WO2013021681A1 - 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途 - Google Patents

直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途 Download PDF

Info

Publication number
WO2013021681A1
WO2013021681A1 PCT/JP2012/059375 JP2012059375W WO2013021681A1 WO 2013021681 A1 WO2013021681 A1 WO 2013021681A1 JP 2012059375 W JP2012059375 W JP 2012059375W WO 2013021681 A1 WO2013021681 A1 WO 2013021681A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fuel cell
liquid fuel
direct liquid
transition metal
Prior art date
Application number
PCT/JP2012/059375
Other languages
English (en)
French (fr)
Inventor
建燦 李
春福 兪
門田 隆二
雅揮 堀北
佐藤 孝志
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP12821438.4A priority Critical patent/EP2744025A4/en
Priority to KR1020147005941A priority patent/KR101627441B1/ko
Priority to CN201280037435.2A priority patent/CN103718358A/zh
Priority to US14/236,160 priority patent/US9379390B2/en
Priority to JP2013503313A priority patent/JP5320521B2/ja
Publication of WO2013021681A1 publication Critical patent/WO2013021681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Direct liquid fuel cells that use liquid fuels such as methanol, ethanol, formic acid, 2-propanol, and dimethyl ether as direct fuel are simple in structure and easy to handle. Application to distributed power sources is expected.
  • the direct liquid fuel cell has a structure in which, for example, a proton conductive polymer electrolyte membrane is sandwiched between an anode (fuel electrode) and a cathode (air electrode).
  • anode fuel electrode
  • cathode air electrode
  • the direct liquid fuel cell has a problem that due to the crossover of the liquid fuel, the potential at the cathode decreases with a decrease in the fuel utilization rate, and the energy conversion efficiency of the cell significantly decreases.
  • the liquid fuel crossover is a phenomenon in which the liquid fuel moves from the anode to the cathode through the polymer electrolyte membrane. Since the liquid fuel that has reached the cathode is directly oxidized on the surface of the cathode catalyst, the potential at the cathode is lowered.
  • Patent Document 7 discloses a carbonitride oxide obtained by mixing carbide, oxide, and nitride and heating at 500 to 1500 ° C. in a vacuum, inert or non-oxidizing atmosphere.
  • the oxycarbonitride disclosed in Patent Document 7 is a thin film magnetic head ceramic substrate material, and the use of this oxycarbonitride as a catalyst has not been studied.
  • platinum is useful not only as a catalyst for the fuel cell, but also as an exhaust gas treatment catalyst or an organic synthesis catalyst, platinum is expensive and has limited resources. There has been a demand for the development of a catalyst that can be substituted for use.
  • the present invention relates to the following (1) to (22), for example.
  • Step A in which at least a transition metal-containing compound and a nitrogen-containing organic compound are mixed to obtain a catalyst precursor composition, Including heat-treating the catalyst precursor composition at a temperature of 500 to 1100 ° C. to obtain an electrode catalyst,
  • a part or all of the transition metal-containing compound is a compound containing at least one transition metal element M1 selected from Group 4 and Group 5 elements of the periodic table as a transition metal element.
  • step A mixing is performed in a solvent.
  • a part of the transition metal-containing compound is a compound containing at least one transition metal element M2 selected from iron, nickel, chromium, cobalt, vanadium and manganese as a transition metal element (1) to (7)
  • the manufacturing method of the electrode catalyst for direct liquid fuel cells as described in any one of (7).
  • the transition metal-containing compound is at least one selected from the group consisting of metal nitrates, metal acid chlorides, metal-containing organic compounds, metal halides, metal perchlorates and metal hypochlorites.
  • the step C is a step of heat-treating the catalyst precursor composition at a temperature of 500 to 1100 ° C. and crushing the obtained heat-treated product to obtain an electrode catalyst (1) to (13) ).
  • the method for producing an electrode catalyst for a direct liquid fuel cell according to any one of the above.
  • a direct liquid fuel cell electrode having a direct liquid fuel cell catalyst layer and a porous support layer, wherein the fuel cell catalyst layer is for the direct liquid fuel cell according to (17) or (18).
  • An electrode for a direct liquid fuel cell which is a catalyst layer.
  • a direct liquid fuel cell membrane electrode assembly having a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, wherein the cathode and / or the anode is a direct liquid according to (19)
  • the catalyst precursor composition contains a reaction product of a transition metal-containing compound and a nitrogen-containing organic compound.
  • the solubility of the reaction product in the solvent varies depending on the combination of the transition metal-containing compound, the nitrogen-containing organic compound, the solvent, and the like.
  • the transition metal-containing compound, the nitrogen-containing organic compound, and the solvent may be placed in a pressurizable container such as an autoclave, and mixing may be performed while applying a pressure higher than normal pressure.
  • a pressurizable container such as an autoclave
  • the transition metal element M1 include titanium, zirconium, hafnium, vanadium, niobium, and tantalum. These may be used alone or in combination of two or more.
  • the transition metal-containing compound preferably has at least one selected from an oxygen atom and a halogen atom.
  • the transition metal-containing compound include metal phosphates, metal sulfates, metal nitrates, metal acid halides (intermediate hydrolysates of metal halides), metal halides, metal halides, and metal hypohalites.
  • Metal-containing organic compounds and metal complexes, and metal nitrates, metal acid chlorides, metal-containing organic compounds, metal halides, metal perchlorates and metal hypochlorites are preferred. These may be used alone or in combination of two or more.
  • the metal-containing organic compound include metal organic acid salts and metal alkoxides.
  • metal halide chloride, bromide and iodide of the transition metal are preferable, and as the metal acid halide, acid chloride, acid bromide and acid iodide of the transition metal are preferable.
  • the resulting catalyst becomes fine particles with a uniform particle size, and its activity is high, Titanium tetraethoxide, titanium tetrachloride, titanium oxychloride, titanium tetraisopropoxide, titanium tetraacetylacetonate, Niobium pentaethoxide, niobium pentachloride, niobium oxychloride, niobium pentaisopropoxide, Zirconium tetraethoxide, zirconium tetrachloride, zirconium oxychloride, zirconium tetraisopropoxide, zirconium tetraacetylacetonate, Tantalum pentamethoxide, tantalum pentaethoxide, tantalum pentachloride, tantalum oxychloride, tantalum pentaisopropoxide, and tantalum tetraethoxyacetylacetonate,
  • transition metal-containing compound together with a transition metal-containing compound containing a transition metal element M1 of Group 4 or Group 5 of the periodic table as a transition metal element (hereinafter also referred to as “first transition metal-containing compound”),
  • first transition metal-containing compound a transition metal-containing compound containing a transition metal element M1 of Group 4 or Group 5 of the periodic table as a transition metal element
  • second metal a transition metal-containing compound which is an element different from the transition metal element M1 and includes at least one transition metal element M2 selected from iron, nickel, chromium, cobalt, vanadium and manganese. May also be used in combination. Use of the second transition metal-containing compound improves the performance of the resulting catalyst.
  • the nitrogen-containing organic compound is not particularly limited, but a compound that can be a ligand that can coordinate to a transition metal atom in the transition metal-containing compound (preferably a compound that can form a mononuclear complex).
  • a compound that can be a polydentate ligand (preferably a bidentate ligand or a tridentate ligand) (can form a chelate) is more preferable.
  • the said nitrogen containing organic compound may be used individually by 1 type, and may use 2 or more types together.
  • the nitrogen-containing organic compound used in the present invention preferably contains a carbonyl group.
  • the carbonyl group may be contained in the nitrogen-containing organic compound as part of a functional group.
  • the carbonyl group is preferably contained in the nitrogen-containing organic compound as part of a carboxyl group or an aldehyde group, and is preferably contained in the nitrogen-containing organic compound as a carboxyl group. Note that at least one carbonyl group may be included in the molecule of the nitrogen-containing organic compound, and a plurality of carbonyl groups may be included.
  • the nitrogen-containing organic compound is preferable from the viewpoint of the activity of the electrode catalyst obtained by binding a nitrogen atom to the ⁇ carbon of the carbonyl group.
  • Examples of the nitrogen-containing organic compound include amino acids and amino acid derivatives.
  • amino acids examples include alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine, valine, norvaline, and aminobutyric acid. Is preferred.
  • pyrrole-2-carboxylic acid imidazole-2-carboxylic acid, pyrazinecarboxylic acid, piperidine-2-carboxylic acid, piperazine-2-carboxylic acid, pyrimidine-2-carboxylic acid, pyrimidine- 4-carboxylic acid, 2-pyridinecarboxylic acid, 2,4-pyridinedicarboxylic acid, 2-quinolinecarboxylic acid, and oxamic acid are preferred.
  • the ratio (B / A) of the total number of carbon atoms B in the nitrogen-containing organic compound used in step A to the total number A of transition metal elements in the transition metal-containing compound used in step A is It is possible to reduce components desorbed as carbon compounds such as carbon dioxide and carbon monoxide during the heat treatment, that is, since it is possible to reduce the amount of exhaust gas during catalyst production, it is preferably 200 or less, more preferably 150 or less, more preferably 80 or less, particularly preferably 30 or less. From the viewpoint of obtaining a catalyst having a good activity, it is preferably 1 or more, more preferably 2 or more, further preferably 3 or more, particularly preferably 5 or more. It is.
  • the first transition metal-containing compound and the second transition metal organic compound are used as the transition metal-containing compound
  • the first transition metal-containing compound used in Step A and the second transition metal-containing compound are used.
  • M1: M2 (1-a): a in terms of a molar ratio (M1: M2) between the atoms of the transition metal element M1 and the atoms of the transition metal element M2
  • the range of a is usually 0 ⁇ a ⁇ 0.5, preferably 0.01 ⁇ a ⁇ 0.5, more preferably 0.02 ⁇ a ⁇ 0.4, and particularly preferably 0.05 ⁇ a ⁇ 0.5. 0.3.
  • solvent examples include water, alcohols and acids.
  • alcohols examples include ethanol, methanol, butanol, propanol and ethoxyethanol are preferable, and ethanol and methanol are more preferable.
  • acids acetic acid, nitric acid (aqueous solution), hydrochloric acid, phosphoric acid aqueous solution and citric acid aqueous solution are preferable, and acetic acid and nitric acid are more preferable. These may be used alone or in combination of two or more.
  • step A it is preferable to further mix a compound having a diketone structure. It is preferable to use a compound having a diketone structure because the transition metal-containing compound is converted into a metal complex and easily forms a uniform mixture with the nitrogen-containing compound.
  • the removal of the solvent may be performed under atmospheric pressure when the vapor pressure of the solvent is high, but in order to remove the solvent in a shorter time, it is performed under reduced pressure (for example, 0.1 Pa to 0.1 MPa). Also good.
  • reduced pressure for example, 0.1 Pa to 0.1 MPa.
  • an evaporator can be used to remove the solvent under reduced pressure.
  • Step C the catalyst precursor composition is heat-treated to obtain an electrode catalyst.
  • the temperature during this heat treatment is 500 to 1100 ° C., preferably 600 to 1050 ° C., more preferably 700 to 950 ° C.
  • the temperature of the heat treatment is too higher than the above range, sintering and grain growth occur between the particles of the obtained electrode catalyst, resulting in a decrease in the specific surface area of the electrode catalyst. As a result, the processability during processing into a catalyst layer is poor. On the other hand, if the temperature of the heat treatment is too lower than the above range, an electrode catalyst having high activity cannot be obtained.
  • the atmosphere for the heat treatment is preferably an inert gas atmosphere as a main component from the viewpoint of enhancing the activity of the obtained electrode catalyst.
  • inert gases nitrogen, argon, and helium are preferable and nitrogen and argon are more preferable because they are relatively inexpensive and easily available.
  • These inert gas may be used individually by 1 type, and may mix and use 2 or more types. These gases are generally called inert gases, but during the heat treatment in Step C, these inert gases, that is, nitrogen, argon, helium, and the like are mixed with the catalyst precursor composition. It may be reacting.
  • the heat treatment is performed using nitrogen gas, argon gas or a mixed gas of nitrogen gas and argon gas, or one or more gases selected from nitrogen gas and argon gas and one or more gases selected from hydrogen gas, ammonia gas and oxygen gas.
  • nitrogen gas argon gas or a mixed gas of nitrogen gas and argon gas
  • one or more gases selected from nitrogen gas and argon gas and one or more gases selected from hydrogen gas, ammonia gas and oxygen gas When carried out in a mixed gas atmosphere with gas, an electrode catalyst having high catalytic performance tends to be obtained.
  • the hydrogen gas concentration is, for example, 100% by volume or less, preferably 0.01 to 10% by volume, more preferably 1 to 5% by volume.
  • a roll rolling mill for example, a roll rolling mill, a ball mill, a small-diameter ball mill (bead mill), a medium stirring mill, an airflow crusher, a mortar, an automatic kneading mortar, a tank crusher, a jet mill, or the like can be used.
  • a mortar an automatic kneading mortar, or a batch type ball mill is preferable.
  • a heat-treated product is continuously processed in a large amount, a jet mill or a continuous type ball mill is preferable, and a continuous type ball mill is used. Among these, a bead mill is more preferable.
  • Dispersion media include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentaanol, 2-heptanol Alcohols such as benzyl alcohol; Ketones such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl ketone; Ethers such as tetrahydrofuran, diethylene glycol dimethyl ether, anisole, methoxytoluene, diethyl ether, dipropyl ether, dibutyl ether; Amines such as is
  • the range of x is more preferably 0.15 ⁇ x ⁇ 5.0, further preferably 0.2 ⁇ x ⁇ 4.0, and particularly preferably 1.0 ⁇ x. ⁇ 3.0
  • the range of y is more preferably 0.01 ⁇ y ⁇ 1.5, still more preferably 0.02 ⁇ y ⁇ 0.5, and particularly preferably 0.03 ⁇ y ⁇ 0.
  • the range of z is more preferably 0.6 ⁇ z ⁇ 2.6, further preferably 0.9 ⁇ z ⁇ 2.0, and particularly preferably 1.3 ⁇ z ⁇ 1. .9.
  • the catalyst includes, as the transition metal element, one transition metal element M1 selected from the group consisting of Group 4 and Group 5 elements of the periodic table, and iron, nickel, chromium, cobalt, vanadium, and manganese.
  • the ratio of the number of atoms of the transition metal element M1, transition metal element M2, carbon, nitrogen and oxygen constituting the catalyst is set to the transition metal element M1: transition.
  • the catalyst contains M2 as described above, the performance becomes higher.
  • the preferable ranges of x, y and z are as described above, and the range of a is more preferably 0.01 ⁇ a ⁇ 0.5, and further preferably 0.02 ⁇ a. ⁇ 0.4, particularly preferably 0.05 ⁇ a ⁇ 0.3.
  • the values of a, x, y and z are values measured by the method employed in the examples described later. Due to the presence of the transition metal element M2 (at least one metal element selected from iron, nickel, chromium, cobalt, vanadium and manganese, which is different from M1), the following (1) to (3) are estimated.
  • M2 at least one metal element selected from iron, nickel, chromium, cobalt, vanadium and manganese, which is different from M1
  • the transition metal element M2 or the compound containing the transition metal element M2 may act as a catalyst for forming a bond between the transition metal element M1 atom and the nitrogen atom when synthesizing the electrode catalyst. is there.
  • transition metal element M2 or the compound containing the transition metal element M2 prevents sintering of the heat-treated product during the heat treatment in Step C. That is, a decrease in specific surface area is prevented.
  • a bias of charge occurs at the site where both metal element atoms are adjacent to each other, and the transition metal element M1 is the only metal element. There may be substrate adsorption or reaction, or product desorption that cannot be achieved with an electrocatalyst.
  • the catalyst of the present invention can be effectively used as a catalyst in a direct liquid fuel cell, and particularly can be effectively used as an alternative catalyst for a platinum catalyst in a direct liquid fuel cell.
  • the catalyst of the present invention is particularly useful as an oxygen reduction catalyst in a direct liquid fuel cell using liquid fuel such as methanol, ethanol and formic acid.
  • liquid fuel such as methanol, ethanol and formic acid.
  • the catalyst of the present invention when applied as a cathode catalyst in a direct liquid fuel cell, as described above, even when the liquid fuel is present at the cathode due to crossover, it is possible to suppress a decrease in cathode potential, and oxygen reduction. It is excellent in performance and inexpensive.
  • the catalyst layer for direct liquid fuel cell of the present invention preferably further contains an electron conductive substance.
  • the reduction current can be further increased.
  • the electron-conducting substance is considered to increase the reduction current because it causes an electrical contact for inducing an electrochemical reaction in the catalyst.
  • carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene and the like can be used. If the particle size of the carbon is too small, it becomes difficult to form an electron conduction path, and if it is too large, the gas diffusibility of the fuel cell catalyst layer tends to decrease, or the utilization factor of the catalyst tends to decrease. A range of 10 to 1000 nm is preferable, and a range of 10 to 100 nm is more preferable.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • the polymer electrolyte is not particularly limited as long as it is generally used in a direct liquid fuel cell catalyst layer.
  • a perfluorocarbon polymer having a sulfonic acid group for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521))
  • a hydrocarbon polymer having a sulfonic acid group for example, NAFION (registered trademark) (DuPont 5% NAFION (registered trademark) solution (DE521)
  • Compound, polymer compound doped with inorganic acid such as phosphoric acid, organic / inorganic hybrid polymer partially substituted with proton conductive functional group, proton impregnated with phosphoric acid solution or sulfuric acid aqueous solution in polymer matrix A conductor etc. are mentioned.
  • NAFION registered trademark
  • DuPont 5% NAFION (registered trademark) solution (DE521) is preferable.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used directly in the liquid fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent that can be used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water may be used. it can.
  • the electrolyte and the dispersing agent may be further dispersed at the same time.
  • the method for forming the catalyst layer for the direct liquid fuel cell is not particularly limited.
  • a suspension containing the catalyst, the electron conductive particles, and the electrolyte is applied to an electrolyte membrane or a gas diffusion layer described later.
  • a method is mentioned. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method.
  • a liquid type is directly applied to an electrolyte membrane by a transfer method.
  • the method of forming the catalyst layer for fuel cells is mentioned.
  • An electrode for a direct liquid fuel cell (hereinafter also simply referred to as “electrode”) of the present invention is characterized by having the catalyst layer for a direct liquid fuel cell and a porous support layer.
  • the porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”).
  • the gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance.
  • carbon-based porous materials such as carbon paper and carbon cloth are used.
  • Aluminum foil coated with stainless steel or corrosion resistant material is used for the material and weight reduction.
  • the membrane electrode assembly may be referred to as “MEA”.
  • the membrane electrode assembly may be obtained by forming the electrode catalyst layer on the electrolyte membrane and / or the gas diffusion layer, and sandwiching the both surfaces of the electrolyte membrane with the gas diffusion layer with the catalyst layer inside. it can.
  • it is also possible to obtain a membrane electrode assembly by using a hot press.
  • the membrane electrode assembly is sandwiched between the electrode and the electrolyte membrane without using a hot press. It is also possible to obtain.
  • the hot press temperature in the use of the hot press is appropriately selected depending on the components in the electrolyte membrane and / or catalyst layer to be used, but is preferably 100 to 160 ° C, more preferably 120 to 160 ° C, More preferably, the temperature is 120 to 140 ° C. If the temperature during hot pressing is less than the lower limit, bonding may be insufficient, and if it exceeds the upper limit, components in the electrolyte membrane and / or the catalyst layer may be deteriorated.
  • the hot press pressure is appropriately selected depending on the components in the electrolyte membrane and / or the catalyst layer and the type of the gas diffusion layer, but is preferably 1 to 10 MPa, more preferably 1 to 6 MPa. More preferably, it is ⁇ 5 MPa. If the pressure during hot pressing is less than the lower limit, bonding may be insufficient, and if the pressure exceeds the upper limit, the porosity of the catalyst layer and the gas diffusion layer may be reduced and performance may be deteriorated. .
  • a second electrode layer different from the electrode containing the direct liquid fuel cell electrode catalyst of the present invention is disposed between the electrode and the electrolyte membrane in the production of the membrane electrode assembly. It is expected that the durability of the membrane electrode assembly is increased.
  • the component (hereinafter referred to as “second electrode layer component”) to be added to the second layer is not particularly limited, but is soft so as not to damage the electrolyte membrane, and has a conductive path for ions (for example, protons) and electrons. Particularly preferred are those in which is easily formed. From this viewpoint, a conductive material such as a carbon material or a conductive polymer is preferable.
  • carbon material carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene, porous carbon, graphene and the like are preferable, and carbon black and graphite are more preferable.
  • the second electrode layer can easily move protons and hardly move methanol, thereby suppressing the influence of methanol crossover and improving catalyst performance.
  • the proton conductive material is not particularly limited.
  • the method for disposing the second electrode layer between the electrode and the electrolyte membrane is not particularly limited.
  • the second electrode layer component may be applied directly on the surface of the electrode catalyst layer using a bar coater or spray, or may be applied directly on the surface of the electrolyte membrane.
  • the second electrode layer is preferably disposed between the electrode and the electrolyte membrane, such as between the cathode catalyst layer and the electrolyte membrane, or between the anode catalyst layer and the electrolyte membrane, so that the above-described effects are suitably exhibited.
  • the direct liquid fuel cell of the present invention includes the membrane electrode assembly for a direct liquid fuel cell.
  • the direct liquid fuel cell of the present invention has a long lifetime with little decrease in cathode potential due to fuel crossover, and is inexpensive because no expensive precious metal such as platinum is used. Therefore, it is suitable for portable devices such as personal computers and mobile phones, automobiles, and stationary fuel cell devices.
  • Transition metal elements titanium, etc.: About 0.1 g of a sample was weighed on a platinum dish, and acid was added for thermal decomposition. This thermally decomposed product was fixed, diluted, and quantified by ICP-MS. 3. BET specific surface area 0.15 g of a sample was sampled, and the specific surface area was measured with a fully automatic BET specific surface area measuring device Macsorb (manufactured by Mountec Co., Ltd.). The pretreatment time and pretreatment temperature were set at 30 ° C. and 200 ° C., respectively.
  • the anode catalyst ink (1) prepared in 1 above was applied to the surface of the gas diffusion layer at 80 ° C. by an automatic spray coating apparatus (manufactured by Sanei Tech Co., Ltd.). By repeating spray application, the amount of Pt—Ru-supported carbon per unit area is 1.0 mg / cm 2 , then cut into squares (5 cm 2 ), and an electrode having an anode catalyst layer (1) is obtained. Produced.
  • Example 1 Catalyst production (TiFeCNO) Titanium tetraisopropoxide (made by Junsei Chemical Co., Ltd.) 5mL and acetylacetone (Junsei Chemical Co., Ltd.) 5mL are added to a solution of ethanol (Wako Pure Chemical Industries, Ltd.) 15mL and acetic acid (Wako Pure Chemical Industries, Ltd.) 5mL. A titanium-containing mixture solution was prepared while stirring at room temperature.
  • TiFeCNO Titanium tetraisopropoxide (made by Junsei Chemical Co., Ltd.) 5mL and acetylacetone (Junsei Chemical Co., Ltd.) 5mL are added to a solution of ethanol (Wako Pure Chemical Industries, Ltd.) 15mL and acetic acid (Wako Pure Chemical Industries, Ltd.) 5mL.
  • a titanium-containing mixture solution was prepared while stirring at room temperature.
  • the titanium-containing mixture solution was slowly added to the glycine-containing mixture solution to obtain a catalyst precursor composition.
  • the temperature of the hot stirrer was set to about 100 ° C. under reduced pressure in a nitrogen atmosphere, and the solvent was slowly evaporated while heating and stirring the catalyst precursor composition. After completely evaporating the solvent of the catalyst precursor composition, the catalyst precursor composition was finely and uniformly crushed in a mortar to obtain a powder.
  • This powder is put into a tubular furnace, heated to 900 ° C. at a heating rate of 10 ° C./min in a mixed gas atmosphere of 4% by volume hydrogen and nitrogen, held at 900 ° C. for 1 hour, and naturally cooled to give powder ( (Hereinafter also referred to as “catalyst (1)” or “heat-treated product (1)”).
  • the powder X-ray diffraction spectrum of the catalyst (1) is shown in FIG. Diffraction line peaks of titanium compound with cubic structure and titanium oxide with rutile structure were observed. Table 1 shows the component ratio of the catalyst (1) based on the results of elemental analysis. The presence of carbon, nitrogen and oxygen was confirmed. The BET specific surface area of the catalyst (1) was 172 m 2 / g.
  • membrane electrode assembly for fuel cell Nafion (registered trademark) membrane (N-212, manufactured by DuPont) as an electrolyte membrane, cathode (1) as cathode electrode, and anode as reference example 1 Electrodes having the prepared anode catalyst layer (1) (hereinafter also referred to as “anode (1)”) were prepared.
  • a fuel cell membrane electrode assembly (1) (hereinafter also referred to as “MEA (1)”) in which the electrolyte membrane is disposed between the cathode and the anode was produced as follows.
  • the electrolyte membrane is sandwiched between the cathode (1) and the anode (1), and the cathode catalyst layer and the anode catalyst layer are in close contact with the electrolyte membrane. Say. ) (Cell area: 5 cm 2 ).
  • the temperature of the single cell (1) was adjusted to 60 ° C., and aqueous methanol solutions having different concentrations (1 mol / dm 3 and 5 mol / dm 3) were supplied as fuel to the anode side at a flow rate of 3 ml / min. Further, in order to compare the influence of methanol crossover, hydrogen was supplied to the anode side as fuel instead of methanol at 100 ml / min. Oxygen was supplied to the cathode side as an oxidant at a flow rate of 100 ml / min. Under a normal pressure environment, the starting voltage of the single cell (1) at each methanol concentration was measured, and the influence of methanol crossover was evaluated. The results are shown in Table 1.
  • Example 2 Preparation of second electrode layer component ink In a mixed solvent of 25 ml of isopropyl alcohol (manufactured by Wako Pure Chemical Industries) and 25 ml of ion-exchanged water, 0.444 g of carbon black (Ketjen Black EC300J, manufactured by LION) was used as a proton conductive material.
  • a two-electrode layer component ink (2) was prepared.
  • the cathode catalyst ink (1) was applied to the surface of the gas diffusion layer (GDL), and the cathode catalyst ink (1) was formed.
  • the cathode electrode surface was coated with the second electrode layer component ink (2) at 80 ° C. by an automatic spray coating device (manufactured by Saneitec Co., Ltd.), then cut into squares (5 cm 2 ), and the second electrode layer was produced on the surface of the cathode catalyst layer (hereinafter also referred to as “cathode (2)”).
  • the second electrode layer ink was applied such that the amount of the carbon black applied as the second electrode layer component was 1.0 mg per 1 cm 2 of the electrode.
  • membrane electrode assembly for fuel cell Nafion (registered trademark) membrane (N-212, manufactured by DuPont) as an electrolyte membrane, cathode (2) as cathode electrode, and anode as reference example 1 Electrodes having the prepared anode catalyst layer (1) (hereinafter also referred to as “anode (1)”) were prepared.
  • a fuel cell membrane electrode assembly (2) (hereinafter also referred to as “MEA (2)”) in which the electrolyte membrane is disposed between the cathode (2) and the anode (1) was produced as follows. .
  • the electrolyte membrane is sandwiched between the cathode (2) and the anode (1), and the cathode catalyst layer and the anode catalyst layer are in close contact with the electrolyte membrane. Say. ) (Cell area: 5 cm 2 ).
  • the single cell (2) was supplied at 60 ° C. and 5 mol / dm 3 of methanol was supplied to the anode at 3 ml / min. Oxygen was supplied to the cathode side as an oxidant at a flow rate of 100 ml / min, and current-voltage characteristics in a single cell were measured under a normal pressure environment. From the obtained current-voltage characteristic curve, the relationship between the ratio of the current value according to the number of cell operations to the initial current density at 0.30 V and the number of operations is shown in FIG. The single cell (2) having the second electrode layer showed higher initial durability than the single cell (5) of Example 4 having no second electrode layer.
  • a cathode (3) produced in the same manner as in Example 1 was used, and an electrode having an anode catalyst layer (1) produced in Reference Example 1 as an anode electrode (hereinafter referred to as “anode”). (1) ") was also prepared.
  • the cathode (3) is disposed on the side of the electrolyte membrane having the second electrode layer on which the second electrode layer is applied, and the anode (1) is disposed on the side without the second electrode layer.
  • Membrane electrode assembly (3) (hereinafter also referred to as “MEA (3)”) was produced as follows.
  • the single cell (3) was supplied at 60 ° C., and 5 mol / dm 3 of methanol was supplied to the anode at 3 ml / min. Oxygen was supplied to the cathode side as an oxidant at a flow rate of 100 ml / min, and current-voltage characteristics in a single cell were measured under a normal pressure environment. From the obtained current-voltage characteristic curve, the relationship between the ratio of the current value according to the number of cell operations to the initial current density at 0.30 V and the number of operations is shown in FIG. The single cell (3) having the second electrode layer showed higher initial durability than the single cell (5) of Example 4 having no second electrode layer.
  • Example 4 Production of Fuel Cell Membrane Electrode Assembly
  • Nafion (NAFION®) membrane N-212, manufactured by DuPont
  • the cathode (1) was used as the cathode electrode
  • the anode Electrodes having the anode catalyst layer (1) prepared in Reference Example 1 as electrodes (hereinafter also referred to as “anode (1)”) were prepared.
  • a fuel cell membrane electrode assembly (5) (hereinafter also referred to as “MEA (5)”) in which the electrolyte membrane is disposed between the cathode (1) and the anode (1) was produced as follows. .
  • the single cell (5) was supplied at 60 ° C., and 5 mol / dm 3 of methanol was supplied to the anode at 3 ml / min.
  • Oxygen was supplied to the cathode side as an oxidant at a flow rate of 100 ml / min, and current-voltage characteristics in a single cell were measured under a normal pressure environment. From the obtained current-voltage characteristic curve, the relationship between the ratio of the current value according to the number of cell operations to the initial current density at 0.30 V and the number of operations is shown in FIG.
  • the cathode catalyst ink (4) prepared in the above 1 was applied at 80 ° C. by an automatic spray coating apparatus (manufactured by Saneitec Co., Ltd.), and then square (5 cm 2 ) The electrode which has cut
  • membrane electrode assembly for fuel cell Nafion (registered trademark) membrane (N-212, manufactured by DuPont) as an electrolyte membrane, cathode (4) as cathode electrode, and anode as reference example 1
  • the prepared anodes (1) were prepared.
  • a fuel cell membrane electrode assembly (4) (hereinafter also referred to as “MEA (4)”) in which the electrolyte membrane is disposed between the cathode and the anode was produced as follows.
  • the electrolyte membrane is sandwiched between the cathode (4) and the anode (1), and the cathode catalyst layer and the anode catalyst layer are in close contact with the electrolyte membrane.
  • Cell area 5 cm 2 ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明の課題は、液体燃料を直接供給する直接液体型燃料電池において、液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池用電極触媒を得ることが可能な、直接液体型燃料電池用電極触媒の製造方法を提供することにある。本発明の直接液体型燃料電池用電極触媒の製造方法は、少なくとも遷移金属含有化合物および窒素含有有機化合物を混合して触媒前駆体組成物を得る工程A、前記触媒前駆体組成物を500~1100℃の温度で熱処理して電極触媒を得る工程Cを含み、前記遷移金属含有化合物の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物であることを特徴とする。

Description

直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途
 本発明は、直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途に関する。
 メタノール、エタノール、ギ酸、2-プロパノール及びジメチルエーテル等の液体燃料を直接燃料として用いる直接液体型燃料電池は、構造が簡単であることや燃料の取り扱いが容易であることから、携帯用途、移動用電源、分散電源への応用が期待されている。
 直接液体型燃料電池は、例えば、プロトン導電性の高分子電解質膜をアノード(燃料極)及びカソード(空気極)で挟み込んだ構造を有している。そして、アノードに液体燃料を直接供給し、カソードに酸素を供給することにより、アノードでは液体燃料が酸化され、カソードでは酸素が還元されて外部に電気エネルギーを取り出すことができる。
 しかしながら、直接液体型燃料電池には、液体燃料のクロスオーバーにより、燃料利用率の低下とともにカソードにおける電位が低下し、セルのエネルギー変換効率が著しく低下するという問題がある。液体燃料のクロスオーバーとは、液体燃料が高分子電解質膜を透過してアノードからカソードに移動する現象のことである。カソードに達した液体燃料は、カソード触媒表面で直接酸化されるため、カソードにおける電位が低下するという問題が生じる。
 一般的に、直接液体型燃料電池のカソード触媒としては、白金触媒または白金合金触媒が使用されている。白金触媒または白金合金触媒は、高活性であるとともに安定性が高い。しかしながら、白金触媒または白金合金触媒は、酸素の還元反応に対して高い触媒活性を示すだけでなく、上述の液体燃料の酸化反応に対しても高い触媒活性を示すため、クロスオーバーによりカソードに達した液体燃料の酸化反応も促進させる。結果として、カソードにおける酸素還元電位は、液体燃料の酸化電位と混合電位を形成するため、著しく低下する。
 また、直接液体型燃料電池は、アノードにおける反応を促進するため、また燃料のクロスオーバーによるカソードにおける電位低下を抑制するために、水素を用いる燃料電池に比べて、白金触媒が多量に使用されている。しかしながら、白金は価格が高く、また資源量が限られていることから、代替可能な直接液体型燃料電池用電極触媒の開発が強く求められている。
 直接液体型燃料電池における液体燃料のクロスオーバーを抑制するために、液体燃料の透過が少ない電解質膜もしくは液体燃料のクロスオーバーが起こらない電解質膜が開発されている(例えば、特許文献1~3参照)。
 しかしながら、特許文献1~3に記載の電解質膜では、高いイオン伝導度と安定性とを保持しながら、液体燃料のクロスオーバーを大幅に減らすことは極めて困難である。また、ある程度の液体燃料の透過を抑制した電解質膜を用いても、電解質膜内において、水の透過とともに液体燃料の透過も少なからず起こるため、カソードにおける電位低下は避けられない。
 一方、クロスオーバーによりカソードに達した液体燃料を酸化せず、酸素還元だけを選択的に行う触媒も報告されている(例えば、特許文献4および非特許文献1~4参照)。
 しかしながら、特許文献4および非特許文献1~3に開示された触媒は、高価なパラジウム、イリジウムといった貴金属を多量に用いており、経済上不利である。非特許文献4に開示された触媒は、貴金属を用いておらず安価であるが、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
 したがって、より安価で高性能の直接液体型燃料電池用電極触媒の開発が強く求められている。
 特許文献5に開示された触媒は、安価なジルコニウム(Zr)系酸化物を用いているが、触媒として実用的に充分な酸素還元能が得られていない。
 非特許文献5では、ジルコニウムをベースとしたZrOxy化合物が、酸素還元能を示すことが報告されている。
 特許文献6には、白金代替材料として長周期表4族、5族及び14族の元素群から選ばれる1種以上の元素の窒化物を含む酸素還元電極材料が開示されている。
 しかしながら、これらの非金属を含む材料は、触媒として実用的に充分な酸素還元能が得られていないという問題点があった。
 また、特許文献7には、炭化物、酸化物、窒化物を混合し、真空、不活性または非酸化性雰囲気下、500~1500℃で加熱をした炭窒酸化物が開示されている。
 しかしながら、特許文献7に開示されている炭窒酸化物は、薄膜磁気ヘッドセラミックス基板材料であり、この炭窒酸化物を触媒として用いることは検討されていない。
 なお、白金は、上記燃料電池用の触媒としてだけでなく、排ガス処理用触媒または有機合成用触媒としても有用であるが、白金は価格が高く、また資源量が限られているため、これらの用途においても代替可能な触媒の開発が求められていた。
特開平11-144745号公報 特開2002-184427号公報 特開2003-257453号公報 特開2005-135752号公報 国際公開第07-072665号パンフレット 特開2007-31781号公報 特開2003-342058号公報
K.Lee、O.Savadogo、A.Ishihara、S.Mitsushima、N.Kamiya、K.Ota、「Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3d Transition Metal Alloys for Direct Methanol Fuel Cells」、Journal of The ElectrochemicalSociety、2006年、153(1)、A20-A24 K.Lee、L.Zhang、J.Zhang、「A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction」、Journal of Power Sources、2007年、165(1)、108-113 K.Lee、L.Zhang、J.Zhang、「IrxCo1-x(x=0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction」、Journal of Power Sources、2007年、170(10)、291-296 Y.Liu、A.Ishihara、S.Mitsushima、N.Kamiya、K.Ota、「Transition Metal Oxides as DMFC Cathodes Without Platinum」、Journal of The Electrochemical Society、2007年、154(7)、B664-B669 S.Doi、A.Ishihara、S.Mitsushima、N.kamiya、and K.Ota、「Zirconium-Based Compounds for Cathode of Polymer Electrolyte Fuel Cell」、Journal of The Electrochemical Society、2007年、154(3)、B362-B369
 上述したとおり、白金触媒または白金合金触媒は、メタノール、エタノール、ギ酸、2-プロパノール及びジメチルエーテルなどの液体燃料の酸化反応を促進させる性能が高いため、液体燃料のクロスオーバーによるカソード電位の低下を抑制することが非常に難しい。
 本発明の目的は、メタノール、エタノール、ギ酸、2-プロパノール及びジメチルエーテルなどの液体燃料を直接供給する直接液体型燃料電池において、液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池用電極触媒を得ることが可能な、直接液体型燃料電池用電極触媒の製造方法を提供することにある。
 また、本発明の他の目的は該製造方法で得られた、直接液体型燃料電池用電極触媒およびその用途を提供することにある。
 本発明は、たとえば以下の(1)~(22)に関する。
 (1)
 少なくとも遷移金属含有化合物および窒素含有有機化合物を混合して触媒前駆体組成物を得る工程A、
 前記触媒前駆体組成物を500~1100℃の温度で熱処理して電極触媒を得る工程Cを含み、
 前記遷移金属含有化合物の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物であることを特徴とする直接液体型燃料電池用電極触媒の製造方法。
 (2)
 前記工程Aにおいて、混合が溶媒中で行われる(1)に記載の直接液体型燃料電池用電極触媒の製造方法。
 (3)
 前記工程Aと工程Cとの間に、前記触媒前駆体組成物から溶媒を除去する工程Bを含む(2)に記載の直接液体型燃料電池用電極触媒の製造方法。
 (4)
 前記遷移金属元素M1が、チタン、ジルコニウム、ニオブおよびタンタルから選ばれる少なくとも1種であることを特徴とする(1)~(3)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (5)
 前記工程Aにおいて、前記遷移金属含有化合物の溶液と、前記窒素含有有機化合物の溶液とを混合することを特徴とする(1)~(4)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (6)
 前記窒素含有有機化合物が、前記遷移金属含有化合物中の遷移金属と共にキレートを形成可能な化合物であることを特徴とする(1)~(5)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (7)
 前記工程Aにおいて、ジケトン構造を有する化合物をさらに混合することを特徴とする(1)~(6)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
(8)
 前記遷移金属含有化合物の一部が、遷移金属元素として鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンから選ばれる少なくとも1種の遷移金属元素M2を含む化合物であることを特徴とする(1)~(7)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (9)
 前記遷移金属含有化合物が、金属硝酸塩、金属酸塩化物、金属含有有機化合物、金属ハロゲン化物、金属過塩素酸塩および金属次亜塩素酸塩からなる群から選ばれる1種類以上であることを特徴とする(1)~(8)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (10)
 前記遷移金属含有化合物、前記窒素含有有機化合物および前記溶媒のいずれか1つ以上の分子中に酸素を含むことと特徴とする(2)~(9)のいずれかに記載の直接液体型燃料電池用電極触媒の製造方法。
 (11)
 前記窒素含有有機化合物がカルボニル基を含む(10)に記載の直接液体型燃料電池用電極触媒の製造方法。
 (12)
 前記カルボニル基のα炭素に窒素原子が結合している(11)に記載の直接液体型燃料電池用電極触媒の製造方法。
 (13)
 前記工程Cにおいて、前記触媒前駆体組成物を、水素ガスを0.01~10体積%含む雰囲気中で熱処理することを特徴とする(1)~(12)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (14)
 前記工程Cが、前記触媒前駆体組成物を500~1100℃の温度で熱処理し、得られた熱処理物を解砕して電極触媒を得る工程であることを特徴とする(1)~(13)のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
 (15)
 (1)~(14)のいずれか一項に記載の製造方法で得られた直接液体型燃料電池用電極触媒であって、該触媒を構成する遷移金属元素、炭素、窒素および酸素の原子数の比(遷移金属元素:炭素:窒素:酸素)が1:x:y:z(ただし、0<x≦7、0<y≦2、0<z≦3である。)であることを特徴とする直接液体型燃料電池用電極触媒。
 (16)
 (8)に記載の製造方法で得られた直接液体型燃料電池用電極触媒であって、該触媒を構成する遷移金属元素M1、遷移金属元素M2、炭素、窒素および酸素の原子数の比(遷移金属元素M1:遷移金属元素M2:炭素:窒素:酸素)が(1-a):a:x:y:z(ただし、0<a≦0.5、0<x≦7、0<y≦2、0<z≦3である。)であることを特徴とする直接液体型燃料電池用電極触媒。
 (17)
 (15)または(16)に記載の直接液体型燃料電池用触媒を含むことを特徴とする直接液体型燃料電池用触媒層。
 (18)
 さらに電子伝導性物質を含むことを特徴とする(17)に記載の直接液体型燃料電池用触媒層。
 (19)
 直接液体型燃料電池用触媒層と多孔質支持層とを有する直接液体型燃料電池用電極であって、前記燃料電池用触媒層が(17)または(18)に記載の直接液体型燃料電池用触媒層であることを特徴とする直接液体型燃料電池用電極。
 (20)
 カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する直接液体型燃料電池用膜電極接合体であって、前記カソードおよび/または前記アノードが(19)に記載の直接液体型燃料電池用電極であることを特徴とする直接液体型燃料電池用膜電極接合体。
 (21)
 (20)に記載の直接液体型燃料電池用膜電極接合体を備えることを特徴とする直接液体型燃料電池。
 (22)
 (21)に記載の直接液体型燃料電池を備えることを特徴とする携帯機器、自動車、または定置用燃料電池装置。
 本発明の製造方法により得られる直接液体型燃料電池用電極触媒を直接液体型燃料電池に用いると、メタノール、エタノール、ギ酸、2-プロパノール及びジメチルエーテルなどの液体燃料のクロスオーバーによるカソード電位の低下を抑制でき、安価で高性能な直接液体型燃料電池を得ることができる。
実施例1で得られた触媒(1)の粉末X線回折スペクトルを示す。 実施例2~4で得られた電流値の比を示す。
 [直接液体型燃料電池用電極触媒の製造方法]
 本発明の直接液体型燃料電池用電極触媒の製造方法は、少なくとも遷移金属含有化合物および窒素含有有機化合物を混合して触媒前駆体組成物を得る工程A、前記触媒前駆体組成物を500~1100℃の温度で熱処理して電極触媒を得る工程Cを含み、前記遷移金属含有化合物の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物であることを特徴としている。なお本明細書において、特段の事情がない限り、原子およびイオンを、厳密に区別することなく「原子」と記載する。
 (工程A)
 工程Aでは、少なくとも遷移金属含有化合物および窒素含有有機化合物を混合して触媒前駆体組成物を得る。前記混合は、溶媒中で行われることが好ましい。溶媒中で混合を行うと遷移金属含有化合物および窒素含有有機化合物を均一に混合することができるため好ましい。
 前記混合の手順としては、たとえば、
 手順(i):1つの容器に溶媒を準備し、そこへ前記遷移金属含有化合物および前記窒素含有有機化合物を添加し、溶解させて、これらを混合する、
 手順(ii):前記遷移金属含有化合物の溶液、および前記窒素含有有機化合物の溶液を準備し、これらを混合するが挙げられる。
 各成分に対して溶解性の高い溶媒が異なる場合には、手順(ii)が好ましい。また、前記遷移金属含有化合物が、たとえば、後述する金属ハロゲン化物の場合には、手順(i)が好ましく、前記遷移金属含有化合物が、たとえば、後述する金属含有有機化合物または金属錯体の場合には、手順(ii)が好ましい。
 前記遷移金属含有化合物として後述する第1の遷移金属含有化合物および第2の遷移金属含有化合物を用いる場合の、前記手順(ii)における好ましい手順としては、
 手順(ii'):前記第1の遷移金属含有化合物の溶液、ならびに前記第2の遷移金属含有化合物および前記窒素含有有機化合物の溶液を準備し、これらを混合することが挙げられる。
 前記触媒前駆体組成物には遷移金属含有化合物と窒素含有有機化合物との反応生成物が含まれると考えられる。溶媒へのこの反応生成物の溶解度は、遷移金属含有化合物、窒素含有有機化合物および溶媒等の組み合わせによっても異なる。
 工程Aでは、オートクレーブ等の加圧可能な容器に遷移金属含有化合物、窒素含有有機化合物、溶媒を入れ、常圧以上の圧力をかけながら、混合を行ってもよい。
 <遷移金属含有化合物>
 前記遷移金属含有化合物の一部または全部は、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物である。前記遷移金属元素M1としては、具体的にはチタン、ジルコニウム、ハフニウム、バナジウム、ニオブおよびタンタルが挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 遷移金属元素M1の中でも、コストおよび得られる触媒の性能の観点から、チタン、ジルコニウム、ニオブおよびタンタルが好ましく、チタンおよびジルコニウムがさらに好ましい。
 前記遷移金属含有化合物は、好ましくは酸素原子およびハロゲン原子から選ばれる少なくとも1種を有する。前記遷移金属含有化合物としては、金属リン酸塩、金属硫酸塩、金属硝酸塩、金属酸ハロゲン化物(金属ハロゲン化物の中途加水分解物)、金属ハロゲン化物、金属ハロゲン酸塩、金属次亜ハロゲン酸塩、金属含有有機化合物、金属錯体が挙げられ、金属硝酸塩、金属酸塩化物、金属含有有機化合物、金属ハロゲン化物、金属過塩素酸塩、金属次亜塩素酸塩が好ましい。これらは、1種単独で用いてもよく2種以上を併用してもよい。前記金属含有有機化合物としては、金属有機酸塩、金属アルコキシドが挙げられる。
 前記金属アルコキシドとしては、前記遷移金属のメトキシド、プロポキシド、イソプロポキシド、エトキシド、ブトキシド、およびイソブトキシドが好ましく、前記遷移金属のイソプロポキシド、エトキシドおよびブトキシドがさらに好ましい。前記金属アルコキシドは、1種のアルコキシ基を有していてもよく、2種以上のアルコキシ基を有していてもよい。
 酸素原子を有する遷移金属含有化合物としては、アルコキシド、アセチルアセトン錯体、酸塩化物および硫酸塩が好ましく、コストの面から、アルコキシド、アセチルアセトン錯体がより好ましく、前記液相中の溶媒への溶解性の観点から、アルコキシド、アセチルアセトン錯体がさらに好ましい。
 前記金属ハロゲン化物としては、前記遷移金属の塩化物、臭化物およびヨウ化物が好ましく、前記金属酸ハロゲン化物としては、前記遷移金属の酸塩化物、酸臭化物、酸ヨウ化物が好ましい。
 金属過ハロゲン酸塩としては金属過塩素酸塩が好ましく、金属次亜ハロゲン酸塩としては金属次亜塩素酸塩が好ましい。
 前記遷移金属含有化合物の具体例としては、
 チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトラペントキシド、チタンテトラアセチルアセトナート、チタンオキシジアセチルアセトナート、トリス(アセチルアセトナト)第二チタン塩化物([Ti(acac)3]2[TiCl6])、四塩化チタン、三塩化チタン、オキシ塩化チタン、四臭化チタン、三臭化チタン、オキシ臭化チタン、四ヨウ化チタン、三ヨウ化チタン、オキシヨウ化チタン等のチタン化合物;
 ニオブペンタメトキシド、ニオブペンタエトキシド、ニオブペンタイソプロポキシド、ニオブペンタブトキシド、ニオブペンタペントキシド、五塩化ニオブ、オキシ塩化ニオブ、五臭化ニオブ、オキシ臭化ニオブ、五ヨウ化ニオブ、オキシヨウ化ニオブ等のニオブ化合物;
 ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラペントキシド、ジルコニウムテトラアセチルアセトナート、四塩化ジルコニウム、オキシ塩化ジルコニウム、四臭化ジルコニウム、オキシ臭化ジルコニウム、四ヨウ化ジルコニウム、オキシヨウ化ジルコニウム等のジルコニウム化合物;
 タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタイソプロポキシド、タンタルペンタブトキシド、タンタルペンタペントキシド、タンタルテトラエトキシアセチルアセトナート、五塩化タンタル、オキシ塩化タンタル、五臭化タンタル、オキシ臭化タンタル、五ヨウ化タンタル、オキシヨウ化タンタル等のタンタル化合物;
 ハフニウムテトラメトキシド、ハフニウムテトラエトキシド、ハフニウムテトラプロポキシド、ハフニウムテトライソプロポキシド、ハフニウムテトラブトキシド、ハフニウムテトライソブトキシド、ハフニウムテトラペントキシド、ハフニウムテトラアセチルアセトナート、四塩化ハフニウム、オキシ塩化ハフニウム、臭化ハフニウム、オキシ臭化ハフニウム、ヨウ化ハフニウム、オキシヨウ化ハフニウム等のハフニウム化合物;
 バナジウムオキシトリメトキシド、バナジウムオキシトリエトキシド、バナジウムオキシトリイソプロポキシド、バナジウムオキシトリブトキシド、バナジウム(III)アセチルアセトナート、バナジウム(IV)アセチルアセトナート、五塩化バナジウム、オキシ塩化バナジウム、五臭化バナジウム、オキシ臭化バナジウム、五ヨウ化バナジウム、オキシヨウ化バナジウム等のバナジウム化合物が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 これらの化合物の中でも、得られる触媒が均一な粒径の微粒子となり、その活性が高いことから、
 チタンテトラエトキシド、四塩化チタン、オキシ塩化チタン、チタンテトライソプロポキシド、チタンテトラアセチルアセトナート、
 ニオブペンタエトキシド、五塩化ニオブ、オキシ塩化ニオブ、ニオブペンタイソプロポキシド、
 ジルコニウムテトラエトキシド、四塩化ジルコニウム、オキシ塩化ジルコニウム、ジルコニウムテトライソプロポキシド、ジルコニウムテトラアセチルアセトナート、
 タンタルペンタメトキシド、タンタルペンタエトキシド、五塩化タンタル、オキシ塩化タンタル、タンタルペンタイソプロポキシド、およびタンタルテトラエトキシアセチルアセトナートが好ましく、チタンテトライソプロポキシド、チタンテトラアセチルアセトナート、ニオブエトキシド、ニオブイソプロポキシド、オキシ塩化ジルコニウム、ジルコニウムテトライソプロポキシド、およびタンタルペンタイソプロポキシドがさらに好ましい。
 また、前記遷移金属含有化合物として、遷移金属元素として周期表第4族または第5族の遷移金属元素M1を含む遷移金属含有化合物(以下「第1の遷移金属含有化合物」ともいう。)と共に、遷移金属元素として、遷移金属元素M1とは異なる元素であって、鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンから選ばれる少なくとも1種の遷移金属元素M2を含む遷移金属含有化合物(以下「第2の遷移金属含有化合物」ともいう。)が併用されてもよい。第2の遷移金属含有化合物を用いると、得られる触媒の性能が向上する。
 第2の遷移金属含有化合物中の遷移金属元素M2としては、コストと得られる触媒の性能とのバランスの観点から、鉄およびクロムが好ましく、鉄がさらに好ましい。
 第2の遷移金属含有化合物の具体例としては、
 塩化鉄(II)、塩化鉄(III)、硫酸鉄(III)、硫化鉄(II)、硫化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、フェロシアン化鉄、硝酸鉄(II)、硝酸鉄(III)、シュウ酸鉄(II)、シュウ酸鉄(III)、リン酸鉄(II)、リン酸鉄(III)フェロセン、水酸化鉄(II)、水酸化鉄(III)、酸化鉄(II)、酸化鉄(III)、四酸化三鉄、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(III)等の鉄化合物;
 塩化ニッケル(II)、硫酸ニッケル(II)、硫化ニッケル(II)、硝酸ニッケル(II)、シュウ酸ニッケル(II)、リン酸ニッケル(II)、ニッケルセン、水酸化ニッケル(II)、酸化ニッケル(II)、酢酸ニッケル(II)、乳酸ニッケル(II)等のニッケル化合物;
 塩化クロム(II)、塩化クロム(III)、硫酸クロム(III)、硫化クロム(III)、硝酸クロム(III)、シュウ酸クロム(III)、リン酸クロム(III)、水酸化クロム(III)、酸化クロム(II)、酸化クロム(III)、酸化クロム(IV)、酸化クロム(VI)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)等のクロム化合物;
 塩化コバルト(II)、塩化コバルト(III)、硫酸コバルト(II)、硫化コバルト(II)、硝酸コバルト(II)、硝酸コバルト(III)、シュウ酸コバルト(II)、リン酸コバルト(II)、コバルトセン、水酸化コバルト(II)、酸化コバルト(II)、酸化コバルト(III)、四酸化三コバルト、酢酸コバルト(II)、乳酸コバルト(II)等のコバルト化合物;
 塩化バナジウム(II)、塩化バナジウム(III)、塩化バナジウム(IV)、オキシ硫酸バナジウム(IV)、硫化バナジウム(III)、オキシシュウ酸バナジウム(IV)、バナジウムメタロセン、酸化バナジウム(V)、酢酸バナジウム、クエン酸バナジウム等のバナジウム化合物;
 塩化マンガン(II)、硫酸マンガン(II)、硫化マンガン(II)、硝酸マンガン(II)、シュウ酸マンガン(II)、水酸化マンガン(II)、酸化マンガン(II)、酸化マンガン(III)、酢酸マンガン(II)、乳酸マンガン(II)、クエン酸マンガン等のマンガン化合物が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 これらの化合物の中でも、
 塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)、
 塩化ニッケル(II)、酢酸ニッケル(II)、乳酸ニッケル(II)、
 塩化クロム(II)、塩化クロム(III)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)、
 塩化コバルト(II)、塩化コバルト(III)、酢酸コバルト(II)、乳酸コバルト(II)、
 塩化バナジウム(II)、塩化バナジウム(III)、塩化バナジウム(IV)、オキシ硫酸バナジウム(IV)、酢酸バナジウム、クエン酸バナジウム、
 塩化マンガン(II)、酢酸マンガン(II)、乳酸マンガン(II)が好ましく、
 塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)、塩化クロム(II)、塩化クロム(III)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)がさらに好ましい。
 <窒素含有有機化合物>
 前記窒素含有有機化合物としては、特に限定は無いが、前記遷移金属含有化合物中の遷移金属原子に配位可能な配位子となり得る化合物(好ましくは、単核の錯体を形成し得る化合物)が好ましく、多座配位子(好ましくは、2座配位子または3座配位子)となり得る(キレートを形成し得る)化合物がさらに好ましい。
 前記窒素含有有機化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 本発明に用いる窒素含有有機化合物は、カルボニル基を含むものが好ましい。前記カルボニル基は、官能基の一部として前記窒素含有有機化合物に含まれていてもよい。カルボニル基としては、カルボキシル基またはアルデヒド基の一部として前記窒素含有有機化合物に含まれていることが好ましく、カルボキシル基として前記窒素含有有機化合物に含まれていることが好ましい。なおカルボニル基は、窒素含有有機化合物の分子中に少なくとも一つ含まれていればよく、複数含まれていてもよい。
 前記窒素含有有機化合物がカルボニル基を含む場合には、工程Aの混合により、前記遷移金属含有化合物が含有する遷移金属に強く配位することができると考えられる。前記窒素含有有機化合物は、1種単独で用いてもよく、2種以上を併用してもよい。
 また、前記窒素含有有機化合物としては、カルボニル基のα炭素に窒素原子が結合していることが得られる電極触媒の活性の観点から好ましい。
 前記窒素含有有機化合物としては例えば、アミノ酸およびアミノ酸誘導体、が挙げられる。
 前記アミノ酸としては、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、セリン、トレオニン、トリプトファン、チロシン、バリン、ノルバリン、およびアミノ酪酸などが好ましい。
 前記アミノ酸誘導体としては、グリシルグリシン、トリグリシン、テトラグリシンなどのオリゴペプチド、ピログルタミン酸及びαアミノ脂肪酸誘導体が好ましい。
 得られる触媒の活性が高いことから、アラニン、グリシン、リシン、メチオニン、チロシンがより好ましく、得られる触媒が極めて高い活性を示すことから、アラニン、グリシンおよびリシンが特に好ましい。
 上記アミノ酸およびアミノ酸誘導体に加えて、ピロール-2-カルボン酸、イミダゾール-2-カルボン酸、ピラジンカルボン酸、ピペリジン-2-カルボン酸、ピペラジン-2-カルボン酸、ピリミジン-2-カルボン酸、ピリミジン-4-カルボン酸、2-ピリジンカルボン酸、2,4-ピリジンジカルボン酸、2-キノリンカルボン酸、およびオキサミン酸が好ましい。
 工程Aで用いられる前記遷移金属含有化合物の遷移金属元素の総原子数Aに対する、工程Aで用いられる前記窒素含有有機化合物の炭素の総原子数Bの比(B/A)は、工程Cでの熱処理時に二酸化炭素、一酸化炭素等の炭素化合物として脱離する成分を少なくすることが可能であり、すなわち触媒製造時に排気ガスを少量とすることができることから、好ましくは200以下、より好ましくは150以下、さらに好ましくは80以下、特に好ましくは30以下であり、良好な活性の触媒を得るという観点から、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上、特に好ましくは5以上である。
 工程Aで用いられる前記遷移金属含有化合物の遷移金属元素の総原子数Aに対する、工程Aで用いられる前記窒素含有有機化合物の窒素の総原子数Cの比(C/A)は、良好な活性の触媒を得るという観点から、好ましくは28以下、より好ましくは17以下、さらに好ましくは12以下、特に好ましくは8.5以下であり、良好な活性の触媒を得るという観点から、好ましくは1以上、より好ましくは2.5以上、さらに好ましくは3以上、特に好ましくは3.5以上である。
 前記遷移金属含有化合物として、前記第1の遷移金属含有化合物と、前記第2の遷移金属有機化合物とを用いる場合には、工程Aで用いられる前記第1の遷移金属含有化合物と前記第2の遷移金属含有化合物との割合を、遷移金属元素M1の原子と遷移金属元素M2の原子とのモル比(M1:M2)に換算して、M1:M2=(1-a):aと表わすと、aの範囲は、通常は0<a≦0.5、好ましくは0.01≦a≦0.5、さらに好ましくは0.02≦a≦0.4、特に好ましくは0.05≦a≦0.3である。
 <溶媒>
 前記溶媒としては、たとえば水、アルコール類および酸類が挙げられる。アルコール類としては、エタノール、メタノール、ブタノール、プロパノールおよびエトキシエタノールが好ましく、エタノールおよびメタノールさらに好ましい。酸類としては、酢酸、硝酸(水溶液)、塩酸、リン酸水溶液およびクエン酸水溶液が好ましく、酢酸および硝酸がさらに好ましい。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 前記工程Aにおいて、ジケトン構造を有する化合物をさらに混合することが好ましい。ジケトン構造を有する化合物を用いると、前記遷移金属含有化合物が、金属錯体化され、前記窒素含有化合物との均一な混合物を作りやすいため好ましい。
 ジケトン構造を有する化合物としては、ジアセチル、アセチルアセトン、2,5-ヘキサンジオンおよびジメドンが好ましく、アセチルアセトンおよび2,5-ヘキサンジオンがより好ましい。ジケトン構造を有する化合物としては、1種で用いても、2種以上を用いてもよい。
 本発明に用いる前記遷移金属含有化合物、前記窒素含有有機化合物、および前記溶媒の1つ以上の分子中に酸素を含むことが、得られる触媒の活性の観点から好ましい。
 (工程B)
 前記工程Aにおいて、溶媒を用いて混合を行った場合には通常工程Bが行われる。工程Bでは、工程Aで得られた前記触媒前駆体組成物から溶媒を除去する。
 溶媒の除去は大気下で行ってもよく、不活性ガス(例えば、窒素、アルゴン、ヘリウム)雰囲気下で行ってもよい。不活性ガスとしては、コストの観点から、窒素およびアルゴンが好ましく、窒素がより好ましい。
 溶媒除去の際の温度は、溶媒の蒸気圧が大きい場合には常温であってもよいが、触媒の量産性の観点からは、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上であり、工程Aで得られる溶液中に含まれる、キレート等の金属錯体であると推定される触媒前駆体を分解させないという観点からは、好ましくは250℃以下、より好ましくは150℃以下、さらに好ましくは110℃以下である。
 溶媒の除去は、溶媒の蒸気圧が大きい場合には大気圧下で行ってもよいが、より短時間で溶媒を除去するため、減圧(たとえば、0.1Pa~0.1MPa)下で行ってもよい。減圧下での溶媒の除去には、たとえばエバポレーターを用いることができる。
 本発明の直接液体型燃料電池用電極触媒の製造方法では、工程Aの次に、工程Bを行うことなく、工程Cを行ってもよいが、工程Aにおいて混合を溶媒中で行った場合には、工程Bにより溶媒の除去を行った後に、工程Cを行うことが好ましい。工程Bを行うと、工程Cにおけるエネルギー効率がよくなるため好ましい。
 (工程C)
 工程Cでは、前記触媒前駆体組成物を熱処理して電極触媒を得る。
 この熱処理の際の温度は、500~1100℃であり、好ましくは600~1050℃であり、より好ましくは700~950℃である。
 熱処理の温度が上記範囲よりも高すぎると、得られた電極触媒の粒子相互間においての焼結、粒成長がおこり、結果として電極触媒の比表面積が小さくなってしまうため、この粒子を塗布法により触媒層に加工する際の加工性が劣ってしまう。一方、熱処理の温度が上記範囲よりも低過ぎると、高い活性を有する電極触媒を得ることができない。
 前記熱処理の方法としては、たとえば、静置法、攪拌法、落下法、粉末捕捉法などが挙げられる。前記熱処理における炉の形状としては、管状炉、上蓋型炉、トンネル炉、箱型炉、試料台昇降式炉(エレベーター型)、台車炉などが挙げられ、この中でも雰囲気を特に厳密にコントロールすることが可能な、管状炉、上蓋型炉、箱型炉および試料台昇降式炉が好ましく、管状炉および箱型炉が好ましい。
 前記熱処理を行う際の雰囲気としては、得られる電極触媒の活性を高める観点から、その主成分が不活性ガス雰囲気であることが好ましい。不活性ガスの中でも、比較的安価であり、入手しやすい点で窒素、アルゴン、ヘリウムが好ましく、窒素およびアルゴンがさらに好ましい。これらの不活性ガスは、1種単独で用いてもよく、2種以上を混合して用いてもよい。なお、これらのガスは一般的な通念上不活性といわれるガスであるが、工程Cの前記熱処理の際にこれらの不活性ガスすなわち、窒素、アルゴン、ヘリウム等が、前記触媒前駆体組成物と反応している可能性はある。
 また、前記熱処理を、窒素ガス、アルゴンガスもしくは窒素ガスとアルゴンガスとの混合ガス、または窒素ガスおよびアルゴンガスから選ばれる一種以上のガスと水素ガス、アンモニアガスおよび酸素ガスから選ばれる一種以上のガスとの混合ガスの雰囲気で行うと、高い触媒性能を有する電極触媒が得られる傾向がある。
 前記熱処理の雰囲気中に水素ガスが含まれる場合には、水素ガスの濃度は、たとえば100体積%以下、好ましくは0.01~10体積%、より好ましくは1~5体積%である。
 前記熱処理の雰囲気中に酸素ガスが含まれる場合には、酸素ガスの濃度は、たとえば0.01~10体積%、好ましくは0.01~5体積%である。
 前記熱処理で得られた熱処理物は、そのまま電極触媒として使用してもよく、さらに解砕してから電極触媒として用いてもよい。なお、本明細書において、解砕、破砕等、熱処理物を細かくする操作を、特に区別せず「解砕」と表記する。解砕を行うと、得られた電極触媒を用いて電極を製造する際の加工性、および得られる電極の特性を改善できることがある。この解砕には、たとえば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機またはジェトミルなどを用いることができる。電極触媒が少量の場合には、乳鉢、自動混練乳鉢、バッチ式のボールミルが好ましく、熱処理物を連続的に多量に処理する場合には、ジェットミル、連続式のボールミルが好ましく、連続式のボールミルの中でもビーズミルがさらに好ましい。
 前記熱処理物の解砕を湿式で行う場合には分散媒を通常は用いる。分散媒としては、メタノール、エタノール、1-プロパノ―ル、2-プロパノ―ル、1-ブタノ-ル、2‐ブタノ-ル、イソブチルアルコール、tert-ブチルアルコール、ペンタノ-ル、2-ヘプタノ-ル、ベンジルアルコール等のアルコール類;
 アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類;
 テトラヒドロフラン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類;
 イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミンなどのアミン類;
 蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチルなどのエステル類;
 アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール等の極性溶媒が好ましい。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 前記分散媒は、好ましくは水を実質的に含まない。具体的には、前記分散媒中の水の含量は、好ましくは0~0.1質量%である。
 [直接液体型燃料電池用電極触媒]
 本発明の直接液体型燃料電池用電極触媒は、上述した本発明の直接液体型燃料電池用電極触媒の製造方法により製造されることを特徴としている(以下、上述した本発明の直接液体型燃料電池用電極触媒の製造方法により製造される直接液体型燃料電池用電極触媒を「触媒」ともいう)。
 前記触媒を構成する遷移金属元素(ただし、遷移金属元素M1と遷移金属元素M2とを区別しない。)、炭素、窒素および酸素の原子数の比を、遷移金属元素:炭素:窒素:酸素=1:x:y:zと表すと、好ましくは、0<x≦7、0<y≦2、0<z≦3である。
 電極触媒の活性が高いことから、xの範囲は、より好ましくは0.15≦x≦5.0、さらに好ましくは0.2≦x≦4.0であり、特に好ましくは1.0≦x≦3.0であり、yの範囲は、より好ましくは0.01≦y≦1.5、さらに好ましくは0.02≦y≦0.5であり、特に好ましくは0.03≦y≦0.4であり、zの範囲は、より好ましくは0.6≦z≦2.6であり、さらに好ましくは0.9≦z≦2.0であり、特に好ましくは1.3≦z≦1.9である。
 また前記触媒が、前記遷移金属元素として、周期表第4族および第5族の元素からなる群から選択される1種の遷移金属元素M1、および鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンより選択される少なくとも1種の遷移金属元素M2を含む場合には、前記触媒を構成する遷移金属元素M1、遷移金属元素M2、炭素、窒素および酸素の原子数の比を、遷移金属元素M1:遷移金属元素M2:炭素:窒素:酸素=(1-a):a:x:y:zと表すと、好ましくは、0<a≦0.5、0<x≦7、0<y≦2、0<z≦3である。前記触媒は、このようにM2を含むと、より性能が高くなる。
 電極触媒の活性が高いことから、x、yおよびzの好ましい範囲は上述のとおりであり、aの範囲は、より好ましくは0.01≦a≦0.5、さらに好ましくは0.02≦a≦0.4、特に好ましくは0.05≦a≦0.3である。
 前記a、x、yおよびzの値は、後述する実施例で採用した方法により測定した場合の値である。
  遷移金属元素M2(M1とは異なる、鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンより選択される少なくとも1種の金属元素)が存在することにより、以下の(1)~(3)が推定される。
 (1)遷移金属元素M2または遷移金属元素M2を含む化合物が、電極触媒を合成する際に、遷移金属元素M1原子と窒素原子との結合を形成するための触媒として作用している可能性がある。
 (2)遷移金属元素M2または遷移金属元素M2を含む化合物が、工程Cの熱処理の際に、熱処理物の焼結を防ぐと考えられる。すなわち比表面積の低下を防止する。
 (3)電極触媒中に遷移金属元素M1および遷移金属元素M2が存在することによって、双方の金属元素原子が隣接しあう部位において、電荷の偏りが生じ、金属元素として遷移金属元素M1のみを有する電極触媒ではなしえない、基質の吸着もしくは反応、または生成物の脱離が発生している可能性がある。
 本発明の触媒は、好ましくは、遷移金属元素、炭素、窒素および酸素の各原子を有し、前記遷移金属元素の酸化物、炭化物または窒化物単独あるいはこれらのうちの複数の結晶構造を有する。前記触媒に対するX線回折分析による結晶構造解析の結果と、元素分析の結果とから判断すると、前記触媒は、前記遷移金属元素の酸化物構造を有したまま、酸化物構造の酸素原子のサイトを炭素原子または窒素原子で置換した構造、あるいは前記遷移金属元素の炭化物、窒化物または炭窒化物の構造を有したまま、炭素原子または窒素原子のサイトを酸素原子で置換した構造を有するか、あるいはこれらの構造を含む混合物ではないかと推測される。
 <BET比表面積>
 本発明の直接液体型燃料電池用電極触媒の製造方法によれば、比表面積の大きな直接液体型燃料電池用電極触媒が製造され、本発明の触媒のBET法で算出される比表面積は、好ましくは30~350m2/g、より好ましくは50~300m2/g、さらに好ましくは100~300m2/gである。
 <用途>
 本発明の触媒は、直接液体型燃料電池における触媒として有効に使用することができ、特に直接液体型燃料電池における白金触媒の代替触媒として有効に使用することができる。
 また、本発明の触媒は、メタノール、エタノール及びギ酸等の液体燃料を使用する直接液体型燃料電池における酸素還元触媒として特に有用である。
 直接液体型燃料電池におけるカソード触媒として白金触媒を適用すると、前記液体燃料のクロスオーバーによるカソード電位の低下が生じる。結果として、直接液体型燃料電池の性能が著しく低下する。
 しかしながら、本発明の触媒は、直接液体型燃料電池におけるカソード触媒として適用した場合、上述のとおり、前記液体燃料がクロスオーバーによりカソードに存在しても、カソード電位の低下を抑制ができ、酸素還元能に優れ、しかも安価である。
 本発明の直接液体型燃料電池用触媒層は、前記触媒を含むことを特徴としている。
 直接液体型燃料電池用触媒層には、アノード触媒層、カソード触媒層がある。特に前記触媒は、酸素還元能が大きく、液体燃料のクロスオーバーによるカソード電位の低下を抑制することができるので、カソード触媒層に用いることが好ましい。
 本発明の直接液体型燃料電池用触媒層には、さらに電子伝導性物質を含むことが好ましい。前記触媒を含む直接液体型燃料電池用触媒層がさらに電子伝導性物質を含む場合には、還元電流をより高めることができる。電子伝導性物質は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
 電子伝導性物質としては粒子状物質(以下「電子伝導性粒子」という。)を使うことが好ましい。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。電子伝導性粒子を構成する材料としては、炭素、導電性高分子、導電性セラミクス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを単独または組み合わせて用いることができる。特に、比表面積の大きい炭素粒子単独または比表面積の大きい炭素粒子とその他の電子伝導性粒子との混合物が好ましい。すなわち直接液体型燃料電池用触媒層としては、前記触媒と、比表面積の大きい炭素粒子とを含むことが好ましい。
 炭素としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレンなどが使用できる。カーボンの粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると燃料電池用触媒層のガス拡散性が低下したり、触媒の利用率が低下したりする傾向があるため、10~1000nmの範囲であることが好ましく、10~100nmの範囲であることがより好ましい。
 なお、本発明において、炭素の粒径は、透過電子顕微鏡(Transmission Electron Microscope:TEM)により測定した値である。
 電子伝導性粒子を構成する材料が、炭素の場合、前記触媒と炭素との質量比(触媒:電子伝導性粒子)は、好ましくは0.5:1~1000:1であり、より好ましくは1:1~100:1であり、さらに好ましくは4:1~10:1である。
 導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 高分子電解質としては、直接液体型燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))など)、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸水溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、NAFION(登録商標)(デュポン社 5%NAFION(登録商標)溶液(DE521))が好ましい。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、直接液体型燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用できる溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等を使用することができる。
 また、触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 直接液体型燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に直接液体型燃料電池用触媒層を形成した後、転写法で電解質膜に直接液体型燃料電池用触媒層を形成する方法が挙げられる。
 本発明の直接液体型燃料電池用電極(以下、単に「電極」とも記す)は、前記直接液体型燃料電池用触媒層と多孔質支持層とを有することを特徴としている。
 多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被覆したアルミニウム箔が用いられる。
 <直接液体型燃料電池用膜電極接合体>
 本発明の直接液体型燃料電池用膜電極接合体は、カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードと前記アノードのうち少なくともいずれかが、前記電極であることを特徴としている。このとき、前記カソードと前記アノードのうちいずれか1つのみが前記電極である場合に、もう一方の電極として、従来公知の直接液体型燃料電池用電極、例えば、前記複合触媒の代わりに白金担持カーボンなど白金系触媒を含む直接液体型燃料電池用電極を用いることができる。
 以下、本明細書において、膜電極接合体を「MEA」と呼ぶ場合がある。
 膜電極接合体は、電解質膜および/またはガス拡散層に前記電極触媒層を形成後、該触媒層を内側として電解質膜の両面をガス拡散層で挟むことで前記膜電極接合体を得ることができる。前記膜電極接合膜の作製においては、ホットプレスを使って、膜電極接合体を得ることも可能であり、ホットプレスを使わずに前記電極と前記電解質膜を挟んで、前記膜電極接合体を得ることも可能である。
 ホットプレスの使用におけるホットプレス温度は、使用する電解質膜および/または触媒層中の成分によって適宜選択されるが、100~160℃であることが好ましく、120~160℃であることがより好ましく、120~140℃であることがさらに好ましい。ホットプレス時の温度が前記下限値未満であると接合が不充分となるおそれがあり、前記上限値を超えると電解質膜および/または触媒層中の成分が劣化するおそれがある。
 また、ホットプレス圧力は、電解質膜および/または触媒層中の成分、ガス拡散層の種類によって適宜選択されるが、1~10MPaであることが好ましく、1~6MPaであることがより好ましく、2~5MPaであることがさらに好ましい。ホットプレス時の圧力が前記下限値未満であると接合が不充分となるおそれがあり、前記上限値を超えると触媒層やガス拡散層の空孔度が減少し、性能が劣化するおそれがある。
 ホットプレス時間は、ホットプレス時の温度および圧力によって適宜選択されるが、1~20分であることが好ましく、3~20分であることがより好ましく、5~20分であることがさらに好ましい。
 また、前記膜電極接合体の作製における前記電極と前記電解質膜との間に、前記本発明の直接液体型燃料電池用電極触媒を含有する電極とは異なる、第2電極層を配置することで膜電極接合体の耐久性が高くなることが期待される。第2層に入れる成分(以下「第2電極層成分」と呼ぶ)としては、特に限定されてないが、電解質膜にダメージを与えないように柔らかくて、イオン(例えばプロトン)や電子の導電パスが形成されやすいものが特に好ましい。この観点から、炭素材料、導電性高分子等の導電性を持つ材料が好ましい。
 前記炭素材料としては、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、多孔体カーボン、グラフェンなどが好ましく、カーボンブラック、黒鉛がより好ましい。
 前記導電性高分子としては、ポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン、およびそれらの誘導体等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 特に、第2電極層をプロトンの移動が起こりやすく、かつメタノール移動が起こりにくくすることで、メタノールクロスオーバーの影響を抑え、触媒性能をあげる効果も期待される。第2電極層内でのプロトン移動を起こりやすくするためには、前記第2電極層成分とプロトン導電性を持つ材料を混合することが好ましい。プロトン導電性材料としては特に限定されないが、例えば、スルホン酸基を有するパーフルオロカーボン重合体、スルホン酸基を有する炭化水素系高分子、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、テトラフルオロエチレンとパーフルオロ[2-(フルオロスルホニルエトキシ)プロピルビニルエーテル]との共重合体(例えば、NAFION(登録商標))が好ましい。
 前記第2電極層を電極と電解質膜の間に配置する方法としては特に限定されない。例えば、バーコーターやスプレーなどを用いて、前記第2電極層成分を電極触媒層の表面に直接塗布しても良いし、電解質膜の表面上に直接塗布しても良い。また、第2電極層は、カソード触媒層と電解質膜との間、またはアノード触媒層と電解質膜との間など、電極と電解質膜との間に配置することで、前述の効果を好適に発揮することが可能であり、さらにカソード触媒層と電解質膜との間に配置することが好ましい。
 本発明の直接液体型燃料電池は、前記直接液体型燃料電池用膜電極接合体を備えることを特徴としている。
 本発明の直接液体型燃料電池は、燃料のクロスオーバーによるカソード電位の低下が少なく長寿命であり、高価な白金等の貴金属を使うことがないため安価である。従ってパソコンや携帯電話のような携帯機器、自動車、または定置用燃料電池装置に好適である。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 また、実施例および比較例における各種測定は、下記の方法により行った。
 [分析方法]
 1.粉末X線回折
 理学電機株式会社製 ロータフレックスを用いて、試料の粉末X線回折を行った。
 各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。
 なお、ノイズ(N)は、ベースラインの幅とした。
 2.元素分析
 炭素:試料約0.1gを量り取り、堀場製作所EMIA-110で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Ni-Cupに封入後、ON分析装置で測定を行った。
 遷移金属元素(チタンなど):試料約0.1gを白金皿に量り取り、酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP-MSで定量を行った。
 3.BET比表面積
 試料を0.15g採取し、全自動BET比表面積測定装置 マックソーブ((株)マウンテック製)で比表面積測定を行った。前処理時間、前処理温度は、それぞれ30分、200℃に設定した。
 [参考例1]単セル評価用アノード電極の作製
 1. アノード用触媒インクの調製
 Pt-Ru担持カーボン(TEC61E54DM、田中貴金属工業製)0.6gを純水50mlに加え、さらにプロトン伝導性材料(NAFION(登録商標);0.25g)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)5gを入れて、超音波分散機(UT-106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、アノード用触媒インク(1)を調製した。
 2. アノード触媒層を有する電極の作製
 ガス拡散層(カーボンペーパーTGP-H-060、東レ社製)(5cm×5cm(25cm2))を、アセトンに30秒間浸漬し、脱脂を行った。
 次に、前記ガス拡散層の表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記1で調製したアノード用触媒インク(1)を塗布した。繰り返しスプレー塗布することにより、単位面積あたりのPt-Ru担持カーボンの量が1.0mg/cm2となるようにし、次いで正方形(5cm2)に切断し、アノード触媒層(1)を有する電極を作製した。
 [実施例1]
 1. 触媒の製造(TiFeCNO)
 チタンテトライソプロポキシド(純正化学(株)製)5mL及びアセチルアセトン(純正化学)5mLをエタノール(和光純薬(株)製)15mLと酢酸(和光純薬(株)製)5mLとの溶液に加え、室温で攪拌しながらチタン含有混合物溶液を作成した。また、グリシン(和光純薬(株)製)2.507g及び酢酸鉄(Aldrich社製)0.153gを純水20mLに加え、室温で攪拌して完全に溶解させてグリシン含有混合物溶液を作成した。
 チタン含有混合物溶液をグリシン含有混合物溶液にゆっくり添加し、触媒前駆体組成物を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記触媒前駆体組成物を加熱かつ攪拌しながら、溶媒をゆっくり蒸発させた。前記触媒前駆体組成物の溶媒を完全に蒸発させた後、乳鉢で細かく均一に潰して、粉末を得た。
 この粉末を管状炉に入れ、4容量%水素と窒素との混合ガス雰囲気下で昇温速度10℃/minで900℃まで加熱し、900℃で1時間保持し、自然冷却することにより粉末(以下「触媒(1)」または「熱処理物(1)」とも記す。)を得た。
 触媒(1)の粉末X線回折スペクトルを図1に示す。立方晶構造を持つチタン化合物およびルチル構造を持つ酸化チタンの回折線ピークが観測された。
 また、元素分析結果による触媒(1)の成分比を表1に示す。炭素、窒素及び酸素の存在が確認された。 触媒(1)のBET比表面積は172m2/gであった。
 2. カソード用触媒インクの調製
 イソプロピルアルコール(和光純薬工業製)25mlとイオン交換水25mlの混合溶媒に、触媒(1)を0.355gと、電子伝導性材料としてカーボンブラック(ケッチェンブラックEC300J、LION社製)を0.089gとを加え、さらにプロトン伝導性材料としてナフィオン(NAFION(登録商標)の5%水溶液(和光純薬工業製)を5.325g加え、超音波分散機(UT-106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、カソード用触媒インク(1)を調製した。
 3. カソード触媒層を有する電極の作製
 ガス拡散層(カーボンペーパー(GDL24BC、SGLカーボングループ社製))(以下「GDL」とも記す。)(5cm×5cm(25cm2))の表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記カソード用触媒インク(1)を塗布し、次いで正方形(5cm2)に切断し、カソード触媒層をGDL表面に有する電極(1)(以下「カソード(1)」ともいう。)を作製した。触媒インクの塗布は、触媒(1)の塗布量が電極1cm2あたり、4.0mgとなるようにした。
 4. 燃料電池用膜電極接合体の作製
 電解質膜としてナフィオン(NAFION(登録商標))膜(N-212、DuPont社製)を、カソード極として上記カソード(1)を、アノード極として参考例1で作製したアノード触媒層(1)を有する電極(以下「アノード(1)」ともいう。)をそれぞれ準備した。前記カソードと前記アノードとの間に前記電解質膜を配置した燃料電池用膜電極接合体(1)(以下「MEA(1)」ともいう。)を以下のように作製した。
 前記電解質膜を前記カソード(1)および前記アノード(1)で挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するようにして、単セル(1)以下「単セル(1)」ともいう。)(セル面積:5cm2)を作製した。
 5. 単セル評価
 上記単セル(1)を60℃に温度調節し、アノード側に燃料として異なる濃度(1mol/dm3および5mol/dm3)のメタノール水溶液を流量3ml/分で供給した。また、メタノールクロスオーバーの影響を比較するために、アノード側にメタノールの代わりに水素を燃料として100ml/分で供給した。カソード側に酸化剤として酸素を流量100ml/分で供給した。常圧環境下で、各メタノール濃度における単セル(1)の開始電圧を測定し、メタノールクロスオーバーの影響を評価し、その結果を表1に示した。
 [実施例2]
 1. 第2電極層成分インクの作製
 イソプロピルアルコール(和光純薬工業製)25mlとイオン交換水25mlの混合溶媒に、カーボンブラック(ケッチェンブラックEC300J、LION社製)を0.444gとプロトン伝導性材料としてナフィオン(NAFION(登録商標)の5%水溶液(和光純薬工業製)を5.325g加え、超音波分散機(UT-106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、第2電極層成分インク(2)を調製した。
 2. 第2電極層を有する電極の作製
 実施例1と同様の方法で、ガス拡散層(GDL)の表面に、カソード用触媒インク(1)を塗布し、該カソード用触媒インク(1)から形成されたカソード電極表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、前記第2電極層成分インク(2)を塗布し、次いで正方形(5cm2)に切断し、第2電極層をカソード触媒層表面に有する電極(2)(以下「カソード(2)」ともいう。)を作製した。第2電極層インクの塗布は、第2電極層成分として前記カーボングラックの塗布量が電極1cm2あたり、1.0mgとなるようにした。
 3. 燃料電池用膜電極接合体の作製
 電解質膜としてナフィオン(NAFION(登録商標))膜(N-212、DuPont社製)を、カソード極として上記カソード(2)を、アノード極として参考例1で作製したアノード触媒層(1)を有する電極(以下「アノード(1)」ともいう。)をそれぞれ準備した。前記カソード(2)と前記アノード(1)との間に前記電解質膜を配置した燃料電池用膜電極接合体(2)(以下「MEA(2)」ともいう。)を以下のように作製した。
 前記電解質膜を前記カソード(2)および前記アノード(1)で挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するようにして、単セル(2)以下「単セル(2)」ともいう。)(セル面積:5cm2)を作製した。
 4. 単セル評価
 上記単セル(2)を60℃、アノードに5mol/dm3のメタノールを3ml/分で供給した。カソード側に酸化剤として酸素を流量100ml/分で供給し、常圧環境下で、単セルにおける電流-電圧特性を測定した。得られた電流-電圧特性曲線から、0.30Vにおける初期電流密度に対するセル運転回数による電流値との比と運転回数との関係を図2に示した。第2電極層を有する単セル(2)は第2電極層を有してない実施例4の単セル(5)より高い初期耐久性を示した。
 [実施例3]
 1. 2電極層成分インクの作製
 イソプロピルアルコール(和光純薬工業製)25mlとイオン交換水25mlの混合溶媒に、カーボンブラック(ケッチェンブラックEC300J、LION社製)を0.444gとプロトン伝導性材料としてナフィオン(NAFION(登録商標)の5%水溶液(和光純薬工業製)を5.325g加え、超音波分散機(UT-106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、第2電極層成分インク(3)を調製した。
 2. 第2電極層を有する電解質膜の作製
 電解質膜であるナフィオン(NAFION(登録商標))膜(N-212、DuPont社製)(5cm×5cm(25cm2))の表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、前記第2電極層成分インク(3)を塗布し、次いで正方形(5cm2)に切断し、第2電極層を電解質膜表面に有する膜を作製した。第2電極層インクの塗布は、第2電極層成分として前記カーボングラックの塗布量が電解質膜1cm2あたり、1.0mgとなるようにした。
 3. 燃料電池用膜電極接合体の作製
 カソード極としては、実施例1と同様に作製したカソード(3)を、アノード極として参考例1で作製したアノード触媒層(1)を有する電極(以下「アノード(1)」ともいう。)をそれぞれ準備した。前記カソード(3)を、前記第2電極層を有する電解質膜の第2電極層が塗布されている側に配置し、前記アノード(1)は第2電極層が無い側に配置した燃料電池用膜電極接合体(3)(以下「MEA(3)」ともいう。)を以下のように作製した。
 前記電解質膜を前記カソード(3)および前記アノード(1)で挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するようにして、単セル(3)以下「単セル(3)」ともいう。)(セル面積:5cm2)を作製した。
 4. 単セル評価
 上記単セル(3)を60℃、アノードに5mol/dm3のメタノールを3ml/分で供給した。カソード側に酸化剤として酸素を流量100ml/分で供給し、常圧環境下で、単セルにおける電流-電圧特性を測定した。得られた電流-電圧特性曲線から、0.30Vにおける初期電流密度に対するセル運転回数による電流値との比と運転回数との関係を図2に示した。第2電極層を有する単セル(3)は第2電極層を有してない実施例4の単セル(5)より高い初期耐久性を示した。
 [実施例4]
 1. 燃料電池用膜電極接合体の作製
 実施例1と同様に、電解質膜としてナフィオン(NAFION(登録商標))膜(N-212、DuPont社製)を、カソード極として上記カソード(1)を、アノード極として参考例1で作製したアノード触媒層(1)を有する電極(以下「アノード(1)」ともいう。)をそれぞれ準備した。前記カソード(1)と前記アノード(1)との間に前記電解質膜を配置した燃料電池用膜電極接合体(5)(以下「MEA(5)」ともいう。)を以下のように作製した。
 前記電解質膜を前記カソード(1)および前記アノード(1)で挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するようにして、単セル(5)以下「単セル(5)」ともいう。)(セル面積:5cm2)を製作した。
 2. 単セル評価上記単セル(5)を60℃、アノードに5mol/dm3のメタノールを3ml/分で供給した。カソード側に酸化剤として酸素を流量100ml/分で供給し、常圧環境下で、単セルにおける電流-電圧特性を測定した。得られた電流-電圧特性曲線から、0.30Vにおける初期電流密度に対するセル運転回数による電流値との比と運転回数との関係を図2に示した。
 [比較例1]
 1. カソード用触媒(Pt/C)インクの調製
 Pt担持カーボン(TEC10E70TPM、田中貴金属工業製)0.6gを純水50mlに加え、さらにプロトン伝導性材料(NAFION(登録商標);0.25g)を含有する水溶液(NAFION5%水溶液、和光純薬工業製)5gを入れて、超音波分散機(UT-106H型シャープマニファクチャリングシステム社製)で1時間混合することにより、カソード用触媒インク(4)を調製した。
 2. カソード触媒層を有する電極の作製
 ガス拡散層(カーボンペーパーTGP-H-060、東レ社製)(5cm×5cm(25cm2))を、アセトンに30秒間浸漬し、脱脂を行った。
 次に、前記ガス拡散層の表面に、自動スプレー塗布装置(サンエイテック社製)により、80℃で、上記1で調製したカソード用触媒インク(4)を塗布し、次いで正方形(5cm2)に切断し、カソード触媒層(4)を有する電極を作製した。前記塗布は、繰り返しスプレー塗布することにより、単位面積あたりのPt担持カーボンの量が1.0mg/cm2となるようにした。
 3. 燃料電池用膜電極接合体の作製
 電解質膜としてナフィオン(NAFION(登録商標))膜(N-212、DuPont社製)を、カソード極として上記カソード(4)を、アノード極として参考例1で作製したアノード(1)をそれぞれ準備した。前記カソードと前記アノードとの間に前記電解質膜を配置した燃料電池用膜電極接合体(4)(以下「MEA(4)」ともいう。)を以下のように作製した。
 前記電解質膜を前記カソード(4)および前記アノード(1)で挟み、カソード触媒層およびアノード触媒層が前記電解質膜に密着するようにして、単セル(4)以下「単セル(4)」ともいう。)(セル面積:5cm2)を製作した。
 4. 単セル評価
 上記単セル(3)を60℃に温度調節し、アノード側に燃料として異なる濃度(1mol/dm3および5mol/dm3)のメタノール水溶液を流量3ml/分で供給した。また、メタノールクロスオーバーの影響を比較するために、アノード側にメタノールの代わりに水素を燃料として100ml/分で供給した。カソード側に酸化剤として酸素を流量100ml/分で供給した。常圧環境下で、各メタノール濃度における単セル(3)の開始電圧を測定し、メタノールクロスオーバーの影響を評価し、その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001

Claims (22)

  1.  少なくとも遷移金属含有化合物および窒素含有有機化合物を混合して触媒前駆体組成物を得る工程A、
     前記触媒前駆体組成物を500~1100℃の温度で熱処理して電極触媒を得る工程Cを含み、
     前記遷移金属含有化合物の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物であることを特徴とする直接液体型燃料電池用電極触媒の製造方法。
  2.  前記工程Aにおいて、混合が溶媒中で行われる請求項1に記載の直接液体型燃料電池用電極触媒の製造方法。
  3.  前記工程Aと工程Cとの間に、前記触媒前駆体組成物から溶媒を除去する工程Bを含む請求項2に記載の直接液体型燃料電池用電極触媒の製造方法。
  4.  前記遷移金属元素M1が、チタン、ジルコニウム、ニオブおよびタンタルから選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  5.  前記工程Aにおいて、前記遷移金属含有化合物の溶液と、前記窒素含有有機化合物の溶液とを混合することを特徴とする請求項1~4のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  6.  前記窒素含有有機化合物が、前記遷移金属含有化合物中の遷移金属と共にキレートを形成可能な化合物であることを特徴とする請求項1~5のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  7.  前記工程Aにおいて、ジケトン構造を有する化合物をさらに混合することを特徴とする請求項1~6のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  8.  前記遷移金属含有化合物の一部が、遷移金属元素として鉄、ニッケル、クロム、コバルト、バナジウムおよびマンガンから選ばれる少なくとも1種の遷移金属元素M2を含む化合物であることを特徴とする請求項1~7のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  9.  前記遷移金属含有化合物が、金属硝酸塩、金属酸塩化物、金属含有有機化合物、金属ハロゲン化物、金属過塩素酸塩および金属次亜塩素酸塩からなる群から選ばれる1種類以上であることを特徴とする請求項1~8のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  10.  前記遷移金属含有化合物、前記窒素含有有機化合物および前記溶媒のいずれか1つ以上の分子中に酸素を含むことと特徴とする請求項2~9のいずれかに記載の直接液体型燃料電池用電極触媒の製造方法。
  11.  前記窒素含有有機化合物がカルボニル基を含む請求項10に記載の直接液体型燃料電池用電極触媒の製造方法。
  12.  前記カルボニル基のα炭素に窒素原子が結合している請求項11に記載の直接液体型燃料電池用電極触媒の製造方法。
  13.  前記工程Cにおいて、前記触媒前駆体組成物を、水素ガスを0.01~10体積%含む雰囲気中で熱処理することを特徴とする請求項1~12のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  14.  前記工程Cが、前記触媒前駆体組成物を500~1100℃の温度で熱処理し、得られた熱処理物を解砕して電極触媒を得る工程であることを特徴とする請求項1~13のいずれか一項に記載の直接液体型燃料電池用電極触媒の製造方法。
  15.  請求項1~14のいずれか一項に記載の製造方法で得られた直接液体型燃料電池用電極触媒であって、該触媒を構成する遷移金属元素、炭素、窒素および酸素の原子数の比(遷移金属元素:炭素:窒素:酸素)が1:x:y:z(ただし、0<x≦7、0<y≦2、0<z≦3である。)であることを特徴とする直接液体型燃料電池用電極触媒。
  16.  請求項8に記載の製造方法で得られた直接液体型燃料電池用電極触媒であって、該触媒を構成する遷移金属元素M1、遷移金属元素M2、炭素、窒素および酸素の原子数の比(遷移金属元素M1:遷移金属元素M2:炭素:窒素:酸素)が(1-a):a:x:y:z(ただし、0<a≦0.5、0<x≦7、0<y≦2、0<z≦3である。)であることを特徴とする直接液体型燃料電池用電極触媒。
  17.  請求項15または16に記載の直接液体型燃料電池用触媒を含むことを特徴とする直接液体型燃料電池用触媒層。
  18.  さらに電子伝導性物質を含むことを特徴とする請求項17に記載の直接液体型燃料電池用触媒層。
  19.  直接液体型燃料電池用触媒層と多孔質支持層とを有する直接液体型燃料電池用電極であって、前記燃料電池用触媒層が請求項17または18に記載の直接液体型燃料電池用触媒層であることを特徴とする直接液体型燃料電池用電極。
  20.  カソードとアノードと前記カソード及び前記アノードの間に配置された電解質膜とを有する直接液体型燃料電池用膜電極接合体であって、前記カソードおよび/または前記アノードが請求項19に記載の直接液体型燃料電池用電極であることを特徴とする直接液体型燃料電池用膜電極接合体。
  21.  請求項20に記載の直接液体型燃料電池用膜電極接合体を備えることを特徴とする直接液体型燃料電池。
  22.  請求項21に記載の直接液体型燃料電池を備えることを特徴とする携帯機器、自動車、または定置用燃料電池装置。
PCT/JP2012/059375 2011-08-09 2012-04-05 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途 WO2013021681A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12821438.4A EP2744025A4 (en) 2011-08-09 2012-04-05 METHOD FOR MANUFACTURING CATALYST FOR DIRECT LIQUID FUEL CELL, CATALYST MANUFACTURED THEREBY AND APPLICATION THEREOF
KR1020147005941A KR101627441B1 (ko) 2011-08-09 2012-04-05 직접 액체형 연료 전지용 촉매의 제조 방법 및 상기 방법에 의해 제조된 촉매 및 그 용도
CN201280037435.2A CN103718358A (zh) 2011-08-09 2012-04-05 直接液体型燃料电池用催化剂的制造方法、以及通过该方法制造的催化剂和其用途
US14/236,160 US9379390B2 (en) 2011-08-09 2012-04-05 Process for producing catalyst for direct-liquid fuel cell, catalyst produced by the process and uses thereof
JP2013503313A JP5320521B2 (ja) 2011-08-09 2012-04-05 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011174053 2011-08-09
JP2011-174053 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021681A1 true WO2013021681A1 (ja) 2013-02-14

Family

ID=47668211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059375 WO2013021681A1 (ja) 2011-08-09 2012-04-05 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途

Country Status (6)

Country Link
US (1) US9379390B2 (ja)
EP (1) EP2744025A4 (ja)
JP (1) JP5320521B2 (ja)
KR (1) KR101627441B1 (ja)
CN (1) CN103718358A (ja)
WO (1) WO2013021681A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104826629B (zh) * 2015-04-17 2018-08-07 华南师范大学 一种多孔石墨烯复合催化剂的合成方法与应用
KR102260303B1 (ko) * 2019-10-10 2021-06-03 전남대학교산학협력단 초급속연소법을 이용한 전이금속 전기화학 촉매 및 이의 합성방법
CN113422079B (zh) * 2021-05-21 2022-09-09 深圳航天科技创新研究院 一种燃料电池催化剂的热处理控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324093A (ja) * 1994-05-31 1995-12-12 Tanaka Kikinzoku Kogyo Kk トリス(アセチルアセトナト)ルテニウム(iii) の製造方法
JPH11144745A (ja) 1997-11-06 1999-05-28 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2002184427A (ja) 2000-12-12 2002-06-28 Japan Science & Technology Corp プロトン導電性物質
JP2003257453A (ja) 2001-12-27 2003-09-12 Toray Ind Inc 高分子固体電解質およびその製造方法ならびにそれを用いた固体高分子型燃料電池
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2005135752A (ja) 2003-10-30 2005-05-26 Japan Science & Technology Agency 燃料電池用酸素還元反応触媒
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
WO2007072665A1 (ja) 2005-12-19 2007-06-28 National University Corporation Yokohama National University 直接形燃料電池用酸素還元電極
WO2008111570A1 (ja) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited 膜-電極接合体およびこれを用いた燃料電池
WO2009107518A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途
WO2009119523A1 (ja) * 2008-03-24 2009-10-01 昭和電工株式会社 触媒及びその製造方法ならびにその用途
WO2011099493A1 (ja) * 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1260842C (zh) * 2002-07-09 2006-06-21 中国科学院长春应用化学研究所 燃料电池阴极非铂复合催化剂的制备方法
JP2008258152A (ja) * 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 膜−電極接合体およびこれを用いた燃料電池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324093A (ja) * 1994-05-31 1995-12-12 Tanaka Kikinzoku Kogyo Kk トリス(アセチルアセトナト)ルテニウム(iii) の製造方法
JPH11144745A (ja) 1997-11-06 1999-05-28 Asahi Glass Co Ltd 固体高分子電解質型メタノール燃料電池
JP2002184427A (ja) 2000-12-12 2002-06-28 Japan Science & Technology Corp プロトン導電性物質
JP2003257453A (ja) 2001-12-27 2003-09-12 Toray Ind Inc 高分子固体電解質およびその製造方法ならびにそれを用いた固体高分子型燃料電池
JP2003342058A (ja) 2002-05-23 2003-12-03 Sumitomo Special Metals Co Ltd 薄膜磁気ヘッド用セラミックス基板材料
JP2005135752A (ja) 2003-10-30 2005-05-26 Japan Science & Technology Agency 燃料電池用酸素還元反応触媒
JP2007031781A (ja) 2005-07-27 2007-02-08 Yokohama National Univ 酸素還元電極
WO2007072665A1 (ja) 2005-12-19 2007-06-28 National University Corporation Yokohama National University 直接形燃料電池用酸素還元電極
WO2008111570A1 (ja) * 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited 膜-電極接合体およびこれを用いた燃料電池
WO2009107518A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途
WO2009119523A1 (ja) * 2008-03-24 2009-10-01 昭和電工株式会社 触媒及びその製造方法ならびにその用途
WO2011099493A1 (ja) * 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
K.LEE; L.ZHANG; J.ZHANG: "A novel methanol-tolerant Ir-Se chalcogenide electrocatalyst for oxygen reduction", JOURNAL OF POWER SOURCES, vol. 165, no. 1, 2007, pages 108 - 113
K.LEE; L.ZHANG; J.ZHANG: "IrxCol-x(x=0.3-1.0) alloy electrocatalysts, catalytic activities, and methanol tolerance in oxygen reduction reaction", JOURNAL OF POWER SOURCES, vol. 170, no. 10, 2007, pages 291 - 296
K.LEE; O.SAVADOGO; A.ISHIHARA; S.MITSUSHIMA; N.KAMIYA; K.OTA: "Methanol-Tolerant Oxygen Reduction Electrocatalysts Based on Pd-3d Transition Metal Alloys for Direct Methanol Fuel Cells", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 153, no. 1, 2006, pages A20 - A24
S.DOI; A.ISHIHARA; S.MITSUSHIMA; N.KAMIYA; K.OTA: "Zirconium-Based compounds for Cathode of Polymer Electrolyte Fuel Cell", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, no. 3, 2007, pages B362 - B369
See also references of EP2744025A4
Y.LIU; A.ISHIHARA; S.MITSUSHIMA; N.KAMIYA; K.OTA: "Transition Metal Oxides as DMFC Cathodes Without Platinum", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 154, no. 7, 2007, pages B664 - B669

Also Published As

Publication number Publication date
KR101627441B1 (ko) 2016-06-03
EP2744025A1 (en) 2014-06-18
CN103718358A (zh) 2014-04-09
EP2744025A4 (en) 2015-07-15
KR20140053284A (ko) 2014-05-07
JP5320521B2 (ja) 2013-10-23
JPWO2013021681A1 (ja) 2015-03-05
US20140170527A1 (en) 2014-06-19
US9379390B2 (en) 2016-06-28

Similar Documents

Publication Publication Date Title
US9640801B2 (en) Process for producing catalyst carrier, process for producing composite catalyst, composite catalyst, and fuel cell using same
JP5828766B2 (ja) 燃料電池用電極触媒の製造方法、および、遷移金属炭窒酸化物の製造方法
JP5766138B2 (ja) 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
EP2744024B1 (en) Method for producing electrode catalyst for fuel cells
JP5706596B1 (ja) 酸素還元触媒およびその用途
JP6124891B2 (ja) 膜電極接合体、およびこれを備える燃料電池
JP5819280B2 (ja) 燃料電池用電極触媒およびその用途
JP5255160B1 (ja) 燃料電池用電極触媒およびその製造方法
JP5320521B2 (ja) 直接液体型燃料電池用触媒の製造方法ならびに該方法により製造された触媒およびその用途
JP2013116458A (ja) 触媒担体の製造方法、複合触媒の製造方法、複合触媒、およびこれを用いた直接酸化型燃料電池
JPWO2014010278A1 (ja) 燃料電池の運転方法および発電装置
JP5916528B2 (ja) インク、該インクを用いて形成される電極触媒層およびその用途
JP4944281B1 (ja) 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503313

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236160

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012821438

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012821438

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147005941

Country of ref document: KR

Kind code of ref document: A