WO2014203842A1 - 高純度1-フルオロブタン及びプラズマエッチング方法 - Google Patents

高純度1-フルオロブタン及びプラズマエッチング方法 Download PDF

Info

Publication number
WO2014203842A1
WO2014203842A1 PCT/JP2014/065847 JP2014065847W WO2014203842A1 WO 2014203842 A1 WO2014203842 A1 WO 2014203842A1 JP 2014065847 W JP2014065847 W JP 2014065847W WO 2014203842 A1 WO2014203842 A1 WO 2014203842A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorobutane
volume
ppm
gas
etching
Prior art date
Application number
PCT/JP2014/065847
Other languages
English (en)
French (fr)
Inventor
杉本 達也
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015522903A priority Critical patent/JP6311710B2/ja
Priority to KR1020157036986A priority patent/KR20160019911A/ko
Priority to EP14813057.8A priority patent/EP3012241B1/en
Priority to US14/898,778 priority patent/US20160372335A1/en
Priority to CN201480034675.6A priority patent/CN105324356A/zh
Publication of WO2014203842A1 publication Critical patent/WO2014203842A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/383Separation; Purification; Stabilisation; Use of additives by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • C07C17/389Separation; Purification; Stabilisation; Use of additives by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions

Definitions

  • the present invention relates to 1-fluorobutane useful as a plasma reaction gas, a fluorine-containing pharmaceutical intermediate, a hydrofluorocarbon solvent, etc. used in the field of manufacturing semiconductor devices, and a plasma etching method using the same.
  • Highly purified 1-fluorobutane is particularly suitable as a plasma reaction gas such as a plasma etching gas or a CVD gas in the field of manufacturing semiconductor devices using a plasma reaction.
  • the miniaturization of semiconductor manufacturing technology is progressing, and the line width of 20 nm and further 10 nm generation has been adopted in the most advanced process. Further, along with miniaturization, the technical difficulty at the time of processing has been improved, and technical development has been advanced by various approaches such as materials used, equipment, and processing methods.
  • Patent Document 2 describes that 1-butanol was converted to 1-butylmethanesulfonate and then reacted with potassium fluoride in propylene glycol to obtain 1-fluorobutane.
  • Non-Patent Document 1 describes that 1-butanol was converted into trimethylsiloxybutane, and this was contacted with phenyltetrafluorophosphorane as a fluorinating agent to obtain 1-fluorobutane in a yield of 35%. Has been.
  • Non-Patent Document 2 discloses that tetrabutylammonium fluoride is prepared in the system by heating a mixture of tetrabutylammonium bromide and cesium fluoride, and 1-bromobutane is added thereto to give 1-bromobutane. It is described that fluorobutane was obtained in a yield of 77%.
  • the present inventor used 1-fluorobutane obtained by the method described in the above prior art as a gas for selectively dry etching a silicon nitride film laminated on silicon or a silicon oxide film. It was confirmed that excessive hydrogen-based deposits were generated and the etching itself stopped.
  • the present invention provides a dry etching gas containing 1-fluorobutane capable of selectively dry-etching silicon or a silicon nitride film laminated on a silicon oxide film, and the 1-fluorobutane. It is an object to provide a dry etching method using fluorobutane as an etching gas.
  • 1-fluorobutane having a purity of 99.9% by volume or more and a total of butenes of 1000 ppm by volume or less.
  • the 1-fluorobutane preferably has a nitrogen content of 100 ppm by volume or less and an oxygen content of 50 ppm by volume or less.
  • the 1-fluorobutane preferably has a water content of 50 ppm by volume or less.
  • the present invention also provides use of 1-fluorobutane of the present invention as a dry etching gas and a dry etching method using this as an etching gas.
  • the 1-fluorobutane of the present invention has a purity of 99.9% by volume or more and a butene content of 1000 ppm by volume or less.
  • butenes are a general term for 1-butene, 2-butene ((E) -2-butene and (Z) -2-butene) and isobutene, and one or more kinds present in 1-fluorobutane. All butenes are impurities.
  • the purity of 1-fluorobutane and the content of butenes are values calculated from the peak area of a chart obtained by measuring gas chromatography using a flame ionization detector (FID) as a detector. It is. Butenes can be identified by gas chromatography mass spectrometry.
  • the amounts of nitrogen and oxygen in 1-fluorobutane are values measured by gas chromatography using a thermal conductivity detector (TCD) as a detector.
  • TCD thermal conductivity detector
  • the amount of water in 1-fluorobutane is a value measured using FT-IR.
  • the 1-fluorobutane of the present invention can be obtained by purifying crude 1-fluorobutane produced by a known method by distillation and removing butenes as impurities.
  • the method for producing 1-fluorobutane is not particularly limited. For example, (i) a method of fluorinating 1-butanol with a fluorinating agent, (ii) a method of treating 1-bromobutane or alkylsulfonic acid butyl ester with an alkali metal fluoride such as potassium fluoride or cesium fluoride, etc. Can be mentioned.
  • the content of butanes can be 1000 ppm by volume or less, preferably 500 ppm by volume or less.
  • a rectifying column is used when removing organic impurities by distillation purification.
  • 1-fluorobutane (boiling point: 32 ° C.)
  • butenes 1-butene (boiling point: ⁇ 6.3 ° C.)
  • E -2-butene (boiling point: 0.9 ° C.)
  • Z -2-
  • the theoretical plate number is usually 10 or more and 50 or less, preferably 20 or more and 50 or less.
  • the fraction extraction line and the container for storing the initial fraction are well cooled (cooled below the boiling point of butenes).
  • the pressure during rectification is a gauge pressure, and is usually from normal pressure to 10 atm, and preferably from normal pressure to 5 atm.
  • the ratio between the reflux amount and the withdrawal amount (hereinafter sometimes referred to as “reflux ratio”) is preferably set to a reflux ratio of 30: 1 or more in order to efficiently separate butenes that are likely to be in a gas state. . If the reflux ratio is too small, butenes are not efficiently separated, and not only the purity improvement range of 1-fluorobutane becomes small, but also the initial fraction increases, and the total amount of 1-fluorobutane recovered is small. Less.
  • the rectification may be either a batch type or a continuous type, but the batch type is preferably used when the production amount is small, and when the production amount is large, the continuous type passes through several rectification towers. Is preferably employed. Moreover, you may carry out combining the extractive distillation operation which added the extraction solvent.
  • the raw material compound is separated by, for example, the first distillation.
  • Stepwise distillation may be performed, such as separation of butenes that are subject to impurities in the second distillation.
  • the reflux ratio is preferably 40: 1 or more.
  • the nitrogen content in the 1-fluorobutane of the present invention is preferably 100 ppm by volume or less, more preferably 80 ppm by volume or less, and the oxygen content is preferably 50 ppm by volume or less, more preferably 30 volumes. ppm or less.
  • Nitrogen and oxygen in 1-fluorobutane is a method of purifying in an inert gas belonging to group 0 when the above-mentioned butenes are removed by rectification; or 1-fluorobutane is distilled by simple distillation. It can be removed by a method such as an operation of extracting a minute.
  • the amount of nitrogen and oxygen in 1-fluorobutane remaining in the kettle can be reduced by extracting nitrogen and oxygen together with 1-fluorobutane by simple distillation.
  • the amount of 1-fluorobutane to be extracted is preferably 20 to 50%, more preferably 30 to 40%, based on the weight with respect to 1-fluorobutane charged in the still.
  • the extracted 1-fluorobutane is stored and can be recovered and reused by adding to the next batch.
  • the 1-fluorobutane of the present invention preferably has a water content of 50 ppm by volume or less, more preferably 20 ppm by volume or less.
  • a method for removing water in 1-fluorobutane a general method such as bringing 1-fluorobutane into contact with an adsorbent can be employed.
  • molecular sieves As the adsorbent, molecular sieves, alumina, or the like can be used. Further, as described in Japanese Patent Application Laid-Open No. 2014-24785 (Japanese Patent Application No. 2012-165797), when drying a monofluorohydrocarbon such as 1-fluorobutane, it is preferable to use molecular sieve 3A. . When a molecular sieve having a large pore size such as molecular sieve 4A or 5A is used, 1-fluorobutane molecules may be taken into the pores and the effect of reducing moisture may be reduced. In addition, the use of molecular sieves with alkalinity causes deHF reaction of 1-fluorobutane, so any of them requires caution.
  • alumina it is preferable to use activated alumina having low crystallinity produced by heat dehydration of alumina hydrate.
  • an adsorbent such as molecular sieve or alumina prior to contacting 1-fluorobutane by an operation such as baking, because more water can be adsorbed.
  • the amount of water in 1-fluorobutane can be reduced to 50 ppm by volume or less. If the moisture content in 1-fluorobutane is high, moisture may remain adsorbed on the processed surface after etching the substrate, causing peeling of the laminated film or corrosion of the embedded wiring in the wiring formation process such as copper There is. Therefore, it is preferable that the water content in 1-fluorobutane is removed as much as possible.
  • Step (I) in which the crude 1-fluorobutane contained in the reaction crude product is purified by 99.9% by volume or more and butenes by 1000% by volume or less by rectification as described above; Removing water by contacting with water (II); further, by simple distillation of 1-fluorobutane, the nitrogen and oxygen concentrations in 1-fluorobutane are reduced to 100 ppm by volume or less and 50 ppm by volume or less.
  • step (III) of reducing high-purity 1-fluorobutane suitable for the plasma reaction gas can be obtained.
  • 1-fluorobutane of the present invention it is preferable to carry out at least the step (I), more preferably to carry out the steps (I) and (II), and the steps (I) to (III). Is particularly preferred.
  • 1-Fluorobutane can be applied not only to a silicon nitride film but also to an inorganic nitride film such as silicon nitride oxide, titanium nitride, or aluminum nitride.
  • the plasma etching method of the present invention is characterized by using 1-fluorobutane of the present invention as an etching gas.
  • the etching gas used in the plasma etching method of the present invention may be composed only of 1-fluorobutane of the present invention, and may further contain oxygen gas and / or nitrogen gas.
  • oxygen gas and / or nitrogen gas is used in combination to prevent the etching stop (etching stop), which is thought to be caused by the deposition of reactants on the bottom of the hole, while greatly improving the selectivity. You may be able to increase it.
  • the use ratio of oxygen gas and nitrogen gas is preferably 0.1 to 50 in terms of the volume ratio of oxygen gas, nitrogen gas, or the total amount of oxygen gas and nitrogen gas to 1-fluorobutane, More preferably, it becomes ⁇ 30.
  • the processing gas may further contain at least one group 18 gas selected from the group consisting of helium, argon, neon, krypton, and xenon.
  • group 18 gas selected from the group consisting of helium, argon, neon, krypton, and xenon.
  • the use ratio of the group 18 gas is preferably 0 to 100, more preferably 0 to 20 in terms of a volume ratio with respect to 1-fluorobutane.
  • the introduction speed of the processing gas into the processing chamber is proportional to the proportion of each component used.
  • 1 ⁇ fluorobutane gas is 8 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 2 Pa ⁇ m 3 / sec
  • oxygen gas is 8 ⁇ .
  • the group 18 gas may be 8 ⁇ 10 ⁇ 2 to 5 ⁇ 10 ⁇ 1 Pa ⁇ m 3 / sec, and the like.
  • the pressure in the processing chamber into which the processing gas is introduced is usually 0.0013 to 1300 Pa, preferably 0.13 to 13 Pa.
  • a plasma generator generates plasma by applying a high-frequency electric field to 1-fluorobutane gas (reactive plasma gas) in the processing chamber to cause glow discharge.
  • plasma generators examples include helicon wave system, high frequency induction system, parallel plate type, magnetron system and microwave system. However, since plasma generation in a high density region is easy, helicon wave system, high frequency induction. The apparatus of a system and a microwave system is used suitably.
  • the plasma density is not particularly limited. From the viewpoint of better expressing the effects of the present invention, etching is performed in a high-density plasma atmosphere with a plasma density of preferably 10 11 ions / cm 3 or more, more preferably 10 12 to 10 13 ions / cm 3 . Is desirable.
  • the temperature reached by the substrate to be processed during etching is not particularly limited, but is preferably in the range of 0 to 300 ° C., more preferably 0 to 100 ° C., and still more preferably 20 to 80 ° C.
  • the temperature of the substrate may or may not be controlled by cooling or the like.
  • the time for the etching process is generally 5 to 10 minutes. However, since the processing gas used in the present invention can be etched at a high speed, the productivity can be improved in 2 to 5 minutes.
  • the plasma etching method of the present invention is a method of generating a plasma of an etching gas in a processing chamber and etching a predetermined portion on a target object disposed therein, A processing gas (etching gas) is used.
  • the plasma etching method of the present invention is preferably a method of selectively etching an inorganic nitride film, and more preferably a method of selectively etching a silicon nitride film.
  • the plasma etching method of the present invention is a method of selectively plasma etching a silicon nitride film with respect to a silicon oxide film, for example.
  • etching the silicon nitride film under the above-described etching conditions it is possible to obtain a selectivity ratio of the silicon nitride film to the silicon oxide film of at least 10 or more, and in many cases, a selectivity ratio of 20 or more. While avoiding the stop, a remarkably high selection ratio can be obtained as compared with the conventional case. Therefore, even if the silicon oxide film constituting the device is made thinner, it is possible to prevent the silicon oxide film from escaping (SiO 2 film break) while etching the silicon nitride film, and to etch only the silicon nitride film reliably. Thus, a device having excellent electrical performance can be manufactured.
  • a mask pattern having a predetermined region opened on an ONO film (silicon oxide film-silicon nitride film-silicon oxide film) is formed, and at least the upper silicon After etching the opening of the mask pattern so as to remove the oxide film, the silicon nitride film exposed in the opening is selectively etched, or (b) in the process after opening the contact hole,
  • a thin silicon nitride film (for example, 10 to 20 nm thick) is formed on the side wall (inner wall) of the opened contact hole, and then silicon at the bottom of the contact hole is formed. This can be applied to the case where the nitride film is removed by etching.
  • GC part HP-6890 (manufactured by Agilent)
  • the upper organic layer was washed with 5% hydrochloric acid, saturated multilayered water, and then saturated brine, and then dried over anhydrous magnesium sulfate, and magnesium sulfate was filtered off. Then, diisopropyl ether was distilled off from the filtrate with a rotary evaporator and pumped up with a vacuum pump to obtain 119 g of crude methanesulfonyloxybutane.
  • Example 1 598 g of crude 1-fluorobutane obtained by repeating Production Examples 1 and 2 was charged into a distillation kettle, and a KS type rectification tower (manufactured by Toshin Seiki Co., Ltd., column length 60 cm, filler Helipak No. 1) was used. Distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated at 45 to 70 ° C., taking into account the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was extracted at a reflux ratio of 45: 1.
  • 1-butene, (E) -2-butene, and (Z) -2-butene as impurities are 612 area (capacity) ppm, 33 area (capacity) ppm, and 55 area (capacity), respectively. ) Ppm.
  • Example 2 100 g of molecular sieves 3A (manufactured by Wako Pure Chemical Industries, Ltd.) is put in a 1.2 L SUS316 container (inner surface: electrolytic polishing treatment), and 463 g of 1-fluorobutane distilled and purified in Example 1 is put therein. Then, it was immersed at room temperature (25 ° C.) for 22 hours to remove water. Thereafter, a short column, a condenser and a receiver were attached to the top of a 1 L capacity SUS316 kettle, and a simple distillation apparatus was assembled. Cooling water at ⁇ 10 ° C. was circulated through the condenser.
  • the kettle was charged with 419 g of 1-fluorobutane from which water had been removed, and the kettle was heated to 60 ° C.
  • the nitrogen and oxygen concentrations in 1-fluorobutane at this time were measured by gas chromatography and found to be 634 ppm by volume and 150 ppm by volume, respectively.
  • When about 30% by mass of 1-fluorobutane charged was withdrawn into a receiver, simple distillation was stopped and the kettle was cooled to room temperature.
  • 290 g of 1-fluorobutane in the kettle was charged into a 1 L manganese steel cylinder (inner surface roughness: 1S) equipped with a diaphragm valve.
  • the purity of 1-fluorobutane is 99.9% by volume or more, and the contents of 1-butene, (E) -2-butene, and (Z) -2-butene in 1-fluorobutane are 541 each.
  • Area (volume) ppm, 30 area (volume) ppm, and 48 area (volume) ppm, and the contents of nitrogen, oxygen, and moisture were 58 volume ppm, 12 volume ppm, and 22 volume ppm, respectively. .
  • Example 3 389 g of crude 1-fluorobutane obtained by repeating the reaction of Production Example 1 was charged into a distillation kettle, and a KS type rectification column (manufactured by Toshin Seiki Co., Ltd., column length: 60 cm, packing material: Helipak No. 1) was used. Then, distillation was performed. A refrigerant of ⁇ 10 ° C. was circulated through the condenser, and total reflux was performed for about 1 hour. The distillation kettle was heated from 45 to 70 ° C. in consideration of the temperature at the top of the column and the remaining amount inside the kettle. After total reflux, the fraction was withdrawn at a reflux ratio of 30: 1.
  • Example 4 60 g of alumina (N612N manufactured by JGC Catalysts & Chemicals Co., Ltd.) is placed in a stainless steel container having a capacity of 1.2 L, and 329 g of 1-fluorobutane obtained in Example 3 is placed therein, and 20 hours at room temperature (25 ° C.) Soaked. Next, a stainless steel container and a 1 L manganese steel cylinder were connected with a stainless steel tube, and 1-fluorobutane was filled into the cylinder under reduced pressure through a metal filter having a pore diameter of 0.2 ⁇ m.
  • the cylinder was cooled with ice water, and about 30 g of 1-fluorobutane was extracted through a pressure controller while reducing the pressure with a vacuum pump at a pressure of 5 to 10 kPa.
  • the inside of the stainless steel container was returned to room temperature (25 ° C.) and allowed to stand for a while.
  • the purity of 1-fluorobutane is 99.9% by volume or more, and the contents of 1-butene, (E) -2-butene, and (Z) -2-butene in 1-fluorobutane are 716 each.
  • Area (volume) ppm, 51 area (volume) ppm, and 65 area (volume) ppm, and the contents of nitrogen, oxygen, and moisture were 45 volume ppm, 14 volume ppm, and 40 volume ppm, respectively. .
  • dry etching was performed as follows. A wafer with a silicon nitride film formed on the surface and a wafer with a silicon oxide film formed on the surface were set in an etching chamber of a parallel plate plasma etching apparatus, respectively, and the system was evacuated. 4 and 1-fluorobutane prepared in Reference Example 1 were used for etching under the following etching conditions. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma & Fusion (AREA)

Abstract

 本発明は、純度が99.9容量%以上、ブテン類が合計で1000容量ppm以下であることを特徴とする高純度1-フルオロブタン、このもののドライエッチングガスとしての使用、及び、前記高純度1-フルオロブタンをエッチングガスとして用いるプラズマエッチング方法である。 本発明によれば、半導体向けのプラズマ反応用ガスとして好適な高純度1-フルオロブタン、このもののドライエッチングガスとしての使用、及び、前記高純度1-フルオロブタンをエッチングガスとして用いるプラズマエッチング方法が提供される。

Description

高純度1-フルオロブタン及びプラズマエッチング方法
 本発明は、半導体装置の製造分野において用いられるプラズマ反応用ガス、含フッ素医薬中間体、ハイドロフルオロカーボン系溶剤等として有用な1-フルオロブタン、及びこれを用いるプラズマエッチング方法に関する。高純度化された1-フルオロブタンは、特に、プラズマ反応を用いた半導体装置の製造分野において、プラズマ用エッチングガスやCVD用ガス等のプラズマ反応用ガスとして好適である。
 半導体製造技術の微細化は進んでおり、最先端プロセスでは線幅が20nm、さらには10nm世代が採用されてきている。また、微細化に伴ってその加工する際の技術難度も向上しており、使用する材料、装置、加工方法等、多方面からのアプローチにより技術開発が進められている。
 このような背景から、本出願人も、最先端のドライエッチングプロセスにも対応できる、式(1):C(式中、xは3、4又は5を表し、y、zは正の整数を表し、かつ、y>zである。)で表される飽和フッ素化炭化水素を含むプラズマエッチングガスを開発し、フッ素数の少ない飽和フッ素化炭化水素が、窒化シリコン膜のエッチングに用いられているモノフルオロメタンを凌ぐ性能を有することを報告している(特許文献1)。
 従来、上記式(1)で表される飽和フッ素化炭化水素の一種である1-フルオロブタンの製造方法としては、例えば、次のものが知られている。特許文献2には、1-ブタノールを1-ブチルメタンスルホネートに変換した後、このものを、プロピレングリコール中、フッ化カリウムと反応させて、1-フルオロブタンを得たと記載されている。非特許文献1には、1-ブタノールをトリメチルシロキシブタンに変換し、このものを、フッ素化剤であるフェニルテトラフルオロホスホランと接触させて、1-フルオロブタンを収率35%で得たと記載されている。また、非特許文献2には、テトラブチルアンモニウムブロミドとフッ化セシウムの混合物を加熱することで、系内でテトラブチルアンモニウムフルオリドを調製し、そこへ1-ブロモブタンを添加することにより、1-フロオロブタンを収率77%で得たことが記載されている。
WO2009/123038号パンフレット(US2011068086) 特開2013-6786号公報
Tetrahedron,Vol.29,1877(1973) Journal of Fluorine Chemistry,Vol.73,185(1995)
 本発明者は、シリコンやシリコン酸化膜上に積層された窒化シリコン膜を選択的にドライエッチングするガスとして、上記の従来技術に記載の方法で得られた1-フルオロブタンを使用したところ、炭化水素系の堆積物が過剰に生成し、エッチング自体が停止することを確認した。
 本発明はこの問題を解決すべく、シリコンやシリコン酸化膜上に積層された窒化シリコン膜等を選択的にドライエッチングすることができる1-フルオロブタンを含有するドライエッチングガス、及び、この1-フルオロブタンをエッチングガスとして用いるドライエッチング方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意検討した結果、1-フルオロブタン中に、ブテン類を所定量以上含むとこの問題が生じることを見いだし、本発明を完成するに至った。
 かくして本発明によれば、純度が99.9容量%以上、ブテン類が合計で1000容量ppm以下であることを特徴とする1-フルオロブタンが提供される。当該1-フルオロブタンは、窒素含有量が100容量ppm以下、及び酸素含有量が50容量ppm以下であるのが好ましい。当該1-フルオロブタンは、水分含有量が50容量ppm以下であるのが好ましい。
 また本発明は、本発明の1-フルオロブタンのドライエッチングガスとしての使用、及び、このものをエッチングガスとして用いるドライエッチング方法を提供する。
 本発明の1-フルオロブタンは、純度が99.9容量%以上であり、ブテン類の含有量が1000容量ppm以下であることを特徴とする。
 本発明において、ブテン類は、1-ブテン、2-ブテン((E)-2-ブテンと(Z)-2-ブテン)及びイソブテンの総称であり、1-フルオロブタン中に存在する1種以上のブテン類は、すべて不純物である。
 本発明において、1-フルオロブタンの純度、及びブテン類の含有量は、水素炎イオン化検出器(FID)を検出器としたガスクロマトグラフィーを測定して得られるチャートのピーク面積から算出される値である。また、ブテン類は、ガスクロマトグラフィー質量分析により同定することができる。1-フルオロブタン中の窒素と酸素の量は、熱電導度検出器(TCD)を検出器としたガスクロマトグラフィーにより測定した値である。1-フルオロブタン中の水分量は、FT-IRを用いて測定した値である。
 本発明の1-フルオロブタンは、公知の方法により製造される粗1-フルオロブタンを蒸留精製して、不純物であるブテン類を除去することにより得ることができる。
 1-フルオロブタンを製造する方法は、特に限定されない。例えば、(i)1-ブタノールをフッ素化剤でフッ素化する方法、(ii)1-ブロモブタン又はアルキルスルホン酸ブチルエステルをフッ化カリウムやフッ化セシウム等のアルカリ金属フッ化物で処理する方法等が挙げられる。
 上述したような方法で製造された粗1-フルオロブタンを蒸留精製(精留)等に付すことにより、ブテン類をはじめとする有機系不純物を除去することができる。粗1-フルオロブタンを精留することにより、ブタン類の含有量を1000容量ppm以下、好ましくは500容量ppm以下にすることができる。
 蒸留精製により有機系不純物を除去する場合、精留塔が用いられる。1-フルオロブタン(沸点:32℃)と、ブテン類:1-ブテン(沸点:-6.3℃)、(E)-2-ブテン(沸点:0.9℃)、(Z)-2-ブテン(沸点:3.7℃)を効率的に分離するために、適度な理論段数を持つ精留塔が用いられる。理論段数は通常10段以上、50段程度以下であり、好ましくは20段以上50段以下である。ブテン類は沸点が常温以下であるため、精留塔の留分抜き出しライン内での気化現象により、目的とする1-フルオロブタンとの分離が見かけ上悪くなる。よって、留分抜き出しラインや初留分を貯留する容器は良く冷却(ブテン類の沸点以下に冷却)されていることが好ましい。
 精留時の圧力は、ゲージ圧で、通常常圧~10気圧、好ましくは常圧~5気圧程度である。還流量と抜出量の比(以下、「還流比」と言うことがある)は、ガス状態に成りやすいブテン類を効率良く分離するために、還流比30:1以上に設定するのが好ましい。還流比が小さすぎるとブテン類が効率良く分離されず、1-フルオロブタンの純度の向上幅が小さくなるばかりでなく、初留分が多くなってしまい、回収される1-フルオロブタンの総量が少なくなる。逆に還流比が大きすぎると、抜き出し1回当たりの回収までに多大な時間を要すために、精留そのものに多大な時間を要し、生産性に劣る。
 精留は回分式、連続式のいずれを採用しても良いが、回分式は製造量が少ない場合に好適に採用され、製造量が多い場合においては、精留塔を数本経由させる連続式が好適に採用される。また、抽出溶剤を加えた抽出蒸留操作を組み合わせて行っても良い。
 また、1-フルオロブタンを製造する際に適用する反応にもよるが、反応転化率が低く、原料回収を必要とする場合等には、例えば、1回目の蒸留で原料化合物を分離し、2回目の蒸留で不純物の対象となるブテン類を分離する等のように、段階的な蒸留を行ってもよい。その場合においても、還流比は40:1以上であることが好ましい。
 本発明の1-フルオロブタン中の窒素の含有量は、好ましくは100容量ppm以下、より好ましくは80容量ppm以下であり、酸素の含有量は、好ましくは50容量ppm以下、より好ましくは30容量ppm以下である。
 1-フルオロブタン中の窒素と酸素は、前述のブテン類の除去を精留で行う場合に、0族の不活性ガス中で精製を行う方法;又は、1-フルオロブタンを単蒸留し、留分を抜き出す操作を行う等の方法;により除去することができる。後者の方法による場合、単蒸留により、窒素及び酸素を1-フルオロブタンと一緒に抜き出すことにより、釜に残った1-フルオロブタン中の窒素と酸素の量を低減することができる。抜き出す1-フルオロブタンの量は、蒸留釜に仕込まれた1-フルオロブタンに対し、重量基準で20~50%が好ましく、30~40%がより好ましい。抜き出された1-フルオロブタンは貯留しておき、次のバッチに加えることで回収、再使用が可能である。
 本発明の1-フルオロブタンは、水分含有量が50容量ppm以下であるのが好ましく、20容量ppm以下であるのがより好ましい。
 1-フルオロブタン中の水分を除去する方法としては、1-フルオロブタンを吸着剤と接触させる等の一般的な方法を採用することができる。
 吸着剤としては、モレキュラーシーブスやアルミナ等を用いることができる。また、特開2014-24785号公報(特願2012-165797号)に記載されているように、1-フルオロブタンのようなモノフルオロ炭化水素を乾燥する場合には、モレキュラーシーブ3Aの使用が好ましい。モレキュラーシーブ4Aや5A等の細孔径が大きいモレキュラーシーブを使用する場合には、1-フルオロブタン分子が細孔内に取り込まれ、水分を低減させる効果が低下するおそれがある。また、アルカリ性を帯びたモレキュラーシーブの使用は1-フルオロブタンの脱HF反応を引き起こすので、いずれも使用に際しては注意を要する。アルミナとしては、アルミナ水和物の加熱脱水により生成する、結晶性の低い活性アルミナの使用が好ましい。
 また、1-フルオロブタンを接触させる前に、モレキュラーシーブやアルミナ等の吸着剤を焼成等の操作により活性化しておくと、より多くの水分を吸着させることが可能になるので好ましい。
 1-フルオロブタンを吸着剤と接触させることにより、1-フルオロブタン中の水分量を50容量ppm以下に低減することができる。1-フルオロブタン中の水分含有量が多いと、基板をエッチング加工した後に、加工面に水分が吸着残存し、銅等の配線形成工程で積層膜の剥がれや、埋め込んだ配線の腐食を起こすおそれがある。従って、1-フルオロブタン中の水分量は可能な限り除去されていることが好ましい。
 以上に説明した精留により、反応粗生成物中に含まれる粗1-フルオロブタンを純度99.9容量%以上、且つ、ブテン類を1000容量ppm以下にする工程(I);次いで、吸着剤と接触させることにより、水分を除去する工程(II);さらには、1-フルオロブタンを単蒸留することにより、1-フルオロブタン中の窒素、酸素濃度を100容量ppm以下、50容量ppm以下に低減する工程(III);を経て、プラズマ反応用ガスに好適な高純度の1-フルオロブタンを取得することができる。本発明の1-フルオロブタンを効率よく得る観点から、少なくとも前記工程(I)を実施するのが好ましく、工程(I)及び(II)を実施するのがより好ましく、工程(I)~(III)を実施するのが特に好ましい。
 このようにして、1-フルオロブタンに含まれる不純物含有量を特定値以下にする制御することにより、ドライエッチング時の加工安定性を高めることが可能になる。1-フルオロブタンは、窒化シリコン膜のみならず、窒化酸化シリコンや窒化チタン、窒化アルミニウム等の無機窒化膜への適用も可能である。
 本発明のプラズマエッチング方法は、本発明の1-フルオロブタンをエッチングガスとして用いることを特徴とする。
 本発明のプラズマエッチング方法に用いるエッチングガスは、本発明の1-フルオロブタンのみからなるものであってもよいし、さらに、酸素ガス及び/又は窒素ガスを含むものであってもよい。
 1-フルオロブタンに加えて、酸素ガス及び/または窒素ガスを併用することにより、ホール底面における反応物の堆積等が原因と考えられるエッチングの停止(エッチングストップ)を防止しつつ、選択比を格段に高めることができる場合がある。
 酸素ガス及び窒素ガスの使用割合は、1-フルオロブタンに対し、酸素ガス、窒素ガス、または酸素ガス及び窒素ガスの合計の容量比で、0.1~50となることが好ましく、0.5~30となることがより好ましい。
 また本発明においては、処理ガスとして、さらに、ヘリウム、アルゴン、ネオン、クリプトン、キセノンからなる群から選ばれる少なくとも1種の18族ガスを含むものであってもよい。18族ガスを併用することで、上記選択比を確保するとともに、無機窒化膜のエッチング速度を高めることができる場合がある。
 18族ガスの使用割合は、1-フルオロブタンに対し、容量比で0~100となることが好ましく、0~20となることがより好ましい。
 処理室への処理ガスの導入速度は、各成分の使用割合に比例させ、例えば、1-フルオロブタンガスは8×10-3~5×10-2Pa・m/sec、酸素ガスは8×10-2~5×10-1Pa・m/sec、18族ガスは8×10-2~5×10-1Pa・m/sec等とすればよい。
 処理ガスが導入された処理室内の圧力は、通常0.0013~1300Pa、好ましくは0.13~13Paである。
 次に、プラズマ発生装置により、処理室内の1-フルオロブタンガス(反応性プラズマガス)に高周波の電場を印加してグロー放電を起こさせ、プラズマを発生させる。
 プラズマ発生装置としては、ヘリコン波方式、高周波誘導方式、平行平板タイプ、マグネトロン方式及びマイクロ波方式等の装置が挙げられるが、高密度領域のプラズマ発生が容易なことから、ヘリコン波方式、高周波誘導方式及びマイクロ波方式の装置が好適に使用される。
 プラズマ密度は、特に限定されない。本発明の効果をより良好に発現させる観点から、プラズマ密度が、好ましくは1011イオン/cm以上、より好ましくは1012~1013イオン/cmの高密度プラズマ雰囲気下でエッチングを行うのが望ましい。
 エッチング時における被処理基板の到達温度は、特に限定されるものではないが、好ましくは0~300℃、より好ましくは0~100℃、さらに好ましくは20~80℃の範囲である。基板の温度は冷却等により制御しても、制御しなくてもよい。
 エッチング処理の時間は、一般的には5~10分であるが、本発明に用いる処理ガスは、高速エッチングが可能なので、2~5分として生産性を向上させることができる。
 本発明のプラズマエッチング方法は、上述したように、処理室内でエッチングガスのプラズマを発生させ、その内部に配置された被処理体上の所定部位をエッチングする方法であって、1-フルオロブタンを含む処理ガス(エッチングガス)を用いるものである。本発明のプラズマエッチング方法は、無機窒化膜を選択的にプラズマエッチングする方法であるのが好ましく、シリコン窒化膜を選択的にエッチングするものであるのがより好ましい。本発明のプラズマエッチング方法は、例えば、シリコン酸化膜に対してシリコン窒化膜を選択的にプラズマエッチングする方法である。
 上述したエッチング条件でシリコン窒化膜をエッチングすることにより、シリコン酸化膜に対するシリコン窒化膜の選択比が少なくとも10以上、多くの場合には20以上の選択比を得ることができ、堆積物によるエッチングの停止を回避しつつ、従来と比較して格段に高い選択比を得ることができる。従って、デバイスを構成するシリコン酸化膜の薄膜化が進んでも、シリコン窒化膜をエッチングする間にシリコン酸化膜が抜けてしまうこと(SiO膜ブレイク)を防止し、シリコン窒化膜のみを確実にエッチングすることができ、電気的性能に優れたデバイスを製造することができる。
 本発明のプラズマエッチング方法は、たとえば、半導体装置の製造において、(a)ONO膜(シリコン酸化膜-シリコン窒化膜-シリコン酸化膜)上の所定領域を開口したマスクパターンを形成し、少なくとも上部シリコン酸化膜を除去するようにマスクパターンの開口部をエッチングしたのち、開口部において露出したシリコン窒化膜を選択的にエッチングする場合や、(b)コンタクトホールを開設した後のプロセスにおいて、酸化膜である層間絶縁膜に加わるダメージから層間絶縁膜を保護するために、開設されたコンタクトホールの側壁(内壁)に薄く(例えば10~20nm厚で)シリコン窒化膜を形成した後、コンタクトホール底部のシリコン窒化膜をエッチングにより除去する場合等に適用することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例によってその範囲を限定されるものではない。
 以下において採用した分析条件は下記の通りである。
(1)ガスクロマトグラフィー分析(GC分析)
装置:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後240℃で10分間保持
インジェクション温度:200℃
キャリヤーガス:窒素
スプリット比:100/1
検出器:FID
(2)不純物分析(ガスクロマトグラフィー質量分析)
GC部分:HP-6890(アジレント社製)
カラム:ジーエルサイエンス社製 Inert Cap-1、長さ60m、内径0.25mm、膜厚1.5μm
カラム温度:40℃で10分間保持、次いで、20℃/分で昇温し、その後、240℃で10分間保持
MS部分:アジレント社製 5973 NETWORK
検出器 EI型(加速電圧:70eV)
(3)H、及び19F-NMR測定
装置:JNM-ECA-400(日本電子社製)400MHz
(4)窒素、酸素含有量の測定(ガスクロマトグラフィー分析)
GC部分:HP-7890(アジレント社製)
カラム:アジレント社製 HP-5 長さ30m、内径0.32mm、膜厚0.25μmカラム温度:40℃で5分間保持し、次いで、5℃/分で昇温し、その後、65℃で1分間保持
ガスサンプラー:50℃
キャリヤーガス:ヘリウム
検出器:TCD+パルス放電型
(5)水分含有量の測定(FT-IR)
IG-1000(大塚電子社製)
セル長:10m
[製造例1]
 攪拌機、滴下ロート、ジムロート型コンデンサーを付した容量2Lのガラス製反応器に、1-ブタノール(74g)、メタンスルホニルクロリド(126g)、乾燥ジイソプロピルエーテル(500ml)を仕込み、窒素雰囲気下に置いた。反応器を氷水で冷却し、滴下ロートからトリエチルアミン(121g)を約2時間かけて滴下した。滴下終了後、全容を0℃で30分間、次いで、25℃で6時間撹拌した。
 反応液に氷水を500ml添加して、生成したトリエチルアミン塩酸塩を溶解し、2層分離した。上層の有機層を5%塩酸、飽和重層水、次いで、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、硫酸マグネシウムをろ別した。その後、ロータリーエバポレーターにてろ液からジイソプロピルエーテルを留去、真空ポンプでポンプアップし、粗メタンスルホニルオキシブタンを119g得た。
[製造例2]
 攪拌機、滴下ロート、留分補集用受器、及びジムロート型コンデンサーを付した容量1Lのガラス製反応器に、スプレードライフッ化カリウム116g(アルドリッチ社製)、及びプロピレングリコール400mlを仕込み、窒素雰囲気下に置いた。反応器をオイルバスに浸して、90℃に加熱した後、製造例1の反応を繰り返して得られた粗メタンスルホニルオキシブタン120gを滴下ロートから約3.5時間かけて添加した。滴下終了後、全容を90℃で2時間撹拌し、生成する低沸点の生成物をドライアイス/エタノール浴に浸漬した留分捕集受器に捕集した。その後、オイルバスの温度を80℃まで下げ、反応器にドライアイス-エタノール浴に浸したガラス製トラップを直列に2つ繋げた。さらに、ガラス製トラップの出口には圧力コントローラー、及び真空ポンプを繋げた。真空ポンプを起動し、圧力コントローラーを使って、系内の圧力を50~45kPa、次いで、35~30kPa、さらに、30~25kPaまで段階的に下げて、揮発成分をガラストラップに回収した。留分捕集用受器、及び2つのガラス製トラップの中身を合わせて、ガスクロマトグラフィーにて分析した結果、1-ブテン3.47面積%、(E)-2-ブテン0.31面積%、(Z)-2-ブテン面積0.29%、1-フルオロブタン87.82面積%、ジイソプロピルエーテル3.53面積%、及び、高沸点成分4.58面積%を含む混合物であった。
[実施例1]
 製造例1及び2を繰り返して得られた、粗1-フルオロブタン598gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長60cm、充填剤ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、45~70℃で加温した。全還流後、還流比45:1で留分の抜き出しを行った。その結果、99.93面積(容量)%の1-フルオロブタンが508g得られた。このものには、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、612面積(容量)ppm、33面積(容量)ppm、及び55面積(容量)ppm含まれていた。
1-フルオロブタンのスぺクトルデータを以下に示す。
H-NMR(CDCl,TMS)δ(ppm):0.95(t,3H)、1.43(m,2H),1.70(m,2H),4.45(m,2H)
19F-NMR(CDCl、CFCl)δ(ppm):-219(m,F)
[実施例2]
 容量1.2LのSUS316製容器(内面:電解研磨処理)に、モレキュラーシーブス3A(和光純薬工業社製)100gを入れ、その中に、実施例1で蒸留精製された1-フルオロブタン463gを入れ、室温(25℃)で22時間浸漬させて水分除去を行った。
 その後、容量1LのSUS316製釜の上部に、ショートカラム及びコンデンサー及び受器を取り付けて単蒸留装置を組み、コンデンサーには-10℃の冷却水を循環させた。釜に水分除去を行った1-フルオロブタン419gを仕込み、釜を60℃に加温した。
 このときの1-フルオロブタン中の窒素及び酸素濃度をガスクロマトグラフィーにて測定したところ、それぞれ634容量ppm及び150容量ppmであった。
 仕込んだ1-フルオロブタンに対して、約30質量%を受器に抜出したところで、単蒸留を停止し、釜を室温まで冷却した。釜内の1-フルオロブタンを、ダイヤフラム式バルブを付した容量1Lのマンガン鋼製シリンダー(内面粗度:1S)に290g充填した。1-フルオロブタンの純度は99.9容量%以上であり、1-フルオロブタン中の、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンの含有量は、それぞれ541面積(容量)ppm、30面積(容量)ppm、及び48面積(容量)ppmであり、窒素、酸素、及び水分の含有量は、それぞれ58容量ppm、12容量ppm、及び22容量ppmであった。
[実施例3]
 製造例1の反応を繰り返して得られた粗1-フルオロブタン389gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使用して、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は、塔頂部の温度、及び釜内部の残量を考慮しながら、45から70℃まで加温した。全還流後、還流比30:1の間で留分の抜き出しを行った。その結果、99.91面積(容量)%の1-フルオロブタンが329g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、788面積(容量)ppm、56面積(容量)ppm、及び72面積(容量)ppm含まれていた。
[実施例4]
 容量1.2Lのステンレス製容器内にアルミナ(日揮触媒化成社製 N612N)60gを入れ、その中に、実施例3で得られた1-フルオロブタン329gを入れ、20時間、室温(25℃)で浸漬させた。
 次いで、ステンレス容器と容量1Lのマンガン鋼製シリンダーをステンレスチューブで繋ぎ、孔径0.2μmの金属製フィルターを介して、減圧下に1-フルオロブタンをシリンダー内に充填した。シリンダーを氷水で冷却し、圧力コントローラーを介して、5~10kPa圧力下、真空ポンプで減圧しながら、約30gの1-フルオロブタンを抜き出した。ステンレス容器内を室温(25℃)に戻し、暫く静置した。1-フルオロブタンの純度は99.9容量%以上であり、1-フルオロブタン中の、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンの含有量は、それぞれ716面積(容量)ppm、51面積(容量)ppm、及び65面積(容量)ppmであり、窒素、酸素、及び水分の含有量は、それぞれ45容量ppm、14容量ppm、及び40容量ppmであった。
[参考例1]
 製造例1及び2の反応を繰り返して得られた粗1-フルオロブタン604gを蒸留釜に仕込み、KS型精留塔(東科精機社製、カラム長:60cm、充填剤:ヘリパックNo.1)を使って、蒸留を行った。コンデンサーには-10℃の冷媒を循環させ、約1時間全還流を行った。蒸留釜は塔頂部の温度、及び釜内部の残量を考慮しながら、45~70℃で加温した。全還流後、還流比10:1で留分の抜き出しを行った。その結果、99.85面積%の1-フルオロブタンが282g得られ、不純物として、1-ブテン、(E)-2-ブテン、及び(Z)-2-ブテンがそれぞれ、1281面積(容量)ppm、107面積(容量)ppm、及び112面積(容量)ppm含まれていた。その後、実施例4と同様の操作を行い、1-フルオロブタン232gをシリンダーに充填した。1-フルオロブタン中の窒素・酸素、及び水分含有量を測定したところ、それぞれ43容量ppm、10容量ppm、及び29容量ppmであった。
(ドライエッチング評価)
 表面に窒化シリコン膜が形成されたウェハと、表面にシリコン酸化膜が形成されたウェハを用い、実施例2、4及び参考例1で調製した1-フルオロブタンをエッチングガスとして用いて、それぞれのウェハのドライエッチングを行った。
 その際における窒化シリコン膜及びシリコン酸化膜それぞれのエッチング速度を測定し、これらの測定結果に基づいて、シリコン酸化膜に対する窒化シリコン膜のエッチング速度比から選択比(SiN膜/SiO膜)を求めた。
 ドライエッチングは具体的には次のように行った。
 平行平板型プラズマエッチング装置のエッチングチャンバー内に、表面に窒化シリコン膜が形成されたウェハと、表面にシリコン酸化膜が形成されたウェハをそれぞれセットし、系内を真空にした後、実施例2、4、及び参考例1で調製した1-フルオロブタンを用いて、下記のエッチング条件下でエッチングを実施した。結果を表1に示す。
エッチング条件
 混合ガスの圧力:6.7Pa
 上部電極の高周波電源電力:200W
 下部電極の高周波電源電力:100W
 上部電極と下部電極の間隔:50mm
 電極温度:20℃
 ガス流量
 Oガス:60sccm
 1-フルオロブタン:40sccm
 エッチング時間:180秒
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  純度が99.9容量%以上、ブテン類が合計で1000容量ppm以下であることを特徴とする1-フルオロブタン。
  2.  窒素含有量が100容量ppm以下、及び酸素含有量が50容量ppm以下である請求項1記載の1-フルオロブタン。
  3.  水分含有量が50容量ppm以下である請求項1又は2記載の1-フルオロブタン。
  4.  請求項1~3のいずれかに記載の1-フルオロブタンの、ドライエッチングガスとしての使用。
  5.  請求項1~3のいずれかに記載の1-フルオロブタンを、エッチングガスとして用いることを特徴とするドライエッチング方法。
PCT/JP2014/065847 2013-06-17 2014-06-16 高純度1-フルオロブタン及びプラズマエッチング方法 WO2014203842A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015522903A JP6311710B2 (ja) 2013-06-17 2014-06-16 高純度1−フルオロブタン及びプラズマエッチング方法
KR1020157036986A KR20160019911A (ko) 2013-06-17 2014-06-16 고순도 1-플루오로부탄및 플라즈마 에칭 방법
EP14813057.8A EP3012241B1 (en) 2013-06-17 2014-06-16 Plasma etching method with high-purity 1-fluorobutane
US14/898,778 US20160372335A1 (en) 2013-06-17 2014-06-16 High-purity 1-fluorobutane and plasma etching method
CN201480034675.6A CN105324356A (zh) 2013-06-17 2014-06-16 高纯度1-氟代丁烷及等离子体蚀刻方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-126240 2013-06-17
JP2013126240 2013-06-17

Publications (1)

Publication Number Publication Date
WO2014203842A1 true WO2014203842A1 (ja) 2014-12-24

Family

ID=52104576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065847 WO2014203842A1 (ja) 2013-06-17 2014-06-16 高純度1-フルオロブタン及びプラズマエッチング方法

Country Status (7)

Country Link
US (1) US20160372335A1 (ja)
EP (1) EP3012241B1 (ja)
JP (1) JP6311710B2 (ja)
KR (1) KR20160019911A (ja)
CN (1) CN105324356A (ja)
TW (1) TWI653213B (ja)
WO (1) WO2014203842A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064550A1 (ja) * 2013-10-30 2017-03-09 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
WO2022080272A1 (ja) * 2020-10-15 2022-04-21 昭和電工株式会社 エッチングガス及びその製造方法、並びに、エッチング方法、半導体素子の製造方法
JP7181486B1 (ja) * 2021-06-23 2022-12-01 ダイキン工業株式会社 モノフルオロアルカンの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017188209A1 (ja) * 2016-04-28 2019-02-14 富士フイルム株式会社 精製装置、精製方法、製造装置、薬液の製造方法、容器、及び薬液収容体
CN116621674B (zh) * 2023-05-09 2024-05-14 岳阳隆兴实业有限公司 一种粗氯丁烷的提纯方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123038A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 プラズマエッチング方法
JP2012165797A (ja) 2011-02-10 2012-09-06 Sammy Corp 遊技機
JP2013006786A (ja) 2011-06-23 2013-01-10 Nippon Zeon Co Ltd フッ素化アルカンの製造方法
JP2014024785A (ja) 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765613B2 (en) * 2011-10-26 2014-07-01 International Business Machines Corporation High selectivity nitride etch process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123038A1 (ja) 2008-03-31 2009-10-08 日本ゼオン株式会社 プラズマエッチング方法
US20110068086A1 (en) 2008-03-31 2011-03-24 Zeon Corporation Plasma etching method
JP2012165797A (ja) 2011-02-10 2012-09-06 Sammy Corp 遊技機
JP2013006786A (ja) 2011-06-23 2013-01-10 Nippon Zeon Co Ltd フッ素化アルカンの製造方法
JP2014024785A (ja) 2012-07-26 2014-02-06 Nippon Zeon Co Ltd フッ素化炭化水素化合物の精製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF FLUORINE CHEMISTRY, vol. 73, 1995, pages 185
KAGAKU DAIJITEN, vol. 7, 30 October 1961 (1961-10-30), pages 878, XP008182590 *
TETRAHEDRON, vol. 29, 1973, pages 1877

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015064550A1 (ja) * 2013-10-30 2017-03-09 日本ゼオン株式会社 高純度フッ素化炭化水素、プラズマエッチング用ガスとしての使用、及び、プラズマエッチング方法
WO2022080272A1 (ja) * 2020-10-15 2022-04-21 昭和電工株式会社 エッチングガス及びその製造方法、並びに、エッチング方法、半導体素子の製造方法
JP7181486B1 (ja) * 2021-06-23 2022-12-01 ダイキン工業株式会社 モノフルオロアルカンの製造方法
WO2022270173A1 (ja) * 2021-06-23 2022-12-29 ダイキン工業株式会社 モノフルオロアルカンの製造方法

Also Published As

Publication number Publication date
US20160372335A1 (en) 2016-12-22
TW201500331A (zh) 2015-01-01
JP6311710B2 (ja) 2018-04-18
EP3012241A1 (en) 2016-04-27
CN105324356A (zh) 2016-02-10
EP3012241B1 (en) 2018-10-31
TWI653213B (zh) 2019-03-11
JPWO2014203842A1 (ja) 2017-02-23
KR20160019911A (ko) 2016-02-22
EP3012241A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6256462B2 (ja) 高純度2−フルオロブタン
JP6311710B2 (ja) 高純度1−フルオロブタン及びプラズマエッチング方法
JP5131436B2 (ja) エッチング方法
TWI438841B (zh) 電漿蝕刻方法
KR101962191B1 (ko) 플라즈마 에칭 가스 및 플라즈마 에칭 방법
JP6447507B2 (ja) 高純度フッ素化炭化水素をプラズマエッチングガスとして用いるプラズマエッチング方法
JP2014185111A (ja) 高純度2,2−ジフルオロブタン
US9944852B2 (en) High-purity 1H-heptafluorocyclopentene
KR100810954B1 (ko) 플라즈마 반응용 가스, 그 제조방법 및 이용
JP3960095B2 (ja) プラズマ反応用ガス及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034675.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14813057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522903

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14898778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014813057

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157036986

Country of ref document: KR

Kind code of ref document: A