WO2009107518A1 - 触媒およびその製造方法ならびにその用途 - Google Patents

触媒およびその製造方法ならびにその用途 Download PDF

Info

Publication number
WO2009107518A1
WO2009107518A1 PCT/JP2009/052696 JP2009052696W WO2009107518A1 WO 2009107518 A1 WO2009107518 A1 WO 2009107518A1 JP 2009052696 W JP2009052696 W JP 2009052696W WO 2009107518 A1 WO2009107518 A1 WO 2009107518A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
titanium
oxygen
titanium carbonitride
Prior art date
Application number
PCT/JP2009/052696
Other languages
English (en)
French (fr)
Inventor
利一 獅々倉
門田 隆二
忠利 黒住
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US12/919,421 priority Critical patent/US20110008709A1/en
Priority to CA2722083A priority patent/CA2722083A1/en
Priority to KR1020107020858A priority patent/KR101202104B1/ko
Priority to CN2009801068935A priority patent/CN101959599B/zh
Priority to EP09715314.2A priority patent/EP2251081B1/en
Priority to JP2010500654A priority patent/JP5411123B2/ja
Publication of WO2009107518A1 publication Critical patent/WO2009107518A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst, a production method thereof, and an application thereof.
  • Fuel cells are classified into various types according to the type of electrolyte and the type of electrode, and representative types include alkali type, phosphoric acid type, molten carbonate type, solid electrolyte type, and solid polymer type.
  • a polymer electrolyte fuel cell that can operate at a low temperature (about ⁇ 40 ° C.) to about 120 ° C. attracts attention, and in recent years, development and practical application as a low-pollution power source for automobiles is progressing.
  • a use of the polymer electrolyte fuel cell a vehicle driving source and a stationary power source are being studied. However, in order to be applied to these uses, durability over a long period of time is required.
  • a polymer solid electrolyte is sandwiched between an anode and a cathode, fuel is supplied to the anode, oxygen or air is supplied to the cathode, and oxygen is reduced at the cathode to extract electricity.
  • Hydrogen or methanol is mainly used as the fuel.
  • the fuel cell cathode (air electrode) surface or anode (fuel electrode) surface has a layer containing a catalyst (hereinafter referred to as “for fuel cell”). Also referred to as “catalyst layer”).
  • the noble metal used on the cathode surface may be dissolved in an acidic atmosphere, and there is a problem that it is not suitable for applications that require long-term durability. Therefore, there has been a strong demand for the development of a catalyst that does not corrode in an acidic atmosphere, has excellent durability, and has a high oxygen reducing ability.
  • Non-Patent Document 1 reports that a ZrOxN compound based on zirconium exhibits oxygen reducing ability.
  • Patent Document 1 discloses an oxygen reduction electrode material containing one or more nitrides selected from the group of elements of Group 4, Group 5, and Group 14 of the long periodic table as a platinum substitute material.
  • Patent Document 2 discloses that a partially oxidized compound of any one of titanium, lanthanum, tantalum, niobium, and zirconium and any of nitrogen, boron, carbon, or sulfur is used as an electrode catalyst for a fuel cell. ing.
  • Patent Document 3 discloses using titanium carbonitride powder as an oxygen electrode catalyst for a polymer electrolyte fuel cell.
  • non-metal-containing materials are unstable in an acidic solution or have not obtained a sufficient oxygen reducing ability for practical use as a catalyst, and are not sufficiently active for actual use as a fuel cell. It is.
  • Patent Document 4 discloses a carbonitride oxide obtained by mixing carbide, oxide, and nitride and heat-treating them at 500 to 1500 ° C. in a vacuum, inert or non-oxidizing atmosphere.
  • Patent Document 4 is a thin film magnetic head ceramic substrate material, and the use of this carbonitrous oxide as a catalyst has not been studied.
  • An object of the present invention is to solve such problems in the prior art, and an object of the present invention is to provide a catalyst that does not corrode in an acidic electrolyte or at a high potential, has excellent durability, and has a high oxygen reduction ability. There is.
  • a catalyst made of a specific titanium carbonitride oxide does not corrode in an acidic electrolyte or at a high potential, and has excellent durability. It has been found that it has a high oxygen reducing ability.
  • the present inventors have found that a catalyst with higher performance can be obtained by controlling the ratio of the number of atoms in titanium carbonitride oxide constituting the catalyst, and have completed the present invention. .
  • the present invention relates to the following (1) to (13), for example.
  • the composition formula of the titanium oxycarbonitride is TiC x N y O z (where x, y, z represent the ratio of the number of atoms, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.0, 0.1 ⁇ z ⁇ 2.0, 1.0 ⁇ x + y + z ⁇ 2.0, and 2.0 ⁇ 4x + 3y + 2z.)
  • the catalyst according to (1) is TiC x N y O z (where x, y, z represent the ratio of the number of atoms, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1.0, 0.1 ⁇ z ⁇ 2.0, 1.0 ⁇ x + y + z ⁇ 2.0, and 2.0 ⁇ 4x + 3y + 2z.)
  • oxygen gas concentration in the inert gas in the step is in the range of 0.1 to 10% by volume.
  • a catalyst layer for a fuel cell comprising the catalyst according to any one of (3).
  • a membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is an electrode according to (10) Membrane electrode assembly.
  • a polymer electrolyte fuel cell comprising the membrane electrode assembly according to (11).
  • the catalyst of the present invention does not corrode in an acidic electrolyte or at a high potential, is stable, has a high oxygen reducing ability, and is less expensive than platinum. Therefore, the fuel cell including the catalyst is relatively inexpensive and has excellent performance.
  • FIG. 2 is a powder X-ray diffraction spectrum of titanium carbonitride of Example 1.
  • FIG. 2 is a powder X-ray diffraction spectrum of the catalyst (1) obtained in Example 1. It is the graph which evaluated the oxygen reduction ability of the electrode using a catalyst (1).
  • 2 is a powder X-ray diffraction spectrum of the catalyst (2) obtained in Example 2. It is the graph which evaluated the oxygen reduction ability of the electrode using a catalyst (2). It is the graph which evaluated the oxygen reduction ability of the electrode using a catalyst (3).
  • 3 is a powder X-ray diffraction spectrum of the catalyst (3) obtained in Example 3. It is an electric current-potential curve of an electrode using a catalyst (4). It is the graph which evaluated the oxygen reduction ability of the electrode using a catalyst (4).
  • 3 is a powder X-ray diffraction spectrum of a catalyst (5) obtained in Comparative Example 2. It is the graph which evaluated the oxygen reduction ability of the electrode using a catalyst (5).
  • the catalyst of the present invention is characterized by comprising a titanium carbonitride.
  • the composition formula of the titanium oxycarbonitride is TiC x N y O z (where x, y, and z represent the ratio of the number of atoms, 0 ⁇ x ⁇ 1.0, 0 ⁇ y ⁇ 1. 0, 0.1 ⁇ z ⁇ 2.0, 1.0 ⁇ x + y + z ⁇ 2.0, and 2.0 ⁇ 4x + 3y + 2z).
  • x, y, and z represent the number of C, N, and O atoms when the number of Ti atoms is 1, respectively.
  • x + y + z is an index representing a crystal system of a compound of Ti and C, N, and O. If TiC x N y O z is a cubic crystal, x + y + z is a value of 1.0 or less and a value close to 1.0. However, TiC x N y O z Oite, x + y + z to be used in the present invention is 1.0 greater than.
  • TiC x N y O z is a mixed system of cubic TiC x N y and tetragonal TiO 2 .
  • the value of x + y + z varies depending on the ratio between TiC x N y and TiO 2 .
  • the TiC x N y O z used in the present invention has been confirmed to have a rutile structure from the results of analysis by X-ray diffraction. However, it is presumed that a part of O in the crystal lattice is substituted with C and N and further has a rutile structure having lattice defects. In general, titanium oxide having a rutile structure which does not contain C and N hardly shows oxygen reduction activity. The present inventors presume the reason why TiC x N y O z has the above structure as follows.
  • TiC is cubic and TiN is also cubic. Since C is tetravalent and N is trivalent, TiC x N y results in a slightly distorted cubic crystal. When this distorted form of TiC x N y is gently oxidized, a plurality of Os are substituted in or around the voids where a part of N or C is removed in TiC x N y , and TiC having a rutile structure with lattice defects. x N y O z is formed. As a result, it is considered that the formed rutile structure TiC x N y O z has an increased unpaired electron density and a high oxygen reducing ability.
  • titanium carbonitride When titanium carbonitride is oxidized, an appropriate time, an appropriate temperature, and an appropriate oxygen concentration are required. Even if the time is too long or the temperature is too high, the oxidation proceeds too much, and the catalytic ability is lowered. That is, when oxidizing, a mild oxidation state is required, and a mild oxidation state can be easily achieved by introducing a reducing gas such as hydrogen gas. For example, just mixing TiC x N y and TiO 2 with little distortion does not have a high oxygen reducing ability.
  • the oxygen reduction starting potential of the catalyst used in the present invention is preferably 0.7 V (vs. NHE) or more based on the reversible hydrogen electrode.
  • the obtained electrode refer to a reversible hydrogen electrode in a sulfuric acid solution of the same concentration at a temperature of 30 ° C. in a 0.5 mol / dm 3 sulfuric acid solution in an oxygen atmosphere and a nitrogen atmosphere.
  • the current-potential curve was measured by polarizing the electrode at a potential scanning speed of 5 mV / sec, there was a difference of 0.2 ⁇ A / cm 2 or more between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere.
  • the potential at which it begins to appear is defined as the oxygen reduction start potential.
  • the oxygen reduction starting potential is less than 0.7 V (vs.
  • the oxygen reduction starting potential is preferably 0.85 V (vs. NHE) or more in order to suitably reduce oxygen.
  • the upper limit of the oxygen reduction start potential is the theoretical value of 1.23 V (vs. NHE).
  • the fuel cell catalyst layer of the present invention formed using the above catalyst is preferably used at a potential of 0.4 V (vs. NHE) or more in the acidic electrolyte, and the upper limit of the potential depends on the stability of the electrode. It can be used up to approximately 1.53 (vs. NHE) of the potential at which oxygen is generated.
  • the current flow when using the catalyst of the present invention is evaluated by the oxygen reduction current density (mA / cm 2 ) when the potential measured according to the measurement method (A) is 0.7 V. Can do.
  • the oxygen reduction current density is preferably 0.1 (mA / cm 2 ) or more, and more preferably 0.5 (mA / cm 2 ) or more. When the oxygen reduction current density is less than 0.1 (mA / cm 2 ), the current does not flow so much and its usefulness as a fuel cell catalyst layer is poor.
  • the manufacturing method of the said catalyst is not specifically limited, For example, the manufacturing method including the process of obtaining the carbonitrous oxide of titanium by heat-processing titanium carbonitride in the inert gas containing oxygen and hydrogen is mentioned. .
  • a method for producing titanium carbonitride by heat-treating a mixture of titanium oxide and carbon in a nitrogen atmosphere, titanium carbide, titanium oxide, and Method (II) for producing titanium carbonitride by heat-treating a mixture of titanium nitride in a nitrogen atmosphere or the like, and producing titanium carbonitride by heat-treating a mixture of titanium carbide and titanium nitride in a nitrogen atmosphere or the like A method (III) is mentioned.
  • Production method (I) is a method of producing titanium carbonitride by heat-treating a mixture of titanium oxide and carbon in a nitrogen atmosphere.
  • the temperature of the heat treatment for producing titanium carbonitride is usually in the range of 600 to 1800 ° C, preferably in the range of 900 to 1600 ° C.
  • the heat treatment temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. If the heat treatment temperature is less than 600 ° C., the crystallinity tends to be poor and the uniformity tends to deteriorate, and if it is 1800 ° C. or more, it tends to be easy to sinter.
  • the raw material titanium oxide examples include TiO, TiO 2 and Ti 2 O 3 .
  • titanium carbonitride obtained from the oxide is composed of titanium carbonitride obtained by heat treatment in an inert gas containing oxygen gas and hydrogen gas.
  • the catalyst has a high oxygen reduction initiation potential and is active.
  • the raw material carbon examples include carbon, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, and fullerene. It is preferable that the particle size of the carbon powder is smaller because the specific surface area is increased and the reaction with the oxide is facilitated.
  • carbon black specific surface area: 100 to 300 m 2 / g, such as XC-72 manufactured by Cabot is preferably used.
  • titanium carbonitride can be obtained by stoichiometrically controlling the molar ratio of the oxide of titanium and carbon in accordance with the valence of titanium such as 2, 3 or 4 valences.
  • the valence of titanium such as 2, 3 or 4 valences.
  • 1 to 3 moles of carbon are preferable with respect to 1 mole of titanium oxide.
  • 2 to 4 moles of carbon are preferable with respect to 1 mole of titanium oxide. If the upper limit of these ranges is exceeded, titanium carbide tends to be produced, and if the lower limit is not reached, more titanium nitride tends to be produced.
  • a divalent titanium oxide 2 to 3 moles of carbon are preferred with respect to 1 mole of titanium oxide.
  • 3 to 4 moles of carbon are preferable with respect to 1 mole of titanium oxide.
  • Production method (II) is a method of producing titanium carbonitride by heat-treating a mixture of titanium carbide, titanium oxide and titanium nitride in a nitrogen atmosphere or the like.
  • the temperature of the heat treatment for producing titanium carbonitride is usually in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C. When the heat treatment temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. If the heat treatment temperature is less than 600 ° C., the crystallinity tends to be poor and the uniformity tends to deteriorate, and if it is 1800 ° C. or more, it tends to be easy to sinter.
  • titanium carbide (TiC), titanium nitride (TiN) and titanium oxide are used as raw materials.
  • the raw material titanium oxide examples include TiO, TiO 2 and Ti 2 O 3 . Regardless of which titanium oxide is used, the titanium carbonitride obtained from the oxide, titanium carbide and titanium nitride is heat-treated in an inert gas containing oxygen gas and hydrogen gas. A catalyst made of oxycarbonitride has high oxygen reduction starting potential and is active.
  • titanium carbide (TiC), titanium oxide, and titanium nitride (TiN) By controlling the amount (molar ratio) of titanium carbide (TiC), titanium oxide, and titanium nitride (TiN), an appropriate titanium carbonitride can be obtained.
  • the blending amount (molar ratio) is usually 0.1 to 500 mol of titanium carbide (TiC) and 0.01 to 50 mol of titanium oxide, preferably 1 mol of titanium nitride (TiN), preferably
  • the amount of titanium carbide (TiC) is 1 to 300 mol and the amount of titanium oxide is 0.1 to 30 mol with respect to 1 mol of titanium nitride (TiN).
  • titanium carbonitride made at a blending molar ratio satisfying the above range there is a tendency that an oxygen reduction starting potential is high and an active titanium carbonitride oxide is obtained. More preferable amounts (molar ratio) are 10 to 300 mol of titanium carbide and 0.1 to 10 mol of titanium oxide with respect to 1 mol of titanium nitride.
  • the ratio of the number of atoms (x, y, z) and titanium carbonitride oxide (TiC x N y O z ) where x + y + z satisfies the above range are used. It is easy to obtain.
  • Production method (III) is a method of producing titanium carbonitride by heat-treating a mixture of titanium carbide and titanium nitride in a nitrogen atmosphere or the like.
  • the temperature of the heat treatment for producing titanium carbonitride is in the range of 600 to 1800 ° C., preferably in the range of 800 to 1600 ° C.
  • the heat treatment temperature is within the above range, it is preferable in terms of good crystallinity and uniformity. If the heat treatment temperature is less than 600 ° C., the crystallinity tends to be poor and the uniformity tends to deteriorate, and if it is 1800 ° C. or more, it tends to be easy to sinter.
  • Titanium carbide (TiC) and titanium nitride (TiN) are used as raw materials. By controlling the blending amount (molar ratio) of titanium carbide and titanium nitride, appropriate titanium carbonitride is obtained.
  • the blending amount (molar ratio) is usually in the range of 0.01 to 10 moles of titanium nitride (TiN) with respect to 1 mole of titanium carbide (TiC), and preferably with respect to 1 mole of titanium carbide (TiC). Titanium nitride (TiN) is in the range of 0.1 to 10 mol.
  • titanium carbonitride obtained at a blending ratio that satisfies the above range When using titanium carbonitride obtained at a blending ratio that satisfies the above range, the ratio of the number of atoms (x, y, z) and titanium carbonitride oxide (TiC x N y O z ) where x + y + z satisfies the above range It is easy to obtain.
  • Such a catalyst made of titanium carbonitride (TiC x N y O z ) has a high oxygen reduction starting potential and high activity.
  • the inert gas includes helium gas, neon gas, argon gas, krypton gas, xenon gas, radon gas, or nitrogen gas.
  • Argon gas, helium gas or nitrogen gas is particularly preferable because it is relatively easy to obtain.
  • the oxygen gas concentration in the step depends on the heat treatment time and the heat treatment temperature, but is preferably 0.1 to 10% by volume, particularly preferably 0.5 to 5% by volume.
  • the oxygen gas concentration is within the above range, it is preferable in that a uniform carbonitride oxide is formed. Further, when the oxygen gas concentration is less than 0.1% by volume, it tends to be in an unoxidized state, and when it exceeds 10% by volume, oxidation tends to proceed excessively.
  • titanium carbonitride obtained by heat-treating titanium carbonitride in an inert gas containing not only oxygen gas but also hydrogen gas has improved electrical conductivity and higher oxygen reducing ability. it can.
  • the hydrogen gas concentration is not particularly limited, but is preferably about twice the oxygen gas concentration in the inert gas. That is, since oxygen is 0.1% to 10% by volume, the amount of hydrogen is preferably 0.2% to 20% by volume. However, if the oxygen gas concentration and the hydrogen gas concentration are too high, there is a risk of explosion, so oxygen gas is more preferably 0.5 volume% to 3 volume%, and hydrogen gas is 1 volume% to 6 volume%.
  • the temperature of the heat treatment in this step is usually in the range of 400 to 1400 ° C., preferably in the range of 600 to 1200 ° C. When the heat treatment temperature is within the above range, it is preferable in that a uniform carbonitride oxide is formed. When the heat treatment temperature is less than 400 ° C., the oxidation tends not to proceed, and when it is 1400 ° C. or more, the oxidation proceeds too much and grain growth tends to occur.
  • Examples of the heat treatment method in the process include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the furnace is heated to a predetermined heat treatment temperature while flowing an inert gas containing a small amount of oxygen gas and hydrogen gas in the induction furnace, and after maintaining the thermal equilibrium at the temperature, the furnace is heated.
  • titanium carbonitride is dropped in a crucible serving as an area and heat treated.
  • the dropping method is preferable in that aggregation and growth of titanium carbonitride particles can be suppressed to a minimum.
  • the powder trapping method means that titanium carbonitride is suspended in a vertical tube furnace that is kept in a prescribed heat treatment temperature by suspending titanium carbonitride in the inert gas atmosphere containing a small amount of oxygen gas and hydrogen gas. This is a method of trapping and heat-treating.
  • the heat treatment time of titanium carbonitride is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes.
  • the heat treatment time is within the above range, a uniform oxycarbonitride tends to be formed, which is preferable. If the heat treatment time is less than 0.5 minutes, oxycarbonitride tends to be partially formed, and if it exceeds 10 minutes, oxidation tends to proceed excessively.
  • the heat treatment time of titanium carbonitride is 0.2 second to 1 minute, preferably 0.2 to 10 seconds.
  • the heat treatment time is within the above range, a uniform oxycarbonitride tends to be formed, which is preferable.
  • the heat treatment time is less than 0.2 seconds, oxycarbonitride tends to be partially formed, and when it exceeds 1 minute, oxidation tends to proceed excessively.
  • the heat treatment time of titanium carbonitride is 0.1 to 20 hours, preferably 0.5 to 10 hours.
  • the heat treatment time is within the above range, a uniform oxycarbonitride tends to be formed, which is preferable. If the heat treatment time is less than 0.1 hour, oxycarbonitride tends to be partially formed, and if it exceeds 20 hours, oxidation tends to proceed excessively.
  • the titanium oxycarbonitride obtained by the above-described production method or the like may be used as it is, but the obtained titanium oxycarbonitride is further pulverized into a finer powder. A thing may be used.
  • Examples of the method for crushing titanium carbonitride oxide include a roll rolling mill, a ball mill, a medium agitation mill, an airflow grinder, a mortar, a tank disintegrator, and the like.
  • a method using an airflow pulverizer is preferable in that it can be made finer, and a method using a mortar is preferable in that a small amount of processing is easy.
  • the catalyst of the present invention can be used as an alternative catalyst for a platinum catalyst.
  • it can be used as a fuel cell catalyst, exhaust gas treatment catalyst or organic synthesis catalyst.
  • the fuel cell catalyst layer of the present invention is characterized by containing the catalyst.
  • the fuel cell catalyst layer includes an anode catalyst layer and a cathode catalyst layer, and the catalyst can be used for both. Since the catalyst is excellent in durability and has a large oxygen reducing ability, it is preferably used in the cathode catalyst layer.
  • the fuel cell catalyst layer of the present invention preferably further contains electron conductive particles.
  • the reduction current can be further increased.
  • the electron conductive particles are considered to increase the reduction current because they generate an electrical contact for inducing an electrochemical reaction in the catalyst.
  • the electron conductive particles are usually used as a catalyst carrier.
  • the material constituting the electron conductive particles examples include carbon, conductive polymers, conductive ceramics, metals, and conductive inorganic oxides such as tungsten oxide or iridium oxide, which can be used alone or in combination. .
  • carbon particles having a large specific surface area alone or a mixture of carbon particles having a large specific surface area and other electron conductive particles are preferable. That is, the fuel cell catalyst layer preferably includes the catalyst and carbon particles having a large specific surface area.
  • carbon carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the catalyst layer for the fuel cell tends to be reduced or the utilization factor of the catalyst tends to be reduced. A range of 1000 nm is preferable, and a range of 10 to 100 nm is more preferable.
  • the mass ratio of the catalyst to carbon is preferably 4: 1 to 1000: 1.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • the polymer electrolyte is not particularly limited as long as it is generally used in a fuel cell catalyst layer.
  • a perfluorocarbon polymer having a sulfonic acid group for example, Nafion (DuPont 5% Nafion solution (DE521))
  • a hydrocarbon polymer compound having a sulfonic acid group for example, an inorganic acid such as phosphoric acid.
  • Nafion DuPont 5% Nafion solution (DE521)
  • DE521 Nafion (DuPont 5% Nafion solution
  • the fuel cell catalyst layer of the present invention can be used for either an anode catalyst layer or a cathode catalyst layer.
  • the catalyst layer for a fuel cell of the present invention includes a catalyst layer (catalyst catalyst for cathode) provided on the cathode of a fuel cell because it contains a catalyst having high oxygen reducing ability and hardly corroded even in a high potential in an acidic electrolyte. Layer).
  • a catalyst layer provided on the cathode of a membrane electrode assembly provided in a polymer electrolyte fuel cell.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used in the fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water is generally used.
  • the electrolyte and the dispersant may be further dispersed at the same time.
  • the method for forming the catalyst layer for the fuel cell is not particularly limited. For example, a method of applying a suspension containing the catalyst, the electron conductive particles, and the electrolyte to the electrolyte membrane or the gas diffusion layer to be described later. It is done. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method. In addition, after forming a catalyst layer for a fuel cell on a base material by a coating method or a filtration method using a suspension containing the catalyst, electron conductive particles, and an electrolyte, the catalyst layer for a fuel cell is formed on the electrolyte membrane by a transfer method. The method of forming is mentioned.
  • the electrode of the present invention is characterized by having the fuel cell catalyst layer and a porous support layer.
  • the electrode of the present invention can be used as either a cathode or an anode. Since the electrode of the present invention is excellent in durability and has a large catalytic ability, it is more effective when used for a cathode.
  • a fuel cell is formed by providing a gas diffusion layer between a current collector outside an anode and a cathode electrode sandwiched between solid electrolytes (membrane electrode assembly) and an electrode catalyst.
  • a device for improving the efficiency of the fuel cell by increasing the diffusibility of the oxidizing gas is made.
  • a carbon-based porous material such as carbon paper or carbon cloth, or an aluminum foil coated with stainless steel or a corrosion-resistant material for weight reduction is used for the gas diffusion layer.
  • the membrane electrode assembly of the present invention is a membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is the electrode. It is characterized by that.
  • an electrolyte membrane using a perfluorosulfonic acid system or a hydrocarbon electrolyte membrane is generally used.
  • a membrane or porous body in which a polymer microporous membrane is impregnated with a liquid electrolyte is impregnated with a liquid electrolyte.
  • a membrane filled with a polymer electrolyte may be used.
  • the fuel cell of the present invention is characterized by comprising the membrane electrode assembly.
  • Fuel cell electrode reactions occur at the so-called three-phase interface (electrolyte-electrode catalyst-reaction gas).
  • Fuel cells are classified into several types depending on the electrolyte used, etc., and include molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC).
  • MCFC molten carbonate type
  • PAFC phosphoric acid type
  • SOFC solid oxide type
  • PEFC solid polymer type
  • the catalyst of the present invention can be used as an alternative to platinum, it can be used regardless of the type of fuel cell. Among them, the effect is even greater when used in a polymer electrolyte fuel cell.
  • Powder X-ray diffraction Samples were subjected to powder X-ray diffraction using a rotor flex made by Rigaku Corporation.
  • Nitrogen / oxygen About 0.1 g of a sample was weighed and sealed in Ni-Cup, and then measured with an ON analyzer.
  • Titanium About 0.1 g of a sample was weighed on a platinum dish, and nitric acid-hydrofluoric acid was added for thermal decomposition. This thermally decomposed product was fixed, diluted, and quantified by ICP-MS.
  • Example 1 Preparation of catalyst 5.10 g (85 mmol) of titanium carbide (TiC), 0.80 g (10 mmol) of titanium oxide (TiO 2 ), and 0.31 g (5 mmol) of titanium nitride (TiN) were mixed well at 1800 ° C. for 3 hours. By heating in a nitrogen atmosphere, 5.73 g of titanium carbonitride was obtained. In order to become a sintered body, the obtained titanium carbonitride was pulverized with an automatic mortar.
  • TiC titanium carbide
  • TiO 2 titanium oxide
  • TiN titanium nitride
  • Table 1 shows the elemental analysis results of the obtained titanium carbonitride.
  • Titanium carbonitride oxidation was performed by heating 298 mg of the obtained titanium carbonitride in a tubular furnace at 1000 ° C. for 10 hours while flowing nitrogen gas containing 1 vol% oxygen gas and 4 vol% hydrogen gas. 393 mg of a product (hereinafter also referred to as “catalyst (1)”) was obtained.
  • Table 1 shows the results of elemental analysis of the catalyst (1).
  • Nafion DuPont 5% Nafion solution (DE521)
  • the prepared fuel cell electrode (1) was polarized in an oxygen atmosphere and a nitrogen atmosphere in a 0.5 mol / dm 3 sulfuric acid solution at 30 ° C. and a potential scanning rate of 5 mV / sec, and a current-potential curve was obtained. It was measured. At that time, a reversible hydrogen electrode in a sulfuric acid solution having the same concentration was used as a reference electrode.
  • the potential at which a difference of 0.2 ⁇ A / cm 2 or more appears between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere was defined as the oxygen reduction start potential, and the difference between the two was defined as the oxygen reduction current.
  • the catalytic ability (oxygen reducing ability) of the fuel cell electrode (1) produced by this oxygen reduction starting potential and oxygen reducing current was evaluated.
  • FIG. 3 shows the results of examining the oxygen reducing ability of the electrode using the catalyst (1).
  • the oxygen reduction starting potential of this electrode was 0.85 V (vs. NHE), and it was found to have a high oxygen reducing ability.
  • Example 2 Catalyst Preparation 314 mg of titanium carbonitride obtained in Example 1 was heated at 1000 ° C. for 3 hours in a tubular furnace while flowing nitrogen gas containing 1.5 vol% oxygen gas and 4 vol% hydrogen gas. As a result, 411 mg of titanium carbonitride (hereinafter also referred to as “catalyst (2)”) was obtained.
  • Table 1 shows the results of elemental analysis of the catalyst (2).
  • a fuel cell electrode (2) was obtained in the same manner as in Example 1 except that the catalyst (2) was used.
  • FIG. 5 shows a current-potential curve obtained by the measurement.
  • Example 2 It was found that the fuel cell electrode (2) produced in Example 2 had an oxygen reduction starting potential of 0.83 V (vs. NHE) and high oxygen reducing ability.
  • Example 3 Preparation of Catalyst 314 mg of titanium carbonitride obtained in Example 1 was passed through a tubular furnace at 1000 ° C. for 3 hours while flowing nitrogen gas containing 1.0 vol% oxygen gas and 1.3 vol% hydrogen gas. By heating, 415 mg of titanium carbonitride (hereinafter also referred to as “catalyst (3)”) was obtained.
  • FIG. 7 shows a powder X-ray diffraction spectrum of the obtained catalyst (3).
  • Table 1 shows the elemental analysis results of the catalyst (3).
  • a fuel cell electrode (3) was obtained in the same manner as in Example 1 except that the catalyst (3) was used.
  • FIG. 6 shows a current-potential curve obtained by the measurement.
  • Example 3 It was found that the fuel cell electrode (3) produced in Example 3 had an oxygen reduction starting potential of 0.90 V (vs. NHE) and high oxygen reducing ability.
  • a fuel cell electrode (4) was obtained in the same manner as in Example 1 except that the catalyst (4) was used.
  • FIG. 9 shows a current-potential curve obtained by the measurement.
  • the electrode for fuel cell (4) produced in Comparative Example 1 had an oxygen reduction starting potential of 0.6 V (vs. NHE).
  • FIG. 8 shows the current-potential curve in FIG. 9, and after leaving for several hours at the open potential, sweeps to 0.05 V in the reduction direction, turns back and sweeps in the oxidation direction to 1.15 V.
  • FIG. 6 is a current-potential curve when returning to the first open-circuit potential. From FIG. 8, it was found that the electrode for fuel cell produced in Comparative Example 1 had an electrode corrosion current flowing from around 1 V (vs. NHE) when the potential was scanned on the anode side, and the corrosion resistance of the electrode was poor.
  • Example 2 A fuel cell electrode (5) was produced in the same manner as in Example 1 except that commercially available rutile-type titanium dioxide (TiO 2 ) (manufactured by Cabot) was used as the catalyst (5). The oxygen reducing ability of 5) was evaluated.
  • FIG. 11 shows a current-potential curve obtained by the measurement.
  • the fuel cell electrode (5) produced in Comparative Example 2 had an oxygen reduction starting potential of 0.45 V (vs. NHE) and almost no reducing ability.
  • the powder X-ray diffraction spectrum of the catalyst (5) is shown in FIG.
  • the crystal form was rutile.
  • the catalyst of the present invention does not corrode in an acidic electrolyte or at a high potential, has excellent durability, and has a high oxygen reducing ability. Therefore, a catalyst layer for a fuel cell, an electrode, an electrode assembly, or a gas diffusion for a fuel cell or salt electrolysis It can be used for electrodes and other oxygen reduction electrodes.

Abstract

 本発明は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒を提供する。  本発明の触媒は、チタンの炭窒酸化物からなる。また、前記チタンの炭窒酸化物の組成式は、TiCxyz(ただし、x、y、zは原子数の比を表し、0<x≦1.0、 0<y≦1.0、 0.1≦z<2.0、 1.0<x+y+z≦2.0、かつ2.0≦4x+3y+2zである。)で表されることが好ましい。また、当該触媒は、燃料電池用であることが好ましい。

Description

触媒およびその製造方法ならびにその用途
 本発明は触媒およびその製造方法ならびにその用途に関する。
 燃料電池には、電解質の種類や電極の種類により種々のタイプに分類され、代表的なものとしては、アルカリ型、リン酸型、溶融炭酸塩型、固体電解質型、固体高分子型がある。この中でも低温(-40℃程度)から120℃程度で作動可能な固体高分子型燃料電池が注目を集め、近年、自動車用低公害動力源としての開発・実用化が進んでいる。固体高分子型燃料電池の用途としては、車両用駆動源や定置型電源が検討されているが、これらの用途に適用されるためには、長期間に渡る耐久性が求められている。
 この高分子固体形燃料電池は、高分子固体電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式である。燃料には水素またはメタノールなどが主として用いられる。
 従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。
 この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金が、主として用いられてきた。しかし、白金は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。
 また、カソード表面に用いる貴金属は酸性雰囲気下では、溶解する場合があり、長期間に渡る耐久性が必要な用途には適さないという問題があった。このため酸性雰囲気下で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒の開発が強く求められていた。
 白金に代わる触媒として、炭素、窒素、ホウ素等の非金属を含む材料が近年着目されている。これらの非金属を含む材料は、白金などの貴金属と比較して価格が安く、また資源量が豊富である。
 非特許文献1では、ジルコニウムをベースとしたZrOxN化合物が、酸素還元能を示すことが報告されている。
 特許文献1では、白金代替材料として長周期表4族,5族及び14族の元素群から選ばれる1種以上の窒化物を含む酸素還元電極材料が開示されている。
 また、特許文献2では、チタン、ランタン、タンタル、ニオブまたはジルコニウムのいずれかと窒素、ホウ素、炭素または硫黄とのいずれかとの化合物を部分酸化させたものを燃料電池用電極触媒に用いることが開示されている。
 さらに、特許文献3には、炭窒化チタン粉末を固体高分子型燃料電池用酸素極触媒として用いることが開示されている。
 しかしながら、これらの非金属を含む材料は、酸性溶液中で不安定であったり、触媒として実用的に充分な酸素還元能が得られておらず、実際に燃料電池として用いるには活性が不充分である。
 また、特許文献4では、炭化物、酸化物、窒化物を混合し、真空、不活性または非酸化性雰囲気下、500~1500℃で熱処理をした炭窒酸化物が開示されている。
 しかしながら、特許文献4に開示されている炭窒酸化物は、薄膜磁気ヘッドセラミックス基板材料であり、この炭窒酸化物を触媒として用いることは検討されていない。
 なお、白金は、上記燃料電池用の触媒としてだけでなく、排ガス処理用触媒または有機合成用触媒としても有用であるが、白金は価格が高く、また資源量が限られているため、これらの用途においても代替可能な触媒の開発が求められていた。
特開2007-31781号公報 特開2006-198570号公報 特開2007-257888号公報 特開2003-342058号公報 S. Doi,A. Ishihara,S. Mitsushima,N. kamiya,and K. Ota, Journal of The Electrochemical Society, 154 (3) B362-B369 (2007)
 本発明はこのような従来技術における問題点の解決を課題としており、本発明の目的は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒を提供することにある。
 本発明者らは、上記従来技術の問題点を解決すべく鋭意検討した結果、特定のチタンの炭窒酸化物からなる触媒が、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有することを見出した。
 また、本発明者らは、触媒を構成するチタンの炭窒酸化物における各原子数の比を制御することにより、さらに高性能の触媒が得られることを見出し、本発明を完成するに至った。
 本発明は、例えば以下の(1)~(13)に関する。
 (1)
 チタンの炭窒酸化物からなる触媒。
 (2)
 前記チタンの炭窒酸化物の組成式が、TiCxyz(ただし、x、y、zは原子数の比を表し、0<x≦1.0、 0<y≦1.0、 0.1≦z<2.0、 1.0<x+y+z≦2.0、かつ2.0≦4x+3y+2zである。)で表される(1)に記載の触媒。
 (3)
 燃料電池用である(1)または(2)に記載の触媒。
 (4)
 炭窒化チタンを、酸素ガス及び水素ガスを含む、不活性ガス中で熱処理することにより、チタンの炭窒酸化物を得る工程を含むことを特徴とするチタンの炭窒酸化物からなる触媒の製造方法。
 (5)
 前記工程における熱処理の温度が400~1400℃の範囲であることを特徴とする(4)に記載の製造方法。
 (6)
 前記工程における不活性ガス中の酸素ガス濃度が0.1~10容量%の範囲であることを特徴とする(4)または(5)に記載の製造方法。
 (7)
 前記工程における不活性ガス中の水素ガス濃度が0.2~20容量%の範囲であることを特徴とする(4)~(6)のいずれかに記載の製造方法。
 (8)
 (1)~(3)のいずれかに記載の触媒を含むことを特徴とする燃料電池用触媒層。
 (9)
 さらに電子伝導性粒子を含むことを特徴とする(8)に記載の燃料電池用触媒層。
 (10)
 燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が(8)または(9)に記載の燃料電池用触媒層であることを特徴とする電極。
 (11)
 カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが(10)に記載の電極であることを特徴とする膜電極接合体。
 (12)
 (11)に記載の膜電極接合体を備えることを特徴とする燃料電池。
 (13)
 (11)に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。
 本発明の触媒は、酸性電解質中や高電位で腐食せず、安定であり、高い酸素還元能を有し、かつ白金と比べ安価である。したがって、前記触媒を備えた燃料電池は、比較的安価で性能が優れている。
実施例1の炭窒化チタンの粉末X線回折スペクトルである。 実施例1で得られた触媒(1)の粉末X線回折スペクトルである。 触媒(1)を用いた電極の酸素還元能を評価したグラフである。 実施例2で得られた触媒(2)の粉末X線回折スペクトルである。 触媒(2)を用いた電極の酸素還元能を評価したグラフである。 触媒(3)を用いた電極の酸素還元能を評価したグラフである。 実施例3で得られた触媒(3)の粉末X線回折スペクトルである。 触媒(4)を用いた電極の電流-電位曲線である。 触媒(4)を用いた電極の酸素還元能を評価したグラフである。 比較例2で得られた触媒(5)の粉末X線回折スペクトルである。 触媒(5)を用いた電極の酸素還元能を評価したグラフである。
 <触媒>
 本発明の触媒は、チタンの炭窒酸化物からなることを特徴としている。また、前記チタンの炭窒酸化物の組成式は、TiCxyz(ただし、x、y、zは原子数の比を表し、0<x≦1.0、 0<y≦1.0、 0.1≦z<2.0、 1.0<x+y+z≦2.0、かつ2.0≦4x+3y+2zである。)で表されることが好ましい。上記組成式において、0.05≦x≦0.6、 0.005≦y≦0.6、 0.4≦z≦1.945、 1.0<x+y+z≦2.0、かつ3.5≦4x+3y+2z≦4.5であることがより好ましい。各原子数の比が、前記範囲を満たすと、酸素還元能が著しく高くなるので好ましい。
 なお、本発明において、zが0.02未満の場合は酸化物ではないものとする。
 x、y、zは、それぞれTiの原子数を1とした場合のC、N、Oの原子数を表している。x+y+zは、TiとC、N、Oとの化合物の結晶系を表す指標である。TiCxyzが立法晶であれば、x+y+zは、1.0以下の値で1.0に近い値となる。しかしながら、本発明に用いられるTiCxyzおいて、x+y+zは1.0より大きい値となる。例えば、酸素の殆どがTiO2の形成に用いられた場合、TiCxyzは、立方晶のTiCxyと正方晶のTiO2との混合系となる。x+y+zの値は、TiCxyとTiO2との比率により変わる。例えば、TiC0.50.5が0.3でTiO2が0.7の場合は、x+y+z=0.3×0.5+0.3×0.5+0.7×2=1.7となる。TiC0.50.5が1.0でTiO2が0の場合はx+y+z=1.0、またTiC0.50.5が0でTiO2が1.0の場合はx+y+z=2.0となる。即ち、TiCxyzおいて格子欠陥等がない場合、x+y+zは1.0から2.0の間の値をとる。
 本発明に用いられるTiCxyzは、X線回折での分析結果からルチル型構造を有していることが確認されている。ただし、結晶格子中のOの一部がCおよびNに置換され、さらに格子欠陥のあるルチル型構造であると推定している。一般にCおよびNを含まないルチル構造の酸化チタンは殆ど酸素還元活性を示さない。TiCxyzが、前記構造となる理由を本発明者らは以下のように推定している。
 本来、TiCは立方晶であり、TiNも立方晶である。Cは4価で、Nは3価であるので、TiCxyになると少し歪んだ形の立方晶となる。この歪んだ形のTiCxyを緩やかに酸化すると、TiCxyにおける一部のNまたはCが取れた空隙またはその周辺にOが複数置換して、格子欠陥のあるルチル型構造のTiCxyzが形成される。その結果、形成されたルチル型構造のTiCxyzは、不対電子密度が上がり酸素還元能が高くなると考えられる。炭窒化チタンを酸化する場合、適度な時間、適度な温度、適度な酸素濃度が必要で、時間が長すぎても、温度が高すぎても酸化が進みすぎて、触媒能が低下する。即ち、酸化する場合は緩やかな酸化状態が必要であり、水素ガスなどの還元性ガスを導入することで緩やかな酸化状態は容易に達成できる。例えば、歪みの少ない、TiCxyとTiO2とを混合しただけでは、高い酸素還元能を有しない。
 一方、急激な酸化を行うと酸素吸蔵量の少ない正方結晶または斜方晶のTiO2が形成される。このようなTiO2が多く形成されると、最終的に得られる触媒の酸素還元能が急激に低下する。たとえ触媒の結晶構造が正方晶であっても、酸素吸蔵量が多ければ、触媒活性はあり、酸素還元能は発揮される。表面に岩塩構造だけが残っていて酸素吸蔵量が少ないTiCxyzは、強酸中では電気化学的に不安定であり、触媒として使用が困難である。
 また、TiCxyzのTiの原子価が2.0である場合、通常、Cは4価であり、Nは3価であり、Oは2価であるので、4x+3y+2z=2.0となる。4x+3y+2zが2.0以上ということは、通常以上のC、N、O、特にOが結合していると考えられる。したがって、4x+3y+2zが2.0以上となるTiCxyzは、不対電子密度が大きく、酸素還元能が高いと考えられる。
 本発明に用いる触媒の、下記測定法(A)に従って測定される酸素還元開始電位は、可逆水素電極を基準として好ましくは0.7V(vs.NHE)以上である。
 〔測定法(A):
 電子伝導性粒子であるカーボンに分散させた触媒が1質量%となるように、該触媒およびカーボンを溶剤中に入れ、超音波で撹拌し懸濁液を得る。なお、カーボンとしては、カーボンブラック(比表面積:100~300m2/g)(例えばキャボット社製 XC-72)を用い、触媒とカーボンとが質量比で95:5になるように分散させる。また、溶剤としては、イソプロピルアルコール:水(質量比)=2:1を用いる。
 前記懸濁液を、超音波をかけながら30μlを採取し、すばやくグラッシーカーボン電極(直径:5.2mm)上に滴下し、120℃で1時間乾燥させる。乾燥することにより触媒を含む燃料電池用触媒層が、グラッシーカーボン電極上に形成される。
 次いでナフィオン(デュポン社 5%ナフィオン溶液(DE521))を純水で10倍に希釈したものを、さらに前記燃料電池用触媒層上に10μl滴下する。これを、120℃で1時間乾燥する。
 このようにして、得られた電極を用いて、酸素雰囲気および窒素雰囲気で、0.5mol/dm3の硫酸溶液中、30℃の温度で、同濃度の硫酸溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流-電位曲線を測定した際の、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上の差が現れ始める電位を酸素還元開始電位とする。〕
 上記酸素還元開始電位が0.7V(vs.NHE)未満であると、前記触媒を燃料電池のカソード用の触媒として用いた際に過酸化水素を発生することがある。また酸素還元開始電位は0.85V(vs.NHE)以上であることが、好適に酸素を還元するために好ましい。また、酸素還元開始電位は高い程好ましく、特に上限は無いが、酸素還元開始電位の上限は、理論値の1.23V(vs.NHE)である。
 上記触媒を用いて形成された本発明の燃料電池用触媒層は酸性電解質中において0.4V(vs.NHE)以上の電位で使用されることが好ましく、電位の上限は、電極の安定性により決まり、酸素が発生する電位のおよそ1.53(vs.NHE)まで使用可能である。
 この電位が0.4V(vs.NHE)未満の場合、チタンの炭窒酸化物の安定性という観点では全く問題はないが、酸素を好適に還元することができず、燃料電池に含まれる膜電極接合体の燃料電池用触媒層としての有用性は乏しい。
 また、本発明の触媒を用いた際の電流の流れ方については、上記測定法(A)に従って測定される電位が0.7Vの時の酸素還元電流密度(mA/cm2)により評価することができる。当該酸素還元電流密度は、0.1(mA/cm2)以上であることが好ましく、0.5(mA/cm2)以上であればさらに好ましい。当該酸素還元電流密度が、0.1(mA/cm2)未満であると、電流があまり流れず燃料電池用触媒層としての有用性は乏しい。
 <触媒の製造方法>
 上記触媒の製造方法は特に限定されないが、例えば、炭窒化チタンを、酸素及び水素を含む、不活性ガス中で熱処理することにより、チタンの炭窒酸化物を得る工程を含む製造方法が挙げられる。
 上記工程に用いる炭窒化チタンを得る方法としては、チタンの酸化物と炭素との混合物を、窒素雰囲気中で熱処理することにより炭窒化チタンを製造する方法(I)や、炭化チタン、酸化チタンおよび窒化チタンの混合物を、窒素雰囲気中などで熱処理することにより炭窒化チタンを製造する方法(II)、炭化チタンおよび窒化チタンの混合物を、窒素雰囲気中などで熱処理することにより炭窒化チタンを製造する方法(III)が挙げられる。
 その他、Journal of Solid State Chemistry ,142, 100-107(1999)(Hak Soo Kim, Guy Bugli, and Gerald Djega-Mariadassou)に記載されている方法で製造しても構わない。
 [製造方法(I)]
 製造方法(I)は、チタンの酸化物と炭素との混合物を、窒素雰囲気中で熱処理することにより炭窒化チタンを製造する方法である。
 炭窒化チタンを製造する際の熱処理の温度は通常600~1800℃の範囲であり、好ましくは900~1600℃の範囲である。前記熱処理温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記熱処理温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料のチタンの酸化物としては、TiO、TiO2やTi23等が挙げられる。上記いずれのチタンの酸化物を用いても、該酸化物から得られる炭窒化チタンを、酸素ガス及び水素ガスを含む、不活性ガス中で熱処理することにより得られるチタンの炭窒酸化物からなる触媒は、酸素還元開始電位が高く、活性がある。
 原料の炭素としては、カーボン、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンが挙げられる。カーボンの粉末の粒径がより小さいと、比表面積が大きくなり、酸化物との反応がしやすくなるため好ましい。例えば、カーボンブラック(比表面積:100~300m2/g、例えばキャボット社製 XC-72)などが好適に用いられる。
 2、3または4価といったチタンの価数に応じて、化学量論的に原料のチタンの酸化物と炭素とのモル比を制御すると、適切な炭窒化チタンが得られる。例えば、2価のチタンの酸化物では、チタンの酸化物1モルに対して、炭素は1~3モルが好ましい。4価のチタンの酸化物では、チタンの酸化物1モルに対して、炭素は2~4モルが好ましい。これらの範囲の上限値を超えると炭化チタン、下限値を下回ると窒化チタンが多く生成する傾向がある。さらに好ましくは2価のチタンの酸化物では、チタンの酸化物1モルに対して、炭素は2~3モルが好ましい。4価のチタンの酸化物では、チタンの酸化物1モルに対して、炭素は3~4モルが好ましい。前記範囲を満たす配合比で得られた炭窒化チタンを用いると、原子数の比(x、y、z)およびx+y+zが前記範囲を満たすチタンの炭窒酸化物(NbCxyz)を得ることが容易となる。
 [製造方法(II)]
 製造方法(II)は、炭化チタン、酸化チタンおよび窒化チタンの混合物を、窒素雰囲気中などで熱処理することにより炭窒化チタンを製造する方法である。
 炭窒化チタンを製造する際の熱処理の温度は通常600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記熱処理温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記熱処理温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、炭化チタン(TiC)、窒化チタン(TiN)およびチタンの酸化物を用いる。
 原料のチタンの酸化物としては、TiO、TiO2やTi23等が挙げられる。上記いずれのチタンの酸化物を用いても、該酸化物、炭化チタンおよび窒化チタンから得られる炭窒化チタンを、酸素ガス及び水素ガスを含む、不活性ガス中で熱処理することにより得られるチタンの炭窒酸化物からなる触媒は、酸素還元開始電位が高く、活性がある。
 炭化チタン(TiC)、酸化チタン、窒化チタン(TiN)の配合量(モル比)を制御すると、適切な炭窒化チタンが得られる。前記配合量(モル比)は、通常、窒化チタン(TiN)を1モルに対して、炭化チタン(TiC)が0.1~500モル、酸化チタンが0.01~50モルであり、好ましくは、窒化チタン(TiN)を1モルに対して、炭化チタン(TiC)が1~300モル、酸化チタンが0.1~30モルである。上記範囲を満たす配合モル比で作られた炭窒化チタンを用いると、酸素還元開始電位が高く、活性があるチタンの炭窒酸化物が得られる傾向がある。さらに好ましい配合量(モル比)は、窒化チタンを1モルに対して、炭化チタンが10~300モル、酸化チタンが0.1~10モルである。前記範囲を満たす配合比で得られた炭窒化チタンを用いると、原子数の比(x、y、z)およびx+y+zが前記範囲を満たすチタンの炭窒酸化物(TiCxyz)を得ることが容易となる。
 [製造方法(III)]
 製造方法(III)は、炭化チタンおよび窒化チタンの混合物を、窒素雰囲気中などで熱処理することにより炭窒化チタンを製造する方法である。
 炭窒化チタンを製造する際の熱処理の温度は600~1800℃の範囲であり、好ましくは800~1600℃の範囲である。前記熱処理温度が前記範囲内であると、結晶性および均一性が良好な点で好ましい。前記熱処理温度が600℃未満であると結晶性が悪く、均一性が悪くなる傾向があり、1800℃以上であると焼結しやすくなる傾向がある。
 原料としては、炭化チタン(TiC)および窒化チタン(TiN)を用いる。炭化チタンと窒化チタンとの配合量(モル比)を制御すると、適切な炭窒化チタンが得られる。前記配合量(モル比)は、通常、炭化チタン(TiC)が1モルに対して窒化チタン(TiN)が0.01~10モルの範囲であり、好ましくは炭化チタン(TiC)1モルに対して窒化チタン(TiN)が0.1~10モルの範囲である。前記範囲を満たす配合比で得られた炭窒化チタンを用いると、原子数の比(x、y、z)およびx+y+zが前記範囲を満たすチタンの炭窒酸化物(TiCxyz)を得ることが容易となる。このようなチタンの炭窒酸化物(TiCxyz)からなる触媒は、酸素還元開始電位が高く、活性が高い。
 (チタンの炭窒酸化物の製造工程)
 次に、炭窒化チタンを、酸素ガス及び水素ガスを含む、不活性ガス中で熱処理することにより、チタンの炭窒酸化物を得る工程について説明する。
 上記不活性ガスとしては、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガス、キセノンガス、ラドンガスまたは窒素ガスが挙げられる。アルゴンガス、ヘリウムガスまたは窒素ガスが、比較的入手しやすい点で特に好ましい。
 当該工程における酸素ガス濃度は、熱処理時間と熱処理温度に依存するが、0.1~10容量%が好ましく、0.5~5容量%が特に好ましい。前記酸素ガス濃度が前記範囲内であると、均一な炭窒酸化物が形成する点で好ましい。また、前記酸素ガス濃度が0.1容量%未満であると未酸化状態になる傾向があり、10容量%を超えると酸化が進み過ぎてしまう傾向がある。
 さらに酸化反応を緩やかにして酸素吸蔵量の多いTiCxyzを効率よく製造するには、上記不活性ガス中に還元性ガスとして水素ガスを混入させておくことがよい。水素ガスなどの還元性雰囲気で酸化すると、酸素欠陥の多い炭窒酸化物が得られる傾向がある。したがって、炭窒化チタンを、酸素ガスだけでなく水素ガスを含む、不活性ガス中で熱処理して得られるチタンの炭窒酸化物は、電気伝導度が向上し、さらに酸素還元能が高くなると推定できる。
 水素ガス濃度は特に限定されないが、不活性ガス中の酸素ガス濃度の2倍程度であることが好ましい。即ち酸素は0.1容量%から10容量%であるので、水素量は0.2容量%から20容量%であることが好ましい。しかしあまり酸素ガス濃度および水素ガス濃度が高いと爆発の危険があるので、より好ましくは酸素ガスが0.5容量%から3容量%であり、水素ガスは1容量%から6容量%である。
 この工程における熱処理の温度は、通常は400~1400℃の範囲であり、好ましくは600~1200℃の範囲である。前記熱処理温度が前記範囲内であると、均一な炭窒酸化物が形成する点で好ましい。前記熱処理温度が400℃未満であると酸化が進まない傾向があり、1400℃以上であると酸化が進みすぎて粒成長する傾向がある。
 当該工程における熱処理方法としては、静置法、撹拌法、落下法、粉末捕捉法などが挙げられる。
 落下法とは、誘導炉中に微量の酸素ガス及び水素ガスを含む、不活性ガスを流しながら、炉を所定の熱処理温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に炭窒化チタンを落下させ、熱処理する方法である。落下法の場合は、炭窒化チタンの粒子の凝集および成長を最小限度に抑制することができる点で好ましい。
 粉末捕捉法とは、微量の酸素ガス及び水素ガスを含む、不活性ガス雰囲気中で、炭窒化チタンを飛沫にして浮遊させ、所定の熱処理温度に保たれた垂直の管状炉中に炭窒化チタンを捕捉して、熱処理する方法である。
 落下法の場合、炭窒化チタンの熱処理時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記熱処理時間が前記範囲内であると、均一な炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.5分未満であると炭窒酸化物が部分的に形成される傾向があり、10分を超えると酸化が進みすぎる傾向がある。
 粉末捕捉法の場合、炭窒化チタンの熱処理時間は、0.2秒~1分、好ましくは0.2~10秒である。前記熱処理時間が前記範囲内であると、均一な炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.2秒未満であると炭窒酸化物が部分的に形成される傾向があり、1分を超えると酸化が進みすぎる傾向がある。
 管状炉で行なう場合、炭窒化チタンの熱処理時間は、0.1~20時間、好ましくは0.5時間~10時間である。前記熱処理時間が前記範囲内であると、均一な炭窒酸化物が形成される傾向があり好ましい。前記熱処理時間が0.1時間未満であると炭窒酸化物が部分的に形成される傾向があり、20時間を超えると酸化が進みすぎる傾向がある。
 本発明の触媒としては、上述の製造方法等により得られるチタンの炭窒酸化物を、そのまま用いてもよいが、得られるチタンの炭窒酸化物をさらに解砕し、より微細な粉末にしたものを用いてもよい。
 チタンの炭窒酸化物を解砕する方法としては、例えば、ロール転動ミル、ボールミル、媒体撹拌ミル、気流粉砕機、乳鉢、槽解機による方法等が挙げられ、チタンの炭窒酸化物をより微粒とすることができる点では、気流粉砕機による方法が好ましく、少量処理が容易となる点では、乳鉢による方法が好ましい。
 <用途>
 本発明の触媒は、白金触媒の代替触媒として使用することができる。
 例えば、燃料電池用触媒、排ガス処理用触媒または有機合成用触媒として使用できる。
 本発明の燃料電池用触媒層は、前記触媒を含むことを特徴としている。
 燃料電池用触媒層には、アノード触媒層、カソード触媒層があるが、前記触媒はいずれにも用いることができる。前記触媒は、耐久性に優れ、酸素還元能が大きいので、カソード触媒層に用いることが好ましい。
 本発明の燃料電池用触媒層には、さらに電子伝導性粒子を含むことが好ましい。前記触媒を含む燃料電池用触媒層がさらに電子伝導性粒子を含む場合には、還元電流をより高めることができる。電子伝導性粒子は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。
 電子伝導性粒子を構成する材料としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、比表面積の大きい炭素粒子単独または比表面積の大きい炭素粒子とその他の電子伝導性粒子との混合物が好ましい。すなわち燃料電池用触媒層としては、前記触媒と、比表面積の大きい炭素粒子とを含むことが好ましい。
 炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下したり、触媒の利用率が低下する傾向があるため、10~1000nmの範囲であることが好ましく、10~100nmの範囲であることがよりに好ましい。
 電子伝導性粒子を構成する材料が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは4:1~1000:1である。
 導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、ナフィオン(デュポン社 5%ナフィオン溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でもナフィオン(デュポン社 5%ナフィオン溶液(DE521))が好ましくよく用いられる。
 本発明の燃料電池用触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。本発明の燃料電池用触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい触媒を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子形燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
 また、触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に燃料電池用触媒層を形成した後、転写法で電解質膜に燃料電池用触媒層を形成する方法が挙げられる。
 本発明の電極は、前記燃料電池用触媒層と多孔質支持層とを有することを特徴としている。
 本発明の電極はカソードまたはアノードのいずれの電極にも用いることができる。本発明の電極は、耐久性に優れ、触媒能が大きいので、カソードに用いるとより効果を発揮する。
 燃料電池を構成するには、一般には、アノード用及びカソード用電極を固体電解質にはさんだもの(膜電極接合体)の外側の集電体と電極触媒との間にガス拡散層を設けて燃料及び酸化ガスの拡散性を高めて燃料電池の効率を高める工夫がなされる。ガス拡散層には、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被覆したアルミニウム箔が用いられる。
 本発明の膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが、前記電極であることを特徴としている。
 電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。
 また本発明の燃料電池は、前記膜電極接合体を備えることを特徴としている。
 燃料電池の電極反応はいわゆる3相界面(電解質‐電極触媒‐反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。本発明の触媒は白金の代替として用いることができるので、燃料電池の種類は問わず用いることができるが、中でも、固体高分子形燃料電池に使用すると効果がより一層大きい。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 また、実施例および比較例における各種測定は、下記の方法により行なった。
 1.粉末X線回折
 理学電機株式会社製 ロータフレックスを用いて、試料の粉末X線回折を行った。
 2.元素分析
 炭素:試料約0.1gを量り取り、堀場製作所 EMIA-110で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Ni-Cupに封入後、ON分析装置で測定を行った。
 チタン:試料約0.1gを白金皿に量り取り、硝酸-フッ酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP-MSで定量を行った。
 [実施例1]
 1.触媒の調製
 炭化チタン(TiC)5.10g(85mmol)、酸化チタン(TiO2)0.80g(10mmol)、窒化チタン(TiN)0.31g(5mmol)をよく混合して、1800℃で3時間、窒素雰囲気中で加熱することにより、炭窒化チタン5.73gが得られた。焼結体になるため、得られた炭窒化チタンを自動乳鉢で粉砕した。
 得られた炭窒化チタンの粉末X線回折スペクトルを図1に示す。
 また、得られた炭窒化チタンの元素分析結果を表1に示す。
 得られた炭窒化チタン298mgを、1容量%の酸素ガスおよび4容量%の水素ガスを含む、窒素ガスを流しながら、管状炉で、1000℃で10時間加熱することにより、チタンの炭窒酸化物(以下「触媒(1)」とも記す。)393mgが得られた。
 得られた触媒(1)の粉末X線回折スペクトルを図2に示す。
 また、触媒(1)の元素分析結果を表1に示す。
 2.燃料電池用電極の製造
 酸素還元能の測定は、次のように行った。触媒(1)95mgおよびカーボン(キャボット社製 XC-72)5mgをイソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で撹拌、懸濁して混合した。この混合物30μlをグラッシーカーボン電極(東海カーボン社製、直径:5.2mm)に塗布し、120℃で1時間乾燥した。さらに、ナフィオン(デュポン社 5%ナフィオン溶液(DE521))を10倍に純水で希釈したもの10μlを塗布し、120℃で1時間乾燥し、燃料電池用電極(1)を得た。
 3.酸素還元能の評価
 このようにして作製した燃料電池用電極(1)の触媒能(酸素還元能)を以下の方法で評価した。
 まず、作製した燃料電池用電極(1)を、酸素雰囲気および窒素雰囲気で、0.5mol/dm3の硫酸溶液中、30℃、5mV/秒の電位走査速度で分極し、電流-電位曲線を測定した。その際、同濃度の硫酸溶液中での可逆水素電極を参照電極とした。
 上記測定結果から、酸素雰囲気での還元電流と窒素雰囲気での還元電流とに0.2μA/cm2以上差が現れ始める電位を酸素還元開始電位とし、両者の差を酸素還元電流とした。
 この酸素還元開始電位および酸素還元電流により作製した燃料電池用電極(1)の触媒能(酸素還元能)を評価した。
 すなわち、酸素還元開始電位が高いほど、また、酸素還元電流が大きいほど、燃料電池用電極の触媒能(酸素還元能)が高いことを示す。
 触媒(1)を用いた電極の酸素還元能を調べた結果を図3に示す。
 この電極の酸素還元開始電位は0.85V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [実施例2]
 1.触媒の調製
 実施例1で得られた炭窒化チタン314mgを、1.5容量%の酸素ガスおよび4容量%水素ガスを含む、窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、チタンの炭窒酸化物(以下「触媒(2)」とも記す。)411mgが得られた。
 得られた触媒(2)の粉末X線回折スペクトルを図4に示す。
 また、触媒(2)の元素分析結果を表1に示す。
 2.燃料電池用電極の製造
 前記触媒(2)を用いた以外は実施例1と同様にして燃料電池用電極(2)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(2)を用いた以外は実施例1と同様にして触媒能(酸素還元能)を評価した。
 図5に、当該測定により得られた電流-電位曲線を示す。
 実施例2で作製した燃料電池用電極(2)は、酸素還元開始電位が0.83V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [実施例3]
 1.触媒の調製
 実施例1で得られた炭窒化チタン314mgを、1.0容量%の酸素ガスおよび1.3容量%水素ガスを含む、窒素ガスを流しながら、管状炉で、1000℃で3時間加熱することにより、チタンの炭窒酸化物(以下「触媒(3)」とも記す。)415mgが得られた。
 得られた触媒(3)の粉末X線回折スペクトルを図7に示す。
 また、触媒(3)の元素分析結果を表1に示す。
 2.燃料電池用電極の製造
 前記触媒(3)を用いた以外は実施例1と同様にして燃料電池用電極(3)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(3)を用いた以外は実施例1と同様にして触媒能(酸素還元能)を評価した。
 図6に、当該測定により得られた電流-電位曲線を示す。
 実施例3で作製した燃料電池用電極(3)は、酸素還元開始電位が0.90V(vs.NHE)であり、高い酸素還元能を有することがわかった。
 [比較例1]
 1.触媒の調製
 実施例1で得られた炭窒化チタンを触媒(以下「触媒(4)」とも記す。)として使用した。
 2.燃料電池用電極の製造
 前記触媒(4)を用いた以外は実施例1と同様にして燃料電池用電極(4)を得た。
 3.酸素還元能の評価
 前記燃料電池用電極(4)を用いた以外は実施例1と同様にして触媒能(酸素還元能)を評価した。
 図9に、当該測定により得られた電流-電位曲線を示す。
 比較例1で作製した燃料電池用電極(4)は、酸素還元開始電位が0.6V(vs.NHE)であった。
 また、図8は、図9における電流-電位曲線を調べた後、開放電位のまま数時間放置後に、還元方向に0.05Vまで掃引し、そこで折り返して1.15Vまで酸化方向に掃引して、さらに最初の開放電位のところまで戻した際の電流-電位曲線である。図8から、比較例1で作製した燃料電池用電極は、アノード側に電位走査させると1V(vs.NHE)付近から電極溶解電流が流れ、電極の耐食性が悪いことがわかった。
 [比較例2]
 市販のルチル型二酸化チタン(TiO2)(キャボット社製)を触媒(5)として用いた以外は実施例1と同様にして、燃料電池用電極(5)を製造し、該燃料電池用電極(5)の酸素還元能を評価した。図11に、当該測定により得られた電流-電位曲線を示す。
 比較例2で作製した燃料電池用電極(5)は、酸素還元開始電位が0.45V(vs.NHE)であり、還元能が殆どなかった。
 触媒(5)の粉末X線回折スペクトルを図10に示す。結晶型はルチル型を示した。
Figure JPOXMLDOC01-appb-T000001
 本発明の触媒は、酸性電解質中や高電位で腐食せず、耐久性に優れ、高い酸素還元能を有するので、燃料電池用触媒層、電極、電極接合体または燃料電池や食塩電解用ガス拡散電極やその他酸素還元電極に用いることができる。

Claims (13)

  1.  チタンの炭窒酸化物からなる触媒。
  2.  前記チタンの炭窒酸化物の組成式が、TiCxyz(ただし、x、y、zは原子数の比を表し、0<x≦1.0、 0<y≦1.0、 0.1≦z<2.0、 1.0<x+y+z≦2.0、かつ2.0≦4x+3y+2zである。)で表される請求項1に記載の触媒。
  3.  燃料電池用である請求項1または2に記載の触媒。
  4.  炭窒化チタンを、酸素ガス及び水素ガスを含む、不活性ガス中で熱処理することにより、チタンの炭窒酸化物を得る工程を含むことを特徴とするチタンの炭窒酸化物からなる触媒の製造方法。
  5.  前記工程における熱処理の温度が400~1400℃の範囲であることを特徴とする請求項4に記載の製造方法。
  6.  前記工程における不活性ガス中の酸素ガス濃度が0.1~10容量%の範囲であることを特徴とする請求項4または5に記載の製造方法。
  7.  前記工程における不活性ガス中の水素ガス濃度が0.2~20容量%の範囲であることを特徴とする請求項4~6のいずれかに記載の製造方法。
  8.  請求項1~3のいずれかに記載の触媒を含むことを特徴とする燃料電池用触媒層。
  9.  さらに電子伝導性粒子を含むことを特徴とする請求項8に記載の燃料電池用触媒層。
  10.  燃料電池用触媒層と多孔質支持層とを有する電極であって、前記燃料電池用触媒層が請求項8または9に記載の燃料電池用触媒層であることを特徴とする電極。
  11.  カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび/または前記アノードが請求項10に記載の電極であることを特徴とする膜電極接合体。
  12.  請求項11に記載の膜電極接合体を備えることを特徴とする燃料電池。
  13.  請求項11に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。
PCT/JP2009/052696 2008-02-28 2009-02-17 触媒およびその製造方法ならびにその用途 WO2009107518A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/919,421 US20110008709A1 (en) 2008-02-28 2009-02-17 Catalyst, process for preparing the same, and uses of the same
CA2722083A CA2722083A1 (en) 2008-02-28 2009-02-17 Catalyst, method for producing the same, and use of the same
KR1020107020858A KR101202104B1 (ko) 2008-02-28 2009-02-17 촉매 및 그 제조 방법 및 그 용도
CN2009801068935A CN101959599B (zh) 2008-02-28 2009-02-17 催化剂及其制造方法以及其用途
EP09715314.2A EP2251081B1 (en) 2008-02-28 2009-02-17 A membrane electrode assembly, process for preparing the same, and uses of the same
JP2010500654A JP5411123B2 (ja) 2008-02-28 2009-02-17 燃料電池用触媒およびその製造方法ならびにその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008047082 2008-02-28
JP2008-047082 2008-02-28

Publications (1)

Publication Number Publication Date
WO2009107518A1 true WO2009107518A1 (ja) 2009-09-03

Family

ID=41015918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052696 WO2009107518A1 (ja) 2008-02-28 2009-02-17 触媒およびその製造方法ならびにその用途

Country Status (7)

Country Link
US (1) US20110008709A1 (ja)
EP (1) EP2251081B1 (ja)
JP (2) JP5411123B2 (ja)
KR (1) KR101202104B1 (ja)
CN (1) CN101959599B (ja)
CA (1) CA2722083A1 (ja)
WO (1) WO2009107518A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041658A1 (ja) * 2008-10-06 2010-04-15 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
WO2010107028A1 (ja) * 2009-03-18 2010-09-23 昭和電工株式会社 空気電池用触媒およびそれを用いた空気電池
WO2011099493A1 (ja) * 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途
JP2011187423A (ja) * 2010-03-11 2011-09-22 Showa Denko Kk 燃料電池用触媒層及びその用途
JP2011194328A (ja) * 2010-03-19 2011-10-06 Nec Corp 酸素還元触媒
JP2011258354A (ja) * 2010-06-07 2011-12-22 Tokyo Univ Of Agriculture & Technology 燃料電池用電極触媒およびその製造方法、ならびに固体高分子形燃料電池用膜電極接合体
JP4858658B2 (ja) * 2009-09-29 2012-01-18 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池
WO2012008249A1 (ja) 2010-07-15 2012-01-19 昭和電工株式会社 燃料電池用触媒の製造方法、燃料電池用触媒およびその用途
US20120083407A1 (en) * 2009-06-03 2012-04-05 Showa Denko K.K. Catalyst for fuel cell and polymer electrolyte fuel cell using the same
WO2012096023A1 (ja) 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012096022A1 (ja) 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2012114778A1 (ja) 2011-02-21 2012-08-30 昭和電工株式会社 燃料電池用電極触媒の製造方法
JP5126864B1 (ja) * 2011-09-09 2013-01-23 昭和電工株式会社 燃料電池用触媒層及びその用途
WO2013021681A1 (ja) * 2011-08-09 2013-02-14 昭和電工株式会社 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途
WO2013021688A1 (ja) 2011-08-09 2013-02-14 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP2013051214A (ja) * 2010-12-22 2013-03-14 Showa Denko Kk 燃料電池用電極触媒およびその用途
JP2013062251A (ja) * 2012-10-24 2013-04-04 Showa Denko Kk 燃料電池用触媒層及びその用途
JP2014087793A (ja) * 2008-02-28 2014-05-15 Showa Denko Kk 酸素還元触媒
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
JP2016507366A (ja) * 2013-01-07 2016-03-10 日東電工株式会社 酸化物被覆基材の形成方法
EP3300150A1 (en) 2011-07-14 2018-03-28 Showa Denko K.K. Oxygen reduction catalyst, method for producing the same, and polymer electrolyte fuel cell

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2518806B1 (en) * 2009-12-25 2015-08-19 Showa Denko K.K. Ink, fuel cell catalyst layer formed by using the ink and uses thereof
JP5855023B2 (ja) 2011-01-20 2016-02-09 昭和電工株式会社 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた燃料電池
WO2013191674A1 (en) * 2012-06-18 2013-12-27 United Technologies Corporation Method and apparatus for analyzing a material
KR101420653B1 (ko) * 2012-12-28 2014-07-21 포항공과대학교 산학협력단 고분자 전해질 연료전지의 양극 촉매 및 이의 제조방법
CN105492118B (zh) * 2013-07-12 2018-05-15 昭和电工株式会社 氧还原催化剂、其用途以及其制造方法
JP6397327B2 (ja) * 2014-12-26 2018-09-26 昭和電工株式会社 酸素還元触媒およびその製造方法
DE102017115878A1 (de) * 2017-07-14 2019-01-17 Elringklinger Ag Brennstoffzellenvorrichtung
JP6968346B2 (ja) * 2017-08-01 2021-11-17 福井県 工具用ダイヤモンド粒及びその製造方法
KR102260508B1 (ko) * 2019-12-10 2021-06-07 현대모비스 주식회사 연료전지용 촉매, 이를 포함하는 연료전지용 전극 및 이를 포함하는 막전극접합체

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2006107967A (ja) * 2004-10-07 2006-04-20 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2006134603A (ja) * 2004-11-02 2006-05-25 Bridgestone Corp 触媒構造体及びそれを用いた固体高分子型燃料電池用膜電極接合体
JP2006198570A (ja) 2005-01-24 2006-08-03 Sumitomo Chemical Co Ltd 電極触媒の製造方法
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
JP2007257888A (ja) 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168694B1 (en) * 1999-02-04 2001-01-02 Chemat Technology, Inc. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications
JP2004288388A (ja) * 2003-03-19 2004-10-14 Aisin Seiki Co Ltd 燃料電池用電極およびその製造方法および燃料電池
SE526674C2 (sv) * 2003-03-24 2005-10-25 Seco Tools Ab Belagt hårdmetallskär
CN101959599B (zh) * 2008-02-28 2013-05-15 昭和电工株式会社 催化剂及其制造方法以及其用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2006107967A (ja) * 2004-10-07 2006-04-20 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2006134603A (ja) * 2004-11-02 2006-05-25 Bridgestone Corp 触媒構造体及びそれを用いた固体高分子型燃料電池用膜電極接合体
JP2006198570A (ja) 2005-01-24 2006-08-03 Sumitomo Chemical Co Ltd 電極触媒の製造方法
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
JP2007257888A (ja) 2006-03-20 2007-10-04 Allied Material Corp 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009031383A1 (ja) * 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Electrochemical Society of Japan Dai 74 Kai Taikai Koen Yoshishu", 29 March 2007, JAPAN, article YOSHIRO OSHIRO ET AL.: "Bubun Sanka shita Sen'i Kinzoku Tanchikkabutsu no Sanso Kangen Shokubaino", pages: 94, XP008134575 *
HAK SOO KIM; GUY BUGLI; GERALDODIEGA-MARIADESSOU, JOURNAL OF SOLID STATE CHEMISTRY, vol. 142, 1999, pages 100 - 107

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087793A (ja) * 2008-02-28 2014-05-15 Showa Denko Kk 酸素還元触媒
WO2010041658A1 (ja) * 2008-10-06 2010-04-15 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
US9093714B2 (en) 2008-10-06 2015-07-28 Showa Denko K.K. Process for production and use of carbonitride mixture particles or oxycarbonitride mixture particles
US8703638B2 (en) 2008-10-06 2014-04-22 Showa Denko K.K. Process for production and use of carbonitride mixture particles or oxycarbonitride mixture particles
JP4970597B2 (ja) * 2008-10-06 2012-07-11 昭和電工株式会社 炭窒化物混合物粒子または炭窒酸化物混合物粒子の製造方法及びその用途
WO2010107028A1 (ja) * 2009-03-18 2010-09-23 昭和電工株式会社 空気電池用触媒およびそれを用いた空気電池
US9236641B2 (en) 2009-03-18 2016-01-12 Showa Denko K.K. Air battery catalyst and air battery using the same
US8716167B2 (en) * 2009-06-03 2014-05-06 Showa Denko K.K. Catalyst for fuel cell and polymer electrolyte fuel cell using the same
US20120083407A1 (en) * 2009-06-03 2012-04-05 Showa Denko K.K. Catalyst for fuel cell and polymer electrolyte fuel cell using the same
JP4858658B2 (ja) * 2009-09-29 2012-01-18 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池
EP2535971A4 (en) * 2010-02-10 2015-07-29 Showa Denko Kk METHOD FOR PRODUCING FUEL CELL ELECTRODE CATALYST, PROCESS FOR PRODUCING TRANSITION METAL OXYCARBONITRIDE, FUEL CELL ELECTRODE CATALYST, AND USES THEREOF
JP5828766B2 (ja) * 2010-02-10 2015-12-09 昭和電工株式会社 燃料電池用電極触媒の製造方法、および、遷移金属炭窒酸化物の製造方法
US9136541B2 (en) 2010-02-10 2015-09-15 Showa Denko K.K. Process for producing fuel cell electrode catalyst, process for producing transition metal oxycarbonitride, fuel cell electrode catalyst and uses thereof
WO2011099493A1 (ja) * 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途
JP2011187423A (ja) * 2010-03-11 2011-09-22 Showa Denko Kk 燃料電池用触媒層及びその用途
JP2011194328A (ja) * 2010-03-19 2011-10-06 Nec Corp 酸素還元触媒
JP2011258354A (ja) * 2010-06-07 2011-12-22 Tokyo Univ Of Agriculture & Technology 燃料電池用電極触媒およびその製造方法、ならびに固体高分子形燃料電池用膜電極接合体
WO2012008249A1 (ja) 2010-07-15 2012-01-19 昭和電工株式会社 燃料電池用触媒の製造方法、燃料電池用触媒およびその用途
JP2012146670A (ja) * 2010-07-15 2012-08-02 Showa Denko Kk 燃料電池用触媒およびその用途
JP2013051214A (ja) * 2010-12-22 2013-03-14 Showa Denko Kk 燃料電池用電極触媒およびその用途
WO2012096023A1 (ja) 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
US9118083B2 (en) 2011-01-14 2015-08-25 Showa Denko K.K Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
CN103299465A (zh) * 2011-01-14 2013-09-11 昭和电工株式会社 燃料电池用电极催化剂的制造方法、燃料电池用电极催化剂和其用途
US9350025B2 (en) 2011-01-14 2016-05-24 Showa Denko K.K. Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst, and uses thereof
WO2012096022A1 (ja) 2011-01-14 2012-07-19 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
US10026968B2 (en) 2011-02-21 2018-07-17 Showa Denko K.K. Method for producing fuel cell electrode catalyst
WO2012114778A1 (ja) 2011-02-21 2012-08-30 昭和電工株式会社 燃料電池用電極触媒の製造方法
EP3300150A1 (en) 2011-07-14 2018-03-28 Showa Denko K.K. Oxygen reduction catalyst, method for producing the same, and polymer electrolyte fuel cell
JP5320521B2 (ja) * 2011-08-09 2013-10-23 昭和電工株式会社 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途
WO2013021688A1 (ja) 2011-08-09 2013-02-14 昭和電工株式会社 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
WO2013021681A1 (ja) * 2011-08-09 2013-02-14 昭和電工株式会社 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途
US20140170527A1 (en) * 2011-08-09 2014-06-19 Showa Denko K.K. Process for producing catalyst for direct-liquid fuel cell, catalyst produced by the process and uses thereof
US10044045B2 (en) 2011-08-09 2018-08-07 Showa Denko K.K. Process for producing a fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
US9379390B2 (en) 2011-08-09 2016-06-28 Showa Denko K.K. Process for producing catalyst for direct-liquid fuel cell, catalyst produced by the process and uses thereof
JP5126864B1 (ja) * 2011-09-09 2013-01-23 昭和電工株式会社 燃料電池用触媒層及びその用途
WO2013035191A1 (ja) * 2011-09-09 2013-03-14 昭和電工株式会社 燃料電池用触媒層及びその用途
US9570757B2 (en) 2011-09-09 2017-02-14 Showa Denko K.K. Fuel cell catalyst layer and uses thereof
JP2015507537A (ja) * 2012-01-18 2015-03-12 日東電工株式会社 チタニア光触媒化合物およびそれらの製造方法
US9433933B2 (en) 2012-01-18 2016-09-06 Nitto Denko Corporation Titania photocatalytic compounds and methods of making the same
JP2013062251A (ja) * 2012-10-24 2013-04-04 Showa Denko Kk 燃料電池用触媒層及びその用途
JP2016507366A (ja) * 2013-01-07 2016-03-10 日東電工株式会社 酸化物被覆基材の形成方法

Also Published As

Publication number Publication date
US20110008709A1 (en) 2011-01-13
EP2251081A4 (en) 2012-04-04
CN101959599B (zh) 2013-05-15
KR20100115809A (ko) 2010-10-28
EP2251081B1 (en) 2017-09-13
JP2014087793A (ja) 2014-05-15
CN101959599A (zh) 2011-01-26
CA2722083A1 (en) 2009-09-03
JP5411123B2 (ja) 2014-02-12
JPWO2009107518A1 (ja) 2011-06-30
EP2251081A1 (en) 2010-11-17
KR101202104B1 (ko) 2012-11-15

Similar Documents

Publication Publication Date Title
JP5411123B2 (ja) 燃料電池用触媒およびその製造方法ならびにその用途
JP5495798B2 (ja) 触媒およびその製造方法ならびにその用途
JP5578849B2 (ja) 触媒およびその製造方法ならびにその用途
JP5462150B2 (ja) 触媒及びその製造方法ならびにその用途
JP5374387B2 (ja) 触媒およびその製造方法ならびにその用途
JP5475245B2 (ja) 触媒およびその製造方法ならびにその用途
WO2010131636A1 (ja) 触媒およびその製造方法ならびにその用途
JP5037696B2 (ja) 触媒およびその製造方法ならびにその用途
JP5713891B2 (ja) 触媒及びその製造方法ならびにその用途
JP5419864B2 (ja) 燃料電池用触媒の製造方法および燃料電池用触媒
JP5106342B2 (ja) 触媒及びその製造方法ならびにその用途
JP5539892B2 (ja) 触媒およびその製造方法ならびにその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980106893.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09715314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500654

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009715314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009715314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12919421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107020858

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2722083

Country of ref document: CA