 28A.
  • each projection 35 of the stem shaft 12 is inserted into each guide recess 44a of the shaft press-fitting guide portion M6.
  • the shaft center of the hub wheel 1 and the shaft center of the outer ring 5 are aligned with each other, and the end of each guide recess 44a on the uneven fitting structure side is in the press-fitting direction. Since it is a flat surface 97a (see FIG. 27) perpendicular to the surface, it can receive the press-fitting start end surface 35a of the convex portion 35 and can press-fit from this state.
  • the inner diameter dimension D of the inner diameter surface 37 of the part fitting hole 22a, the maximum diameter dimension D1 of the protrusion 35, and the outer diameter dimension (diameter dimension) D2 of the bottom of the recess of the spline 41 are as described above.
  • the hardness of the convex portion 35 is greater than the hardness of the inner diameter surface 37. Is larger by 20 points or more, so if the stem shaft 12 is press-fitted into the hole 22 of the hub wheel 1, the convex portion 35 bites into the inner diameter surface 37, and the convex portion 35 is fitted into the convex portion 35.
  • the concave portion 36 to be formed is formed along the axial direction.
  • the bolt member 54 is screwed into the screw hole 64 of the stem shaft 12 from the outboard side.
  • the flange portion 60 of the head portion 54a of the bolt member 54 is fitted into the recessed portion 63 of the inner wall 22g.
  • the hub wheel 1 is sandwiched between the head 54 a of the bolt member 54 and the concave-convex fitting structure M, or between the head 54 a of the bolt member 54 and the bottom bottom surface (back surface) 11 a of the mouse portion 11.
  • the hub wheel 1 and the constant velocity universal joint 3 are integrated.
  • the bolt coupling means M5 on the apparatus shaft center where the hub wheel 1 and the stem shaft 12 of the outer ring 5 are coupled is configured by the bolt member 54 and the screw hole 64 etc. into which the bolt member 54 is screwed.
  • the contact surface pressure between the caulking portion 31 of the hub wheel and the back surface 11a of the mouse portion 1111a it is preferable to set the contact surface pressure between the caulking portion 31 of the hub wheel and the back surface 11a of the mouse portion 1111a to 100 MPa or less.
  • a gap is provided between the end surface on the outboard side of the stem shaft 12 and the inner wall 22g.
  • the end surface on the outboard side of the stem shaft 12 and the inner wall 22g are connected to each other. You may make it contact. By making contact in this manner, the contact surface pressure can be easily set.
  • the difference in diameter between the hole diameter D12 of the bolt insertion hole 56 and the shaft diameter D11 of the non-threaded portion 55a of the bolt member 54 is ⁇ d5
  • the outer diameter D1 of the outer ring 5 and the inner diameter of the hub ring 1 in the concave-convex fitting structure M is ⁇ d6, 0 ⁇ d5 ⁇ d6.
  • a sealing material may be interposed between the seat surface 60a of the bolt member 54 and the inner wall 22g.
  • sealing materials sealing agents
  • the sealing material the thing which does not deteriorate in the atmosphere where this wheel bearing apparatus is used is selected.
  • the sealing material may be applied to the inner wall 22g side, or may be applied to the seating surface 60a side and the inner wall 22g side.
  • the end surface 31a of the caulking portion 31 and the bottom back surface 11a of the mouse portion 11 are in contact with each other, and the sealing material is interposed between the end surface 31a of the caulking portion 31 and the bottom back surface 11a of the mouse portion 11. (Sealant) may be interposed.
  • the sealing material may be applied to the end surface 31a side, the sealing material may be applied to the bottom back surface 11a side, or the sealing material may be applied to the end surface 31a side and the bottom back surface 11a side.
  • the axial coupling of the stem shaft 12 from the hub wheel 1 is restricted by the bolt coupling means M5, and stable torque transmission is possible over a long period of time.
  • a sealing material is interposed between the seat surface 60a of the bolt member 54 that fixes the bolt between the hub wheel 1 and the stem shaft 12 of the outer ring 5 and the inner wall 22g, or the end surface 31a of the crimping portion 31 and the mouth portion 11
  • a sealing material between the bottom portion back surface 11a and the like, it is possible to prevent rainwater and foreign matter from entering the concave-convex fitting structure M from the bolt member 54, thereby improving the quality.
  • the outer ring 5 can be pulled out from the hub wheel 1 by removing the bolt member 54 by screwing the bolt member 54 out of the state shown in FIG. That is, the fitting force of the concave-convex fitting structure M can be pulled out by applying a pulling force of a predetermined force or more to the outer ring 5.
  • the hub wheel 1 and the constant velocity universal joint 3 can be separated by a jig 90 as shown in FIG.
  • the jig 90 includes a base 91, a pressing bolt member 93 that is threadably engaged with the screw hole 92 of the base 91, and a screw shaft 96 that is screwed into the screw hole 64 of the stem shaft 12.
  • a through hole 94 is provided in the base 91, and the bolt 33 of the hub wheel 1 is inserted into the through hole 94, and the nut member 95 is screwed into the bolt 33.
  • the base 91 and the flange 21 of the hub wheel 1 are overlapped, and the base 91 is attached to the hub wheel 1.
  • the screw shaft 96 is screwed into the screw hole 64 of the stem shaft 12 so that the base portion 76a protrudes from the inner wall 22g to the outboard side.
  • the protruding amount of the base portion 96a is set longer than the axial length of the concave-convex fitting structure M.
  • the screw shaft 96 and the pressing bolt member 93 are disposed on the same axis (on the axis of this wheel bearing device).
  • the pressing bolt member 93 is screwed into the screw hole 92 of the base 91 from the outboard side, and in this state, screwed to the screw shaft 96 side as indicated by an arrow.
  • the screw bolt 93 is moved by this screwing.
  • the screw shaft 96 is pressed in the direction of the arrow.
  • the outer ring 5 moves in the direction of the arrow with respect to the hub ring 1, and the outer ring 5 is detached from the hub ring 1.
  • the hub wheel 1 and the outer ring 5 can be connected again using, for example, the bolt member 54. That is, with the base 91 removed from the hub wheel 1 and the screw shaft 76 removed from the stem shaft 12, the convex portion 35 of the stem shaft 12 is fitted into the guide concave portion 44a as shown in FIG. 34A. As a result, the male spline 41 on the stem shaft 12 side and the female spline 42 of the hub wheel 1 formed by the previous press-fitting are in phase. At this time, as shown in FIG. 28A, a radial gap C1 is formed between the top of the projection 35 and the bottom of the guide recess 44a.
  • the concave-convex fitting structure M in which the entire concave portion fitting portion of the convex portion 35 is in close contact with the corresponding concave portion 36 can be reliably configured.
  • the press-fitting load is relatively large, so it is necessary to use a press machine or the like for press-fitting.
  • the stem shaft 12 can be stably and accurately inserted into the hole of the hub wheel 1 without using a press machine or the like. 22 can be press-fitted. For this reason, the outer ring 5 and the hub wheel 1 can be separated and connected in the field.
  • the difference in diameter between the hole diameter D12 of the bolt insertion hole 56 and the shaft diameter D11 of the non-threaded portion 55a of the bolt member 54 is ⁇ d5, and the outer diameter D1 of the outer ring 5 in the uneven fitting structure M and the hub in the uneven fitting structure M.
  • the diameter difference from the inner diameter D of the wheel 1 is ⁇ d6, 0 ⁇ d5 ⁇ d6. Therefore, the diameter difference between the hole diameter D12 of the bolt insertion hole 56 and the shaft diameter D11 of the non-threaded portion 55a of the bolt member 54 is smaller than the diameter difference between the outer diameter D1 of the outer ring 5 and the inner diameter dimension D of the hub wheel 1.
  • the bolt insertion hole 56 becomes the shaft press-fitting guide structure M3 when the stem shaft 12 of the outer ring 5 is re-pressed. That is, the bolt coupling means M5 is provided with the shaft press-fitting guide structure M3, and the press-fitting of the stem shaft 12 is guided by the shaft press-fitting guide structure M3 without being misaligned during re-press fitting. For this reason, stable re-press fitting is possible, and the convex portion 35 is fitted into the concave portion 36 formed previously without being displaced, so that the reassembly can be improved.
  • the outer ring 5 can be removed from the hole 22 of the hub wheel 1, so that the workability (maintenance of repair / inspection of each part) is maintained. Property) can be improved.
  • the stem shaft 12 of the outer ring 5 into the hole 22 of the hub wheel 1 again after repair and inspection of each part, the entire fitting contact portion 38 of the convex portion 35 and the concave portion 36 is in close contact with each other. Structure M can be constructed. For this reason, the wheel bearing device capable of stable torque transmission can be configured again.
  • the shaft press-fitting guide portion M6 has a guide concave portion 44a that matches the phase of the convex portion 35 with the phase of the other concave portion 36, the stem shaft 12 of the outer hand member is again attached to the hub wheel 1.
  • the recess 36 formed by the previous press-fitting, and the recess 36 is not damaged.
  • corrugated fitting structure M which does not produce the clearance gap which produces backlash in a radial direction and the circumferential direction again can be comprised with high precision.
  • the projection 35 By forming a gap between the top of the projection 35 and the bottom of the guide recess 44a, etc., the projection 35 can be easily fitted into the guide recess 44a in the pre-press-in process, and the guide recess 44a does not hinder the press-fitting of the convex portion 35. For this reason, the assemblability can be improved.
  • the radial gap C1 is formed between the top of the convex portion 35 and the bottom of the guide concave portion 44a.
  • Circumferential gaps C2 and C2 may be formed between the side portion and the side portion of the guide recess 44a.
  • a circumferential gap C1 is formed between the top of the convex portion 35 and the bottom of the guide concave portion 44a, and a gap is formed between the side portion of the convex portion 35 and the side portion of the guide concave portion 44a.
  • the direction gap C2 may be formed.
  • the pitch of the convex portions 41a and the pitch of the concave portions 41b are set to be the same.
  • the circumferential dimension L0 is substantially the same.
  • the circumferential thickness L2 of the projecting direction intermediate portion of the convex portion 35 is set to a circumferential dimension at a position corresponding to the intermediate portion between the convex portions 35 adjacent in the circumferential direction. It may be smaller than L1. That is, in the spline 41 formed on the stem shaft 12, the circumferential thickness (tooth thickness) L ⁇ b> 2 of the intermediate portion in the protruding direction of the convex portion 35 is set to the height of the convex portion 43 on the side of the hub wheel 1 fitted between the convex portions 35. It is made smaller than the circumferential thickness (tooth thickness) L1 of the intermediate portion in the protruding direction.
  • the total tooth thickness ⁇ (B1 + B2 + B3 +%) Of the convex portion 35 on the entire circumference on the stem shaft 12 side is replaced with the total tooth thickness ⁇ (A1 + A2 + A3 +%) Of the convex portion 43 (convex tooth) on the hub wheel 1 side. ⁇ It is set smaller than. As a result, the shear area of the convex portion 43 on the hub wheel 1 side can be increased, and the torsional strength can be ensured. And since the tooth thickness of the convex part 35 is small, a press-fit load can be made small and a press-fit property can be aimed at.
  • the circumferential direction thickness L2 of all the convex parts 35 is the convex part adjacent to the circumferential direction. It is not necessary to make it smaller than the circumferential dimension L1 between 35. That is, among the plurality of convex portions 35, even if the circumferential thickness of the arbitrary convex portion 35 is the same as the circumferential dimension between the convex portions adjacent in the circumferential direction, it is larger than the circumferential dimension. However, it is sufficient if the sum is small.
  • the convex portion 35 in FIG. 35A is trapezoidal in cross section, but the shape of the convex portion 35 may be an involute tooth shape as shown in FIG. 35B.
  • the shaft portion press-fitting guide portion M6 may be as shown in FIG. In FIG. 37A, the end portion on the concave-convex fitting structure M side of the guide concave portion 44a is an inclined surface 97b that inclines and decreases in diameter along the press-fitting direction (press-fitting progress direction). That is, the inclination angle ⁇ 3 of the inclined surface 97b is, for example, about 45 °.
  • FIG. 37B and FIG. 37C show that the radial depth dimension of the guide recess 44a is reduced along the press-fitting direction.
  • the end portion on the concave-convex fitting structure M side is a flat surface 97a orthogonal to the press-fitting direction
  • the end portion on the concave-convex fitting structure M side is along the press-fitting direction (press-fit progress direction).
  • An inclined surface 97b that is reduced in diameter is used.
  • the end of the guide recess 44a on the uneven fitting structure side is a flat surface 97a orthogonal to the press-fitting direction
  • the stem shaft 12 is received by the flat surface 97a when the stem shaft 12 is press-fitted into the hole portion 22. be able to.
  • the convex part 35 can be stably inserted from the recessed part 44a for a guide to the recessed part 36 of the other party. Even if the radial depth of the guide concave portion 44a is reduced along the press-fitting direction, the convex portion 35 can be stably fitted from the guide concave portion 44a to the counterpart concave portion 36.
  • FIG. 37 shows another embodiment.
  • the hub ring 1 is not provided with the inner wall 22g, and instead of the inner wall 22g, the ring body 80 is mounted in the hole portion 22 of the hub ring 1. That is, a ring fitting notch 86 is provided in the hole 22 of the hub wheel 1, and the ring body 87 is fitted to the ring fitting notch 86. At this time, the ring body 87 engages with the notch end face 86a of the ring fitting notch 81. It is preferable that the ring body 87 has a clearance between its outer diameter and the inner diameter of the ring fitting notch 81 as much as possible, or the ring body 87 is press-fitted into the ring fitting notch 86.
  • the ring body 87 is formed with a bolt insertion hole 88 through which the bolt member 54 is inserted.
  • the bolt insertion hole 88 has a diameter difference ⁇ d5 between the hole diameter D12 and the shaft diameter D11 of the non-threaded portion 55a of the bolt member 54, like the bolt insertion hole 56 of the first embodiment, and the outer ring 5 in the concave-convex fitting structure M. 0 ⁇ d5 ⁇ d6, where ⁇ d6 is the difference in diameter between the outer diameter D1 and the inner diameter D of the hub wheel 1.
  • the other configuration of the wheel bearing device shown in FIG. 38 is the same as that of the wheel bearing device shown in FIG. 26, and therefore, the same members as those in FIG. .
  • the wheel bearing device shown in FIG. 38 has the same effects as the wheel bearing device shown in FIG. 38 Moreover, since the bolt insertion hole 88 is formed in the ring body 80 which is a separate member from the hub wheel 1, the bolt insertion hole 88 can be stably formed with high accuracy. Further, even when the ring body 87 is damaged, it can be replaced, and it is not necessary to replace the entire hub wheel 1, so that the cost can be reduced.
  • the spline 41 which comprises the convex part 35 in the stem axis
  • the spline 111 (consisting of the convex strip 111a and the concave strip 111b) is formed on the inner diameter surface of the hole portion 22 of the hub wheel 1, and the stem shaft 12 may not be subjected to a curing treatment.
  • the spline 111 can also be formed by various processing methods such as broaching, cutting, pressing, and drawing, which are publicly known means. Further, various heat treatments such as induction hardening and carburizing and quenching can be employed as the thermosetting treatment.
  • the intermediate portion in the protruding direction of the convex portion 35 corresponds to the position of the concave portion forming surface (the outer diameter surface of the stem shaft 12) before the concave portion is formed. That is, the diameter dimension (minimum diameter dimension of the convex portion 35) D8 of the circle connecting the vertices of the convex portion 35 which is the convex portion 111a of the spline 111 is smaller than the outer diameter dimension D10 of the stem shaft 12, and the concave portion 111b of the spline 111
  • the diameter dimension (the inner diameter dimension of the inner diameter surface of the fitting hole between the convex portions) D9 is set larger than the outer diameter dimension D10 of the stem shaft 12. That is, D8 ⁇ D10 ⁇ D9.
  • the concave portion 36 into which the convex portion 35 is fitted can be formed on the outer peripheral surface of the stem shaft 12 by the convex portion 35 on the hub wheel 1 side. Thereby, the whole fitting contact part 38 of the convex part 35 and the recessed part fitted to this is closely_contact
  • the fitting contact portion 38 is a range B shown in FIG. 38B, and is a range from the middle of the mountain shape to the top of the mountain in the cross section of the convex portion 35. Further, a gap 112 is formed on the outer diameter side of the outer peripheral surface of the stem shaft 12 between the adjacent convex portions 35 in the circumferential direction.
  • a guide recess 44b may be provided on the stem shaft 12 side.
  • a radial gap C1 is formed between the top of the convex portion 35 and the bottom of the guide concave portion 44a, or a circumferential gap C2 between the side portion of the convex portion 35 and the side portion of the guide concave portion 44a, C2 can be formed, and further, the radial gap C1 and the circumferential gaps C2 and C2 can be formed.
  • the protruding portion 45 is formed by press-fitting, it is preferable to provide a pocket portion 50 for storing the protruding portion 45. Since the protruding portion 45 is formed on the mouse side of the stem shaft 12, the pocket portion 50 is provided on the hub wheel 1 side.
  • the convex portion 35 of the concave-convex fitting structure M is provided on the inner diameter surface 37 of the hole portion 22 of the hub wheel 1, and the hardness of the axial end portion of the convex portion 35 is set to the outer diameter of the stem shaft 12 of the outer ring 5.
  • the productivity of the outer joint member (outer ring 5) of the constant velocity universal joint is excellent.
  • the present invention has been described.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the cross section is triangular, and in the embodiment shown in FIG. 35A, the cross section is trapezoidal, but other shapes such as a semicircular shape, a semi-elliptical shape, and a rectangular shape can be adopted.
  • the area, number, circumferential arrangement pitch, and the like of the portions 35 can be arbitrarily changed.
  • the convex portions 41a and 111a of the splines 41 and 111 are the convex portions 35 of the concave-convex fitting structure M.
  • the corrugated mating surface may be formed.
  • the convex portion 35 disposed along the axial direction can be press-fitted into the mating side, and the concave portion 36 can be formed on the mating side with the convex portion 35 so as to closely fit the convex portion 35. It is only necessary that the entire fitting contact portion 38 between the portion 35 and the concave portion fitted thereto is in close contact, and that rotational torque can be transmitted between the hub wheel 1 and the constant velocity universal joint 3.
  • the hole portion 22 of the hub wheel 1 may be a deformed hole such as a polygonal hole other than a circular hole, and the cross-sectional shape of the end portion of the stem shaft 12 fitted into the hole portion 22 may be other than a circular cross section.
  • An irregular cross section such as a square may be used.
  • the hardness difference between the convex portion 35 side and the concave portion forming surface formed by the convex portion 35 is preferably 20 points or more in HRC as described above, but the convex portion 35 can be press-fitted. If there is, it may be less than 20 points.
  • the end surface (press-fit start end) of the convex portion 35 is a surface orthogonal to the axial direction in the embodiment, but may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.
  • the shape of the pocket portion 50 may be any shape that can accommodate (accommodate) the protruding portion 45 that is generated, and therefore, the capacity of the pocket portion 50 only needs to be compatible with the protruding portion 45 that is generated.
  • small concave portions arranged at a predetermined pitch along the circumferential direction may be provided on the inner diameter surface 37 of the hole portion 22 of the hub wheel 1.
  • the small recess needs to be smaller than the volume of the recess 36.
  • the press-fit property of the protrusion 35 can be improved. That is, by providing the small concave portion, the capacity of the protruding portion 45 formed when the convex portion 35 is press-fitted can be reduced, and the press-fit resistance can be reduced. Further, since the protruding portion 45 can be reduced, the volume of the pocket portion 50 can be reduced, and the workability of the pocket portion 50 and the strength of the stem shaft 12 can be improved.
  • the shape of a small recessed part can employ
  • the welding means was used as the joining means shown in FIG. 23, but an adhesive may be used instead of welding. Further, a roller may be used as the rolling element 30 of the bearing 2. Furthermore, in the said embodiment, although the 3rd generation wheel bearing apparatus was shown, a 1st generation or a 2nd generation may be sufficient.
  • the 3rd generation wheel bearing apparatus was shown, a 1st generation or a 2nd generation may be sufficient.
  • the inner ring 6 and the shaft 10 may be integrated via the concave / convex fitting structure M described in the above embodiments.
  • the sealing material interposed between the seat surface 60a of the bolt member 54 that fixes the hub wheel 1 and the stem shaft 12 and the inner wall 22g is made of resin on the seat surface 60a side of the bolt member 54 in the embodiment.
  • resin may be applied to the inner wall 22g side.
  • such a sealing material is omitted if the bearing surface 60a of the bolt member 54 and the bottom surface of the recessed portion 63 of the inner wall 22g are excellent in adhesion. Is also possible.
  • the sealing material can be omitted if the adhesiveness can be exhibited even in a so-called turning finished state without grinding the bottom surface of the concave portion 63.
  • the guide recess 44a is formed with gaps C1 and C2 between the projections 35. It is only necessary that the deviation and the core inclination do not occur and the convex portion 35 is pressed against the inner surface of the guide concave portion 44a so as not to increase the press-fit load.
  • the axial length of the guide recess 44a can be arbitrarily set, and if it is long, it is preferable for alignment, but the upper limit is limited by the axial length of the hole 22 of the hub wheel 1. On the contrary, if the axial length of the hole 22 of the hub wheel 1 is short, the hub wheel 1 may not function as a guide and may cause misalignment or tilt. For this reason, it is necessary to determine the axial length of the guide recess 44a in consideration of these.
  • the cross-sectional shape of the guide recess 44a is not limited to that shown in FIG. Various changes can be made according to the cross-sectional shape and the like of the convex portion 35.
  • the number of guide recesses 44a may be smaller or larger than the number of projections 35 without matching the number of projections 35. In short, it is only necessary that some convex portions 35 are fitted in some guide concave portions 44a so that the phase of the convex portions 35 coincides with the phase of the concave portion 36 formed by the previous press-fitting.
  • the inclination angle ⁇ 3 of the inclined surface 97b at the end of the guide recess 44a and the inclination angle ⁇ 4 of the bottom of the guide recess 44a can be arbitrarily changed. If the inclination angle ⁇ 3 of the inclined surface 97b is close to 90 °, it becomes functionally the same as the flat surface 97a orthogonal to the press-fitting direction. If the inclination angle ⁇ 3 is small, the guide recess 44a becomes longer, and the concave-convex fitting structure M The axial length of is shortened.
  • the outer member 25 of the rolling bearing 2 in the above embodiment has no body mounting flange, the outer member 25 may have a body mounting flange.
  • the constant velocity universal joint is integrated with the third generation in which the inner raceway surface is integrally formed with the hub wheel, and the inner side of the other side of the double row rolling bearing is formed on the outer periphery of the outer joint member constituting the constant velocity universal joint.
  • the present invention can be applied to a fourth-generation wheel bearing device in which raceway surfaces are integrally formed.

Abstract

 円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れるとともに、長期にわたって安定したトルク伝達ができ、また、ハブ輪と等速自在継手の外側継手部材との分離が可能とされてメンテナンス性に優れ、かつ長期にわたって安定したトルク伝達ができる車輪用軸受装置を提供する。  ハブ輪の孔部に嵌挿される等速自在継手の外側継手部材のステム軸が凹凸嵌合構造を介して結合された車輪用軸受装置である。ステム軸とハブ輪の孔部の内径面とのどちらか一方に軸方向に延びる凸部を設ける。凸部を軸方向に沿って他方に圧入し、他方に凸部に密着嵌合する凹部を形成する。ハブ輪のインボード側の端部を外径側へ加締めて加締部を形成して、加締部にて転がり軸受に対して予圧を付与する。加締部と、等速自在継手のマウス部のバック面とを接触させる。                                                                                  

Description

車輪用軸受装置
本発明は、自動車等の車両において車輪を車体に対して回転自在に支持するための車輪用軸受装置に関する。
 車輪用軸受装置には、第1世代と称される複列の転がり軸受を単独に使用する構造から、外方部材に車体取付フランジを一体に有する第2世代に進化し、さらに、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方の内側軌道面が一体に形成された第3世代、さらには、ハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側軌道面が一体に形成された第4世代のものまで開発されている。
 例えば、特許文献1には、第3世代と呼ばれるものが記載されている。第3世代と呼ばれる車輪用軸受装置は、図39に示すように、外径方向に延びるフランジ151を有するハブ輪152と、このハブ輪152に外側継手部材153が固定される等速自在継手154と、ハブ輪152の外周側に配設される外方部材155とを備える。
 等速自在継手154は、前記外側継手部材153と、この外側継手部材153の椀形部157内に配設される内側継手部材158と、この内側継手部材158と外側継手部材153との間に配設されるボール159と、このボール159を保持する保持器160とを備える。また、内側継手部材158の中心孔の内周面にはスプライン部161が形成され、この中心孔に図示省略のシャフトの端部スプライン部が挿入されて、内側継手部材158側のスプライン部161とシャフト側のスプライン部とが係合される。
 また、ハブ輪152は、筒状の軸部163と前記フランジ151とを有し、フランジ151の外端面164(アウトボード側の端面)には、図示省略のホイールおよびブレーキロータが装着される短筒状のパイロット部165が突設されている。なお、パイロット部165は、大径の第1部165aと小径の第2部165bとからなり、第1部165aにブレーキロータが外嵌され、第2部165bにホイールが外嵌される。
 そして、軸部163の椀形部157側端部の外周面に切欠部166が設けられ、この切欠部166に内輪167が嵌合されている。ハブ輪152の軸部163の外周面のフランジ近傍には第1内側軌道面168が設けられ、内輪167の外周面に第2内側軌道面169が設けられている。また、ハブ輪152のフランジ151にはボルト装着孔162が設けられて、ホイールおよびブレーキロータをこのフランジ151に固定するためのハブボルトがこのボルト装着孔162に装着される。
 外方部材155は、その内周に2列の外側軌道面170、171が設けられると共に、その外周にフランジ(車体取付フランジ)151が設けられている。そして、外方部材155の第1外側軌道面170とハブ輪152の第1内側軌道面168とが対向し、外方部材155の第2外側軌道面171と、内輪167の軌道面169とが対向し、これらの間に転動体172が介装される。
 ハブ輪152の軸部163に外側継手部材153のステム軸173が挿入される。軸部173は、その反椀形部の端部にねじ部174が形成され、このねじ部174と椀形部157との間にスプライン部175が形成されている。また、ハブ輪152の軸部163の内周面(内径面)にスプライン部176が形成され、このステム軸173がハブ輪152の軸部163に挿入された際には、ステム軸173側のスプライン部175とハブ輪152側のスプライン部176とが係合する。
 そして、軸部163から突出したステム軸173のねじ部174にナット部材177が螺着され、ハブ輪152と外側継手部材153とが連結される。この際、ナット部材177の内端面(裏面)178と軸部163の外端面179とが当接するとともに、椀形部157の軸部側の端面180と内輪167の外端面181とが当接する。すなわち、ナット部材177を締付けることによって、ハブ輪152が内輪167を介してナット部材177と椀形部157とで挟持される。
特開2004-340311号公報
 従来では、前記したように、ステム軸173側のスプライン部175とハブ輪152側のスプライン部176とが係合するものである。このため、ステム軸173側及びハブ輪152側の両者にスプライン加工を施す必要があって、コスト高となるとともに、圧入時には、ステム軸173側のスプライン部175とハブ輪152側のスプライン部176との凹凸を合わせる必要があり、この際、歯面を合わせることによって、圧入すれば、この凹凸歯が損傷する(むしれる)おそれがある。また、歯面を合わせることなく、凹凸歯の大径合わせにて圧入すれば、円周方向のガタが生じやすい。このように、円周方向のガタがあると、回転トルクの伝達性に劣るとともに、異音が発生するおそれもあった。このため、従来のように、スプライン嵌合による場合、凹凸歯の損傷及び円周方向のガタの両者を成立させることは困難であった。
 また、軸部163から突出したステム軸173のねじ部174にナット部材177を螺着する必要がある。このため、組立時にはねじ締結作業を有し、作業性に劣るとともに、部品点数も多く、部品管理性も劣ることになっていた。
 ところで、スプライン嵌合において、雄スプラインと雌スプラインとの密着性の向上を図って、円周方向のガタが生じないようにしたとしても、駆動トルクが作用すれば、雄スプラインと雌スプラインとに相対変位が発生するおそれがある。このような相対変位が発生すれば、フレッティング摩耗が発生し、その摩耗粉により、スプラインがアブレーション摩耗を起すおそれがある。これによって、スプライン嵌合部位においてガタつきが生じたり、安定したトルク伝達ができなくなるおそれがある。
 本発明は、上記課題に鑑みて、円周方向のガタの抑制を図ることができ、しかも、ハブ輪と等速自在継手の外側継手部材との連結作業性に優れるとともに、長期にわたって安定したトルク伝達ができ、また、ハブ輪と等速自在継手の外側継手部材との分離が可能とされてメンテナンス性に優れ、かつ長期にわたって安定したトルク伝達ができる車輪用軸受装置を提供する。
 本発明の第1の車輪用軸受装置は、内周に複列の外側軌道面が形成された外方部材と、外周に前記外側軌道面と対向する複列の内側軌道面を有し、車輪に取り付けるためのフランジが設けられたハブ輪および内輪からなる内方部材と、前記外方部材の外側軌道面と内方部材の内側軌道面との間に介装された複列の転動体とを備え、前記ハブ輪の内径に等速自在継手の外側継手部材のステム部を嵌合して結合させた駆動車輪用軸受装置において、 外側継手部材のステム軸とハブ輪の孔部の内径面とのどちらか一方に軸方向に延びる凸部を設け、前記凸部を軸方向に沿って他方に圧入し、この圧入によって前記他方に凸部に密着嵌合する凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつハブ輪のインボード側の端部を外径側へ加締めて加締部を形成して、この加締部にてハブ輪に外嵌される転がり軸受の内輪を固定し、転がり軸受に対して予圧を付与するとともに、加締部と、この加締部に相対面する前記等速自在継手の外側継手部材のマウス部のバック面とを接触させたものである。
 本発明の車輪用軸受装置によれば、ハブ輪とハブ輪の孔部に嵌挿される等速自在継手の外側継手部材のステム軸とを一体化する凹凸嵌合構造を備えているため、ステム軸とハブ輪との結合においてボルト等を必要としない。また、凹凸嵌合構造は、凸部と凹部との嵌合接触部位の全体が密着しているので、この嵌合構造において、径方向及び円周方向においてガタが生じる隙間が形成されない。
 ハブ輪の端部が加締られて転がり軸受に対して予圧が付与されるので、外側継手部材のマウス部によって予圧を付与する必要がなくなる。
 前記ハブ輪の加締部と、この加締部に相対面する等速自在継手の外側継手部材のマウス部のバック面とを接触させるので、ステム軸方向の曲げ剛性が向上する。なお、この曲げは、ジョイント高作動角時に発生する2次モーメントや旋回時にタイヤ側から入力されるアキシャル荷重により発生する。
 等速自在継手の外側継手部材のステム軸と前記ハブ輪の内径面との間に、ステム軸のハブ輪からの抜けを規制する軸部抜け止め構造を設けるのが好ましい。軸部抜け止め構造を設けることによって、ハブ輪に対する等速自在継手の外側継手部材の軸方向の抜けを防止できる。
 前記軸部抜け止め構造は、ステム軸の軸端部に設けられた円筒状部が、揺動する加締治具による揺動加締によって径方向外方に塑性変形してなる引っ掛け構造である。このため、揺動させることなく、加締治具を軸方向に沿って押し込むことによって、拡径させる場合に比べて、加締時の加締荷重を小さくできる。
 前記凹凸嵌合構造は軸方向の引き抜き力付与による分離を許容するようにできる。すなわち、外側継手部材のステム軸に軸方向の引き抜き力を付与すれば、ハブ輪の孔部から外側継手部材を取外すことができる。また、外側継手部材のステム軸をハブ輪の孔部から引き抜いた後において、再度、外側手部材のステム軸をハブ輪の孔部に圧入すれば、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成することができる。
 前記ハブ輪と外側継手部材のステム軸とが、ねじ孔とこのねじ孔に螺合するボルト部材とを有する装置軸心上のボルト結合手段を介して固定されるようにできる。これによって、ハブ輪と外側継手部材のステム軸とがボルト結合手段を介して固定されるので、ハブ輪からの外側継手部材のステム軸の軸方向の抜けが規制される。
 ボルト結合手段は、分離後の再圧入時にボルト部材を案内する外側継手部材の軸部圧入ガイド構造部を備えたものである。
 ボルト部材はねじ部と非ねじ部とを有するとともに、軸部圧入ガイド構造部は、ボルト部材の非ねじ部が挿通されるボルト挿通孔を有し、ボルト挿通孔の孔径とボルト部材の非ねじ部の軸径との径差をΔd5とし、凹凸嵌合構造における外側継手部材のステム軸外径と凹凸嵌合構造におけるハブ輪内径との径差をΔd6としたときに、0<Δd5<Δd6とすることができる。
 すなわち、ボルト挿通孔の孔径とボルト部材の非ねじ部の軸径との径差を、外側継手部材のステム軸外径と凹凸嵌合構造におけるハブ輪内径との径差よりも小さく設定することになって、ボルト挿通孔が外側継手部材のステム軸の圧入時のガイドとなる。
 ハブ輪の孔部にこの内部を仕切る内壁を設けるとともに、この内壁にボルト挿通孔を設けるのが好ましい。この内壁によって、軸部圧入案内構造部の剛性が向上する。
 前記ハブ輪の加締部と、これに相対面する外側継手部材の対向面との間、または前記ボルト結合手段のボルト部材の座面と、この座面を受ける受け面との間の少なくとも一方にシール材を介在させたものであってもよい。
 ハブ輪の加締部とマウス部のバック面との接触面圧を100MPa以下に設定するのが好ましい。この接触面圧が100MPaを越えると、異音を発生するおそれがある。すなわち、大トルク負荷時に、等速自在継手の外側継手部材とハブ輪との捩れ量に差が生じ、この差により、等速自在継手の外側継手部材とハブ輪との接触部に急激なスリップが生じて異音が発生する。これに対して、接触面圧が100MPa以下であれば、急激なスリップが生じることを防止できて、異音の発生を抑えることができる。
 等速自在継手の外側継手部材のステム軸に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記ステム軸をハブ輪の孔部に凸部の軸方向端部側から圧入することによって、この凸部にてハブ輪の孔部内径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい。また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材のステム軸の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材のステム軸に圧入することによって、この凸部にて外側継手部材のステム軸の外径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成してもよい。
 凸部の突出方向中間部位が、凹部形成前の凹部形成面上に配置されるようにする。外側継手部材のステム軸に凸部を設ける場合、複数の凸部の頂点を結ぶ円の最大直径寸法を凹部が形成されるハブ輪軸孔の内径寸法よりも大きくするとともに、凸部間の谷底を結ぶ円の直径寸法をハブ輪の軸部嵌合孔の内径寸法よりも小さくする。一方、外側継手部材のステム軸の外径寸法を、ハブ輪の孔部に設けた複数の凸部の頂点を結ぶ円の最小直径寸法よりも大きくするとともに、前記ハブ輪孔部の凸部間の谷底を結ぶ円の直径寸法より小さくする。
 凸部の突出方向中間部位の周方向厚さを、周方向に隣り合う凸部間における前記中間部位に対応する位置での周方向寸法よりも小さくするのが好ましい。このように設定することによって、凸部の突出方向中間部位の周方向厚さの総和を、周方向に隣り合う凸部間に嵌合する相手側の凸部における前記中間部位に対応する位置での周方向厚さの総和よりも小さくなる。
 凹凸嵌合構造を転がり軸受の軌道面の避直下位置に配置するのが好ましい。すなわち、軸部をハブ輪の孔部に圧入すれば、ハブ輪は膨張する。この膨張によって、転がり軸受の軌道面にフープ応力を発生させる。ここで、フープ応力とは、外径方向に拡径しようとする力をいう。このため、軸受軌道面にフープ応力が発生した場合は、転がり疲労寿命の低下やクラック発生を引き起こすおそれがある。そこで、凹凸嵌合構造を転がり軸受の軌道面の避直下位置に配置することよって、軸受軌道面におけるフープ応力の発生を抑えることができる。
 圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けるのが好ましい。この際、圧入による凹部形成によって生じるはみ出し部を収納するポケット部をステム軸に設けたり、ハブ輪の孔部の内径面に設けたりすることができる。ここで、はみ出し部は、凸部の凹部嵌合部位が嵌入(嵌合)する凹部の容量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。また、はみ出し部を収納するポケット部を、ステム軸の凸部の圧入始端側に設けるとともに、このポケット部の軸方向反凸部側にハブ輪の孔部との調芯用の鍔部を設けるのが好ましい。
 本発明の車輪用軸受装置では、ハブ輪とハブ輪の孔部に嵌挿される等速自在継手の外側継手部材のステム軸とを一体化する凹凸嵌合構造を備えているため、凹凸嵌合構造部の円周方向のガタを無くすことができる。
 また、加締部と、外側継手部材のマウス部のバック面とを接触させることによって、ステム軸方向の曲げ剛性が向上して、曲げに強くなって、耐久性に優れた高品質な製品となる。しかも、この接触によって、圧入時の位置決めを構成できる。これによって、この車輪用軸受装置の寸法精度が安定するとともに、軸方向に沿って配設される凹凸嵌合構造の軸方向長さを安定した長さに確保することができ、トルク伝達性の向上を図ることができる。さらに、この接触によってシール構造を構成でき、このハブ輪の加締部側から凹凸嵌合構造への異物の浸入を防止でき、凹凸嵌合構造は長期にわたって安定した嵌合状態を維持できる。
 ハブ輪の端部が加締られて転がり軸受に対して予圧が付与されるので、外側継手部材のマウス部によって予圧を付与する必要がなくなる。このため、予圧を考慮することなく、外側継手部材のステム軸を圧入することができ、ハブ輪と外側継手部材との連結性(組み付け性)の向上を図ることができる。
 軸部抜け止め構造によって、外側継手部材のステム軸がハブ輪の孔部から軸方向に抜けることを有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。このため、ステム軸とハブ輪との結合においてナット締結作業を必要としない。したがって、組立作業を容易に行うことができて、組立作業におけるコスト低減を図ることができ、軽量化を図ることができる。
 外側継手部材のステム軸に軸方向の引き抜き力を付与することによって、ハブ輪の孔部から外側継手部材を取外すことができるので、各部品の修理・点検の作業性(メンテナンス性)の向上を図ることができる。しかも、各部品の修理・点検後に再度外側継手部材のステム軸をハブ輪の孔部に圧入することによって、凸部と凹部との嵌合接触部位全域が密着する凹凸嵌合構造を構成することができる。このため、安定したトルク伝達が可能な車輪用軸受装置を再度構成することができる。
 ハブ輪と等速自在継手とがボルト結合手段を介して固定されるものでは、ハブ輪からの外側継手部材のステム軸の軸方向の抜けが規制され、安定した連結状態を維持することができる。
 また、軸部抜け止め構造は、円筒状部が径方向外方に塑性変形してなる引っ掛け構造であるので、従来のようなねじ締結を省略できる。このため、軸部にハブ輪の孔部から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組み立て作業性の向上を図ることができる。しかも、加締時の加締荷重が比較的小さくて済み、この加締部の肉厚を大きくしたり、ハブ輪内径面とこの加締め部外径面とを確実に接触させることができる。これによって、より強固な抜け止め機構(構造)を設けることができる。さらに、このような強固な抜け止め機構(構造)が設けられることにより、軸部の曲げ剛性が向上し、曲げに強くなる。加締時の加締荷重を小さくすることができれば、荷重を受ける部位(等速自在継手の外側継手部材の荷重受部であって、たとえば、外側継手部材の外径面に設けられた段差面や外側継手部材の開口側端面等)の変形を防止できる。
 ボルト挿通孔の孔径とボルト部材の非ねじ部の軸径との径差を、外側継手部材のステム軸外径と凹凸嵌合構造におけるハブ輪内径との径差よりも小さく設定することになって、ボルト軸孔が外側継手部材のステム軸の圧入時のガイドとなり、より安定した再圧入が可能となる。
 ハブ輪の孔部の内壁によって、軸部圧入ガイド構造部の剛性が向上し、外側継手部材のステム軸の圧入がより安定する。
 ハブ輪の加締部と、これに相対面する外側継手部材の対向面との間にシール材を介在させれば、この間からの雨水や異物等の凹凸嵌合構造への侵入を防止することができる。また、ボルト結合手段のボルト軸の座面と、この座面を受ける受け面との間にシール材を介在させれば、この間からの雨水や異物等の凹凸嵌合構造への侵入を防止することができる。
 ハブ輪の加締部とマウス部のバック面との接触面圧が100MPa以下であれば、急激なスリップが生じることを防止できて、異音の発生を抑えることができる。これによって、静粛な車輪用軸受装置を構成することができる。
 また、等速自在継手の外側継手部材のステム軸に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記ステム軸をハブ輪の孔部に凸部の軸方向端部側から圧入するものであれば、ステム軸側の硬度を高くでき、ステム軸の剛性を向上させることができる。また、ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、この凸部の軸方向端部の硬度を等速自在継手の外側継手部材のステム軸の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材のステム軸に圧入するものでは、ステム軸側の硬度処理(熱処理)を行う必要がないので、等速自在継手の外側継手部材の生産性に優れる。
 凸部の突出方向中間部位の周方向厚さを、周方向に隣り合う凸部間における前記中間部位に対応する位置での寸法よりも小さくすることによって、凹部が形成される側の凸部(形成される凹部間の凸部)の突出方向中間部位の周方向厚さを大きくすることができる。このため、相手側の凸部(凹部が形成されることによる凹部間の硬度が低い凸部)のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、硬度が高い側の凸部の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。
 凹凸嵌合構造を転がり軸受の軌道面の避直下位置に配置することよって、軸受軌道面におけるフープ応力の発生を抑える。これにより、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受を提供することができる。
 前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けることによって、はみ出し部をこのポケット内に保持(維持)することができ、はみ出し部が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部をポケット部に収納したままにしておくことができ、はみ出し部の除去処理を行う必要がなく、組み立て作業工数の減少を図ることができて、組み立て作業性の向上及びコスト低減を図ることができる。
 また、ポケット部の軸方向反凸部側にハブ輪の孔部との調芯用の鍔部を設けることによって、ポケット部内のはみ出し部の鍔部側への飛び出しがなくなって、はみ出し部の収納がより安定したものとなる。しかも、鍔部は調芯用であるので、芯ずれを防止しつつステム軸をハブ輪に圧入することができる。このため、外側継手部材とハブ輪とを高精度に連結でき、安定したトルク伝達が可能となる。
本発明の第1実施形態を示す車輪用軸受装置の拡大断面図である。 前記車輪用軸受装置の凹凸嵌合構造の拡大断面図である。 前記図2AのX部拡大図である。 前記車輪用軸受装置の要部拡大断面図である。 前記車輪用軸受装置の凹凸嵌合構造の要部拡大断面図である。 前記車輪用軸受装置の組立前の断面図である。 治具を用いた前記車輪用軸受装置の組立工程を示す断面図である。 治具を用いた前記車輪用軸受装置の組立工程を示す断面図である。 治具を用いた前記車輪用軸受装置の組立工程を示す断面図である。 外輪単体でハブ輪に圧入する方法を示す断面図である。 外輪と内輪とボールとケージとがアッセンブリされた状態で、ハブ輪に圧入する方法を示す断面図である。 他の治具を用いた前記車輪用軸受装置の組立工程を示す断面図である。 他の治具を用いた前記車輪用軸受装置の組立工程を示す断面図である。 本発明の第2実施形態を示す車輪用軸受装置の縦断面図である。 本発明の第3実施形態を示す車輪用軸受装置の縦断面図である。 前記図14の車輪用軸受装置の組立方法を示す断面図である。 前記図14の車輪用軸受装置の組立方法を示す断面図である。 本発明の第4実施形態を示す車輪用軸受装置の縦断面図である。 前記図17の車輪用軸受装置の組立方法を示す断面図である。 前記図17の車輪用軸受装置の組立方法を示す断面図である。 前記図17の車輪用軸受装置の外輪のステム軸の端面を示し、全周にわたる外鍔状係止部の端面図である。 前記図17の車輪用軸受装置の外輪のステム軸の端面を示し、周方向に沿って所定ピッチで配設される外鍔状係止部の端面図である。 本発明の第5実施形態を示す車輪用軸受装置の縦断面図である。 本発明の第6実施形態を示す車輪用軸受装置の要部断面図である。 本発明の第7実施形態を示す車輪用軸受装置の要部断面図である。 本発明の第8実施形態を示す車輪用軸受装置の要部断面図である。 前記図24の車輪用軸受装置の要部拡大断面図である。 本発明の第9実施形態を示す車輪用軸受装置の要部断面図である。 前記図26に示す車輪用軸受装置の要部拡大縦断面図である。 前記図26に示す車輪用軸受装置の軸部圧入構造を示し、図27のW-W線断面図である。 軸部圧入構造の第1変形例を示す拡大断面図である。 軸部圧入構造の第2変形例を示す拡大断面図である。 前記図26に示す車輪用軸受装置の要部拡大図である。 前記図26に示す車輪用軸受装置の組立前の断面図である。 前記図26に示す車輪用軸受装置の分離方法を示す断面図である。 前記図26に示す車輪用軸受装置の再組立前の断面図である。 前記図26に示す車輪用軸受装置の再組立方法を示す断面図である。 前記図26に示す車輪用軸受装置の再圧入方法を示し、圧入直前状態の断面図である。 前記図26に示す車輪用軸受装置の再圧入方法を示し、圧入途中の断面図である。 前記図26に示す車輪用軸受装置の再圧入方法を示し、圧入完了状態の断面図である。 凹凸嵌合構造の第1変形例を示す断面図である。 凹凸嵌合構造の第2変形例を示す断面図である。 軸部圧入構造の第3変形の断面図である。 軸部圧入構造の第4変形の断面図である。 軸部圧入構造の第5変形の断面図である。 本発明の第10実施形態を示す断面図である。 凹凸嵌合構造の第3変形例の横断面図である。 前記図38AのY部拡大図である。 従来の車輪用軸受装置の断面図である。
符号の説明
M     凹凸嵌合構造
M1   軸部抜け止め構造
M3   軸部圧入ガイド構造部
M5   ボルト結合手段
M6   軸部圧入ガイド部
1     ハブ輪
2     軸受
3     等速自在継手
11   マウス部
11a バック面
12   ステム軸
22   孔部
22g 内壁
23   段差部
24   内輪
26   外側軌道面
27   外側軌道面
28   内側軌道面
29   内側軌道面
30   転動体
31   加締部
35   凸部
36   凹部
38   嵌合接触部位
45   はみ出し部
50   ポケット部
52   鍔部
55a 非ねじ部
55b ねじ部
56   ボルト貫通孔
60a 座面
64   ねじ孔
65   拡径加締部(テーパ状係止片)
70   テーパ状係止片
76   外鍔状係止片
88   ボルト挿通孔
 以下本発明の実施の形態を図1~図41に基づいて説明する。図1に第1実施形態の車輪用軸受装置を示し、この車輪用軸受装置は、ハブ輪1と、複列の転がり軸受2と、等速自在継手3とが一体化されるとともに、ハブ輪1と、ハブ輪1の孔部22に嵌挿される等速自在継手3の外側継手部材のステム軸12とが凹凸嵌合構造Mを介して結合されてなる。
 等速自在継手3は、外側継手部材としての外輪5と、外輪5の内側に配された内側継手部材としての内輪6と、外輪5と内輪6との間に介在してトルクを伝達する複数のボール7と、外輪5と内輪6との間に介在してボール7を保持するケージ8とを主要な部材として構成される。内輪6はその軸孔内径6aに、シャフト10の端部10aを圧入することによりスプライン嵌合してシャフト10とトルク伝達可能に結合されている。なお、シャフト10の端部10aには、シャフト抜け止め用の止め輪9が嵌合されている。
 外輪5はマウス部11とステム部(軸部)12とからなり、マウス部11は一端にて開口した椀状で、その内球面13に、軸方向に延びた複数の案内溝(トラック溝)14が円周方向等間隔に形成されている。内輪6は、その外球面15に、軸方向に延びた複数の案内溝(トラック溝)16が円周方向等間隔に形成されている。
 外輪5のトラック溝14と内輪6のトラック溝16とは対をなし、各対のトラック溝14、16で構成されるトラックに1個ずつ、トルク伝達要素(トルク伝達部材)としてのボール7が転動可能に組み込んである。ボール7は外輪5のトラック溝14と内輪6のトラック溝16との間に介在してトルクを伝達する。ケージ8は外輪5と内輪6との間に摺動可能に介在し、外球面にて外輪5の内球面13と接し、内球面にて内輪6の外球面15と接する。なお、この場合の等速自在継手は、各トラック溝14、16の溝底に直線状のストレート部を有するアンダーカットフリー型を示しているが、底に直線状のストレート部を有さないツェパー型等の他の等速自在継手であってもよい。
 また、マウス部11の開口部はブーツ18にて塞がれている。ブーツ18は、大径部18aと、小径部18bと、大径部18aと小径部18bとを連結する蛇腹部18cとからなる。大径部18aがマウス部11の開口部に外嵌され、この状態でブーツバンド19aにて締結され、小径部18bがシャフト10のブーツ装着部10bに外嵌され、この状態でブーツバンド19bにて締結されている。
 ハブ輪1は、図1と図5に示すように、筒部20と、筒部20のアウトボード側の端部に設けられるフランジ21とを有する。筒部20の孔部22は、軸部嵌合孔22aと、アウトボード側のテーパ状孔22bと、インボード側の大径部22cとを有する。大径部22cと軸部嵌合孔22aとの間には、テーパ部(テーパ孔)22dが設けられている。このテーパ部22dは、ハブ輪1と外輪5のステム軸12を結合する際の圧入方向に沿って縮径している。テーパ部22dの傾斜角度θ1は、例えば15°~75°とされる。ここで、アウトボード側とは、車両に取付けた状態で車両の外側となる方であり、インボード側とは、車両に取付けた状態で車両の内側となる方である。
 転がり軸受2は、ハブ輪1の筒部20のインボード側に設けられた段差部23に嵌合する内輪24と、ハブ輪1の筒部20乃至内輪24に跨って外嵌される外方部材25とを備える。外方部材25は、その内周に2列の外側軌道面(アウターレース)26、27が設けられ、第1外側軌道面26とハブ輪1の軸部外周に設けられる第1内側軌道面(インナーレース)28とが対向し、第2外側軌道面27と、内輪24の外周面に設けられる第2内側軌道面(インナーレース)29とが対向し、これらの間に転動体30としてのボールが介装される。このため、この車輪用軸受装置では、ハブ輪1と内輪24とで転がり軸受2の内方部材39を構成する。なお、外方部材25の両開口部にはシール部材S1,S2が装着されている。
 また、外方部材25である外輪には、図示省略の車体の懸架装置から延びるナックル34(図26等参照)が取り付けられている。すなわち、外方部材25の外面全体を円筒面とし、この円筒面をナックル34が圧入される圧入面25aとする。これによって、外方部材25をナックルの円筒状内径面に圧入することができる。この場合、ナックル圧入面25aとナックル内径面との締代によって、ナックル34と外方部材25との相対的な軸方向及び周方向のずれを規制するように設定するのが好ましい。例えば、外方部材25とナックル34との間の嵌合い面圧×嵌合い面積を嵌合い荷重としたときに、この嵌合い荷重をこの車輪用軸受の等価ラジアル荷重で割った値をクリープ発生限界係数とし、このクリープ発生限界係数を予め考慮して、外方部材25の設計仕様、すなわち外方部材25とナックルの嵌合締代が設定される。
 このため、外方部材25のナックル圧入面25aとナックル34のナックル内径面との締代によって、外方部材25の軸方向の抜け及び周方向のクリープを防止できる。ここで、クリープとは、嵌合締代の不足や嵌合面の加工精度不良等により軸受が周方向に微動して嵌合面が鏡面化し、場合によってはかじりを伴い焼き付きや溶着することをいう。なお、図26等に示すように、外方部材25のナックル圧入面25aと、ナックル34の内径面34aとにそれぞれ周方向溝を設け、これらの周方向溝の間に抜け止め用の止め輪61を装着するのが好ましい。
 この場合、ハブ輪1のインボード側の端部を加締めて、その加締部31にて内輪24をアウトボード側へ押圧することによって、この軸受2に予圧を付与するものである。これによって、内輪24をハブ輪1に締結することができる。加締部31によって、内輪24のインボード側の端面24aを軸方向に沿ってアウトボード側へ押圧し、内輪24のアウトボード側の端面24bが段差部23の端面23aに接触乃至圧接する。またハブ輪1のフランジ21にはボルト装着孔32が設けられて、ホイールおよびブレーキロータをこのフランジ21に固定するためのハブボルト33がこのボルト装着孔32に装着される。
 凹凸嵌合構造Mは、図2に示すように、例えば、ステム軸12に設けられて軸方向に延びる凸部35と、ハブ輪1の孔部22の内径面(この場合、軸部嵌合孔22aの内径面37)に形成される凹部36とからなり、凸部35とその凸部35に嵌合するハブ輪1の凹部36との嵌合接触部位38全域が密着している。すなわち、ステム軸12の反マウス部側の外周面に、複数の凸部35が周方向に沿って所定ピッチで配設され、ハブ輪1の孔部22の軸部嵌合孔22aの内径面37に凸部35が嵌合する複数の凹部36が周方向に沿って形成されている。つまり、周方向全周にわたって、凸部35とこれに嵌合する凹部36とがタイトフィットしている。
 この場合、各凸部35は、その断面が凸アール状の頂点を有する三角形状(山形状)であり、各凸部35の嵌合接触部位(凹部嵌合部位)38とは、図2Bに示す範囲Aであり、断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、ハブ輪1の内径面37よりも内径側に隙間40が形成されている。
 このように、ハブ輪1と等速自在継手3の外輪5のステム軸12とを凹凸嵌合構造Mを介して連結できる。この際、前記したように、ハブ輪1のインボード側の端部を加締めて、その加締部31にて転がり軸受2に予圧を付与するものであるので、外輪5のマウス部11にて内輪24に予圧を付与する必要がない。しかしながら、本発明では、ハブ輪1の端部(この場合、加締部31の外端面31a)と、これに相対面する外輪5の対向面(マウス部11のバック面11a)とを接触させている。この場合の接触面圧を100MPa以下としている。
 ところで、外輪5のステム軸12の端部とハブ輪1の内径面37との間に前記軸部抜け止め構造M1が設けられている。この軸部抜け止め構造M1は、外輪5のステム軸12の端部からアウトボード側に延びてテーパ状孔22bに係止する拡径加締部(テーパ状係止片)65からなる。すなわち、拡径加締部65は、インボード側からアウトボード側に向かって拡径するリング状体からなり、その外周面65aの少なくとも一部がテーパ状孔22bに圧接乃至接触している。
 また、この車輪用軸受装置では、凹凸嵌合構造Mへの異物侵入防止手段Wを、凹凸嵌合構造Mよりもインボード側(車両に取付けた状態で車両の内側となる方)、及び凹凸嵌合構造Mよりもアウトボード側(車両に取付けた状態で車両の外側となる方)にそれぞれ設けている。
 アウトボード側の異物侵入防止手段W2は、係合部である後述するテーパ状係止片65と、テーパ状孔22bの内径面との間に介在されるシール材(図示省略)にて構成することできる。この場合、テーパ状係止片65にシール材が塗布されることになる。すなわち、塗布後に硬化してテーパ状係止片65と、テーパ状孔22bの内径面の間において密封性を発揮できる種々の樹脂からなるシール材(シール剤)を塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気中において劣化しないものが選択される。
インボード側の異物侵入防止手段W1は、ハブ輪1の加締部31の外端面31aとマウス部11のバック面11aとを接触させることによって構成することができる。なお、外端面31aとバック面11aの少なくとも一方にシール材(シール剤)を塗布するようにしてもよい。
 凸部35と凹部36との嵌合接触部位38、隙間40にシール材を介在し、これによって、異物侵入防止手段W(W3)を構成してもよい。この場合、凸部35の表面に、塗布後に硬化して、嵌合接触部位38において密封性を発揮できる種々の樹脂からなるシール材(シール剤)を塗布すればよい。
 ところで、この車輪用軸受装置を組み立てる場合、後述するように、ハブ輪1に対して外輪5のステム軸12を圧入することによって、凸部35によって凹部36を形成するようにしている。この際圧入していけば、凸部35にて形成される凹部36から材料がはみ出してはみ出し部45(図3参照)が形成される。はみ出し部45は、凸部35の凹部嵌合部位が嵌入(嵌合)する凹部36の容量の材料分であって、形成される凹部36から押し出されたもの、凹部36を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。このため、前記図1等に示す車輪用軸受装置では、はみ出し部45を収納するポケット部50をステム軸12に設けている。
 ステム軸12のスプライン41の軸端縁に周方向溝51を設けることによって、ポケット部50を形成している。周方向溝51よりも反スプライン側は、前記軸部抜け止め構造M1を構成する端部拡径加締部(テーパ状係止片)65が形成されている。
 次に、凹凸嵌合構造Mの嵌合方法を説明する。この場合、図5に示すように、等速自在継手3の外輪5のステム軸12の外径部には熱硬化処理を施し、この硬化層Hに軸方向に沿う凸部41aと凹部41bとからなるスプライン41を形成する。このため、スプライン41の凸部41aが硬化処理されて、この凸部41aが凹凸嵌合構造Mの凸部35となる。なお、この実施形態での硬化層Hの範囲は、クロスハッチング部で示すように、スプライン41の外端縁から外輪5のマウス部11の底壁の一部までである。この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れを行う方法である。また、ハブ輪1の外径側に高周波焼入れによる硬化層H1を形成するとともに、ハブ輪の内径側を未焼き状態としたものである。この実施形態での硬化層H1の範囲は、クロスハッチング部で示すように、フランジ21の付け根部から内輪24が嵌合する段差部23の加締部近傍までである。
 高周波焼入れを行えば、表面は硬く、内部は素材の硬さそのままとすることができ、このため、ハブ輪1の内径側を未焼き状態に維持できる。ハブ輪1の孔部22の内径面37側においては熱硬化処理を行わない未硬化部(未焼き状態)とする。外輪5のステム軸12の硬化層Hとハブ輪1の未硬化部との硬度差は、HRCで20ポイント以上とする。具体的には、硬化層Hの硬度を50HRCから65HRC程度とし、未硬化部の硬度を10HRCから30HRC程度とする。
 この際、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(この場合、ハブ輪1の孔部22の内径面37)の位置に対応する。すなわち、図4に示すように、孔部22の内径面37の内径寸法Dを、凸部35の最大外径、つまりスプライン41の凸部41aである前記凸部35の頂点を結ぶ円の最大直径寸法(外接円直径)D1よりも小さく、凸部間の軸部外径面の外径寸法、つまりスプライン41の凹部41bの底を結ぶ円の最大直径寸法D2(図5参照)よりも大きく設定される。すなわち、D2<D<D1とされる。
 スプライン41は、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。
 また、図5に示すように、外輪5のステム軸12をハブ輪1の孔部22に圧入する前においては、ステム軸12の端面12aの外周縁部から前記拡径加締部65を構成するための円筒状部66を軸方向に沿って突出させている。円筒状部66の外径D4は孔部22の嵌合孔22aの内径寸法Dよりも小さく設定している。すなわち、この円筒状部66が後述するように、ステム軸12のハブ輪1の孔部22への圧入時の調芯用の案内部となる。また、ハブ輪1の大径部22cの内径D3を前記最大直径寸法(外接円直径)D1よりも大きく設定する。円筒状部66の外径D4が嵌合孔22aの孔径と同一や嵌合孔22aの孔径よりも大きければ、円筒状部66自体を嵌合孔22aを圧入することになる。この際、芯ずれしていれば、このまま凹凸嵌合構造Mの凸部35が圧入され、ステム軸12の軸心とハブ輪1の軸心とが合っていない状態で軸部12とハブ輪1とが連結されることになる。また、円筒状部66の外径D4が嵌合孔22aの孔径よりも小さすぎると、調芯用として機能しない。このため、円筒状部66の外径面と孔部22の嵌合孔22aの内径面との間の微小隙間としては、0.01mm~0.2mm程度に設定するのが好ましい。
 そして、ハブ輪1の軸心と等速自在継手の外輪5の軸心とを合わせた状態で、ハブ輪1に対して、外輪5のステム軸12を挿入(圧入)していく。また、凸部35の表面にシール材を塗布しておく。この際、ハブ輪1の孔部22に圧入方向に沿って縮径するテーパ部22dを形成しているので、このテーパ部22dが圧入開始時のガイドを構成することができる。また、孔部22の内径面37の径寸法Dと、凸部35の最大直径寸法D1と、スプライン41の凹部底部の外径寸法(直径寸法)D2とが前記のような関係であり、しかも、凸部35の硬度が孔部22の内径面37の硬度よりも20ポイント以上大きいので、シャフト10を内輪6の孔部22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を軸方向に沿って形成していくことになる。
 このように圧入されることによって、図3に示すように、形成されるはみ出し部45は、カールしつつポケット部50内に収納されて行く。すなわち、孔部22の内径面から削り取られたり、押し出されたりした材料の一部がポケット部50内に入り込んでいく。
 また、圧入によって、図2に示すように、ステム軸12の端部の凸部35と、これに嵌合する凹部36との嵌合接触部位38の全体が密着している。すなわち、相手側の凹部形成面(この場合、孔部22に内径面37)に凸部35の形状の転写を行うことになる。この際、凸部35が孔部22の内径面37に食い込んでいくことによって、孔部22が僅かに拡径した状態となって、凸部35の軸方向の移動を許容し、軸方向の移動が停止すれば、孔部22が元の径に戻ろうとして縮径することになる。言い換えれば、凸部35の圧入時にハブ輪1が径方向に弾性変形し、この弾性変形分の予圧が凸部35の歯面(凹部嵌合部位の表面)に付与される。このため、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に形成することができる。
 すなわち、ステム軸12側のスプライン(雄スプライン)41によって、ハブ輪1の孔部22の内径面に、雄スプライン41に密着する雌スプライン42が形成される。また、凸部35と凹部36との嵌合接触部位38間が凸部35の表面に塗布されたシール材にて密封される。
 このように、凹凸嵌合構造Mが構成されるが、この場合の凹凸嵌合構造Mは転がり軸受2の軌道面26、27、28、29の避直下位置に配置される。ここで、避直下位置とは、軌道面26、27、28、29のボール接触部位置に対して径方向に対応しない位置である。
 この凹凸嵌合構造Mでは、図4に示すように、ステム軸12の最大直径寸法D1と、ハブ輪1の孔部22の嵌合孔22aの内径寸法Dとの径差(D1-D)をΔdとし、ステム軸12の外径面に設けられた凸部35の高さをhとし、その比をΔd/2hとしたときに、0.3<Δd/2h<0.86とする。これによって、凸部35の突出方向中間部位(高さ方向中間部位)が、凹部形成前の凹部形成面上に確実に配置されるようにすることによって、凸部35が圧入時に凹部形成面に食い込んでいき、凹部36を確実に形成することができる。
 ところで、外輪5のステム軸12をハブ輪1の孔部22に圧入する際には、外輪5のマウス部11の外径面に、図1等に示すように段差面Gを設け、圧入用治具Kをこの段差面Gに係合させて、この圧入用治具Kから段差面Gに圧入荷重(軸方向荷重)を付与すればよい。なお、この段差面Gは、マウス部11の外径面に設けられる周方向溝にて構成することができる。
 また、圧入用治具Kは、例えば割り型からなるリング状体47にて構成することができる。すなわち、リング状体47は、複数(少なくとも2個)のセグメント47aからなり、セグメント47aを組み合わせることによって、リング状に形成される。セグメント47aがリング状に組み合わされてなるリング状体47は、本体円環部57と、この本体円環部57に連設されたテーパ部58と、このテーパ部58から内径側へ突出する内鍔部59とからなる。
 このため、圧入用治具Kの内鍔部59を周方向溝にて構成される段差面Gに当接状とし、この状態で、図1の矢印E方向(軸方向)の荷重(押圧力)を圧入用治具55に付与する。これによって、段差面Gに係合している内鍔部53を介してこの荷重を外輪5に付与することができ、ハブ輪1の孔部22に対して外輪5のステム軸12を圧入することが
できる。なお、圧入用治具Kへの軸方向荷重の付与は、例えば、プレス機構、シリンダ機構、ボールネジ機構等の種々の軸方向往復動機構を用いることができる。また、段差面Gとしては、周方向溝で構成することなく、周方向に沿って所定ピッチで配設される凹部でもって構成することができ、さらには、溝や凹部ではなく、凸条や凸部で構成してもよい。
 また、ドライブシャフトアッセンブリの状態ではなく、図9に示すように等速自在継手3の外輪5単品で、または図10に示すように外輪5、内輪6、ボール7、ケージ8がアッセンブリされた状態で、ステム軸12をハブ輪1の孔部22に圧入する際には、外輪5のインボード側の端部面5aに圧入荷重を付与する方法でよく、外輪5の外径面に段差面Gを設けなくとも圧入することができる。すなわち、図8に示す治具K1を用いることができる。治具K1としては、有底短円筒体にて構成できる。すなわち、治具K1は、円筒体からなる本体部98と、この本体部98のインボード側の開口部を塞ぐ底壁99とを備える。なお、図9と図10では、各トラック溝14、16の溝底が円弧部からなるツェパー型の等速自在継手を示したが、このように外輪5単体等で圧入する場合であっても、各トラック溝14、16の溝底が直線状のストレート部を有するアンダーカットフリー型等の他の等速自在継手であってもよい。
 外輪5のステム軸12とハブ輪1の孔部22に圧入して、凹凸嵌合構造Mを介して外輪5のステム軸12とハブ輪1とが一体化された状態では、図6に示すように、円筒状部66が嵌合孔22aからテーパ状孔22b側に突出する。
 そこで、図6~図8で示すような治具67を使用してこの円筒状部66を拡径することになる。加締治具67は、円柱状の本体部67aと、この本体部67aの先端面に設けられる先端膨出部67bとを備える。この場合、先端膨出部67bは遊嵌状に円筒状部66に嵌入することができる。なお、先端膨出部67bの外周面は、その本体部側がゆるやかなアール部とされている。
 この場合、加締治具67の先端膨出部67bを円筒状部66に嵌入し、図7と図8等に示すように矢印α方向に押圧しつつ、加締治具67を揺動させる。ここで、揺動とは、装置軸線Oを回転軸とし、治具軸線O1と装置軸線Oとの交点を支点として、治具軸線O1が装置軸線Oに対して傾斜するように、揺動させるものである。これによって、先端膨出部67bの周壁面が円筒状部66の内径面を外径側へ押圧する。このため、円筒状部66が径方向外方に塑性変形して、図1に示すような拡径加締部(テーパ状係止片)65が形成される。すなわち、軸部抜け止め構造M1は、ステム軸12の軸端部に設けられた円筒状部66が、揺動する加締治具67による揺動加締によって径方向外方に塑性変形してなる引っ掛け構造にて構成される。
 この際、等速自在継手3の外輪5を支えるために、例えば、図7に示すような前記治具Kや図8に示すような治具K1を用いることができる。治具Kでは、段差面Gに係合している内鍔部53を介して、揺動加締めによる軸方向荷重を受けることができる。また、治具K1では、本体部98を外輪5のマウス部11の開口側に嵌合させ、底壁99の内面99aを、マウス部11の開口端面11bに当接させて、揺動加締めによる軸方向荷重を受けることができる。
 ところで、圧入時(ステム軸12をハブ輪1に圧入する際)にはある程度の荷重をかけて等速自在継手3の外輪5のバック面11aを加締部31に突き当てることになるが、除荷後は等速自在継手3の外輪5のスプリングバックにより、バック面11aの突当部(加締部31の端面31a)の接触面圧は低くなる。また、円筒状部66を加締る際には、軸方向に荷重が付加されるが、加締後、ステム軸12のスプリングバックにより、バック面11aの突当部(加締部31の端面31a)の接触面圧を低く抑えることができる。このため、この接触面圧としては、100MPa以下に設定することがきる。
 本発明では、ステム軸12の凸部35とハブ輪1の凹部36との嵌合接触部位38全域が密着する凹凸嵌合構造Mを確実に形成することができる。しかも、凹部36が形成される部材には、スプライン部等を形成しておく必要がなく、生産性に優れ、しかもスプライン同士の位相合わせを必要とせず、組立性の向上を図るとともに、圧入時の歯面の損傷を回避することができ、安定した嵌合状態を維持できる。
 凹凸嵌合構造Mは、凸部35と凹部36との嵌合接触部位38の全体が密着しているので、この嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。このため、嵌合部位の全てが回転トルク伝達に寄与し、安定したトルク伝達が可能であり、しかも、異音の発生も生じさせない。
 軸部抜け止め構造M1は、円筒状部が径方向外方に塑性変形してなる引っ掛け構造であるので、従来のようなねじ締結を省略できる。このため、ステム軸12にハブ輪1の孔部22から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組み立て作業性の向上を図ることができる。
 この軸部抜け止め構造M1によって、外側継手部材のステム軸12がハブ輪1の孔部22から軸方向に抜けることを有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。しかも、加締時の加締荷重が較的小さくて済み、この加締部65の肉厚を大きくしたり、ハブ輪内径面に対して大きな圧接力を介してその加締部65を圧接することができる。これによって、より強固な抜け止め機構(構造)を設けることができる。さらに、このような強固な抜け止め機構(構造)M1が設けられることにより、ステム軸12の曲げ剛性が向上し、曲げに強くなる。加締時の加締荷重を小さくすることができれば、荷重を受ける部位(等速自在継手3の外側継手部材の荷重受部であって、たとえば、外側継手部材の外径面に設けられた段差面や外側継手部材の開口側端面等)の変形を防止できる。
 加締部31と、外輪5のマウス部11のバック面11aとを接触させることによって、軸部方向の曲げ剛性が向上して、曲げに強くなって、耐久性に優れた高品質な製品となる。しかも、この接触によって、圧入時の位置決めを構成できる。これによって、この車輪用軸受装置の寸法精度が安定するとともに、軸方向に沿って配設される凹凸嵌合構造Mの軸方向長さを安定した長さに確保することができ、トルク伝達性の向上を図ることができる。さらに、この接触によってシール構造を構成でき、この加締部31側から凹凸嵌合構造Mへの異物の浸入を防止でき、凹凸嵌合構造Mは長期にわたって安定した嵌合状態を維持できる。
 ハブ輪1の端部が加締られて軸受2に対して予圧が付与されるので、外輪5のマウス部11によって予圧を付与する必要がなくなる。このため、予圧を考慮することなく、外輪5のステム軸12を圧入することができ、ハブ輪1と外輪5との連結性(組み付け性)の向上を図ることができる。
 ハブ輪1の加締部31とマウス部11のバック面11aとの接触面圧が100MPaを越えると、異音を発生するおそれがある。すなわち、大トルク負荷時に、等速自在継手3の外輪5とハブ輪1との捩れ量に差が生じ、この差により、等速自在継手3の外輪5とハブ輪1との接触部に急激なスリップが生じて異音が発生する。これに対して、本発明にように、接触面圧が100MPa以下であれば、急激なスリップが生じることを防止できて、異音の発生を抑えることができる。これによって、静粛な車輪用軸受装置を構成することができる。なお、接触面圧が100MPa以下であっても、シール構造を構成することができる面圧以上とするのが好ましい。
 前記圧入による凹部形成によって生じるはみ出し部45を収納するポケット部50を設けることによって、はみ出し部45をこのポケット部50内に保持(維持)することができ、はみ出し部45が装置外の車両内等へ入り込んだりすることがない。すなわち、はみ出し部45をポケット部50に収納したままにしておくことができ、はみ出し部45の除去処理を行う必要がなく、組立作業工数の減少を図ることができて、組立作業性の向上及びコスト低減を図ることができる。
 ポケット部50の軸方向反凸部側にハブ輪1の孔部22との調芯用の鍔部52を設けることによって、ポケット部50内のはみ出し部45の案内部側への飛び出しがなくなって、はみ出し部45の収納がより安定したものとなる。しかも、案内部は調芯用であるので、芯ずれを防止しつつステム軸12をハブ輪1に圧入することができる。このため、外側継手部材とハブ輪1とを高精度に連結でき、安定したトルク伝達が可能となる。
 また、凸部35の突出方向中間部位が、凹部形成前の凹部形成面上に配置されるようにすることによって、凸部35が圧入時に凹部形成面に食い込んでいき、凹部36を確実に形成することができる。すなわち、凸部35の相手側に対する圧入代を十分にとることができる。これによって、凹凸嵌合構造Mの成形性が安定し、圧入荷重のばらつきも無く、安定した捩り強度が得られる。
 ステム軸12には調芯用の案内部、つまり円筒状部66が設けられているので、芯ずれすることなく、ステム軸12をハブ輪1に圧入することができ、凸部35による凹部36形成を安定して行うことができる。このため、凹凸嵌合構造Mを精度よく構成することができる。また、テーパ部22dが圧入開始時のガイドを構成することができるので、ハブ輪1の孔部22に対して外輪5のステム軸12を、ズレを生じさせることなく圧入させることができ、安定したトルク伝達が可能となる。
 図1等に示す実施形態では、外輪5のステム軸12に凹凸嵌合構造Mの凸部35を設けるとともに、この凸部35の軸方向端部の硬度をハブ輪1の孔部内径部よりも高くして、ステム軸12をハブ輪1の孔部22に圧入するものであれば、軸部側の硬度を高くでき、軸部の剛性を向上させることができる。
 凹凸嵌合構造Mを転がり軸受2の軌道面の避直下位置に配置することによって、軸受軌道面におけるフープ応力の発生を抑える。これにより、転がり疲労寿命の低下、クラック発生、及び応力腐食割れ等の軸受の不具合発生を防止することができ、高品質な軸受2を提供することができる。
 前記実施形態のように、ステム軸12に形成するスプライン41は、モジュールが0.5以下の小さい歯を用いたので、このスプライン41の成形性の向上を図ることができるとともに、圧入荷重の低減を図ることができる。なお、凸部35を、この種のシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。
 ところで、軸受2の外方部材25の外周面25aが車体側のナックル34に嵌合組込まれる。ここでいう嵌合組込みは、外方部材25をナックル34に嵌合することにより両者の組込みが完了することを意味する。この組込みは、例えば外方部材25の円筒面状の外周面25aをナックル34の円筒状内周面34aに圧入することにより行うことができる。
 ステム軸12の外径寸法D1とハブ輪1の孔部22の内径寸法Dとの径差をΔdとし、凸部の高さをh(図4参照)とし、その比をΔd/2hとしたときに、0.3<Δd/2h<0.86としので、凸部35の圧入代を十分にとることができる。すなわち、Δd/2hが0.3以下である場合、捩り強度が低くなり、また、Δd/2hが0.86を越えれば、微小な圧入時の芯ずれや圧入傾きにより、凸部35の全体が相手側に食い込み、凹凸嵌合構造Mの成形性が悪化し、圧入荷重が急激に増大する。凹凸嵌合構造Mの成形性が悪化した場合、捩り強度が低下するだけでなく、ハブ輪外径の膨張量も増大するため、ハブ輪1に装着される軸受2の機能に影響し、回転寿命が低下する等の問題もある。これに対して、Δd/2hを0.3~0.86にすることにより、凹凸嵌合構造Mの成形性が安定し、圧入荷重のばらつきも無く、安定した捩り強度が得られる。
 テーパ部22dが圧入開始時のガイドを構成することができるので、ハブ輪1の孔部22に対して外輪5のステム軸12を、ズレを生じさせることなく圧入させることができ、安定したトルク伝達が可能となる。さらに、円筒状部66は、円筒状部66の外径D4は孔部22の嵌合孔22aの内径寸法Dよりも小さく設定しているので、調芯部材となり、芯ずれを防止しつつステム軸をハブ輪に圧入することができ、より安定した圧入が可能となる。
 軸部抜け止め構造M1によって、外輪5のステム軸12がハブ輪1の孔部22からの抜け(特にシャフト側への軸方向の抜け)を有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。また、軸部抜け止め構造M1がテーパ状係止片65であるので、従来のようなねじ締結を省略できる。このため、ステム軸12にハブ輪1の孔部22から突出するねじ部を形成する必要がなくなって、軽量化を図ることができるとともに、ねじ締結作業を省略でき、組立作業性の向上を図ることができる。しかも、テーパ状係止片65では、外輪5のステム軸12の一部を拡径させればよく、軸部抜け止め構造M1の形成を容易に行うことができる。なお、外輪5のステム軸12の反継手方向への移動は、ステム軸12をさらに圧入する方向への押圧力が必要であり、外輪5のステム軸12の反継手方向への位置ズレは極めて生じにくく、かつ、たとえこの方向に位置ズレしたとしても、外輪5のマウス部11の底部がハブ輪1の加締部31に当接して、ハブ輪1から外輪5のステム軸12が抜けることがない。
 なお、凸部35を、この種のシャフトに通常形成されるスプラインをもって構成することができるので、低コストにて簡単にこの凸部35を形成することができる。
 また、ステム軸12をハブ輪1に圧入していくことによって、凹部36を形成していくと、この凹部36側に加工硬化が生じる。ここで、加工硬化とは、物体に塑性変形(塑性加工)を与えると,変形の度合が増すにつれて変形に対する抵抗が増大し,変形を受けていない材料よりも硬くなることをいう。このため、圧入時に塑性変形することによって、凹部36側のハブ輪1の内径面37が硬化して、回転トルク伝達性の向上を図ることができる。
 ハブ輪1の内径側は比較的軟かい。このため、外輪5のステム軸12の外径面の凸部35をハブ輪1の孔部内径面の凹部36に嵌合させる際の嵌合性(密着性)の向上を図ることができ、径方向及び円周方向においてガタが生じるのを精度良く抑えることができる。
 凹凸嵌合構造Mよりもアウトボード側において、ハブ輪1の内径面(この場合、テーパ状孔22bの内径面)にシール材(異物侵入防止手段W2を構成するシール部材)を介して係合する端部拡径加締部(テーパ状係止片)65を設けているので、凹凸嵌合構造Mよりもアウトボード側からの異物の侵入を防止することができる。
 また、凹凸嵌合構造Mよりもインボード側においては、加締部31の外端面31aと、外輪5のマウス部11のバック面11aとの接触にてシール構造(異物侵入防止手段W1)を構成することができ、このシール構造にてインボード側からのからの異物侵入を回避することができる。
 このように、前記実施形態のように、凹凸嵌合構造Mよりもインボード側及び凹凸嵌合構造Mよりもアウトボード側に異物侵入防止手段W1、W2を設けることになり、凹凸嵌合構造Mの軸方向両端側からの異物の侵入が防止される。このため、密着性の劣化をより安定して長期にわたって回避することができる。
 さらに、凸部35と凹部36との嵌合接触部位38間にシール材が介在されてなる異物侵入防止手段W3を設けているので、嵌合接触部位38間においての異物の侵入を防止でき、異物侵入防止の信頼性が向上する。
 また、圧入時には、等速自在継手3の外輪5の外径面の段差面Gを介して軸方向押圧力を外輪5に付与することができる。すなわち、軸方向押圧力付与部位を確保できるとともに、圧入軸である外輪5のステム軸近傍を押圧することができ、安定した圧入が可能となる。
 等速自在継手3の外輪5の外径面に凹溝を設け、この凹溝の径方向端面を段差面Gとしたものであっても、前記外輪5の外径面に突起部を設け、この突起部径方向端面を段差面Gとしたものであってもよい。これらの場合には、軸方向押圧力付与部位の確保の信頼性が向上して、一層安定した圧入作業を行うことができる。
 また、ドライブシャフトアッセンブリ状態でなく、ブーツやシャフトが取り付いていない状態で圧入する場合で、外輪5のインボード側の端部面5aに圧入荷重を付与して圧入作業を行えば、外輪5の外径面に段差面Gを設ける必要が無くなり、低コストに圧入することができる。
 ところで、円筒状部66を拡径する場合、図11に示すような治具67を用いてもよい。この治具67は、円柱状の本体部68と、この本体部68の先端部に連設される円錐台部69とを備える。治具67の円錐台部69は、その傾斜面69aの傾斜角度がテーパ状孔22bの傾斜角度と略同一され、かつ、その先端の外径が円筒状部66の内径と同一乃至僅かに円筒状部66の内径よりも小さい寸法に設定されている。そして、治具67の円錐台部69をテーパ状孔22bを介して嵌入することによって矢印α方向の荷重を付加し、これによって、図6に示す円筒状部66の内径側にこの円筒状部66が拡径する矢印β方向の拡径力を付与する。この際、治具67の円錐台部69によって、円筒状部66の少なくとも一部はテーパ状孔22bの内径面側に押圧され、テーパ状孔22bの内径面に、異物侵入防止手段W2を構成するシール材を介して圧接乃至接触した状態となり、前記軸部抜け止め構造M1を構成することができる。なお、治具67の矢印α方向の荷重を付加する際には、この車輪用軸受装置が矢印α方向へ移動しないように、固定する必要があるが、ハブ輪1や等速自在継手3等の一部を固定部材にて受ければよい。ところで、円筒状部66の内径面は軸端側に拡径するテーパ形状でも良い。このような形状にしておけば、鍛造で内径面を成形することも可能であり、コスト低減に繋がる。
 また、治具67の矢印α方向の荷重を低減させるため、円筒状部66に切り欠きを入れても良いし、治具67の円錐台部69の円錐面を周方向で部分的に配置するものでも良い。円筒状部66に切り欠きを入れた場合、円筒状部66を拡径し易くなる。また、治具67の円錐台部69の円錐面を周方向で部分的に配置するものである場合、円筒状部66を拡径させる部位が円周上の一部になるため、治具67の押し込み荷重を低減させることができる。
 次に、図13は第2実施形態を示し、この場合、ハブ輪1の孔部22において、テーパ状孔22bと軸部嵌合孔22aとの間に、径方向に延びる段付面22eを設け、この段付面22eに拡径加締部65が係合している。
 すなわち、揺動する加締治具67による揺動加締によって径方向外方に塑性変形してなる拡径加締部65を成形することになる。すなわち、この場合の拡径加締部65は、装置軸心に対して略直角に曲がるように折り曲げることになり、そのインボード側の端面が段付面22eに当接乃至圧接する。
 図12に示す車輪用軸受装置の他の構成は、図1に示す車輪用軸受装置と同様であるので、図1と同一部材を図1と同一の符号を附してそれらの説明を省略する。このため、図13に示す車輪用軸受装置であっても、図1に示す車輪用軸受装置と同様の作用効果を奏する。
 図14は第3実施形態を示し、この車輪用軸受装置の軸部抜け止め構造M1は、図4に示すような円筒状部66を予め形成することなく、ステム軸12の一部を外径方向へ突出するテーパ状係止片70を設けることによって構成している。
 この場合、図15に示す治具71を使用する。治具71は、円柱状の本体部72と、この本体部72の先端部に連設される短円筒部73とを備え、短円筒部73の外周面の先端に切欠部74が設けられている。このため、治具71には先端くさび部75が形成されている。図16に示すように、先端くさび部75を打ち込めば(矢印α方向の荷重を付加すれば)、この先端くさび部75の断面形状が外径側が傾斜面であり、この傾斜面を形成する切欠部74によって、ステム軸12の端部の外径側が拡径することになる。
 これによって、このテーパ状係止片70の少なくとも一部がテーパ状孔22bの内径面に圧接乃至接触することになる。このため、このようなテーパ状係止片70であっても、前記図1等に示すテーパ状係止片65と同様、外輪5のステム軸12がハブ輪1の孔部22から軸方向に抜けることを有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。なお、先端くさび部75の内径面がテーパ形状であってもよい。
 図17は第4実施形態を示し、この車輪用軸受装置の軸部抜け止め構造M1は、ステム軸12の一部を外径方向へ突出するように加締めることによって形成する外鍔状係止片76にて構成している。この場合、ハブ輪1の孔部22は、嵌合孔22aとテーパ状孔22bとの間に段付面22eが設けられて、この段付面22eに外鍔状係止片76が係止している。
 この軸部抜け止め構造M1では、図18に示す治具77を使用することになる。この治具77は円筒体78を備える。円筒体78の外径D5をステム軸12の端部の外径D7よりも大きく設定するとともに、円筒体78の内径D6をステム軸12の端部の外径D7より小さく設定している。
 このため、この治具77と外輪5のステム軸12との軸心を合わせ、この状態で治具77の端面77aによって、ステム軸12の端面12aに矢印α方向に荷重を付加すれば、図13に示すように、ステム軸12の端面12aの外周側が圧潰して、外鍔状係止片76を形成することができる。
 このような外鍔状係止片76であっても、外鍔状係止片76が段付面22eに係止することになるので、前記図1等に示すテーパ状係止片65と同様、外輪5のステム軸12がハブ輪1の孔部22から軸方向に抜けることを有効に防止できる。これによって、安定した連結状態を維持でき、車輪用軸受装置の高品質化を図ることができる。
 図18に示すような治具77を使用すれば、図20Aに示すように、外鍔状係止片76は円周方向に沿って形成される。このため、治具として押圧部が周方向に沿って所定ピッチ(例えば、90°ピッチ)で配設されるものであれば、図20Bに示すように、複数の外鍔状係止片76が周方向に沿って所定ピッチで配置される。図20Bに示すように、複数の外鍔状係止片76が周方向に沿って所定ピッチで配設されたものであっても、外鍔状係止片76が段付面22eに係止することになるので、外輪5のステム軸12がハブ輪1の孔部22から軸方向に抜けることを有効に防止できる。
 軸部抜け止め構造M1としては、第5実施形態の図21に示すようにボルトナット結合を用いても、第6実施形態の図22に示すように、止め輪を用いても、第7実施形態の図23に示すように溶接等の結合手段を用いてもよい。
 図21では、ステム軸12にねじ軸部80を連設し、このねじ軸部80にナット部材81を螺着している。そして、ナット部材81を孔部22の段付面22eに当接させている。これによって、ステム軸12のハブ輪1の孔部22からのシャフト側への抜けを規制している。
 図22では、スプライン41よりもアウトボード側に軸延長部83を設けるとともに、この軸延長部83に周方向溝84を設け、この周方向溝84に止め輪85を嵌着している。そして、ステム軸12にハブ輪1の孔部22において、嵌合孔22aとテーパ状孔22bとの間に前記止め輪85が係止する段部22fを設ける。これによって、止め輪85が段部22fに係止してステム軸12のハブ輪1の孔部22からのシャフト側への抜けを規制している。
 図23では、ステム軸12の端部外周面と嵌合孔22aの段付面22e側の開口部端縁部とを溶接にて接合している。これによって、ステム軸12のハブ輪1の孔部22からのシャフト側への抜けを規制している。この場合、溶接部位108として全周にわたっても、周方向に沿って所定ピッチに配設してもよい。
 ところで、図13と図14と図17と図21と図22と図23等に示す車輪用軸受装置においても、異物侵入防止手段W1、W2、W3を構成することができる。図13では拡径加締部65と、段付面22eとの間にシール材を介在させることによって異物侵入防止手段W2を形成することができる。図14では、テーパ状係止片70と、テーパ状孔22bの内径面との間にシール材を介在させることによって異物侵入防止手段W2を形成することができる。図17では、外鍔状係止片76と段付面22eとの間にシール材を介在させることによって異物侵入防止手段W2を形成することができる。図22では、嵌着される止め輪85によって異物侵入防止手段W2を形成することができる。図23では、全周にわたる溶接部位108によって異物侵入防止手段W2を形成することができる。なお、異物侵入防止手段W1、W3は前記図1に示す車輪用軸受装置と同様である。
 また、凹凸嵌合構造Mよりもインボード側においては、加締部31の外端面31aと、外輪5のマウス部11のバック面11aとの接触にてシール構造(異物侵入防止手段W1)を構成することができ、このシール構造にてインボード側からのからの異物侵入を回避することができる。
 このように、前記実施形態のように、凹凸嵌合構造Mよりもインボード側及び凹凸嵌合構造Mよりもアウトボード側に異物侵入防止手段W1、W2を設けることになり、凹凸嵌合構造Mの軸方向両端側からの異物の侵入が防止される。このため、密着性の劣化をより安定して長期にわたって回避することができる。
 さらに、凸部35と凹部36との嵌合接触部位38間にシール材が介在されてなる異物侵入防止手段W3を設けているので、嵌合接触部位38間においての異物の侵入を防止でき、異物侵入防止の信頼性が向上する。
 本発明の車輪用軸受装置においては、第7実施形態を示す図24に示すように、軸部抜け止め構造M1を設けないものであってもよい。この場合、図25に示すように、周方向溝51は、そのスプライン41側の側面51aが、軸方向に対して直交する平面であり、反スプライン側の側面51bは、溝底51cから反スプライン側に向かって拡径するテーパ面である。周方向溝51の側面51bよりも反スプライン側には、調芯用の円盤状の鍔部52が設けられている。鍔部52の外径寸法D4aが孔部22の嵌合孔22aの孔径と同一乃至嵌合孔22aの孔径よりも僅かに小さく設定される。この場合、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間に微小隙間tが設けられている。
 ポケット部50の軸方向反凸部側にハブ輪1の孔部22との調芯用の鍔部52を設けることによって、ポケット部50内のはみ出し部45の鍔部52側への飛び出しがなくなって、はみ出し部45の収納がより安定したものとなる。しかも、鍔部52は調芯用であるので、芯ずれを防止しつつステム軸12をハブ輪1に圧入することができる。このため、外輪5とハブ輪1とを高精度に連結でき、安定したトルク伝達が可能となる。
 鍔部52は圧入時の調芯用であるので、その外径寸法は、ハブ輪1の孔部22の嵌合孔22aの孔径よりも僅かに小さい程度に設定するが好ましい。すなわち、鍔部52の外径寸法が嵌合孔22aの孔径と同一や嵌合孔22aの孔径よりも大きければ、鍔部52自体を嵌合孔22aに圧入することになる。この際、芯ずれしていれば、このまま凹凸嵌合構造Mの凸部35が圧入され、ステム軸12の軸心とハブ輪1の軸心とが合っていない状態でステム軸12とハブ輪1とが連結されることになる。また、鍔部52の外径寸法が嵌合孔22aの孔径よりも小さすぎると、調芯用として機能しない。このため、鍔部52の外径面52aと孔部22の嵌合孔22aの内径面との間の微小隙間tとしては、0.01mm~0.2mm程度に設定するのが好ましい。
 なお、図24と図25に示すように、軸部抜け止め構造M1を有しない場合において、ステム軸12の調芯用としての鍔部52を省略したものであってもよい。
 次に、図26は、ハブ輪1と、ハブ輪1の孔部22に嵌挿される等速自在継手3の外側継手部材のステム軸12とが凹凸嵌合構造Mを介して分離可能に結合されてなるものである。
 この場合のハブ輪1は、ハブ輪1は、図26と図30に示すように、筒部20と、筒部20のアウトボード側の端部に設けられるフランジ21とを有する。筒部20の孔部22は、軸部嵌合孔22aと、アウトボード側のテーパ状孔22bとを有し、軸部嵌合孔22aとテーパ状孔22bとの間に、内径方向へ突出する内壁22gが設けられている。なお、この内壁22gの反軸部嵌合孔側の端面には凹窪部63が設けられている。
 孔部22は、軸部嵌合孔22aよりも反内壁側の開口側に大径部22cと、軸部嵌合孔22aよりも内壁側に小径部48とを有する。大径部22cと軸部嵌合孔22aとの間には、テーパ部22dが設けられている。このテーパ部22dは、ハブ輪1と外輪5のステム軸12を結合する際の圧入方向に沿って縮径している。
 外輪5のステム軸12には、その軸心部にアウトボード側の端面に開口するねじ孔64が設けられている。このねじ孔64は、その開口部が開口側に向かって拡開するテーパ部64aとされている。また、ステム軸12のアウトボード側の端部には小径部12bが設けられている。すなわち、ステム軸12は大径の本体部12aと小径部12bとを備える。
 また、アウトボード側からステム軸12のねじ孔64にボルト部材54を螺着している。ボルト部材54は、図26と図30に示すように、フランジ付き頭部54aと、ねじ軸部54bとからなる。ねじ軸部54bは、基端側の非ねじ部55aと、先端側のねじ部55bとを有する。この場合、内壁22gに貫通孔56が設けられ、この貫通孔56にボルト部材54の軸部54bが挿通されて、ねじ部55bがステム軸12のねじ孔64に螺着される。図32に示すように、貫通孔56の孔径D12は、軸部54bの非ねじ部55aの軸径(外径)D11よりも僅かに大きく設定される。具体的には、0.05mm<d1-d2<0.5mm程度とされる。なお、ねじ部55bの最大外径は、大径の非ねじ部55aの外径と同じか非ねじ部55aの外径よりも僅かに小さい程度とする。
 本車輪用軸受装置では、図27に示すように、圧入時にステム軸12の圧入のガイドを行う軸部圧入ガイド部M6を凸部圧入開始側に設けている。この場合、孔部22のテーパ部22dに設けられる雌スプライン44からなる。すなわち、図28Aに示すように、テーパ部22dの軸部嵌合孔22a側に周方向に沿って所定ピッチ(この場合、凸部35の配置ピッチと同一ピッチ)にガイド用凹部44aを設ける。
 この場合、図27に示すように、ガイド用凹部44aの底部径寸法D16を凸部35の最大外径、つまりスプライン41の凸部41aである前記凸部35の頂点を結ぶ円の最大直径寸法(外接円直径)(軸部外径)D1よりも大きくして、凸部35の頂部とガイド用凹部44aの底部との間に、図28Aように、径方向隙間C1を形成している。
 この車輪用軸受装置を組み立てる場合(等速自在継手の外輪3のステム軸12をハブ輪1に圧入する場合、軸部圧入ガイド部M6の各ガイド用凹部44aに、ステム軸12の各凸35を嵌合させる。これによって、ハブ輪1の軸心と外輪5の軸心とが一致した状態となる。この際、各ガイド用凹部44aの凹凸嵌合構造側の端部が、圧入方向に対して直交する平坦面97a(図27参照)であるので、凸部35の圧入開始端面35aを受けることができ、この状態から圧入していくことができる。この際、前記したように、軸部嵌合孔22aの内径面37の内径寸法Dと、凸部35の最大直径寸法D1と、スプライン41の凹部底部の外径寸法(直径寸法)D2とが前記のような関係であり、しかも、凸部35の硬度が内径面37の硬度よりも20ポイント以上大きいので、ステム軸12をハブ輪1の孔部22に圧入していけば、この凸部35が内径面37に食い込んでいき、凸部35が、この凸部35が嵌合する凹部36を、軸方向に沿って形成していくことになる。
 圧入後には、アウトボード側からステム軸12のねじ孔64にボルト部材54を螺着する。このように、ボルト部材54をステム軸12のねじ孔64に螺着することによって、ボルト部材54の頭部54aのフランジ部60が内壁22gの凹窪部63に嵌合する。これによって、ボルト部材54の頭部54aと凹凸嵌合構造Mとで、またはボルト部材54の頭部54aとマウス部11の底部底面(バック面)11aとでハブ輪1を挟持する状態となって、ハブ輪1と等速自在継手3とが一体化される。このように、ボルト部材54と、このボルト部材54が螺合するねじ孔64等をもって、ハブ輪1と外輪5のステム軸12とが連結される装置軸心上のボルト結合手段M5が構成される。
 この場合も、ハブ輪の加締部31とマウス部1111aのバック面11aとの接触面圧を100MPa以下に設定するのが好ましい。また、この実施形態では、ステム軸12のアアウトボード側の端面と、内壁22gとの間に隙間が設けられているが、このステム軸12のアアウトボード側の端面と、内壁22gとを接触させてもよい。このように接触させることによって、前記接触面圧の設定が容易となる。
 この場合、ボルト挿通孔56の孔径D12とボルト部材54の非ねじ部55aの軸径D11との径差をΔd5とし、凹凸嵌合構造Mにおける外輪5の外径寸法D1とハブ輪1の内径Dとの径差をΔd6としたときに、0<Δd5<Δd6とする。
 この場合、ボルト部材54の座面60aと内壁22gとの間をシール材(図示省略)を介在させてもよい。例えば、ボルト部材54の座面60aに、塗布後に硬化して座面60aと内壁22gの凹窪部63の底面との間において密封性を発揮できる種々の樹脂からなるシール材(シール剤)を塗布すればよい。なお、このシール材としては、この車輪用軸受装置が使用される雰囲気中において劣化しないものが選択される。また、シール材を、内壁22g側に塗布するようにしても、座面60a側および内壁22g側に塗布するようにしてもよい。
 また、加締部31の端面31aと、マウス部11の底部裏面11aとが接触しているが、この加締部31の端面31aとマウス部11の底部裏面11aとの間に、前記シール材(シール剤)を介在させてもよい。この場合、端面31a側にシール材を塗布しても、底部裏面11a側にシール材を塗布しても、端面31a側及び底部裏面11a側にシール材を塗布してもよい。
 この実施形態においては、ボルト結合手段M5によって、ハブ輪1からのステム軸12の軸方向の抜けが規制され、長期にわたって安定したトルク伝達が可能となる。
 ハブ輪1と外輪5のステム軸12とのボルト固定を行うボルト部材54の座面60aと、内壁22gとの間にシール材を介在させたり、加締部31の端面31aとマウス部11の底部裏面11aとの間にシール材を介在させたりすることによって、このボルト部材54からの凹凸嵌合構造Mへ雨水や異物の侵入が防止され、品質向上を図ることができる。
 ところで、図26に示す状態から、ボルト部材54を螺退させることによって、ボルト部材54を取外せば、ハブ輪1から外輪5を引き抜くことができる。すなわち、凹凸嵌合構造Mの嵌合力は、外輪5に対して所定力以上の引き抜き力を付与することにより引き抜くことができるものである。
 例えば、図31に示すような治具90にてハブ輪1と等速自在継手3とを分離することができる。治具90は、基盤91と、この基盤91のねじ孔92に螺進退可能に螺合する押圧用ボルト部材93と、ステム軸12のねじ孔64に螺合されるねじ軸96とを備える。基盤91には貫孔94が設けられ、この貫孔94にハブ輪1のボルト33が挿通され、ナット部材95がこのボルト33に螺合される。この際、基盤91とハブ輪1のフランジ21とが重ね合わされて、基盤91がハブ輪1に取り付けられる。
 このように基盤91をハブ輪1に取り付けた後、又は基盤91を取り付ける前に、基部76aが内壁22gからアウトボード側へ突出するように、ステム軸12のねじ孔64にねじ軸96を螺合させる。この基部96aの突出量は、凹凸嵌合構造Mの軸方向長さよりも長く設定される。ねじ軸96と、押圧用ボルト部材93とは、同一軸心上(この車輪用軸受装置の軸心上)に配設される。
 その後は、押圧用ボルト部材93をアウトボード側から基盤91のねじ孔92に螺着し、この状態で、矢印のようにねじ軸96側へ螺進させる。この際、ねじ軸96と、押圧用ボルト部材93とは、同一軸心上(この車輪用軸受装置の軸心上)に配設されているので、この螺進によって、押圧用ボルト部材93がねじ軸96を矢印方向へ押圧する。これによって、外輪5がハブ輪1に対して矢印方向へ移動して、ハブ輪1から外輪5が外れる。
 また、ハブ輪1から外輪5が外れた状態からは、例えば、ボルト部材54を使用して再度、ハブ輪1と外輪5とを連結することができる。すなわち、ハブ輪1から基盤91を取外すとともに、ステム軸12からねじ軸76を取外した状態として、図34Aに示すように、ステム軸12の凸部35をガイド用凹部44aに嵌合させる。これによって、ステム軸12側の雄スプライン41と、前回の圧入によって形成されたハブ輪1の雌スプライン42との位相が合う。この際、図28Aに示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1が形成される。
 この状態で、図33に示すように、ボルト部材54を貫通孔56を介してステム軸12のねじ孔64に螺合させ、ボルト部材54をねじ孔64に対して螺進させる。これによって、図34Bに示すように、ステム軸12がハブ輪1内へ嵌入していく。この際、孔部22が僅かに拡径した状態となって、ステム軸12の軸方向の進入を許容し、マウス部11の底部裏面11aが加締部31の端面31aに当接するまで侵入する。この場合、同時に図34Cに示すように、凸部35の端面35aが凹部36の端面36aに当接する。軸方向の移動が停止した状態となれば、孔部22が元の径に戻ろうとして縮径することになる。これによって、前回の圧入と同様、凸部35の凹部嵌合部位の全体がその対応する凹部36に対して密着する凹凸嵌合構造Mを確実に構成することができる。
 なお、ステム軸12のねじ孔64の開口部が開口側に向かって拡開するテーパ部50aとさているので、ねじ軸76やボルト部材54をねじ孔64に螺合させさせ易い利点がある。
 ところで、1回目(孔部22の内径面37に凹部36を成形する圧入)では、圧入荷重が比較的大きいので、圧入のために、プレス機等を使用する必要がある。これに対して、このような再度の圧入では、圧入荷重を1回目の圧入荷重よりも小さいため、プレス機等を使用することなく、安定して正確にステム軸12をハブ輪1の孔部22に圧入することができる。このため、現場での外輪5とハブ輪1との分離・連結が可能となる。
 しかも、ボルト挿通孔56の孔径D12とボルト部材54の非ねじ部55aの軸径D11との径差をΔd5とし、凹凸嵌合構造Mにおける外輪5の外径D1と凹凸嵌合構造Mにおけるハブ輪1の内径寸法Dとの径差をΔd6としたときに、0<Δd5<Δd6としている。このため、ボルト挿通孔56の孔径D12とボルト部材54の非ねじ部55aの軸径D11との径差を、外輪5の外径D1とハブ輪1の内径寸法Dとの径差よりも小さく設定することになって、ボルト挿通孔56が外輪5のステム軸12の再圧入時の軸部圧入ガイド構造部M3となる。すなわち、ボルト結合手段M5は、軸部圧入ガイド構造部M3を備えることになって、再圧入時には軸部圧入ガイド構造部M3によって、芯ずれすることなく、ステム軸12の圧入が案内される。このため、安定した再圧入が可能であり、前回形成した凹部36に凸部35がずれることなく嵌入していくことになって、再組立性の向上を図ることができる。
 このように、外輪5のステム軸12に軸方向の引き抜き力を付与することによって、ハブ輪1の孔部22から外輪5を取外すことができるので、各部品の修理・点検の作業性(メンテナンス性)の向上を図ることができる。しかも、各部品の修理・点検後に再度外輪5のステム軸12をハブ輪1の孔部22に圧入することによって、凸部35と凹部36との嵌合接触部位38全域が密着する凹凸嵌合構造Mを構成することができる。このため、安定したトルク伝達が可能な車輪用軸受装置を再度構成することができる。
 軸部圧入ガイド部M6では、凸部35の位相と、他方の凹部36の位相とを一致させるガイド用凹部44aを有しているので、再度、外側手部材のステム軸12をハブ輪1の孔部22に圧入する際に、前回の圧入によって形成された凹部36に嵌入して行き、凹部36を損傷させることがない。このため、再度、径方向及び円周方向においてガタが生じる隙間が生じない凹凸嵌合構造Mを高精度に構成することができる。
 凸部35の頂部とガイド用凹部44aの底部との間等に隙間を形成することによって、圧入前工程での凸部35のガイド用凹部44aへの嵌入を容易にでき、しかも、ガイド用凹部44aが凸部35の圧入の妨げにならない。このため、組立性の向上を図ることができる。
 なお、貫通孔56の軸方向長さとしても、短すぎると、安定したガイドを発揮できず、逆に長すぎると、内壁22gの厚さ寸法が大となって、凹凸嵌合構造Mの軸方向長さを確保できないとともに、ハブ輪1の重量が大となる。このため、これらを考慮して種々変更することができる。
 前記実施形態では、図28Aに示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1が形成されているが、図28Bに示すように、凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2、C2を形成するようにしてもよい。また、図28Cに示すように、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1、および凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2を形成するようにしてもよい。このような隙間を形成することによって、圧入前工程での凸部35のガイド用凹部44aへの嵌入を容易にでき、しかも、ガイド用凹部44aが凸部35の圧入の妨げにならない。
 前記図2に示すスプライン41では、凸部41aのピッチと凹部41bのピッチとが同一設定される。このため、前記実施形態では、図2Bに示すように、凸部35の突出方向中間部位の周方向厚さLと、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L0とがほぼ同一となっている。
 これに対して、図35Aに示すように、凸部35の突出方向中間部位の周方向厚さL2を、周方向に隣り合う凸部35間における前記中間部位に対応する位置での周方向寸法L1よりも小さいものであってもよい。すなわち、ステム軸12に形成されるスプライン41において、凸部35の突出方向中間部位の周方向厚さ(歯厚)L2を、凸部35間に嵌合するハブ輪1側の凸部43の突出方向中間部位の周方向厚さ(歯厚)L1よりも小さくしている。
 このため、ステム軸12側の全周における凸部35の歯厚の総和Σ(B1+B2+B3+・・・)を、ハブ輪1側の凸部43(凸歯)の歯厚の総和Σ(A1+A2+A3+・・・)よりも小さく設定している。これによって、ハブ輪1側の凸部43のせん断面積を大きくすることができ、ねじり強度を確保することができる。しかも、凸部35の歯厚が小であるので、圧入荷重を小さくでき、圧入性の向上を図ることができる。凸部35の周方向厚さの総和を、相手側の凸部43における周方向厚さの総和よりも小さくする場合、全凸部35の周方向厚さL2を、周方向に隣り合う凸部35間における周方向の寸法L1よりも小さくする必要がない。すなわち、複数の凸部35のうち、任意の凸部35の周方向厚さが周方向に隣り合う凸部間における周方向の寸法と同一であっても、この周方向の寸法よりも大きくても、総和で小さければよい。
 なお、図35Aにおける凸部35は断面台形としているが、凸部35の形状としては、図35Bに示すように、インボリュート歯形状であってもよい。
 軸部圧入ガイド部M6としては、図37に示すものであってもよい。図37Aでは、ガイド用凹部44aの凹凸嵌合構造M側の端部が、圧入方向(圧入進行方向)に沿って縮径する傾斜する傾斜面97bとしている。すなわち、傾斜面97bの傾斜角度θ3としては、例えば45°程度としている。
 図37B及び図37Cは、ガイド用凹部44aの径方向深さ寸法が圧入方向に沿って縮径するものである。また、図37Bでは、凹凸嵌合構造M側の端部を圧入方向に直交する平坦面97aとし、図37Cでは、凹凸嵌合構造M側の端部を圧入方向(圧入進行方向)に沿って縮径する傾斜する傾斜面97bとしている。
 ガイド用凹部44aの凹凸嵌合構造側の端部が、圧入方向に直交する平坦面97aであれば、ステム軸12を孔部22に圧入する際において、この平坦面97aでステム軸12を受けることができる。また、傾斜面97bであれば、凸部35をガイド用凹部44aから相手側の凹部36へ安定して嵌入させることができる。ガイド用凹部44aの径方向深さが圧入方向に沿って縮径するものであっても、凸部35をガイド用凹部44aから相手側の凹部36へ安定して嵌入させることができる。
 次に、図37は別の実施形態を示し、この場合、ハブ輪1に内壁22gを設けず、この内壁22gの代わりに、リング体80をハブ輪1の孔部22に装着している。すなわち、ハブ輪1の孔部22にリング嵌合用切欠部86を設け、このリング嵌合用切欠部86にリング体87を嵌合させている。この際、リング嵌合用切欠部81の切欠端面86aにリング体87が係合する。リング体87は、その外径とリング嵌合用切欠部81の内径とのクリアランスを極力詰めるかリング体87をリング嵌合用切欠部86に圧入するのが好ましい。
 また、リング体87には、ボルト部材54が挿通されるボルト挿通孔88が形成される。このボルト挿通孔88は、前記第1実施形態のボルト挿通孔56と同様、孔径D12とボルト部材54の非ねじ部55aの軸径D11との径差Δd5とし、凹凸嵌合構造Mにおける外輪5の外径D1とハブ輪1の内径寸法Dとの径差をΔd6としたときに、0<Δd5<Δd6としている。
 図38に示す車輪用軸受装置の他の構成は、図26に示す車輪用軸受装置と同様であるので、図26と同一部材を図26と同一の符号を附してそれらの説明を省略する。
 このため、図38に示す車輪用軸受装置であっても、図26に示す車輪用軸受装置と同様の作用効果を奏する。しかも、ボルト挿通孔88をハブ輪1とは別部材のリング体80に形成するものであるので、ボルト挿通孔88を高精度に安定して形成することができる。また、リング体87が損傷等した場合にも、交換することができ、ハブ輪1全体を交換する必要がなく、コスト低減を図ることができる。
 ところで、前記各実施形態では、ステム軸12側に凸部35を構成するスプライン41を形成するとともに、このステム軸12のスプライン41に対して硬化処理を施し、ハブ輪1の内径面を未硬化(生材)としている。これに対して、図38に示すように、ハブ輪1の孔部22の内径面に硬化処理を施されたスプライン111(凸条111a及び凹条111bとからなる)を形成するとともに、ステム軸12には硬化処理を施さないものであってもよい。なお、このスプライン111も公知公用の手段であるブローチ加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としても、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。
 この場合、凸部35の突出方向中間部位が、凹部形成前の凹部形成面(ステム軸12の外径面)の位置に対応する。すなわち、スプライン111の凸部111aである凸部35の頂点を結ぶ円の径寸法(凸部35の最小径寸法)D8を、ステム軸12の外径寸法D10よりも小さく、スプライン111の凹部111bの底を結ぶ円の径寸法(凸部間の嵌合用孔内径面の内径寸法)D9をステム軸12の外径寸法D10よりも大きく設定する。すなわち、D8<D10<D9とされる。
 ステム軸12をハブ輪1の孔部22に圧入すれば、ハブ輪1側の凸部35によって、ステム軸12の外周面にこの凸部35が嵌合する凹部36を形成することができる。これによって、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着している。
 ここで、嵌合接触部位38とは、図38Bに示す範囲Bであり、凸部35の断面における山形の中腹部から山頂にいたる範囲である。また、周方向の隣合う凸部35間において、ステム軸12の外周面よりも外径側に隙間112が形成される。
 この図38に示すものでも、軸部圧入ガイド部M6を設けるのが好ましい。この場合、ステム軸12側にガイド用凹部44bを設ければよい。また、凸部35の頂部とガイド用凹部44aの底部との間に径方向隙間C1を形成したり、凸部35の側部とガイド用凹部44aの側部との間に周方向隙間C2、C2を形成したり、さらには、径方向隙間C1及び周方向隙間C2、C2を形成したりすることができる。
 図38に示す場合であっても、圧入によってはみ出し部45が形成されるので、このはみ出し部45を収納するポケット部50を設けるのが好ましい。はみ出し部45はステム軸12のマウス側に形成されることになるので、ポケット部50をハブ輪1側に設けることになる。
 このように、ハブ輪1の孔部22の内径面37に凹凸嵌合構造Mの凸部35を設けるとともに、この凸部35の軸方向端部の硬度を外輪5のステム軸12の外径部よりも高くして、圧入するものでは、ステム軸12側の硬度処理(熱処理)を行う必要がないので、等速自在継手の外側継手部材(外輪5)の生産性に優れる。

 以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、凹凸嵌合構造Mの凸部35の形状として、前記図2に示す実施形態では断面三角形状であり、図35Aに示す実施形態では断面台形であるが、これら以外の半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部35の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプライン41、111を形成し、このスプライン41、111の凸部41a、111aをもって凹凸嵌合構造Mの凸部35とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部35を相手側に圧入し、この凸部35にて凸部35に密着嵌合する凹部36を相手側に形成することができて、凸部35とこれに嵌合する凹部との嵌合接触部位38の全体が密着し、しかも、ハブ輪1と等速自在継手3との間で回転トルクの伝達ができればよい。
 また、ハブ輪1の孔部22としては円孔以外の多角形孔等の異形孔であってよく、この孔部22に嵌挿するステム軸12の端部の断面形状も円形断面以外の多角形等の異形断面であってもよい。さらに、ハブ輪1にステム軸12を圧入する際に凸部35の圧入始端部のみが、凹部36が形成される部位より硬度が高ければよいので、凸部35の全体の硬度を高くする必要がない。図2等では隙間40が形成されるが、凸部35間の凹部まで、ハブ輪1の内径面37に食い込むようなものであってもよい。なお、凸部35側と、凸部35にて形成される凹部形成面側との硬度差としては、前記したようにHRCで20ポイント以上とするのが好ましいが、凸部35が圧入可能であれば20ポイント未満であってもよい。
 凸部35の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。
 また、ポケット部50の形状としては、生じるはみ出し部45を収納(収容)できるものであればよく、そのため、ポケット部50の容量として、生じるはみ出し部45に対応できるものであればよい。
 また、ハブ輪1の孔部22の内径面37に、周方向に沿って所定ピッチで配設される小凹部を設けてもよい。小凹部としては、凹部36の容積よりも小さくする必要がある。このように小凹部を設けることによって、凸部35の圧入性の向上を図ることができる。すなわち、小凹部を設けることによって、凸部35の圧入時に形成されるはみ出し部45の容量を減少させることができて、圧入抵抗の低減を図ることができる。また、はみ出し部45を少なくできるので、ポケット部50の容積を小さくでき、ポケット部50の加工性及びステム軸12の強度の向上を図ることができる。なお、小凹部の形状は、三角形状、半楕円状、矩形等の種々のものを採用でき、数も任意に設定できる。
 図23に示す結合手段としては、溶接の結合手段を用いていたが、溶接に代えて接着剤を使用してもよい。また、軸受2の転動体30として、ローラを使用したものであってもよい。さらに、前記実施形態では、第3世代の車輪用軸受装置を示したが、第1世代や第2世代であってもよい。なお、凸部35を圧入する場合、凹部36が形成される側を固定して、凸部35を形成している側を移動させても、逆に、凸部35を形成している側を固定して、凹部36が形成される側を移動させても、両者を移動させてもよい。なお、等速自在継手3において、内輪6とシャフト10とを前記各実施形態に記載した凹凸嵌合構造Mを介して一体化してもよい。
 ハブ輪1とステム軸12とのボルト固定を行うボルト部材54の座面60aと、内壁22gとの間に介在されるシール材は、前記実施形態ではボルト部材54の座面60a側に樹脂を塗布して構成していたが、逆に、内壁22g側に樹脂を塗布するようにしてもよい。また、座面60a側および内壁22g側に樹脂を塗布するようにしてもよい。なお、ボルト部材54を螺着した際において、ボルト部材54の座面60aと、内壁22gの凹窪部63の底面とが密着性に優れるものであれば、このようなシール材を省略することも可能である。すわなち、凹窪部63の底面を研削することによって、ボルト部材54の座面60aとの密着性を向上させたりすることができる。もちろん、凹窪部63の底面を研削することなく、いわゆる旋削仕上げ状態であっても、密着性を発揮できれば、シール材を省略することができる。
 ガイド用凹部44aとしては、図28Aと図28Bと図28Cに示すように、凸部35との間に隙間C1、C2が形成されることになるが、これらの隙間寸法としては、圧入時に芯ずれや芯傾きが生ぜず、しかも、凸部35がガイド用凹部44aの内面に圧接して圧入荷重の増大を招かないものであればよい。また、ガイド用凹部44aの軸方向長さとしても任意に設定でき、長ければ、芯合わせ上好ましいが、ハブ輪1の孔部22の軸方向長さからその上限は限られる。逆にハブ輪1の孔部22の軸方向長さが短ければ、ガイドとして機能せずに、芯ずれや芯傾きが生じるおそれがある。このため、ガイド用凹部44aの軸方向長さをこれらを考慮して決定する必要がある。
 また、ガイド用凹部44aの断面形状としては、凸部35が嵌合可能なものであればよく、図4に示すものに限るものではない。凸部35の断面形状等に応じて種々変更できる。ガイド用凹部44aの数としても、凸部35の数に合わせることなく、凸部35の数よりも少なくても、多くてもよい。要は、いくつかの凸部35がいくつかのガイド用凹部44aに嵌合して、凸部35の位相と、前回の圧入で形成された凹部36の位相とが一致すればよい。
 ガイド用凹部44aの端部の傾斜面97bの傾斜角度θ3やガイド用凹部44aの底部の傾斜角度θ4も任意に変更できる。傾斜面97bの傾斜角度θ3が90°に近ければ、圧入方向に直交する平坦面97aと機能的に同じとなり、傾斜角度θ3が小さければ、ガイド用凹部44aが長くなって、凹凸嵌合構造Mの軸方向長さが短くなる。また、底部の傾斜角度θ1が大きくなれば、ガイド用凹部44aの構成が困難となり、逆に小さければ、傾斜させる場合の機能を発揮できない。このため、各傾斜角度θ3、θ4をこれらを考慮して設定する必要がある。
 前記実施形態における転がり軸受2の外方部材25では車体取付用フランジを有さないものであったが、外方部材25として車体取付用フランジを備えたものであってもよい。
 複列の転がり軸受を単独に使用する構造の第1世代、外方部材に車体取付フランジを一体に有する第2世代、車輪取付フランジを一体に有するハブ輪の外周に複列の転がり軸受の一方の内側軌道面が一体に形成された第3世代、及びハブ輪に等速自在継手が一体化され、この等速自在継手を構成する外側継手部材の外周に複列の転がり軸受の他方の内側軌道面が一体に形成された第4世代の車輪用軸受装置に適用できる。

Claims (18)

  1.  内周に複列の外側軌道面が形成された外方部材と、外周に前記外側軌道面と対向する複列の内側軌道面を有し、車輪に取り付けるためのフランジが設けられたハブ輪および内輪からなる内方部材と、前記外方部材の外側軌道面と内方部材の内側軌道面との間に介装された複列の転動体とを備え、前記ハブ輪の内径に等速自在継手の外側継手部材のステム部を嵌合して結合させた駆動車輪用軸受装置において、
     外側継手部材のステム軸とハブ輪の孔部の内径面とのどちらか一方に軸方向に延びる凸部を設け、前記凸部を軸方向に沿って他方に圧入し、この圧入によって前記他方に凸部に密着嵌合する凹部を形成して、凸部と凹部との嵌合接触部位全域が密着する前記凹凸嵌合構造を構成し、かつハブ輪のインボード側の端部を外径側へ加締めて加締部を形成して、この加締部にてハブ輪に外嵌される転がり軸受の内輪を固定し、転がり軸受に対して予圧を付与するとともに、加締部と、この加締部に相対面する前記等速自在継手の外側継手部材のマウス部のバック面とを接触させたことを特徴とする車輪用軸受装置。
  2.  等速自在継手の外側継手部材のステム軸と前記ハブ輪の内径面との間に、ステム軸のハブ輪からの抜けを規制する軸部抜け止め構造を設けたことを特徴とする請求項1に記載の車輪用軸受装置。
  3.  前記軸部抜け止め構造は、ステム軸の軸端部に設けられた円筒状部が、揺動する加締治具による揺動加締によって径方向外方に塑性変形してなる引っ掛け構造であることを特徴とする請求項2に記載の車輪用軸受装置。
  4.  前記凹凸嵌合構造は軸方向の引き抜き力付与による分離を許容したことを特徴とする請求項1に記載の車輪用軸受装置。
  5.  前記ハブ輪と外側継手部材のステム軸とが、ねじ孔とこのねじ孔に螺合するボルト部材とを有する装置軸心上のボルト結合手段を介して固定されることを特徴とする請求項4に記載の車輪用軸受装置。
  6.  前記ボルト結合手段は、分離後の再圧入時にボルト部材を案内する外側継手部材の軸部圧入ガイド構造部を備えたことを特徴とする請求項5に記載の車輪用軸受装置。
  7.  ボルト部材はねじ部と非ねじ部とを有するとともに、外側継手部材の軸部圧入ガイド構造部は、ボルト部材の非ねじ部が挿通されるボルト挿通孔を有し、ボルト挿通孔の孔径とボルト部材の非ねじ部の軸径との径差をΔd5とし、凹凸嵌合構造における外側継手部材のステム軸外径と凹凸嵌合構造におけるハブ輪内径との径差をΔd6としたときに、0<Δd5<Δd6としたことを特徴とする請求項6に記載の車輪用軸受装置。
  8.  ハブ輪の孔部にこの内部を仕切る内壁を設けるとともに、この内壁に前記ボルト挿通孔を設けたことを特徴とする請求項5~請求項7のいずれか1項に記載の車輪用軸受装置。
  9.  前記ハブ輪の加締部と、これに相対面する外側継手部材の対向面との間、または前記ボルト結合手段のボルト部材の座面と、この座面を受ける受け面との間の少なくとも一方にシール材を介在させたことを特徴とする請求項5~請求項8のいずれか1項に記載の車輪用軸受装置。
  10.  前記ハブ輪の加締部とマウス部のバック面との接触面圧を100MPa以下に設定したことを特徴とする請求項1~請求項9のいずれか1項に記載の車輪用軸受装置。
  11.  等速自在継手の外側継手部材のステム軸に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度をハブ輪の孔部内径部よりも高くして、前記ステム軸をハブ輪の孔部に凸部の軸方向端部側から圧入することによって、この凸部にてハブ輪の孔部内径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成することを特徴とする請求項1~請求項10のいずれか1項に記載の車輪用軸受装置。
  12.  ハブ輪の孔部の内径面の内径寸法を、外側継手部材のステム軸に設けた複数の凸部の頂点を結ぶ円の最大直径寸法よりも小さく、前記ステム軸の凸部間の谷底を結ぶ円の直径寸法よりも大きく設定したことを特徴とする請求項11に記載の車輪用軸受装置。
  13.  ハブ輪の孔部の内径面に前記凹凸嵌合構造の凸部を設けるとともに、少なくともこの凸部の軸方向端部の硬度を等速自在継手の外側継手部材のステム軸の外径部よりも高くして、前記ハブ輪側の凸部をその軸方向端部側から外側継手部材のステム軸に圧入することによって、この凸部にて外側継手部材のステム軸の外径面に凸部に密着嵌合する凹部を形成して、前記凹凸嵌合構造を構成することを特徴とする請求項1~請求項12のいずれか1項に記載の車輪用軸受装置。
  14.  外側継手部材のステム軸の外径寸法を、ハブ輪の孔部に設けた複数の凸部の頂点を結ぶ円の最小直径寸法よりも大きくするとともに、前記ハブ輪孔部の凸部間の谷底を結ぶ円の直径寸法より小さく設定したことを特徴とする請求項13に記載の車輪用軸受装置。
  15.  凸部の突出方向中間部位の周方向厚さの総和を、周方向に隣り合う凸部間に嵌合する相手側の凸部における前記中間部位に対応する位置での周方向厚さの総和よりも小さくしたことを特徴とする請求項1~請求項14のいずれか1項に記載の車輪用軸受装置。
  16.  凹凸嵌合構造を、前記転がり軸受の軌道面の避直下位置に配置したことを特徴とする請求項1~請求項15のいずれかに1項に記載の車輪用軸受装置。
  17.  前記圧入による凹部形成によって生じるはみ出し部を収納するポケット部を設けたことを特徴とする請求項1~請求項16のいずれか1項に記載の車輪用軸受装置。
  18.  前記はみ出し部を収納するポケット部を、ステム軸の凸部の圧入始端側に設けるとともに、このポケット部の軸方向反凸部側にハブ輪の孔部との調芯用の鍔部を設けたことを特徴とする請求項17に記載の車輪用軸受装置。
PCT/JP2009/055138 2008-04-10 2009-03-17 車輪用軸受装置 WO2009125657A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112009000811.9T DE112009000811B4 (de) 2008-04-10 2009-03-17 Lagervorrichtung für ein Rad
US12/922,939 US9261145B2 (en) 2008-04-10 2009-03-17 Bearing device for a wheel
US14/989,311 US10086648B2 (en) 2008-04-10 2016-01-06 Bearing device for a wheel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2008102374A JP5683772B2 (ja) 2008-04-10 2008-04-10 車輪用軸受装置
JP2008-102374 2008-04-10
JP2008106776A JP5683773B2 (ja) 2008-04-16 2008-04-16 車輪用軸受装置
JP2008-106776 2008-04-16
JP2008106766A JP5398999B2 (ja) 2008-04-16 2008-04-16 車輪用軸受装置
JP2008-106766 2008-04-16
JP2008-191070 2008-07-24
JP2008191070A JP2010023800A (ja) 2008-07-24 2008-07-24 車輪用軸受装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/922,939 A-371-Of-International US9261145B2 (en) 2008-04-10 2009-03-17 Bearing device for a wheel
US14/989,311 Continuation US10086648B2 (en) 2008-04-10 2016-01-06 Bearing device for a wheel

Publications (1)

Publication Number Publication Date
WO2009125657A1 true WO2009125657A1 (ja) 2009-10-15

Family

ID=41161792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055138 WO2009125657A1 (ja) 2008-04-10 2009-03-17 車輪用軸受装置

Country Status (3)

Country Link
US (2) US9261145B2 (ja)
DE (1) DE112009000811B4 (ja)
WO (1) WO2009125657A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074746A1 (en) * 2010-11-29 2012-06-07 Honda Motor Co., Ltd. Shortened driveshaft stem
WO2013161880A1 (ja) * 2012-04-27 2013-10-31 Ntn株式会社 車輪用軸受装置
JP2013233843A (ja) * 2012-05-08 2013-11-21 Ntn Corp 車輪用軸受、等速自在継手および車輪用軸受装置
JP2013233842A (ja) * 2012-05-08 2013-11-21 Ntn Corp 車輪用軸受、等速自在継手および車輪用軸受装置
JP2014199140A (ja) * 2014-06-04 2014-10-23 Ntn株式会社 車輪用軸受装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666129B (zh) 2009-12-21 2015-02-11 Ntn株式会社 车轮用轴承装置
DE102011110871B4 (de) 2011-08-17 2018-12-06 Neumayer Tekfor Engineering Gmbh Gebaute Nockenwelle
CN103826869B (zh) * 2011-09-21 2017-06-27 Ntn株式会社 车轮用轴承及轴承装置
DE102011118985A1 (de) * 2011-11-19 2013-05-23 Daimler Ag Schieber-Werkzeug und Bremsscheibe
ITTO20130023A1 (it) * 2013-01-11 2014-07-12 Skf Ab Unità mozzo di peso leggero con anelli di cuscinetto integrati, e procedimento per la sua fabbricazione
ITTO20130027A1 (it) * 2013-01-11 2014-07-12 Skf Ab Unità mozzo di peso leggero con anelli di cuscinetto integrati, e procedimenti per la sua fabbricazione
FR3003201B1 (fr) * 2013-03-18 2016-12-23 Ntn-Snr Roulements Assemblage d’un moyeu de roue motrice et d’un bol de joint de transmission
AT518673B1 (de) * 2016-06-03 2018-03-15 Miba Sinter Austria Gmbh Lageranordnung
JP2018044670A (ja) * 2016-09-13 2018-03-22 株式会社ジェイテクト ハブユニット
DE102018206536A1 (de) * 2018-04-27 2019-10-31 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Herstellen einer Welle-Nabeverbindung und Kraftfahrzeugwelle mit einer solchen Verbindung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193757A (ja) * 2004-01-06 2005-07-21 Ntn Corp 駆動車輪用軸受装置
JP2007055322A (ja) * 2005-08-22 2007-03-08 Ntn Corp 車輪用軸受装置
JP2007276780A (ja) * 2007-06-06 2007-10-25 Jtekt Corp 車両用軸受装置
JP2007321903A (ja) * 2006-06-01 2007-12-13 Ntn Corp 車輪用軸受装置
JP2007331457A (ja) * 2006-06-13 2007-12-27 Ntn Corp 車輪用軸受装置
JP2008002578A (ja) * 2006-06-22 2008-01-10 Ntn Corp 駆動車輪用軸受ユニット

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55322A (en) 1978-06-17 1980-01-05 Mitsui Petrochem Ind Ltd Recovery of cuminic acid
US4225112A (en) * 1978-10-19 1980-09-30 General Signal Corporation Butterfly valve with a retaining ring
JPS59140911A (ja) 1983-01-31 1984-08-13 東京部品工業株式会社 回転体と軸の締結方法
US4807492A (en) * 1984-07-30 1989-02-28 Aisin-Warner Limited Mechanism for supporting transmission shafts of automatic transmission apparatus
JPS62251522A (ja) 1986-04-21 1987-11-02 Toyota Motor Corp 回転軸の連結方法
DE4335779C1 (de) 1993-10-20 1995-04-06 Daimler Benz Ag Preßpassung
JPH07259392A (ja) 1994-03-25 1995-10-09 Toyota Motor Corp 車両ドア用アウトサイドハンドルの取付構造
US5853227A (en) * 1996-10-30 1998-12-29 Schmidt, Iii; John W. Structure facilitating lubrication of wheel bearings
US6497515B1 (en) * 1999-06-18 2002-12-24 Ntn Corporation Bearing apparatus for wheel
JP3930675B2 (ja) 2000-02-17 2007-06-13 Ntn株式会社 車輪軸受装置およびその軸受すきま管理方法
JP2001113412A (ja) 1999-10-18 2001-04-24 Hitachi Tool Engineering Ltd 内面ブローチ
JP3672232B2 (ja) 2000-05-29 2005-07-20 三菱電機株式会社 回転電機
JP3869202B2 (ja) * 2000-10-25 2007-01-17 株式会社ジェイテクト 車両用ハブユニット
CN101025202B (zh) * 2001-03-29 2010-05-26 Ntn株式会社 驱动车轮用轴承装置
JP2003004060A (ja) 2001-06-21 2003-01-08 Toyota Industries Corp 継手及び動力伝達シャフト並びに継手の製造方法
JP2003211985A (ja) 2002-01-23 2003-07-30 Toyota Industries Corp Frp製プロペラシャフト用継手
JP4013675B2 (ja) 2002-07-16 2007-11-28 株式会社ジェイテクト 転がり軸受装置
JP4044388B2 (ja) * 2002-08-05 2008-02-06 Ntn株式会社 駆動車輪用軸受装置
JP2004090839A (ja) 2002-09-03 2004-03-25 Ntn Corp 駆動車輪用軸受装置
JP2004340311A (ja) 2003-05-19 2004-12-02 Nsk Ltd 車輪用軸受ユニット
DE50306919D1 (de) * 2003-10-24 2007-05-10 Gkn Driveline Int Gmbh Gelenkaussenteil mit Abstützscheibe
JP2006010048A (ja) * 2004-06-29 2006-01-12 Koyo Seiko Co Ltd スプライン継手
WO2007072926A1 (ja) * 2005-12-22 2007-06-28 Ntn Corporation 継手アッセンブリーと車輪用軸受装置、およびこれらを備えたアクスルモジュール
WO2007145005A1 (ja) * 2006-06-14 2007-12-21 Ntn Corporation 駆動車輪用軸受ユニット
US8128504B2 (en) * 2006-06-16 2012-03-06 Ntn Corporation Constant velocity universal joint
DE102006034038B4 (de) * 2006-07-24 2008-08-14 Gkn Driveline Deutschland Gmbh Radnaben-Drehgelenk-Anordnung mit Sicherungsring zur axialen Abstützung der Verspannung
JP4279301B2 (ja) 2006-08-11 2009-06-17 Ntn株式会社 駆動車輪用軸受装置
JP2007062732A (ja) 2006-10-13 2007-03-15 Ntn Corp 駆動車輪用軸受装置
JP4302730B2 (ja) 2006-12-27 2009-07-29 Ntn株式会社 車輪用軸受装置
EP2103450B1 (en) * 2006-12-27 2013-02-13 NTN Corporation Bearing device for wheel
EP2119929B1 (en) * 2007-01-17 2016-08-17 NTN Corporation Constant velocity universal joint
WO2008111525A1 (ja) * 2007-03-07 2008-09-18 Ntn Corporation 駆動車輪用軸受装置及びその組立方法
US8757887B2 (en) * 2007-03-22 2014-06-24 Ntn Corporation Bearing device for a wheel
JP5570687B2 (ja) * 2007-06-01 2014-08-13 Ntn株式会社 車輪用軸受装置
JP4302758B2 (ja) * 2007-08-30 2009-07-29 Ntn株式会社 車輪用軸受装置
US8540582B2 (en) * 2007-09-12 2013-09-24 Ntn Corporation Bearing device for wheel, and axle module
CN101802426B (zh) * 2007-09-18 2013-03-20 Ntn株式会社 车轮用轴承装置
CN101827715B (zh) * 2007-10-15 2014-05-21 Ntn株式会社 车轮用轴承装置
EP2263887B1 (en) * 2008-03-25 2013-05-22 NTN Corporation Bearing device for driving wheel
CN104786734B (zh) * 2008-04-04 2017-06-23 Ntn株式会社 车轮用轴承装置及其制造方法
CN102666129B (zh) * 2009-12-21 2015-02-11 Ntn株式会社 车轮用轴承装置
JP2012062013A (ja) * 2010-09-17 2012-03-29 Ntn Corp 車輪用軸受装置
CN103826869B (zh) * 2011-09-21 2017-06-27 Ntn株式会社 车轮用轴承及轴承装置
JP5829173B2 (ja) * 2012-04-27 2015-12-09 Ntn株式会社 車輪用軸受装置の製造方法
JP6253909B2 (ja) * 2012-10-30 2017-12-27 Ntn株式会社 車輪用軸受装置
JP6320695B2 (ja) * 2013-07-16 2018-05-09 Ntn株式会社 車輪用軸受装置及びその組立方法
JP6548864B2 (ja) * 2013-07-31 2019-07-24 Ntn株式会社 車輪用軸受装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193757A (ja) * 2004-01-06 2005-07-21 Ntn Corp 駆動車輪用軸受装置
JP2007055322A (ja) * 2005-08-22 2007-03-08 Ntn Corp 車輪用軸受装置
JP2007321903A (ja) * 2006-06-01 2007-12-13 Ntn Corp 車輪用軸受装置
JP2007331457A (ja) * 2006-06-13 2007-12-27 Ntn Corp 車輪用軸受装置
JP2008002578A (ja) * 2006-06-22 2008-01-10 Ntn Corp 駆動車輪用軸受ユニット
JP2007276780A (ja) * 2007-06-06 2007-10-25 Jtekt Corp 車両用軸受装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074746A1 (en) * 2010-11-29 2012-06-07 Honda Motor Co., Ltd. Shortened driveshaft stem
US8616779B2 (en) 2010-11-29 2013-12-31 Honda Motor Co., Ltd. Shortened driveshaft stem
WO2013161880A1 (ja) * 2012-04-27 2013-10-31 Ntn株式会社 車輪用軸受装置
JP2013230753A (ja) * 2012-04-27 2013-11-14 Ntn Corp 車輪用軸受装置
US9829048B2 (en) 2012-04-27 2017-11-28 Ntn Corporation Bearing device for wheel
JP2013233843A (ja) * 2012-05-08 2013-11-21 Ntn Corp 車輪用軸受、等速自在継手および車輪用軸受装置
JP2013233842A (ja) * 2012-05-08 2013-11-21 Ntn Corp 車輪用軸受、等速自在継手および車輪用軸受装置
JP2014199140A (ja) * 2014-06-04 2014-10-23 Ntn株式会社 車輪用軸受装置

Also Published As

Publication number Publication date
US10086648B2 (en) 2018-10-02
DE112009000811B4 (de) 2022-06-09
US9261145B2 (en) 2016-02-16
US20160136995A1 (en) 2016-05-19
US20110012420A1 (en) 2011-01-20
DE112009000811T5 (de) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2009125657A1 (ja) 車輪用軸受装置
WO2009123254A1 (ja) 車輪用軸受装置およびアクスルモジュール
JP4302758B2 (ja) 車輪用軸受装置
JP5323337B2 (ja) 車輪用軸受装置
EP2517897A1 (en) Wheel bearing device
JP5826788B2 (ja) 車輪用軸受装置の製造方法
JP5236348B2 (ja) 車輪用軸受装置
JP5683773B2 (ja) 車輪用軸受装置
JP5683774B2 (ja) 車輪用軸受装置
JP2010047059A (ja) 車輪用軸受装置およびアクスルモジュール
JP5398999B2 (ja) 車輪用軸受装置
JP5323339B2 (ja) 車輪用軸受装置
JP5683772B2 (ja) 車輪用軸受装置
JP2009270629A (ja) 車輪用軸受装置およびアクスルモジュール
JP5826781B2 (ja) 車輪用軸受装置の製造方法
JP5301129B2 (ja) 車輪用軸受装置
JP2010137766A (ja) 車輪用軸受装置のための接合方法及び接合用治具
JP5301128B2 (ja) 車輪用軸受装置
JP2009248720A (ja) 駆動車輪用軸受装置およびアクスルモジュール
JP5642343B2 (ja) 車輪用軸受装置
JP5823437B2 (ja) 車輪用軸受装置の製造方法
JP5301136B2 (ja) アクスルモジュール
JP2010023800A (ja) 車輪用軸受装置
WO2010021225A1 (ja) 車輪用軸受装置およびアクスルモジュール
JP2009097627A (ja) 車輪用軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09730052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12922939

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09730052

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112009000811

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P