WO2009122708A1 - 脂環族成分および/または芳香族成分を含むポリウレタン樹脂およびそれを用いた位相差フィルム - Google Patents
脂環族成分および/または芳香族成分を含むポリウレタン樹脂およびそれを用いた位相差フィルム Download PDFInfo
- Publication number
- WO2009122708A1 WO2009122708A1 PCT/JP2009/001445 JP2009001445W WO2009122708A1 WO 2009122708 A1 WO2009122708 A1 WO 2009122708A1 JP 2009001445 W JP2009001445 W JP 2009001445W WO 2009122708 A1 WO2009122708 A1 WO 2009122708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyurethane resin
- film
- resin
- diisocyanate
- phase difference
- Prior art date
Links
- 0 CC(C)(C(NC1CC(C)(C*(OCC2CCC(COC(C)(C)IN)CC2)=O)CC(C)(C)C1)=O)I Chemical compound CC(C)(C(NC1CC(C)(C*(OCC2CCC(COC(C)(C)IN)CC2)=O)CC(C)(C)C1)=O)I 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/30—Low-molecular-weight compounds
- C08G18/32—Polyhydroxy compounds; Polyamines; Hydroxyamines
- C08G18/3203—Polyhydroxy compounds
- C08G18/3212—Polyhydroxy compounds containing cycloaliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/751—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
- C08G18/752—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
- C08G18/753—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
- C08G18/755—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/75—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
- C08G18/758—Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Definitions
- the present invention relates to a polyurethane resin containing an alicyclic component or an aromatic component, and a retardation film used in a liquid crystal display device using the polyurethane resin.
- a polycarbonate film As a retardation film used for a liquid crystal display device or the like, a polycarbonate film was used at the early stage of development (Japanese Patent Laid-Open No. 5-113506, etc.). However, polycarbonate has a large photoelastic coefficient, and it is difficult to obtain a film having a uniform retardation. Therefore, a film obtained by adding a phase difference adjusting agent to triacetyl cellulose has been put into practical use (EP0911656 etc.). However, triacetyl cellulose has a problem that it is inferior in heat resistance. In order to solve this problem, a film made of cycloolefin resin has begun to be used as a retardation film having high heat resistance (Japanese Patent Laid-Open No. 4-361230, etc.). However, a film made of a cycloolefin resin has problems that the mechanical strength is low and the film is easily broken.
- a retardation film obtained by applying a urethane-based resin as a primer layer as a retardation layer has also been proposed (JP 2007-328052, JP 2007-328053).
- Urethane resins have the advantages of excellent coating properties and high mechanical strength, but generally have low heat resistance, and even if the coating film is stretched and oriented to develop a phase difference, it can be used in automobiles in summer. At such a high temperature, the orientation is relaxed and the retardation value is lowered.
- optical films using urethane resins having high heat resistance have also been proposed (for example, JP 2005-126665, JP 2005-225997, JP 2005-272614, JP 2005-272615, JP 2007). -090557).
- the glass transition temperature (Tg) representing the heat resistance of the film is as high as 200 ° C. or higher.
- Tg glass transition temperature
- a step of heating and stretching the film to Tg or more is necessary, but the film may be thermally deteriorated at a temperature of 200 ° C. or higher. It is difficult to develop a phase difference.
- the present invention has been made in view of such problems, and provides a retardation film having sufficient heat resistance that is easily stretched during production, easily develops a retardation, and has no practical change in retardation.
- the main object is to provide a urethane-based resin having a glass transition temperature and a retardation film using the resin.
- the polyurethane resin of the present invention is characterized by containing an alicyclic component and / or an aromatic component in its structure. By setting it as such a structure, it becomes possible to provide the urethane type phase difference film which has heat resistance. Moreover, it is preferable that the glass transition temperature (Tg) of the polyurethane resin of this invention is 100 degreeC or more and less than 200 degreeC. By setting the glass transition temperature within the above range, a retardation film having sufficient heat resistance can be obtained which is easily stretched during production, easily develops a retardation, and has no practical change in retardation.
- Tg glass transition temperature
- the polyurethane resin of the present invention is particularly preferably obtained by polymerizing a diisocyanate having a cyclohexane structure and a diol having a cyclohexane structure. Or it is preferable that it is a thing obtained by superposing
- the compound represented by the following chemical formula (I) or (II) is particularly preferable in the present invention.
- the retardation film of the present invention is produced by using the above-mentioned compound.
- a polyurethane resin is formed into a sheet and then stretched.
- the retardation film or polyurethane resin is dissolved in a solvent to obtain a solution (coating). It is a retardation film formed by coating and stretching on another transparent substrate (film or the like).
- the polyurethane resin which consists of said compound can also be used as optical films, such as a polarizer protective film.
- the retardation film made of the polyurethane resin is made of glass. There is no possibility that the film will be thermally deteriorated even if it is subjected to a step of stretching at a temperature higher than the transition temperature (Tg), and even if the stretched film is used at a high temperature in summer, there is no decrease in retardation.
- the polyurethane resin of the present invention is characterized by containing one or more alicyclic components and / or aromatic components in the molecule.
- the polyurethane resin is obtained by a reaction between a diisocyanate compound and a diol compound.
- the diisocyanate compound used in the polyurethane resin has an isocyanate group in the molecule.
- diisocyanate compound used for this invention may be one type, or may be two or more types.
- diol compound used in the present invention examples include aromatic diols, aliphatic diols, and alicyclic diols.
- aromatic diol examples include ethylene oxide addition diol of bisphenol A, propylene oxide addition diol of bisphenol A, butylene oxide addition diol of bisphenol A, ethylene oxide addition diol of bisphenol F, propylene oxide addition diol of bisphenol F, bisphenol Examples thereof include a butylene oxide addition diol of F, an alkylene oxide addition diol of hydroquinone, and an alkylene oxide addition diol of naphthoquinone.
- Examples of the aliphatic diol include ethylene glycol, propylene glycol, tetramethylene glycol, 1,2-butylene glycol, and isobutylene glycol.
- Examples of the alicyclic diol include hydrogenated bisphenol A ethylene oxide addition diol, hydrogenated bisphenol A propylene oxide addition diol, hydrogenated bisphenol A butylene oxide addition diol, hydrogenated bisphenol F ethylene oxide addition diol, Examples thereof include a propylene oxide addition diol of hydrogenated bisphenol F, a butylene oxide addition diol of hydrogenated bisphenol F, a dimethylol compound of dicyclopentadiene, tricyclodecane dimethanol, and 1,4-cyclohexane dimethanol.
- the glass transition temperature (Tg) of the polyurethane resin of the present invention is preferably 100 ° C. or higher and lower than 200 ° C.
- Tg is lower than the above range
- a stretched film made of a polyurethane resin is used as a retardation film at a high temperature such as summertime, the retardation developed by stretching decreases, and the function as a retardation film is reduced. descend.
- Tg is higher than the above range, there is a high possibility that the resin is thermally deteriorated when heated to the vicinity of Tg for processing such as stretching.
- the polyurethane resin of the present invention is particularly preferably obtained by polymerizing a diisocyanate having a cyclohexane structure and a diol having a cyclohexane structure.
- the polyurethane resin is particularly preferably a compound represented by the following chemical formula (I).
- a compound represented by the following chemical formula (I) In the case where 4,4′-dicyclohexylmethane diisocyanate as a diisocyanate having a cyclohexane structure and 1,4-cyclohexanedimethanol as a diol having a cyclohexane structure are selected and reacted as a raw material monomer, a compound represented by the following chemical formula (I) Is obtained.
- the polyurethane resin of the present invention is also particularly preferably a polyurethane resin obtained by polymerizing a diisocyanate having a phenyl group and a diol having a cyclohexane structure.
- the polyurethane resin obtained by polymerizing the diisocyanate having a phenyl group and a diol having a cyclohexane structure is particularly preferably a compound represented by the following chemical formula (II).
- a compound represented by the following chemical formula (II) is obtained.
- the polyurethane resin of the present invention may be copolymerized with components such as an aliphatic polyol, an alicyclic polyol, an aromatic polyol, a polyester polyol, a polycarbonate polyol, and a polycaprolactone polyol as long as the object of the present invention is not impaired.
- the polyurethane resin of the present invention preferably has a weight average molecular weight of 5,000 to 1,000,000. If the molecular weight is less than 5,000, the resin is brittle and easily broken. On the other hand, if it exceeds 1,000,000, the viscosity becomes very high when the resin is melted or made into a solution, and it becomes difficult to perform molding.
- a method for producing the polyurethane resin of the present invention will be described.
- a method for producing the polyurethane resin of the present invention a general method can be used, and any method can be selected according to the types of the diisocyanate compound and the diol compound which are monomer compounds.
- a method of dissolving a diisocyanate compound and a diol compound, which are monomer compounds, in a solvent and then mixing and reacting to precipitate a reaction product can be selected.
- a solvent capable of dissolving the monomer compound to be used at a desired concentration can be appropriately selected.
- hydrocarbon solvents such as benzene and hexane
- ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and methylcyclohexanone
- ether solvents such as tetrahydrofuran and 1,2-dimethoxyethane
- alkyl halides such as chloroform and dichloromethane
- ester solvents such as methyl acetate, butyl acetate, and propylene glycol monomethyl ether acetate
- amide solvents such as N, N-dimethylformamide, and sulfoxide solvents such as dimethyl sulfoxide.
- an amide solvent such as dimethylformamide in this step.
- a solvent used for this aspect what consists
- the retardation film obtained by using the polyurethane resin of the present invention and the production method thereof will be described.
- the retardation film of the present invention is characterized by using the above polyurethane resin, and the film may be a single layer film or a multilayer film in which a plurality of layers are laminated.
- a melt extrusion method or a solvent casting method can be used as a generally known method.
- the melt extrusion method is a method in which a resin is melted and then extruded into a sheet shape, and the obtained resin sheet is stretched.
- the solvent cast method is (A) adjusting the coating solution by dissolving the polyurethane resin in a solvent. It is a method comprising: a step; (B) a step of coating and drying the coating liquid to form a resin sheet; and (C) a step of stretching the obtained resin sheet.
- the manufacturing method of a single layer film is demonstrated as retardation film obtained using the polyurethane resin of this invention.
- the resin is supplied to a single-screw or twin-screw extruder, heated to a temperature at which the viscosity of the resin can be extruded by the extruder and less than the decomposition temperature of the resin, and extruded from a T-die into a sheet shape.
- the extruded resin is cooled and solidified by a roll whose temperature is controlled near or below the glass transition temperature (Tg) of the resin to form a resin sheet.
- Tg glass transition temperature
- the obtained resin sheet is sent to a stretching process in order to arrange the polyurethane resin material molecules contained therein and improve the retardation of the film.
- the stretching step is the same as in the case of the solution casting method described later, and is omitted here.
- this resin sheet may contain other compounds other than the said polyurethane resin.
- known thermoplastic resins, thermoplastic elastomers, rubber polymers, organic fine particles, inorganic fine particles, antioxidants, ultraviolet absorbers, mold release agents, flame retardants, antibacterial agents, wood powder, coupling agents, petroleum resins Plasticizers, colorants, lubricants, antistatic agents, silicone oils, foaming agents and the like may be blended.
- the said polyurethane resin is first melt
- the solvent used is not particularly limited as long as it can dissolve the polyurethane resin at a desired concentration.
- hydrocarbon solvents such as benzene and hexane; methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, Ketone solvents such as methylcyclohexanone; ether solvents such as tetrahydrofuran and 1,2-dimethoxyethane; alkyl halide solvents such as chloroform and dichloromethane; ester solvents such as methyl acetate, butyl acetate and propylene glycol monomethyl ether acetate; Examples thereof include amide solvents such as N, N-dimethylformamide, and sulfoxide solvents such as dimethyl sulfoxide. Moreover, as a solvent, what consists of a single solvent may be sufficient, and the mixed solvent of a some solvent may be sufficient.
- the coating liquid may contain other compounds than the polyurethane resin and the solvent as long as the object of the present invention is not impaired.
- known thermoplastic resins, thermoplastic elastomers, rubber polymers, organic fine particles, inorganic fine particles, antioxidants, ultraviolet absorbers, mold release agents, flame retardants, antibacterial agents, wood powder, coupling agents, petroleum resins Plasticizers, colorants, lubricants, antistatic agents, silicone oils, foaming agents and the like may be blended.
- the concentration of the polyurethane resin component in the coating solution is usually 0.1 to 90% by weight, preferably 1 to 50% by weight, and more preferably 5 to 35% by weight.
- concentration of the resin component is lower than the above range, a resin film having a sufficient thickness may not be obtained, and a resin having good surface smoothness due to foaming caused by evaporation of the solvent A film may not be obtained.
- concentration of a resin component exceeds the said range, the viscosity of a resin solution becomes high too much and a resin film with uniform thickness and surface state may not be obtained.
- the viscosity of the coating solution at room temperature is usually 1 to 1,000,000 mPa ⁇ s, preferably 10 to 100,000 mPa ⁇ s, more preferably 100 to 50,000 mPa ⁇ s, and particularly preferably 1, 000 to 40,000 mPa ⁇ s.
- the temperature when the polyurethane resin is dissolved with a solvent may be room temperature or high temperature.
- a uniform solution can be obtained by thorough stirring.
- a means for removing bubbles remaining in the solution is taken by heating the solution and allowing it to stand as required.
- coloring agents such as dye and a pigment
- a leveling agent may be added to improve the surface smoothness of the film.
- Such a leveling agent is not particularly limited as long as it is a general leveling agent.
- a fluorine nonionic surfactant, a special acrylic resin leveling agent, a silicone leveling agent, and the like can be used.
- the method for coating is not particularly limited as long as it is a method capable of coating a predetermined amount of the coating liquid on the substrate.
- a coating method for example, gravure coating method, reverse coating method, knife coating method, dip coating method, spray coating method, air knife coating method, spin coating method, roll coating method, printing method, immersion pulling method , Curtain coating method, die coating method, casting method, bar coating method, extrusion coating method, E-type coating method, and the like.
- suitable base materials for applying the coating liquid include metal drums, steel belts, polyester films such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and belts made of polytetrafluoroethylene. It is done.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- a commonly used drying method such as a heat drying method, a reduced pressure drying method, or a gap drying method can be used. Further, the drying method in this embodiment is not limited to a single method. For example, a plurality of drying methods may be employed by changing the drying method sequentially according to the amount of solvent remaining in the coating film. .
- the drying temperature is not particularly limited, but is preferably about 60 ° C to 150 ° C.
- the coating film is peeled off from the substrate to obtain a resin sheet.
- the obtained resin sheet undergoes a stretching step in order to arrange the polyurethane resin material molecules contained therein and improve the retardation of the film (step (C)).
- the stretching treatment of the resin sheet obtained by the melt extrusion method or the solvent cast method is not particularly limited as long as the desired retardation can be imparted to the retardation film produced according to the present invention, free end uniaxial stretching, Any of width-constrained uniaxial stretching or biaxial stretching may be used.
- the stretching method include a roll stretching method, a long gap stretching method, a tenter stretching method, and a tubular stretching method.
- the intersecting angle of the two stretching axes is determined according to the properties required for the target optical film, and is not particularly limited, but is usually in the range of 120 to 60 degrees.
- the stretching speed is usually 1 to 5,000% / minute, preferably 50 to 1,000% / minute, and more preferably 100 to 1,000% / minute.
- the stretching speed may be the same or different in each stretching direction, and is usually 1 to 5,000% / min, preferably 50 to 1,000%. / Min., More preferably 100 to 1,000% / min, and particularly preferably 100 to 500% / min.
- the draw ratio is determined according to the properties required for the target retardation film and is not particularly limited, but is usually 1.01 to 10 times, preferably 1.03 to 5 times, and more preferably 1.03. ⁇ 3 times. When the draw ratio exceeds the above range, it may be difficult to control the retardation of the obtained film.
- the stretching treatment temperature it is preferable that the obtained resin sheet is stretched in a state of being heated to a glass transition temperature or higher and a melting point or lower as is usually done.
- the stretched film may be cooled as it is after the stretching treatment. However, it is at least 10 seconds, preferably 30 seconds to 60 minutes, more preferably 1 in a temperature atmosphere of Tg-20 ° C. to Tg of the resin film. It is preferred to cool after holding for ⁇ 60 minutes. Thereby, a stable retardation film can be obtained with little change over time in the retardation of transmitted light.
- the manufacturing method of a multilayer film is demonstrated as a phase difference film obtained using the polyurethane resin of this invention.
- the multilayer film of the present invention may have a two-layer structure or a three-layer structure, and may further have three or more layers.
- a method for producing a multilayer film As a method for producing a multilayer film, (i) a method of laminating a plurality of resin sheets obtained by a melt extrusion method or a solvent cast method to form a laminate, and then stretching the laminate to obtain a multilayer film, (ii) ) A method of applying a coating liquid to a resin sheet obtained by drying and further applying a coating liquid and drying, repeating this to form a laminate, and then stretching the laminate to form a multilayer film (Iii) A method in which a coating liquid is applied to a transparent substrate and dried to form a laminate, and then the laminate is stretched to form a multilayer film.
- the production method (i) for the multilayer film will be described. First, two or more resin sheets produced by the same method as the method for producing a single layer film are prepared and laminated together to obtain a laminate. In such a laminate, a general adhesive layer or primer layer may be interposed between the resin sheets. Thereafter, the laminate is stretched by the same method as described above to obtain a multilayer film.
- the production method (ii) of the multilayer film will be described.
- the polyurethane resin in the present invention is dissolved in a solvent by the same method as the method for producing a single layer film, a coating solution is prepared, coated on a substrate, and dried to obtain a resin sheet. Thereafter, the coating liquid is further applied onto the resin sheet, dried in the same manner to form a two-layer laminate, and then stretched in the same manner as described above to obtain a two-layer retardation film. It is also possible to obtain a film having three or more layers by repeating the coating and drying steps.
- the production method (iii) of the multilayer film will be described.
- a coating solution prepared by the same method as described above is applied onto a transparent substrate (thin plate, film, etc.) and dried to form a laminate, and then this laminate is stretched to obtain a multilayer.
- a transparent substrate the polyurethane resin of the present invention or a commonly used resin material can be used.
- cellulose derivatives for example, cellulose derivatives, cycloolefin resin, polymethyl methacrylate, polyvinyl alcohol, polyimide, polyarylate, polyethylene terephthalate, polysulfone, polyethersulfone, amorphous polyolefin, modified acrylic polymer, polystyrene, epoxy resin, polycarbonate, polyester, etc. Can be mentioned.
- the thickness of the retardation film is not particularly limited, but usually a thickness of about 50 ⁇ m to 500 ⁇ m is used.
- the evaluation analysis method used in this example is as follows. (1) Heat resistance of resin It evaluated by the glass transition temperature (Tg) measured when it heated up at 20 degree-C / min by differential scanning calorimetry (DSC). (2) Weight average molecular weight Determined by measurement by gel permeation chromatography (GPC). (3) Optical properties of the solvent cast film After the resin was dissolved in the solvent, applied to the fluororesin coated plate, and peeled off after drying, the film was uniaxially stretched at a glass transition temperature of + 20 ° C and then the following optical properties were obtained. evaluated. Appearance: Visually evaluated for appearance defects.
- -Phase difference The phase difference in the front and thickness directions was measured with an ellipsometer (KOBLA WPRXY2020, manufactured by Oji Scientific Instruments). The phase difference was converted to a value at a film thickness of 100 ⁇ m.
- phase difference The phase difference in the front and thickness directions was measured with an ellipsometer (KOBLA WPRXY2020, manufactured by Oji Scientific Instruments). The phase difference was converted to a value at a film thickness of 100 ⁇ m.
- -Retardation holding ratio When the stretched film was heated at 90 ° C for 500 hours, the holding ratio of the retardation with respect to that before heating was determined by the following equation.
- Example 1 A reaction vessel was charged with 45.2 parts by weight of 4,4′-dicyclohexylmethane diisocyanate, and 240 parts by weight of dimethylformamide was added and dissolved. Next, while stirring this solution, a solution prepared by dissolving 24.8 parts by weight of 1,4-cyclohexanedimethanol in 40 parts by weight of dimethylformamide was slowly added. After completion of the addition, the reaction was carried out at 130 ° C. for 4 hours, and the resulting resin was poured into methanol to precipitate the produced resin. The precipitated resin was vacuum-dried at 80 ° C. The NMR spectrum of the resin thus prepared is shown in FIG. Table 1 shows the results of evaluation of heat resistance, molecular weight, optical properties, strength, and coatability.
- Example 2 A reaction vessel was charged with 44.4 parts by weight of 4,4'-diphenylmethane diisocyanate, and 240 parts by weight of dimethylformamide was added and dissolved. Next, a solution prepared by dissolving 25.59 parts by weight of 1,4-cyclohexanedimethanol in 40 parts by weight of dimethylformamide was slowly added while stirring the solution. After completion of the addition, the reaction was carried out at 130 ° C. for 4 hours, and the resulting resin was poured into methanol to precipitate the produced resin. The precipitated resin was vacuum-dried at 80 ° C. Table 1 shows the results of evaluating the heat resistance, molecular weight, optical properties, strength, and coatability of the resin thus prepared.
- Example 3 A reaction vessel was charged with 21.28 parts by weight of 1,4-cyclohexanedimethanol and 30 parts by weight of dimethylformamide as a solvent, and heated to 110 ° C. in a nitrogen atmosphere. Subsequently, 38.72 parts by weight of 4,4'-dicyclohexylmethane diisocyanate was added at 1 part by weight per minute, and 10 parts by weight of a solvent (dimethylformamide) was further added. After completion of the addition, the reaction was performed at 130 ° C. for 23 hours.
- Table 1 shows the heat resistance, molecular weight, optical properties, strength, and coatability of the melt-extruded film.
- Example 4 A reaction vessel was charged with 70.83 parts by weight of 1,4-cyclohexanedimethanol and 120 parts by weight of dimethylformamide as a solvent, and heated to 110 ° C. in a nitrogen atmosphere. Then, 108.08 parts by weight of isophorone diisocyanate was slowly added. After completion of the addition, the reaction was performed at 130 ° C. for 25 hours. The obtained reaction solution was heated to 200 ° C., and after removing the solvent under reduced pressure, the resin was taken out. Table 1 shows the heat resistance, molecular weight, optical properties, strength, and coatability of the resin.
- Table 1 shows the results of evaluating heat resistance, molecular weight, optical properties, strength, and coatability of commercially available polyurethane resin (HUX320 manufactured by Adeka Corporation) in the same manner as in the Examples.
- Table 1 shows the results of evaluating the heat resistance, molecular weight, optical properties, strength, and coatability of commercially available cycloolefin resins (TOPAS6013 manufactured by Polyplastics Co., Ltd.) in the same manner as in the Examples.
- the polyurethane resin of the present invention has a glass transition temperature (Tg) of 100 ° C. or higher and lower than 200 ° C., and the film is heated even after being heated and stretched above the glass transition temperature (Tg). It is possible to provide a retardation film that is not likely to deteriorate and that does not cause a decrease in retardation even when the stretched film is used at a high temperature as in an automobile in summer.
- the retardation film of the present invention has excellent optical characteristics and an excellent viewing angle compensation effect, and thus is suitable as a viewing angle compensation film used for a liquid crystal display such as a large liquid crystal television.
- liquid crystal display elements such as mobile phones, digital information terminals, pagers, navigation, in-vehicle liquid crystal displays, liquid crystal monitors, light control panels, displays for OA devices, displays for AV devices, electro It can be used as an optical film used for a luminescence display element or a touch panel. It is also useful as a wave plate used in an optical disk recording / reproducing apparatus such as a CD, CD-R, MD, MO, and DVD.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polarising Elements (AREA)
- Polyurethanes Or Polyureas (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
そこで、トリアセチルセルロースに位相差調整剤を加えたフィルムが実用化されている(EP0911656等)。しかしながら、トリアセチルセルロースは耐熱性に劣るという問題点を有する。
この問題点を解決するため、耐熱性が高い位相差フィルムとしてはシクロオレフィン系樹脂からなるフィルムが使用され始めている(特開平4-361230等)。しかしながら、シクロオレフィン系樹脂からなるフィルムは機械的強度が低く、フィルムが割れやすい、という問題点がある。
しかし、これらの樹脂単独では塗工性に劣るため、ウレタン樹脂などを接着層(プライマー層)として設けることが必要である。
ウレタン系樹脂は塗工性に優れ,機械強度が高いという利点を有するが、一般的には耐熱性が低く、塗工フィルムを延伸配向させて位相差を発現させても、夏場の自動車内のような高温下において配向が緩和され、位相差値が低下してしまう。
一方、高い耐熱性を有するウレタン系樹脂を用いた光学フィルムも提案されている(例えば、特開2005-126665、特開2005-225997、特開2005-272614、特開2005-272615、特開2007-090557)。これらの光学フィルムにおいて、フィルムの耐熱性を表すガラス転移温度(Tg)は200℃以上と高い。フィルムに位相差を発現させるためには、フィルムをTg以上に加熱して延伸する工程が必要であるが、200℃以上の温度ではフィルムが熱劣化するおそれがあり、これらのフィルムを延伸して位相差を発現させることは難しい。
また、本発明のポリウレタン樹脂は、ガラス転移温度(Tg)が100℃以上200℃未満であることが好ましい。ガラス転移温度を上記範囲内とすることにより、製造時に延伸が容易で位相差を発現させやすく、かつ実用上位相差の変化がない、十分な耐熱性を有する位相差フィルムとなる。
本発明のポリウレタン樹脂は特に、シクロヘキサン構造を有するジイソシアネートと、シクロヘキサン構造を有するジオールとを重合させて得られるものであることが好ましい。或いは、フェニル基を有するジイソシアネートと、シクロヘキサン構造を有するジオールとを重合させて得られるものであることが好ましい。
上記ポリウレタン樹脂の中で、本発明においては特に、下記化学式(I)または(II)で表わされる化合物であることが好ましい。
本発明の位相差フィルムは、上記化合物を使用して製造したことを特徴とし、ポリウレタン樹脂をシート状に成形した後,延伸してなる位相差フィルム、あるいはポリウレタン樹脂を溶媒に溶かして溶液(塗工液)とした後,他の透明基材(フィルム等)に塗工し,延伸してなる位相差フィルムである。
なお、上記の化合物からなるポリウレタン樹脂は偏光子保護フィルム等の光学フィルムとして使用することも可能である。
本発明のポリウレタン樹脂を製造する方法としては一般的な方法を用いることができ、モノマー化合物であるジイソシアネート化合物とジオール化合物との種類等に応じて、任意の方法を選択することができる。例えば、モノマー化合物であるジイソシアネート化合物、ジオール化合物をそれぞれ溶媒に溶解させた後、混合し反応させ、反応物を析出する等の方法を選択できる。
なかでも本工程においては、ジメチルホルムアミド等のアミド系溶媒を用いることが好ましい。
なお、本態様に用いられる溶媒としては、単一溶媒からなるものであってもよく、複数の溶媒の混合溶媒であっても良い。
本発明の位相差フィルムは、上記ポリウレタン樹脂を用いたことを特徴とし、フィルムの構成としては単層フィルムであっても複数層を積層した多層フィルムであっても良い。
溶融押出法で製造する場合、樹脂を単軸あるいは二軸押出機に供給し、樹脂の粘度が押出機で押出可能かつ樹脂の分解温度未満となる温度に加熱し、Tダイよりシート状に押し出す。押し出された樹脂は、樹脂のガラス転移温度(Tg)付近/もしくは以下に温度制御されたロールで冷却固化され樹脂シートとなる。得られた樹脂シートは、その内部に含有するポリウレタン樹脂材料分子を配列させ、フィルムの位相差性を向上させるために、延伸工程に送られる。延伸工程については、後述する溶液キャスト法の場合と同じであるためここでは省略する。
使用される溶媒としては、上記ポリウレタン樹脂を所望の濃度で溶解できるものであれば特に限定されるものではないが、例えば、ベンゼン、ヘキサン等の炭化水素系溶媒;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等のケトン系溶媒;テトラヒドロフラン、1,2-ジメトキシエタン等のエーテル系溶媒;クロロホルム、ジクロロメタン等のハロゲン化アルキル系溶媒;酢酸メチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート等のエステル系溶媒;N,N-ジメチルホルムアミド等のアミド系溶媒、およびジメチルスルホキシド等のスルホキシド系溶媒を挙げることができる。また、溶媒としては、単一溶媒からなるものであってもよく、複数の溶媒の混合溶媒であっても良い。
塗工する方法としては、基材上に所定量の塗工液を塗工できる方法であれば特に限定されるものではない。このような塗工方法としては、例えば、グラビアコート法、リバースコート法、ナイフコート法、ディップコート法、スプレーコート法、エアーナイフコート法、スピンコート法、ロールコート法、プリント法、浸漬引き上げ法、カーテンコート法、ダイコート法、キャスティング法、バーコート法、エクストルージョンコート法、E型塗布方法など挙げることができる。
乾燥温度は特に限定されないが、60℃~150℃程度が好ましい。
多層フィルムの製造方法としては、(i)溶融押出法あるいは溶媒キャスト法で得られた樹脂シートを、複数枚積層させ積層体とし、その後前記積層体を延伸して多層フィルムとする方法、(ii) 塗工液を塗工して乾燥させ得られた樹脂シートに、さらに塗工液を塗工し乾燥させ、これを繰り返して積層体とし、その後前記積層体を延伸して多層フィルムとする方法、(iii)透明基材に塗工液を塗工し乾燥させ積層体とし、その後前記積層体を延伸して多層フィルムとする方法、等が挙げられる。
まず、単層フィルムの製造方法と同様の方法で製造した樹脂シートを2枚或いはそれ以上の枚数準備し、互いに積層させて積層体を得る。このような積層体において、各々の樹脂シート間には一般的な接着剤層あるいはプライマー層を介しても良い。
その後、前記積層体を上述と同様の方法にて延伸し、多層フィルムとする。
まず、上記単層フィルムの製造方法と同様の方法で本発明におけるポリウレタン樹脂を溶媒に溶解し塗工液を調整し、基板に塗工した後乾燥させ樹脂シートを得る。その後、この樹脂シート上に、さらに上記塗工液を塗工し、同様に乾燥させ二層の積層体とし、その後、上述と同様の方法にて延伸し、二層の位相差フィルムとする。
また、上記塗工・乾燥の工程を繰り返すことにより三層以上のフィルムとすることも可能である。
製造方法(iii)においては、透明基材(薄板、フィルム等)上に、上述と同様の方法によ
り調整した塗工液を塗工し乾燥させ積層体とし、その後この積層体を延伸して多層フィルムとする。
前記透明基材としては本発明のポリウレタン樹脂、あるいは通常用いられる樹脂材料を使用することができる。例えば、セルロース誘導体、シクロオレフィン系樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリイミド、ポリアリレート、ポリエチレンテレフタレート、ポリスルホン、ポリエーテルスルホン、アモルファスポリオレフィン、変性アクリル系ポリマー、ポリスチレン、エポキシ樹脂、ポリカーボネート、ポリエステル類等を挙げることができる。
本実施例で用いた評価分析方法は次のとおりである。
(1)樹脂の耐熱性
示差走査熱量分析(DSC)にて20℃/分で昇温したときに測定されるガラス転移温度(Tg)で評価した。
(2)重量平均分子量
ゲルパーミュエーションクロマトグラフィー(GPC)で測定して求めた。
(3)溶媒キャストフィルムの光学特性
樹脂を溶媒に溶解し,フッ素樹脂コート板に塗布,乾燥後に剥がして得たフィルムをガラス転移温度+20℃で2倍に一軸延伸した後,次の光学特性を評価した。
・外観:目視にて外観欠点の有無を評価した。
・位相差:楕円偏光測定装置(KOBLA WPRXY2020,王子計測器(株)製)で正面および厚み方向の位相差を測定した。位相差はフィルム厚さ100μmでの値に換算した。
・位相差保持率:延伸したフィルムを,90℃で3日間加熱したときの,加熱前に対する位相差の保持率を次式で求めた。
位相差の保持率=加熱後の位相差(nm)/加熱前の位相差(nm)×100(%)(4)溶融押出フィルムの光学特性
樹脂を押出機に供給し、225℃でTダイより押出して、無延伸フィルムを作製した。次いでガラス転移温度+15℃で2倍に一軸延伸した後、次の光学特性を評価した。
・外観:目視にて外観欠点の有無を評価した。
・位相差:楕円偏光測定装置(KOBLA WPRXY2020,王子計測器(株)製)で正面および厚み方向の位相差を測定した。位相差はフィルム厚さ100μmでの値に換算した。
・位相差保持率:延伸したフィルムを、90℃で500時間加熱したときの、加熱前に対する位相差の保持率を次式で求めた。
位相差の保持率=加熱後の位相差(nm)/加熱前の位相差(nm)×100(%)
(5)フィルムの強度
延伸フィルムを,室温にて,延伸方向に垂直な方向に折り曲げたときの割れの有無を評価した。
(6)フィルムの塗工性
樹脂を溶媒に溶解し,トリアセチルセルロースフィルムに塗布,乾燥後の塗工面を目視で観察した。
反応容器に4,4′-ジシクロヘキシルメタンジイソシアネート45.2重量部を投入し,ジメチルホルムアミド240重量部を加えて溶解させた。次いで,この溶液を攪拌しながら,1,4-シクロヘキサンジメタノール 24.8重量部を40重量部のジメチルホルムアミドに溶かした溶液をゆっくりと添加した。添加完了後,130℃で4時間反応を行い,反応液をメタノール中に投入して生成した樹脂を析出させた。析出させた樹脂は80℃で真空乾燥した。
こうして作製した樹脂のNMRスペクトルを図1に示す。また,耐熱性,分子量,光学特性、強度、塗工性を評価した結果を表1に示す。
反応容器に4,4′-ジフェニルメタンジイソシアネート 44.4重量部を投入し,ジメチルホルムアミド240重量部を加えて溶解させた。次いで,この溶液を攪拌しながら,1,4-シクロヘキサンジメタノール25.59重量部を40重量部のジメチルホルムアミドに溶かした溶液をゆっくりと添加した。添加完了後,130℃で4時間反応を行い,反応液をメタノール中に投入して生成した樹脂を析出させた。析出させた樹脂は80℃で真空乾燥した。
こうして作製した樹脂について,耐熱性,分子量,光学特性、強度、塗工性を評価した結果を表1に示す。
反応容器に1,4-シクロヘキサンジメタノールを21.28重量部、溶媒としてジメチルホルムアミドを30重量部投入し、窒素雰囲気下で110℃に加熱した。ついで4,4′-ジシクロヘキシルメタンジイソシアネート38.72重量部を毎分1重量部で添加し、さらに溶媒(ジメチルホルムアミド)を10重量部添加した。添加完了後、130℃で23時間反応を行った。ついで、反応容器を220℃に昇温し、約5Torrの減圧下で溶媒を除去後、樹脂を反応容器より押出、ペレット化した。
この樹脂の耐熱性、分子量、溶融押出フィルムの光学特性、強度、塗工性を表1に示す。
反応容器に1,4-シクロヘキサンジメタノールを70.83重量部、溶媒としてジメチルホルムアミドを120重量部投入し、窒素雰囲気下で110℃に加熱した。ついでイソホロンジイソシアネート108.08重量部をゆっくりと添加した。添加完了後、130℃で25時間反応を行った。得られた反応溶液を200℃に加熱し、減圧下で溶媒を除去後、樹脂を取り出した。
この樹脂の耐熱性、分子量、フィルムの光学特性、強度、塗工性を表1に示す。
市販ポリウレタン樹脂((株)アデカ製HUX320)について,実施例と同様に耐熱性,分子量,光学特性、強度、塗工性を評価した結果を表1に示す。
市販のシクロオレフィン樹脂(ポリプラスチックス(株)製TOPAS6013)について実施例と同様に耐熱性,分子量,光学特性、強度、塗工性を評価した結果を表1に示す。
また、本発明の位相差フィルムは、優れた光学特性を有し、視野角補償効果に優れていることから、大型液晶テレビ等の液晶ディスプレイに用いられる視野角補償フィルムとして好適である。
また、これ以外にも、たとえば、携帯電話、ディジタル情報端末、ポケットベル、ナビゲーション、車載用液晶ディスプレイ、液晶モニター、調光パネル、OA機器用ディスプレイ、AV機器用ディスプレイなどの各種液晶表示素子、エレクトロルミネッセンス表示素子またはタッチパネルなどに使用される光学フィルムとして用いることができる。
また、CD、CD-R、MD、MO、DVD等の光ディスクの記録・再生装置に使用される波長板としても有用である。
Claims (10)
- 脂環族成分および/または芳香族成分を含むポリウレタン樹脂。
- ガラス転移温度が100℃以上200℃未満であることを特徴とする請求項1記載のポリウレタン樹脂。
- シクロヘキサン構造を有するジイソシアネートと、シクロヘキサン構造を有するジオールとを重合させて得られる請求項1に記載のポリウレタン樹脂。
- フェニル基を有するジイソシアネートと、シクロヘキサン構造を有するジオールとを重合させて得られる請求項1に記載のポリウレタン樹脂。
- 請求項1~6のいずれかに記載のポリウレタン樹脂からなる位相差フィルム。
- ポリウレタン樹脂をシート状に成形した後,延伸してなることを特徴とする請求項7に記載の位相差フィルム。
- ポリウレタン樹脂を溶媒に溶解して塗工液とした後,透明基材に塗工し,延伸してなることを特徴とする請求項7に記載の位相差フィルム。
- 請求項1~6のいずれかに記載のポリウレタン樹脂からなる光学フィルム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980101000A CN101861348A (zh) | 2008-03-31 | 2009-03-30 | 含有脂环族成分及/或芳香族成分的聚氨酯树脂及其使用的相位差膜 |
JP2010505383A JP5473147B2 (ja) | 2008-03-31 | 2009-03-30 | ポリウレタン樹脂位相差フィルム |
KR20107011334A KR101508946B1 (ko) | 2008-03-31 | 2009-03-30 | 폴리우레탄 수지 위상차 필름 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008092091 | 2008-03-31 | ||
JP2008-092091 | 2008-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009122708A1 true WO2009122708A1 (ja) | 2009-10-08 |
Family
ID=41135112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/001445 WO2009122708A1 (ja) | 2008-03-31 | 2009-03-30 | 脂環族成分および/または芳香族成分を含むポリウレタン樹脂およびそれを用いた位相差フィルム |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5473147B2 (ja) |
KR (1) | KR101508946B1 (ja) |
CN (1) | CN101861348A (ja) |
TW (1) | TW200946551A (ja) |
WO (1) | WO2009122708A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144216A (ja) * | 2010-01-12 | 2011-07-28 | Sumitomo Chemical Co Ltd | 光学フィルム及び光学フィルムの製造方法 |
JP2011145330A (ja) * | 2010-01-12 | 2011-07-28 | Sumitomo Chemical Co Ltd | 位相差フィルム |
WO2012017775A1 (ja) * | 2010-08-04 | 2012-02-09 | 東洋鋼鈑株式会社 | 位相差フィルム用ウレタン樹脂及び位相差フィルム |
JP2012219187A (ja) * | 2011-04-08 | 2012-11-12 | Dic Corp | ウレタンウレア樹脂組成物、光学フィルム、及び光学フィルムの製造方法 |
JP2016522456A (ja) * | 2013-06-19 | 2016-07-28 | エルジー・ケム・リミテッド | 基材フィルム |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160024340A1 (en) * | 2006-12-14 | 2016-01-28 | Ppg Industries Ohio, Inc. | Polyurethanes, articles and coatings prepared therefrom and methods of making the same |
WO2017090644A1 (ja) * | 2015-11-26 | 2017-06-01 | 富士フイルム株式会社 | 光学フィルム、偏光板、画像表示装置および重合性化合物ならびに1,4-シクロヘキサンジカルボン酸モノアリールエステルの製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01259023A (ja) * | 1987-12-17 | 1989-10-16 | Dow Chem Co:The | ガラス転移温度の高い熱可塑性ポリウレタン |
JP2004138855A (ja) * | 2002-10-18 | 2004-05-13 | Nitto Denko Corp | 光学フィルム、その製造方法および画像表示装置 |
JP2006010912A (ja) * | 2004-06-24 | 2006-01-12 | Sumitomo Chemical Co Ltd | 位相差板と複合偏光板、それらの製造方法及び液晶表示装置 |
JP2007154134A (ja) * | 2005-12-08 | 2007-06-21 | Showa Denko Kk | 熱硬化性樹脂組成物、熱可塑性樹脂溶液および皮膜形成材料ならびにこれらの硬化物 |
JP2007270137A (ja) * | 2006-03-09 | 2007-10-18 | Showa Denko Kk | 熱硬化性樹脂組成物及びその用途 |
JP2008201967A (ja) * | 2007-02-22 | 2008-09-04 | Nippon Polyurethane Ind Co Ltd | 化粧シートのプライマー用ポリウレタン樹脂及びそれを用いた化粧シートのプライマー |
-
2009
- 2009-03-13 TW TW98108123A patent/TW200946551A/zh unknown
- 2009-03-30 WO PCT/JP2009/001445 patent/WO2009122708A1/ja active Application Filing
- 2009-03-30 JP JP2010505383A patent/JP5473147B2/ja active Active
- 2009-03-30 CN CN200980101000A patent/CN101861348A/zh active Pending
- 2009-03-30 KR KR20107011334A patent/KR101508946B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01259023A (ja) * | 1987-12-17 | 1989-10-16 | Dow Chem Co:The | ガラス転移温度の高い熱可塑性ポリウレタン |
JP2004138855A (ja) * | 2002-10-18 | 2004-05-13 | Nitto Denko Corp | 光学フィルム、その製造方法および画像表示装置 |
JP2006010912A (ja) * | 2004-06-24 | 2006-01-12 | Sumitomo Chemical Co Ltd | 位相差板と複合偏光板、それらの製造方法及び液晶表示装置 |
JP2007154134A (ja) * | 2005-12-08 | 2007-06-21 | Showa Denko Kk | 熱硬化性樹脂組成物、熱可塑性樹脂溶液および皮膜形成材料ならびにこれらの硬化物 |
JP2007270137A (ja) * | 2006-03-09 | 2007-10-18 | Showa Denko Kk | 熱硬化性樹脂組成物及びその用途 |
JP2008201967A (ja) * | 2007-02-22 | 2008-09-04 | Nippon Polyurethane Ind Co Ltd | 化粧シートのプライマー用ポリウレタン樹脂及びそれを用いた化粧シートのプライマー |
Non-Patent Citations (1)
Title |
---|
K. MUELLER ET AL.: "Preparation of high molecular weight polyurethane particles by nonaqueous emulsion polyaddition.", COLLOID AND POLYMER SCIENCE, vol. 285, no. 10, 2007, pages 1157 - 1161 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144216A (ja) * | 2010-01-12 | 2011-07-28 | Sumitomo Chemical Co Ltd | 光学フィルム及び光学フィルムの製造方法 |
JP2011145330A (ja) * | 2010-01-12 | 2011-07-28 | Sumitomo Chemical Co Ltd | 位相差フィルム |
WO2012017775A1 (ja) * | 2010-08-04 | 2012-02-09 | 東洋鋼鈑株式会社 | 位相差フィルム用ウレタン樹脂及び位相差フィルム |
JP5878868B2 (ja) * | 2010-08-04 | 2016-03-08 | 東洋鋼鈑株式会社 | 位相差フィルム用ウレタン樹脂及び位相差フィルム |
JP2012219187A (ja) * | 2011-04-08 | 2012-11-12 | Dic Corp | ウレタンウレア樹脂組成物、光学フィルム、及び光学フィルムの製造方法 |
JP2016522456A (ja) * | 2013-06-19 | 2016-07-28 | エルジー・ケム・リミテッド | 基材フィルム |
Also Published As
Publication number | Publication date |
---|---|
KR101508946B1 (ko) | 2015-04-06 |
CN101861348A (zh) | 2010-10-13 |
KR20110007999A (ko) | 2011-01-25 |
JP5473147B2 (ja) | 2014-04-16 |
TW200946551A (en) | 2009-11-16 |
JPWO2009122708A1 (ja) | 2011-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5473147B2 (ja) | ポリウレタン樹脂位相差フィルム | |
TWI592303B (zh) | Optical laminate | |
JP6565681B2 (ja) | 複層フィルム及びその製造方法 | |
KR101627011B1 (ko) | 광학 필름의 제조 방법, 광학 필름 및 화상 표시 장치 | |
JP6940004B2 (ja) | 折りたたみ型ディスプレイ | |
TWI542468B (zh) | Optical continuum | |
WO2006025263A1 (ja) | 光学フィルム、偏光板および液晶ディスプレイ | |
TW201229162A (en) | Aqueous primer composition, polarizing plate including the same, and method for preparing optical film including primer layer | |
JP2009052036A (ja) | アクリル系フィルム、積層フィルムおよび偏光板 | |
JP6044304B2 (ja) | 熱可塑性樹脂フィルムの巻回体及びその製造方法 | |
WO2015147013A1 (ja) | 複層フィルム及びその製造方法 | |
KR20180031601A (ko) | 접착력이 우수한 광학 필름, 및 이를 포함하는 편광판 | |
TWI746730B (zh) | 光學積層體 | |
JP2016071264A (ja) | 光学フィルム、偏光板保護フィルム、偏光板、及び液晶表示装置 | |
WO2017164045A1 (ja) | 複層フィルムの製造方法及び製造装置 | |
JP2006065224A (ja) | 光学フィルム、偏光板および液晶ディスプレイ | |
JP2015017176A (ja) | フィルムとその製造方法、光学フィルム、偏光板保護フィルム、偏光板および画像表示装置 | |
KR20180031599A (ko) | 접착력 및 자외선 차단 기능이 우수한 광학 필름, 및 이를 포함하는 편광판 | |
JP2010149323A (ja) | 積層フィルムの製造方法及び積層フィルム | |
JP2006091310A (ja) | 光学フィルム、偏光板および液晶ディスプレイ | |
JP2003279744A (ja) | 偏光板および偏光板の製造方法 | |
TWI391230B (zh) | A manufacturing method of an optical film, an optical film, and a method for producing an extended film | |
KR20140123779A (ko) | 광경화 코팅 조성물, 이를 이용한 코팅 필름 및 편광판 | |
WO2024095968A1 (ja) | 光学フィルム | |
JP6536116B2 (ja) | 複層フィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980101000.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09728212 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010505383 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20107011334 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09728212 Country of ref document: EP Kind code of ref document: A1 |