WO2009123038A1 - プラズマエッチング方法 - Google Patents

プラズマエッチング方法 Download PDF

Info

Publication number
WO2009123038A1
WO2009123038A1 PCT/JP2009/056245 JP2009056245W WO2009123038A1 WO 2009123038 A1 WO2009123038 A1 WO 2009123038A1 JP 2009056245 W JP2009056245 W JP 2009056245W WO 2009123038 A1 WO2009123038 A1 WO 2009123038A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
etching
plasma etching
etching method
plasma
Prior art date
Application number
PCT/JP2009/056245
Other languages
English (en)
French (fr)
Inventor
健文 鈴木
安曇 伊東
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US12/736,241 priority Critical patent/US20110068086A1/en
Priority to CN200980112091.5A priority patent/CN101983417B/zh
Priority to JP2010505821A priority patent/JP5494475B2/ja
Publication of WO2009123038A1 publication Critical patent/WO2009123038A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a plasma etching method using a processing gas containing a specific fluorinated hydrocarbon under plasma conditions.
  • SiN film silicon nitride film covering a silicon oxide film (hereinafter also referred to as “SiO 2 film”) is dry-etched. There is a process to do.
  • an etching apparatus using plasma is widely used, and an etching gas that selectively etches only the SiN film at a high etching rate with respect to the SiO 2 film is required as the processing gas.
  • Patent Document 1 discloses that a processing gas used in a nitride etching process for selectively etching a SiN film having a SiO 2 film or the like as a base layer by selecting a sufficiently low power bias is represented by the formula: CH p F
  • An etching gas containing a compound gas represented by 4-p p represents 2 or 3, the same applies hereinafter) and an oxygen gas is described.
  • the CHF 3 gas has a SiN film selectivity with respect to the SiO 2 film (SiN film etching rate / SiO 2 film etching rate) of 5 or less, CH 2 F 2 gas has a selectivity of 10 or less.
  • Patent Document 2 discloses that a plasma of an etching gas is generated in a processing chamber, and an etching gas CH is used as an etching gas in a method of etching a SiN film covering a SiO 2 film formed on an object to be processed.
  • a technique has been proposed in which a mixed gas of 3 F gas and O 2 gas is used, and the mixing ratio (O 2 / CH 3 F) of O 2 gas to CH 3 F gas in the mixed gas is set to 4 to 9.
  • JP-A-8-059215 JP 2003-229418 A (US Publication No. 2003-0121888)
  • the present invention has been made in view of the above-described prior art, and in etching a silicon nitride film that covers a silicon oxide film formed on an object to be processed, the silicon nitride film relative to the silicon oxide film is etched. It is an object of the present invention to provide a plasma etching method having high selectivity and high etching speed.
  • the present inventors use a processing gas containing a specific saturated fluorinated hydrocarbon to form a silicon nitride film that covers a silicon oxide film formed on a target object.
  • the present inventors have found that the selectivity of the silicon nitride film with respect to the silicon oxide film can be increased and the etching rate can be increased when the film is etched.
  • the present invention has been completed.
  • a plasma etching method using a processing gas under plasma conditions wherein the processing gas has the formula (1): C x H y F z (wherein x represents 3, 4 or 5, y, and z represents a positive integer and y> z.)
  • a plasma etching method comprising a saturated fluorinated hydrocarbon represented by: (2) The plasma etching method according to (1), wherein the processing gas further contains oxygen gas and / or nitrogen gas.
  • a silicon nitridation covering a silicon oxide film formed on a target object by using a processing gas containing a specific saturated fluorinated hydrocarbon there is provided a plasma etching method capable of increasing the selectivity of a silicon nitride film with respect to a silicon oxide film and increasing the etching speed when etching the film.
  • the plasma etching method of the present invention is a plasma etching method using a processing gas under plasma conditions, wherein the processing gas is represented by the formula (1): C x H y F z (where x is 3, 4 or 5). And y and z each independently represent a positive integer and y> z.), And a saturated fluorinated hydrocarbon represented by
  • the plasma etching method of the present invention uses a gas containing the saturated fluorinated hydrocarbon represented by the above formula (1) as the processing gas, the etching selectivity of the silicon nitride film to the silicon oxide film is increased and etching is performed. You can speed up.
  • the selection ratio of silicon nitride film to silicon oxide film etching means (average etching speed of silicon nitride film) / (average etching speed of silicon oxide film).
  • the high etching selectivity of the silicon nitride film to the silicon oxide film is also referred to as having etching selectivity with respect to the silicon oxide film. Since the saturated fluorinated hydrocarbon gas represented by the formula (1) has etching selectivity with respect to the silicon oxide film, the silicon nitride film is efficiently etched without destroying the silicon oxide film, and the etching rate is increased. It is possible to speed up.
  • etching refers to a technique of etching a very highly integrated fine pattern on a target object used in a manufacturing process of a semiconductor manufacturing apparatus.
  • “Plasma etching” is a process in which a high-frequency electric field is applied to a processing gas (reactive plasma gas) to cause glow discharge to separate a gas compound into chemically active ions, electrons, and radicals. Etching is performed using a chemical reaction.
  • x represents 3, 4 or 5, and x is preferably 4 or 5, preferably 4 because of the good balance between selectivity to silicon nitride film and productivity (etching rate). Particularly preferred.
  • y and z each independently represent a positive integer, and y> z.
  • the fluorinated hydrocarbon (1) to be used has a cyclic structure even if it has a chain structure as long as it satisfies the conditions specified by x, y and z in the formula (1).
  • those having a chain structure are preferable.
  • fluorinated hydrocarbon (1) examples include saturated fluorinated hydrocarbons represented by the formula: C 3 H 7 F, such as 1-fluoropropane and 2-fluoropropane; Saturated fluorinated hydrocarbons represented by the formula: C 3 H 6 F 2 , such as 1,1-difluoropropane, 1,2-difluoropropane, 1,3-difluoropropane, 2,2-difluoropropane; 1,1,1-trifluoropropane, 1,1,1-trifluoropropane, 1,1,2-trifluoropropane, 1,2,2-trifluoropropane, 1,1,3-trifluoropropane, etc.
  • saturated fluorinated hydrocarbons represented by the formula: C 3 H 7 F such as 1-fluoropropane and 2-fluoropropane
  • Saturated fluorinated hydrocarbons represented by the formula: C 3 H 6 F 2 such as 1,1-difluoropropane, 1,2-d
  • Formulas such as 1-fluoro-n-pentane, 2-fluoro-n-pentane, 3-fluoro-n-pentane, 1-fluoro-2-methyl-n-butane, 1-fluoro-2,3-dimethylpropane Saturated fluorinated hydrocarbon represented by C 5 H 11 F; 1,1-difluoro-n-pentane, 1,2-difluoro-n-pentane, 1,3-difluoro-n-pentane, 1,5-difluoro-n-pentane, 1,1-difluoro-2-methyl- saturated fluorinated hydrocarbons represented by the formula: C 5 H 10 F 2 , such as n-butane, 1,2-difluoro-2,3-dimethylpropane; 1,1,1-trifluoro-n-pentane, 1,1,2-trifluoro-n-pentane, 1,1,3-trifluoro-n-pentane
  • Fluorocyclobutane (C 4 H 7 F); Cyclic saturated fluorinated hydrocarbons represented by the formula: C 4 H 6 F 2 , such as 1,1-difluorocyclobutane, 1,2-difluorocyclobutane, 1,3-difluorocyclobutane; Cyclic saturated fluorinated hydrocarbons represented by the formula: C 4 H 5 F 3 such as 1,1,2-trifluorocyclobutane, 1,1,3-trifluorocyclobutane, 1,2,3-trifluorocyclobutane, etc. ;
  • Fluorocyclopentane (C 5 H 9 F);
  • a cyclic saturated fluorinated hydrocarbon represented by the formula: C 5 H 8 F 2 such as 1,1-difluorocyclopentane, 1,2-difluorocyclopentane, 1,3-difluorocyclopentane;
  • Cyclic saturated fluorine represented by the formula: C 5 H 7 F 3 such as 1,1,2-trifluorocyclopentane, 1,1,3-trifluorocyclopentane, 1,2,3-trifluorocyclopentane, etc.
  • Cyclic saturated fluorinated hydrocarbons of the formula: C 5 H 6 F 4 , such as pentane; Fluorocyclohexane (C 6 H 11 F); Cyclic saturated fluorinated hydrocarbons represented by the formula: C 6 H 10 F 2 , such as 1,1-difluorocyclohexane, 1,3-difluorocyclohexane, 1,4-difluorocyclohexane; Cyclic saturated fluorinated hydrocarbons represented by the formula: C 6 H 9 F 3 such as 1,1,2-trifluorocyclohexane, 1,1,3-trifluorocyclohexane, 1,1,4-trifluorocyclohexane ;
  • fluorinated hydrocarbons (1) can be used singly or in combination of two or more, but are preferably used singly because the effects of the present invention are more prominent.
  • fluorinated hydrocarbons (1) are known substances, and can be produced and obtained by a conventionally known method. For example, it can be obtained by a method described in Journal of the American Chemical Society (1942), 64, 2289-92, Journal of Industrial and Engineering Chemistry (1947), 39, 418-20, and the like. Further, a commercially available product can be used as it is or after purification as desired.
  • the fluorinated hydrocarbon (1) is filled in an arbitrary vessel, for example, a vessel such as a cylinder like the conventional semiconductor gas, and used for plasma etching described later.
  • the purity of the saturated fluorinated hydrocarbon (1) is preferably 99% by volume or more, more preferably 99.9% by volume or more, and particularly preferably 99.98% by volume or more. When the purity is in the above range, the effect of the present invention is further improved. In addition, if the purity of the fluorinated hydrocarbon (1) is too low, the gas purity (content of the fluorinated hydrocarbon (1)) may be biased in the gas-filled container. Specifically, the gas purity may be greatly different between the initial use stage and the stage where the remaining amount is low.
  • the above “content of fluorinated hydrocarbon (1)” is a volume-based purity derived from a weight-based percentage (%) measured by gas chromatography analysis by the internal standard substance method.
  • the etching gas is prepared by appropriately mixing other gases such as oxygen gas and nitrogen gas into the fluorinated hydrocarbon (1).
  • gases such as oxygen gas and nitrogen gas
  • impurities in the fluorinated hydrocarbon (1) there are moisture derived from air, nitrogen gas in production equipment, solvents used during production, highly hygroscopic salts, alkalis, and the like. If nitrogen gas, oxygen gas, or the like is present in the fluorinated hydrocarbon filled in the container, it is necessary to adjust the mixed gas amount in consideration of the amount. This is because nitrogen gas, oxygen gas, moisture, and the like dissociate in the plasma reactor and generate various free radicals (etching species), greatly affecting the plasma reaction of the fluorinated hydrocarbon (1). .
  • the amount of nitrogen gas and oxygen gas contained as the remaining trace gas in the fluorinated hydrocarbon (1) is 200 ppm by volume with respect to the total amount of the fluorinated hydrocarbon (1) gas as the total amount of both. Or less, more preferably 150 ppm by volume or less, and particularly preferably 100 ppm by volume or less.
  • the water content is preferably 30 ppm by weight or less, more preferably 20 ppm by weight or less, and particularly preferably 10 ppm by weight or less.
  • total amount of nitrogen gas and oxygen gas is the total content (ppm) of nitrogen gas and oxygen gas based on volume measured by gas chromatography analysis using the absolute calibration curve method. Note that these volume standards can also be referred to as molar standards.
  • the “water content” is usually a water content (ppm) based on weight measured by the Karl Fischer method.
  • the processing gas used in the present invention preferably further contains oxygen gas and / or nitrogen gas in addition to the fluorinated hydrocarbon (1).
  • oxygen gas and / or nitrogen gas is used in combination to prevent etching stop (etching stop) that may be caused by the deposition of reactants on the bottom of the hole.
  • the ratio can be greatly increased.
  • selectivity of SiN film to a SiO 2 film is at least 10 or more, preferably 20 or more.
  • the use ratio of oxygen gas and nitrogen gas is preferably 0.1 to 50 in terms of the total volume ratio of oxygen gas, nitrogen gas, or oxygen gas and nitrogen gas to fluorinated hydrocarbon (1) gas. 0.5 to 30 is more preferable.
  • the processing gas further contains at least one group 18 gas selected from the group consisting of helium, argon, neon, krypton, and xenon.
  • group 18 gas selected from the group consisting of helium, argon, neon, krypton, and xenon.
  • the use ratio of the group 18 gas is preferably 0 to 100, more preferably 0 to 20 in terms of volume ratio to the fluorinated hydrocarbon (1) gas.
  • the introduction rate of the processing gas is proportional to the use ratio of each component.
  • the fluorinated hydrocarbon (1) gas is 8 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 2 Pa ⁇ m 3 / sec
  • the oxygen gas is 8 ⁇ . 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 Pa ⁇ m 3 / sec
  • the group 18 gas may be 8 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 Pa ⁇ m 3 / sec, and the like.
  • the pressure in the processing chamber into which the processing gas is introduced is usually 0.0013 to 1300 Pa, preferably 0.13 to 13 Pa.
  • a plasma generator generates a plasma by generating a glow discharge by applying a high-frequency electric field to the fluorinated hydrocarbon (1) gas (reactive plasma gas) in the processing chamber.
  • plasma generators examples include helicon wave method, high frequency induction method, parallel plate type, magnetron method, and microwave method. However, since plasma generation in a high density region is easy, helicon wave method, high frequency induction. The apparatus of a system and a microwave system is used suitably.
  • the plasma density is not particularly limited. From the viewpoint of better expressing the effects of the present invention, etching is performed in a high-density plasma atmosphere with a plasma density of preferably 10 11 ions / cm 3 or more, more preferably 10 12 to 10 13 ions / cm 3 . Is desirable.
  • the temperature reached by the substrate to be processed during etching is not particularly limited, but is preferably in the range of 0 to 300 ° C., more preferably 0 to 100 ° C., and still more preferably 20 to 80 ° C.
  • the temperature of the substrate may or may not be controlled by cooling or the like.
  • the time for the etching process is generally 5 to 10 minutes. However, since the processing gas used in the present invention can be etched at a high speed, the productivity can be improved in 2 to 5 minutes.
  • the plasma etching method of the present invention is a method of generating a plasma of an etching gas in a processing chamber and etching a predetermined portion on an object to be processed disposed therein, which is a fluorinated hydrocarbon (
  • the process gas (etching gas) containing 1) is used, but a method of selectively plasma etching the silicon nitride film is preferable, and the silicon nitride film is selectively plasma etched with respect to the silicon oxide film. More preferably, it is a method.
  • etching the silicon nitride film under the above-described etching conditions it is possible to obtain a selectivity ratio of the silicon nitride film to the silicon oxide film of at least 10 or more, and in many cases, a selectivity ratio of 20 or more. While avoiding the stop, a remarkably high selection ratio can be obtained as compared with the conventional case. Therefore, even if the silicon oxide film constituting the device is made thinner, it is possible to prevent the silicon oxide film from escaping (SiO 2 film break) while etching the silicon nitride film, and to etch only the silicon nitride film reliably. Thus, a device having excellent electrical performance can be manufactured.
  • a mask pattern having an opening in a predetermined region on an ONO film (silicon oxide film-silicon nitride film-silicon oxide film) is formed, and at least the upper silicon After etching the opening of the mask pattern so as to remove the oxide film, the silicon nitride film exposed in the opening is selectively etched, or (b) in the process after opening the contact hole,
  • a thin silicon nitride film (for example, 10 to 20 nm thick) is formed on the side wall (inner wall) of the opened contact hole, and then silicon at the bottom of the contact hole is formed. This can be applied to the case where the nitride film is removed by etching.
  • the content of the fluorinated hydrocarbon (1) in the processing gas was determined by a gas chromatography (GC) method.
  • the GC measurement conditions are as follows.
  • ⁇ Device HP6890, manufactured by Hewlett-Packard Company Column: NEUTRA BOND-1, Length 60 m / ID 250 ⁇ m / film 1.50 ⁇ m ⁇ Detector: FID ⁇ Injection temperature: 150 °C ⁇ Detector temperature: 250 °C
  • Carrier gas Nitrogen gas (23.2 mL / min) Make-up gas: nitrogen gas (30 mL / min), hydrogen gas (50 mL / min), air (400 mL / min) ⁇ Split ratio: 137/1 ⁇ Temperature increase program: (1) Hold at 40 ° C for 20 minutes, (2) Increase temperature at 40 ° C / min, (3) Hold at 250 ° C for 14.75 minutes
  • each wafer was separately etched by the etching method of the present invention. Then, the etching rates of the SiN film and the SiO 2 film were measured, and the selection ratio (SiN film / SiO 2 film) was obtained from the ratio of the etching speed of the SiN film to the SiO 2 film based on these measurement results. 2,2-Difluoro-n-butane was used as the fluorinated hydrocarbon (1).
  • a wafer with a SiN film formed on the surface and a wafer with a SiO 2 film formed on the surface were set in an etching chamber of a parallel plate plasma etching apparatus, respectively, and after the system was evacuated, the following etching conditions were set.
  • the etching rate of the SiN film was 64 nm / min, but the SiO 2 film was not etched at all, and an infinite selectivity ratio was obtained.

Abstract

 本発明は、プラズマ条件下において処理ガスを用いるプラズマエッチング方法であって、前記処理ガスが、式(1):CxHyFz(式中、xは3、4または5を表し、y、zはそれぞれ独立して、正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素を含むことを特徴とするプラズマエッチング方法である。本発明によれば、プラズマ条件下に特定のフッ素化炭化水素を含む処理ガスを用いることにより、被処理体に形成されたシリコン酸化膜を被うシリコン窒化膜をエッチングする際に、シリコン酸化膜に対するシリコン窒化膜の選択性を高めることができるプラズマエッチング方法が提供される。

Description

プラズマエッチング方法
 本発明は、プラズマ条件下に、特定のフッ素化炭化水素を含む処理ガス用いるプラズマエッチング方法に関する。
 ウエハ上にデバイスを形成する場合に、シリコン酸化膜(以下、「SiO膜」ということがある。)を被うシリコン窒化膜(以下、「SiN膜」ということがある。)を、ドライエッチングする工程がある。
 このエッチング工程では、プラズマを用いたエッチング装置が広く使用され、処理ガスとしては、SiO膜に対して、SiN膜のみを選択的に早いエッチング速度でエッチングするエッチングガスが要求される。
 従来、このようなエッチングガスとして、例えばCHFガスやCHガスが知られている。また、特許文献1には、充分に低い電力バイアスを選択して、SiO膜等を下地層とするSiN膜を選択的にエッチングする窒化物エッチングプロセスに用いる処理ガスとして、式:CH4-p(pは2または3を表す。以下にて同じ。)で表される化合物のガス及び酸素ガスを含むエッチングガスが記載されている。
 前記式:CH4-pで表される化合物のうち、CHFガスはSiO膜に対するSiN膜の選択比(SiN膜のエッチング速度/SiO膜のエッチング速度)が5以下であり、CHガスは同選択比が10以下である。
 さらに、特許文献2には、処理室内でエッチングガスのプラズマを発生させ、その内部に配置された被処理体に形成されたSiO膜を被うSiN膜をエッチングする方法において、エッチングガスとしてCHFガスとOガスの混合ガスを用い、上記混合ガスのCHFガスに対するOガスの混合比(O/CHF)を4~9に設定する技術が提案されている。
 しかしながら、近年のデバイスプロセスの分野では、形成するデバイスの小型化・薄膜化が図られており、上述したCHFやCH、CHF等の、式:CH4-pで表される化合物のガスでは、要求を満足するSiO膜に対するSiN膜の選択比及びエッチング速度でプラズマエッチングを行なうことができなかった。
 したがって、SiO膜に対するSiN膜の選択性が高く、しかも速いエッチング速度でプラズマエッチングを行うことができるエッチングガスの開発が求められている。
特開平8-059215号公報 特開2003-229418号公報(US公開2003-0121888号)
 本発明は、上記した従来技術の実情に鑑みてなされたものであって、被処理体に形成されたシリコン酸化膜を被うシリコン窒化膜をエッチングする際に、シリコン酸化膜に対するシリコン窒化膜の選択性が高く、しかもエッチング速度の速いプラズマエッチング方法を提供することを目的とする。
 本発明者らは、プラズマ条件下において処理ガスを用いるプラズマエッチング方法において、特定の飽和フッ素化炭化水素を含む処理ガスを用いると、被処理体に形成されたシリコン酸化膜を被うシリコン窒化膜をエッチングする際に、シリコン酸化膜に対するシリコン窒化膜の選択性を高め、かつエッチング速度を速めることができることを見出し、本発明を完成するに至った。
 かくして本発明によれば、下記(1)~(5)のプラズマエッチング方法が提供される。
(1)プラズマ条件下において処理ガスを用いるプラズマエッチング方法であって、前記処理ガスが、式(1):C(式中、xは3、4または5を表し、y、zはそれぞれ独立して、正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素を含むことを特徴とするプラズマエッチング方法。
(2)前記処理ガスが、さらに、酸素ガスおよび/または窒素ガスを含むことを特徴とする(1)に記載のプラズマエッチング方法。
(3)前記処理ガスとして、さらに、ヘリウム、アルゴン、ネオン、クリプトン、キセノンからなる群から選ばれる少なくとも1種を含むガスを用いることを特徴とする(1)または(2)に記載のプラズマエッチング方法。
(4)シリコン窒化膜をエッチングするものである(1)~(3)のいずれかに記載のプラズマエッチング方法。
(5)シリコン酸化膜に対してシリコン窒化膜を選択的にエッチングするものである(1)~(3)のいずれかに記載のプラズマエッチング方法。
 本発明によれば、プラズマ条件下において処理ガスを用いるプラズマエッチング方法において、特定の飽和フッ素化炭化水素を含む処理ガスを用いることにより、被処理体に形成されたシリコン酸化膜を被うシリコン窒化膜をエッチングする際に、シリコン酸化膜に対するシリコン窒化膜の選択性を高め、かつエッチング速度を速めることができるプラズマエッチング方法が提供される。
 以下、本発明を詳細に説明する。
 本発明のプラズマエッチング方法は、プラズマ条件下において処理ガスを用いるプラズマエッチング方法であって、前記処理ガスが、式(1):C(式中、xは3、4または5を表し、y、zはそれぞれ独立して、正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素を含むことを特徴とする
 本発明のプラズマエッチング方法は、処理ガスとして、前記式(1)で表される飽和フッ素化炭化水素を含むものを用いるので、シリコン窒化膜の対シリコン酸化膜エッチング選択比を高くして、エッチング速度を速めることができる。
 ここで、シリコン窒化膜の対シリコン酸化膜エッチング選択比とは、(シリコン窒化膜の平均エッチング速度)/(シリコン酸化膜の平均エッチング速度)をいう。このシリコン窒化膜の対シリコン酸化膜エッチング選択比が高いことを、シリコン酸化膜に対してエッチング選択性を有するともいう。
 前記式(1)で表される飽和フッ素化炭化水素ガスは、シリコン酸化膜に対してエッチング選択性を有するため、シリコン酸化膜を破壊することなくシリコン窒化膜を効率よくエッチングし、エッチング速度を速めることが可能である。
 本発明のプラズマエッチング方法において、「エッチング」とは、半導体製造装置の製造工程等で用いられる被処理体に、極めて高集積化された微細パターンを食刻する技術をいう。また、「プラズマエッチング」とは、処理ガス(反応性プラズマガス)に高周波の電場を印加してグロー放電を起こさせ、気体化合物を化学的に活性なイオン、電子、ラジカルに分離させて、その化学反応を利用してエッチングを行うことをいう。
 前記式(1)中、xは3、4または5を表し、シリコン窒化膜に対する選択性と生産性(エッチング速度)とのバランスの良さから、xは4又は5が好ましく、4であるのが特に好ましい。
 y、zはそれぞれ独立して、正の整数を表し、かつ、y>zである。
 用いるフッ素化炭化水素(1)としては、前記式(1)において、x、y、zが規定される条件を満たすものであれば、鎖状構造を有するものであっても、環状構造を有するものであってもよいが、シリコン窒化膜に対する選択性と生産性(エッチング速度)とのバランスの良さから、鎖状構造を有するものが好ましい。
 フッ素化炭化水素(1)の具体例としては、例えば、1-フルオロプロパン、2-フルオロプロパン等の、式:CFで表される飽和フッ素化炭化水素;
1,1-ジフルオロプロパン、1,2-ジフルオロプロパン、1,3-ジフルオロプロパン、2,2-ジフルオロプロパン等の、式:Cで表される飽和フッ素化炭化水素;
1,1,1-トリフルオロプロパン、1,1,1-トリフルオロプロパン、1,1,2-トリフルオロプロパン、1,2,2-トリフルオロプロパン、1,1,3-トリフルオロプロパン等の、式:Cで表される飽和フッ素化炭化水素;
 1-フルオロ-n-ブタン、1,1-ジフルオロ-n-ブタン等の、式:CFで表される飽和フッ素化炭化水素;
1,1-ジフルオロ-n-ブタン、1,2-ジフルオロ-n-ブタン、1,2-ジフルオロ-2-メチルプロパン、2,3-ジフルオロ-n-ブタン、1,4-ジフルオロ-n-ブタン、1,3-ジフルオロ-2-メチルプロパン、2,2-ジフルオロ-n-ブタン、1,3-ジフルオロ-n-ブタン、1,1-ジフルオロ-2-メチルプロパン、1,4-ジフルオロ-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
1,1,1-トリフルオロ-n-ブタン、1,1,1-トリフルオロ-2-メチルプロパン、2,2,2-トリフルオロメチルプロパン、1,1,2-トリフルオロ-n-ブタン、1,1,3-トリフルオロ-n-ブタン、1,1,4-トリフルオロ-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
1,1,1,4-テトラフルオロ-n-ブタン、1,2,3,4-テトラフルオロ-n-ブタン、1,1,1,2-テトラフルオロ-n-ブタン、1,2,3,3-テトラフルオロ-n-ブタン、1,1,3,3-テトラフルオロ-2-メチルプロパン、1,1,3,3-テトラフルオロ-n-ブタン、1,1,1,3-テトラフルオロ-n-ブタン、1,1,2,2-テトラフルオロ-n-ブタン、1,1,2,3-テトラフルオロ-n-ブタン、1,2,2,3-テトラフルオロ-n-ブタン、1,1,3-トリフルオロ-2-フルオロメチルプロパン、1,1,2,3-テトラフルオロ-2-メチルプロパン、1,2,3,4-テトラフルオロ-n-ブタン、1,1,2,4-テトラフルオロ-n-ブタン、1,2,2,4-テトラフルオロ-n-ブタン、1,1,4,4-テトラフルオロ-n-ブタン、1,2,3-トリフルオロ-2-フルオロメチルプロパン、1,1,1,2-テトラフルオロ-2-メチルプロパン、1,1,3,4-テトラフルオロ-n-ブタン、2,2,3,3-テトラフルオロ-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
1-フルオロ-n-ペンタン、2-フルオロ-n-ペンタン、3-フルオロ-n-ペンタン、1-フルオロ-2-メチル-n-ブタン、1-フルオロ-2,3-ジメチルプロパン等の、式:C11Fで表される飽和フッ素化炭化水素;
1,1-ジフルオロ-n-ペンタン、1,2-ジフルオロ-n-ペンタン、1,3-ジフルオロ-n-ペンタン、1,5-ジフルオロ-n-ペンタン、1,1-ジフルオロ-2-メチル-n-ブタン、1,2-ジフルオロ-2,3-ジメチルプロパン等の、式:C10で表される飽和フッ素化炭化水素;
1,1,1-トリフルオロ-n-ペンタン、1,1,2-トリフルオロ-n-ペンタン、1,1,3-トリフルオロ-n-ペンタン、1,1,5-トリフルオロ-n-ペンタン、1,1,1-トリフルオロ-2-メチル-n-ブタン、1,1,2-トリフルオロ-2,3-ジメチルプロパン、2-トリフルオロメチル-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
1,1,1,2-テトラフルオロ-n-ペンタン、1,1,2,2-テトラフルオロ-n-ペンタン、1,1,2,3-テトラフルオロ-n-ペンタン、1,1,3,3-テトラフルオロ-n-ペンタン、1,1,4,4-テトラフルオロ-2-メチル-n-ブタン、1,1,2,3-テトラフルオロ-2,3-ジメチルプロパン、1-フルオロ-2-トリフルオロメチル-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
1,1,1,2,2-ペンタフルオロ-n-ペンタン、1,1,2,2,2-ペンタフルオロ-n-ペンタン、1,1,1,2,3-ペンタフルオロ-n-ペンタン、1,1,3,5,5-ペンタフルオロ-n-ペンタン、1,1,1,4,4-ペンタフルオロ-2-メチル-n-ブタン、1,1,1,2,3-テトラフルオロ-2,3-ジメチルプロパン、1,5-ジフルオロ-2-トリフルオロメチル-n-ブタン等の、式:Cで表される飽和フッ素化炭化水素;
フルオロシクロブタン(CF);
1,1-ジフルオロシクロブタン、1,2-ジフルオロシクロブタン、1,3-ジフルオロシクロブタン等の、式:Cで表される環状飽和フッ素化炭化水素;
1,1,2-トリフルオロシクロブタン、1,1,3-トリフルオロシクロブタン、1,2,3-トリフルオロシクロブタン等の、式:Cで表される環状飽和フッ素化炭化水素;
フルオロシクロペンタン(CF);
1,1-ジフルオロシクロペンタン、1,2-ジフルオロシクロペンタン、1,3-ジフルオロシクロペンタン等の、式:Cで表される環状飽和フッ素化炭化水素;
1,1,2-トリフルロシクロペンタン、1,1,3-トリフルオロシクロペンタン、1,2,3-トリフルオロシクロペンタン等の、式:Cで表される環状飽和フッ素化炭化水素;
1,1,2,2-テトラフルオロシクロペンタン、1,1,2,3-テトラフルオロシクロペンタン、1,2,2,3-テトラフルオロシクロペンタン、1,2,3,4-テトラフルオロシクロペンタン等の、式:Cで表される環状飽和フッ素化炭化水素;
フルオロシクロヘキサン(C11F);
1,1-ジフルオロシクロヘキサン、1,3-ジフルオロシクロヘキサン、1,4-ジフルオロシクロヘキサン等の、式:C10で表される環状飽和フッ素化炭化水素;
1,1,2-トリフルオロシクロヘキサン、1,1,3-トリフルオロシクロヘキサン、1,1,4-トリフルオロシクロヘキサン等の、式:Cで表される環状飽和フッ素化炭化水素;
1,1,2,2-テトラフルオロシクロヘキサン、1,1,3,3-テトラフルオロシクロヘキサン、1,1,4,4-テトラフルオロシクロヘキサン、1,1,2,3-テトラフルオロシクロヘキサン、1,1,2,4-テトラフルオロシクロヘキサン、1,1,3,4-テトラフルオロシクロヘキサン等の、式:Cで表される環状飽和フッ素化炭化水素;
1,1,2,2,3-ペンタフルオロシクロヘキサン、1,1,2,2,4-ペンタフルオロシクロヘキサン、1,1,2,4,4-ペンタフルオロシクロヘキサン等の、式:Cで表される環状飽和フッ素化炭化水素;等が挙げられる。
 これらのフッ素化炭化水素(1)は一種単独で、あるいは二種以上を混合して用いることができるが、本発明の効果がより顕著に表れることから一種単独で用いることが好ましい。
 フッ素化炭化水素(1)の多くは公知物質であり、従来公知の方法で製造・入手することができる。
 例えば、Journal of the American Chemical Society(1942),64,2289-92、Journal of Industrial and Engineering Chemistry(1947),39,418-20等に記載された方法により製造し、入手することができる。
 また、市販品をそのままで、あるいは所望により精製した後に用いることもできる。
 フッ素化炭化水素(1)は、任意の容器、例えば、従来の半導体用ガスと同様にシリンダー等の容器に充填されて、後述するプラズマエッチングに用いられる。
 飽和フッ素化炭化水素(1)(ガス)の純度は、好ましくは99容量%以上、さらに好ましくは99.9容量%以上、特に好ましくは99.98容量%以上である。純度が上記範囲にあることにより、本発明の効果がより一層向上する。また、フッ素化炭化水素(1)の純度が低すぎると、ガスを充填した容器内において、ガス純度(フッ素化炭化水素(1)の含有量)の偏りを生じる場合がある。具体的には、使用初期段階と残量が少なくなった段階とでのガス純度が大きく異なることがある。
 このような場合、プラズマエッチングを行った際に、使用初期段階と、残量が少なくなった段階でそれぞれのガスを使用したときの性能に大きな差が生じ、工場の生産ラインにおいては歩留まりの低下を招くおそれがある。従って、純度を向上させることにより、容器内のガス純度の偏りがなくなるため、使用初期段階と残量が少なくなった段階とでのガスを使用したときの性能に差がなくなり、ガスを無駄なく使用することが可能になる。
 なお、上記の「フッ素化炭化水素(1)の含有量」は、内部標準物質法によるガスクロマトグラフィー分析で測定した重量基準の百分率(%)から導かれる容量基準の純度である。
 一般に、後述するとおり、エッチングガスは、フッ素化炭化水素(1)に酸素ガスや窒素ガス等その他のガスを適宜、別途混合して調製される。
 ところが、フッ素化炭化水素(1)中の不純物として、空気や生産設備内の窒素ガス等、製造時に用いる溶媒、吸湿性が高い塩、アルカリ等に由来する水分がある。
 容器に充填されたフッ素化炭化水素中に、窒素ガスや酸素ガス等が存在していると、その量を考慮して混合ガス量を調整する必要が生じる。それは、窒素ガスや酸素ガス、水分等は、プラズマ反応装置内で解離して、各種の遊離基(エッチング種)を発生させる、フッ素化炭化水素(1)のプラズマ反応に大きく影響するからである。
 また、フッ素化炭化水素を充填した容器内に、窒素ガスや酸素ガス、水分等が存在する場合、当該容器を開封した時点と、容器内のフッ素化炭化水素の残量が少なくなった時点とで、容器から出てくるフッ素化炭化水素ガス(1)と不純物の組成に違いが生じる。
 これらのことから、フッ素化炭化水素(1)中に存在する、窒素ガスや酸素ガス、水分等の量が多くなるほど、別途混合するガス量を緻密に調整しなければ、安定したプラズマ反応を、一艇条件下で得ることはできないことになる。
 従って、フッ素化炭化水素(1)中に残余の微量ガスとして含まれる窒素ガス及び酸素ガスの量は、両者の合計量として、フッ素化炭化水素(1)ガスの全量に対して、200容量ppm以下であることが好ましく、150容量ppm以下であることがより好ましく、100容量ppm以下であることが特に好ましい。加えて、水分含有量は30重量ppm以下であることが好ましく、20重量ppm以下であることがより好ましく、10重量ppm以下であることが特に好ましい。
 上記「窒素ガスと酸素ガスの合計量」は、絶対検量線法によるガスクロマトグラフィー分析で測定した窒素ガス及び酸素ガスの容量基準の含有量(ppm)の合計である。なお、これらの容量基準はモル基準ということもできる。「水分の含有量」は、通常、カールフィッシャー法で測定される重量基準の水分の含有量(ppm)である。
 本発明に用いる処理ガスは、前記フッ素化炭化水素(1)に加えて、さらに、酸素ガス及び/または窒素ガスを含むことが好ましい。フッ素化炭化水素(1)に加えて、酸素ガス及び/または窒素ガスを併用することにより、ホール底面における反応物の堆積等が原因と考えられるエッチングの停止(エッチングストップ)を防止しつつ、選択比を格段に高めることができる。本発明のプラズマエッチング方法においては、SiO膜に対するSiN膜の選択比(SiN膜/SiO膜)は少なくとも10以上、好ましくは20以上である。
 酸素ガス及び窒素ガスの使用割合は、フッ素化炭化水素(1)ガスに対し、酸素ガス、窒素ガス、または酸素ガス及び窒素ガスの合計の容量比で、0.1~50となることが好ましく、0.5~30となることがより好ましい。
 本発明においては、処理ガスとして、さらに、ヘリウム、アルゴン、ネオン、クリプトン、キセノンからなる群から選ばれる少なくとも1種の18族ガスを含むのが好ましい。18族ガスを併用することで、上記選択比を確保するとともに、SiN膜のエッチング速度を高めることができる。
 18族ガスの使用割合は、フッ素化炭化水素(1)ガスに対し、容量比で0~100となることが好ましく、0~20となることがより好ましい。
 処理ガスの導入速度は、各成分の使用割合に比例させ、例えば、フッ素化炭化水素(1)ガスは8×10-3~5×10-2Pa・m/sec、酸素ガスは8×10-2~5×10-1Pa・m/sec、18族ガスは8×10-2~5×10-1Pa・m/sec等とすればよい。
 処理ガスが導入された処理室内の圧力は、通常0.0013~1300Pa、好ましくは0.13~13Paである。
 次に、プラズマ発生装置により、処理室内のフッ素化炭化水素(1)ガス(反応性プラズマガス)に高周波の電場を印加してグロー放電を起こさせ、プラズマを発生させる。
 プラズマ発生装置としては、ヘリコン波方式、高周波誘導方式、平行平板タイプ、マグネトロン方式及びマイクロ波方式等の装置が挙げられるが、高密度領域のプラズマ発生が容易なことから、ヘリコン波方式、高周波誘導方式及びマイクロ波方式の装置が好適に使用される。
 プラズマ密度は、特に限定されない。本発明の効果をより良好に発現させる観点から、プラズマ密度が、好ましくは1011イオン/cm以上、より好ましくは1012~1013イオン/cmの高密度プラズマ雰囲気下でエッチングを行うのが望ましい。
 エッチング時における被処理基板の到達温度は、特に限定されるものではないが、好ましくは0~300℃、より好ましくは0~100℃、さらに好ましくは20~80℃の範囲である。基板の温度は冷却等により制御しても、制御しなくてもよい。
 エッチング処理の時間は、一般的には5~10分であるが、本発明に用いる処理ガスは、高速エッチングが可能なので、2~5分として生産性を向上させることができる。
 本発明のプラズマエッチング方法は、上述したように、処理室内でエッチングガスのプラズマを発生させ、その内部に配置された被処理体上の所定部位をエッチングする方法であって、フッ素化炭化水素(1)を含む処理ガス(エッチングガス)を用いるものであるが、シリコン窒化膜を選択的にプラズマエッチングする方法であるのが好ましく、シリコン酸化膜に対してシリコン窒化膜を選択的にプラズマエッチングする方法であるのがより好ましい。
 上述したエッチング条件でシリコン窒化膜をエッチングすることにより、シリコン酸化膜に対するシリコン窒化膜の選択比が少なくとも10以上、多くの場合には20以上の選択比を得ることができ、堆積物によるエッチングの停止を回避しつつ、従来と比較して格段に高い選択比を得ることができる。従って、デバイスを構成するシリコン酸化膜の薄膜化が進んでも、シリコン窒化膜をエッチングする間にシリコン酸化膜が抜けてしまうこと(SiO膜ブレイク)を防止し、シリコン窒化膜のみを確実にエッチングすることができ、電気的性能に優れたデバイスを製造することができる。
 本発明のプラズマエッチング方法は、たとえば、半導体装置の製造において、(a)ONO膜(シリコン酸化膜-シリコン窒化膜-シリコン酸化膜)上の所定領域を開口したマスクパターンを形成し、少なくとも上部シリコン酸化膜を除去するようにマスクパターンの開口部をエッチングしたのち、開口部において露出したシリコン窒化膜を選択的にエッチングする場合や、(b)コンタクトホールを開設した後のプロセスにおいて、酸化膜である層間絶縁膜に加わるダメージから層間絶縁膜を保護するために、開設されたコンタクトホールの側壁(内壁)に薄く(例えば10~20nm厚で)シリコン窒化膜を形成した後、コンタクトホール底部のシリコン窒化膜をエッチングにより除去する場合等に適用することができる。
 以下に、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、特に断りが無い限り、実施例中の「部」は「重量部」を意味する。
 なお、処理ガス中のフッ素化炭化水素(1)の含有量は、ガスクロマトグラフィー(GC)法により求めた。
 GC測定条件は以下の通りである。
・装置:ヒューレットパッカード社製、HP6890
・カラム:NEUTRA  BOND-1、Length 60m/ID 250μm/film 1.50μm
・検出器:FID
・インジェクション温度:150℃
・ディテクター温度:250℃
・キャリアーガス:窒素ガス(23.2mL/分)
・メイクアップガス:窒素ガス(30mL/分)、水素ガス(50mL/分)、空気(400mL/分)
・スプリット比:137/1
・昇温プログラム:(1)40℃で20分保持、(2)40℃/分で昇温、(3)250℃で14.75分保持
 表面にSiN膜が形成されたウエハと表面にSiO膜が形成されたウエハを用い、それぞれのウエハを別々に本発明のエッチング方法によってエッチングを行った。そして、SiN膜及びSiO膜それぞれのエッチング速度を測定し、これらの測定結果に基づいてSiO膜に対するSiN膜のエッチング速度の比から選択比(SiN膜/SiO膜)を求めた。
 フッ素化炭化水素(1)として、2,2-ジフルオロ-n-ブタンを用いた。
 平行平板型プラズマエッチング装置のエッチングチャンバー内に、表面にSiN膜が形成されたウエハと表面にSiO膜が形成されたウエハをそれぞれセットし、系内を真空にした後、下記のエッチング条件下でエッチングを行ったところ、SiN膜のエッチング速度は64nm/minとなったが、SiO膜は全くエッチングされず、無限大の選択比という結果を得た。
[エッチング条件]
 混合ガスの圧力:75mTorr(10Pa)
 上部電極の高周波電源の電力:100W
 下部電極の高周波電源の電力:100W
 上部電極と下部電極の間隔:50mm
 ガスの流量:
Arガス=1.69×10-1Pa・m/sec
ガス=1.69×10-1Pa・m/sec
フッ素化炭化水素ガス=3.38×10-2Pa・m/sec
(流量比:Ar/O/フッ素化炭化水素=100/100/20)
 電極温度:20℃
(比較例)
 フッ素化炭化水素としてCHFガスを用いた以外は実施例と同じエッチング条件下でエッチングを行ったところ、SiN膜のエッチング速度56nm/min、SiO膜のエッチング速度2nm/min、選択比28という結果を得た。

Claims (5)

  1.  プラズマ条件下において処理ガスを用いるプラズマエッチング方法であって、前記処理ガスが、式(1):C(式中、xは3、4または5を表し、y、zはそれぞれ独立して、正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素を含むことを特徴とするプラズマエッチング方法。
  2.  前記処理ガスが、さらに、酸素ガスおよび/または窒素ガスを含むことを特徴とする請求項1に記載のプラズマエッチング方法。
  3.  前記処理ガスとして、さらに、ヘリウム、アルゴン、ネオン、クリプトン、キセノンからなる群から選ばれる少なくとも1種を含むガスを用いることを特徴とする請求項1または2に記載のプラズマエッチング方法。
  4.  シリコン窒化膜をエッチングするものである請求項1~3のいずれかに記載のプラズマエッチング方法。
  5.  シリコン酸化膜に対してシリコン窒化膜を選択的にエッチングするものである請求項1~3のいずれかに記載のプラズマエッチング方法。
PCT/JP2009/056245 2008-03-31 2009-03-27 プラズマエッチング方法 WO2009123038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/736,241 US20110068086A1 (en) 2008-03-31 2009-03-27 Plasma etching method
CN200980112091.5A CN101983417B (zh) 2008-03-31 2009-03-27 等离子体蚀刻方法
JP2010505821A JP5494475B2 (ja) 2008-03-31 2009-03-27 プラズマエッチング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-091209 2008-03-31
JP2008091209 2008-03-31

Publications (1)

Publication Number Publication Date
WO2009123038A1 true WO2009123038A1 (ja) 2009-10-08

Family

ID=41135416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056245 WO2009123038A1 (ja) 2008-03-31 2009-03-27 プラズマエッチング方法

Country Status (6)

Country Link
US (1) US20110068086A1 (ja)
JP (1) JP5494475B2 (ja)
KR (1) KR20110002017A (ja)
CN (1) CN101983417B (ja)
TW (1) TWI453818B (ja)
WO (1) WO2009123038A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110647A (zh) * 2009-12-23 2011-06-29 中芯国际集成电路制造(上海)有限公司 应力记忆技术的优化刻蚀方法
WO2012133401A1 (ja) * 2011-03-29 2012-10-04 日本ゼオン株式会社 プラズマエッチングガス及びプラズマエッチング方法
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
WO2014104290A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 ドライエッチング方法
WO2014136877A1 (ja) 2013-03-07 2014-09-12 日本ゼオン株式会社 高純度2-フルオロブタン
JP2014185111A (ja) * 2013-03-25 2014-10-02 Nippon Zeon Co Ltd 高純度2,2−ジフルオロブタン
WO2014203842A1 (ja) 2013-06-17 2014-12-24 日本ゼオン株式会社 高純度1-フルオロブタン及びプラズマエッチング方法
WO2015008781A1 (ja) 2013-07-19 2015-01-22 日本ゼオン株式会社 2-フルオロブタンの精製方法
WO2015064550A1 (ja) 2013-10-30 2015-05-07 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
JP2015140860A (ja) * 2014-01-29 2015-08-03 日本ゼオン株式会社 フッ素化炭化水素化合物充填ガス容器
WO2015186461A1 (ja) * 2014-06-02 2015-12-10 東京エレクトロン株式会社 エッチング方法
WO2016117563A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 プラズマエッチング方法
EP2650925A4 (en) * 2010-12-07 2016-09-14 Dexerials Corp SOLAR CELL EMISSION MEASURING DEVICE AND MEASURING METHOD
KR20160122126A (ko) 2014-02-12 2016-10-21 제온 코포레이션 불소화 탄화수소의 제조 방법
JPWO2016117464A1 (ja) * 2015-01-22 2017-11-02 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器
WO2018037999A1 (ja) 2016-08-25 2018-03-01 日本ゼオン株式会社 ブテン類の変換方法及びモノフルオロブタンの精製方法
WO2018173863A1 (ja) 2017-03-22 2018-09-27 日本ゼオン株式会社 フッ素化炭化水素の製造方法
US10093599B2 (en) 2015-08-05 2018-10-09 Zeon Corporation Method for manufacturing fluorinated hydrocarbon
WO2018186364A1 (ja) * 2017-04-06 2018-10-11 関東電化工業株式会社 ドライエッチングガス組成物及びドライエッチング方法
WO2018230373A1 (ja) * 2017-06-16 2018-12-20 日本ゼオン株式会社 プラズマ処理装置のシーズニング方法及びプラズマエッチング方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765613B2 (en) 2011-10-26 2014-07-01 International Business Machines Corporation High selectivity nitride etch process
US10217681B1 (en) 2014-08-06 2019-02-26 American Air Liquide, Inc. Gases for low damage selective silicon nitride etching
US20180277387A1 (en) * 2014-08-06 2018-09-27 American Air Liquide, Inc. Gases for low damage selective silicon nitride etching
KR102333443B1 (ko) * 2014-10-24 2021-12-02 삼성전자주식회사 반도체 소자의 제조 방법
CN108780749B (zh) * 2016-03-16 2022-10-14 日本瑞翁株式会社 等离子体蚀刻方法
US10629451B1 (en) 2019-02-01 2020-04-21 American Air Liquide, Inc. Method to improve profile control during selective etching of silicon nitride spacers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250817A (ja) * 1999-12-28 2001-09-14 Toshiba Corp ドライエッチング方法及び半導体装置の製造方法
JP2006514783A (ja) * 2002-10-11 2006-05-11 ラム リサーチ コーポレーション プラズマエッチングのパフォーマンスを改善する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3420347A1 (de) * 1983-06-01 1984-12-06 Hitachi, Ltd., Tokio/Tokyo Gas und verfahren zum selektiven aetzen von siliciumnitrid
US20010009177A1 (en) * 1998-07-13 2001-07-26 Laizhong Luo Systems and methods for two-sided etch of a semiconductor substrate
TW486733B (en) * 1999-12-28 2002-05-11 Toshiba Corp Dry etching method and manufacturing method of semiconductor device for realizing high selective etching
US20030121888A1 (en) * 2001-11-30 2003-07-03 Kenji Adachi Etching method
US7547635B2 (en) * 2002-06-14 2009-06-16 Lam Research Corporation Process for etching dielectric films with improved resist and/or etch profile characteristics
CN1723549B (zh) * 2002-10-11 2012-01-18 兰姆研究有限公司 增强等离子体蚀刻性能的方法
US20040188272A1 (en) * 2003-03-25 2004-09-30 Blanks Jeremy Daniel Method for reducing degradation of reactive compounds during transport
WO2005112092A2 (en) * 2004-05-11 2005-11-24 Applied Materials, Inc. CARBON-DOPED-Si OXIDE ETCH USING H2 ADDITIVE IN FLUOROCARBON ETCH CHEMISTRY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250817A (ja) * 1999-12-28 2001-09-14 Toshiba Corp ドライエッチング方法及び半導体装置の製造方法
JP2006514783A (ja) * 2002-10-11 2006-05-11 ラム リサーチ コーポレーション プラズマエッチングのパフォーマンスを改善する方法

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102110647A (zh) * 2009-12-23 2011-06-29 中芯国际集成电路制造(上海)有限公司 应力记忆技术的优化刻蚀方法
EP2650925A4 (en) * 2010-12-07 2016-09-14 Dexerials Corp SOLAR CELL EMISSION MEASURING DEVICE AND MEASURING METHOD
KR101962191B1 (ko) * 2011-03-29 2019-03-26 제온 코포레이션 플라즈마 에칭 가스 및 플라즈마 에칭 방법
WO2012133401A1 (ja) * 2011-03-29 2012-10-04 日本ゼオン株式会社 プラズマエッチングガス及びプラズマエッチング方法
KR20140016912A (ko) 2011-03-29 2014-02-10 제온 코포레이션 플라즈마 에칭 가스 및 플라즈마 에칭 방법
TWI559401B (zh) * 2011-03-29 2016-11-21 日本瑞翁股份有限公司 電漿蝕刻氣體及電漿蝕刻方法
US9296947B2 (en) 2011-03-29 2016-03-29 Zeon Corporation Plasma etching gas and plasma etching method
JP2013095669A (ja) * 2011-10-28 2013-05-20 Nippon Zeon Co Ltd 含フッ素化アルカンの製造方法
WO2014104290A1 (ja) * 2012-12-27 2014-07-03 日本ゼオン株式会社 ドライエッチング方法
WO2014136877A1 (ja) 2013-03-07 2014-09-12 日本ゼオン株式会社 高純度2-フルオロブタン
JPWO2014136877A1 (ja) * 2013-03-07 2017-02-16 日本ゼオン株式会社 高純度2−フルオロブタン
US9659787B2 (en) 2013-03-07 2017-05-23 Zeon Corporation High-purity 2-fluorobutane
JP2014185111A (ja) * 2013-03-25 2014-10-02 Nippon Zeon Co Ltd 高純度2,2−ジフルオロブタン
KR20160019911A (ko) 2013-06-17 2016-02-22 제온 코포레이션 고순도 1-플루오로부탄및 플라즈마 에칭 방법
JPWO2014203842A1 (ja) * 2013-06-17 2017-02-23 日本ゼオン株式会社 高純度1−フルオロブタン及びプラズマエッチング方法
EP3012241A4 (en) * 2013-06-17 2016-12-07 Zeon Corp 1-HIGH PURITY FLUOROBUTANE AND PLASMA ETCHING METHOD
WO2014203842A1 (ja) 2013-06-17 2014-12-24 日本ゼオン株式会社 高純度1-フルオロブタン及びプラズマエッチング方法
JP2015038054A (ja) * 2013-07-19 2015-02-26 日本ゼオン株式会社 2−フルオロブタンの精製方法
US9416075B2 (en) 2013-07-19 2016-08-16 Zeon Corporation Method for purifying 2-fluorobutane
WO2015008781A1 (ja) 2013-07-19 2015-01-22 日本ゼオン株式会社 2-フルオロブタンの精製方法
KR20160027093A (ko) 2013-07-19 2016-03-09 제온 코포레이션 2-플루오로부탄의 정제 방법
JPWO2015008781A1 (ja) * 2013-07-19 2017-03-02 日本ゼオン株式会社 2−フルオロブタンの精製方法
US9984896B2 (en) 2013-10-30 2018-05-29 Zeon Corporation High-purity fluorinated hydrocarbon, use as a plasma etching gas, and plasma etching method
KR20160071448A (ko) 2013-10-30 2016-06-21 제온 코포레이션 고순도 불소화 탄화수소, 플라즈마 에칭용 가스로서의 사용, 및, 플라즈마 에칭 방법
WO2015064550A1 (ja) 2013-10-30 2015-05-07 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
JPWO2015064550A1 (ja) * 2013-10-30 2017-03-09 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
JP2015140860A (ja) * 2014-01-29 2015-08-03 日本ゼオン株式会社 フッ素化炭化水素化合物充填ガス容器
US9738578B2 (en) 2014-02-12 2017-08-22 Zeon Corporation Method for producing fluorinated hydrocarbon
KR20160122126A (ko) 2014-02-12 2016-10-21 제온 코포레이션 불소화 탄화수소의 제조 방법
WO2015186461A1 (ja) * 2014-06-02 2015-12-10 東京エレクトロン株式会社 エッチング方法
JPWO2016117464A1 (ja) * 2015-01-22 2017-11-02 日本ゼオン株式会社 フッ素化炭化水素化合物充填済みガス充填容器
WO2016117563A1 (ja) * 2015-01-22 2016-07-28 日本ゼオン株式会社 プラズマエッチング方法
US10093599B2 (en) 2015-08-05 2018-10-09 Zeon Corporation Method for manufacturing fluorinated hydrocarbon
WO2018037999A1 (ja) 2016-08-25 2018-03-01 日本ゼオン株式会社 ブテン類の変換方法及びモノフルオロブタンの精製方法
US10472308B2 (en) 2016-08-25 2019-11-12 Zeon Corporation Butene conversion method and monofluorobutane purification method
KR20190039404A (ko) 2016-08-25 2019-04-11 니폰 제온 가부시키가이샤 부텐류의 변환 방법 및 모노플루오로부탄의 정제 방법
KR20190132996A (ko) 2017-03-22 2019-11-29 니폰 제온 가부시키가이샤 불소화 탄화수소의 제조 방법
WO2018173863A1 (ja) 2017-03-22 2018-09-27 日本ゼオン株式会社 フッ素化炭化水素の製造方法
US10647642B2 (en) 2017-03-22 2020-05-12 Zeon Corporation Method for producing fluorinated hydrocarbons
WO2018186364A1 (ja) * 2017-04-06 2018-10-11 関東電化工業株式会社 ドライエッチングガス組成物及びドライエッチング方法
JPWO2018186364A1 (ja) * 2017-04-06 2020-02-27 関東電化工業株式会社 ドライエッチングガス組成物及びドライエッチング方法
JP7036799B2 (ja) 2017-04-06 2022-03-15 関東電化工業株式会社 ドライエッチングガス組成物及びドライエッチング方法
US11437244B2 (en) 2017-04-06 2022-09-06 Kanto Denka Kogyo Co., Ltd. Dry etching gas composition and dry etching method
WO2018230373A1 (ja) * 2017-06-16 2018-12-20 日本ゼオン株式会社 プラズマ処理装置のシーズニング方法及びプラズマエッチング方法

Also Published As

Publication number Publication date
TW201001531A (en) 2010-01-01
JP5494475B2 (ja) 2014-05-14
JPWO2009123038A1 (ja) 2011-07-28
TWI453818B (zh) 2014-09-21
US20110068086A1 (en) 2011-03-24
CN101983417A (zh) 2011-03-02
KR20110002017A (ko) 2011-01-06
CN101983417B (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5494475B2 (ja) プラズマエッチング方法
JP6997237B2 (ja) 3d nandフラッシュメモリを製造する方法
KR102153246B1 (ko) 규소-함유 필름의 에칭을 위한 방법 및 에칭 가스
JP7227135B2 (ja) 半導体構造エッチング用ヨウ素含有化合物
US10510518B2 (en) Methods of dry stripping boron-carbon films
US9299581B2 (en) Methods of dry stripping boron-carbon films
Flamm et al. The design of plasma etchants
JP2021108391A (ja) 半導体構造物をエッチングするための窒素含有化合物
KR20200090244A (ko) 3D NAND 소자 분야를 위한 비-플라즈마 건식 프로세스를 이용한 SIO2에 대한 SiN의 선택적 에칭
TW201419416A (zh) 圖案化低介電常數介電膜之方法
US11315797B2 (en) Plasma etching method using gas molecule containing sulfur atom
JP3428927B2 (ja) ドライエッチング方法
JP6163820B2 (ja) エッチング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980112091.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09727486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505821

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107021714

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12736241

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09727486

Country of ref document: EP

Kind code of ref document: A1