WO2009122506A1 - ターボ分子ポンプ - Google Patents

ターボ分子ポンプ Download PDF

Info

Publication number
WO2009122506A1
WO2009122506A1 PCT/JP2008/056350 JP2008056350W WO2009122506A1 WO 2009122506 A1 WO2009122506 A1 WO 2009122506A1 JP 2008056350 W JP2008056350 W JP 2008056350W WO 2009122506 A1 WO2009122506 A1 WO 2009122506A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
spacer
base
rotor
molecular pump
Prior art date
Application number
PCT/JP2008/056350
Other languages
English (en)
French (fr)
Inventor
俊樹 山口
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US12/934,800 priority Critical patent/US8591204B2/en
Priority to JP2010505167A priority patent/JP5115622B2/ja
Priority to CN200880128386.7A priority patent/CN101981321B/zh
Priority to PCT/JP2008/056350 priority patent/WO2009122506A1/ja
Publication of WO2009122506A1 publication Critical patent/WO2009122506A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/644Mounting; Assembling; Disassembling of axial pumps especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a turbo molecular pump.
  • Some turbo molecular pumps having a rotor that rotates at a high speed in a casing prevent energy transmitted due to the destruction of the rotor from being transmitted to the outer casing (see, for example, Patent Document 1).
  • the thing of this patent document 1 is made to provide an inner casing doubly inside an outer casing.
  • a turbo molecular pump includes a rotor rotatably supported by a base, a stator disposed around the rotor, and a cylindrical casing in which the stator is accommodated.
  • the stator is formed by alternately laminating a plurality of stages of fixed blades and spacers from the first stage to the last stage on the flange surface of the base, and the outer peripheral surface of another spacer inside the casing on at least one spacer.
  • a ring-shaped ring portion is continuously provided.
  • the radial gap between the rotor and the stator can be made smaller than the radial gap between the ring portion and the casing.
  • a ring part can also be extended over the flange surface side of a base.
  • the ring portion is provided in the last stage spacer, and the leading end thereof extends to the side of the first stage spacer.
  • An outer periphery pressing portion may be provided on the flange surface of the base so as to cover the outer peripheral surface of the tip portion of the ring portion inside the casing.
  • the stator and the ring portion can be supported without rattling between the base and the casing. .
  • the figure which shows the modification of FIG. The figure which shows the principal part structure of the turbo-molecular pump which concerns on the 2nd Embodiment of this invention.
  • FIG. 1A is a cross-sectional view showing the configuration of the main part of the turbo molecular pump according to the first embodiment of the present invention
  • FIG. 1B is an enlarged view of the main part of FIG.
  • FIG. 2 is a cross-sectional view schematically showing an overall configuration of a turbo molecular pump as a comparative example of FIG.
  • This turbo molecular pump is a vacuum pump used in, for example, a semiconductor manufacturing apparatus.
  • FIG. 1A is a cross-sectional view showing the configuration of the main part of the turbo molecular pump according to the first embodiment of the present invention
  • FIG. 1B is an enlarged view of the main part of FIG.
  • FIG. 2 is a cross-sectional view schematically showing an overall configuration of a turbo molecular pump as a comparative example of FIG.
  • This turbo molecular pump is a vacuum pump used in, for example, a semiconductor manufacturing apparatus.
  • the pump body 1 of the turbo molecular pump includes a substantially cylindrical outer casing 2, a base 3 provided at a lower portion of the outer casing 2, and is accommodated in the outer casing 2 and is rotatably supported by the base 3. And the rotor 4 to be operated.
  • the upper flange 21 of the outer casing 2 is fixed to a flange of a vacuum chamber on the semiconductor manufacturing apparatus side (not shown) with bolts.
  • the lower end surface of the outer casing 2 and the upper end surface of the base 3 are fastened by bolts 27 (FIG. 1) via an O-ring 26.
  • a plurality of rotating blades 41 are formed on the outer peripheral surface of the rotor 4 at intervals in the vertical direction, and fixed blades 43 are alternately inserted between the rotating blades 41 of each stage.
  • the plurality of stages of fixed blades 43 are stacked via spacers 48.
  • a rotating cylindrical portion 42 is formed below the rotor blade 41 of the rotor 4.
  • On the base 3 side a fixed cylindrical portion 44 is provided to face the rotating cylindrical portion 42, and a spiral groove is formed on the inner peripheral surface of the fixed cylindrical portion 44.
  • the rotating blade 41 and the fixed blade 43 described above constitute a turbine blade portion, and the rotating cylindrical portion 42 and the fixed cylindrical portion 44 constitute a molecular drag pump portion.
  • the rotor 4 is supported in a non-contact manner by a pair of upper and lower radial magnetic bearings 51 and an axial magnetic bearing 52 and is driven to rotate by a motor 6.
  • the motor 6 is, for example, a DC brushless motor.
  • a motor rotor 61 incorporating a permanent magnet is mounted on the shaft portion 45 of the rotor 4, and a motor stator 62 for forming a rotating magnetic field is provided on the base 3 side. .
  • the magnetic bearings 51 and 52 are provided with radial displacement sensors 53 and 54 and a thrust displacement sensor 55 for detecting the flying position of the rotor 4, respectively.
  • a sensor target 46 is provided at the lower end of the shaft portion 45, and a gap sensor 55 is provided at a position facing the sensor target 46.
  • Reference numerals 56 and 57 are emergency mechanical bearings.
  • a substantially ring-shaped casing portion is provided inside the outer casing 2 as follows.
  • the flange portion 21 of the outer casing 2 is provided with a protruding portion 23 that protrudes further toward the inner diameter side than the peripheral wall 22.
  • a recess 24 is formed on the lower surface of the projecting portion 23 in the circumferential direction, and a flange surface 25 is formed by the recess 24.
  • a flange surface 31 is formed on the upper surface of the base 3, and a convex portion 32 is formed on the flange surface 31 in the circumferential direction.
  • the spacer 48 has a substantially ring shape, and the fixed wing 43 has a half crack shape divided into two in the circumferential direction.
  • the rotor 4 and the fixed blades 43 are made of an aluminum alloy, and the spacer 48 and the outer casing 2 are made of a material having a higher strength than the aluminum alloy, for example, stainless steel.
  • Step portions 481 and 482 are formed on the upper and lower surfaces of the spacers 48 in the circumferential direction, and flange portions 431 are formed on the outer peripheral edge portions of the fixed blades 43 in the circumferential direction.
  • a spacer 48 having a predetermined thickness and a flange portion 431 of the fixed wing 43 are alternately stacked on the flange surface 31 of the base 3 to form a stacked body 400 (stator) as a whole.
  • the laminated body 400 is sandwiched between the flange surface 31 of the base 3 and the flange surface 25 of the outer casing 2 by the fastening force of the bolts 27.
  • the lower step 482 of the lowermost spacer 48 is fitted to the convex portion 32 of the base 3, and the spacer 48 is positioned with respect to the base 3.
  • the flange portion 431 of the fixed wing 43 is fitted into the upper step portion 481 of the spacer 48, and the fixed wing 43 is positioned via the spacer 48.
  • the concave portion 24 of the outer casing 2 is fitted into the step portion 481 of the uppermost spacer 48, and the outer casing 2 is positioned via the spacer 48.
  • the uppermost spacer 48 is integrally provided with a cylindrical casing portion 483.
  • the casing portion 483 has a larger diameter than the other spacers 48, extends downward toward the flange surface 31 of the base 3, and the entire outer periphery of the multilayer body 400 is covered by the casing portion 483.
  • Clearances a1 to a3 are provided between the casing portion 483 and the laminated body 400 inside thereof, between the casing portion 483 and the outer casing 2 outside thereof, and between the casing portion 483 and the base 3 at the tip thereof, respectively. It has been. This prevents interference between the casing portion 483 and the surrounding components when the spacer 48 is attached.
  • the lower end surface of the casing portion 483 is lower than the upper surface of the convex portion 32 so that the gap a3 between the casing portion 483 and the flange surface 31 of the base 3 is at least smaller than the height of the lowermost spacer 48. It is set to reach down.
  • a through hole 484 is opened in the radial direction in the spacer 48 disposed in the center in the height direction of the laminate 400.
  • the through hole 484 is for exhausting the gas accumulated in the gaps a1 to a3 to the gas passage inside the laminated body 400, and the downstream gas passage and the gaps a1 to a3 communicate with each other through the through hole 484. ing.
  • the rotor 4 is rotatably supported on the base 3, and the lowermost spacer 48 is installed on the flange surface 31 of the base 3.
  • the fixed blades 43 and the spacers 48 are alternately stacked while the step portions 481 and 482 and the flange portion 431 are fitted to each other.
  • the outer periphery of the fixed blade 43 and the spacer 48 is covered by the flange portion 483.
  • the outer casing 2 is covered from above the laminated body 400, and the lower end surface of the outer casing 2 is fastened to the flange surface 31 of the base 3 with bolts 27.
  • the laminate 400 composed of the spacer 48 and the fixed wing 43 is sandwiched between the flange surface 31 of the base 3 and the flange surface 25 of the outer casing 2.
  • the main operation of the turbo molecular pump according to the first embodiment will be described.
  • the rotor 4 rotating at high speed is broken for some reason, the scattered matter due to the breakage collides with the inner wall surface of the casing portion 431 via the fixed wing 43 and the spacer 48.
  • the casing portion 431 is deformed, or the casing portion 431 is rotated relative to the outer casing 2 by the torque from the scattered matter of the rotor 4, and the energy of rotor destruction is absorbed by the casing portion 431.
  • a large-diameter casing portion 483 is connected to the uppermost spacer 48 so that the outer periphery of the fixed blade 43 and the spacer 48 is covered by the casing portion 483.
  • the casing portion 483 is provided separately from the spacer 48 and supported on the flange surface 31 of the base 3, the spacer 48 and the casing portion 483 are separately sandwiched between the base 3 and the outer casing 2, Shaking tends to occur at the mounting position of the casing portion 483.
  • the casing portion 483 is provided integrally with the spacer 48, it is not necessary to sandwich the casing portion 483 separately, and rattling of the casing portion 483 can be prevented.
  • the casing portion 483 is provided integrally with the spacer 48, an increase in the number of parts can be prevented, the cost can be suppressed, and the assembly of the pump body 1 is easy.
  • the cylindrical casing portion 483 is disposed outside the laminate 400, the strength of the entire casing is ensured even if the inner wall thickness of the peripheral wall 22 of the outer casing 2 is reduced accordingly. Can do. For this reason, it is not necessary to enlarge the outer diameter of the outer casing 2, and an increase in the size of the pump body 1 can be prevented.
  • the casing portion 483 extends downward, the spacers 48 can be easily stacked.
  • the casing breaking portion 48 surely absorbs the energy of rotor destruction. Can do.
  • the through hole 484 is opened in the radial direction in the spacer 48, the gas accumulated in the gaps a1 to a3 can be flowed to the downstream side of the gas passage, and the intake port 1a side can be maintained in a high vacuum state.
  • the gaps a1 to a3 are provided around the casing part 483, the casing part 483 does not interfere with other parts, and the pump body 1 can be easily assembled.
  • the gaps a1 and a2 are provided on the radially inner side and the outer side of the casing portion 483, respectively, but the outer gap a2 may be larger than the inner gap a1 as shown in FIG.
  • the casing portion 483 can be greatly deformed radially outwardly inside the outer casing 2 due to the collision of scattered objects when the rotor is broken, and the energy for breaking the rotor can be absorbed efficiently.
  • FIG. 4 is a cross-sectional view showing a main configuration of a turbo molecular pump according to the second embodiment.
  • symbol is attached
  • the second embodiment is different from the first embodiment in the shape of the flange surface 31 of the base 3. That is, the flange surface 31 is further provided with a protrusion 33 on the outer side in the radial direction of the protrusion 32 over the entire circumference.
  • the upper end surface of the convex portion 33 is located above the lower end surface of the casing portion 483, and a gap a ⁇ b> 4 is provided between the casing portion 483 and the convex portion 33 in the radial direction.
  • the gap a4 is formed to be smaller than the gap a2 between the casing portion 483 and the outer casing 2.
  • the casing portion 483 when the casing portion 483 is deformed to the outside due to the destruction of the rotor 4, the casing portion 483 contacts the convex portion 33 before contacting the peripheral wall 22 of the outer casing 2. For this reason, deformation of the casing portion 483 is suppressed by the convex portion 33, and contact between the casing portion 483 and the outer casing 2 can be prevented.
  • the spacer 48 is made of stainless steel, but only the uppermost spacer 48 having the casing portion 483 is made of stainless steel, and the other spacers 48 are made of aluminum or the like, like the fixed blades 43. May be.
  • the spacers 48 and the fixed blades 43 are stacked via the stepped portions 481 and 482
  • the configuration of the stacked body 400 as a stator is not limited to this.
  • a pin may be protruded from the upper surface of the spacer 48, and the spacer 48 and the fixed blade 43 may be stacked while being positioned through the pin.
  • the configuration of the base 3 that rotatably supports the rotor 4 and the configuration of the outer casing 2 as a casing that accommodates the stacked body 400 are not limited to those described above.
  • the casing portion 483 is provided on the uppermost (final) spacer 48, the ring portion is not limited to this configuration as long as it is formed in an annular shape so as to cover at least the outer peripheral surface of the other spacer 48. Absent.
  • the casing part 483 may be provided in the spacer 48 other than the uppermost stage, and the casing part 483 may be provided in the plurality of spacers 48.
  • the tip position of the casing portion 483 may be set higher than this.
  • the casing portion 483 may be extended toward the upper side instead of the lower side of the stacked body 400.
  • the convex part 33 was provided so that the front-end

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

 ベース3に回転可能に支持されたロータ4と、ロータ4の周囲に配設されたステータ400と、ステータ400が収容される筒状のケーシング2とを備え、ステータ400は、複数段の固定翼43およびスペーサ48をベース3のフランジ面31上に交互に積層してなり、少なくとも一のスペーサ48には、ケーシング2の内側で他のスペーサ48の外周面を覆う円環状のリング部483が連設される。

Description

ターボ分子ポンプ
 本発明は、ターボ分子ポンプに関する。
 ケーシング内で高速回転するロータを有するターボ分子ポンプにおいては、ロータの破壊によるエネルギーが外側のケーシングに伝達されるのを防ぐようにしたものがある(例えば特許文献1参照)。この特許文献1記載のものは、外側ケーシングの内側に内側ケーシングを二重に設けるようにしている。
特開2001-82379号公報(とくに図2)
 しかしながら、上記特許文献1記載のものは、二重の内側ケーシングをそれぞれ同一のフランジ面上に支持するので、双方の内側ケーシングをがたつきなく支持することが困難である。
 本発明によるターボ分子ポンプは、ベースに回転可能に支持されたロータと、ロータの周囲に配設されたステータと、ステータが収容される筒状のケーシングとを備える。ステータは、複数段の固定翼およびスペーサを、ベースのフランジ面上に第1段から最終段に至るまで交互に積層してなり、少なくとも一のスペーサに、ケーシングの内側で他のスペーサの外周面を覆う円環状のリング部が連設される。
 ロータとステータとの間の径方向の隙間を、リング部とケーシングとの間の径方向の隙間よりも小さくすることもできる。
 リング部を、ベースのフランジ面側にかけて延設することもできる。
 この場合、リング部を、最終段のスペーサに設け、その先端部を第1段のスペーサの側方にかけて延設することが好ましい。
 ベースのフランジ面上に、ケーシングの内側でリング部の先端部外周面を覆うように外周押さえ部を設けてもよい。
 本発明によれば、一のスペーサにリング部を連設して他のスペーサの外周面を覆うようにしたので、ステータとリング部をベースとケーシングの間でがたつきなく支持することができる。
本発明の第1の実施の形態に係るターボ分子ポンプの要部構成を示す図。 図1の比較例としてのターボ分子ポンプの全体構成を概略的に示す図。 図1の変形例を示す図。 本発明の第2の実施の形態に係るターボ分子ポンプの要部構成を示す図。
-第1の実施の形態-
 以下、図1~3を参照して本発明の第1の実施の形態について説明する。
 図1(a)は、本発明の第1の実施の形態に係るターボ分子ポンプの要部構成を示す断面図であり、図1(b)は図1(a)の要部拡大図である。図2は、図1の比較例としてのターボ分子ポンプの全体構成を概略的に示す断面図である。このターボ分子ポンプは、例えば半導体製造装置に用いられる真空ポンプであり、まず、図2によりターボ分子ポンプの概略構成について説明する。なお、説明の便宜上、以下では図示のようにターボ分子ポンプの上下方向を定義する。
 図2に示すようにターボ分子ポンプのポンプ本体1は、略円筒形状の外側ケーシング2と、外側ケーシング2の下部に設けられるベース3と、外側ケーシング2に収容され、ベース3に回転可能に支持されるロータ4とを有する。外側ケーシング2の上部フランジ21は、図示しない半導体製造装置側の真空チャンバのフランジに、ボルトによって固定される。外側ケーシング2の下端面とベース3の上端面は、Oリング26を介してボルト27(図1)により締結されている。
 ロータ4の外周面には、上下方向に間隔をあけて複数段の回転翼41が形成され、各段の回転翼41の間に固定翼43が交互に挿設されている。複数段の固定翼43はスペーサ48を介して積層されている。ロータ4の回転翼41の下方には回転円筒部42が形成されている。ベース3側には回転円筒部42に対向して固定円筒部が44が設けられ、固定円筒部44の内周面に螺旋状溝が形成されている。以上の回転翼41と固定翼43はタービン翼部を構成し、回転円筒部42と固定円筒部44はモレキュラードラッグポンプ部を構成する。
 ロータ4は、上下一対のラジアル磁気軸受け51およびアキシャル磁気軸受け52により非接触支持され、モータ6により回転駆動される。モータ6は例えばDCブラシレスモータであり、ロータ4のシャフト部45に、永久磁石が内蔵されたモータロータ61が装着され、ベース3側に、回転磁界を形成するためのモータステータ62が設けられている。
 磁気軸受け51,52には、ロータ4の浮上位置を検出するためのラジアル変位センサ53,54およびスラスト変位センサ55がそれぞれ設けられている。シャフト部45の下端にはセンサターゲット46が設けられ、センサーターゲット46と対向する位置にギャップセンサ55が設けられている。なお、56,57は、非常用のメカニカルベアリングである。
 このようなターボ分子ポンプ1では、ロータ4の高速回転により吸気口1aからガス分子が流入する。流入したガス分子はタービン翼部およびモレキュラードラッグポンプ部のガス通路をそれぞれ経て排気口1bから排気される。このガス分子の流れにより吸気口1a側が高真空状態となる。
 ここで、何らかの原因により高速回転中のロータ4が破壊すると、遠心力によってロータ4が周囲に飛散し、その飛散物により外側ケーシング2にはロータ4の回転方向と同方向の回転トルクが作用する。この回転トルクは上部のフランジ21を介して真空系のフランジに作用するため、真空系の装置が破損するおそれがある。これを防止するため、本実施の形態では以下のように外側ケーシング2の内側に略リング状のケーシング部を設ける。
 図1に示すように外側ケーシング2のフランジ部21には、周壁22よりも内径側に突出した突出部23が設けられている。この突出部23の下面には、周方向にわたって凹部24が形成され、凹部24によりフランジ面25が形成されている。一方、ベース3の上面にはフランジ面31が形成され、フランジ面31上に周方向にわたって凸部32が形成されている。
 スペーサ48は略リング形状をなし、固定翼43は周方向に2分割した半割れ形状をなしている。ロータ4および固定翼43はアルミニウム合金により構成され、スペーサ48と外側ケーシング2はアルミニウム合金よりも高強度の材質、例えばステンレスにより構成されている。
 各スペーサ48の上下面には、それぞれ周方向にわたって段部481,482が形成され、各固定翼43の外周縁部には、それぞれ周方向にわたってフランジ部が431形成されている。ベース3のフランジ面31には所定厚さのスペーサ48と固定翼43のフランジ部431とが交互に積層され、全体で積層体400(ステータ)が形成されている。積層体400は、ボルト27の締結力によりベース3のフランジ面31と外側ケーシング2のフランジ面25との間に挟持されている。
 ベース3の凸部32には最下段のスペーサ48の下側段部482が嵌合し、ベース3に対してスペーサ48が位置決めされている。スペーサ48の上側段部481には固定翼43のフランジ部431が嵌合し、スペーサ48を介して固定翼43が位置決めされている。最上段のスペーサ48の段部481には、外側ケーシング2の凹部24が嵌合し、スペーサ48を介して外側ケーシング2が位置決めされている。
 最上段のスペーサ48には、円筒形状のケーシング部483が一体に設けられている。ケーシング部483は他のスペーサ48よりも大径であり、ベース3のフランジ面31にかけて下方に延設され、ケーシング部483により積層体400の外周全体が覆われている。
 ケーシング部483とその内側の積層体400との間、ケーシング部483とその外側の外側ケーシング2との間、およびケーシング部483とその先端のベース3との間にはそれぞれ隙間a1~a3が設けられている。これによりスペーサ48の取付の際のケーシング部483と周囲の部品との干渉が防止される。なお、ケーシング部483とベース3のフランジ面31との間の隙間a3は、少なくとも最下段のスペーサ48の高さよりも小さくなるように、例えばケーシング部483の下端面が凸部32の上面よりも下方に至るように設定されている。
 積層体400の高さ方向中央部に配置されたスペーサ48には、径方向に貫通孔484が開口されている。貫通孔484は隙間a1~a3内に溜まったガスを積層体400の内側のガス通路に排気するためのものであり、下流側のガス通路と隙間a1~a3は貫通孔484を介して連通している。
 ポンプ本体1を組み立てる場合には、まず、ベース3にロータ4を回転可能に支持し、ベース3のフランジ面31上に最下段のスペーサ48を設置する。次いで、段部481,482とフランジ部431を互いに嵌合しつつ、固定翼43とスペーサ48を交互に積層する。最上段のスペーサ48を積層し終えると、フランジ部483により固定翼43とスペーサ48の外周が覆われる。さらに、外側ケーシング2を積層体400の上方から覆い被せ、外側ケーシング2の下端面をベース3のフランジ面31にボルト27で締結する。これによりスペーサ48と固定翼43からなる積層体400がベース3のフランジ面31と外側ケーシング2のフランジ面25との間に挟持される。
 第1の実施の形態に係るターボ分子ポンプの主要な動作を説明する。
 何らかの原因により高速回転中のロータ4が破壊すると、その破壊による飛散物が固定翼43やスペーサ48を介してケーシング部431の内壁面に衝突する。これによりケーシング部431が変形、あるいはケーシング部431がロータ4の飛散物からのトルクによって外側ケーシング2に対し相対回転し、ロータ破壊のエネルギーがケーシング部431で吸収される。このケーシング部431の機能により、ロータ4の破壊による回転トルクが外側ケーシング2に伝達されることを抑制することができ、真空系の装置の破損を防止できる。
 以上の実施の形態によれば次のような作用効果を奏することができる。
(1)最上段のスペーサ48に大径のケーシング部483を連設し、ケーシング部483により固定翼43とスペーサ48の外周を覆うようにした。これによりロータ4の破壊による衝撃が外側ケーシング2に伝達されることを抑制できるとともに、ケーシング部483をがたつきなく支持できる。すなわち、仮にケーシング部483をスペーサ48とは別体に設けてベース3のフランジ面31上に支持する場合、スペーサ48とケーシング部483をベース3と外側ケーシング2の間に別々に挟持するため、ケーシング部483の取付位置にがたつきが生じやすい。これに対し本実施の形態では、ケーシング部483をスペーサ48と一体に設けているので、ケーシング部483を別に挟持する必要がなく、ケーシング部483のがたつきを防ぐことができる。
(2)ケーシング部483をスペーサ48と一体に設けるので、部品点数の増加を防止することができ、コストを抑えることができるとともに、ポンプ本体1の組立性も容易である。
(3)積層体400の外側に円筒形状のケーシング部483を配設するので、その分、外側ケーシング2の周壁22の内径側の肉厚を薄くしても、ケーシング全体の強度を確保することができる。このため外側ケーシング2の外径を大きくする必要がなく、ポンプ本体1の大型化を防ぐことができる。
(4)ケーシング部483を下側に向けて延設するので、スペーサ48を容易に積層することができる。
(5)ケーシング部483を最上段のスペーサ48からベース3にかけて延設し、ケーシング部48により積層体400の全体を覆うようにしたので、ロータ破壊のエネルギーをケーシング部48で確実に吸収することができる。
(6)スペーサ48に径方向にかけて貫通孔484を開口するので、隙間a1~a3に溜まったガスをガス通路の下流側へと流すことができ、吸気口1a側を高真空状態に維持できる。
(7)ケーシング部483の周囲に隙間a1~a3を設けるようにしたので、ケーシング部483が他の部品と干渉することがなく、ポンプ本体1を容易に組み立てることができる。
 上記実施の形態では、ケーシング部483の径方向内側および外側にそれぞれ隙間a1,a2を設けるようにしたが、図3に示すように外側の隙間a2を内側の隙間a1より大きくしてもよい。これによりロータ破壊時の飛散物の衝突により、ケーシング部483が外側ケーシング2の内側で径方向外側に大きく変形可能となり、ロータ破壊のエネルギーを効率よく吸収できる。
-第2の実施の形態-
 図4を参照して本発明の第2の実施の形態について説明する。
 図4は、第2の実施の形態に係るターボ分子ポンプの要部構成を示す断面図である。なお、図2(b)と同一の箇所には同一の符号を付し、以下ではその相違点を主に説明する。
 第2の実施の形態が第1の実施の形態と異なるのは、ベース3のフランジ面31の形状である。すなわちフランジ面31には、凸部32の径方向外側にさらに全周にわたって凸部33が設けられている。凸部33の上端面は、ケーシング部483の下端面よりも上方に位置し、ケーシング部483と凸部33の間には径方向に隙間a4が設けられている。隙間a4は、ケーシング部483と外側ケーシング2の間の隙間a2よりも小さく形成されている。
 これによりロータ4の破壊によりケーシング部483が外側に変形すると、ケーシング部483は外側ケーシング2の周壁22に接触する前に凸部33に接触する。このためケーシング部483の変形が凸部33により抑えられ、ケーシング部483と外側ケーシング2の接触を防ぐことができる。
 なお、上記実施の形態では、スペーサ48をステンレスにより構成したが、ケーシング部483を有する最上部のスペーサ48のみをステンレスにより構成し、他のスペーサ48を固定翼43と同様、アルミ等で形成してもよい。段部481,482を介してスペーサ48と固定翼43を積層したが、ステータとしての積層体400の構成はこれに限らない。例えばスペーサ48の上面にピンを突設し、ピンを介してスペーサ48と固定翼43を位置決めしながら積層してもよい。
 ロータ4を回転可能に支持するベース3の構成、および積層体400を収容するケーシングとしての外側ケーシング2の構成は上述したものに限らない。最上段(最終段)のスペーサ48にケーシング部483を設けるようにしたが、少なくとも他のスペーサ48の外周面を覆うように円環状に形成されるのであれば、リング部の構成はこれに限らない。最上段以外のスペーサ48にケーシング部483を設けてもよく、ケーシング部483を複数のスペーサ48に設けてもよい。
 ケーシング部483を最下段(第1段)のスペーサ48の側方にかけて延設するようにしたが、ケーシング部483の先端位置をこれより上に設定してもよい。ケーシング部483を積層体400の下側ではなく上側に向けて延設してもよい。リング部483の先端外周面を覆うように凸部33を設けたが(図4)、外周押さえ部の形状はこれに限らない。すなわち本発明の特徴、機能を実現できる限り、本発明は実施の形態のターボ分子ポンプに限定されない。

Claims (5)

  1.  ベースに回転可能に支持されたロータと、
     前記ロータの周囲に配設されたステータと、
     前記ステータが収容される筒状のケーシングとを備え、
     前記ステータは、複数段の固定翼およびスペーサを、前記ベースのフランジ面上に第1段から最終段に至るまで交互に積層してなり、
     少なくとも一の前記スペーサには、前記ケーシングの内側で他の前記スペーサの外周面を覆う円環状のリング部が連設されるターボ分子ポンプ。
  2.  請求項1に記載のターボ分子ポンプにおいて、
     前記ロータと前記ステータとの間の径方向の隙間は、前記リング部と前記ケーシングとの間の径方向の隙間よりも小さいターボ分子ポンプ。
  3.  請求項1または2に記載のターボ分子ポンプにおいて、
     前記リング部は、前記ベースのフランジ面側にかけて延設されるターボ分子ポンプ。
  4.  請求項3に記載のターボ分子ポンプにおいて、
     前記リング部は、前記最終段のスペーサに設けられ、その先端部は前記第1段のスペーサの側方にかけて延設されるターボ分子ポンプ。
  5.  請求項4に記載のターボ分子ポンプにおいて、
     前記ベースのフランジ面上には、前記ケーシングの内側で前記リング部の先端部外周面を覆うように外周押さえ部が設けられるターボ分子ポンプ。
PCT/JP2008/056350 2008-03-31 2008-03-31 ターボ分子ポンプ WO2009122506A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/934,800 US8591204B2 (en) 2008-03-31 2008-03-31 Turbo-molecular pump
JP2010505167A JP5115622B2 (ja) 2008-03-31 2008-03-31 ターボ分子ポンプ
CN200880128386.7A CN101981321B (zh) 2008-03-31 2008-03-31 涡轮式分子泵
PCT/JP2008/056350 WO2009122506A1 (ja) 2008-03-31 2008-03-31 ターボ分子ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/056350 WO2009122506A1 (ja) 2008-03-31 2008-03-31 ターボ分子ポンプ

Publications (1)

Publication Number Publication Date
WO2009122506A1 true WO2009122506A1 (ja) 2009-10-08

Family

ID=41134927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/056350 WO2009122506A1 (ja) 2008-03-31 2008-03-31 ターボ分子ポンプ

Country Status (4)

Country Link
US (1) US8591204B2 (ja)
JP (1) JP5115622B2 (ja)
CN (1) CN101981321B (ja)
WO (1) WO2009122506A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735706B8 (fr) * 2012-11-21 2016-12-07 Safran Aero Booster S.A. Redresseur à aubes de compresseur de turbomachine axiale et procédé de fabrication
JP2015059426A (ja) 2013-09-17 2015-03-30 エドワーズ株式会社 真空ポンプの固定部品
JP6287596B2 (ja) * 2014-06-03 2018-03-07 株式会社島津製作所 真空ポンプ
JP2020023949A (ja) * 2018-08-08 2020-02-13 エドワーズ株式会社 真空ポンプ、及びこの真空ポンプに用いられる円筒部、並びにベース部
JP2022114559A (ja) * 2021-01-27 2022-08-08 エドワーズ株式会社 真空ポンプ及びスペーサ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003262198A (ja) * 2002-03-08 2003-09-19 Shimadzu Corp ターボ分子ポンプ
JP2006170217A (ja) * 1997-06-27 2006-06-29 Ebara Corp ターボ分子ポンプ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332752B2 (en) * 1997-06-27 2001-12-25 Ebara Corporation Turbo-molecular pump
US6926493B1 (en) * 1997-06-27 2005-08-09 Ebara Corporation Turbo-molecular pump
US6589009B1 (en) * 1997-06-27 2003-07-08 Ebara Corporation Turbo-molecular pump
JP4520636B2 (ja) * 1998-05-26 2010-08-11 ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング シャシ、ロータ及びケーシングを有する摩擦真空ポンプ並びにこの形式の摩擦真空ポンプを備えた装置
US20030017047A1 (en) * 1998-06-25 2003-01-23 Ebara Corporation Turbo-molecular pump
JP4197819B2 (ja) 1999-02-19 2008-12-17 株式会社荏原製作所 ターボ分子ポンプ
US6503050B2 (en) * 2000-12-18 2003-01-07 Applied Materials Inc. Turbo-molecular pump having enhanced pumping capacity
JP3961273B2 (ja) * 2001-12-04 2007-08-22 Bocエドワーズ株式会社 真空ポンプ
JP2004245160A (ja) * 2003-02-14 2004-09-02 Shimadzu Corp ターボ分子ポンプ
DE10331932B4 (de) * 2003-07-15 2017-08-24 Pfeiffer Vacuum Gmbh Turbomolekularpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170217A (ja) * 1997-06-27 2006-06-29 Ebara Corp ターボ分子ポンプ
JP2003262198A (ja) * 2002-03-08 2003-09-19 Shimadzu Corp ターボ分子ポンプ

Also Published As

Publication number Publication date
CN101981321A (zh) 2011-02-23
JPWO2009122506A1 (ja) 2011-07-28
US20110014073A1 (en) 2011-01-20
JP5115622B2 (ja) 2013-01-09
US8591204B2 (en) 2013-11-26
CN101981321B (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6331491B2 (ja) 真空ポンプ
JP5115622B2 (ja) ターボ分子ポンプ
US20150016958A1 (en) Vacuum pump
JP5626445B2 (ja) ターボ分子ポンプのボルト締結構造およびターボ分子ポンプ
WO2006137333A1 (ja) ターボ分子ポンプ、およびターボ分子ポンプの組み立て方法
JP5062257B2 (ja) ターボ分子ポンプ
JPWO2009153874A1 (ja) ターボ分子ポンプ
JP2009108752A (ja) 真空ポンプ
JP5365634B2 (ja) 回転真空ポンプ
JP6433812B2 (ja) アダプタ及び真空ポンプ
JP4935509B2 (ja) ターボ分子ポンプ
JP5577798B2 (ja) ターボ分子ポンプ
JP5136262B2 (ja) 回転真空ポンプ
JP3144272U (ja) ターボ分子ポンプ
JP4136402B2 (ja) ターボ分子ポンプ
JP5434684B2 (ja) ターボ分子ポンプ
JP4920975B2 (ja) ターボ型真空ポンプ
JP2011027049A (ja) ターボ分子ポンプ
JP5141065B2 (ja) ターボ分子ポンプ
JP5532051B2 (ja) 真空ポンプ
WO2021010347A1 (ja) 真空ポンプ
WO2017168642A1 (ja) インペラ、回転機械、ターボチャージャー
JP2003269364A (ja) 真空ポンプ
JP6079041B2 (ja) ターボ分子ポンプ、及び、ターボ分子ポンプ用の補強部材
JP2011001825A (ja) ターボ分子ポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880128386.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08739464

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505167

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12934800

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08739464

Country of ref document: EP

Kind code of ref document: A1