WO2009113298A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2009113298A1
WO2009113298A1 PCT/JP2009/001068 JP2009001068W WO2009113298A1 WO 2009113298 A1 WO2009113298 A1 WO 2009113298A1 JP 2009001068 W JP2009001068 W JP 2009001068W WO 2009113298 A1 WO2009113298 A1 WO 2009113298A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
snubber circuit
power converter
power
circuit
Prior art date
Application number
PCT/JP2009/001068
Other languages
English (en)
French (fr)
Inventor
日比野寛
関本守満
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP09720739.3A priority Critical patent/EP2259419A4/en
Priority to US12/918,656 priority patent/US20100328975A1/en
Priority to CN2009801081681A priority patent/CN101965677A/zh
Priority to AU2009222852A priority patent/AU2009222852B2/en
Publication of WO2009113298A1 publication Critical patent/WO2009113298A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers

Definitions

  • the present invention relates to a power conversion device having a switching element.
  • Wide bandgap semiconductors such as the above-mentioned SiC semiconductors have a higher breakdown voltage than conventional Si semiconductors (semiconductors using Si crystals) (SiC semiconductors are about 10 times higher), so the device has a high breakdown voltage. If the same breakdown voltage is obtained, the thickness of the device can be reduced as compared with the case of a Si semiconductor, so that a device having a small conduction loss and a small size can be obtained.
  • the wide band gap semiconductor can operate at high speed or at high temperature (for example, 200 ° C.), it is possible to improve the efficiency of the entire apparatus by high speed operation and to operate at high temperature.
  • the cooling structure can be simplified, and the size of the apparatus can be reduced.
  • an element such as a capacitor is used in addition to the semiconductor.
  • a snubber circuit is used as a protection circuit to suppress the surge voltage.
  • a snubber circuit having a capacitor is used. JP 2000-224867 A
  • the wide band gap semiconductor can operate at a high speed or at a high temperature (for example, 200 ° C.). Therefore, the high speed operation can improve the efficiency of the power conversion device, and even under a high temperature condition. It is thought that it can be operated.
  • the above snubber circuit When operating at high speed, the above snubber circuit must be placed as close as possible to the switching element.
  • a switching element using a wide band gap semiconductor hereinafter also referred to as a SiC switching element
  • SiC switching element performs switching at a higher speed than a conventional Si semiconductor switching element, and suppresses the surge voltage to the same level as before.
  • it is necessary to reduce the inductance of the wiring Specifically, it is necessary to make it closer than the distance between the switching element and the snubber circuit in the power converter using the conventional Si semiconductor element.
  • the allowable temperature of a general capacitor is about 150 ° C., which is lower than the operating temperature of the SiC switching element. Therefore, if a snubber circuit having a capacitor is disposed in the vicinity of the SiC switching element, the SiC switching element Heating may cause the operating temperature of the snubber circuit to exceed its allowable temperature. Although it is conceivable to use the switching element in a temperature range that does not exceed the allowable temperature of the snubber circuit, it is necessary to take measures such as increasing the element capacity to reduce the amount of heat generation. Further, if the switching speed is decreased to reduce the surge voltage, the switching loss increases, resulting in an increase in the size of the cooling structure and an increase in cost. That is, to realize high-speed operation, it is considered that the snubber circuit and the switching element must be arranged so close that they cannot be insulated.
  • the present invention has been made paying attention to the above-described problem, and has an object to allow a snubber circuit to be disposed close to a switching element having an operating temperature higher than that of a Si semiconductor switching element.
  • the first invention is A switching element (130) configured to be capable of high-temperature operation is provided, and AC power supplied from an AC power source or DC power supplied from a DC power source is converted into AC power or DC power having a predetermined voltage and frequency.
  • a power converter, A snubber circuit (300) configured to be capable of high-temperature operation is provided with a capacitor (301) configured to be capable of high-temperature operation.
  • snubber circuit (300) This enables the snubber circuit (300) to operate at a high temperature (for example, a temperature equal to or higher than the operating temperature of the switching element (130)).
  • the switching element (130) has an operating temperature of 150 ° C. or higher.
  • the switching element (130) is a semiconductor device whose main material is a wide band gap semiconductor.
  • the switching element (130) composed of the wide band gap semiconductor performs the switching operation.
  • the fourth invention is In any one of the power converters of the first invention to the third invention,
  • the snubber circuit (300) has an allowable temperature of 150 ° C. or higher.
  • the capacitor (301) of the snubber circuit (300) is formed of a ceramic capacitor.
  • the capacitor (301) of the snubber circuit (300) is constituted by a film capacitor using a high heat-resistant material as a derivative material.
  • the snubber circuit (300) includes a diode whose main material is a wide band gap semiconductor.
  • the wide band gap semiconductor is any one of silicon carbide, gallium nitride, and diamond.
  • the diode of the switching element (130) or the snubber circuit (300) is composed of a wide band gap semiconductor to perform switching operation or suppress surge voltage.
  • a plurality of the switching elements (130) are connected in series to form a series circuit (170), A plurality of the series circuits (170) are arranged in parallel, The snubber circuit (300) is arranged for each series circuit (170).
  • the tenth aspect of the invention is In any one of the power converters of the first invention to the ninth invention, The snubber circuit (300) is arranged for each switching element (130).
  • the eleventh invention In any one of the power converters of the first invention to the tenth invention, The switching element (130) and the snubber circuit (300) are arranged in the same package.
  • the twelfth invention In any one of the power converters of the first invention to the eleventh invention, The switching element (130) and the snubber circuit (300) are arranged on the same substrate.
  • the switching element (130) and the snubber circuit (300) are arranged close to each other.
  • the thirteenth invention In the power converter of the eleventh invention or the twelfth invention, The switching element (130) is directly connected to a terminal of the snubber circuit (300).
  • All terminals of the snubber circuit (300) electrically connected to the switching element (130) are The switching element (130), Or a wiring member directly connected to the switching element (130), Or a wiring member directly connected via the switching element (130) and the heat spreader (510), It is characterized by being directly connected.
  • the switching element (130) and the terminal of the snubber circuit (300) connected to the switching element (130) are arranged close to each other.
  • a compression mechanism (50) that compresses the refrigerant, a drive motor (40) that drives the compression mechanism (50), and the compression mechanism (50) and the drive motor (40) are housed and filled with the refrigerant.
  • the drive motor (40) in the compressor (20) including the casing (30) is driven.
  • the snubber circuit (300) can operate at a high temperature (for example, a high temperature equal to or higher than the operating temperature of the switching element (130)).
  • the compression mechanism (50) is configured to discharge high-pressure refrigerant into the casing (30), and the casing (30) is discharged to discharge the high-pressure refrigerant therein to the outside of the casing (30).
  • a pipe (35) is connected.
  • the seventeenth invention In the power conversion device of the fifteenth invention or the sixteenth invention, the snubber circuit (300) and the switching element (130) are disposed in the casing (30).
  • the eighteenth invention In any one of the fifteenth to seventeenth aspects of the power conversion device,
  • the drive motor (40) includes a stator core portion (42a) fixed to the inner wall of the casing (30), and an insulating portion (42c) formed on an axial end surface of the stator core portion (42a).
  • the switching element (130) and the snubber circuit (300) are supported by the insulating part (42c).
  • the nineteenth invention In any one of the fifteenth to eighteenth aspects of the power conversion device,
  • the switching element (130) and the snubber circuit (300) are arranged between the compression mechanism (50) and the discharge pipe (35).
  • the compressor (20) is connected to a heat pump circuit including a refrigerant circuit (10) that performs a refrigeration cycle by circulating the refrigerant.
  • the high-pressure refrigerant in the casing (30) cools the snubber circuit (300) and the switching element (130) of the power converter for driving the drive motor.
  • a power conversion device comprising a switching element (130), which converts AC power supplied from an AC power source or DC power supplied from a DC power source into AC power or DC power having a predetermined voltage and frequency, A snubber circuit (300) having a capacitor (301); All terminals of the snubber circuit (300) electrically connected to the switching element (130) are The switching element (130), Or a wiring member directly connected to the switching element (130), Or a wiring member directly connected via the switching element (130) and the heat spreader (510), It is characterized by being directly connected.
  • the switching element (130) and the terminal of the snubber circuit (300) connected to the switching element (130) are arranged close to each other.
  • the snubber circuit (300) can operate at a high temperature (for example, a high temperature equal to or higher than the operating temperature of the switching element (130)), the snubber circuit is close to the switching element (130). (300) can be placed. As a result, the wiring inductance can be reduced, and the high-speed operation of the power converter can be realized.
  • the power conversion device can be operated at 150 ° C. or higher.
  • the switching element (130) can perform a high-speed switching operation at a high temperature.
  • the snubber circuit (300) since the snubber circuit (300) operates at 150 ° C. or higher, the snubber circuit (300) can be used for a power conversion device that operates in an atmosphere of 150 ° C. or higher.
  • power conversion can be performed at a predetermined temperature or higher (for example, 150 ° C. or higher).
  • the diode of the switching element (130) or the snubber circuit (300) is composed of a wide band gap semiconductor, in the power conversion device, a temperature equal to or higher than a predetermined temperature (for example, (150 ° C. or higher) enables efficient power conversion.
  • the switching element (130) and the snubber circuit (300) are arranged close to each other, the switching element (130) and the snubber circuit (300) are not connected.
  • the wiring inductance can be reduced.
  • the high-speed operation of the power conversion device can be realized, so that the operation efficiency of the compressor is improved.
  • the switching element (130) and the snubber circuit (300) are arranged close to each other, it is possible to reduce the wiring inductance and the like. High-speed operation can be realized. Furthermore, since the high-pressure refrigerant in the casing (30) cools the snubber circuit (300) and the switching element (130) of the power converter for driving the drive motor (40), the power converter (that is, more efficiently) An air conditioner) can be operated.
  • the switching element (130) and the snubber circuit (300) are arranged close to each other, the wiring inductance between the switching element (130) and the snubber circuit (300) is reduced. it can.
  • FIG. 1 is a diagram illustrating the configuration of the power conversion device according to the first embodiment.
  • FIG. 2 is a diagram showing the concept of wiring length.
  • 3A to 3F are other configuration examples of the snubber circuit.
  • FIG. 4 is a diagram showing a configuration of the power conversion device when a snubber circuit is provided for each phase of the switching element (130).
  • FIG. 5 is a piping diagram of a refrigerant circuit of the heat pump device according to the second embodiment.
  • FIG. 6 is a longitudinal sectional view illustrating a schematic configuration of the fluid machine according to the second embodiment.
  • FIG. 7A is a diagram illustrating a circuit in the case where a snubber circuit is provided for each series circuit, and FIG.
  • FIG. 7B is a diagram illustrating the arrangement of switching elements and snubber circuits on a chip. It is a figure which shows an example of the structure of MOSFET of a vertical structure, FIG. 8A is DiMOSFET and FIG. 8B is UMOSFET.
  • FIG. 9 is a diagram showing another arrangement example of the switching element and the snubber circuit on the chip when a snubber circuit is provided for each series circuit.
  • FIG. 10 is a diagram showing still another arrangement example of the switching element and the snubber circuit on the chip when a snubber circuit is provided for each series circuit.
  • FIG. 11A is a diagram illustrating a circuit in the case where a snubber circuit is provided for each switching element, and FIG.
  • FIG. 11B is a diagram illustrating the arrangement of the switching elements and the snubber circuit on a chip.
  • FIG. 12 is a diagram showing another arrangement example of the switching element and the snubber circuit on the chip when a snubber circuit is provided for each switching element.
  • FIG. 13A is a circuit example when a snubber circuit is arranged for each switching element
  • FIG. 13B is a diagram for explaining the arrangement of the switching elements and the snubber circuit on a chip.
  • FIG. 14 is a diagram showing another arrangement example of the switching element and the snubber circuit on the chip when a snubber circuit is arranged for each switching element.
  • FIG. 12 is a diagram showing another arrangement example of the switching element and the snubber circuit on the chip when a snubber circuit is arranged for each switching element.
  • FIG. 15 is a diagram showing still another arrangement example of the switching element and the snubber circuit on the chip when the snubber circuit is arranged for each switching element.
  • FIG. 16 is a diagram illustrating an example of the chip structure of the snubber circuit.
  • Embodiment 1 of the Invention The structure of the power converter device which concerns on Embodiment 1 of this invention is shown in FIG.
  • This power conversion device (100) includes a smoothing capacitor (150) and an inverter circuit (120), and the inverter circuit (120) controlled by the control device (430) receives the direct current input from the direct current power source (410). This is converted into a three-phase AC and supplied to the three-phase AC motor (420).
  • the three-phase AC motor (420) drives a compressor provided in the refrigerant circuit of the air conditioner.
  • the DC power supply (410) can be configured by a converter circuit that rectifies an AC power supply such as a commercial AC power supply.
  • Smoothing capacitor (150) is a capacitor that smoothes the voltage of the DC power supply.
  • an electrolytic capacitor can be used as the smoothing capacitor (150). Since the allowable temperature of the electrolytic capacitor is about 100 ° C., in this embodiment, the smoothing capacitor (150) is insulated from the inverter circuit (120).
  • the inverter circuit (120) includes a switching element (130), a drive circuit (140), and a snubber circuit (300). Each of these components is composed only of components that can operate at 150 ° C. or higher.
  • each switching element (130) is configured by a switching element using a wide band gap semiconductor (here, SiC MOSFET and SiC diode).
  • a wide band gap semiconductor here, SiC MOSFET and SiC diode.
  • the wide band gap semiconductor include gallium nitride (GaN) and diamond in addition to SiC (silicon carbide).
  • the maximum operating temperature of the conventional Si semiconductor is 150 ° C., but the maximum operating temperature of the wide band gap semiconductor is higher than that of the Si semiconductor.
  • the maximum operating temperature of a wide band gap semiconductor is 150 ° C. or higher. Therefore, the maximum value of the operating temperature of the switching element (130) using the wide band gap semiconductor as in this embodiment is 150 ° C. or more.
  • each switching element (130) includes a transistor (131) and a free wheeling diode (132).
  • the drive circuit (140) is provided corresponding to each switching element (130). That is, six drive circuits (140) are also provided in the inverter circuit (120). Each drive circuit (140) switches on / off by controlling the gate potential of the transistor (131) in the corresponding switching element (130) under the control of the control device (430).
  • the snubber circuit (300) is a circuit that suppresses a surge voltage generated in the inverter circuit (120), and is configured by a capacitor (301) in the present embodiment.
  • the snubber circuit (300) is electrically connected between the two input terminals of the inverter circuit (120). Further, the snubber circuit (300) and the inverter circuit (120) are arranged close to each other. These distances need to be closer than the distance between the inverter circuit (120) and the snubber circuit (300) in the power converter using the conventional Si semiconductor element. In such an arrangement, it is generally considered that the arrangement is so close that heat insulation cannot be performed.
  • the wiring inductance is 10 nH or less (including a shunt resistor for current detection) and the switching speed is 200 ns. Based on this example, the arrangement in this embodiment is studied. View.
  • a switching element composed of a SiC semiconductor can be switched at a speed 10 times or more that of a switching element using Si.
  • the wiring inductance In order to perform the high-speed switching by configuring the switching element (130) with a SiC semiconductor and further suppress the surge voltage due to the wiring inductance to the same level as the conventional one, it is necessary to reduce the wiring inductance. For example, in order to achieve a switching speed 10 times that of the current level, the wiring inductance needs to be 1 nH or less.
  • the relationship between the wiring length (distance between the snubber circuit and the switching element as shown in FIG. 2), the wiring diameter, and the wiring inductance has the following relationship.
  • the wire diameter becomes too large.
  • the wiring length (distance between the snubber circuit and the switching element) is 5 mm or more.
  • the wiring inductance is 4.5 nH from the above formula.
  • a diameter of 10 mm or more is required.
  • the wiring inductance when allowing up to 100 V as a surge voltage when switching a current of 10 A at a switching speed of 1 ns needs to be 10 nH or less as can be seen from the following equation.
  • the wiring inductance of the wiring length of 9 mm and the diameter of 2 mm is 10.2 nH, and the switching element and the snubber circuit need to be disposed within at least 9 mm.
  • the inductance included in the bonding wire and snubber circuit also affects the surge voltage, so it must be placed closer.
  • the capacitor (301) employs a capacitor whose allowable temperature is equal to or higher than the operating temperature of the switching element (130).
  • the allowable temperature of the capacitor (301) is, for example, 150 ° C. or higher. Is considered desirable.
  • a capacitor capable of operating at a high temperature for example, a ceramic capacitor or a film capacitor using a high heat-resistant material as a derivative material can be considered.
  • high heat-resistant materials include polyamide (PA), polyamideimide (PAI), polyarylate (PAR), polyimide (PI), polyetherimide (PEI), polyetheretherketone (PEEK), polyethersulfone. (PES), polysulfone (PSF), polyphenylene sulfide (PPS), polybenzimidazole (PBI), liquid crystal polymer (LCP), and the like are considered.
  • control device (430) controls the on / off of each switching element (130) via each drive circuit (140).
  • the control device (430) is arranged to be insulated from the power conversion device (100).
  • the capacitor (301) in the snubber circuit (300) can be operated at a high temperature (in the above example, an allowable temperature higher than the operating temperature of the switching element (130)). Therefore, the snubber circuit (300) can be disposed close to the switching element (130), which is an SiC switching element (the operating temperature is higher than that of the Si semiconductor switching element). Therefore, the wiring inductance can be reduced, and the high-speed operation of the inverter circuit (120) (that is, the high-speed operation of the power converter (100)) can be realized.
  • FIG. 4 is an example in which a snubber circuit is provided for each phase of the switching element (130).
  • the snubber circuit shown in FIG. 3B is used as these snubber circuits.
  • the drive circuit and the like are omitted.
  • each component is composed only of components that can operate at 150 ° C. or higher.
  • phase refers to a portion where the switching elements (130) are connected in series (series circuit (170) in FIG. 4).
  • series circuit (170) in FIG. 4
  • Embodiment 3 of the Invention demonstrates the example which uses a power converter device for a heat pump apparatus.
  • the heat pump device constitutes an air conditioner (1) that performs switching between indoor cooling and heating.
  • the air conditioner (1) includes a refrigerant circuit (10).
  • the refrigerant circuit (10) is filled with a chlorofluorocarbon refrigerant as a refrigerant.
  • a refrigerant is circulated to perform a vapor compression refrigeration cycle.
  • the refrigerant circuit (10) is connected to a compressor (20), an indoor heat exchanger (21), an expansion valve (22), an outdoor heat exchanger (23), and a four-way switching valve (24).
  • the compressor (20) of Embodiment 3 is a rotary type compressor and constitutes the fluid machine of the present invention. Details of the compressor (20) will be described later.
  • the indoor heat exchanger (21) is installed indoors. In the indoor heat exchanger (21), heat is exchanged between the refrigerant and the room air.
  • the outdoor heat exchanger (23) is installed outdoors. In the outdoor heat exchanger (23), heat is exchanged between the refrigerant and the outdoor air.
  • the expansion valve (22) is a pressure reducing means for reducing the pressure of the refrigerant, and is constituted by, for example, an electronic expansion valve.
  • the four-way selector valve (24) has four ports from first to fourth.
  • the four-way switching valve (24) has a first port on the discharge side of the compressor (20), a second port on the indoor heat exchanger (21), a third port on the suction side of the compressor (20), The fourth port is connected to the outdoor heat exchanger (23).
  • the four-way switching valve (24) includes a state in which the first port and the second port are connected and at the same time the third port and the fourth port are connected (indicated by the solid line in FIG. 5), the first port and the fourth port. At the same time that the second port and the third port are connected to each other (the state indicated by the broken line in FIG. 5).
  • the compressor (20) includes a hollow and sealed casing (30).
  • the casing (30) includes a cylindrical barrel (31), a top plate (32) provided at the upper end of the barrel (31), and a bottom plate (33) provided at the lower end of the barrel (31). ).
  • the suction pipe (34) is connected to the lower side of the body part (31)
  • the discharge pipe (35) is connected to the top plate part (32).
  • the discharge pipe (35) penetrates the top plate part (32) up and down, and the lower end thereof opens into the internal space of the casing (30).
  • the casing (30) is made of a metal material such as iron.
  • a drive motor (40), a drive shaft (45), and a compression mechanism (50) are accommodated.
  • the drive motor (40) is arranged in the space near the top in the casing (30).
  • the drive motor (40) includes a rotor (41) and a stator (42).
  • the rotor (41) is fixed around the drive shaft (45).
  • the stator (42) is provided on the outer peripheral side of the rotor (41).
  • the stator (42) includes a stator core portion (42a) that is fixed to the inner wall of the body portion (31) of the casing (30), and coil portions that are respectively provided on the upper side and the lower side of the stator core portion (42a). 42b).
  • the stator core portion (42a) is provided with insulators (42c) on both upper and lower end surfaces in the axial direction.
  • the insulator (42c) is made of an insulating material and constitutes an insulating part for insulating the stator core part (42a) and the coil part (42b).
  • the drive shaft (45) is formed by extending the axis of the casing (30) in the vertical direction.
  • the drive shaft (45) is formed with an eccentric portion (46) at a lower portion.
  • the eccentric part (46) has a larger diameter than the drive shaft (45) and is eccentric by a predetermined amount from the axis of the drive shaft (45).
  • the drive shaft (45) is provided with an oil pump (47) at its lower end.
  • the oil pump (47) has a structure for pumping up oil accumulated at the bottom of the casing (30) by centrifugal force.
  • the oil pumped up by the oil pump (47) is passed through an oil supply passage (not shown) formed in the drive shaft (45) to the interior of the compression mechanism (50), the bearing of the drive shaft (45), etc. Supplied to the sliding part.
  • the compression mechanism (50) is arranged in a space near the lower part in the casing (30).
  • the compression mechanism (50) includes a cylinder (51), a front head (52), a rear head (53), and a piston (54).
  • the cylinder (51) is formed in an annular shape, and its outer peripheral surface is fixed to the inner wall of the casing (30).
  • a cylindrical cylinder chamber (55) is formed inside the cylinder (51).
  • the cylinder (51) is formed with a suction passage (51a) extending in the radial direction.
  • the suction passage (51a) connects the cylinder chamber (55) and the suction pipe (34).
  • the front head (52) is attached to the upper side of the cylinder (51), and the rear head (53) is attached to the lower side of the cylinder (51).
  • the front head (52) closes the upper end opening of the cylinder chamber (55), and the rear head (53) closes the lower end opening of the cylinder chamber (55).
  • the front head (52) is provided with an upper bearing (56), and the rear head (53) is provided with a lower bearing (57).
  • the drive shaft (45) is rotatably supported by the upper bearing (56) and the lower bearing (57) while penetrating the front head (52) and the rear head (53).
  • the front head (52) is formed with a discharge port (52a) that allows the cylinder chamber (55) and the internal space of the casing (30) to communicate with each other.
  • the discharge port (52a) is provided with a discharge valve (not shown).
  • a muffler muffler (58) is attached to the front head (52) so as to cover the discharge port (52a).
  • the piston (54) is disposed in the cylinder chamber (55).
  • the eccentric part (46) is fitted into the piston (54).
  • the piston (54) rotates in the cylinder chamber (55) while being eccentric from the axis of the drive shaft (45).
  • the compression mechanism (50) the volume of the compression chamber formed in the cylinder chamber (55) is changed, and the refrigerant is compressed.
  • the compression mechanism (50) is configured to discharge high-pressure (eg, 120 ° C.) high-pressure refrigerant after compression into the casing (30) via the discharge port (52a). That is, the compressor (20) of the third embodiment constitutes a so-called high pressure dome type compressor in which the internal space of the casing (30) is filled with the high pressure refrigerant.
  • high-pressure eg, 120 ° C.
  • the compressor (20) includes a power conversion device (60) for driving and controlling the drive motor (40).
  • the power conversion device (60) is the power conversion device according to any one of the above embodiments.
  • the power conversion device (60) is provided on the upper portion of the casing (30).
  • the power converter (60) has a substrate (61), and a switching element (130) and a snubber circuit (300) are installed on the substrate (61).
  • the switching element (130) and the snubber circuit (300) are disposed in the space between the compression mechanism (50) and the discharge pipe (35).
  • electromagnetic noise from the power converter can be insulated by the casing (30).
  • the overall size of the air conditioner (1) can be reduced.
  • the switching element (130) and the snubber circuit (300) are arranged close to each other, the wiring inductance can be reduced and the high-speed operation of the power converter can be realized.
  • the power converter that is, the air conditioner
  • the power converter can be operated more efficiently in the power converter.
  • the distance from the coil part (42b) of the drive motor (40) to the inverter circuit (120) can be shortened by attaching the switching element (130) and the snubber circuit (300) to the insulator (42c). That is, in this modification, the length of the wiring connecting the inverter circuit (120) and the coil part (42b) can be shortened.
  • Embodiment 4 of the Invention an example in which the snubber circuit (300) and the switching element (130) are configured in the same package (transfer mold or the like) will be described. By incorporating these into the same package, the influence of wiring inductance can be further reduced.
  • all terminals of the snubber circuit (300) electrically connected to the switching element (130) are connected to the switching element (130) or the wiring member directly connected to the switching element (130), Or it is directly connected with the wiring member directly connected via the switching element (130) and the heat spreader.
  • the wiring member include a bonding wire, a lead frame, a wiring pattern, and a heat spreader.
  • the terminal of the snubber circuit (300) corresponds to, for example, the lead wire of the capacitor or the external electrode in the snubber circuit shown in FIG. 3A, and in the snubber circuit example in FIG.
  • the lead wires and electrodes the lead wires and electrodes electrically connected to the switching elements are applicable.
  • the terminals P, U, and N (external electrodes) in FIG. 7A correspond to the wiring patterns P, U, and N in FIG. 7B, respectively.
  • a SiC MOSFET is used as the switching element (130).
  • this SiC MOSFET has a vertical structure. Specifically, as shown in FIGS. 8A and 8B, the upper surface of the chip of the switching element is the source and the back surface is the drain.
  • FIG. 8A is a DiMOSFET
  • FIG. 8B is a UMOSFET.
  • the snubber circuit (300) is directly connected to the wiring patterns P and N.
  • Each switching element (130) is connected to the wiring patterns P and U via the heat spreader (510), respectively.
  • FIG. 9 is also an example of a chip arrangement when a snubber circuit (300) is provided for each phase (each series circuit) of the inverter circuit (120) (see FIG. 7A).
  • the snubber circuit (300) is directly connected to the wiring pattern P, is connected to the wiring pattern N by the bonding wire (520), and is further connected to the switching element (130) on the wiring pattern U side.
  • the switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side are also connected by a bonding wire (520).
  • FIG. 10 is also an example of a chip arrangement when a snubber circuit (300) is provided for each phase (each series circuit) of the inverter circuit (120). Also in this example, each switching element (130) is arranged via the heat spreader (510). The snubber circuit (300) is arranged on the same heat spreader (510) as the switching element (130) on the wiring pattern P side. In this example, between the snubber circuit (300) and the wiring pattern N, between the snubber circuit (300) and the switching element (130) on the wiring pattern U side, the switching element (130) on the wiring pattern P side and the wiring pattern U side. The heat spreader (510) is connected by a bonding wire (520).
  • each switching element (130) for example, an inverter circuit (120) and a snubber circuit (300) are arranged as shown in FIG. 11B.
  • one snubber circuit (300) is directly connected to the wiring pattern P
  • the other snubber circuit (300) is directly connected to the wiring pattern U.
  • each switching element (130) is connected to the wiring patterns P and U via the heat spreader (510), and is connected to the corresponding snubber circuit (300) and the bonding wire (520). .
  • the bonding wire (520) is connected between the snubber circuit (300) on the wiring pattern U side and the wiring pattern N, and between the switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side. Connected by.
  • FIG. 12 is also an example in which a snubber circuit (300) is provided for each switching element (130).
  • the switching element (130) and the corresponding snubber circuit (300) are arranged on a common heat spreader (510).
  • Each switching element (130) is connected to a corresponding snubber circuit (300) by a bonding wire (520).
  • the bonding wire (520) is connected between the snubber circuit (300) on the wiring pattern U side and the wiring pattern N, and between the switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side. Connected by.
  • the circuit shown in FIG. 13A is an example in which a snubber circuit (300) is arranged for each switching element (130).
  • a snubber circuit (300) is arranged for each switching element (130).
  • an inverter circuit (120) and a snubber circuit (300) are arranged.
  • the snubber circuit (300) is directly connected to the wiring patterns P, U, and N, respectively.
  • Each switching element (130) is connected to the wiring patterns P and U via the heat spreader (510), respectively. Further, between the switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side, and between the switching element (130) on the wiring pattern U side and the snubber circuit (300), bonding wires (520 ).
  • FIG. 14 is also an example when a snubber circuit (300) is arranged for each switching element (130). Also in this example, each switching element (130) is connected to the wiring patterns P and U via the heat spreader (510), respectively. The switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side are connected by a bonding wire (520). On the other hand, the snubber circuit (300) is directly connected to the wiring patterns P and U, respectively, and the wiring pattern N and the switching element (130) on the wiring pattern U side are connected by bonding wires (520), respectively. It is connected.
  • FIG. 15 is also an example in which a snubber circuit (300) is arranged for each switching element (130). Also in this example, each switching element (130) is connected to the wiring patterns P and U via the heat spreader (510), respectively. The switching element (130) on the wiring pattern P side and the heat spreader (510) on the wiring pattern U side are connected by a bonding wire (520). The snubber circuit (300) in this example is connected to the wiring patterns P and U via the heat spreader (510) for each switching element (130). That is, each switching element (130) and the heat spreader (510) are shared. The snubber circuit (300) and the wiring pattern N are connected by a bonding wire (520).
  • the chip structure shown in FIG. 16 is an example.
  • the resistor (602a) in contact with the external electrode (601) constitutes the resistor (602).
  • a derivative (603b) is provided between the internal electrode (603a) and the external electrode (604) each formed in a comb shape, and a capacitor (603) is provided between the internal electrode (603a) and the external electrode (604). Is configured.
  • the resistor (602) resistor (602a)
  • the capacitor (603) are surrounded by a protective film (605) from both sides.
  • the external electrode (601) and the external electrode (604) are the terminals of the snubber circuit connected to the switching element (130).
  • the switching element and the snubber circuit can be arranged close to each other, and the wiring inductance can be minimized.
  • the present invention is useful as a power conversion device having a switching element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 高温動作可能に構成されたスイッチング素子(130)を備えて、交流電源から供給された交流電力または直流電源から供給された直流電力を所定の電圧及び周波数の交流電力に電力変換を行う電力変換装置において、高温動作可能に構成されたコンデンサ(301)を有した高温動作可能に構成されたスナバ回路(300)を設ける。

Description

電力変換装置
 本発明は、スイッチング素子を有した電力変換装置に関するものである。
 従来、直流電圧を交流電圧に変換するインバータや交流電圧を直流電圧に変換するコンバータなどの電力変換装置として、複数のスイッチング素子によって電力変換動作を行うものが知られている。そして、このようなインバータのスイッチング素子をSiC半導体デバイスにより構成した例がある(例えば特許文献1を参照)。
 上述のSiC半導体などのようなワイドバンドギャップ半導体は、絶縁破壊電界が従来のSi半導体(Siの結晶を使った半導体)に比べて高いため(SiC半導体は約10倍高い)、素子の高耐圧化が容易になり、同じ耐圧であれば、Si半導体の場合に比べてディバイスの厚みを薄くできるため、導通損失が小さく且つ小型の素子にすることができる。
 また、上記ワイドバンドギャップ半導体は、高速動作や高温(例えば200℃)での動作が可能であるため、高速動作により装置全体の高効率化を図れるとともに、高温での動作が可能であることにより冷却構造を簡略化でき、これにより装置の小型化を図れる。
 また、このような電力変換装置では、前記の半導体以外にもコンデンサなどの素子も使用される。例えば、スイッチング素子をオンオフするときに、配線のインダクタンスによってサージ電圧が発生すると、スイッチング素子を破壊する恐れがあるため、保護回路としてスナバ回路を使用してサージ電圧を抑制するが、このスナバ回路にはコンデンサを備えたスナバ回路が使用されることが多い。
特開2000-224867号公報
 上述の通り、上記ワイドバンドギャップ半導体は、高速動作や高温(例えば200℃)での動作が可能であるため、その高速動作により、電力変換装置においても高効率化を図れるとともに、高温条件下でも動作させることができると考えられる。
 高速で動作させる場合には、上記のスナバ回路は、スイッチング素子のなるべく近くに配置しなければならない。これは、ワイドバンドギャップ半導体を用いたスイッチング素子(以下SiCスイッチング素子とも呼ぶことにする)によって従来のSi半導体のスイッチング素子よりも高速にスイッチングを行いつつ、サージ電圧を従来と同等レベルに抑えるには配線のインダクタンスを低減する必要があるからである。具体的には、従来のSi半導体素子を用いた電力変換装置におけるスイッチング素子とスナバ回路の距離よりも近接させる必要がある。
 しかしながら、一般的なコンデンサの許容温度は、150℃程度が上限であり、SiCスイッチング素子の動作温度よりも低いので、SiCスイッチング素子の近傍にコンデンサを備えたスナバ回路を配置すると、SiCスイッチング素子により加熱され、スナバ回路の動作温度がその許容温度を超えてしまう可能性がある。スナバ回路の許容温度を超えない温度範囲でスイッチング素子を使用することも考えられるが、そのためには素子の容量を大きくして、発熱量を減らすなどの対策が必要となる。また、サージ電圧を低減するためにスイッチング速度を遅くして使用すると、スイッチング損が増加して、その結果、冷却構造が大型化し、コストアップを招くことになる。つまり、高速動作を実現するには、スナバ回路とスイッチング素子とを断熱できないほど近くに配置しなければならないと考えられる。
 本発明は上記の問題に着目してなされたものであり、Si半導体のスイッチング素子よりも動作温度が高いスイッチング素子に近接してスナバ回路を配置できるようにすることを目的としている。
 上記の課題を解決するため、第1の発明は、
 高温動作可能に構成されたスイッチング素子(130)を備えて、交流電源から供給された交流電力または直流電源から供給された直流電力を所定の電圧及び周波数の交流電力または直流電力に電力変換を行う電力変換装置であって、
 高温動作可能に構成されたコンデンサ(301)を有した高温動作可能に構成されたスナバ回路(300)を備えていることを特徴とする。
 これにより、スナバ回路(300)が高温下(例えばスイッチング素子(130)の動作温度と同等もしくは同等以上の温度)で動作可能となる。
 また、第2の発明は、
 第1の発明の電力変換装置において、
 前記スイッチング素子(130)は、動作温度が150℃以上であることを特徴とする。
 これにより、スイッチング素子(130)が150℃以上で動作する。
 また、第3の発明は、
 第1の発明又は第2の発明の電力変換装置において、
 前記スイッチング素子(130)は、ワイドバンドギャップ半導体を主材料とした半導体ディバイスであることを特徴とする。
 これにより、ワイドバンドギャップ半導体により構成されたスイッチング素子(130)が、スイッチング動作を行なう。
 また、第4の発明は、
 第1の発明から第3の発明のうちの何れか1つの電力変換装置において、
 前記スナバ回路(300)は、許容温度が150℃以上であることを特徴とする。
 これにより、スナバ回路(300)が、150℃以上の雰囲気で動作可能となる。
 また、第5の発明は、
 第4の発明の電力変換装置において、
 前記スナバ回路(300)のコンデンサ(301)は、セラミックコンデンサにより構成されていることを特徴とする。
 これにより、スナバ回路(300)において、セラミックコンデンサがサージ電圧を抑制する。
 また、第6の発明は、
 第4の発明の電力変換装置において、
 前記スナバ回路(300)のコンデンサ(301)は、誘導体材料として高耐熱材料を用いたフィルムコンデンサにより構成されていることを特徴とする。
 これにより、スナバ回路(300)において、フィルムコンデンサがサージ電圧を抑制する。
 また、第7の発明は、
 第1の発明から第6の発明のうちの何れか1つの電力変換装置において、
 前記スナバ回路(300)は、ワイドバンドギャップ半導体を主材料としたダイオードを備えていることを特徴とする。
 また、第8の発明は、
 第3の発明又は第7の発明の電力変換装置において、
 前記ワイドバンドギャップ半導体は、シリコンカーバイト、窒化ガリウム、及びダイヤモンドの何れかであることを特徴とする。
 これらにより、スイッチング素子(130)或いはスナバ回路(300)のダイオードが、ワイドバンドギャップ半導体により構成されて、スイッチング動作、或いはサージ電圧の抑制を行う。
 また、第9の発明は、
 第1の発明から第8の発明のうちの何れか1つの電力変換装置において、
 前記スイッチング素子(130)は、複数が直列に接続されて直列回路(170)を構成し、
 前記直列回路(170)は、複数が並列に配置され、
 前記スナバ回路(300)は、直列回路(170)毎に配置されていることを特徴とする。
 また、第10の発明は、
 第1の発明から第9の発明のうちの何れか1つの電力変換装置において、
 前記スナバ回路(300)は、前記スイッチング素子(130)毎に配置されていることを特徴とする。
 また、第11の発明は、
 第1の発明から第10の発明のうちの何れか1つの電力変換装置において、
 前記スイッチング素子(130)と前記スナバ回路(300)とは、同一パッケージ内に配置されていることを特徴とする。
 また、第12の発明は、
 第1の発明から第11の発明のうちの何れか1つの電力変換装置において、
 前記スイッチング素子(130)とスナバ回路(300)とは、同一基板上に配置されていることを特徴とする。
 これらにより、スイッチング素子(130)とスナバ回路(300)とが近接して配置される。
 また、第13の発明は、
 第11の発明又は第12の発明の電力変換装置において、
 前記スイッチング素子(130)は、前記スナバ回路(300)の端子と直接接続されていることを特徴とする。
 また、第14の発明は、
 第11の発明から第13の発明のうちの何れか1つの電力変換装置において、
 前記スイッチング素子(130)と電気的に接続される、前記スナバ回路(300)の全ての端子は、
 前記スイッチング素子(130)、
 もしくは前記スイッチング素子(130)に直接接続された配線部材、
 もしくは前記スイッチング素子(130)とヒートスプレッダ(510)を介して直接接続された配線部材と、
 直接接続されていることを特徴とする。
 これらにより、スイッチング素子(130)と、該スイッチング素子(130)と接続されるスナバ回路(300)の端子とが近接して配置される。
 また、第15の発明は、
 第1の発明から第14の発明のうちの何れか1つの電力変換装置において、
 冷媒を圧縮する圧縮機構(50)と、該圧縮機構(50)を駆動する駆動モータ(40)と、該圧縮機構(50)と駆動モータ(40)が収容されるとともに内部に冷媒が満たされるケーシング(30)からなる圧縮機(20)における、前記駆動モータ(40)を駆動することを特徴とする。
 これにより、駆動モータ(40)駆動用の電力変換装置において、スナバ回路(300)が高温下(例えばスイッチング素子(130)の動作温度と同等以上の高温)で動作可能となる。
 また、第16の発明は、
 第15の発明の電力変換装置において、
 前記圧縮機構(50)は、前記ケーシング(30)内に高圧冷媒を吐出するように構成され、該ケーシング(30)には、その内部の高圧冷媒を該ケーシング(30)の外部に流出させる吐出管(35)が接続されていることを特徴とする。
 これにより、ケーシング(30)内が高圧冷媒で満たされる。
 また、第17の発明は、
 第15の発明又は第16の発明の電力変換装置において、
 前記スナバ回路(300)及び前記スイッチング素子(130)は、前記ケーシング(30)内に配置されることを特徴とする。
 また、第18の発明は、
 第15の発明から第17の発明のうちの何れか1つの電力変換装置において、
 前記駆動モータ(40)は、ケーシング(30)の内壁に固定される固定子コア部(42a)と、該固定子コア部(42a)の軸方向端面に形成される絶縁部(42c)とを有し、
 前記スイッチング素子(130)と前記スナバ回路(300)とは、前記絶縁部(42c)に支持されていることを特徴とする。
 また、第19の発明は、
 第15の発明から第18の発明のうちの何れか1つの電力変換装置において、
 前記スイッチング素子(130)と前記スナバ回路(300)とは、前記圧縮機構(50)と吐出管(35)との間に配置されていることを特徴とする。
 また、第20の発明は、
 第15の発明から第19の発明のうちの何れか1つの電力変換装置において、
 前記圧縮機(20)は、冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えたヒートポンプ回路に接続されていることを特徴とする。
 これらにより、ケーシング(30)内の高圧冷媒が、駆動モータ駆動用の電力変換装置のスナバ回路(300)及びスイッチング素子(130)を冷却する。
 また、第21の発明は、
 スイッチング素子(130)を備えて、交流電源から供給された交流電力または直流電源から供給された直流電力を所定の電圧及び周波数の交流電力または直流電力に電力変換を行う電力変換装置であって、
 コンデンサ(301)を有したスナバ回路(300)を備え、
 前記スイッチング素子(130)と電気的に接続される、前記スナバ回路(300)の全ての端子は、
 前記スイッチング素子(130)、
 もしくは前記スイッチング素子(130)に直接接続された配線部材、
 もしくは前記スイッチング素子(130)とヒートスプレッダ(510)を介して直接接続された配線部材と、
 直接接続されていることを特徴とする。
 これにより、スイッチング素子(130)と、該スイッチング素子(130)と接続されるスナバ回路(300)の端子とが近接して配置される。
 第1の発明によれば、スナバ回路(300)が高温下(例えばスイッチング素子(130)の動作温度と同等以上の高温)で動作可能となるので、スイッチング素子(130)に近接してスナバ回路(300)を配置できる。そのため、配線インダクタンスの低減等が可能になり、電力変換装置の高速動作を実現できる。
 また、第2の発明によれば、スイッチング素子(130)の許容温度が150℃以上となるので、電力変換装置を150℃以上で動作させることができる。
 また、第3の発明によれば、スイッチング素子(130)によって、高温下で高速なスイッチング動作ができる。
 また、第4の発明によれば、スナバ回路(300)が150℃以上で動作するので、該スナバ回路(300)を150℃以上の雰囲気で動作する電力変換装置に使用できる。
 また、第5の発明又は第6の発明によれば、所定の温度以上(例えば150℃以上)で電力変換ができるようになる。
 また、第7の発明又は第8の発明によれば、スイッチング素子(130)又はスナバ回路(300)のダイオードがワイドバンドギャップ半導体により構成されるので、電力変換装置において、所定の温度以上(例えば150℃以上)で、効率的な電力変換ができるようになる。
 また、第9の発明から第14の発明によれば、スイッチング素子(130)とスナバ回路(300)とが近接して配置されるので、スイッチング素子(130)とスナバ回路(300)との間の配線インダクタンスを低減できる。
 また、第15の発明又は第16の発明によれば、駆動モータ(40)駆動用の電力変換装置において、電力変換装置の高速動作を実現できるので、圧縮機の運転効率が向上する。
 また、第17の発明から第20の発明によれば、スイッチング素子(130)とスナバ回路(300)とが近接して配置されるので、配線インダクタンスの低減等が可能になり、電力変換装置の高速動作を実現できる。さらには、ケーシング(30)内の高圧冷媒が、駆動モータ(40)駆動用の電力変換装置のスナバ回路(300)及びスイッチング素子(130)を冷却するので、より効率的に電力変換装置(すなわち空気調和装置)を動作させることができる。
 また、第21の発明によれば、スイッチング素子(130)とスナバ回路(300)とが近接して配置されるので、スイッチング素子(130)とスナバ回路(300)との間の配線インダクタンスを低減できる。
図1は、実施形態1に係る電力変換装置の構成を示す図である。 図2は、配線長さの概念を示す図である。 図3A~図3Fは、スナバ回路の他の構成例である。 図4は、スナバ回路をスイッチング素子(130)の相毎に設けた場合の電力変換装置の構成を示す図である。 図5は、実施形態2に係るヒートポンプ装置の冷媒回路の配管系統図である。 図6は、実施形態2に係る流体機械の概略構成を示す縦断面図である。 図7Aは、直列回路毎にスナバ回路を設ける場合の回路を示す図であり、図7Bは、スイッチング素子、スナバ回路のチップ上の配置を説明する図である。 縦型構造のMOSFETの構造の一例を示す図であり、図8AがDiMOSFETであり、図8BがUMOSFETである。 図9は、直列回路毎にスナバ回路を設ける場合におけるスイッチング素子、スナバ回路のチップ上での他の配置例を示す図である。 図10は、直列回路毎にスナバ回路を設ける場合におけるスイッチング素子、スナバ回路のチップ上でのさらに他の配置例を示す図である。 図11Aは、スイッチング素子毎にスナバ回路を設ける場合の回路を示す図であり、図11Bは、スイッチング素子、スナバ回路のチップ上の配置を説明する図である。 図12は、スイッチング素子毎にスナバ回路を設ける場合におけるスイッチング素子、スナバ回路のチップ上での他の配置例を示す図である。 図13Aは、スイッチング素子毎にスナバ回路を配置する場合の回路例であり、図13Bは、スイッチング素子、スナバ回路のチップ上の配置を説明する図である。 図14は、スイッチング素子毎にスナバ回路を配置する場合におけるスイッチング素子、スナバ回路のチップ上での他の配置例を示す図である。 図15は、スイッチング素子毎にスナバ回路を配置する場合におけるスイッチング素子、スナバ回路のチップ上でのさらに他の配置例を示す図である。 図16は、スナバ回路のチップ構造の一例を説明する図である。
符号の説明
       1   空気調和装置
      10   冷媒回路
      20   圧縮機
      30   ケーシング
      35   吐出管
      40   駆動モータ
      42a  固定子コア部
      42c  インシュレータ(絶縁部)
      50   圧縮機構
     100   電力変換装置
     130   スイッチング素子
     170   直列回路
     300   スナバ回路
     301   コンデンサ
     510   ヒートスプレッダ
     520   ボンディングワイヤ
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。また、以下の各実施形態や変形例の説明において、一度説明した構成要素と同様の機能を有する構成要素については、同一の符号を付して説明を省略する。
 《発明の実施形態1》
 本発明の実施形態1に係る電力変換装置の構成を図1に示す。この電力変換装置(100)は、平滑コンデンサ(150)とインバータ回路(120)を備え、制御装置(430)に制御されたインバータ回路(120)が、直流電源(410)から入力された直流を三相交流に変換して三相交流モータ(420)に供給するものである。この三相交流モータ(420)は空気調和機の冷媒回路に設けられる圧縮機を駆動するものである。なお、直流電源(410)は、例えば商用交流電源等の交流電源を整流するコンバータ回路などによって構成できる。
 平滑コンデンサ(150)は、直流電源の電圧を平滑化するコンデンサである。この平滑コンデンサ(150)には、例えば、電解コンデンサを採用することができる。電解コンデンサの許容温度は約100℃が上限なので、本実施形態では、平滑コンデンサ(150)はインバータ回路(120)と断熱しておく。
 インバータ回路(120)は、スイッチング素子(130)、駆動回路(140)、及びスナバ回路(300)より構成されている。これらの各構成要素は、何れも150℃以上で動作可能な部品のみで構成してある。
 スイッチング素子(130)は、このインバータ回路(120)内に6つ設けられ、それぞれのスイッチング素子(130)は、ワイドバンドギャップ半導体を用いたスイッチング素子(ここでは、SiC MOSFETとSiCダイオード)によって構成されている。なお、ワイドバンドギャップ半導体としては、SiC(シリコンカーバイト)の他に、窒化ガリウム(GaN)、ダイヤモンドなどが挙げられる。なお、従来のSi半導体の動作温度は、150℃が最大であるが、ワイドバンドギャップ半導体の動作温度の最大値は、Si半導体よりも高い。一般的には、ワイドバンドギャップ半導体の動作温度の最大値は、150℃以上である。そのため、本実施形態のようにワイドバンドギャップ半導体を用いたスイッチング素子(130)の動作温度の最大値は150℃以上である。
 各スイッチング素子(130)は、詳しくは、トランジスタ(131)と還流ダイオード(132)とを備える。
 上記の駆動回路(140)は、各スイッチング素子(130)に対応して設けられている。すなわち、駆動回路(140)もインバータ回路(120)内に6つ設けられている。それぞれの駆動回路(140)は、制御装置(430)の制御に応じて、対応するスイッチング素子(130)内のトランジスタ(131)のゲート電位を制御してオンオフを切り替える。
 スナバ回路(300)は、インバータ回路(120)内で発生したサージ電圧を抑制する回路であり、本実施形態では、コンデンサ(301)により構成されている。このスナバ回路(300)は、電気的には、インバータ回路(120)の2つの入力端子間に接続されている。また、スナバ回路(300)とインバータ回路(120)とは、近接して配置されている。これらの距離は、従来のSi半導体素子を用いた電力変換装置におけるインバータ回路(120)とスナバ回路(300)の距離よりも近接させる必要がある。このような配置では、一般的には、断熱できないほど近くに配置することになると考えられる。
 Si半導体を使用したインバータ回路では、配線インダクタンスが10nH以下(電流検出用のシャント抵抗を含む)、スイッチング速度200nsの例があるので、この例をもとに、本実施形態における配置を検討してみる。
 SiC半導体で構成されたスイッチング素子では、Siを用いたスイッチング素子よりも10倍以上の速度でスイッチングが可能と考えられている。SiC半導体でスイッチング素子(130)を構成して高速スイッチングを行い、さらに配線インダクタンスによるサージ電圧を従来と同等レベルに抑えるには、配線インダクタンスを低減する必要がある。例えば、現状の10倍のスイッチング速度を実現しようとすると、配線インダクタンスは1nH以下にする必要がある。
 配線長さ(図2に示すように、スナバ回路とスイッチング素子の距離)、配線直径、配線インダクタンスの関係は次の式の関係がある。
Figure JPOXMLDOC01-appb-M000001
 この式から、配線インダクタンスを1nH以下にするための配線長さ(スナバ回路とスイッチング素子の距離)と配線直径を検討すると、直径2mmの配線では2mm以下の距離にスナバ回路を配置すればよいことがわかる。
 また、この式からは、スナバ回路を、スイッチング素子から断熱することによって装置を構成すると配線の直径が大きくなりすぎてしまうこともわかる。例えば、スナバ回路とスイッチング素子とを断熱するのに必要な距離が5mm程度であるとすれば、配線長さ(スナバ回路とスイッチング素子の距離)は、5mm以上になる。配線長5mmで、配線直径2mmでの配線インダクタンスは、上式より4.5nHとなる。配線長5mmで配線インダクタンスを1nH以下にするには、10mm以上の直径が必要になる。配線が太くなると、配線の熱抵抗が下がり、配線からの伝熱が大きくなるため、断熱ができなくなる。
 また、例えば、スイッチング速度1nsで、10Aの電流をスイッチングする際のサージ電圧として、100Vまで許容する際の配線インダクタンスは、次の式からわかるように、10nH以下とする必要がある。
Figure JPOXMLDOC01-appb-M000002
 ここで、配線長9mm、直径2mmの配線インダクタンスは10.2nHであり、スイッチング素子とスナバ回路は少なくとも9mm以内に配置する必要がある。実際には、ボンディングワイヤやスナバ回路に含まれるインダクタンスもサージ電圧に影響するため、より近くに配置しなければならない。
 以上のように、スナバ回路(300)とスイッチング素子(130)とを近接して配置すると、コンデンサ(301)の動作温度がスイッチング素子(130)の動作温度と同等の温度になると考えられる。そのため、本実施形態では、このコンデンサ(301)には、許容温度が、スイッチング素子(130)の動作温度と同等か、よりも高いものを採用している。SiC半導体で構成したスイッチング素子(130)を上記のように高速動作させた場合の該スイッチング素子(130)の動作温度を考慮すると、コンデンサ(301)の許容温度は、例えば150℃以上であることが望ましいと考えられる。
 このように高温動作可能なコンデンサとしては、例えば、セラミックコンデンサや、誘導体材料として高耐熱材料を用いたフィルムコンデンサが考えられる。なお、高耐熱材料の例としては、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリアリレート(PAR)、ポリイミド(PI)、ポリエーテルイミド(PEI)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルスルフォン(PES)、ポリサルフォン(PSF)、ポリフェニレンサルファイド(PPS)、ポリベンゾイミダゾール(PBI)、液晶ポリマー(LCP)などが考えられる。
 制御装置(430)は、既述の通り、各駆動回路(140)を介して、各スイッチング素子(130)のオンオフを制御する。この制御装置(430)は、電力変換装置(100)とは断熱して配置している。
 上記の電力変換装置(100)によれば、スナバ回路(300)内のコンデンサ(301)を、高温動作可能(上記の例では、スイッチング素子(130)の動作温度よりも高い許容温度)に構成したので、SiCスイッチング素子であるスイッチング素子(130)(Si半導体のスイッチング素子よりも動作温度が高い)に近接してスナバ回路(300)を配置できる。そのため、配線インダクタンスの低減等が可能になり、インバータ回路(120)の高速動作(すなわち電力変換装置(100)の高速動作)を実現できる。
 《実施形態1の変形例(スナバ回路の変形例)》
 なお、スナバ回路(300)としては、上記のコンデンサ(301)のみで構成したものの他に、例えば図3B~図Fに示す構成も採用できる。なお、図3Aには前記のコンデンサ(301)のみで構成したものを再掲している。これらの例では、コンデンサの他に、抵抗、ダイオードなどを含んでいるものがあるが、これらの構成部品は、何れも高温動作可能(例えばスイッチング素子(130)の動作温度と同等か、より高い温度で動作可能)に構成しておく。
 《発明の実施形態2》
 図4は、スナバ回路をスイッチング素子(130)の相毎に設けた例である。この例では、これらのスナバ回路として、図3Bに示すスナバ回路を使用している。なお、この図では駆動回路などを省略している。このインバータ回路(120)においてもやはり、各構成要素は、150℃以上で動作可能な部品のみで構成してある。
 ここで「相」とは、スイッチング素子(130)が直列に接続されている部分(図4では直列回路(170))のことである。高速スイッチングのように、各相の間の配線インピーダンスも問題になる場合には、このようなスナバ回路の配置が有効である。
 《発明の実施形態3》
 本発明の実施形態3では、電力変換装置をヒートポンプ装置に使用する例を説明する。
 本発明の実施形態3に係るヒートポンプ装置は、室内の冷房と暖房とを切り換えて行う空気調和装置(1)を構成している。図5に示すように、空気調和装置(1)は、冷媒回路(10)を備えている。冷媒回路(10)には、冷媒としてフロン冷媒が充填されている。この冷媒回路(10)では、冷媒が循環することで蒸気圧縮式の冷凍サイクルが行われる。
 <冷媒回路の構成>
 冷媒回路(10)には、圧縮機(20)と室内熱交換器(21)と膨張弁(22)と室外熱交換器(23)と四路切換弁(24)とが接続されている。実施形態3の圧縮機(20)は、ロータリー型の圧縮機であり、本発明の流体機械を構成している。この圧縮機(20)の詳細は後述する。室内熱交換器(21)は、室内に設置されている。室内熱交換器(21)では、冷媒と室内空気との間で熱交換が行われる。室外熱交換器(23)は、室外に設置されている。室外熱交換器(23)では、冷媒と室外空気との間で熱交換が行われる。膨張弁(22)は、冷媒を減圧する減圧手段であり、例えば電子膨張弁で構成されている。四路切換弁(24)は、第1から第4までの4つのポートを備えている。四路切換弁(24)は、第1ポートが圧縮機(20)の吐出側と、第2ポートが室内熱交換器(21)と、第3ポートが圧縮機(20)の吸入側と、第4ポートが室外熱交換器(23)とそれぞれ繋がっている。四路切換弁(24)は、第1ポートと第2ポートとが繋がると同時に第3ポートと第4ポートとが繋がる状態(図5の実線で示す状態)と、第1ポートと第4ポートとが繋がると同時に第2ポートと第3ポートとが繋がる状態(図5の破線で示す状態)とに設定が切り換わるように構成されている。
 <圧縮機の構成>
 図6に示すように、圧縮機(20)は、中空で密閉型のケーシング(30)を備えている。ケーシング(30)は、円筒状の胴部(31)と、胴部(31)の上端部に設けられる天板部(32)と、胴部(31)の下端部に設けられる底板部(33)とを備えている。ケーシング(30)では、胴部(31)の下側寄りに吸入管(34)が接続され、天板部(32)に吐出管(35)が接続されている。吐出管(35)は、天板部(32)を上下に貫通しており、その下端部がケーシング(30)の内部空間に開口している。なお、ケーシング(30)は、例えば鉄等の金属材料で構成されている。
 ケーシング(30)内には、駆動モータ(40)と駆動軸(45)と圧縮機構(50)とが収容されている。
 駆動モータ(40)は、ケーシング(30)内の上部寄りの空間に配置されている。駆動モータ(40)は、ロータ(41)とステータ(42)とを備えている。ロータ(41)は、駆動軸(45)の周囲に固定されている。ステータ(42)は、ロータ(41)の外周側に設けられている。ステータ(42)は、ケーシング(30)の胴部(31)の内壁に固定される固定子コア部(42a)と、固定子コア部(42a)の上側及び下側にそれぞれ設けられるコイル部(42b)とを有している。また、固定子コア部(42a)には、その軸方向における上下両端面に、それぞれインシュレータ(42c)が設けられている。インシュレータ(42c)は、絶縁材料から成り、固定子コア部(42a)とコイル部(42b)とを絶縁するための絶縁部を構成している。
 駆動軸(45)は、ケーシング(30)の軸心を上下方向に延びて形成されている。駆動軸(45)には、下側寄りの部位に偏心部(46)が形成されている。偏心部(46)は、駆動軸(45)よりも大径であり、且つ駆動軸(45)の軸心から所定量偏心している。また、駆動軸(45)には、その下端部に油ポンプ(47)が設けられている。油ポンプ(47)は、ケーシング(30)の底部に溜まった油を遠心力によって汲み上げる構造となっている。油ポンプ(47)で汲み上げられた油は、駆動軸(45)に形成された油供給通路(図示省略)を介して、圧縮機構(50)の内部や駆動軸(45)の軸受け等の各摺動部へ供給される。
 圧縮機構(50)は、ケーシング(30)内の下部寄りの空間に配置されている。圧縮機構(50)は、シリンダ(51)とフロントヘッド(52)とリヤヘッド(53)とピストン(54)とを備えている。
 シリンダ(51)は、円環状に形成されており、その外周面がケーシング(30)の内壁に固定されている。シリンダ(51)の内側には、円柱状のシリンダ室(55)が形成されている。また、シリンダ(51)には、径方向に延びる吸入通路(51a)が形成されている。吸入通路(51a)は、シリンダ室(55)と上記吸入管(34)とを連通させている。
 フロントヘッド(52)は、シリンダ(51)の上側に、リヤヘッド(53)は、シリンダ(51)の下側にそれぞれ取り付けられている。そして、フロントヘッド(52)はシリンダ室(55)の上端開口部を、リヤヘッド(53)はシリンダ室(55)の下端開口部をそれぞれ閉塞している。更に、フロントヘッド(52)には上部軸受け(56)が、リヤヘッド(53)には下部軸受け(57)がそれぞれ設けられている。駆動軸(45)は、フロントヘッド(52)及びリヤヘッド(53)を貫通しながら、上部軸受け(56)及び下部軸受け(57)に回転自在に支持されている。
 フロントヘッド(52)には、シリンダ室(55)とケーシング(30)の内部空間とを連通させる吐出ポート(52a)が形成されている。吐出ポート(52a)には、図示しない吐出弁が設けられている。更に、フロントヘッド(52)には、吐出ポート(52a)を覆うように消音マフラー(58)が取り付けられている。
 上記ピストン(54)は、シリンダ室(55)に配置されている。ピストン(54)には、その内部に上記偏心部(46)が嵌り込んでいる。駆動軸(45)が回転すると、ピストン(54)は、駆動軸(45)の軸心から偏心しながらシリンダ室(55)内を回転する。その結果、圧縮機構(50)では、シリンダ室(55)に形成される圧縮室の容積が変化し、冷媒の圧縮動作が行われる。
 圧縮機構(50)は、圧縮した後の高温(例えば120℃)の高圧冷媒を上記吐出ポート(52a)を介してケーシング(30)内に吐出するように構成されている。つまり、実施形態3の圧縮機(20)は、ケーシング(30)の内部空間が高圧冷媒で満たされる、いわゆる高圧ドーム型の圧縮機を構成している。
 <電力変換装置の構成>
 圧縮機(20)は、上記駆動モータ(40)を駆動制御するための電力変換装置(60)を備えている。電力変換装置(60)は、上記の何れかの実施形態の電力変換装置である。
 図6に示すように、電力変換装置(60)は、ケーシング(30)の上部に設けられている。電力変換装置(60)は、基板(61)を有し、この基板(61)上にスイッチング素子(130)とスナバ回路(300)とが設置されている。そして、本実施形態では、スイッチング素子(130)とスナバ回路(300)とが、圧縮機構(50)と吐出管(35)の間の空間に配置されている。
 上記のように構成された空気調和装置(1)では、電力変換装置からの電磁ノイズをケーシング(30)によって絶縁できる。また、空気調和装置(1)全体として小型化も可能になる。
 また、スイッチング素子(130)とスナバ回路(300)とが近接して配置されるので、配線インダクタンスの低減等が可能になり、電力変換装置の高速動作を実現できる。
 また、圧縮機構(50)の運転時には、ケーシング(30)内の高圧冷媒が電力変換装置のスナバ回路(300)及びスイッチング素子(130)を冷却する。そのため、電力変換装置においてより効率的に電力変換装置(すなわち空気調和装置)を動作させることができる。また、スイッチング素子(130)等の熱を暖房用に回収することも可能になる。
 《実施形態3の変形例》
 この変形例では、スイッチング素子(130)とスナバ回路(300)を絶縁部であるインシュレータ(42c)に支持させる。こうすることで、インシュレータ(42c)をスイッチング素子(130)とスナバ回路(300)の基板として利用することができる。また、スイッチング素子(130)とスナバ回路(300)から発生した熱は、インシュレータ(42c)を介して固定子コア部(42a)へ伝わるため、この熱は固定子コア部(42a)の周囲を流れる高圧冷媒に放出され易くなる。したがって、この変形例では、スイッチング素子(130)とスナバ回路(300)の冷却効果を更に高めることができる。
 また、インシュレータ(42c)にスイッチング素子(130)とスナバ回路(300)を取り付けることで、駆動モータ(40)のコイル部(42b)からインバータ回路(120)までの距離を短くすることができる。つまり、この変形例では、インバータ回路(120)とコイル部(42b)とを繋ぐ配線長さを短くすることができる。
 《発明の実施形態4》
 実施形態4では、スナバ回路(300)とスイッチング素子(130)とを同一パッケージ(トランスファモールドなど)にて構成した例を説明する。これらを同一パッケージに組み込むことで、配線インダクタンスの影響をより小さくすることができるようになる。
 以下に説明する例では、スイッチング素子(130)と電気的に接続されるスナバ回路(300)の全ての端子は、スイッチング素子(130)、もしくはスイッチング素子(130)に直接接続された配線部材、もしくはスイッチング素子(130)とヒートスプレッダを介して直接接続された配線部材と直接接続されている。ここで、配線部材とは、ボンディングワイヤ、リードフレーム、配線パターン、ヒートスプレッダなどが挙げられる。また、スナバ回路(300)の端子とは、例えば図3Aに示したスナバ回路では、コンデンサのリード線や外部電極などが該当し、図3Bのスナバ回路の例では、スナバ回路のコンデンサと抵抗のリード線や電極などのうち、スイッチング素子と電気的に接続されたリード線や電極などが該当する。
 例えば、図7Aに示すようにインバータ回路(120)の相毎(直列回路毎)にスナバ回路(300)を設ける場合には、例えば、図7Bのように、インバータ回路(120)、スナバ回路(300)を配置する。なお、図7A中の端子P,U,N(外部電極)が、図7Bの配線パターンP,U,Nとそれぞれ対応している。この例ではスイッチング素子(130)として、SiC MOSFETを使用している。
 本実施形態の各例では、このSiC MOSFETは縦型構造をしている。具体的には図8Aや図8Bに示すように、スイッチング素子のチップの上面がソース、裏面がドレインとなっている。図8AがDiMOSFETであり、図8BがUMOSFETである。
 図7Bに示すように、この例では、スナバ回路(300)は、配線パターンP,Nと直接接続されている。また、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して、それぞれ配線パターンP,Uと接続されている。また、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)との間や、配線パターンU側のスイッチング素子(130)とスナバ回路(300)との間は、それぞれボンディングワイヤ(520)により接続されている。
 また、図9も、やはりインバータ回路(120)の相毎(直列回路毎)にスナバ回路(300)を設ける場合のチップ配置の例である(図7Aを参照)。この例では、スナバ回路(300)は、配線パターンPと直接接続され、配線パターンNとは、ボンディングワイヤ(520)によって接続され、さらに配線パターンU側のスイッチング素子(130)ともボンディングワイヤ(520)によって接続されている。また、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)もボンディングワイヤ(520)で接続されている。
 また、図10も、やはりインバータ回路(120)の相毎(直列回路毎)にスナバ回路(300)を設ける場合のチップ配置の例である。この例でも、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して配置されている。また、スナバ回路(300)は、配線パターンP側のスイッチング素子(130)と同じヒートスプレッダ(510)上に配置されている。この例では、スナバ回路(300)と配線パターンNの間、スナバ回路(300)と配線パターンU側のスイッチング素子(130)の間、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)との間は、それぞれボンディングワイヤ(520)で接続されている。
 図11Aに示すようにスイッチング素子(130)毎にスナバ回路(300)を設ける場合には、例えば、図11Bのように、インバータ回路(120)、スナバ回路(300)を配置する。この例では、一方のスナバ回路(300)が配線パターンPと直接接続され、もう一方のスナバ回路(300)が配線パターンUと直接接続されている。また、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して、それぞれ配線パターンP,Uと接続されるとともに、それぞれが対応するスナバ回路(300)とボンディングワイヤ(520)によって接続されている。また、配線パターンU側のスナバ回路(300)と配線パターンNの間、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)との間も、それぞれボンディングワイヤ(520)によって接続されている。
 また、図12も、スイッチング素子(130)毎にスナバ回路(300)を設けた例である。この例では、スイッチング素子(130)とそれに対応するスナバ回路(300)が共通のヒートスプレッダ(510)上に配置されている。そして、各スイッチング素子(130)は、それぞれが対応するスナバ回路(300)とボンディングワイヤ(520)によって接続されている。また、配線パターンU側のスナバ回路(300)と配線パターンNの間、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)との間も、それぞれボンディングワイヤ(520)によって接続されている。
 また、図13Aに示した回路は、スイッチング素子(130)毎にスナバ回路(300)を配置する場合の例である。この場合には、例えば、図13Bのように、インバータ回路(120)、スナバ回路(300)を配置する。この例では、スナバ回路(300)は、配線パターンP,U,Nとそれぞれ直接接続されている。また、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して、それぞれ配線パターンP,Uと接続されている。また、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)の間、配線パターンU側のスイッチング素子(130)とスナバ回路(300)の間は、それぞれボンディングワイヤ(520)によって接続されている。
 また、図14も、スイッチング素子(130)毎にスナバ回路(300)を配置する場合の例である。この例でも、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して、それぞれ配線パターンP,Uと接続されている。そして、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)の間は、ボンディングワイヤ(520)によって接続されている。一方、スナバ回路(300)は、配線パターンP,Uとそれぞれ直接接続され、配線パターンNとの間、及び配線パターンU側のスイッチング素子(130)との間は、それぞれボンディングワイヤ(520)によって接続されている。
 また、図15も、スイッチング素子(130)毎にスナバ回路(300)を配置する場合の例である。この例でも、各スイッチング素子(130)は、ヒートスプレッダ(510)を介して、それぞれ配線パターンP,Uと接続されている。そして、配線パターンP側のスイッチング素子(130)と配線パターンU側のヒートスプレッダ(510)の間は、ボンディングワイヤ(520)によって接続されている。この例のスナバ回路(300)は、各スイッチング素子(130)用のヒートスプレッダ(510)を介して、配線パターンP,Uとそれぞれ接続されている。つまり、各スイッチング素子(130)とヒートスプレッダ(510)を共有している。そして、スナバ回路(300)と配線パターンNの間は、ボンディングワイヤ(520)によって接続されている。
 なお、上記のようにスナバ回路(300)を配線パターンやヒートスプレッダ上に配置し、外部電極(P,U,N)に直接ワイヤボンディングできるようにするには、例えば図16に示すチップ構造が一例として挙げられる。この例は、図3Bに示すスナバ回路の例である。この例では、外部電極(601)に接した抵抗体(602a)が抵抗(602)を構成している。また、それぞれ櫛型に形成された内部電極(603a)と外部電極(604)との間に誘導体(603b)が設けられ、内部電極(603a)と外部電極(604)の間でコンデンサ(603)を構成している。そして、抵抗(602)(抵抗体(602a))とコンデンサ(603)とを両側から保護膜(605)で取り囲んでいる。このスナバ回路(300)では、外部電極(601)、外部電極(604)がスイッチング素子(130)と接続されるスナバ回路の端子である。
 上記の構成により、スイッチング素子とスナバ回路を近接して配置でき、配線インダクタンスを最小限にすることができる。
 本発明は、スイッチング素子を有した電力変換装置として有用である。

Claims (24)

  1.  高温動作可能に構成されたスイッチング素子(130)を備えて、交流電源から供給された交流電力または直流電源から供給された直流電力を所定の電圧及び周波数の交流電力または直流電力に電力変換を行う電力変換装置であって、
     高温動作可能に構成されたコンデンサ(301)を有した高温動作可能に構成されたスナバ回路(300)を備えていることを特徴とする電力変換装置。
  2.  請求項1の電力変換装置において、
     前記スイッチング素子(130)は、動作温度が150℃以上であることを特徴とする電力変換装置。
  3.  請求項1の電力変換装置において、
     前記スイッチング素子(130)は、ワイドバンドギャップ半導体を主材料とした半導体ディバイスであることを特徴とする電力変換装置。
  4.  請求項1の電力変換装置において、
     前記スナバ回路(300)は、許容温度が150℃以上であることを特徴とする電力変換装置。
  5.  請求項4の電力変換装置において、
     前記スナバ回路(300)のコンデンサ(301)は、セラミックコンデンサにより構成されていることを特徴とする電力変換装置。
  6.  請求項4の電力変換装置において、
     前記スナバ回路(300)のコンデンサ(301)は、誘導体材料として高耐熱材料を用いたフィルムコンデンサにより構成されていることを特徴とする電力変換装置。
  7.  請求項1の電力変換装置において、
     前記スナバ回路(300)は、ワイドバンドギャップ半導体を主材料としたダイオードを備えていることを特徴とする電力変換装置。
  8.  請求項3の電力変換装置において、
     前記ワイドバンドギャップ半導体は、シリコンカーバイト、窒化ガリウム、及びダイヤモンドの何れかであることを特徴とする電力変換装置。
  9.  請求項1の電力変換装置において、
     前記スイッチング素子(130)は、複数が直列に接続されて直列回路(170)を構成し、
     前記直列回路(170)は、複数が並列に配置され、
     前記スナバ回路(300)は、直列回路(170)毎に配置されていることを特徴とする電力変換装置。
  10.  請求項1の電力変換装置において、
     前記スナバ回路(300)は、前記スイッチング素子(130)毎に配置されていることを特徴とする電力変換装置。
  11.  請求項1の電力変換装置において、
     前記スイッチング素子(130)と前記スナバ回路(300)とは、同一パッケージ内に配置されていることを特徴とする電力変換装置。
  12.  請求項1の電力変換装置において、
     前記スイッチング素子(130)と前記スナバ回路(300)とは、同一基板上に配置されていることを特徴とする電力変換装置。
  13.  請求項11の電力変換装置において、
     前記スイッチング素子(130)は、前記スナバ回路(300)の端子と直接接続されていることを特徴とする電力変換装置。
  14.  請求項11の電力変換装置において、
     前記スイッチング素子(130)と電気的に接続される、前記スナバ回路(300)の全ての端子は、
     前記スイッチング素子(130)、
     もしくは前記スイッチング素子(130)に直接接続された配線部材、
     もしくは前記スイッチング素子(130)とヒートスプレッダ(510)を介して直接接続された配線部材と、
     直接接続されていることを特徴とする電力変換装置。
  15.  請求項1の電力変換装置において、
     冷媒を圧縮する圧縮機構(50)と、該圧縮機構(50)を駆動する駆動モータ(40)と、該圧縮機構(50)と駆動モータ(40)が収容されるとともに内部に冷媒が満たされるケーシング(30)からなる圧縮機(20)における、前記駆動モータ(40)を駆動することを特徴とする電力変換装置。
  16.  請求項15の電力変換装置において、
     前記圧縮機構(50)は、前記ケーシング(30)内に高圧冷媒を吐出するように構成され、該ケーシング(30)には、その内部の高圧冷媒を該ケーシング(30)の外部に流出させる吐出管(35)が接続されていることを特徴とする電力変換装置。
  17.  請求項15の電力変換装置において、
     前記スナバ回路(300)及び前記スイッチング素子(130)は、前記ケーシング(30)内に配置されることを特徴とする電力変換装置。
  18.  請求項15の電力変換装置において、
     前記駆動モータ(40)は、ケーシング(30)の内壁に固定される固定子コア部(42a)と、該固定子コア部(42a)の軸方向端面に形成される絶縁部(42c)とを有し、
     前記スイッチング素子(130)と前記スナバ回路(300)とは、前記絶縁部(42c)に支持されていることを特徴とする電力変換装置。
  19.  請求項15の電力変換装置において、
     前記スイッチング素子(130)と前記スナバ回路(300)とは、前記圧縮機構(50)と吐出管(35)との間に配置されていることを特徴とする電力変換装置。
  20.  請求項15の電力変換装置において、
     前記圧縮機(20)は、冷媒が循環して冷凍サイクルを行う冷媒回路(10)を備えたヒートポンプ回路に接続されていることを特徴とする電力変換装置。
  21.  スイッチング素子(130)を備えて、交流電源から供給された交流電力または直流電源から供給された直流電力を所定の電圧及び周波数の交流電力または直流電力に電力変換を行う電力変換装置であって、
     コンデンサ(301)を有したスナバ回路(300)を備え、
     前記スイッチング素子(130)と電気的に接続される、前記スナバ回路(300)の全ての端子は、
     前記スイッチング素子(130)、
     もしくは前記スイッチング素子(130)に直接接続された配線部材、
     もしくは前記スイッチング素子(130)とヒートスプレッダ(510)を介して直接接続された配線部材と、
     直接接続されていることを特徴とする電力変換装置。
  22.  請求項7の電力変換装置において、
     前記ワイドバンドギャップ半導体は、シリコンカーバイト、窒化ガリウム、及びダイヤモンドの何れかであることを特徴とする電力変換装置。
  23.  請求項12の電力変換装置において、
     前記スイッチング素子(130)は、前記スナバ回路(300)の端子と直接接続されていることを特徴とする電力変換装置。
  24.  請求項13の電力変換装置において、
     前記スイッチング素子(130)と電気的に接続される、前記スナバ回路(300)の全ての端子は、
     前記スイッチング素子(130)、
     もしくは前記スイッチング素子(130)に直接接続された配線部材、
     もしくは前記スイッチング素子(130)とヒートスプレッダ(510)を介して直接接続された配線部材と、
     直接接続されていることを特徴とする電力変換装置。
PCT/JP2009/001068 2008-03-11 2009-03-10 電力変換装置 WO2009113298A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09720739.3A EP2259419A4 (en) 2008-03-11 2009-03-10 Power conversion device
US12/918,656 US20100328975A1 (en) 2008-03-11 2009-03-10 Power converter
CN2009801081681A CN101965677A (zh) 2008-03-11 2009-03-10 电力转换装置
AU2009222852A AU2009222852B2 (en) 2008-03-11 2009-03-10 Power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008061163A JP2009219268A (ja) 2008-03-11 2008-03-11 電力変換装置
JP2008-061163 2008-03-11

Publications (1)

Publication Number Publication Date
WO2009113298A1 true WO2009113298A1 (ja) 2009-09-17

Family

ID=41064971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001068 WO2009113298A1 (ja) 2008-03-11 2009-03-10 電力変換装置

Country Status (7)

Country Link
US (1) US20100328975A1 (ja)
EP (1) EP2259419A4 (ja)
JP (1) JP2009219268A (ja)
KR (1) KR20100122949A (ja)
CN (1) CN101965677A (ja)
AU (1) AU2009222852B2 (ja)
WO (1) WO2009113298A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219267A (ja) * 2008-03-11 2009-09-24 Daikin Ind Ltd 電力変換装置
JP2011177005A (ja) * 2010-01-26 2011-09-08 Denso Corp スイッチング装置
CN102725914A (zh) * 2010-04-07 2012-10-10 三菱电机株式会社 压配合端子及半导体装置
US20130016542A1 (en) * 2010-03-31 2013-01-17 Mitsubishi Electric Corporation Electric power conversion device and surge voltage suppressing method
US20130182471A1 (en) * 2010-07-28 2013-07-18 Albrecht Schwarz Overvoltage protection circuit for at least one branch of a half-bridge, inverter, dc/dc voltage converter and circuit arrangement for operating an electrical machine

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072142A (ja) * 2009-09-28 2011-04-07 Daikin Industries Ltd 電力変換装置
CN103098352B (zh) * 2010-09-15 2016-06-29 三菱电机株式会社 电力转换装置、电动机、空调和换气送风设备
US20130169218A1 (en) * 2010-10-13 2013-07-04 Shindengen Electric Manufacturing Co., Ltd. Regulator, Battery Charging Apparatus and Battery Charging System
WO2012073571A1 (ja) * 2010-12-01 2012-06-07 株式会社安川電機 電力変換装置
JP2013017310A (ja) * 2011-07-04 2013-01-24 Sumitomo Heavy Ind Ltd 電力変換装置
JP5500136B2 (ja) * 2011-08-18 2014-05-21 三菱電機株式会社 半導体電力変換装置
JP5999677B2 (ja) 2011-09-20 2016-09-28 ローム株式会社 電子回路
US10367388B2 (en) 2011-09-30 2019-07-30 Mitsubishi Electric Corporation Main motor for railway vehicle
US9698656B2 (en) * 2011-12-13 2017-07-04 Mitsubishi Electric Corporation Motor incorporating power converter, and air conditioner, water heater, and ventilation blower incorporating the motor
EP2803922B1 (en) * 2012-01-04 2021-09-29 Mitsubishi Electric Corporation Heat pump device, air conditioner, and refrigerator
JP6029288B2 (ja) * 2012-02-22 2016-11-24 三菱電機株式会社 パワーモジュール
ES2824000T3 (es) * 2012-03-05 2021-05-11 Fuji Electric Co Ltd Dispositivo de conversión de potencia
US8895994B2 (en) * 2012-06-27 2014-11-25 Schlumberger Technology Corporation Electronic device including silicon carbide diode dies
JP2014057494A (ja) * 2012-09-14 2014-03-27 Denso Corp 車両用回転電機
EP2987240A4 (en) * 2013-04-17 2016-12-21 Otis Elevator Co DRIVE UNIT WITH GALLIUM NITRIDE SWITCHES
JP5867472B2 (ja) * 2013-09-17 2016-02-24 株式会社安川電機 電力変換装置
CN104704729B (zh) * 2013-10-02 2016-10-05 三菱电机株式会社 Cr缓冲电路
JP2016011952A (ja) * 2014-06-04 2016-01-21 株式会社Top パワー半導体用試験装置
JP6416250B2 (ja) 2014-06-06 2018-10-31 日立オートモティブシステムズ株式会社 電力変換装置
CN105450058B (zh) * 2014-06-20 2018-03-16 华为技术有限公司 一种逆变器及其控制装置、控制方法及逆变器系统
GB2534348A (en) * 2014-11-21 2016-07-27 Reinhausen Maschf Scheubeck Active Snubber
KR101661958B1 (ko) * 2014-12-22 2016-10-10 엘지전자 주식회사 인쇄회로기판 및 인쇄회로기판을 포함하는 모터구동장치
DE102015215886A1 (de) * 2015-08-20 2017-02-23 Robert Bosch Gmbh Inverterschaltung mit einer Schaltungsanordnung zum regenerativen Dämpfen elektrischer Schwingungen und Verfahren zum regenerativen Dämpfen elektrischer Schwingungen
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
JP2017143679A (ja) 2016-02-12 2017-08-17 三菱電機株式会社 パワーモジュール
WO2017163290A1 (ja) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 スイッチング電源装置
WO2018012122A1 (ja) * 2016-07-11 2018-01-18 富士電機株式会社 半導体装置及び振動抑制装置
CN109997304B (zh) 2016-08-26 2021-11-09 通用电气公司 功率转换系统及其相关方法
CN110022706B (zh) * 2016-12-01 2022-10-04 莱战略控股公司 用于气溶胶递送设备的可再充电的锂离子电容器
DE102016224472A1 (de) * 2016-12-08 2018-06-14 Audi Ag Stromrichtereinrichtung für ein Kraftfahrzeug und Kraftfahrzeug
CN107070353A (zh) * 2017-03-21 2017-08-18 杭州阔博科技有限公司 一种应用于高速电机的驱动控制器
US20200339856A1 (en) * 2017-12-18 2020-10-29 Daikin Industries, Ltd. Refrigerating oil for refrigerant or refrigerant composition, method for using refrigerating oil, and use of refrigerating oil
CN108075659A (zh) * 2017-12-27 2018-05-25 山东大学 一种基于氮化镓器件和dsp芯片的耐高温开关电源及其工作方法
US11711025B2 (en) * 2018-02-20 2023-07-25 Mitsubishi Electric Corporation Power semiconductor module and power conversion apparatus including the same
CN109525127B (zh) * 2018-12-29 2020-05-05 广东美的制冷设备有限公司 功率器件和电器
CN114097078B (zh) 2019-07-09 2023-05-05 日立能源瑞士股份公司 具有集成电涌放电器的功率半导体模块
CN112332690A (zh) * 2019-07-31 2021-02-05 中车株洲电力机车研究所有限公司 一种dc-ac变流器模块
EP3859778A1 (de) * 2020-02-03 2021-08-04 Siemens Aktiengesellschaft Schneller elektronischer schalter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201647A (ja) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd フィルムコンデンサの製造方法及び製造装置
JPH11233364A (ja) * 1998-02-13 1999-08-27 Murata Mfg Co Ltd 積層セラミックコンデンサおよびその製造方法
JP2000224867A (ja) 1999-01-28 2000-08-11 Sumitomo Electric Ind Ltd インバータ
JP2001359280A (ja) * 2000-06-14 2001-12-26 Origin Electric Co Ltd 電源装置
JP2002135973A (ja) * 2000-10-20 2002-05-10 Toshiba Corp 過電圧保護回路
WO2006003936A1 (ja) * 2004-07-01 2006-01-12 The Kansai Electric Power Co., Inc. スナバ回路及びスナバ回路を有するパワー半導体装置
JP2007135252A (ja) * 2005-11-08 2007-05-31 Hitachi Ltd 電力変換装置
JP2007194006A (ja) * 2006-01-18 2007-08-02 Hitachi Appliances Inc 誘導加熱装置
JP2007306692A (ja) * 2006-05-10 2007-11-22 Toshiba Corp 自己消弧型素子のスナバ回路及びこれを用いた電力変換装置
JP2007309110A (ja) * 2006-05-16 2007-11-29 Calsonic Kansei Corp 電動コンプレッサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3821846A (en) * 1973-01-10 1974-07-02 Smith Corp A Method of manufacturing a motor stator assembly
JP2658427B2 (ja) * 1989-01-17 1997-09-30 富士電機株式会社 電力変換用半導体素子のスナバ回路とそのモジュール装置
US6112535A (en) * 1995-04-25 2000-09-05 General Electric Company Compressor including a motor and motor control in the compressor housing and method of manufacture
JPH10304680A (ja) * 1997-04-25 1998-11-13 Toyota Motor Corp 電力変換装置
US5844770A (en) * 1997-08-21 1998-12-01 K Systems Corporation Capacitor structures with dielectric coated conductive substrates
JP2000012780A (ja) * 1998-06-26 2000-01-14 Toshiba Corp 半導体スナバ装置及び半導体装置
EP1363026A3 (en) * 2002-04-26 2004-09-01 Denso Corporation Invertor integrated motor for an automotive vehicle
US7292004B2 (en) * 2003-04-14 2007-11-06 Matsushita Electric Industrial Co., Ltd. Motor driving apparatus
JP2005171951A (ja) * 2003-12-15 2005-06-30 Matsushita Electric Ind Co Ltd 電動圧縮機
JP4916715B2 (ja) * 2005-12-21 2012-04-18 富士通株式会社 電子部品
EP2022984A1 (en) * 2006-05-16 2009-02-11 Calsonic Kansei Corporation Electric compressor
JP5199698B2 (ja) * 2008-02-28 2013-05-15 三菱重工業株式会社 一体型電動圧縮機
JP5280410B2 (ja) * 2010-06-21 2013-09-04 三菱電機株式会社 半導体装置、スナバデバイス

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201647A (ja) * 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd フィルムコンデンサの製造方法及び製造装置
JPH11233364A (ja) * 1998-02-13 1999-08-27 Murata Mfg Co Ltd 積層セラミックコンデンサおよびその製造方法
JP2000224867A (ja) 1999-01-28 2000-08-11 Sumitomo Electric Ind Ltd インバータ
JP2001359280A (ja) * 2000-06-14 2001-12-26 Origin Electric Co Ltd 電源装置
JP2002135973A (ja) * 2000-10-20 2002-05-10 Toshiba Corp 過電圧保護回路
WO2006003936A1 (ja) * 2004-07-01 2006-01-12 The Kansai Electric Power Co., Inc. スナバ回路及びスナバ回路を有するパワー半導体装置
JP2007135252A (ja) * 2005-11-08 2007-05-31 Hitachi Ltd 電力変換装置
JP2007194006A (ja) * 2006-01-18 2007-08-02 Hitachi Appliances Inc 誘導加熱装置
JP2007306692A (ja) * 2006-05-10 2007-11-22 Toshiba Corp 自己消弧型素子のスナバ回路及びこれを用いた電力変換装置
JP2007309110A (ja) * 2006-05-16 2007-11-29 Calsonic Kansei Corp 電動コンプレッサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2259419A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219267A (ja) * 2008-03-11 2009-09-24 Daikin Ind Ltd 電力変換装置
JP2011177005A (ja) * 2010-01-26 2011-09-08 Denso Corp スイッチング装置
US20130016542A1 (en) * 2010-03-31 2013-01-17 Mitsubishi Electric Corporation Electric power conversion device and surge voltage suppressing method
US9124270B2 (en) * 2010-03-31 2015-09-01 Mitsubishi Electric Corporation Electric power conversion device and surge voltage suppressing method
CN102725914A (zh) * 2010-04-07 2012-10-10 三菱电机株式会社 压配合端子及半导体装置
US20130182471A1 (en) * 2010-07-28 2013-07-18 Albrecht Schwarz Overvoltage protection circuit for at least one branch of a half-bridge, inverter, dc/dc voltage converter and circuit arrangement for operating an electrical machine

Also Published As

Publication number Publication date
EP2259419A4 (en) 2017-08-09
JP2009219268A (ja) 2009-09-24
AU2009222852A1 (en) 2009-09-17
US20100328975A1 (en) 2010-12-30
CN101965677A (zh) 2011-02-02
AU2009222852B2 (en) 2014-01-23
EP2259419A1 (en) 2010-12-08
KR20100122949A (ko) 2010-11-23

Similar Documents

Publication Publication Date Title
WO2009113298A1 (ja) 電力変換装置
JP2009219267A (ja) 電力変換装置
JP5531186B2 (ja) 駆動回路一体型電動圧縮機
JP2012210153A (ja) 電力変換装置
JP5266810B2 (ja) 電力変換装置
JP5586707B2 (ja) 電力変換回路内蔵モーター、この電力変換回路内蔵モーターを搭載した流体ポンプ、この流体ポンプを搭載した空気調和機、給湯器、電力変換回路内蔵モーターを搭載した機器
JP5630260B2 (ja) ヒートポンプ装置、ヒートポンプ装置の制御方法
JP2012062778A (ja) 電動過給機
JP2008057870A (ja) 冷凍装置
JP5493995B2 (ja) インバータ装置、圧縮機、及び冷媒サイクル装置
JP2008057425A (ja) 流体機械及びヒートポンプ装置
JP5634202B2 (ja) 電動圧縮機及びその制御装置
JP6177161B2 (ja) 室外機及びこれを用いた空気調和装置
JP2012167578A (ja) ベーン型圧縮機
JP2006196494A (ja) 電気機器
JP2013013325A (ja) 電力変換装置
AU2013237686A1 (en) Power converter
WO2018230267A1 (ja) インバータ一体型電動圧縮機
JP6000000B2 (ja) 冷凍装置
JP5645605B2 (ja) 電動圧縮機及びその制御装置
JP6281595B2 (ja) 圧縮機システム
JP7209898B2 (ja) 電力変換装置、モータ駆動制御装置、送風機、圧縮機および空気調和機
JP6491761B2 (ja) 電力変換回路
JP2011172461A (ja) 電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108168.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09720739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009222852

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12918656

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2009222852

Country of ref document: AU

Date of ref document: 20090310

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009720739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022374

Country of ref document: KR

Kind code of ref document: A