WO2009110503A1 - 重合体、硬化性樹脂組成物、硬化物、及び物品 - Google Patents

重合体、硬化性樹脂組成物、硬化物、及び物品 Download PDF

Info

Publication number
WO2009110503A1
WO2009110503A1 PCT/JP2009/054063 JP2009054063W WO2009110503A1 WO 2009110503 A1 WO2009110503 A1 WO 2009110503A1 JP 2009054063 W JP2009054063 W JP 2009054063W WO 2009110503 A1 WO2009110503 A1 WO 2009110503A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
meth
general formula
acrylate
Prior art date
Application number
PCT/JP2009/054063
Other languages
English (en)
French (fr)
Inventor
安弘 松田
修 鴻巣
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US12/921,042 priority Critical patent/US8399583B2/en
Priority to JP2009516796A priority patent/JP4418850B2/ja
Publication of WO2009110503A1 publication Critical patent/WO2009110503A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/16Monomers containing no hetero atoms other than the ether oxygen
    • C08F216/165Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/40Esters of unsaturated alcohols, e.g. allyl (meth)acrylate

Definitions

  • the present invention is a polymer having an unsaturated group capable of radical polymerization in the side chain, and contains such a polymer. For example, when it is applied to a plastic substrate and cured and laminated, it has good low warpage and scratch resistance.
  • the present invention relates to a curable resin composition from which a cured film having adhesiveness and adhesion can be obtained, a cured product obtained by curing the curable resin composition, and an article obtained by laminating the cured product.
  • a polymer of a vinyl ether monomer can be usually produced by performing a polymerization reaction by a cationic polymerization method.
  • polymers of alkyl vinyl ethers are used in, for example, pressure-sensitive adhesives, tackifiers, adhesives, softeners, paints, leather paints, fabric finishes, synthetic rubber modifiers, and the like.
  • the vinyl ether polymer is generally produced by cationic polymerization of alkyl vinyl ether using a Lewis acid polymerization catalyst (hereinafter referred to as a Lewis acid catalyst).
  • a Lewis acid catalyst a Lewis acid polymerization catalyst
  • a compound having a lone electron pair such as water, alcohol, acid, ether, halogen compound or the like is usually used as a cocatalyst.
  • the degree of polymerization is controlled by the polymerization catalyst, the amount of cocatalyst used, the polymerization temperature, and the like.
  • a desired alkyl vinyl ether is cationically polymerized in the presence of a co-catalyst such as alcohol and a Lewis acid catalyst such as boron trifluoride complex and anhydrous aluminum chloride, and then the catalyst is deactivated.
  • a co-catalyst such as alcohol
  • a Lewis acid catalyst such as boron trifluoride complex and anhydrous aluminum chloride
  • a low molecular weight polymer having a molecular weight of about several hundreds a so-called oligomer is often obtained.
  • a higher molecular weight polymer can be obtained by carrying out the reaction at a lower temperature, but in order to obtain a polymer having a molecular weight of several thousand or more, depending on the reaction temperature, It is known that it is necessary to set reaction conditions such that the temperature is 0 ° C. or lower, which is disadvantageous for production at an industrial level. It is difficult to obtain a polymer having a high molecular weight, and it is difficult to design a molecule according to the purpose as compared with an anionic polymerization method and a radical polymerization method, so that applicable applications are limited.
  • Patent Document 2 discloses a method for conducting living cationic polymerization of ⁇ -methylstyrene using a polymerization initiator composed of a specific organic halogen compound and a Lewis acid halide.
  • Patent Document 3 proposes a method of conducting living cationic polymerization in the presence of Lewis acid such as organoaluminum compound and tin compound.
  • Lewis acid such as organoaluminum compound and tin compound.
  • a method of introducing an unsaturated group into the polymer by reacting with an unsaturated compound is used.
  • a method of introducing an unsaturated group by an acid epoxy reaction using an epoxy group-containing unsaturated compound such as glycidyl (meth) acrylate (2) A method of introducing an unsaturated group by urethanization reaction using an unsaturated compound having an isocyanate group, (3) The method etc. which introduce
  • transduce an unsaturated group by esterification reaction of carboxylic acid, a hydroxyl group, or an amine group, or amidation reaction, etc. are mentioned.
  • the present invention has been made in view of the above circumstances, and a monomer having a functional group polymerizable by a cationic polymerization method and further having a radical polymerizable unsaturated group is a monomer having a cyclic ether skeleton. And a polymer having an unsaturated group capable of radical polymerization in the side chain and capable of molecular design according to the purpose, and a curable resin composition containing the polymer
  • An object is to provide an article, a cured product obtained by curing the curable resin composition, and an article obtained by laminating the cured product on a substrate.
  • the “cured product” means a substance having no fluidity.
  • the vinyl ether group selectively undergoes a polymerization reaction, and as a heat / ultraviolet / electron beam curable polymer, a (meth) acryloyl group having a double bond capable of radical polymerization (anionic polymerization) in the side chain. A pendant polymer is obtained.
  • the above-mentioned side chain polymerizable group-containing polymer is a cured product obtained by curing a curable resin composition containing the side chain polymerizable group-containing polymer when the molecular weight of the polymer, particularly the number average molecular weight, is large. Therefore, molecular design according to the application is necessary.
  • the molecular weight can be adjusted by adjusting the reaction temperature or using alcohol or the like as a chain transfer agent.
  • a high molecular weight polymer having a molecular weight of several thousand or more is difficult to polymerize, and must be polymerized at a low temperature of, for example, ⁇ 10 ° C. or less, or use a special initiator, and is not suitable for mass production.
  • the present inventors have introduced a cyclic ether skeleton as a copolymerization component into a (meth) acryloyl group pendant polymer having a double bond capable of radical polymerization in the side chain, thereby achieving a relatively high reaction.
  • a polymer having a high molecular weight can be obtained even at a temperature (for example, 40 ° C.), and by setting the mass ratio of the copolymerization component within a specific range, a molecular design according to the purpose can be achieved, and the above problems can be solved at once. I found out that I can.
  • a curable resin composition containing the polymer capable of obtaining a cured product having good low warpage, scratch resistance, and adhesion when applied to a substrate such as plastic and cured and laminated.
  • the present invention was completed by finding that the cured product and an article formed by laminating the cured product were obtained.
  • the polymer according to the first invention is obtained from at least a vinyl monomer represented by the following general formula (1) and a cyclic ether compound represented by the following general formula (2). To do.
  • R 1 is an alkylene group having 2 to 8 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • m is a positive integer
  • n is an integer of 1 to 5
  • the polymer according to the second invention is the polymer represented by the general formula (1) in the first invention represented by 1% by mass or more and 99.9% by mass or less of the vinyl monomer represented by the general formula (2). It is obtained by polymerizing 0.1% by mass or more and 99% by mass or less of the cyclic ether compound and 0% by mass or more and 98.9% by mass or less of other cationically polymerizable monomers. .
  • the polymer according to the third invention is the mass ratio of the vinyl monomer represented by the general formula (1) and the cyclic ether compound represented by the general formula (2) in the first or second invention. Is 50/50 or more and 99.9 / 0.1 or less.
  • the curable resin composition according to the fourth invention is characterized by containing the polymer of any one of the first to third inventions.
  • the cured product according to the fifth invention is obtained by curing the curable resin composition of the fourth invention.
  • the article according to the sixth invention is characterized in that the cured product of the fifth invention is laminated.
  • the present invention in the production of a cationic polymer containing a radically polymerizable unsaturated group in the side chain, without using a highly active metal compound or setting the reaction temperature at a low temperature, a simple method, for example, The molecular design according to the purpose became possible, such as obtaining a high molecular weight polymer.
  • the curable resin composition containing the polymer obtained by the present invention it is formed when coated on a base material made of plastic or the coating on the base material and cured.
  • the coated film has a high surface hardness, is not easily damaged, is less likely to cause warping and curling of the laminate, cracks, peeling, etc., and has excellent adhesion to a substrate such as a plastic or a coating film.
  • a cured product having light transmittance and an article obtained by laminating the cured product are obtained.
  • the polymer (vinyl polymer) (A) of the present invention polymerizes at least a vinyl monomer represented by the following general formula (1) and a cyclic ether compound represented by the following general formula (2). Is obtained.
  • R 1 is an alkylene group having 2 to 8 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • m is a positive integer
  • n is an integer of 1 to 5
  • Examples of the alkylene group having 2 to 8 carbon atoms represented by R 1 include an ethylene group, a trimethylene group, Propylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, cyclohexylene group, 1,4-dimethylcyclohexane- ⁇ , ⁇ '-diyl group, 1,3-dimethylcyclohexane- ⁇ , ⁇ '-diyl group, 1,2-dimethylcyclohexane- ⁇ , ⁇ '-diyl group, 1,4-dimethylphenyl- ⁇ , ⁇ '-diyl group, 1,3-dimethylphenyl- ⁇ , ⁇ '-diyl Group, 1,2-dimethylphenyl- ⁇ , ⁇ '-diyl group and the like.
  • R 1 There are m substituents represented by R 1 in the general
  • m is a positive integer, preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and further preferably an integer of 1 to 5.
  • the polymer (A) of the present invention is prepared by conventionally known cationic polymerization using a vinyl monomer which is a heteropolymerizable monomer represented by the general formula (1) as a copolymerization component. It can also be prepared by living cationic polymerization by the method described in JP-A-2006-241189.
  • the vinyl monomer represented by the general formula (1) may be used alone or in combination of two or more.
  • the resulting copolymer may be a random copolymer, an alternating copolymer, a periodic copolymer, a block copolymer, or a combination thereof.
  • a graft copolymer may be sufficient.
  • vinyl monomer represented by the general formula (1) examples include, for example, 2-vinyloxyethyl (meth) acrylate, 3-vinyloxypropyl (meth) acrylate, 2-methacrylic acid 2- Vinyloxypropyl, 1-vinyloxypropyl (meth) acrylate, 1-methyl-2-vinyloxyethyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 3-vinyloxybutyl (meth) acrylate, (meth) acrylic 2-vinyloxybutyl acid, 1-methyl-3-vinyloxypropyl (meth) acrylate, 2-methyl-3-vinyloxypropyl (meth) acrylate, 1-methyl-2-vinyloxypropyl (meth) acrylate, 1,1-dimethyl-2-vinyloxyethyl (meth) acrylate, 6-vinyloxyhexyl (meth) acrylate, (Meth) acrylic acid 4-vinyl
  • the vinyl monomer represented by the general formula (1) can be produced using a conventionally known method.
  • R 1 is an ethylene group and m is 1
  • a metal salt of (meth) acrylic acid and 2-halogenoethyl vinyl ether are condensed or methyl (meth) acrylate
  • 2-hydroxyethyl vinyl ether can be transesterified, or (meth) acrylic acid halide and 2-hydroxyethyl vinyl ether can be condensed.
  • Cyclic ether compound represented by the general formula (2) In the general formula (2), n is an integer of 1 to 5, preferably an integer of 1 to 3, and more preferably 1. Specific examples of the cyclic ether compound (oxygen-containing monocyclic monomer) represented by the general formula (2) include 2,3-dihydrofuran, 2,3-dihydropyran and the like. Of these, 2,3-dihydrofuran is preferred.
  • the polymer (A) of the present invention is, if necessary, a vinyl monomer represented by the general formula (1) and the general formula (2). In addition to the cyclic ether compound represented, it can be obtained by polymerizing the following cationic polymerizable monomers as copolymerization components.
  • Examples of the cationically polymerizable monomer include ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, t-butyl vinyl ether, 2-ethylhexyl vinyl ether, 2-chloroethyl vinyl ether, 4- Vinyl ether compounds such as hydroxybutyl vinyl ether and cyclohexyl vinyl ether; styrene, 4-methylstyrene, 3-methylstyrene, 2-methylstyrene, 2,5-dimethylstyrene, 2,4-dimethylstyrene, 2,4,6-trimethylstyrene Styrene derivatives such as 4-t-butylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-methoxystyrene, 4-chloromethylstyrene;
  • cationically polymerizable monomers may be used alone or in combination of two or more.
  • vinyl ether compounds such as isobutyl vinyl ether and cyclohexyl vinyl ether are preferred.
  • the polymer (A) of the present invention is a copolymer obtained by polymerizing the monomer capable of cationic polymerization
  • the copolymer is a vinyl monomer represented by the general formula (1). It can be easily prepared by cationic polymerization of the product, the cyclic ether compound represented by the general formula (2), and the monomer capable of cationic polymerization.
  • polymer (A) of the present invention polymerizes at least a vinyl monomer represented by the general formula (1) and a cyclic ether compound represented by the general formula (2). Obtained.
  • the polymer (A) of the present invention comprises 1% by mass or more and 99.9% by mass or less of a vinyl monomer represented by the general formula (1) and a cyclic ether represented by the general formula (2). It is preferably obtained by polymerizing 0.1% by mass to 99% by mass of the compound and 0% by mass to 98.9% by mass of other cationically polymerizable monomers.
  • the vinyl monomer represented by the general formula (1) has an upper limit of preferably 99% by mass, more preferably 98% by mass, and a lower limit of preferably 5% by mass, more preferably 10% by mass. More preferably, it is 15% by mass.
  • the upper limit of the cyclic ether compound represented by the general formula (2) is preferably 98% by mass, more preferably 50% by mass, still more preferably 47% by mass, and the lower limit is preferably 0.5% by mass. More preferably, it is 1% by mass.
  • the other cationic polymerizable monomer has an upper limit of preferably 90% by mass, more preferably 80% by mass, still more preferably 70% by mass, particularly preferably 60% by mass, and a lower limit of preferably 5% by mass. %, More preferably 10% by mass, still more preferably 15% by mass.
  • the upper limit of the mass ratio of the vinyl monomer represented by the general formula (1) and the cyclic ether compound represented by the general formula (2) is 99.9. /0.1, preferably 99.5 / 0.5, more preferably 99/1, still more preferably 98/2, and the lower limit is 50/50, preferably 51/49, more preferably 52/48, More preferably, it is 53/47.
  • the upper limit of the number average molecular weight (Mn) of the polymer (A) of the present invention is preferably 500,000, more preferably 100,000, still more preferably 50,000, and the lower limit is preferably 4,000. Preferably it is 5,000, more preferably 5,500, particularly preferably 6,000.
  • Mn number average molecular weight
  • the polymer (A) of the present invention introduces a cyclic ether skeleton derived from the cyclic ether compound represented by the general formula (2), thereby allowing the active cationic species during polymerization. Can stabilize and have a high molecular weight even when reacted at a relatively high temperature (eg, 40 ° C.).
  • the number average molecular weight (Mn) is 2 columns TSK-gel SuperHM-H manufactured by Tosoh Corporation under the conditions of a temperature of 40 ° C. and a flow rate of 0.3 mL / min using tetrahydrofuran (THF) as a mobile phase.
  • a TSK-gel SuperH2000 is used, and is a gel permeation chromatography (GPC) apparatus manufactured by Tosoh Corporation using an HLC-8220GPC and converted to standard polystyrene.
  • the polymer (A) of the present invention can be obtained as a liquid viscous material, unless the content of the monomer is high so that the polymer (A) is solid. If it is a liquid viscous body, since the solubility with an organic solvent and a (meth) acrylate type monomer is good, the improvement of work efficiency can be aimed at when preparing a curable resin composition. When the viscosity is low, workability is good, and wettability with the base material is improved when a laminate is produced.
  • the manufacturing method of the polymer (A) of this invention is explained in full detail.
  • various reaction conditions such as a polymerization catalyst, a cocatalyst, a polymerization solvent, a polymerization temperature, and a polymerization concentration can be selected as appropriate.
  • the polymerization catalyst can be used for cationic polymerization. Any conventionally known polymerization catalyst can be used.
  • the polymerization catalyst include Bronsted acids such as hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, trichloroacetic acid and trifluoroacetic acid; boron trifluoride and its complexes Lewis acids such as aluminum trichloride, aluminum tribromide, tin tetrachloride, zinc dichloride, ferric chloride; organometallic compounds such as diethyl aluminum chloride, ethyl aluminum chloride, diethyl zinc; phosphotungstic acid, phosphorus Molybdic acid, phosphomolybdotungstic acid, phosphomolybdovanadic acid, phosphomolybdotungstovanadic acid, phosphotungstovanadic acid, phosphomolybdoniobic acid, silicotungstic acid, silicomolybdic acid, silicomolybdotungstic acid Gustobanaic acid, germanium tungs
  • heteropoly acids are preferred, and heteropoly acids are more preferred.
  • the heteropolyacids at least one oxide of Mo, W, V and oxyacid generated by condensation of oxyacids of other elements (for example, P, Si, As, Ge, B, Ti, Ce, etc.)
  • An acid or a salt thereof is preferred, and the atomic ratio of the former to the latter is preferably from 2.5 to 12, particularly preferably 12.
  • the cocatalyst is used in combination with this polymerization catalyst, the reaction may be accelerated.
  • the addition amount of the polymerization catalyst used in the present invention may be appropriately adjusted.
  • the heteropolyacid is highly active, the polymerization reaction proceeds sufficiently even when the amount used relative to vinyl ether is 100 ppm or less.
  • the addition amount of the polymerization catalyst may be increased.
  • the upper limit of the amount of the polymerization catalyst used is 3% by mass, preferably 5000 ppm, and the lower limit is 1 ppm, preferably 10 ppm, based on the total amount of monomers capable of cationic polymerization.
  • the upper limit is more preferably 100 ppm, and the lower limit is more preferably 10 ppm.
  • the polymerization solvent is preferably an aprotic solvent.
  • aromatic hydrocarbons such as toluene, xylene and benzene; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aliphatic hydrocarbons such as hexane and octane; saturated cyclic hydrocarbons such as cyclohexane and methylcyclohexane Halogenated hydrocarbons such as chloroform and trichloroethylene; esters such as ethyl acetate, butyl acetate and butyl propionate; ethers such as propylene glycol methyl ether acetate, diethylene glycol dimethyl ether and diethylene glycol ethyl methyl ether; tetrahydrofuran, 1,4-dioxane Cyclic ethers such as nitriles such as acetonitrile and benzonitrile can be used.
  • the amount of water, alcohol and other protic compounds in the reaction system is very important to control the amount of water, alcohol and other protic compounds in the reaction system.
  • the amount of protic compounds such as moisture and alcohol in the reaction system is preferably 3000 ppm or less, and more preferably 2000 ppm or less. More preferably, it is 1000 ppm or less.
  • the amount of the protic compound in the reaction system exceeds 3000 ppm, the high molecular weight polymer (A) cannot be obtained. In some cases, the apparent polymerization stops, and there is a possibility that no polymer can be obtained.
  • the temperature at which the above cationic polymerizable monomer is polymerized is not particularly limited, but is preferably ⁇ 10 to 100 ° C.
  • the polymerization temperature is preferably adjusted to 10 to 60 ° C. by heating or cooling. Since the molecular weight distribution of the resulting polymer (A) is narrowed by polymerization so that the temperature of the polymerization solution in the reaction vessel becomes substantially constant during the polymerization, it is preferable to adjust the polymerization temperature as much as possible.
  • the polymerization temperature is less than ⁇ 10 ° C., temperature adjustment may be very difficult industrially, or handling may be difficult due to solidification or increased viscosity.
  • polymerization temperature exceeds 100 degreeC, the molecular weight of the polymer (A) obtained may become low.
  • the reaction pressure may be any of reduced pressure, normal pressure and increased pressure, but is usually carried out at normal pressure.
  • the polymerization method is not particularly limited and can be carried out in a batch, semi-batch, or continuous method, but a batch method is preferred.
  • the monomer and the catalyst may be charged all at once into the reaction apparatus, or a part or the whole may be charged by a method such as dividing or dropping.
  • the polymerization catalyst is preferably added dropwise.
  • the reaction may be stopped by adding a protic compound such as water or alcohol; an organic base such as ammonia or amine; or an inorganic base such as NaOH or KOH as necessary.
  • a protic compound such as water or alcohol
  • an organic base such as ammonia or amine
  • an inorganic base such as NaOH or KOH as necessary.
  • nitrogen / air mixed gas is preferable, particularly preferably nitrogen whose oxygen concentration is controlled to 3 to 10% by volume. It is preferable to perform polymerization while blowing the oxygen mixed gas into the gas phase part or the liquid phase part.
  • Use of a radical polymerization inhibitor and polymerization in a light-shielding reactor are also effective.
  • a conventionally known compound can be appropriately selected as the radical polymerization inhibitor.
  • a hindered phenol type inhibitor more preferably at least a phenyl group having a phenolic hydroxyl group, a hydrogen atom bonded to one of the carbon atoms adjacent to the carbon atom to which the phenolic hydroxyl group is bonded, and the other Is a compound having a structure in which an alkyl group is bonded to.
  • radical polymerization inhibitor for example, the following compounds are suitable. These can use 1 type (s) or 2 or more types. 2-t-butylhydroquinone, 2-t-amylhydroquinone, 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, tris (3-t-butyl-4-hydroxybenzyl) isocyanate , Tris (3-t-amyl-4-hydroxybenzyl) isocyanate, 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane, 1,1,3-tris (2 -Ethyl-4-hydroxy-5-t-amylphenyl) butane, 4.4-butylidene-bis (3-methyl-6-t-butylphenol), 4,4-butylidene-bis (3-methyl-6-t) -Amylphenol), tetrakis [methylene-3- (3-tert-
  • the amount of the radical polymerization inhibitor used is preferably 1 mass ppm as the lower limit relative to the solid content of the polymer. If it is less than 1 ppm by mass, there is a possibility that the polymerization preventing performance cannot be sufficiently improved. More preferably, it is 5 mass ppm, More preferably, it is 10 mass ppm, More preferably, it is 20 mass ppm, Especially preferably, it is 50 mass ppm, Most preferably, it is 100 mass ppm.
  • the upper limit is preferably 10,000 ppm by mass. If it exceeds 10,000 mass ppm, the curability may be lowered. More preferably, it is 8,000 mass ppm, More preferably, it is 6,000 mass ppm, Most preferably, it is 4,000 mass ppm.
  • the polymer (A) obtained in the present invention is preferably maintained in the gas phase part with a nitrogen / air mixed gas, particularly preferably with a nitrogen / oxygen mixed gas controlled to an oxygen concentration of 3 to 10% by volume. Is preferred. Further, storage at a low temperature of 30 ° C. or lower, transfer and storage in a light-shielding container are also effective. Use of the above-mentioned radical polymerization inhibitor is also effective.
  • the vinyl monomer represented by the general formula (1) has a radically polymerizable or anionically polymerizable (meth) acryloyl group and a cationically polymerizable vinyl ether group at the same time, the polymerization method should be selected.
  • a polymer (A) having a (meth) acryloyl group or a vinyl ether group as a pendant group is obtained.
  • the vinyl ether group of the vinyl monomer represented by the general formula (1) can be combined with the cyclic ether compound represented by the general formula (2) and, if necessary, other cationic polymerization.
  • a polymer (A) having a (meth) acryloyl group as a pendant group is obtained by cationic polymerization together with a monomer.
  • the curable resin composition of this invention contains the polymer (A) of this invention as an essential component.
  • a co-curable compound (B) such as a polymerizable monomer, an oligomer, or a polymer having another polymerizable group.
  • the co-curable compound (B) may be a compound containing at least one functional group having a polymerizable group in the molecule, and may be used alone or in combination of two or more. In addition, unless the effect of this invention is impaired, the other component may be contained further.
  • the curable resin composition of the present invention preferably contains a polymerization initiator in addition to the polymer (A) of the present invention and the co-curable compound (B).
  • the curable resin composition can be cured with light such as heat, ultraviolet light, and visible light.
  • the total content of the polymer (A) and the co-curable compound (B) is 80% by mass or more, preferably 85% by mass, more preferably 90% by mass or more.
  • the total content is less than 80% by mass, the hardness of the cured product may not be obtained or the scratch resistance may be reduced.
  • the blending amount of the polymer (A) of the present invention is 100% by mass with respect to the total amount of the curable resin composition, 10% by mass, and preferably 20% with the lower limit. It is 40 mass%, More preferably, it is 40 mass%.
  • the blending amount of the polymer (A) is less than 10% by mass, the crosslinking density is lowered, so that the curing rate is lowered and the coating strength of the cured product may be insufficient.
  • polymer of the co-curable compound (B) examples include acrylic resins, urethane acrylate resins, epoxy acrylate resins, polyester resins, polyurethane resins, polystyrene resins, silicon resins, rubber resins, and the like. .
  • the polymerizable monomer of the co-curable compound (B) is not particularly limited as long as it can be co-cured with the polymer (A).
  • styrene Styrene monomers such as vinyltoluene, 4-t-butylstyrene, ⁇ -methylstyrene, 4-chlorostyrene, 4-methylstyrene, 4-chloromethylstyrene, divinylbenzene; diallyl phthalate, diallyl isophthalate, Allyl ester monomers such as triallyl cyanurate and triallyl isocyanurate; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl ( (Meth) acrylate, isobornyl (meth) acrylate, 1-ad
  • the blending amount of the polymerizable monomer is preferably 0 to 70% by mass, more preferably 0 to 40% by mass with respect to the total amount of the curable resin composition.
  • the compounding amount of the polymerizable monomer exceeds 70% by mass, curing shrinkage increases, and internal distortion and warpage of the cured product may increase.
  • the polymerizable monomer represented by the general formula (1) has a radical polymerizable (meth) acryloyl group, for example, a thermal polymerization initiator that generates a polymerization initiating radical by heating; And a photopolymerization initiator that generates a polymerization initiating radical upon irradiation with ultraviolet rays or visible light.
  • a thermal polymerization initiator that generates a polymerization initiating radical by heating
  • a photopolymerization initiator that generates a polymerization initiating radical upon irradiation with ultraviolet rays or visible light.
  • These polymerization initiators may be used alone or in combination of two or more. It is also preferable to further add a thermal polymerization accelerator, a photosensitizer, a photopolymerization accelerator and the like.
  • thermal polymerization initiator examples include methyl ethyl ketone peroxide, cyclohexanone peroxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, cumene hydroperoxide, benzoyl peroxide, bis (4-t-butyl).
  • Organic peroxide initiators such as hexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxybenzoate; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2'-azo (2,4-dimethyl-4-methoxyvaleronitrile), 2,2'-azobis (2-methylpropionamidine) dihydrochloride, 2,2'-azobis (2-methyl-N-phenylpropionamidine) Hydrochloride, 2,2'-azobis [N- (4-chlorophenyl) -2-methylpropionamidine)] dihydroch
  • thermal polymerization initiators may be used alone or in combination of two or more.
  • radicals can be efficiently generated by the catalytic action of metal soaps such as methyl ethyl ketone peroxide, cyclohexanone peroxide, cumene hydroperoxide, t-butylperoxybenzoate, benzoyl peroxide, and / or amine compounds.
  • metal soaps such as methyl ethyl ketone peroxide, cyclohexanone peroxide, cumene hydroperoxide, t-butylperoxybenzoate, benzoyl peroxide, and / or amine compounds.
  • Preferred compounds are 2,2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile).
  • photopolymerization initiator examples include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2 -Propyl) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholino Acetophenones such as phenyl) butanone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomers; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether Benzo etc.
  • Benzophenone methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyl-diphenyl sulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2 , 4,6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride
  • Benzophenones such as 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4 Thiox
  • photopolymerization initiators may be used alone or in combination of two or more.
  • acetophenones, benzophenones, and acylphosphine oxides are preferable, and 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl 2-morpholino (4- Thiomethylphenyl) propan-1-one is particularly preferred.
  • the amount of the polymerization initiator is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.2 to 10% with respect to the total amount of the curable resin composition. % By mass.
  • a composition may not fully harden
  • the blending amount of the polymerization initiator exceeds 20% by mass, the physical properties of the cured product will not be further improved, rather adversely affected and the economy may be impaired.
  • thermal polymerization initiator When a thermal polymerization initiator is used as the polymerization initiator, the thermal polymerization can accelerate the decomposition of the thermal polymerization initiator and effectively generate radicals in order to lower the decomposition temperature of the thermal polymerization initiator.
  • An agent can be used.
  • the thermal polymerization accelerator include metal soaps such as cobalt, copper, tin, zinc, manganese, iron, zirconium, chromium, vanadium, calcium, potassium, etc., primary, secondary, tertiary amine compounds, quaternary ammonium. Examples thereof include salts, thiourea compounds, and ketone compounds. These thermal polymerization accelerators may be used alone or in combination of two or more.
  • cobalt octylate, cobalt naphthenate, copper octylate, copper naphthenate, manganese octylate, manganese naphthenate, dimethylaniline, trietalamine, triethylbenzylammonium chloride, di (2-hydroxy) Ethyl) p-toluidine, ethylenethiourea, acetylacetone, methyl acetoacetate are preferred.
  • the blending amount of the thermal polymerization accelerator is preferably 0.001 to 20% by mass, more preferably 0.01 to 10% by mass or more, further preferably 0.05 to 10% by mass with respect to the total amount of the curable resin composition. It is in the range of 5% by mass. When the blending amount of the thermal polymerization accelerator is within such a range, it is preferable from the viewpoints of curability of the composition, physical properties of the cured product, and economical efficiency.
  • the photosensitizer which can be used can be used.
  • examples of the photosensitizer include 2-chlorothioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropylthioxanthone. These photosensitizers may be used alone or in combination of two or more.
  • the blending amount of the photosensitizer is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and still more preferably 0.2 to 10% with respect to the total amount of the curable resin composition. It is in the range of mass%. If the compounding quantity of a photosensitizer is in such a range, it is preferable at the point of sclerosis
  • a photopolymerization accelerator capable of promoting the decomposition of the photopolymerization initiator and effectively generating radicals can be used.
  • the photopolymerization accelerator include triethanolamine, methyldiethanolamine, triisopropanolamine, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4-dimethylaminobenzoate, and 4-dimethylaminobenzoic acid.
  • Examples include -2-n-butoxyethyl, 2-dimethylaminoethyl benzoate, N, N-dimethylparatoluidine, 4,4′-dimethylaminobenzophenone, 4,4′-diethylaminobenzophenone, and the like.
  • These photopolymerization accelerators may be used alone or in combination of two or more. Of these photopolymerization accelerators, triethanolamine, methyldiethanolamine, and triisopropanolamine are preferable.
  • the blending amount of the photopolymerization accelerator is preferably 0.05 to 20% by mass, more preferably 0.1 to 15% by mass, and further preferably 0.2 to 10% with respect to the total amount of the curable resin composition. It is in the range of mass%. When the blending amount of the photopolymerization accelerator is within such a range, it is preferable from the viewpoint of the curability of the composition, the physical properties of the cured product, and the economical efficiency.
  • the total amount of the blending amount is preferably relative to the total amount of the composition. Is in the range of 0.05 to 20 mass, more preferably 0.1 to 15 mass%, and still more preferably 0.2 to 10 mass.
  • the total amount of the combination blending amount of the polymerization initiator and the like is within such a range, it is preferable in terms of the curability of the composition, the physical properties of the cured product, and the economical efficiency.
  • the curable resin composition of the present invention preferably contains no solvent other than the polymerizable monomer, but may be added if necessary.
  • the solvent include aromatic hydrocarbons such as benzene, toluene and chlorobenzene; aliphatic or alicyclic hydrocarbons such as pentane, hexane, cyclohexane and heptane; halogenated carbonization such as carbon tetrachloride, chloroform and ethylene dichloride.
  • Nitro compounds such as nitromethane and nitrobenzene; ethers such as diethyl ether, methyl t-butyl ether, tetrahydrofuran and 1,4-dioxane; esters such as methyl acetate, ethyl acetate, isopropyl acetate and amyl acetate; dimethylformamide; methanol Alcohols such as ethanol and propanol; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; and the like can be used.
  • ethers such as diethyl ether, methyl t-butyl ether, tetrahydrofuran and 1,4-dioxane
  • esters such as methyl acetate, ethyl acetate, isopropyl acetate and amyl acetate
  • dimethylformamide methanol Alcohols such as ethanol and propanol
  • ketones such as
  • the curable resin composition of the present invention may contain fine particles made of a metal oxide in addition to the polymer (A) of the present invention.
  • fine particles made of a metal oxide the hardness of the coating film after curing is improved, and there is an effect that it is less likely to be damaged.
  • the metal oxide constituting the fine particles contains at least one metal element selected from the group consisting of Si, Ti, Zr, Zn, Sn, In, La, and Y.
  • the metal oxide constituting the fine particles may be a single oxide containing these elements or a complex oxide containing these elements.
  • Specific examples of the metal oxide constituting the fine particles include, for example, SiO, SiO 2 , TiO 2 , ZrO 2 , ZnO, SnO 2 , In 2 O 3 , La 2 O 3 , Y 2 O 3 , SiO 2 —Al.
  • Examples thereof include 2 O 3 , SiO 2 —Zr 2 O 3 , SiO 2 —Ti 2 O 3 , Al 2 O 3 —ZrO 2 , and TiO 2 —ZrO 2 .
  • the fine particles comprising these metal oxides may be used alone or in combination of two or more. Of these fine particles made of a metal oxide, SiO 2 , TiO 2 , ZrO 2 , and ZnO 2 are preferable.
  • the average particle diameter of the fine particles made of metal oxide is preferably 1 to 100 nm, more preferably 1 to 20 nm. If the average particle diameter of the fine particles exceeds 100 nm, the transparency of the cured product may be impaired.
  • the average particle diameter of fine particles means the volume average particle diameter calculated
  • the blending amount of the metal oxide fine particles is preferably 0 to 5% by mass, more preferably 1 to 3% by mass, based on the total amount of the curable resin composition.
  • the curable resin composition of the present invention further includes, as necessary, a non-reactive resin (for example, acrylic resin, urethane acrylate resin, polyester resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, etc.) , Color pigments, plasticizers, polymerization inhibitors, light stabilizers, antioxidants, flame retardants, matting agents, dyes, antifoaming agents, leveling agents, antistatic agents, dispersants, slip agents, surface modification An agent, thixotropic agent, thixotropic agent and the like can be added.
  • a non-reactive resin for example, acrylic resin, urethane acrylate resin, polyester resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, etc.
  • Color pigments for example, acrylic resin, urethane acrylate resin, polyester resin, polyurethane resin, polystyrene resin, polyvinyl chloride resin, etc.
  • Color pigments for example,
  • the compounding amount of the additive may be set as appropriate according to the type and purpose of use of the additive, the use and usage of the composition, and is not particularly limited.
  • non-reactive resins for example, non-reactive resins, color pigments, plasticizers, polymerization inhibitors, UV absorbers, antioxidants, matting agents, dyes, antifoaming agents, leveling agents, antistatic agents, dispersants, slip agents, surface modification Quality agents, water repellents, oil repellents, thixotropic agents, thixotropic aids, and the like.
  • the blending amount is preferably 0 to 10% by mass, more preferably 0.2 to 5% by mass, based on the total amount of the curable resin composition.
  • the curable resin composition of the present invention comprises the polymer (A) of the present invention, the co-curable compound (B), and the initiation of polymerization. It can be obtained by blending, mixing and stirring various additives such as an agent, a thermal polymerization accelerator, a photosensitizer, a photopolymerization accelerator, a solvent, and metal oxide fine particles.
  • the curable resin composition of the present invention is irradiated with an electron beam.
  • the thermal polymerization initiator is blended, the photopolymerization initiator is blended by heating. In this case, it can be cured by irradiating with ultraviolet rays or visible light.
  • the cured product of the present invention is obtained by curing a curable resin composition or a material containing the composition.
  • a curable resin composition or a material containing the composition.
  • infrared rays, far infrared rays, hot air, high frequency heating or the like may be used.
  • the heating temperature may be appropriately adjusted according to the type of substrate and the like, and is not particularly limited, but is preferably 80 to 200 ° C, more preferably 90 to 180 ° C, and still more preferably 100 to 170 ° C. Within range.
  • the heating time may be appropriately adjusted according to the application area and the like, and is not particularly limited, but is preferably 1 minute to 24 hours, more preferably 10 minutes to 12 hours, and further preferably 30 minutes to 6 hours. Is within the range.
  • a light source including light within a wavelength range of 150 to 450 nm may be used.
  • light sources include sunlight, low-pressure mercury lamp, high-pressure mercury lamp, ultra-high pressure mercury lamp, metal halide lamp, gallium lamp, xenon lamp, xenon flash lamp, and carbon arc lamp.
  • the cumulative amount of irradiation is preferably in the range of 0.1 to 10 J / cm 2 , more preferably 0.15 to 8 J / cm 2 , and still more preferably 0.2 to 5 J / cm 2 .
  • an electron beam having an acceleration voltage of preferably 10 to 500 kV, more preferably 20 to 300 kV, and still more preferably 30 to 200 kV may be used.
  • the irradiation dose is preferably in the range of 2 to 500 kGy, more preferably 3 to 300 kGy, and still more preferably 4 to 200 kGy.
  • the upper limit of the coating amount is preferably 1,000 g / m 2 , more preferably 700 g / m 2 , and the lower limit is preferably 0.2 g / m 2 , more preferably 0.5 g / m 2 .
  • the upper limit of the coating thickness is preferably 500 ⁇ m, more preferably 200 ⁇ m, and the lower limit is preferably 1 ⁇ m, more preferably 2 ⁇ m.
  • a simultaneous molding method using a decorative film containing the curable resin composition there is a simultaneous molding method using a decorative film containing the curable resin composition.
  • This method is a resin molding in which a decorative film composed of at least a film and a decorative layer is placed in a mold for injection molding, and after closing the mold, a molding resin is injected into a cavity and the molding resin is solidified.
  • a decorative sheet is obtained by integrally bonding a decorative sheet to the surface of the product.
  • PE polyethylene
  • PP polypropylene
  • PMMA polymethyl methacrylate
  • PMMA polyacrylate
  • PVA polyvinyl alcohol
  • PS polystyrene
  • PET polyethylene terephthalate
  • PBT Polybutylene terephthalate
  • EVA ethylene-vinyl acetate copolymer
  • AS acrylonitrile styrene
  • ABS acrylonitrile butadiene styrene copolymer
  • TAC triacetyl cellulose
  • COP polycarbonate
  • PEEK polyetheretherketone
  • PAI polyamideimide
  • PI polyimide
  • PEI polyetheramide
  • nylon NY
  • PVC polyvinyl chloride
  • polyester Thermoplastic resins disclosed in vinylidene chloride, epoxy resin, urethane resin, silicone resin, Japanese Patent No. 20151562, Japanese Patent No.
  • Resin moldings and films such as: Coated paper such as polyethylene coated paper and polyethylene terephthalate coated paper, paper such as uncoated paper; wood; glass; stainless steel, iron, aluminum, copper, zinc, galvanized steel, titanium, tin Metals such as chrome molybdenum steel and alloys; concrete, ceramics, FRP (glass fiber reinforced plastic), metal / glass / polymer fiber materials, and the like.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • COP cycloolefin polymer
  • PC polycarbonate
  • heat-resistant acrylic are preferable.
  • the laminate includes an antistatic layer, an adhesive layer, an adhesive layer, an easy adhesion layer, a strain relaxation layer, an antiglare layer (non-glare) layer, a photocatalytic layer and other antifouling layers, and an antireflection layer.
  • Various functional coating layers such as decorative layer, conductive layer, water repellent layer, oil repellent layer, release layer, adhesion layer, high refractive index layer, low refractive index layer, gas barrier layer, etc. Or you may.
  • the lamination order of the cured film layer which uses the curable resin composition of this invention and each layer is not specifically limited, A lamination method is not specifically limited, either.
  • the curable resin composition of the present invention includes a cross-linking material, a hard coat material, an adhesive, an adhesive material, a dental material, an optical member, an optical fiber application, an information recording material, various resist materials (colored resist, photo spacer, etching resist, solder) Resist, etc.), binder for baking paste, solid electrolyte, insulator, sealing material, printing ink, paint, powder paint, casting material, decorative board, WPC (Wood Plastic Combination), coating material, lining material, civil engineering and construction Various materials such as materials, putty, repair materials, floor materials, overcoats, undercoats, primers, hand lay-ups, spray-ups, pultrusion, molding materials such as SMC (Sheet Molding Compound) and BMC (Bulk Molding Compound) Can be applied to optical recording media, plastic film, OA equipment, mobile phones and other communication equipment, household appliances, automobiles Interior / exterior parts for furniture, exterior parts for furniture, plastic lenses, cosmetic containers, beverage containers, displays such as
  • the cured product obtained by curing the curable resin composition of the present invention is particularly excellent in scratch resistance and hardness, and particularly excellent in adhesion to a substrate made of plastic, metal, etc.
  • the composition is more suitably used as a coating agent for optical recording media, a coating agent for films, a coating agent for plastic molded articles, and a primer agent.
  • the curable resin composition of the present invention is more preferably used for a coating agent for an optical recording medium, and particularly preferably for a coating agent for a transparent cover layer of a Blu-ray disc and a coating agent for a transparent hard coat layer.
  • ⁇ Number average molecular weight and molecular weight distribution> The number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polymer of this example were determined by gel permeation chromatography (GPC) in terms of standard polystyrene. The measurement conditions were as follows. Mobile phase: THF, temperature: 40 ° C., flow rate: 0.3 mL / min; Column: TSK-gel SuperHM-H 2 TSK-gel SuperH2000 1 (both manufactured by Tosoh Corporation); Measuring instrument: HLC-8220GPC (manufactured by Tosoh Corporation).
  • Example 1 80 g of ethyl acetate was added to a four-necked flask equipped with a stir bar, thermometer, dropping line, and nitrogen / air mixed gas introduction tube, and the temperature was raised to 40 ° C. After raising the temperature, a mixture of 128 g of 2- (2-vinyloxyethoxy) ethyl acrylate (VEEA) and 72 g of 2,3-dihydrofuran (DHF), and a mixed solution of 13 g of ethyl acetate and 13 mg of phosphotungstic acid were added over 2 hours. The solution was dropped to carry out polymerization. After completion of the polymerization, the reaction was terminated by adding triethylamine.
  • VEEA 2- (2-vinyloxyethoxy) ethyl acrylate
  • DHF 2,3-dihydrofuran
  • a polymer (P (VEEA / DHF) -1) as a polymer (A) was obtained.
  • the reaction rate of the monomer was found to be 99.1% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA / DHF) -1) was 9840, and the molecular weight distribution (Mw / Mn) was 1.97.
  • Example 2 80 g of ethyl acetate was added to a four-necked flask equipped with a stir bar, thermometer, dropping line, and nitrogen / air mixed gas introduction tube, and the temperature was raised to 20 ° C. After raising the temperature, a mixture of 81 g of VEEA, 109 g of cyclohexyl vinyl ether (CHVE) and 10 g of DHF, and a mixed solution of 13 g of ethyl acetate and 13 mg of phosphotungstic acid were added dropwise over 2 hours for polymerization. After completion of the polymerization, the reaction was terminated by adding triethylamine.
  • a polymer (P (VEEA / CHVE / DHF) -1) was obtained.
  • the reaction rate of the monomer was found to be 99.1% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA / CHVE / DHF) -1) was 8,060, and the molecular weight distribution (Mw / Mn) was 1.66.
  • Example 3 80 g of ethyl acetate was added to a four-necked flask equipped with a stir bar, thermometer, dropping line, and nitrogen / air mixed gas introduction tube, and the temperature was raised to 20 ° C. After the temperature increase, a mixture of 196 g of VEEA and 4 g of DHF and a mixed solution of 13 g of ethyl acetate and 13 mg of phosphotungstic acid were added dropwise over 2 hours to carry out polymerization. After completion of the polymerization, the reaction was terminated by adding triethylamine. Subsequently, after concentrating with an evaporator, a polymer (P (VEEA / DHF) -2) was obtained.
  • the reaction rate of the monomer was found to be 99.0% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA / DHF) -2) was 9,800, and the molecular weight distribution (Mw / Mn) was 2.50.
  • Example 4 80 g of ethyl acetate was added to a four-necked flask equipped with a stir bar, thermometer, dropping line, and nitrogen / air mixed gas introduction tube, and the temperature was raised to 20 ° C. After raising the temperature, a mixture of 107 g of VEEA and 93 g of DHF and a mixed solution of 13 g of ethyl acetate and 13 mg of phosphotungstic acid were added dropwise over 2 hours to perform polymerization. After completion of the polymerization, the reaction was terminated by adding triethylamine. Subsequently, after concentrating with an evaporator, a polymer (P (VEEA / DHF) -3) was obtained.
  • the reaction rate of the monomer was found to be 99.0% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA / DHF) -3) was 10,420, and the molecular weight distribution (Mw / Mn) was 2.06.
  • Example 5 80 g of ethyl acetate was added to a four-necked flask equipped with a stir bar, thermometer, dropping line, and nitrogen / air mixed gas introduction tube, and the temperature was raised to 20 ° C. After raising the temperature, a mixture of 88 g of VEEA, 79 g of CHVE, and 33 g of DHF, and a mixed solution of 13 g of ethyl acetate and 13 mg of phosphotungstic acid were added dropwise over 2 hours for polymerization. After completion of the polymerization, the reaction was terminated by adding triethylamine.
  • a polymer (P (VEEA / CHVE / DHF) -2) was obtained.
  • the reaction rate of the monomer was found to be 99.1% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA / CHVE / DHF) -2) was 6,360, and the molecular weight distribution (Mw / Mn) was 1.69.
  • the reaction rate of the monomer was found to be 99.1% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC). Further, the number average molecular weight (Mn) of the obtained polymer (P (VEEA / CHVE) -1) was 2,100, and the molecular weight distribution (Mw / Mn) was 2.12.
  • the reaction rate of the monomer was found to be 99.1% by analyzing the mixed solution after stopping the reaction by gas chromatography (GC).
  • the number average molecular weight (Mn) of the obtained polymer (P (VEEA) -1) was 2,610, and the molecular weight distribution (Mw / Mn) was 1.86.
  • the polymer (A) of the present invention has a high molecular weight of 6,000 or more by introducing a cyclic ether skeleton derived from the cyclic ether compound (DHF) represented by the general formula (2). It can be seen that it is possible to have various molecular weights by setting the charged mass ratio of the raw materials to a predetermined value. From the above, it was confirmed that the polymer (A) of this example was produced without setting the reaction temperature to a low temperature, and the molecular weight could be easily adjusted according to the purpose.
  • a curable resin composition containing each of the polymers of Examples 1 to 5 and Comparative Examples 1 and 2 was applied onto a substrate and cured to obtain a laminate (article) in which the cured product was laminated.
  • Examples 6 to 10, Comparative Examples 3 and 4 The methods for evaluating the coatability and curability of the cured products of Examples 6 to 10, Comparative Examples 3 and 4, and Comparative Examples 5 and 6 described below, and the cured product properties of light transmittance, hardness, and warpage are as follows. It is as follows.
  • the coating property was determined by visual observation of the coating layer of the curable resin composition at the time of spin coating (before curing) according to the following criteria. ⁇ : Uniformly applied to the entire laminate, and no bubbles or traces are observed. (Triangle
  • UV curing was performed using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.) having an ultra-high pressure mercury lamp, and the surface curability was evaluated by touch with the irradiation integrated light quantity being changed to 100, 250, 500 mJ / cm 2 .
  • a UV irradiation machine manufactured by Eye Graphics Co., Ltd.
  • the surface curability was evaluated by touch with the irradiation integrated light quantity being changed to 100, 250, 500 mJ / cm 2 .
  • Tack-free ⁇ Fingerprints attached ⁇ Uncured
  • the light transmittance at 400 nm was measured using a spectrophotometer (model UV-3100, manufactured by Shimadzu Corporation) with a cured product having a thickness of 100 ⁇ m obtained by ultraviolet curing.
  • ⁇ Pencil hardness> The surface of the laminate was measured according to JIS-K5400 using a pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). The load was 1,000 g.
  • Example 6 82 parts by mass of the polymer (P (VEEA / DHF) -1) obtained in Example 1, 9 parts by mass of tetrahydrofurfuryl acrylate (trade name “Light Acrylate THF-A”, manufactured by Kyoeisha Chemical Co., Ltd.), 9 parts by weight of 9-nonanediol diacrylate (trade name “Light acrylate 1.9ND-A”, manufactured by Kyoeisha Chemical Co., Ltd.), photopolymerization initiator 1-hydroxycyclohexyl phenyl ketone (trade name “Irgacure 184”, Ciba Specialty -2 parts by mass of Chemicals Co., Ltd.
  • a coating liquid (curable resin composition).
  • the film was applied on a polycarbonate (PC) plate having a length and width of 12 cm and a thickness of 1 mm using a spin coater.
  • the applied resin layer was UV cured using a UV irradiator (manufactured by Eye Graphics Co., Ltd.) having an ultrahigh pressure mercury lamp.
  • a UV irradiator manufactured by Eye Graphics Co., Ltd.
  • Examples 7 to 10, Comparative Example 3 and Comparative Example 4 instead of the polymer (P (VEEA / DHF) -1) used in Example 6, the polymers (P (VEEA / CHVE / DHF) obtained in Examples 2 to 5 and Comparative Examples 1 and 2 were used. -1), polymer (P (VEEA / DHF) -2), polymer (P (VEEA / DHF) -3), polymer (P (VEEA / CHVE / DHF) -2), polymer (P (VEEA / CHVE) -1) and the polymer (P (VEEA) -1) were used in the same manner as in Example 6 except that Example 7 to Example 10, Comparative Example 3 and Comparative Example 4 A laminate was obtained. Table 2 shows the results of the above evaluations on the cured products of Examples 7 to 10, Comparative Example 3 and Comparative Example 4.
  • Comparative Example 5 instead of the polymer (P (VEEA / DHF) -1) used in Example 6, dipentaerythritol hexaacrylate (trade name “Light Acrylate DPE-6A”, manufactured by Kyoeisha Chemical Co., Ltd.) was used. In the same manner as in Example 6, a laminate of Comparative Example 5 was obtained. Table 2 shows the results of the above evaluation for the cured product of Comparative Example 5.
  • Example 6 Except that the polymer (P (VEEA / DHF) -1) used in Example 6 was used, urethane acrylate resin (trade name “NK Oligo U-15HA”, manufactured by Shin-Nakamura Chemical Co., Ltd.) was used. In the same manner as in Example 6, a laminate of Comparative Example 6 was obtained. Table 2 shows the results of the above evaluation for the cured product of Comparative Example 6.
  • a curable resin composition containing a polymer obtained by polymerizing a vinyl monomer represented by the general formula (1) and a cyclic ether compound represented by the general formula (2) Examples obtained by using the laminates of Examples 6, 8 and 9, and further using a curable resin composition containing a polymer obtained by polymerizing other cationically polymerizable monomers. It turns out that the laminated body of Example 7 and 10 is excellent in coating property, sclerosis
  • the conventional laminates of Comparative Examples 5 and 6 obtained using a curable resin composition containing an acrylate oligomer are inferior in coating properties and warpage suppressing properties, and in Comparative Examples 5 and Comparative Examples. It turns out that the laminated body of 6 is inferior in curability.
  • the laminates of Comparative Examples 3 and 4 obtained using a curable resin composition containing a polymer that does not have the cyclic ether compound represented by the general formula (2) as a copolymerization component have curability. It turns out that it is inferior.
  • a curable resin composition containing the polymer of Example 1 (P (VEEA / DHF) -1) and the following polymer (PMMA) was applied on a substrate and cured to obtain a primer.
  • a layer was formed, and a resin composition for a topcoat layer was applied onto the primer layer and cured to form a topcoat layer, thereby producing a laminate (article) (Example 11 and Comparative Example 7). .
  • the evaluation method of the adhesion of this laminate is as follows. ⁇ Adhesion> In accordance with JIS K5600-5-6, 100 squares of 1 mm ⁇ 1 mm grids were prepared on the cured product layer with a cutter knife, and cellophane adhesive tape (Nichiban cello tape (registered trademark)) was pressure-bonded. . The visual appearance after peeling was evaluated according to the following criteria. ⁇ : No peeling was observed in 100 squares after peeling. X: Peeling was observed in some squares.
  • Example 11 23 parts by mass of the polymer (P (VEEA / DHF) -1) obtained in Example 1, 77 parts by mass of methyl methacrylate, phosphate ester (trade name “Light Ester P-1M”, manufactured by Kyoeisha Chemical Co., Ltd.) 1 Parts by weight, polymerization initiator (trade name “Nyper FF”, manufactured by NOF Corporation), 6 parts by weight, curing accelerator (N, N-dimethyl-p-toluidine), 1 part by weight, paraffin wax 140 (Nippon Seiki Co., Ltd.) A coating solution (curable resin composition) was prepared by mixing and stirring 0.1 parts by mass of the product.
  • a surface sandblasted product (manufactured by Nippon Test Panel Co., Ltd.) of steel plate SS400 (JISG3101) is degreased with acetone, and the curable resin composition is applied so that the coating liquid has an adhesion amount of 0.1 kg / m 2 on the steel plate.
  • coated with the roller and the resin layer (primer layer) was left and hardened.
  • the coating liquid and the steel sheet were adjusted to 5 ° C., cured at 5 ° C., and the degree of curing / drying of the resin layer was touched with a finger. Confirmed and measured the time to dry. As a result, the time until drying was 10 minutes, and it was evaluated that it had quick drying properties.
  • the resin composition for the topcoat layer previously prepared was applied to the surface of the resin layer of the steel plate / resin layer obtained by drying.
  • the top coat layer was UV-cured using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.).
  • the irradiation integrated light amount was 500 mJ / cm 2 , and the thickness of the top coat layer after curing was 5 ⁇ m.
  • PMMA syrup for comparative example having a solid content concentration of 46% was obtained.
  • the obtained polymer (PMMA) had an average molecular weight of 15,300 and a molecular weight distribution (Mw / Mn) of 1.70.
  • phosphoric acid ester trade name “Light Ester P-1M”, manufactured by Kyoeisha Chemical Co., Ltd.
  • polymerization initiator trade name “Nyper FF”, NOF Corporation Comparative Example by mixing and stirring 6 parts by mass
  • the time until drying was measured and found to be 90 minutes, and it took a long time to dry as compared with Example 11.
  • the resin composition for the topcoat layer prepared previously was applied to the surface of the resin layer of the steel plate / comparative resin layer obtained by drying.
  • the top coat layer was UV-cured using a UV irradiation machine (manufactured by Eye Graphics Co., Ltd.).
  • the irradiation integrated light amount was 500 mJ / cm 2 , and the thickness of the top coat layer after curing was 5 ⁇ m.
  • Table 3 shows the results of the quick drying and adhesion evaluation.
  • the polymer (A) of this example is contained in the curable resin composition, applied to a metal base material, cured to form a primer layer, and a top coat layer is further formed on the primer layer.
  • these cured products were confirmed to have good adhesion to the substrate.
  • the curable resin composition of a present Example has favorable quick-drying property compared with the conventional primer resin composition.
  • the polymer of the present invention contains a radically polymerizable unsaturated group in the side chain, the molecular weight can be adjusted according to the purpose, and the curable resin composition of the present invention containing the polymer of the present invention is a resin. Since it has a low viscosity and is easy to handle, has excellent adhesion to the substrate, is hard to damage the cured coating film, has a low curing shrinkage rate, and has a high transparency, it can provide a transparent cured article layer such as an optical recording medium. It can be said that it is extremely useful for forming a cover layer, a primer layer and an intermediate layer, or for bonding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 側鎖にラジカル重合可能な不飽和基を有し、目的に応じた分子設計が可能である重合体、該重合体を含有し、硬化後の塗膜の硬度が高く、反り等が生じにくい硬化物を与えることができる硬化性樹脂組成物、硬化物、及び該硬化物を積層してなる物品を提供する。  本発明の重合体(A)は、少なくとも下記一般式(1)で表されるビニル系単量体と、下記一般式(2)で表される環状エーテル化合物とを重合してなる。重合体(A)は、好適には一般式(1)で表わされるビニル系単量体を1質量%以上99.9質量%以下と、一般式(2)で表される環状エーテル化合物を0.1質量%以上99質量%以下と、その他のカチオン重合可能な単量体を0質量%以上98.9質量%以下とを重合してなる。[式(1)中、Rは炭素数2~8のアルキレン基、Rは水素原子又はメチル基、mは正の整数である] [式(2)中、nは1~5の整数である]

Description

重合体、硬化性樹脂組成物、硬化物、及び物品
 本発明は、側鎖にラジカル重合可能な不飽和基を有した重合体、該重合体を含有し、例えばプラスチック基材に塗布、硬化させて積層した場合に、良好な低反り性、耐擦傷性、密着性を有する硬化膜が得られる硬化性樹脂組成物、該硬化性樹脂組成物を硬化させてなる硬化物、及び該硬化物を積層してなる物品に関する。
 ビニルエーテル系単量体の重合体は、通常、カチオン重合法により重合反応を行なうことで製造することができる。特にアルキルビニルエーテル類の重合体は、例えば粘着剤,粘着付与剤,接着剤,柔軟剤,塗料,皮革塗料,織物仕上剤,合成ゴム改質剤等に用いられる。
 ビニルエーテル系重合体は、一般に、アルキルビニルエーテルを、ルイス酸系重合触媒(以下、ルイス酸系触媒という)を用いてカチオン重合させることにより製造される。このカチオン重合においては、共触媒として、通常、水、アルコール、酸、エーテル、ハロゲン化合物等のように孤立電子対を有する化合物が用いられる。そして、重合度は、重合触媒、共触媒の使用量、及び重合温度等によって調節される。具体的な製造方法として、所望のアルキルビニルエーテルを、アルコール等の共触媒、及び三フッ化ホウ素錯体、無水塩化アルミニウム等のルイス酸系触媒の存在下にカチオン重合した後、触媒を失活させてビニルエーテル系重合体を製造する方法がある(例えば特許文献1等)。
 しかしながら、前記ルイス酸系触媒の存在下にカチオン重合を行なった場合には、分子量が数百程度の低分子量の重合体、いわゆるオリゴマーが得られることが多い。カチオン重合法により製造する場合、一般的に、より低温で反応を行なうことで、より高分子量の重合体が得られるが、数千以上の分子量の重合体を得るために、場合によっては反応温度を0℃以下にするといった反応条件の設定が必要となり、工業レベルでの生産には不利であることが知られている。高分子量の重合体を得ることは困難であり、アニオン重合法、及びラジカル重合法と比較して、目的に応じた分子設計が難しいため、応用可能な用途が限られていた。
 カチオン重合法により高分子量化を図る方法としてリビングカチオン重合法等が提案されている。特許文献2には、特定の有機ハロゲン化合物と、ルイス酸性を有するハロゲン化金属とからなる重合開始剤を用いてα-メチルスチレンのリビングカチオン重合を行う方法が開示されている。また、特許文献3には、有機アルミニウム化合物、及びスズ化合物等のルイス酸の存在下、リビングカチオン重合を行う方法が提案されている。しかしながら、以上のようなリビングカチオン重合法においては通常、ルイス酸系触媒として非常に高活性な金属化合物を用いるため、工業的な製造が困難であった。
 一方、側鎖にラジカル反応性不飽和基を有する重合体を得るには、側鎖に反応性官能基を有する重合体と、この反応性の側鎖官能基と反応しうる置換基を有した不飽和化合物とを反応させることにより、重合体に不飽和基を導入する方法が用いられる。代表的には、(1)グリジシル(メタ)アクリレート等のエポキシ基含有不飽和化合物を用い、酸エポキシ反応により不飽和基を導入する方法、
(2)イソシアナート基を有する不飽和化合物を用い、ウレタン化反応により不飽和基を導入する方法、
(3)カルボン酸と水酸基又はアミン基のエステル化反応、又はアミド化反応により不飽和基を導入する方法
等が挙げられる。
 しかしながら前記重合体を上述の(1)~(3)の方法で製造する場合、側鎖にラジカル反応性不飽和基が完全に導入されるわけではなく、反応性を有する置換基がラジカル反応性不飽和基付加後も残り、用途によっては悪影響を及ぼす虞があり、また、工程数が多くなるため、生産性が問題となる場合があった。
特開2001-122816号公報 特開平5-310832号公報 特開2007-91977号公報
 本発明は上記事情に鑑みてなされたものであり、カチオン重合法により重合可能な官能基を有し、さらにラジカル重合可能な不飽和基を有する単量体を、環状エーテル骨格を有する単量体とカチオン共重合させることにより、側鎖にラジカル重合可能な不飽和基を有し、目的に応じた分子設計が可能である重合体を提供すること、並びに該重合体を含有する硬化性樹脂組成物、該硬化性樹脂組成物を硬化させてなる硬化物、及び該硬化物を基材に積層してなる物品を提供することを目的とする。ここで、「硬化物」とは、流動性の無い物質を意味する。
 ラジカル重合性(アニオン重合性)の(メタ)アクリロイル基とカチオン重合性のビニルエーテル基とを分子内に併せ持つユニークな構造の単量体として、アクリル酸2-ビニロキシエチル(VEA)、メタクリル酸2-ビニロキシエチル(VEM)、アクリル酸2-(2-ビニロキシエトキシ)エチル(VEEA)、メタクリル酸2-(2-ビニロキシエトキシ)エチル(VEEM)等の異種重合性単量体が知られている。これらの異種重合性単量体は、重合方法を選択することにより、ビニルエーテル基をペンダントに持つユニークな重合体を与えることができる。カチオン重合を行えば、ビニルエーテル基が選択的に重合反応を行い、熱・紫外線・電子線硬化性重合体として、側鎖にラジカル重合(アニオン重合)可能な二重結合を有する(メタ)アクリロイル基ペンダント型重合体が得られる。
 上述の側鎖重合性基含有重合体は、重合体の分子量、特に数平均分子量が大きい場合に、該側鎖重合性基含有重合体を含有する硬化性樹脂組成物を硬化させてなる硬化物の機械的物性が向上するので、用途に応じた分子設計が必要である。
 前記カチオン重合は、反応温度を調整したり、アルコール等を連鎖移動剤として用いたりすることで分子量を調整することができる。しかし、分子量が数千以上である高分子量体は重合が困難であり、例えば-10℃以下の低温で重合したり、特殊な開始剤を用いたりしなければならず、大量生産には不向きであった。
 本発明者らは鋭意検討の結果、側鎖にラジカル重合可能な二重結合を有する(メタ)アクリロイル基ペンダント型重合体に、共重合成分として環状エーテル骨格を導入することにより、比較的高い反応温度(例えば40℃)でも高分子量の重合体を得ることができ、共重合成分の質量比を特定の範囲に設定することによって、目的に応じた分子設計ができ、前記課題を一気に解決することができることを見出した。さらに、前記重合体を含有し、例えばプラスチック等の基材に塗布、硬化させて積層した場合に、良好な低反り性、耐擦傷性、密着性を有する硬化物が得られる硬化性樹脂組成物、該硬化物、及び該硬化物を積層してなる物品が得られることを見出して、本発明を完成した。
 すなわち、第1発明に係る重合体は、少なくとも下記一般式(1)で表されるビニル系単量体と、下記一般式(2)で表される環状エーテル化合物とから得られることを特徴とする。
Figure JPOXMLDOC01-appb-C000003
 
[式中、Rは炭素数2~8のアルキレン基、Rは水素原子又はメチル基、mは正の整数である]
Figure JPOXMLDOC01-appb-C000004
 
[式中、nは1~5の整数である]
 第2発明に係る重合体は、第1発明において、前記一般式(1)で表されるビニル系単量体を1質量%以上99.9質量%以下と、前記一般式(2)で表される環状エーテル化合物を0.1質量%以上99質量%以下と、その他のカチオン重合可能な単量体を0質量%以上98.9質量%以下とを重合して得られることを特徴とする。
 第3発明に係る重合体は、第1又は第2発明において、前記一般式(1)で表されるビニル系単量体と前記一般式(2)で表される環状エーテル化合物との質量比が50/50以上99.9/0.1以下であることを特徴とする。
 第4発明に係る硬化性樹脂組成物は、第1乃至第3発明のいずれかの重合体を含有することを特徴とする。
 第5発明に係る硬化物は、第4発明の硬化性樹脂組成物を硬化させてなることを特徴とする。
 第6発明に係る物品は、第5発明の硬化物を積層させてなることを特徴とする。
 本発明によれば、側鎖にラジカル重合性不飽和基を含有するカチオン重合体の製造に際し、高活性の金属化合物を用いたり、反応温度を低温に設定することなく、簡易な方法で、例えば高分子量の重合体を得る等、目的に応じた分子設計が可能となった。
 また、本発明により得られた重合体を含有する硬化性樹脂組成物によれば、プラスチック製等の基材、又は該基材上の塗膜上に塗工して硬化させた場合に、形成された塗膜の表面硬度が高く、傷つきにくく、積層体の反り及びカール、塗膜ひび割れ及び剥がれ等が生じにくく、かつプラスチック製等の基材、又は塗膜との密着性に優れ、良好な光線透過性を有する硬化物、並びに該硬化物を積層してなる物品が得られる。
 以下、本発明をその実施の形態に基づいて具体的に説明する。
(1)重合体(A)
 本発明の重合体(ビニル系重合体)(A)は、少なくとも下記一般式(1)で表されるビニル系単量体と、下記一般式(2)で表される環状エーテル化合物とを重合して得られる。
Figure JPOXMLDOC01-appb-C000005
 
[式中、Rは炭素数2~8のアルキレン基、Rは水素原子又はメチル基、mは正の整数である]
Figure JPOXMLDOC01-appb-C000006
 
[式中、nは1~5の整数である]
(a)一般式(1)で表されるビニル系単量体
 前記一般式(1)において、Rで表される炭素数2~8のアルキレン基としては、例えば、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、シクロヘキシレン基、1,4-ジメチルシクロヘキサン-α,α’-ジイル基、1,3-ジメチルシクロヘキサン-α,α’-ジイル基、1,2-ジメチルシクロヘキサン-α,α’-ジイル基、1,4-ジメチルフェニル-α,α’-ジイル基、1,3-ジメチルフェニル-α,α’-ジイル基、1,2-ジメチルフェニル-α,α’-ジイル基等が挙げられる。Rで表される置換基は、前記一般式(1)中にm個存在するが、同一であっても異なっていてもよい。
 前記一般式(1)において、mは正の整数であり、好ましくは1~20の整数、より好ましくは1~10の整数、さらに好ましくは1~5の整数である。
 本発明の重合体(A)は、前記一般式(1)で表される異種重合性単量体であるビニル系単量体を共重合成分として、従来から知られているカチオン重合により調製することが可能であり、又、特開2006-241189号公報に記載された方法でリビングカチオン重合することにより調製することもできる。このとき、前記一般式(1)で表されるビニル系単量体は、単独で用いても2種以上を併用してもよい。後者の場合、得られる共重合体は、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体又はその組合せのいずれであってもよい。また、グラフト共重合体であってもよい。
 前記一般式(1)で表されるビニル系単量体の具体例としては、例えば、(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸1-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸3-ビニロキシブチル、(メタ)アクリル酸2-ビニロキシブチル、(メタ)アクリル酸1-メチル-3-ビニロキシプロピル、(メタ)アクリル酸2-メチル-3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシプロピル、(メタ)アクリル酸1,1-ジメチル-2-ビニロキシエチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸3-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸2-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸4-ビニロキシメチルフェニルメチル、(メタ)アクリル酸3-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(2-ビニロキシイソプロポキシ)エチル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)プロピル、(メタ)アクリル酸2-(2-ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)イソプロピル、(メタ)アクリル酸2-(2-ビニロキシイソプロポキシ)イソプロピル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)エトキシ}エチル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)エトキシ}エチル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}エチル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)エトキシ}プロピル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)イソプロポキシ}プロピル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)エトキシ}プロピル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}プロピル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)エトキシ}イソプロピル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)イソプロポキシ}イソプロピル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)エトキシ}イソプロピル、(メタ)アクリル酸2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}イソプロピル、(メタ)アクリル酸2-[2-{2-(2-ビニロキシエトキシ)エトキシ}エトキシ]エチル、(メタ)アクリル酸2-[2-{2-(2-ビニロキシイソプロポキシ)エトキシ}エトキシ]エチル、(メタ)アクリル酸2-(2-[2-{2-(2-ビニロキシエトキシ)エトキシ}エトキシ]エトキシ)エチル;等が挙げられる。
 これらのビニル系単量体のうち、(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(2-ビニロキシイソプロポキシ)プロピル、(メタ)アクリル酸2-{2-(2-ビニロキシエトキシ)エトキシ}エチルが好適である。
 前記一般式(1)で表されるビニル系単量体は、従来公知の方法を用いて、製造することができる。例えば、前記一般式(1)において、Rがエチレン基、mが1である場合、(メタ)アクリル酸の金属塩と、2-ハロゲノエチルビニルエーテルとを縮合させるか、(メタ)アクリル酸メチルと、2-ヒドロキシエチルビニルエーテルとをエステル交換させるか、又は(メタ)アクリル酸ハライドと、2-ヒドロキシエチルビニルエーテルとを縮合させることにより製造することができる。また、前記一般式(1)において、Rがエチレン基、mが2である場合、(メタ)アクリル酸の金属塩と、2-(2-ハロゲノエトキシ)エチルビニルエーテルとを縮合させるか、(メタ)アクリル酸メチルと、2-(2-ヒドロキシエトキシ)エチルビニルエーテルとをエステル交換させるか、あるいは、(メタ)アクリル酸ハライドと、2-(2-ヒドロキシエトキシ)エチルビニルエーテルとを縮合させることにより、製造することができる。
(b)一般式(2)で表される環状エーテル化合物
 前記一般式(2)において、nは1~5の整数、好ましくは1~3の整数、より好ましくは1である。
 一般式(2)で表される環状エーテル化合物(含酸素単環系単量体)の具体例としては、2,3-ジヒドロフラン、2,3-ジヒドロピラン等が挙げられる。これらのうち、2,3-ジヒドロフランが好ましい。
(c)その他のカチオン重合可能な単量体
 本発明の重合体(A)は、必要に応じ、前記一般式(1)で表されるビニル系単量体、及び前記一般式(2)で表される環状エーテル化合物の他に、以下のカチオン重合可能な単量体を共重合成分として重合させて得られる。
 前記カチオン重合可能な単量体としては、例えば、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、t-ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、2-クロロエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル化合物;スチレン、4-メチルスチレン、3-メチルスチレン、2-メチルスチレン、2,5-ジメチルスチレン、2,4-ジメチルスチレン、2,4,6-トリメチルスチレン、4-t-ブチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-メトキシスチレン、4-クロロメチルスチレン等のスチレン誘導体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル化合物;イソプロペニルスチレン、ケイ皮酸2-ビニロキシエチル、ソルビン酸2-ビニロキシエチル等のジビニル化合物やトリビニル化合物;等が挙げられる。これらのカチオン重合可能な単量体は、単独で用いても2種以上を併用してもよい。
 これらのカチオン重合可能な単量体のうち、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル化合物が好適である。
 本発明の重合体(A)が前記カチオン重合可能な単量体を重合して得られる共重合体である場合、かかる共重合体は、前記一般式(1)で表されるビニル系単量体と、前記一般式(2)で表される環状エーテル化合物と、前記カチオン重合可能な単量体とを、カチオン重合することにより、容易に調製することができる。
(d)重合体(A)
 本発明の重合体(A)は、上述したように、少なくとも前記一般式(1)で表されるビニル系単量体と、前記一般式(2)で表される環状エーテル化合物とを重合して得られる。
 本発明の重合体(A)は、前記一般式(1)で表されるビニル系単量体を1質量%以上99.9質量%以下と、前記一般式(2)で表される環状エーテル化合物を0.1質量%以上99質量%以下と、その他のカチオン重合可能な単量体を0質量%以上98.9質量%以下とを重合して得られるのが好ましい。
 前記一般式(1)で表されるビニル系単量体は、上限が、好ましくは99質量%、より好ましくは98質量%であり、下限が、好ましくは5質量%、より好ましくは10質量%、さらに好ましくは15質量%である。
 前記一般式(2)で表される環状エーテル化合物は、上限が、好ましくは98質量%、より好ましくは50質量%、さらに好ましくは47質量%であり、下限が、好ましくは0.5質量%、より好ましくは1質量%である。
 その他のカチオン重合可能な単量体は、上限が、好ましくは90質量%、より好ましくは80質量%、さらに好ましくは70質量%、特に好ましくは60質量%であり、下限が、好ましくは5質量%、より好ましくは10質量%、さらに好ましくは15質量%である。
 本発明の重合体(A)において、前記一般式(1)で表されるビニル系単量体と前記一般式(2)で表される環状エーテル化合物との質量比は、上限が99.9/0.1、好ましくは99.5/0.5、より好ましくは99/1、さらに好ましくは98/2であり、下限が50/50、好ましくは51/49、より好ましくは52/48、さらに好ましくは53/47である。
 本発明の重合体(A)は、低分子量成分が増加した場合、該重合体(A)を硬化性樹脂組成物に配合し、硬化膜を形成したときの該硬化膜の強度が低下することがある。
 本発明の重合体(A)の数平均分子量(Mn)は、上限が好ましくは500,000、より好ましくは100,000、さらに好ましくは50,000であり、下限が好ましくは4,000、より好ましくは5,000、さらに好ましくは5,500、特に好ましくは6,000である。
 重合体(A)の数平均分子量(Mn)が4,000未満である場合、硬化速度の低下、硬化物の強度低下、及び耐折り曲げ性の低下が生じることがある。また、数平均分子量(Mn)が500,000を超える場合、基材との濡れ性が低下したり、硬化性樹脂組成物を調整する際の混合時間が長くなったり、粘度が高くなり、例えば塗工性等の取り扱い性が低下することがある。
 詳細なメカニズムは不明であるが、本発明の重合体(A)は、前記一般式(2)で表される環状エーテル化合物に由来する環状エーテル骨格を導入することで、重合中の活性カチオン種が安定化し、比較的高い温度(例えば40℃)で反応させても高分子量を有することが可能である。
 ここで、数平均分子量(Mn)は、テトラヒドロフラン(THF)を移動相とし、温度40℃、流速0.3mL/minの条件下で、東ソー株式会社製のカラム TSK-gel SuperHM-H 2本、TSK-gel SuperH2000 1本を用い、東ソー株式会社製のゲル浸透クロマトグラフィー(GPC)装置 HLC-8220GPCにより求め、標準ポリスチレン換算した値である。
 本発明の重合体(A)は、重合体(A)が固体となるような単量体の含有量が多い場合を除き、液状粘性体として得ることができる。液状粘性体であれば、有機溶剤や(メタ)アクリレート系単量体との溶解性が良いので、硬化性樹脂組成物を調製する際に作業効率の向上が図れる。粘度が低いと作業性が良く、また、積層体を作成する際に、基材との濡れ性が向上する。
 以下に、本発明の重合体(A)の製造方法について詳述する。
 本発明の重合体(A)の製造条件としては、重合触媒、共触媒、重合溶媒、重合温度、重合濃度等の各種の反応条件を適宜選択することができ、重合触媒はカチオン重合に採用可能な従来公知の重合触媒が使用できる。
 重合触媒として具体的には、フッ化水素酸、塩化水素酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸等のブレンステッド酸類;三フッ化ホウ素及びその錯体類、三塩化アルミニウム、三臭化アルミニウム、四塩化スズ、二塩化亜鉛、塩化第二鉄等のルイス酸類;ジエチル塩化アルミニウム、エチル塩化アルミニウム、ジエチル亜鉛等の有機金属化合物類;リンタングステン酸、リンモリブデン酸、リンモリブドタングステン酸、リンモリブドバナジン酸、リンモリブドタングストバナジン酸、リンタングストバナジン酸、リンモリブドニオブ酸、ケイタングステン酸、ケイモリブデン酸、ケイモリブドタングステン酸、ケイモリブドタングストバナジン酸、ゲルマニウムタングステン酸、ホウタングステン酸、ホウモリブデン酸、ホウモリブドタングステン酸、ホウモリブドバナジン酸、ホウモリブドタングストバナジン酸、及び前記リンタングステン酸の部分中和金属塩等のヘテロポリ酸類;及びこれらの塩、錯体等が挙げられる。
 共触媒として、具体的には、水;メタノール、エタノール、フェノール等の水酸基含有化合物等が挙げられる。
 これらのうち、ルイス酸類、ヘテロポリ酸類が好ましく、ヘテロポリ酸類がより好ましい。さらにヘテロポリ酸類としては、Mo、W、Vのうち少なくとも一種の酸化物と、他の元素(例えばP、Si、As、Ge、B、Ti、Ce等)のオキシ酸とが縮合して生ずるオキシ酸又はその塩が好ましく、後者に対する前者の原子比は2.5~12が好ましく、特に12のものが好適である。なお、この重合触媒とともに前記共触媒を併用すると反応が促進する場合がある。
 本発明で用いる重合触媒の添加量は適宜調整すればよいが、例えばヘテロポリ酸は高活性であるため、ビニルエーテルに対する使用量は100ppm以下であっても十分に重合反応が進行するが、必要に応じて重合触媒の添加量を増やしてもよい。通常、重合触媒の使用量はカチオン重合可能な単量体総量に対して、上限が3質量%、好ましくは5000ppmであり、下限が1ppm、好ましくは10ppmである。そして、高分子量の重合体(A)を得るためには、上限がさらに好ましくは100ppm、下限がさらに好ましくは10ppmである。
 重合溶媒としては非プロトン性の溶媒が好ましい。具体的にはトルエン、キシレン、ベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;ヘキサン、オクタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の飽和環状炭化水素;クロロホルム、トリクロロエチレン等のハロゲン化炭化水素;酢酸エチル、酢酸ブチル、プロピオン酸ブチル等のエステル類;プロピレングリコールメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル等のエーテル類;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル類;アセトニトリル、ベンゾニトリル等のニトリル類等が使用できる。高分子量の重合体(A)を得るためには、芳香族炭化水素類、脂肪族炭化水素類、飽和環状炭化水素類、エステル類等の非極性溶媒を使用することが好ましい。
 そして、特に高分子量の重合体(A)を得るには反応系中の水分、アルコール等のプロトン性化合物の量の管理が非常に重要になる。反応系中の水分、アルコール等のプロトン性化合物の量は3000ppm以下が好ましく、2000ppm以下がより好ましい。さらに好ましくは1000ppm以下である。反応系中のプロトン性化合物の量が3000ppmを超える場合、高分子量の重合体(A)が得られなくなる。場合によっては、見かけ上の重合が停止し、重合体が全く得られなくなる虞もある。
 本発明において、上述のカチオン重合可能な単量体を重合する温度は特に制限はないが、-10~100℃が好ましい。特に高分子量の重合体(A)を得るためには、重合温度を10~60℃に、加熱又は冷却により調整することが好ましい。重合中、反応容器内の重合液温度が略一定になるように重合することで、得られる重合体(A)の分子量分布が狭くなるので、できる限り重合温度を調整することが好ましい。重合温度が-10℃未満である場合、工業的に温度調整が非常に困難となる場合があり、又は固化したり粘度が高くなったりして取扱いが困難になる場合がある。重合温度が100℃を超える場合、得られる重合体(A)の分子量が低くなる場合がある。
 また、反応圧力は、減圧、常圧及び加圧のいずれでもよいが、通常は常圧で実施する。
 本発明においては、重合方法は特に制限がなく、バッチ式、半バッチ式、連続式で行うことが可能であるが、バッチ式が好ましい。バッチ反応においては、単量体及び触媒を一括して反応装置に投入してもよく、一部又は全部を分割、滴下等の方法で投入してもよい。中でも単量体の一部、又は全部を滴下して重合反応を行なうことが好ましい。また重合触媒についても滴下することが好ましい。単量体、及び重合触媒を滴下して重合反応を行なうことで、反応初期の発熱が抑制され、反応温度を一定に保持することが可能となり、さらに低分子量重合体の生成が抑制され、分子量分布の狭い重合体(A)が得られるという新たな効果が得られる。
 重合反応後は、必要に応じ、水、アルコール等のプロトン性化合物;アンモニア及びアミン等の有機塩基;又はNaOH、KOH等の無機塩基を加え反応を停止してもよい。
 また、本発明においては、(メタ)アクリレート基が未反応の状態でカチオン重合を行なう必要があるため、好ましくは窒素/空気ミックスガス、特に好ましくは酸素濃度3~10容量%に制御された窒素/酸素ミックスガスを気相部、又は液相部に吹き込みながら重合することが好ましい。またラジカル重合禁止剤の使用や遮光性の反応器中での重合も効果的である。
 ラジカル重合禁止剤としては、従来公知の化合物を適宜選択することができる。好ましくはヒンダードフェノール型禁止剤、より好ましくは少なくともフェノール性水酸基を持つフェニル基を有し、該フェノール性水酸基が結合している炭素原子に隣接する炭素原子の一方に水素原子が結合し、他方にアルキル基が結合する構造を有する化合物である。
 ラジカル重合禁止剤の具体例としては例えば、下記のような化合物等が好適である。これらは1種又は2種以上を用いることができる。
 2-t-ブチルハイドロキノン、2-t-アミルハイドロキノン、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリス(3-t-ブチル-4-ヒドロキシベンジル)イソシアネート、トリス(3-t-アミル-4-ヒドロキシベンジル)イソシアネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,1,3-トリス(2-エチル-4-ヒドロキシ-5-t-アミルフェニル)ブタン、4.4-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、4,4-ブチリデン-ビス(3-メチル-6-t-アミルフェノール)、テトラキス[メチレン-3-(3-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[1,1-ジ-メチル-2-{β-(3-t-ブチル-4-ヒドロキシフェニル)プロピノニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3-t-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N′-ビス[3-(3-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヘキサメチレンジアミン、3-t-ブチル-4-ヒドロキシベンジルホスフェートジエチルエステル、ジ(2-t-ブチル-4-ヒドロキシフェニル)ペンタエリスリトールジホスファイト、トリス(2-t-ブチル-4-ヒドロキシフェニル)ホスファイト、2,2′-オキサミドビス[エチル-3-(3-t-ブチル-4-ヒドロキシフェニル)プロピオネート]等が好ましく用いることができる。
 より好ましくは、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリス(3-t-ブチル-4-ヒドロキシベンジル)イソシアネート、トリス(3-t-アミル-4-ヒドロキシベンジル)イソシアネ-ト、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,1,3-トリス(2-エチル-4-ヒドロキシ-5-t-アミルフェニル)ブタン、4,4-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、4,4-ブチリデン-ビス(3-メチル-6-t-アミルフェノール)、1,3,5-トリメチル-2,4,6-トリス(3-t-ブチル-4-ヒドロキシベンジル)ベンゼン等である。
 前記ラジカル重合禁止剤の使用量としては、重合体固形分に対し、下限値としては1質量ppmであることが好ましい。1質量ppm未満であると、重合防止性能を充分には向上できない虞がある。より好ましくは、5質量ppmであり、さらに好ましくは、10質量ppmであり、さらに好ましくは、20質量ppmであり、特に好ましくは、50質量ppmであり、最も好ましくは、100質量ppmである。上限値としては、10,000質量ppmであることが好ましい。10,000質量ppmを超えると、硬化性が低下する虞がある。より好ましくは、8,000質量ppmであり、さらに好ましくは、6,000質量ppmであり、特に好ましくは、4,000質量ppmである。
 また、本発明で得られた重合体(A)は、好ましくは窒素/空気ミックスガス、特に好ましくは酸素濃度3~10容量%に制御された窒素/酸素ミックスガスで気相部を維持することが好ましい。また、30℃以下の低温での保存、遮光性容器での移送及び保存も効果的である。上述のラジカル重合禁止剤の使用も有効である。
 前記一般式(1)で表されるビニル系単量体は、ラジカル重合性又はアニオン重合性の(メタ)アクリロイル基と、カチオン重合性のビニルエーテル基とを同時に有するので、重合方法を選択することにより、(メタ)アクリロイル基又はビニルエーテル基をペンダント基として有する重合体(A)が得られる。
 本発明においては、前記一般式(1)で表されるビニル系単量体のビニルエーテル基を、前記一般式(2)で表される環状エーテル化合物と、必要に応じ、その他の前記カチオン重合可能な単量体と共に、カチオン重合させることにより、(メタ)アクリルロイル基をペンダント基として有する重合体(A)が得られる。
(2)硬化性樹脂組成物
 本発明の硬化性樹脂組成物は、本発明の重合体(A)を必須成分として含有する。重合体(A)に加え、例えば重合性単量体、オリゴマー、又は他の重合性基を有する重合体等の共硬化可能な化合物(B)を含有することが好ましい。共硬化可能な化合物(B)は重合性基を有する官能基を分子内に1個以上含む化合物であればよく、1種で用いてもよく、2種以上で用いてもよい。
 なお、本発明の作用効果を損なわない限り、他の成分をさらに含有していてもよい。
 本発明の硬化性樹脂組成物は、本発明の重合体(A)、共硬化可能な化合物(B)に加えて、好ましくは重合開始剤を含む。重合開始剤を含む場合には、硬化性樹脂組成物を熱や紫外線、可視光等の光で硬化させることができるという効果を奏する。
 硬化性樹脂組成物中、重合体(A)と共硬化可能な化合物(B)との合計含有量は80質量%以上、好ましくは85質量%、より好ましくは90質量%以上である。合計含有量が80質量%未満である場合、硬化物の硬度が得られなくなったり、耐擦傷性が低下する虞がある。
 本発明の硬化性樹脂組成物において、本発明の重合体(A)の配合量は、硬化性樹脂組成物の合計量に対して、上限が100質量%、下限が10質量%、好ましくは20質量%、より好ましくは40質量%である。重合体(A)の配合量が10質量%未満である場合、架橋密度が低下するので硬化速度の低下や硬化物の塗膜強度が不充分になることがある。
 共硬化可能な化合物(B)の前記重合体の具体例として、例えば、アクリル系樹脂、ウレタンアクリレート樹脂、エポキシアクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、シリコン樹脂、ゴム系樹脂等が挙げられる。
 共硬化可能な化合物(B)の前記重合性単量体としては、重合体(A)と共硬化可能なものである限り、特に限定されるものではないが、具体的には、例えば、スチレン、ビニルトルエン、4-t-ブチルスチレン、α-メチルスチレン、4-クロロスチレン、4-メチルスチレン、4-クロロメチルスチレン、ジビニルベンゼン等のスチレン系単量体;フタル酸ジアリル、イソフタル酸ジアリル、シアヌル酸トリアリル、イソシアヌル酸トリアリル等のアリルエステル系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等の1官能(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ペンタシクロペンタデカンジメタノールルジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルのジ(メタ)アクリル酸付加物、シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、p-メンタンー1,8-ジオールジ(メタ)アクリレート、p-メンタン-2,8-ジオールジ(メタ)アクリレート、p-メンタン-3,8-ジオールジ(メタ)アクリレート、ビシクロ[2.2.2]-オクタン-1-メチル-4-イソプロピル-5,6-ジメチロールジ(メタ)アクリレート等の2官能(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の3官能以上の(メタ)アクリレート化合物等の(メタ)アクリル酸系誘導体;トリエチレングリコールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル等のビニルエーテル系単量体;トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、アリルグリシジルエーテル、メチロールメラミンのアリルエーテル、グリセリンジアリルエーテルのアジピン酸エステル、アリルアセタール、メチロールグリオキザールウレインのアリルエーテル等のアリルエーテル系単量体;マレイン酸ジエチル、マレイン酸ジブチル等のマレイン酸エステル系単量体;フマル酸ジブチル、フマル酸ジオクチル等のフマル酸エステル系単量体;4-(メタ)アクリロイルオキシメチル-2-メチル-2-エチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-メチル-2-イソブチル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2-シクロヘキシル-1,3-ジオキソラン、4-(メタ)アクリロイルオキシメチル-2,2-ジメチル-1,3-ジオキソラン、等の1,3-ジオキソラン系単量体;(メタ)アクリロイルモルホリン;N-ビニルホルムアミド;N-ビニルピロリドン;等が挙げられる。これらの重合性単量体は、単独で用いても2種以上を併用してもよい。これらの重合性単量体のうち、(メタ)アクリル系エステル化合物が好適で、さらに脂環構造置換基を有する(メタ)アクリル系エステル化合物が好適である。
 前記重合性単量体の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0~70質量%、より好ましくは0~40質量%である。重合性単量体の配合量が70質量%を超えると、硬化収縮が大きくなり、内部歪や硬化物の反りが大きくなることがある。
 重合開始剤としては、前記一般式(1)で表される重合性単量体がラジカル重合性の(メタ)アクリロイル基を有するので、例えば、加熱により重合開始ラジカルを発生する熱重合開始剤;紫外線、可視光の照射により重合開始ラジカルを発生する光重合開始剤;等が挙げられる。これらの重合開始剤は、単独で用いても2種以上を併用してもよい。また、熱重合促進剤、光増感剤、光重合促進剤等をさらに添加することも好ましい。
 熱重合開始剤としては、例えば、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、クメンヒドロペルオキシド、ベンゾイルペルオキシド、ビス(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート、クミルペルオキシネオデカノエート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルペルオキシ)ヘキサノエート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシベンゾエート等の有機過酸化物系開始剤;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2、4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン)]二塩酸塩、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン)]二塩酸塩、4,4’-アゾビス(4-シアノペンタン酸)等のアゾ系開始剤;等が挙げられる。これらの熱重合開始剤は、単独で用いても2種以上を併用してもよい。
 これらの熱重合開始剤のうち、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、クメンヒドロペルオキシド、t-ブチルペルオキシベンゾエート、ベンゾイルペルオキシド等の金属石鹸及び/又はアミン化合物等の触媒作用により効率的にラジカルを発生させることができる化合物や2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)が好適である。
 光重合開始剤としては、例えば、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジルー2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;等が挙げられる。これらの光重合開始剤は、単独で用いても2種以上を併用してもよい。
 これらの光重合開始剤のうち、アセトフェノン類、ベンゾフェノン類、アシルホスフィンオキシド類が好適であり、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-メチル2-モルホリノ(4-チオメチルフェニル)プロパン-1-オンが特に好適である。
 前記重合開始剤の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0.05~20質量%、より好ましくは0.1~15質量%、さらに好ましくは0.2~10質量%である。重合開始剤の配合量が0.05質量%未満であると、組成物が充分に硬化しないことがある。逆に、重合開始剤の配合量が20質量%を超えると、硬化物の物性がさらに向上することはなく、むしろ悪影響を及ぼす上、経済性を損なうことがある。
 重合開始剤として、熱重合開始剤を用いる場合には、熱重合開始剤の分解温度を低下させるために、熱重合開始剤の分解を促進して有効にラジカルを発生させることができる熱重合促進剤を用いることができる。熱重合促進剤としては、例えば、コバルト、銅、錫、亜鉛、マンガン、鉄、ジルコニウム、クロム、バナジウム、カルシウム、カリウム等の金属石鹸、1級、2級、3級のアミン化合物、4級アンモニウム塩、チオ尿素化合物、ケトン化合物等が挙げられる。これらの熱重合促進剤は、単独で用いても2種以上を併用してもよい。これらの熱重合促進剤のうち、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸銅、ナフテン酸銅、オクチル酸マンガン、ナフテン酸マンガン、ジメチルアニリン、トリエタールアミン、トリエチルベンジルアンモニウムクロライド、ジ(2-ヒドロキシエチル)p-トルイジン、エチレンチオ尿素、アセチルアセトン、アセト酢酸メチルが好適である。
 熱重合促進剤の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0.001~20質量%、より好ましくは0.01~10質量%以上、さらに好ましくは0.05~5質量%の範囲内である。熱重合促進剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
 重合開始剤として、光重合開始剤を用いる場合には、光励起により生じた励起状態から光重合開始剤に励起エネルギーを移し、光重合開始剤の分解を促進して有効にラジカルを発生させることができる光増感剤を用いることができる。光増感剤としては、例えば、2-クロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等を挙げることができる。これらの光増感剤は、単独で用いても2種以上を併用してもよい。
 光増感剤の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0.05~20質量%、より好ましくは0.1~15質量%、さらに好ましくは0.2~10質量%の範囲内である。光増感剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
 重合開始剤として、光重合開始剤を用いる場合には、光重合開始剤の分解を促進して有効にラジカルを発生させることができる光重合促進剤を用いることができる。光重合促進剤としては、例えば、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4-ジメチルアミノ安息香酸-2-n-ブトキシエチル、安息香酸2-ジメチルアミノエチル、N,N-ジメチルパラトルイジン、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン等を挙げることができる。これらの光重合促進剤は、単独で用いても2種以上を併用してもよい。これらの光重合促進剤のうち、トリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミンが好適である。
 光重合促進剤の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0.05~20質量%、より好ましくは0.1~15質量%、さらに好ましくは0.2~10質量%の範囲内である。光重合促進剤の配合量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
 熱重合開始剤、光重合開始剤、熱重合促進剤、光増感剤、光重合促進剤等を組み合わせて配合する場合、その配合量の合計量は、組成物の合計量に対して、好ましくは0.05~20質量、より好ましくは0.1~15質量%、さらに好ましくは0.2~10質量の範囲内である。重合開始剤等の組合せ配合量の合計量がこのような範囲内であれば、組成物の硬化性、硬化物の物性、経済性の点で好ましい。
 本発明の硬化性樹脂組成物は、好ましくは、重合性単量体以外の溶剤を含まないことが好ましいが、必要により添加してもよい。溶剤としては、例えば、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素;ペンタン、ヘキサン、シクロヘキサン、ヘプタン等の脂肪族又は脂環式炭化水素;四塩化炭素、クロロホルム、二塩化エチレン等のハロゲン化炭化水素;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジエチルエーテル、メチルt-ブチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル等のエステル類;ジメチルホルムアミド;メタノール、エタノール、プロパノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;等を使用することができる。
 本発明の硬化性樹脂組成物は、本発明の重合体(A)に加えて、金属酸化物からなる微粒子を含有してもよい。金属酸化物からなる微粒子を含有する場合には、硬化後の塗膜の硬度が向上し、より傷つきにくくなるという効果を奏する。
 微粒子を構成する金属酸化物は、より好ましくは、Si、Ti、Zr、Zn、Sn、In、La及びYよりなる群から選択される少なくとも1種の金属元素を含む。微粒子を構成する金属酸化物は、これらの元素を含む単独の酸化物であってもよいし、これらの元素を含む複合酸化物であってもよい。微粒子を構成する金属酸化物の具体例としては、例えば、SiO、SiO、TiO、ZrO、ZnO、SnO、In、La、Y、SiO-Al、SiO-Zr、SiO-Ti、Al-ZrO、TiO-ZrO等が挙げられる。これらの金属酸化物からなる微粒子は、単独で用いても2種以上を併用してもよい。これらの金属酸化物からなる微粒子のうち、SiO、TiO、ZrO、ZnOが好適である。
 金属酸化物からなる微粒子の平均粒子径は、好ましくは1~100nm、より好ましくは1~20nmである。微粒子の平均粒子径が100nmを超えると、硬化物の透明性が損なわれることがある。なお、微粒子の平均粒子径とは、動的光散乱式粒径分布測定装置を用いて測定することにより求められる体積平均粒子径を意味する。
 金属酸化物からなる微粒子の配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0~5質量%、より好ましくは1~3質量%である。
 本発明の硬化性樹脂組成物は、さらに必要に応じて、添加物として、非反応性樹脂(例えば、アクリル系樹脂、ウレタンアクリレート樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂等)、着色顔料、可塑剤、重合禁止剤、光安定剤、酸化防止剤、難燃化剤、艶消し剤、染料、消泡剤、レベリング剤、帯電防止剤、分散剤、スリップ剤、表面改質剤、揺変化剤、揺変助剤等を添加することができる。これらの添加物の存在は、特に本発明の効果に影響を及ぼすものではない。これらの添加物は、単独で用いても2種以上を併用してもよい。
 前記添加物の配合量は、添加物の種類や使用目的、組成物の用途や使用方法等に応じて適宜設定すればよく、特に限定されるものではない。例えば、非反応性樹脂、着色顔料、可塑剤、重合禁止剤、紫外線吸収剤、酸化防止剤、艶消し剤、染料、消泡剤、レベリング剤、帯電防止剤、分散剤、スリップ剤、表面改質剤、撥水剤、撥油剤、揺変化剤、揺変助剤、等である。配合量は、硬化性樹脂組成物の合計量に対して、好ましくは0~10質量%、より好ましくは0.2~5質量%の範囲内である。
(3)硬化性樹脂組成物、硬化物、及び積層体(物品)の製造
 本発明の硬化性樹脂組成物は、本発明の重合体(A)、共硬化可能な化合物(B)、重合開始剤、熱重合促進剤、光増感剤、光重合促進剤、溶媒、及び金属酸化物微粒子等の各種の添加物等を配合し、混合・攪拌することにより得ることができる。
 本発明の硬化性樹脂組成物は、重合開始剤を配合しない場合には、電子線を照射することにより、熱重合開始剤を配合した場合には、加熱により、また、光重合開始剤を配合した場合には、紫外線、又は可視光を照射することにより、硬化させることができる。
 本発明の硬化物は、硬化性樹脂組成物又は該組成物を含む材料を硬化させて得られる。
 例えば、加熱による硬化の場合、赤外線、遠赤外線、熱風、高周波加熱等を用いればよい。加熱温度は、基材の種類等に応じて適宜調節すればよく、特に限定されるものではないが、好ましくは80~200℃、より好ましくは90~180℃、さらに好ましくは100~170℃の範囲内である。加熱時間は、塗布面積等に応じて適宜調節すればよく、特に限定されるものではないが、好ましくは1分間~24時間、より好ましくは10分間~12時間、さらに好ましくは30分間~6時間の範囲内である。
 例えば、紫外線、又は可視光による硬化の場合、波長150~450nmの範囲内の光を含む光源を用いればよい。このような光源としては、例えば、太陽光線、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライド灯、ガリウム灯、キセノン灯、キセノン・フラッシュ灯、カーボンアーク灯等が挙げられる。これらの光源と共に、赤外線、遠赤外線、熱風、高周波加熱等による熱の併用も可能である。照射積算光量は、好ましくは0.1~10J/cm、より好ましくは0.15~8J/cm、さらに好ましくは0.2~5J/cmの範囲内である。
 例えば、電子線による硬化の場合、加速電圧が好ましくは10~500kV、より好ましくは20~300kV、さらに好ましくは30~200kVの範囲内である電子線を用いればよい。また、照射量は、好ましくは2~500kGy、より好ましくは3~300kGy、さらに好ましくは4~200kGyの範囲内である。電子線と共に、赤外線、遠赤外線、熱風、高周波加熱等による熱の併用も可能である。
 本発明の硬化性樹脂組成物を基材に塗布し硬化させて積層体を得る場合の塗布方法としては、グラビア印刷等の各種印刷法、バーコーター法、スピンコーター法、刷毛塗り等の手塗り、スプレー塗装、浸漬法等、従来公知の方法を使用目的に応じて選択すればよい。塗布量としては、上限が好ましくは1,000g/m、より好ましくは700g/m、下限が好ましくは0.2g/m、より好ましくは0.5g/mである。また、塗布厚みとしては、上限が好ましくは500μm、より好ましくは200μm、下限が好ましくは1μm、より好ましくは2μmである。
 また、本発明の硬化性樹脂組成物を用いて硬化膜層を形成する方法として、硬化性樹脂組成物を含有する加飾用フィルムを用いた成形同時加飾法がある。この方法は、少なくともフィルムと加飾層とから構成される加飾用フィルムを射出成形用の金型内に入れて、型閉め後、成形樹脂をキャビティに射出し、成形樹脂を固化した樹脂成形品の表面に加飾用シートを一体化接着させて成形同時加飾成形品を得るものである。
 前記積層体に使用される基材としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルメタクリレート(PMMA)、ポリアクリレート、ポリビニルアルコール(PVA)、ポリスチレン(PS)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、エチレン-酢酸ビニル共重合体(EVA)、アクリロニトリルスチレン(AS)、アクリロニトリルブタジエンスチレン共重合体(ABS)、トリアセチルセルロース(TAC)、シクロオレフィンポリマー(COP)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)、ポリイミド(PI)、ポリエーテルアミド(PEI)、ナイロン(NY)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、特許第2015632号公報、特許第3178733号公報、特開2001-151814号公報、及び特開2007-70607号公報等に開示されている熱可塑性樹脂、等の樹脂成形物及びフィルム;ポリエチレンコート紙、ポリエチレンテレフタレートコート紙等のコート紙、非コート紙等の紙類;木材;ガラス;ステンレス、鉄、アルミニウム、銅、亜鉛、亜鉛めっき鋼、チタン、スズ、クロムモリブデン鋼、合金等の金属類;コンクリート、陶器、FRP(ガラス繊維強化プラスチック)、金属・ガラス・ポリマー繊維素材、等が挙げられる。これらの中でもポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリメチルメタクリレート(PMMA)、ポリアクリレート、シクロオレフィンポリマー(COP)、ポリカーボネート(PC)、耐熱アクリルが好ましい。
 前記積層体には、目的に応じて、帯電防止層、粘接着剤層、接着層、易接着層、ひずみ緩和層、防眩(ノングレア)層、光触媒層等の防汚層、反射防止層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、偏光層、反射層、情報記録層、光透過層、磁気層、相変化層、色素層、誘電体層、金属蒸着層、防水層、感光層、化粧層、導電層、撥水層、撥油層、剥離層、密着層、高屈折率層、低屈折率層、ガスバリアー性層等の種々の機能性コーティング層を各々積層塗工又は蒸着したりしてもよい。なお、本発明の硬化性樹脂組成物を用いてなる硬化膜層と各層の積層順序は特に限定されるものではなく、積層方法も特に限定されない。
 本発明の硬化性樹脂組成物は、架橋材、ハードコート材、接着剤、粘着材、歯科材料、光学部材、光ファイバー用途、情報記録材料、各種レジスト材料(着色レジスト、フォトスペーサー、エッチングレジスト、ソルダーレジスト等)、焼成ペースト用バインダー、固体電解質、絶縁体、封止材、印刷インキ、塗料、粉体塗料、注型材料、化粧板、WPC(Wood Plastic Combination)、被覆材、ライニング材、土木建築材料、パテ、補修材、床材、オーバーコート、アンダーコート、プライマー、ハンドレイアップ・スプレーアップ・引抜成形・SMC(Sheet Molding Compound)・BMC(Bulk Molding Compound)等の成形材料、等の各種材料に適用でき、光記録媒体、プラスチックフィルム、OA機器、携帯電話等の通信機器、家庭用電化製品、自動車用内・外装部品、家具用外装部材、プラスチックレンズ、化粧品容器、飲料用容器、有機ELディスプレイ等のディスプレイ、家電製品等のタッチパネル、流し台、洗面台、さらにはショーウインドウ、窓ガラス等の用途分野に好適に使用される。
 本発明の硬化性樹脂組成物を硬化してなる硬化物は、耐擦傷性、硬度に特に優れ、プラスチック製、金属製等の基材との密着性に特に優れるため、本発明の硬化性樹脂組成物は、光記録媒体用コート剤、フィルム用コート剤、プラスチック成形物品用コート剤、プライマー剤として、より好適に用いられる。
 本発明の硬化性樹脂組成物は、さらに好適には光記録媒体用コート剤に用いられ、特に好適にはブルーレイディスクの透明カバー層用コート剤、及び透明ハードコート層用コート剤に用いられる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 まず、本実施例及び比較例の重合体の数平均分子量(Mn)及び分子量分布(Mw/Mn)の測定について説明する。
<数平均分子量及び分子量分布>
 本実施例の重合体の数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲル浸透クロマトグラフィー(GPC)により、標準ポリスチレン換算で求めた。測定条件は、以下の通りであった。
移動相:THF、温度:40℃、流速:0.3mL/min;
カラム:TSK-gel SuperHM-H 2本
    TSK-gel SuperH2000 1本(いずれも東ソー株式会社製);計測機器:HLC-8220GPC(東ソー株式会社製)。
 次に、重合体の実施例1~5、及び比較例1及び2について説明する。
[実施例1]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、40℃まで昇温した。昇温後、2-(2-ビニロキシエトキシ)エチルアクリレート(VEEA)128gと2,3-ジヒドロフラン(DHF)72gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(A)としての重合体(P(VEEA/DHF)-1)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.1%であることが判明した。また、得られた重合体(P(VEEA/DHF)-1)の数平均分子量(Mn)は9840、分子量分布(Mw/Mn)は1.97であった。
[実施例2]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、20℃まで昇温した。昇温後、VEEA81gとシクロヘキシルビニルエーテル(CHVE)109gとDHF10gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA/CHVE/DHF)-1)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.1%であることが判明した。また、得られた重合体(P(VEEA/CHVE/DHF)-1)の数平均分子量(Mn)は8,060、分子量分布(Mw/Mn)は1.66であった。
[実施例3]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、20℃まで昇温した。昇温後、VEEA196gとDHF4gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA/DHF)-2)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.0%であることが判明した。また、得られた重合体(P(VEEA/DHF)-2)の数平均分子量(Mn)は9,800、分子量分布(Mw/Mn)は2.50であった。
[実施例4]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、20℃まで昇温した。昇温後、VEEA107gとDHF93gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA/DHF)-3)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.0%であることが判明した。また、得られた重合体(P(VEEA/DHF)-3)の数平均分子量(Mn)は10,420、分子量分布(Mw/Mn)は2.06であった。
[実施例5]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、20℃まで昇温した。昇温後、VEEA88gとCHVE79gとDHF33gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA/CHVE/DHF)-2)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.1%であることが判明した。また、得られた重合体(P(VEEA/CHVE/DHF)-2)の数平均分子量(Mn)は6,360、分子量分布(Mw/Mn)は1.69であった。
[比較例1]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、40℃まで昇温した。昇温後、VEEA99gとCHVE101gの混合物、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA/CHVE)-1)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.1%であることが判明した。また、得られた重合体(P(VEEA/CHVE)-1)の数平均分子量(Mn)は2,100、分子量分布(Mw/Mn)は2.12であった。
[比較例2]
 攪拌棒、温度計、滴下ライン、窒素/空気混合ガス導入管を取り付けた4つ口フラスコに酢酸エチル80gを加え、20℃まで昇温した。昇温後、VEEA200g、酢酸エチル13gとリンタングステン酸13mgの混合溶解物をそれぞれ2時間かけて滴下し重合を行った。重合終了後はトリエチルアミンを加えて反応を終了した。
 次いで、エバポレーターで濃縮した後、重合体(P(VEEA)-1)を得た。単量体の反応率は、反応停止後の混合液をガスクロマトグラフィー(GC)で分析することにより、99.1%であることが判明した。また、得られた重合体(P(VEEA)-1)の数平均分子量(Mn)は2,610、分子量分布(Mw/Mn)は1.86であった。
 下記の表1に、前記実施例1~5、比較例1及び2の重合体の各原料の仕込み質量比、VEEAとDHFとの仕込み比率、数平均分子量(Mn)、分子量分布(Mw/Mn)、及び反応温度を示す。
 表1より、本発明の重合体(A)は、前記一般式(2)で表される環状エーテル化合物(DHF)に由来する環状エーテル骨格が導入されることで、6,000以上の高分子量を有しており、前記原料の仕込み質量比を所定値に設定することで、種々の分子量を有することが可能であることが分かる。
 以上より、本実施例の重合体(A)は、反応温度を低温に設定することなく製造され、容易に目的に応じた分子量の調整が可能であることが確認された。
Figure JPOXMLDOC01-appb-T000007
 
 次に、前記実施例1~5、比較例1及び2の重合体をそれぞれ含有する硬化性樹脂組成物を基材上に塗布し、硬化させて、硬化物が積層された積層体(物品)を作製した(実施例6~10、比較例3及び4)。この実施例6~10、比較例3及び4、並びに後述する比較例5及び6の硬化物の塗工性、硬化性、並びに光線透過率、硬度、及び反りの硬化物物性の評価方法は以下の通りである。
<塗工性>
 塗工性はスピンコート時(硬化前)の硬化性樹脂組成物の塗布層を目視により、以下の基準で判定した。
  ○:積層体全体に均一に塗布され、気泡や流痕がみられない。
  △:積層体のごく一部に流痕が認められる。
  ×:積層体に多数の流痕や気泡が認められる。
<硬化性>
 超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて紫外線硬化させ、照射積算光量100、250、500mJ/cmに変えて表面硬化性を指触で評価した。
  ○ タックフリー
  △ 指紋がつく
  × 未硬化
<光線透過率>
 紫外線硬化させて得られた厚さ100μmの硬化物で400nmにおける光線透過率を分光光度計(型式UV-3100、株式会社島津製作所製)を用いて測定した。
<鉛筆硬度>
 積層体の表面に対して、鉛筆引っかき硬度試験機(株式会社安田精機製作所製)を用いて、JIS-K5400に準拠して測定した。なお、荷重は1,000gであった。
<反り>
 12cm×12cmの積層体を、温度25℃の条件下で水平台に硬化物層を上面側に置いた後、四隅の水平台からの浮き高さの平均値を測定し、以下の基準で評価した。
   ○:1mm未満
   ×:1mm以上
 以下に、実施例6~10、及び比較例3~6について詳述する。
[実施例6]
 実施例1で得られた重合体(P(VEEA/DHF)-1)82質量部、テトラヒドロフルフリルアクリレート(商品名「ライトアクリレートTHF-A」、共栄社化学株式会社製)9質量部、1,9-ノナンジオールジアクリレート(商品名「ライトアクリレート1.9ND-A」、共栄社化学株式会社製)9質量部、光重合開始剤1-ヒドロキシシクロヘキシルフェニルケトン(商品名「イルガキュア184」、チバ・スペシャルティ・ケミカルズ株式会社製)2質量部を混合・攪拌して、塗工液(硬化性樹脂組成物)を調製した。
 縦横12cm、厚さ1mmのポリカーボネート(PC)板上に、スピンコーターで塗布した。この塗布した樹脂層を、超高圧水銀ランプを有するUV照射機(アイグラフィックス株式会社製)を用いて紫外線硬化させた。
 得られた積層体のコート層(硬化物)の厚さを測定したところ、100μmであった。
 実施例6の硬化物につき、上述の評価を行った結果を下記の表2に示す。
Figure JPOXMLDOC01-appb-T000008
 
[実施例7~実施例10、比較例3及び比較例4]
 実施例6で使用した重合体(P(VEEA/DHF)-1)に代えて、実施例2~実施例5、及び比較例1及び2で得られた重合体(P(VEEA/CHVE/DHF)-1)、重合体(P(VEEA/DHF)-2)、重合体(P(VEEA/DHF)-3)、重合体(P(VEEA/CHVE/DHF)-2)、重合体(P(VEEA/CHVE)-1)、及び重合体(P(VEEA)-1)を使用した以外は、実施例6と同様にして、実施例7~実施例10、比較例3及び比較例4の積層体を得た。
 実施例7~実施例10、比較例3及び比較例4の硬化物につき、上述の評価を行った結果を前記表2に示す。
[比較例5]
 実施例6で使用した重合体(P(VEEA/DHF)-1)に代えて、ジペンタエリスリトールヘキサアクリレート(商品名「ライトアクリレートDPE-6A」、共栄社化学株式会社製)を使用した以外は、実施例6と同様にして、比較例5の積層体を得た。
 比較例5の硬化物につき、上述の評価を行った結果を前記表2に示す。
[比較例6]
 実施例6で使用した重合体(P(VEEA/DHF)-1)に代えて、ウレタンアクリレート樹脂(商品名「NKオリゴU-15HA」、新中村化学株式会社製)を使用した以外は、実施例6と同様にして、比較例6の積層体を得た。
 比較例6の硬化物につき、上述の評価を行った結果を前記表2に示す。
 表2より、一般式(1)で表されるビニル系単量体と、一般式(2)で表される環状エーテル化合物とを重合して得られる重合体を含有する硬化性樹脂組成物を用いて得られた実施例6、8及び9の積層体、さらに他のカチオン重合可能な単量体も重合して得られる有重合体を含有する硬化性樹脂組成物を用いて得られた実施例7及び10の積層体は、塗工性、硬化性、光線透過性、硬度、及び反り抑制性に優れていることが分かる。
 これに対し、アクリレートオリゴマーを含有する硬化性樹脂組成物を用いて得られた、従来の比較例5及び6の積層体は、塗工性及び反り抑制性が劣り、さらに比較例5及び比較例6の積層体は硬化性が劣っていることが分かる。
 また、一般式(2)で表される環状エーテル化合物を共重合成分として有しない重合体を含有する硬化性樹脂組成物を用いて得られた比較例3及び4の積層体は、硬化性が劣っていることが分かる。
 以上より、本実施例の重合体(A)を硬化性樹脂組成物に含有させ、プラスチック基材へ塗布して硬化させた場合に、塗膜の表面硬度が高く、傷つきにくく、積層体の反り及びカール、塗膜ひび割れ及び剥がれ等が生じにくく、かつプラスチック基材との密着性に優れ、良好な光線透過性を有する硬化物、及び該硬化物を積層してなる物品が得られることが確認された。
 次に、前記実施例1の重合体(P(VEEA/DHF)-1)及び下記の重合体(PMMA)をそれぞれ含有する硬化性樹脂組成物を基材上に塗工し、硬化させてプライマー層を形成し、さらに該プライマー層上にトップコート層用樹脂組成物を塗工し、硬化させてトップコート層を形成し、積層体(物品)を作製した(実施例11及び比較例7)。
 この積層体の密着性の評価方法は以下の通りである。
<密着性>
 JIS K5600-5-6に準じ、硬化物層にカッターナイフで1mm×1mmの碁盤目を100マス作成し、セロハン粘着テープ(ニチバン製セロテープ(登録商標))を圧着した後、一気にセロテープを剥離した。剥離後の目視による外観を以下の基準により評価した。
 ○:剥離した後のマス目において100マスとも剥離が見られない。
 ×:一部のマス目に剥離が見られた。
 以下に、トップコート層用樹脂組成物の調整、実施例11、比較例7用PMMAシラップの合成、及び比較例7について詳述する。
[トップコート層用樹脂組成物の調整]
 ジペンタエリスリトールヘキサアクリレート30質量部、比較例6で用いたウレタンアクリレート35質量部、VEEA30質量部、N-ビニルピロリドン(株式会社日本触媒製)5質量部、光重合開始剤2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン(商品名「イルガキュア907」、チバ・スペシャルティ・ケミカルズ株式会社製)5質量部を混合・攪拌してトップコート層用樹脂組成物を調整した。
[実施例11]
 実施例1で得られた重合体(P(VEEA/DHF)-1)23質量部、メチルメタクリレート77質量部、リン酸エステル(商品名「ライトエステルP-1M」、共栄社化学株式会社製)1質量部、重合開始剤(商品名「ナイパーFF」、日油株式会社製)6質量部、硬化促進剤(N,N-ジメチル-p-トルイジン)1質量部、パラフィンワックス140(日本精鑞株式会社製)0.1質量部を混合・攪拌して塗工液(硬化性樹脂組成物)を調整した。
 鋼板SS400(JISG3101)の表面サンドブラスト加工品(日本テストパネル社製)をアセトンで脱脂処理し、鋼板にこの塗工液を0.1kg/mの付着量となるように、前記硬化性樹脂組成物をローラーで塗布し、樹脂層(プライマー層)を放置・硬化させた。前記硬化性樹脂組成物の速乾性を評価するために、塗工液、鋼板は5℃に調温したものを用い、硬化を5℃で行い、樹脂層の硬化・乾燥度合いを指で触って確かめて、乾燥するまでの時間を測定した。その結果、乾燥までの時間は10分であり、速乾性を有すると評価された。
 この乾燥して得られた鋼板/樹脂層の樹脂層表面に先に調整したトップコート層用樹脂組成物を塗工した。次にUV照射機(アイグラフィックス株式会社製)を用いてトップコート層を紫外線硬化させた。照射積算光量は500mJ/cmであり、硬化後のトップコート層の厚みは5μmであった。
 この鋼板/硬化物層(樹脂層(プライマー層)+トップコート層)の密着性の評価を上述の方法により行ったところ剥離は見られなかった。
 速乾性及び密着性の評価結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000009
 
[比較例7用PMMAシラップの合成]
 温度計、冷却管、ガス導入管及び撹拌機を備えた容器に、メチルメタクリレート100質量部を仕込み、反応器内を窒素ガスで置換した。次いで、撹拌しながら80℃に昇温して、アゾイソブチロニトリル0.1質量部、n-ドデシルメルカプタン(連鎖移動剤)1.4質量部を添加し、3.5時間重合した。反応器内に空気を吹き込むと同時にハイドロキノン0.01質量部を添加して、重合を終了させた。これにより固形分濃度が46%の比較例用PMMAシラップが得られた。得られた重合体(PMMA)の平均分子量は15,300、分子量分布(Mw/Mn)は1.70であった。
[比較例7]
 前記PMMAシラップ50質量部、メチルメタクリレート50質量部、リン酸エステル(商品名「ライトエステルP-1M」、共栄社化学株式会社製)1質量部、重合開始剤(商品名「ナイパーFF」、日油株式会社製)6質量部、硬化促進剤(N,N-ジメチル-p-トルイジン)1質量部、パラフィンワックス140(日本精鑞株式会社製)0.1質量部を混合・攪拌して比較例の塗工液(硬化性樹脂組成物)を調整した。
 実施例11と同様に5℃にて鋼板に塗布し、比較用樹脂層(プライマー層)を放置・硬化させた。乾燥までの時間を測定したところ90分であり、実施例11と比較して乾燥までに長時間を要した。
 この乾燥して得られた鋼板/比較用樹脂層の樹脂層表面に先に調整したトップコート層用樹脂組成物を塗工した。次にUV照射機(アイグラフィックス株式会社製)を用いてトップコート層を紫外線硬化させた。照射積算光量は500mJ/cmであり、硬化後のトップコート層の厚みは5μmであった。
 この鋼板/硬化物層(比較用樹脂層(プライマー層)+トップコート層)の密着性評価を行ったところ剥離は見られなかった。
 速乾性及び密着性の評価結果を前記表3に示す。
 以上より、本実施例の重合体(A)を硬化性樹脂組成物に含有させ、金属製の基材へ塗布し、硬化させてプライマー層を形成し、さらに該プライマー層上にトップコート層を形成した場合、これらの硬化物が基材に対して良好な密着性を有することが確認された。また、本実施例の硬化性樹脂組成物は従来のプライマー用樹脂組成物と比較して良好な速乾性を有することも確認された。
 本発明の重合体は側鎖にラジカル重合性不飽和基を含有し、目的に応じた分子量の調整が可能であり、本発明の重合体を含有する本発明の硬化性樹脂組成物は、樹脂粘度が低くて取り扱いやすく、基材との密着性に優れ、硬化塗膜が傷つきにくく、硬化収縮率が小さく、しかも透明性が高い硬化物層を提供できるため、光記録媒体等の物品の透明カバー層、プライマー層及び中間層の形成、又は貼り合わせ用として極めて有用であるといえる。

Claims (6)

  1.  少なくとも下記一般式(1)で表されるビニル系単量体と、下記一般式(2)で表される環状エーテル化合物とから得られることを特徴とする重合体。
    Figure JPOXMLDOC01-appb-C000001
     
    [式中、Rは炭素数2~8のアルキレン基、Rは水素原子又はメチル基、mは正の整数である]
    Figure JPOXMLDOC01-appb-C000002
     
    [式中、nは1~5の整数である]
  2.  前記一般式(1)で表されるビニル系単量体を1質量%以上99.9質量%以下と、 前記一般式(2)で表される環状エーテル化合物を0.1質量%以上99質量%以下と、
     その他のカチオン重合可能な単量体を0質量%以上98.9質量%以下と
     を重合して得られる請求項1に記載の重合体。
  3.  前記一般式(1)で表されるビニル系単量体と前記一般式(2)で表される環状エーテル化合物との質量比が50/50以上99.9/0.1以下である請求項1又は2に記載の重合体。
  4.  請求項1乃至3のいずれかに記載の重合体を含有することを特徴とする硬化性樹脂組成物。
  5.  請求項4に記載の硬化性樹脂組成物を硬化させてなることを特徴とする硬化物。
  6.  請求項5に記載の硬化物を積層させてなることを特徴とする物品。
PCT/JP2009/054063 2008-03-05 2009-03-04 重合体、硬化性樹脂組成物、硬化物、及び物品 WO2009110503A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/921,042 US8399583B2 (en) 2008-03-05 2009-03-04 Polymer, curable resin composition, cured product, and article
JP2009516796A JP4418850B2 (ja) 2008-03-05 2009-03-04 重合体、硬化性樹脂組成物、硬化物、及び物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-055307 2008-03-05
JP2008055307 2008-03-05

Publications (1)

Publication Number Publication Date
WO2009110503A1 true WO2009110503A1 (ja) 2009-09-11

Family

ID=41056056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054063 WO2009110503A1 (ja) 2008-03-05 2009-03-04 重合体、硬化性樹脂組成物、硬化物、及び物品

Country Status (3)

Country Link
US (1) US8399583B2 (ja)
JP (1) JP4418850B2 (ja)
WO (1) WO2009110503A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039799A1 (ja) * 2019-08-27 2021-03-04 株式会社日本触媒 硬化性組成物
WO2021039801A1 (ja) * 2019-08-27 2021-03-04 株式会社日本触媒 硬化性組成物
KR20240028645A (ko) * 2022-08-25 2024-03-05 아주대학교산학협력단 광분해성 고분자 화합물 및 이의 중합 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969472B2 (en) 2013-03-14 2015-03-03 Dap Products Inc. Use of antistatic additives in sandable repair products for airborne dust reduction
US10028894B2 (en) 2013-09-09 2018-07-24 3M Innovative Properties Company Dental composition containing polyoxometalates, process of production and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023404A (ja) * 1988-06-17 1990-01-09 Mitsubishi Yuka Badische Co Ltd 共重合体水性分散体の製造法
WO1997012918A1 (fr) * 1995-10-06 1997-04-10 Nippon Shokubai Co., Ltd. Sirop (meth)acrylique, procede d'elaboration de ce sirop et procede d'elaboration d'un materiau de moulage contenant un tel sirop
JP2002236365A (ja) * 2000-12-13 2002-08-23 Samsung Electronics Co Ltd シリコンを含有する感光性ポリマー及びこれを含むレジスト組成物
JP2003040943A (ja) * 2001-05-15 2003-02-13 Samsung Electronics Co Ltd アルキルビニルエーテルとフラノンとの共重合体を含む感光性ポリマー及びこれを含むレジスト組成物
JP2003327631A (ja) * 2002-05-07 2003-11-19 Samsung Electronics Co Ltd 感光性ポリマーおよびこれを含むレジスト組成物
JP2004224841A (ja) * 2003-01-20 2004-08-12 Nippon Shokubai Co Ltd 活性エネルギー線硬化性組成物及びインクジェット用インキ
JP2005239919A (ja) * 2004-02-27 2005-09-08 Shin Etsu Chem Co Ltd ビニルエーテル化合物、高分子化合物、フォトレジスト材料、及びパターン形成方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2443496A (en) * 1945-04-12 1948-06-15 Du Pont Dihydropyran copolymers
JPS4913212A (ja) 1972-05-18 1974-02-05
JPS5245597A (en) 1975-10-09 1977-04-11 Tokyo Ink Kk Ultraviolet rays curing accelerator
GB2032939B (en) 1978-11-01 1982-11-17 Coates Brothers & Co Coating compositions
NO159729C (no) 1978-11-01 1989-02-01 Coates Brothers & Co Fremgangsmaate for fremstilling av et moenster av loddemetall paa et lag elektrisk ledende metall baaret av et ikke-ledende underlag.
JP2596131B2 (ja) 1989-07-17 1997-04-02 株式会社村田製作所 ノイズフイルタ
DE69009911T2 (de) 1989-09-05 1994-09-22 Sumitomo Electric Industries Elektrode für Elektroentladungsbearbeitung.
JPH05310832A (ja) 1992-05-09 1993-11-22 Toshinobu Higashimura α−メチルスチレンのリビングカチオン重合方法
US5710225A (en) 1996-08-23 1998-01-20 The Lubrizol Corporation Heteropolyacid catalyzed polymerization of olefins
US6384146B1 (en) * 1999-04-05 2002-05-07 The Research Foundation Of State University Of New York Graft, graft-block, block-graft, and star-shaped copolymers and methods of making them
JP2001122816A (ja) 1999-10-21 2001-05-08 Idemitsu Kosan Co Ltd ビニルエーテル系オリゴマーの製造方法
JP4769348B2 (ja) 1999-11-26 2011-09-07 株式会社日本触媒 透明性耐熱樹脂の製造方法
JP2002157782A (ja) 2000-09-05 2002-05-31 Tdk Corp 光情報媒体およびその試験方法
JP2005158253A (ja) 2000-11-30 2005-06-16 Mitsubishi Rayon Co Ltd 光ディスク
WO2002044285A1 (fr) 2000-11-30 2002-06-06 Mitsubishi Rayon Co., Ltd. Composition durcissable par rayonnement energetique actif pour le revetement d'un disque optique, et disque optique resultant
JP3977711B2 (ja) 2001-09-13 2007-09-19 Tdk株式会社 光記録媒体の製造方法及び製造装置
EP1429325A4 (en) 2001-09-13 2006-05-31 Tdk Corp METHOD OF MANUFACTURING AN OPTICAL RECORDING MEDIUM
JP2003137945A (ja) 2001-11-05 2003-05-14 Nippon Shokubai Co Ltd ラジカル重合性樹脂、ラジカル重合性樹脂組成物及び画像形成用感光性樹脂組成物
JP4336482B2 (ja) 2002-08-30 2009-09-30 富士フイルム株式会社 反射防止膜、反射防止フィルムおよび画像表示装置
JP2004152418A (ja) 2002-10-30 2004-05-27 Tdk Corp 光情報媒体
EP1571659B1 (en) 2002-10-30 2012-08-01 TDK Corporation Method for evaluating optical information medium and optical information medium
JP4496766B2 (ja) 2003-11-25 2010-07-07 Tdk株式会社 保護層の形成方法及び光情報媒体の製造方法
JP4740603B2 (ja) 2004-01-23 2011-08-03 富士フイルム株式会社 反射防止フィルムの製造方法
JP2006152268A (ja) 2004-11-01 2006-06-15 Mitsubishi Chemicals Corp 放射線硬化性組成物及びその硬化物、並びにその積層体
JP2006188659A (ja) 2004-12-07 2006-07-20 Mitsubishi Chemicals Corp 放射線硬化性樹脂組成物およびその硬化物
JP2006241189A (ja) 2005-02-28 2006-09-14 Osaka Univ ポリアルケニルエーテルの製造方法
JP5096707B2 (ja) 2005-08-11 2012-12-12 株式会社日本触媒 異物が少なくゲル化し難いラクトン環含有重合体およびその用途
JP2007091977A (ja) 2005-09-30 2007-04-12 Canon Finetech Inc ポリビニルエーテル系ポリマーの重合方法及び該ポリビニルエーテル系ポリマーを用いたインクジェットプリンター用水性インク
JP2008214452A (ja) 2007-03-02 2008-09-18 Nippon Shokubai Co Ltd 樹脂組成物および光記録媒体
JP2009084432A (ja) 2007-09-28 2009-04-23 Nippon Shokubai Co Ltd 硬化性組成物
JP2009096857A (ja) 2007-10-16 2009-05-07 Nippon Shokubai Co Ltd 硬化性組成物およびその成形体
JP2009242470A (ja) 2008-03-28 2009-10-22 Nippon Shokubai Co Ltd 硬化性組成物の保存方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023404A (ja) * 1988-06-17 1990-01-09 Mitsubishi Yuka Badische Co Ltd 共重合体水性分散体の製造法
WO1997012918A1 (fr) * 1995-10-06 1997-04-10 Nippon Shokubai Co., Ltd. Sirop (meth)acrylique, procede d'elaboration de ce sirop et procede d'elaboration d'un materiau de moulage contenant un tel sirop
JP2002236365A (ja) * 2000-12-13 2002-08-23 Samsung Electronics Co Ltd シリコンを含有する感光性ポリマー及びこれを含むレジスト組成物
JP2003040943A (ja) * 2001-05-15 2003-02-13 Samsung Electronics Co Ltd アルキルビニルエーテルとフラノンとの共重合体を含む感光性ポリマー及びこれを含むレジスト組成物
JP2003327631A (ja) * 2002-05-07 2003-11-19 Samsung Electronics Co Ltd 感光性ポリマーおよびこれを含むレジスト組成物
JP2004224841A (ja) * 2003-01-20 2004-08-12 Nippon Shokubai Co Ltd 活性エネルギー線硬化性組成物及びインクジェット用インキ
JP2005239919A (ja) * 2004-02-27 2005-09-08 Shin Etsu Chem Co Ltd ビニルエーテル化合物、高分子化合物、フォトレジスト材料、及びパターン形成方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039799A1 (ja) * 2019-08-27 2021-03-04 株式会社日本触媒 硬化性組成物
WO2021039801A1 (ja) * 2019-08-27 2021-03-04 株式会社日本触媒 硬化性組成物
JPWO2021039801A1 (ja) * 2019-08-27 2021-03-04
JPWO2021039799A1 (ja) * 2019-08-27 2021-03-04
JP7240509B2 (ja) 2019-08-27 2023-03-15 株式会社日本触媒 硬化性組成物
JP7265018B2 (ja) 2019-08-27 2023-04-25 株式会社日本触媒 硬化性組成物
KR20240028645A (ko) * 2022-08-25 2024-03-05 아주대학교산학협력단 광분해성 고분자 화합물 및 이의 중합 방법
KR102678335B1 (ko) 2022-08-25 2024-06-25 아주대학교산학협력단 광분해성 고분자 화합물 및 이의 중합 방법

Also Published As

Publication number Publication date
JP4418850B2 (ja) 2010-02-24
JPWO2009110503A1 (ja) 2011-07-14
US8399583B2 (en) 2013-03-19
US20110009586A1 (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5383929B2 (ja) ハードコーティング形成用シート
TWI438217B (zh) 硬塗層形成用樹脂組合物
JP4418850B2 (ja) 重合体、硬化性樹脂組成物、硬化物、及び物品
JP7245824B2 (ja) 重合体ならびにそれを用いた酸素吸収剤および樹脂組成物
JP2013117010A (ja) 活性エネルギー線硬化型樹脂、活性エネルギー線硬化型樹脂組成物、活性エネルギー線硬化型ハードコート剤、それらを用いた硬化膜、硬化膜が積層された加飾フィルム及び加飾フィルムを用いたプラスチック射出成型品。
JP2009108211A (ja) 硬化性組成物および硬化物
JP2010155409A (ja) 積層体
JP2015021045A (ja) 環状エーテル基含有(メタ)アクリレートからなる光学的立体造形用樹脂組成物
JP2009242470A (ja) 硬化性組成物の保存方法
JP2003048929A (ja) 硬化性樹脂組成物
JP5226373B2 (ja) 硬化性樹脂組成物およびその硬化物
JP2009073901A (ja) 硬化物の製造方法、および硬化物、および光記録媒体
JP2009221475A (ja) 硬化性樹脂組成物および硬化物
JP5892799B2 (ja) 伸びがあり耐傷つき性に優れる硬化物を形成するウレタン(メタ)アクリレートおよびそれを含有する光硬化性樹脂組成物
JP2008063400A (ja) 硬化性樹脂組成物および硬化物
JP4597145B2 (ja) 活性エネルギー線重合開始剤、それを含有する重合性組成物及びその硬化物
JP2009173716A (ja) 樹脂組成物および光記録媒体
JP5590398B2 (ja) 被覆用組成物の製造方法
JP5448333B2 (ja) ハードコート材用樹脂組成物および積層体
JP5139721B2 (ja) ハードコート用材料および積層体
JP2009091454A (ja) 重合体、および硬化性樹脂組成物、および積層体
JP2011074266A (ja) 光ディスク用硬化性樹脂組成物、その硬化物及び光ディスク
JP5540741B2 (ja) アクリルシラップおよびその製造方法
JP2009073903A (ja) 硬化性樹脂組成物、硬化物および光記録媒体
JP2008214452A (ja) 樹脂組成物および光記録媒体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2009516796

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09717127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12921042

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09717127

Country of ref document: EP

Kind code of ref document: A1