WO2012114778A1 - 燃料電池用電極触媒の製造方法 - Google Patents

燃料電池用電極触媒の製造方法 Download PDF

Info

Publication number
WO2012114778A1
WO2012114778A1 PCT/JP2012/050008 JP2012050008W WO2012114778A1 WO 2012114778 A1 WO2012114778 A1 WO 2012114778A1 JP 2012050008 W JP2012050008 W JP 2012050008W WO 2012114778 A1 WO2012114778 A1 WO 2012114778A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
catalyst
transition metal
producing
electrode
Prior art date
Application number
PCT/JP2012/050008
Other languages
English (en)
French (fr)
Inventor
雅揮 堀北
建燦 李
安顕 脇坂
佐藤 孝志
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US14/000,569 priority Critical patent/US10026968B2/en
Priority to JP2012534455A priority patent/JP5153967B2/ja
Priority to EP12748862.5A priority patent/EP2680351B1/en
Priority to CN201280009625.3A priority patent/CN103380523B/zh
Publication of WO2012114778A1 publication Critical patent/WO2012114778A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a fuel cell electrode catalyst, and a method for producing a fuel cell electrode, and more particularly, a fuel cell catalyst useful as an alternative catalyst for a noble metal such as platinum, and a fuel cell electrode. It relates to a manufacturing method.
  • a polymer solid fuel cell is a type of fuel in which a polymer solid electrolyte is sandwiched between an anode and a cathode, fuel is supplied to the anode, oxygen or air is supplied to the cathode, and oxygen is reduced at the cathode to extract electricity. It is a battery. Hydrogen or methanol is mainly used as the fuel.
  • a layer containing a catalyst (hereinafter referred to as “for fuel cell”) is provided on the cathode (air electrode) surface or anode (fuel electrode) surface of the fuel cell. Also referred to as “catalyst layer”).
  • a noble metal is generally used, and noble metals such as platinum and palladium which are stable at a high potential and have high activity among the noble metals have been mainly used.
  • noble metals are expensive and have limited resources, development of alternative catalysts has been required.
  • the noble metal used for the cathode surface may be dissolved in an acidic atmosphere, and there is a problem that it is not suitable for applications that require long-term durability. Therefore, there has been a strong demand for the development of a catalyst that does not corrode in an acidic atmosphere, has excellent durability, and has a high oxygen reducing ability.
  • base metal substitute catalysts base metal carbides, base metal oxides, base metal carbonitrides, chalcogen compounds and carbon catalysts that do not use any precious metal have been reported (for example, see Patent Documents 1 to 4). These materials are cheaper and have abundant resources than noble metal materials such as platinum.
  • Patent Document 5 and Patent Document 6 are attracting particular attention because they can effectively exhibit the above performance.
  • the catalysts described in Patent Document 5 and Patent Document 6 have extremely high performance compared to conventional noble metal substitute catalysts, heat treatment at a high temperature of 1600 ° C. to 1800 ° C. is necessary in a part of the production process. (For example, Patent Document 5 Example 1 or Patent Document 6 Example 1).
  • Patent Document 7 reports a technique relating to the production of a carbon-containing titanium oxynitride containing carbon, nitrogen and oxygen.
  • production of titanium oxynitride by reaction of a nitrogen-containing organic compound and a titanium precursor, and phenol resin and titanium oxynitride in order to produce a carbon-containing titanium oxynitride, production of titanium oxynitride by reaction of a nitrogen-containing organic compound and a titanium precursor, and phenol resin and titanium oxynitride.
  • a two-step synthesis of producing carbon-containing titanium oxynitride by reaction with a nitride precursor is required and the process is complicated.
  • the production of the titanium oxynitride precursor requires a complicated process such as stirring at 80 ° C., heating, refluxing, cooling, and concentration under reduced pressure, and thus the production cost is high.
  • the phenol resin is a thermosetting resin having a three-dimensional network structure, it is difficult to uniformly mix and react with the metal oxide.
  • the thermal decomposition temperature of the phenol resin is 400 ° C. to 900 ° C., there is a problem that the carbonization reaction due to complete decomposition of the phenol resin hardly occurs at a temperature of 1000 ° C. or less.
  • Patent Document 7 and Non-Patent Document 1 only describe applications as a thin film for solar collectors and a photocatalyst, and are highly useful as an electrode catalyst in granular or fibrous form.
  • the manufacturing method of metal oxycarbonitride having such a shape and its use have not been disclosed or studied.
  • Patent Document 8 discloses a method for producing an electrode catalyst characterized by firing a mixed material of an oxide and a carbon material precursor, but an electrode catalyst having sufficient catalytic performance has not been obtained. .
  • Patent Document 9 discloses a fuel cell electrode catalyst using a polynuclear complex such as cobalt, but there is a problem that it is expensive and does not have sufficient catalytic activity.
  • Non-Patent Document 2 discloses a method for producing an electrode catalyst characterized by firing a mixed material of titanium alkoxide and a carbon material precursor, but in the production process, an organic substance containing nitrogen is used. No electrode catalyst having sufficient catalytic performance has been obtained.
  • Patent Document 10 discloses a method for producing an electrode catalyst in which a metal compound such as zirconium hydroxide and a carbon material precursor are calcined under conditions that allow the carbon material precursor to transition to a carbon material (for example, 400 to 1100 ° C.). Although disclosed, an electrocatalyst having sufficient catalytic performance has not been obtained.
  • a method for producing an electrode catalyst for a fuel cell which includes Step 2 for removing a solvent from a body solution, and Step 3 for obtaining an electrode catalyst by heat-treating the solid residue obtained in Step 2 at a relatively low temperature.
  • the electrode for a fuel cell comprising the step of bringing an aqueous solution of the transition metal compound (1) into contact with ammonia and / or aqueous ammonia to form a precipitate containing atoms of the transition metal as described below
  • the method for producing the catalyst is not disclosed.
  • An object of the present invention is to provide a method for producing an electrode catalyst for a fuel cell having a high catalytic activity using a transition metal (such as titanium) through heat treatment at a relatively low temperature.
  • a transition metal such as titanium
  • the present invention relates to the following [1] to [10], for example.
  • a step (I) in which an aqueous solution of the transition metal compound (1) is contacted with ammonia and / or aqueous ammonia to form a precipitate (A) containing atoms of the transition metal A step (II) of obtaining a catalyst precursor by mixing at least the precipitate (A), the organic compound (B) and the liquid medium (C); Step (IV) of obtaining an electrode catalyst by heat-treating the catalyst precursor at a temperature of 500 to 1200 ° C.
  • transition metal compound (1) is at least one transition metal element selected from Group 4 and Group 5 elements of the periodic table as a transition metal element (hereinafter referred to as “transition metal element M1” or “M1”). ).
  • a compound containing The organic compound (B) is at least one selected from sugar, amino sugar, glucosaminoglycan, polyvinyl alcohol, polyalkylene glycol, polyester, nitrogen-containing polymer compound, nitrile group-containing compound, amino acid and organic acid.
  • the transition metal compound (1) is a metal halide, metal sulfate, metal alkoxide, metal acetate, metal phosphate, metal nitrate, metal organic acid salt, metal acid halide, metal perhalogenate and metal hypohalite.
  • the manufacturing method of the electrode catalyst layer for fuel cells characterized by including the process to form.
  • a method for producing an electrode for a fuel cell having an electrode catalyst layer for a fuel cell and a porous support layer, the step of producing an electrode catalyst layer for a fuel cell by the method described in [6] above, and the porous support layer A method for producing a fuel cell electrode comprising the step of forming the fuel cell electrode catalyst layer on the surface of the fuel cell.
  • a method for producing a membrane electrode assembly comprising a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode, the method comprising producing a fuel cell electrode by the method described in [7] above, and A membrane electrode assembly comprising a step of manufacturing a membrane electrode assembly by disposing the cathode, the electrolyte membrane, and the anode while using a fuel cell electrode as at least one of the cathode and the anode. Production method.
  • a method for producing a fuel cell comprising a step of producing a membrane electrode assembly by the method described in [8] above, and a step of producing a fuel cell using the membrane electrode assembly.
  • a fuel cell electrode catalyst having a high catalytic activity using a transition metal can be produced through heat treatment at a relatively low temperature.
  • FIG. 1 is an oxygen reduction current density-potential curve of the fuel cell electrode (1) of Example 1.
  • FIG. FIG. 2 is a powder X-ray diffraction spectrum of the catalyst (1) of Example 1.
  • FIG. 3 is an oxygen reduction current density-potential curve of the fuel cell electrode (2) of Example 2.
  • FIG. 4 is a powder X-ray diffraction spectrum of the catalyst (2) of Example 2.
  • FIG. 5 is an oxygen reduction current density-potential curve of the fuel cell electrode (3) of Example 3.
  • FIG. 6 is a powder X-ray diffraction spectrum of the catalyst (3) of Example 3.
  • FIG. 7 is an oxygen reduction current density-potential curve of the fuel cell electrode (4) of Example 4.
  • FIG. 8 is a powder X-ray diffraction spectrum of the catalyst (4) of Example 4.
  • FIG. 9 is an oxygen reduction current density-potential curve of the fuel cell electrode (5) of Example 5.
  • FIG. 10 is a powder X-ray diffraction spectrum of the catalyst (5) of Example 5.
  • FIG. 11 is an oxygen reduction current density-potential curve of the fuel cell electrode (c1) of Comparative Example 1.
  • FIG. 12 is a powder X-ray diffraction spectrum of the catalyst (c1) of Comparative Example 1.
  • 13 is an oxygen reduction current density-potential curve of the fuel cell electrode (c2) of Comparative Example 2.
  • FIG. FIG. 14 is a powder X-ray diffraction spectrum of the catalyst (c2) of Comparative Example 2.
  • FIG. 15 is an oxygen reduction current density-potential curve of the fuel cell electrode (c3) of Comparative Example 3.
  • FIG. 16 is an oxygen reduction current density-potential curve of the fuel cell electrode (c4) of Comparative Example 4.
  • the method for producing the fuel cell electrode catalyst of the present invention comprises: A step (I) in which an aqueous solution of the transition metal compound (1) is contacted with ammonia and / or aqueous ammonia to form a precipitate (A) containing atoms of the transition metal, A step (II) of obtaining a catalyst precursor by mixing at least the precipitate (A), the organic compound (B) and the liquid medium (C); Step (IV) for obtaining an electrode catalyst by heat-treating the solid content in the catalyst precursor at a temperature of 500 to 1200 ° C.
  • transition metal compound (1) is at least one transition metal element selected from Group 4 and Group 5 elements of the periodic table as a transition metal element (hereinafter referred to as “transition metal element M1” or “M1”). ).
  • a compound containing The organic compound (B) is at least one selected from sugar, amino sugar, glucosaminoglycan, polyvinyl alcohol, polyalkylene glycol, polyester, nitrogen-containing polymer compound, nitrile group-containing compound, amino acid and organic acid. It is characterized by that.
  • atoms and ions are described as “atoms” without strictly distinguishing them.
  • Step (I) an aqueous solution of the transition metal compound (1) is brought into contact with ammonia and / or aqueous ammonia to produce a precipitate (A) containing the transition metal atoms.
  • the precipitate (A) contains a transition metal hydroxide.
  • the contact operation is preferably carried out by adding an aqueous solution of the transition metal compound (1) to the ammonia water.
  • a catalyst with higher dispersibility and excellent coatability can be obtained.
  • the aqueous solution of the transition metal compound (1) is added dropwise to ammonia water little by little (that is, do not add the whole amount at once).
  • the said deposit (A) is collect
  • the collection of the precipitate (A) may be performed by centrifuging the aqueous solution containing the precipitate (A), may be performed by filtration, and is preferably performed by centrifugation.
  • the collection of the precipitate (A) by centrifugation is performed by a series of operations of centrifugation of the aqueous solution containing the precipitate (A) and removal of the supernatant. All of the supernatant may be removed, or only a part may be removed. In the latter case, the precipitate (A) is subjected to the next step (II) with a supernatant. Recovery by centrifugation is preferable in that it allows a smaller particle of the precipitate (A) to be used in a subsequent step, and a catalyst having a higher specific surface area is obtained and the activity per unit mass of the catalyst is higher. .
  • Centrifugation is preferably performed a plurality of times (eg, 2 to 7 times). That is, it is preferable to repeat the operations of adding water to the collected precipitate (A), (optionally stirring), centrifuging, and removing the supernatant. By repeating the centrifugation, the precipitate (A) is purified.
  • Centrifugation is performed, for example, under the conditions of a rotational speed of 500 to 20000 rpm and a time of 5 to 120 minutes.
  • the precipitate (A) may be collected by filtration using a filter paper or a filtration membrane. While using an ultrafiltration membrane, addition of water to the collected precipitate (A) (optionally stirring) ), Filtration, and removal of the filtrate may be repeated to purify the precipitate (A). This precipitate may be a gel-like substance.
  • Transition metal compound (1) Part or all of the transition metal compound (1) is a compound containing at least one transition metal element M1 selected from Group 4 and Group 5 elements of the periodic table as a transition metal element.
  • Specific examples of the transition metal element M1 include titanium, zirconium, hafnium, niobium, vanadium, and tantalum. These may be used alone or in combination of two or more.
  • transition metal elements M1 titanium, zirconium, niobium and tantalum are preferable, and titanium and zirconium are more preferable from the viewpoints of cost and performance of the obtained catalyst. Since these metals have a large crustal reserve and can supply products stably, they are highly industrially superior.
  • transition metal compound (1) examples include metal sulfates, metal halides, metal alkoxides, metal acetates, metal phosphates, metal nitrates, metal organic acid salts, metal acid halides (metal halides). Intermediate hydrolysates), metal perhalogenates and metal hypohalites, and metal complexes. Metal sulfates and metal halides are preferred.
  • the metal halide examples include chlorides, bromides and iodides of the transition metals, and the transition metal chlorides are preferred because of their high safety in use.
  • the metal alkoxide methoxide, propoxide, isopropoxide, ethoxide, butoxide and isobutoxide of the transition metal are preferable, and isopropoxide, ethoxide and butoxide of the transition metal are more preferable.
  • the metal alkoxide may have one type of alkoxy group or may have two or more types of alkoxy groups.
  • the metal halide includes chloride, bromide and iodide of the transition metal
  • the metal acid halide includes acid chloride, acid bromide and acid iodide of the transition metal.
  • the metal acid halide includes a metal acid chloride
  • the metal perhalogenate includes a metal perchlorate
  • the metal hypohalite includes a metal hypochlorite
  • transition metal compound (1) examples include Titanium sulfate, titanium tetrachloride, titanium trichloride, titanium tetrabromide, titanium tribromide, titanium tetraiodide, titanium triiodide, titanium tetramethoxide, titanium tetraethoxide, titanium tetrapropoxide, titanium tetraisopropoxy Titanium acetate such as titanium tetrabutoxide, titanium tetraisobutoxide, titanium tetrapentoxide, titanium tetraacetate, titanium dioxide, titanium oxide having 1 to 2 oxygen atoms per titanium atom, titanium tetraacetylacetonate, Titanium oxydiacetylacetonate, tris (acetylacetonato) dititanium chloride ([Ti (acac) 3 ] 2 [TiCl 6 ]), titanium oxychloride, titanium oxybromide, titanium oxyiodide,
  • a hafnium compound is mentioned. These may be used alone or in combination of two
  • titanium sulfate, titanium tetrachloride, niobium sulfate, niobium pentachloride, zirconium sulfate, zirconium tetrachloride, zirconium oxychloride, tantalum sulfate, and tantalum pentachloride are preferable, and titanium sulfate and titanium tetrachloride are more preferable.
  • Transition metal compound (2) Contact of the aqueous solution of the transition metal compound (1) with ammonia and / or aqueous ammonia may be performed in the presence of the transition metal compound (2).
  • the transition metal compound (2) is different from the transition metal compound (1), and the transition metal element is at least one transition metal element selected from iron, nickel, chromium, cobalt and manganese (hereinafter referred to as “transition metal element”). Also referred to as “M2” or “M2”.) Transition metal compounds containing M2 are used.
  • transition metal compound (2) When the transition metal compound (2) is used, the performance of the resulting catalyst is improved.
  • the transition metal element M2 iron and chromium are preferable and iron is more preferable because of high catalytic performance per unit cost.
  • the organic compound (B) and the liquid medium (C) are mixed to prepare a solution (or dispersion) of the organic compound (B), and then the solution (or dispersion) and the precipitate are mixed.
  • the precipitate (A) and the organic compound (B) are mixed in the presence of the liquid medium (C), they can be mixed without uneven distribution.
  • the precipitate (A) may be added little by little to the solution or dispersion of the organic compound (B) (that is, the whole amount may not be added at once).
  • step (II) the precipitate (A), the organic compound (B), and the liquid medium (C) are placed in a pressurizable container such as an autoclave, and mixing is performed while applying a pressure higher than normal pressure. May be.
  • Organic compound (B) As the organic compound (B), Sugars such as glucose, fructose, sucrose, cellulose, hydropropylcellulose; Amino sugars such as glucosamine, acetylglucosamine, galactosamine, acetylneuraminic acid, fukutosamine, muramyl dipeptide, ketosamine; Glucosaminoglycans such as hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, heparin, keratan sulfate, dermatan sulfate; Polyvinyl alcohol; Nitrogen-containing polymer compounds such as polyvinylpyrrolidone, polyaniline, polypyrrole, polypyridine; Polyalkylene glycols such as polyethylene glycol and polypropylene glycol; Polyesters such as polyethylene terephthalate; Nitrile group-containing compounds such as acrylonitrile and polyacrylonitrile;
  • nitrogen-containing polymer compound polymer compounds containing a nitrogen atom in the molecule
  • amino acids amino acids
  • polyvinylpyrrolidone, glucosamine, and glycine are more preferable
  • organic compound (B) any of an organic compound containing nitrogen in the molecule (nitrogen-containing organic compound) and an organic compound not containing nitrogen in the molecule can be used.
  • Transition of the transition metal compound used in the production method of the present invention (that is, the transition metal compound (1) used in step (II) and the transition metal compound (2) optionally used in step (III) described later))
  • the ratio (B / A) of the total number of carbon atoms B in the organic compound (B) used in the step (II) to the total number A of metal elements is carbon dioxide during the heat treatment in the step (IV). It is possible to reduce the amount of components desorbed as a carbon compound such as carbon oxide, that is, it is possible to reduce the amount of exhaust gas during the production of the catalyst and to increase the activity of the resulting catalyst. It is 200 or less, more preferably 1.5 or more and 150 or less, 2 or more and 130 or less, further preferably 3 or more and 80 or less, still more preferably 4 or more and 60 or less, and particularly preferably 5 or more and 30 or less.
  • the transition metal compound used in the production method of the present invention that is, the transition metal compound (1) used in the step (II), and a step described later
  • Ratio of total number C of nitrogen atoms of the nitrogen-containing organic compound used in step (II) to total number A of transition metal element atoms of transition metal compound (2)) optionally used in (III) (C / A) Is preferably 1 or more and 28 or less, more preferably 1.5 or more and 17 or less, still more preferably 2 or more and 12 or less, and even more preferably 2.5 or more and 10 or less, from the viewpoint of obtaining a catalyst having good oxygen reduction activity. Especially preferably, it is 3.5 or more and 8.5 or less.
  • liquid medium (C) examples include water, alcohols, and acid water or alcohol solutions.
  • alcohols examples include ethanol, methanol, butanol, propanol and ethoxyethanol are preferable, and ethanol and methanol are more preferable.
  • acids acetic acid, nitric acid, hydrochloric acid, phosphoric acid and citric acid are preferable. When these acids are in a liquid state, they may be used as they are, or may be used as an aqueous solution or a solution of alcohols. Acetic acid and nitric acid are more preferable as the acids because the oxygen reduction activity of the resulting catalyst is increased.
  • Water, alcohols, and acids may be used alone or in combination of two or more.
  • the transition metal compound (2) may be further mixed together with the precipitate (A), the organic compound (B), and the liquid medium (C).
  • the transition metal compound (M2) is used, the performance of the obtained catalyst is improved.
  • the mixing operation in the case of mixing the transition metal compound (2) is to prepare a solution (or dispersion) by mixing the organic compound (B) and the transition metal compound (2) and the liquid medium (C), Then, this solution (or dispersion) and the precipitate (A) may be mixed.
  • step (III) In step (III), which is optionally carried out before step (IV), liquid catalyst (C) is obtained from the catalyst precursor liquid obtained in step (II) (precipitate (A) is accompanied by supernatant liquid. Remove the supernatant when it is used in (II).
  • the removal of the liquid medium (C) may be performed in the air or in an inert gas (for example, nitrogen, argon, helium) atmosphere. It is preferable to use an inert gas because the resulting catalyst has high activity. Among the inert gases, nitrogen and argon are preferable and nitrogen is more preferable from the viewpoint of cost.
  • an inert gas for example, nitrogen, argon, helium
  • the temperature at the time of removing the liquid medium (C) may be room temperature when the vapor pressure of the liquid medium (C) is high, but is preferably 30 ° C. or more, more preferably from the viewpoint of mass productivity of the catalyst. Is 40 ° C. or higher, more preferably 50 ° C. or higher. From the viewpoint of not decomposing the catalyst precursor contained in the liquid obtained in the step (II), preferably 250 ° C. or lower, more preferably 150 ° C. or lower, More preferably, it is 110 degrees C or less.
  • the removal of the liquid medium (C) may be performed under atmospheric pressure when the vapor pressure of the liquid medium (C) is large.
  • the pressure is reduced (for example, 0.1 Pa to 0.1 MPa) is preferable.
  • an evaporator can be used to remove the liquid medium (C) under reduced pressure.
  • the removal of the liquid medium (C) may be performed in a state where the mixture obtained in the step (II) is allowed to stand, but in order to obtain a more uniform solid residue, the liquid medium ( C) is preferably removed.
  • the liquid medium (C) When the weight of the container containing the mixture is large, it is preferable to rotate the solution using a stirring rod, a stirring blade, a stirring bar, or the like.
  • the liquid medium (C) When removing the liquid medium (C) while adjusting the degree of vacuum of the container containing the mixture, the liquid medium (C) is rotated while being rotated together with the liquid medium (C). It is preferable to remove C), for example, to remove the liquid medium (C) using a rotary evaporator.
  • the composition or aggregation state of the solid residue obtained in step (III) may be non-uniform.
  • a catalyst having a more uniform particle diameter can be obtained by mixing and crushing the solid residue and using a more uniform and fine powder in step (IV).
  • solid residue for example, roll rolling mill, ball mill, small diameter ball mill (bead mill), medium stirring mill, airflow crusher, mortar, automatic kneading mortar, tank crusher, jet mill If the solid residue is small, preferably, a mortar, an automatic kneading mortar, or a batch type ball mill is used, and when the solid residue is large and continuous mixing and crushing are performed.
  • a jet mill is preferably used.
  • step (IV) the solid content in the catalyst precursor liquid is heat-treated.
  • the catalyst precursor liquid containing the solid content obtained in the step (II) may be heat-treated as it is, or the solid residue obtained in the step (III) may be heat-treated.
  • the temperature during this heat treatment is 500 to 1200 ° C., preferably 600 to 1100 ° C., more preferably 700 to 1050 ° C.
  • the temperature of the heat treatment is too higher than the above range, sintering and grain growth of the obtained heat-treated product will occur between the particles, resulting in a decrease in the specific surface area of the electrode catalyst. As a result, the processability during processing into a catalyst layer is poor. On the other hand, if the temperature of the heat treatment is too lower than the above range, an electrode catalyst having high activity cannot be obtained.
  • the heat treatment method examples include a stationary method, a stirring method, a dropping method, and a powder trapping method.
  • the stationary method is a method in which the solid residue obtained in step (III) is placed in a stationary electric furnace or the like and heated.
  • the solid content residue weighed during heating may be put in a ceramic container such as an alumina board or a quartz board.
  • the stationary method is preferable in that a large amount of the solid residue can be heated.
  • the stirring method is a method in which the solid residue is placed in an electric furnace such as a rotary kiln and heated while stirring.
  • the stirring method is preferable in that a large amount of the solid residue can be heated and aggregation and growth of the obtained electrode catalyst particles can be suppressed.
  • the stirring method is preferable in that the electrode catalyst can be continuously produced by inclining the heating furnace.
  • an inert gas containing a trace amount of oxygen gas is allowed to flow as an atmospheric gas in an induction furnace, the furnace is heated to a predetermined heating temperature, and after maintaining a thermal equilibrium at the temperature, the furnace is heated.
  • the solid residue is dropped into a crucible serving as an area and heated.
  • the dropping method is preferred in that aggregation and growth of the obtained electrocatalyst particles can be minimized.
  • Powder capture method is an inert gas atmosphere containing a small amount of oxygen gas, the solid residue is splashed and suspended, captured in a vertical tube furnace maintained at a predetermined heating temperature, It is a method of heating.
  • the rate of temperature rise is not particularly limited, but is preferably about 1 ° C./min to 100 ° C./min, more preferably 5 ° C./min to 50 ° C./min. is there.
  • the heating time is preferably 0.1 to 10 hours, more preferably 0.5 hours to 5 hours, and further preferably 0.5 to 3 hours.
  • the heating time of the electrode catalyst particles is 0.1 to 10 hours, preferably 0.5 to 5 hours.
  • the heating time is within the above range, it is preferable in that uniform electrode catalyst particles are formed and a highly active catalyst is obtained.
  • the heating time of the solid residue is usually 10 minutes to 5 hours, preferably 30 minutes to 2 hours.
  • the average residence time calculated from the steady sample flow rate in the furnace is set as the heating time.
  • the heating time of the solid residue is usually 0.5 to 10 minutes, preferably 0.5 to 3 minutes.
  • the heating time is within the above range, uniform electrode catalyst particles tend to be formed.
  • the heating time of the solid residue is 0.2 seconds to 1 minute, preferably 0.2 to 10 seconds.
  • the heating time is within the above range, uniform electrode catalyst particles tend to be formed.
  • a heating furnace using LNG (liquefied natural gas), LPG (liquefied petroleum gas), light oil, heavy oil, electricity or the like as a heat source may be used as the heat treatment apparatus.
  • LNG liquefied natural gas
  • LPG liquefied petroleum gas
  • light oil a heating furnace using LNG (liquefied natural gas), LPG (liquefied petroleum gas), light oil, heavy oil, electricity or the like as a heat source
  • the fuel flame is present in the furnace, and is not heated from the inside of the furnace, but is heated from the outside of the furnace.
  • An apparatus is preferred.
  • a heating furnace using LNG and LPG as a heat source is preferable from the viewpoint of cost.
  • an electric furnace capable of strict temperature control, using electricity through a resistance wire and using this as a heat source is desirable.
  • Examples of the shape of the furnace include a tubular furnace, an upper lid furnace, a tunnel furnace, a box furnace, a sample table raising / lowering furnace (elevator type), a cart furnace, and the like, and the atmosphere can be controlled particularly strictly.
  • Tubular furnaces, top lid furnaces, box furnaces and sample table raising / lowering furnaces are preferred, and tubular furnaces and box furnaces are preferred.
  • the above heat source can be used, but the scale of the equipment is large when the solid residue is continuously heat-treated by inclining the rotary kiln among the stirring methods. Therefore, it is preferable to use a heat source derived from a fuel such as LPG because the amount of energy used tends to increase.
  • the atmosphere for performing the heat treatment is preferably nitrogen, argon or helium, more preferably nitrogen or argon from the viewpoint of enhancing the activity of the obtained electrode catalyst. These may be used singly or in combination of two or more.
  • the heat treatment is preferably performed at a temperature of 800 ° C. or higher in a nitrogen gas atmosphere from the viewpoint of increasing the activity of the obtained electrode catalyst. .
  • the obtained electrode catalyst may exhibit higher catalytic performance.
  • the reactive gas include oxygen-containing gas, hydrogen-containing gas, carbon-containing gas such as methane, and nitrogen-containing gas such as ammonia.
  • the hydrogen gas concentration is, for example, 100% by volume or less, preferably 0.01 to 10% by volume, more preferably 1 to 5% by volume.
  • the concentration of oxygen gas is, for example, 0.01 to 10% by volume, preferably 0.01 to 5% by volume.
  • the heat-treated product may be crushed.
  • pulverization it may be possible to improve the workability in producing an electrode using the obtained electrode catalyst and the characteristics of the obtained electrode.
  • a roll rolling mill, a ball mill, a small-diameter ball mill (bead mill), a medium stirring mill, an airflow grinder, a mortar, an automatic kneading mortar, a tank disintegrator, or a jet mill can be used.
  • a mortar When the amount of the electrode catalyst is small, a mortar, an automatic kneading mortar, or a batch type ball mill is preferable.
  • a heat-treated product is continuously processed in a large amount, a jet mill or a continuous type ball mill is preferable, and a continuous type ball mill is used. Among these, a bead mill is more preferable.
  • the fuel cell electrode catalyst of the present invention is manufactured by the above-described method for manufacturing a fuel cell electrode catalyst of the present invention (hereinafter, manufactured by the above-described method for manufacturing a fuel cell electrode catalyst of the present invention).
  • the fuel cell electrode catalyst is also simply referred to as “catalyst”).
  • X: y: z is preferably 0 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 2, and 0 ⁇ z ⁇ 3.
  • the range of x is more preferably 0.15 ⁇ x ⁇ 5.0, further preferably 0.2 ⁇ x ⁇ 4.0, and particularly preferably 1.0 ⁇ x. ⁇ 3.0
  • the range of y is more preferably 0.01 ⁇ y ⁇ 1.5, still more preferably 0.02 ⁇ y ⁇ 0.5, and particularly preferably 0.03 ⁇ y ⁇ 0.
  • the range of z is more preferably 0.6 ⁇ z ⁇ 2.6, still more preferably 0.9 ⁇ z ⁇ 2.0, and particularly preferably 0.95 ⁇ z ⁇ 1. .5.
  • the catalyst is selected from the group consisting of Group 4 and Group 5 elements in the Periodic Table as the transition metal element, and one transition metal element M1 selected from iron, nickel, chromium, cobalt, and manganese.
  • the transition metal element M2 is included, the ratio of the number of atoms of the transition metal element M1, the transition metal element M2, carbon, nitrogen, and oxygen constituting the catalyst is set to the transition metal element M1: transition metal element.
  • M2: carbon: nitrogen: oxygen (1-a): a: x: y: z, preferably 0 ⁇ a ⁇ 0.5, 0 ⁇ x ⁇ 7, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 3.
  • the preferable ranges of x, y and z are as described above, and the range of a is more preferably 0.01 ⁇ a ⁇ 0.5, and further preferably 0.015 ⁇ a ⁇ 0.4, particularly preferably 0.02 ⁇ a ⁇ 0.2.
  • the values of a, x, y and z are values measured by the method employed in the examples described later.
  • transition metal element M2 at least one metal element selected from iron, nickel, chromium, cobalt and manganese.
  • transition metal element M2 or the transition metal compound (M2) synthesizes an electrode catalyst, a bond is formed between the transition metal element M1 atom and a nitrogen atom in the nitrogen-containing organic compound. It is presumed that it acts as a catalyst.
  • the transition metal element M2 is passivated to further increase the transition metal element M1. Presumed to prevent elution.
  • step (IV) During the heat treatment in step (IV), it is assumed that sintering of the heat-treated product, that is, a reduction in specific surface area is prevented.
  • step (IV) Due to the presence of transition metal element M1, transition metal element M2 and the presence of both of the metal elements in the electrode catalyst, an electric charge bias occurs at the site where both metal elements are adjacent to each other, and the electrode has only transition metal element M1 as the metal element. It is assumed that substrate adsorption or reaction, or product desorption, which cannot be achieved with a catalyst, occurs.
  • the catalyst of the present invention preferably has atoms of a transition metal element, carbon, nitrogen and oxygen, and has an oxide, carbide or nitride alone of the transition metal element or a plurality of crystal structures thereof. Judging from the result of the crystal structure analysis by X-ray diffraction analysis and the result of elemental analysis for the catalyst, the catalyst has the oxygen atom site of the oxide structure while having the oxide structure of the transition metal element.
  • a fuel cell electrode catalyst having a large specific surface area is produced, and the specific surface area calculated by the BET method of the catalyst of the present invention is preferably 30 to 350 m 2 / g, more preferably 50 to 300 m 2 / g, still more preferably 100 to 300 m 2 / g.
  • the specific surface area is within the above range, the structure of the catalyst is more preferably maintained, and since the surface area per unit weight is large, the activity of the catalyst is high.
  • the oxygen reduction current density of the fuel cell electrode catalyst produced by the production method of the present invention can be determined as follows. That is, the difference between the reduction current in the oxygen atmosphere and the reduction current in the nitrogen atmosphere at a specific potential (for example, 0.7 V) is calculated from the result of the following measurement method (A), and the calculated value is further calculated as the electrode area. The value divided by is defined as the oxygen reduction current density (mA / cm 2 ).
  • carbon carbon black (specific surface area: 100 to 300 m 2 / g) (for example, XC-72 manufactured by Cabot Corporation) is used, and the catalyst and carbon are dispersed so that the mass ratio is 95: 5.
  • isopropyl alcohol: water (mass ratio) 2: 1 is used.
  • a reversible hydrogen electrode in a sulfuric acid aqueous solution of the same concentration at a temperature of 30 ° C. in a 0.5 mol / L sulfuric acid aqueous solution in an oxygen atmosphere and a nitrogen atmosphere was used as a reference electrode.
  • a current-potential curve is obtained by polarization at a potential scanning speed of 5 mV / sec.
  • the oxygen reduction current density at 0.7 V (vs RHE) of the fuel cell electrode catalyst produced by the production method of the present invention is preferably 0.08 mA / cm for use as an air electrode catalyst for a polymer electrolyte fuel cell.
  • the fuel cell electrode catalyst produced by the production method of the present invention can be used as an alternative catalyst for a platinum catalyst.
  • the fuel cell catalyst layer produced by the method for producing a fuel cell electrode catalyst layer of the present invention contains the catalyst.
  • the catalyst electrode layer for a fuel cell includes an anode catalyst layer and a cathode catalyst layer, and any of the catalysts can be used. Since the catalyst is excellent in durability and has a large oxygen reducing ability, it is preferably used in the cathode catalyst layer.
  • the fuel cell electrode catalyst layer of the present invention preferably further contains an electron conductive powder.
  • the reduction current can be further increased.
  • the electron conductive powder is considered to increase the reduction current because it causes an electrical contact for inducing an electrochemical reaction in the catalyst.
  • the electron conductive particles are usually used as a catalyst carrier.
  • the catalyst has a certain degree of conductivity, but in order to give more electrons to the catalyst or the anti-substrate receives more electrons from the catalyst, the catalyst is mixed with carrier particles for imparting conductivity. Also good. These carrier particles may be mixed with the catalyst produced through the steps (I) to (IV), or may be mixed at any stage of the steps (II) to (IV).
  • the material of the electron conductive particles examples include carbon, a conductive polymer, a conductive ceramic, a metal, or a conductive inorganic oxide such as tungsten oxide or iridium oxide, which can be used alone or in combination. .
  • the electron conductive particles made of carbon have a large specific surface area, and are easily available with a small particle size at low cost, and are excellent in chemical resistance and high potential resistance, carbon alone or carbon and other electrons.
  • a mixture with conductive particles is preferred. That is, the fuel cell catalyst layer preferably contains the catalyst and carbon particles.
  • Examples of carbon include carbon black, graphite, activated carbon, carbon nanotube, carbon nanofiber, carbon nanohorn, fullerene, porous carbon, and graphene. If the particle size of the electron conductive particles made of carbon is too small, it becomes difficult to form an electron conduction path, and within the following range, the gas diffusibility of the fuel cell catalyst layer is further improved, and the utilization rate of the catalyst is further increased. In order to improve, it is preferably 10 to 1000 nm, more preferably 10 to 100 nm.
  • the weight ratio of the catalyst to the electron conductive particles is preferably 4: 1 to 1000: 1.
  • the conductive polymer is not particularly limited.
  • polypyrrole, polyaniline, and polythiophene are preferable, and polypyrrole is more preferable.
  • the fuel cell electrode catalyst layer preferably further contains a polymer electrolyte.
  • the polymer electrolyte is not particularly limited as long as it is generally used in a fuel cell catalyst layer.
  • a perfluorocarbon polymer having a sulfonic acid group for example, NAFION (registered trademark)
  • a hydrocarbon-based polymer compound having a sulfonic acid group for example, phosphoric acid
  • a highly doped inorganic acid such as phosphoric acid.
  • examples thereof include molecular compounds, organic / inorganic hybrid polymers partially substituted with proton conductive functional groups, and proton conductors in which a polymer matrix is impregnated with a phosphoric acid solution or a sulfuric acid solution.
  • Nafion registered trademark
  • NAFION registered trademark
  • 5% Nafion (NAFION (registered trademark)) solution DE521, DuPont
  • the fuel cell electrode catalyst layer can be used as either an anode catalyst layer or a cathode catalyst layer.
  • the electrode catalyst layer for a fuel cell of the present invention has a high oxygen reducing ability and contains a catalyst that does not corrode even at a high potential in an acidic electrolyte. It is useful as a catalyst layer). In particular, it is suitably used for a catalyst layer provided on the cathode of a membrane electrode assembly provided in a polymer electrolyte fuel cell.
  • Examples of the method for dispersing the catalyst on the electron conductive particles as a support include air flow dispersion and dispersion in liquid. Dispersion in liquid is preferable because a catalyst and electron conductive particles dispersed in a solvent can be used in the fuel cell catalyst layer forming step. Examples of the dispersion in the liquid include a method using an orifice contraction flow, a method using a rotating shear flow, and a method using an ultrasonic wave.
  • the solvent used for dispersion in the liquid is not particularly limited as long as it does not erode the catalyst or electron conductive particles and can be dispersed, but a volatile liquid organic solvent or water is generally used.
  • the electrolyte and the dispersing agent may be further dispersed at the same time.
  • the method for forming the catalyst layer for the fuel cell is not particularly limited. For example, a method of applying a suspension containing the catalyst, the electron conductive particles, and the electrolyte to an electrolyte membrane or a gas diffusion layer to be described later. It is done. Examples of the application method include a dipping method, a screen printing method, a roll coating method, and a spray method.
  • the catalyst layer for a fuel cell is formed on the electrolyte membrane by a transfer method.
  • the method of forming is mentioned.
  • An electrode manufactured by the method for manufacturing an electrode of the present invention includes the fuel cell catalyst layer and a porous support layer.
  • the electrode can be used as either a cathode or an anode. Since the electrode of the present invention is excellent in durability and has a large catalytic ability, it is more industrially superior when used as a cathode.
  • the porous support layer is a layer that diffuses gas (hereinafter also referred to as “gas diffusion layer”).
  • gas diffusion layer may be anything as long as it has electron conductivity, high gas diffusibility, and high corrosion resistance.
  • carbon-based porous materials such as carbon paper and carbon cloth are used. Materials and aluminum foil coated with stainless steel and corrosion-resistant materials for weight reduction are used.
  • a membrane electrode assembly produced by the method for producing a membrane electrode assembly of the present invention is a membrane electrode assembly comprising a cathode, an anode, and an electrolyte membrane disposed between the cathode and the anode. At least one of the anodes is an electrode manufactured by the electrode manufacturing method of the present invention.
  • an electrolyte membrane using a perfluorosulfonic acid system or a hydrocarbon electrolyte membrane is generally used.
  • a membrane or porous body in which a polymer microporous membrane is impregnated with a liquid electrolyte is used.
  • a membrane filled with a polymer electrolyte may be used.
  • the fuel cell manufactured by the manufacturing method of this invention is equipped with the said membrane electrode assembly.
  • Fuel cell electrode reactions occur at the so-called three-phase interface (electrolyte-electrode catalyst-reaction gas).
  • Fuel cells are classified into several types depending on the electrolyte used, etc., and include molten carbonate type (MCFC), phosphoric acid type (PAFC), solid oxide type (SOFC), and solid polymer type (PEFC). .
  • MCFC molten carbonate type
  • PAFC phosphoric acid type
  • SOFC solid oxide type
  • PEFC solid polymer type
  • the fuel cell using the fuel cell electrode catalyst produced by the production method of the present invention has high performance and is characterized by being extremely inexpensive as compared with the case of using platinum as a catalyst.
  • the fuel cell has at least one function selected from the group consisting of a power generation function, a light emission function, a heat generation function, a sound generation function, an exercise function, a display function, and a charge function, and particularly the performance of an article provided with a fuel cell.
  • the performance of a simple article can be improved.
  • the fuel cell is preferably provided on the surface or inside of an article.
  • the fuel cell using the fuel cell electrode catalyst manufactured by the manufacturing method of the present invention has high activity per unit mass and is inexpensive, and the above-mentioned article that has conventionally been difficult to mount a fuel cell is also available. A fuel cell can be mounted, and the article can be used with a smaller volume and larger output power.
  • Specific examples of articles equipped with fuel cells include buildings, houses, buildings such as tents, fluorescent lamps, LEDs, etc., organic EL, street lamps, indoor lighting, lighting fixtures such as traffic lights, machines, vehicles themselves Equipment including automobile equipment, home appliances, agricultural equipment, electronic equipment, mobile phones, etc., sanitary equipment such as beauty equipment, portable tools, bathroom accessories, furniture, toys, decorations, bulletin boards, coolers
  • Examples include outdoor supplies such as boxes, outdoor generators, teaching materials, artificial flowers, objects, power supplies for cardiac pacemakers, and power supplies for heating and cooling devices equipped with Peltier elements.
  • the fuel cell using the fuel cell electrode catalyst manufactured by the manufacturing method of the present invention has high power generation performance per unit mass, is inexpensive, and has been difficult to mount a conventional fuel cell. This is useful because a fuel cell can be mounted and wiring for power supply can be omitted.
  • Nitrogen / oxygen About 0.1 g of a sample was weighed, sealed in a Ni capsule, sealed in -Cup, and then measured with an oxygen-nitrogen analyzer (LE600, TC600).
  • Transition metal elements titanium, zirconium, iron: About 0.1 g of a sample was weighed in a platinum dish, and acid was added for thermal decomposition. This heat-decomposed product was fixed, diluted, and quantified by ICP-MS (HP 7500, manufactured by Agilent).
  • Example 1 ⁇ Titanium sulfate-PVP> 1.
  • Production of the catalyst 9.12 g of 30% titanium sulfate (IV) aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added to distilled water to prepare a 100 ml titanium solution.
  • the reaction solution containing the precipitate was centrifuged at 10,000 rpm for 30 minutes, and then the supernatant was removed with a dropper so that a total of 20 ml of the precipitate and supernatant remained in the container.
  • 80 ml of pure water is added to the container, the contents of the container are stirred, centrifuged in the same manner as described above, and the supernatant liquid is removed in the same manner as described above three times to contain a gel-like substance. 20 ml of liquid was obtained. This gel substance is considered to contain titanium hydroxide.
  • This heat treatment powder was placed in a tubular furnace, heated to 1000 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen gas atmosphere, held at 1000 ° C. for 3 hours, and naturally cooled to obtain catalyst (1).
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (1).
  • the produced fuel cell electrode was polarized in an oxygen atmosphere and a nitrogen atmosphere in a 0.5 mol / L sulfuric acid aqueous solution starting at 30 ° C. and 1.1 V at a potential scanning speed of 5 mV / sec toward the base potential side, Each current-potential curve was measured. The value obtained by dividing the current value by the electrode area and subtracting the current density observed in the nitrogen atmosphere from the current density observed in the oxygen atmosphere was defined as the oxygen reduction current density.
  • a reversible hydrogen electrode in an aqueous sulfuric acid solution having the same concentration was used as a reference electrode. Table 1 shows the oxygen reduction current density at 0.7V. The higher the oxygen reduction current density, the higher the catalytic ability of the catalyst in the fuel cell electrode.
  • Example 2 ⁇ Titanium sulfate-glucosamine> The same procedure as in Example 1 was carried out except that 0.85 g of polyvinylpyrrolidone was changed to 2.80 g of N-acetyl-D-glucosamine (Wako Pure Chemical Industries, Ltd., purity: 90%), and catalyst (2) Got.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (2). Moreover, except having changed the catalyst (1) into the catalyst (2), operation similar to Example 1 was performed, the fuel cell electrode (2) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 3 ⁇ Titanium tetrachloride-glucosamine> The same operation as in Example 2 was performed except that 9.12 g of 30% titanium sulfate aqueous solution was changed to 3.3 g of titanium tetrachloride aqueous solution (titanium content: 16.5% by mass, manufactured by Osaka Titanium Technologies Co., Ltd.) Catalyst (3) was obtained.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (3). Moreover, except having changed the catalyst (1) into the catalyst (3), operation similar to Example 1 was performed, the fuel cell electrode (3) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 4 ⁇ Titanium sulfate-Glycine> A powder for heat treatment was obtained by performing the same operation as in Example 1 except that 0.85 g of polyvinylpyrrolidone was changed to 11.1 g of glycine (manufactured by Wako Pure Chemical Industries, Ltd., purity: 99%).
  • This heat treatment powder is put into a tubular furnace, heated to 900 ° C. at a heating rate of 10 ° C./min in a mixed gas atmosphere of 4% by volume of hydrogen and 96% by volume of nitrogen, held at 900 ° C. for 3 hours, and naturally cooled. As a result, a catalyst (4) was obtained.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (4). Moreover, except having changed the catalyst (1) into the catalyst (4), operation similar to Example 1 was performed, the fuel cell electrode (4) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 5 ⁇ Titanium sulfate-Glycine-Iron> Example except that 11.1 g of glycine was changed to 11.1 g of glycine (Wako Pure Chemical Industries, Ltd., purity: 99%) and 0.202 g of iron (II) acetate (Aldrich, purity: 95%) The same operation as in No. 4 was performed to obtain a catalyst (5).
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (5). Moreover, except having changed the catalyst (1) into the catalyst (5), operation similar to Example 1 was performed, the fuel cell electrode (5) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 6 ⁇ Titanium sulfate-Glycine-Iron> Except having changed the heat processing temperature into 500 degreeC, operation similar to Example 5 was performed and the catalyst (6) was obtained. Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (6). Moreover, except having changed the catalyst (1) into the catalyst (6), operation similar to Example 1 was performed, the fuel cell electrode (6) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 7 ⁇ Titanium sulfate-Glycine-Iron> Except having changed the heat processing temperature into 1200 degreeC, operation similar to Example 5 was performed and the catalyst (7) was obtained. Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (7). Moreover, except having changed the catalyst (1) into the catalyst (7), operation similar to Example 1 was performed, the fuel cell electrode (7) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 8 ⁇ Titanium sulfate-glucose> Except that 0.85 g of polyvinylpyrrolidone was changed to 1.40 g of D (+)-glucose (Wako Pure Chemical Industries, Ltd., purity: 98%), the same operation as in Example 1 was carried out to obtain catalyst (8). Obtained. Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (8). Moreover, except having changed the catalyst (1) into the catalyst (8), operation similar to Example 1 was performed, the fuel cell electrode (8) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 10 ⁇ Zirconium oxynitrate-Glycine-Iron> The same operation as in Example 5 except that 9.12 g of 30% titanium sulfate (IV) aqueous solution was changed to 1.51 g of zirconium oxynitrate dihydrate (Wako Pure Chemical Industries, Ltd., purity: 97%). And a catalyst (10) was obtained. Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (10). Moreover, except having changed the catalyst (1) into the catalyst (10), operation similar to Example 1 was performed, the fuel cell electrode (10) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 11 ⁇ Niobium ethoxide-glycine-iron>
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (11).
  • operation similar to Example 1 was performed, the fuel cell electrode (11) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (c1). Moreover, except having changed the catalyst (1) into the catalyst (c1), operation similar to Example 1 was performed, the fuel cell electrode (c1) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 2 The same operation as in Example 4 was performed except that 20 ml of the gel-like substance-containing liquid was changed to 1.18 g of amorphous titanium oxide (Wako Pure Chemical Industries, Ltd., amorphous, by the vapor phase method). The catalyst (c2) was obtained.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (c2). Moreover, except having changed the catalyst (1) into the catalyst (c2), operation similar to Example 1 was performed, the fuel cell electrode (c2) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (c3). Moreover, except having changed the catalyst (1) into the catalyst (c3), operation similar to Example 1 was performed, the fuel cell electrode (c3) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (c4). Moreover, except having changed the catalyst (1) into the catalyst (c4), operation similar to Example 1 was performed, the fuel cell electrode (c4) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 5 ⁇ Titanium sulfate-Glycine-Iron> A catalyst (c5) was obtained in the same manner as in Example 5 except that the heat treatment temperature was changed to 400 ° C. Table 1 shows the BET specific surface area and elemental analysis results of the catalyst (c5). Moreover, except having changed the catalyst (1) into the catalyst (c5), operation similar to Example 1 was performed, the fuel cell electrode (c5) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.
  • Example 6 ⁇ Titanium sulfate-Glycine-Iron> A catalyst (c6) was obtained in the same manner as in Example 6 except that the heat treatment temperature was changed to 1300 ° C. The BET specific surface area and elemental analysis results of the catalyst (c6) are shown in Table 1. Moreover, except having changed the catalyst (1) into the catalyst (c6), operation similar to Example 1 was performed, the fuel cell electrode (c6) was obtained, and the oxygen reduction ability was evaluated. The results are shown in Table 1.

Abstract

[課題]比較的低い温度での熱処理を経て、チタン等を用いた高い触媒活性を有する燃料電池用電極触媒を製造する方法を提供すること。 [解決手段]遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物(A)を生じさせる工程(I)、少なくとも前記沈殿物(A)、有機化合物(B)および液体媒体(C)を混合して触媒前駆体液を得る工程(II)、前記触媒前駆体液中の固形分を500~1200℃の温度で熱処理して電極触媒を得る工程(IV)を含み、前記遷移金属化合物(1)の一部または全部が、周期表第4族または第5族の遷移金属元素を含有する化合物であり、前記有機化合物(B)は、糖などから選ばれる少なくとも1種であることを特徴とする燃料電池用電極触媒の製造方法。

Description

燃料電池用電極触媒の製造方法
 本発明は、燃料電池用電極触媒の製造方法、および燃料電池用電極等の製造方法に関し、より詳細には白金などの貴金属の代替触媒として有用な燃料電池用触媒、および燃料電池用電極等の製造方法に関する。
 高分子固体型燃料電池は、高分子固体電解質をアノードとカソードとで挟み、アノードに燃料を供給し、カソードに酸素または空気を供給して、カソードで酸素が還元されて電気を取り出す形式の燃料電池である。燃料には水素またはメタノールなどが主として用いられる。
 従来、燃料電池の反応速度を高め、燃料電池のエネルギー変換効率を高めるために、燃料電池のカソード(空気極)表面やアノード(燃料極)表面には、触媒を含む層(以下「燃料電池用触媒層」とも記す。)が設けられていた。
 この触媒として、一般的に貴金属が用いられており、貴金属の中でも高い電位で安定であり、活性が高い白金、パラジウムなどの貴金属が主として用いられてきた。しかし、これらの貴金属は価格が高く、また資源量が限られていることから、代替可能な触媒の開発が求められていた。
 また、カソード表面に用いる貴金属は、酸性雰囲気下では溶解する場合があり、長期間に渡る耐久性が必要な用途には適さないという問題があった。このため酸性雰囲気下で腐食せず、耐久性に優れ、高い酸素還元能を有する触媒の開発が強く求められていた。
 貴金属代替触媒として、貴金属を一切使わない卑金属炭化物、卑金属酸化物、卑金属炭窒酸化物、カルコゲン化合物及び炭素触媒などが報告されている(例えば、特許文献1~特許文献4を参照)。これらの材料は、白金などの貴金属材料に比べて、安価であり、資源量が豊富である。
 しかしながら、特許文献1及び特許文献2に記載された卑金属材料を含むこれらの触媒は、実用的に充分な酸素還元能が得られていないという問題点がある。
 また、特許文献3及び特許文献4に記載された触媒は、高い酸素還元触媒活性を示すが、燃料電池運転条件下での安定性が充分ではないことが問題点である。
 このような貴金属代替触媒として、特許文献5及び特許文献6でのNb及びTi炭窒酸化物は上記性能を有効に発現できることから、特に注目されている。
 特許文献5及び特許文献6に記載された触媒は、従来の貴金属代替触媒に比べてきわめて高性能であるが、その製造工程の一部において1600℃~1800℃という高温下での加熱処理が必要であった(例えば特許文献5 実施例1または特許文献6 実施例1)。
 このような高温加熱処理は工業的には不可能ではないが困難をともない、設備費の高騰や運転管理の困難を招き、ひいては製造コストが高くなることからより安価に製造出来る方法の開発が望まれていた。
 特許文献7には炭素、窒素及び酸素を含有するカーボン含有チタンオキシナイトライドの製造に関する技術が報告されている。
 しかしながら、特許文献7に記載されている製造方法では、カーボン含有チタンオキシナイトライドを製造するために、窒素含有有機化合物とチタン前駆体との反応によるチタンオキシナイトライドの製造とフェノール樹脂とチタンオキシナイトライド前駆体との反応によるカーボン含有チタンオキシナイトライド製造の二段階合成が必要であり、工程が複雑である。特に、チタンオキシナイトライド前駆体の製造は80℃での攪拌、過熱、および還流、ならびに冷却および減圧濃縮などの複雑な工程が必要であるため、製造コストが高い。
 また、フェノール樹脂は3次元網目構造を持つ熱硬化性樹脂であるため、金属酸化物と均一に混合して反応させることが難しい。特に、フェノール樹脂の熱分解温度は400℃~900℃であるため、1000℃以下の温度で、フェノール樹脂の完全分解による炭化反応が起こりにくい問題点もある。
 さらに、特許文献7および非特許文献1には、その用途としては、太陽光集熱器用の薄膜および光触媒としての応用が記されているだけであり、電極触媒として有用性の高い粒状または繊維状などの形状を持つ金属炭窒酸化物の製造方法及びその用途は開示も検討もなされていない。
 特許文献8には、酸化物と炭素材料前駆体との混合材料を焼成することを特徴とする電極触媒の製造方法が開示されているが、充分な触媒性能を持つ電極触媒は得られていない。
 また、特許文献9には、コバルトなどの多核錯体を用いてなる燃料電池用電極触媒が開示されているが、高コストであり、充分な触媒活性を持たないという問題があった。
 非特許文献2には、チタンアルコキシドと炭素材料前駆体との混合材料を焼成することを特徴とする電極触媒の製造方法が開示されているが、製造工程においては、窒素を含有する有機物は使用されておらず、充分な触媒性能を持つ電極触媒は得られていない。
 特許文献10には、水酸化ジルコニウムなどの金属化合物および炭素材料前駆体を、前記炭素材料前駆体が炭素材料に遷移し得る条件(たとえば400~1100℃)にて焼成する電極触媒の製造方法が開示されているが、充分な触媒性能を持つ電極触媒は得られていない。
 なお、特許文献11には、少なくとも遷移金属(周期表第4族および第5族の元素など)含有化合物、窒素含有有機化合物および溶媒を混合して触媒前駆体溶液を得る工程1、前記触媒前駆体溶液から溶媒を除去する工程2、および工程2で得られた固形分残渣を比較的低い温度で熱処理して電極触媒を得る工程3を含む燃料電池用電極触媒の製造方法が開示されているが、以下に説明するような、遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物を生じさせる工程を含む燃料電池用電極触媒の製造方法は、開示されていない。
特開2004-303664号公報 国際公開第07/072665号パンフレット 米国特許出願公開第2004/0096728号明細書 特開2005-19332号公報 国際公開第2009/031383号パンフレット 国際公開第2009/107518号パンフレット 特開2009-23887号公報 特開2009-255053号公報 特開2008-258150号公報 国際公開第2009/116369号パンフレット 国際公開第2011/99493号パンフレット
Journal of Inorganic Materials (Chinese) 20, 4, P785 Electrochemistry Communications Volume 12, Issue 9, September 2010, Pages 1177-1179
 本発明は、比較的低い温度での熱処理を経て、遷移金属(チタン等)を用いた高い触媒活性を有する燃料電池用電極触媒を製造する方法を提供することを目的としている。
 本発明は、たとえば以下の[1]~[10]に関する。
 [1]
 遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物(A)を生じさせる工程(I)、
 少なくとも前記沈殿物(A)、有機化合物(B)および液体媒体(C)を混合して触媒前駆体を得る工程(II)、
 前記触媒前駆体を500~1200℃の温度で熱処理して電極触媒を得る工程(IV)
を含み、
 前記遷移金属化合物(1)の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素(以下「遷移金属元素M1」または「M1」とも記す。)を含有する化合物であり、
 前記有機化合物(B)は、糖、アミノ糖、グルコサミノグリカン、ポリビニルアルコール、ポリアルキレングリコール、ポリエステル、含窒素高分子化合物、ニトリル基含有化合物、アミノ酸および有機酸から選ばれる少なくとも1種である
ことを特徴とする燃料電池用電極触媒の製造方法。
 [2]
 前記工程(IV)の前に前記触媒前駆体から前記液体媒体(C)を除去する工程(III)を含むことを特徴とする上記[1]に記載の燃料電池用電極触媒の製造方法。
 [3]
 前記遷移金属元素M1が、チタン、ジルコニウム、ニオブおよびタンタルから選ばれる少なくとも1種であることを特徴とする上記[1]または[2]に記載の燃料電池用電極触媒の製造方法。
 [4]
 遷移金属化合物(1)が、金属ハロゲン化物、金属硫酸塩、金属アルコキシド、金属酢酸塩、金属リン酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物、金属過ハロゲン酸塩および金属次亜ハロゲン酸塩、金属錯体からなる群から選ばれる少なくとも1種であることを特徴とする上記[1]~[3]のいずれかに記載の燃料電池用電極触媒の製造方法。
 [5]
 前記工程(II)において、遷移金属元素として鉄、ニッケル、クロム、コバルトおよびマンガンから選ばれる少なくとも1種の遷移金属元素M2を含む化合物をさらに混合することを特徴とする上記[1]~[4]のいずれかに記載の燃料電池用電極触媒の製造方法。
 [6]
 上記[1]~[5]のいずれかに記載の方法により燃料電池用電極触媒を製造する工程、および前記燃料電池用電極触媒を含有する触媒層形成材料を用いて燃料電池用電極触媒層を形成する工程を含むことを特徴とする燃料電池用電極触媒層の製造方法。
 [7]
 燃料電池用電極触媒層および多孔質支持層を有する燃料電池用電極の製造方法であって、上記[6]に記載の方法により燃料電池用電極触媒層を製造する工程、および前記多孔質支持層の表面に前記燃料電池用電極触媒層を形成する工程を含むことを特徴とする燃料電池用電極の製造方法。
 [8]
 カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体の製造方法であって、上記[7]に記載の方法により燃料電池用電極を製造する工程、ならびに前記カソードおよび前記アノードの少なくとも一方として燃料電池用電極を用いつつ、前記カソード、前記電解質膜および前記アノードを配置して膜電極接合体を製造する工程を含むことを特徴とする膜電極接合体の製造方法。
 [9]
 上記[8]に記載の方法により膜電極接合体を製造する工程、および前記膜電極接合体を用いて燃料電池を製造する工程を含むことを特徴とする燃料電池の製造方法。
 [10]
 前記燃料電池が固体高分子型燃料電池であることを特徴とする上記[9]に記載の燃料電池の製造方法。
 本発明の製造方法によれば、比較的低い温度での熱処理を経て、遷移金属(チタン等)を用いた高い触媒活性を有する燃料電池用電極触媒を製造することができる。
図1は、実施例1の燃料電池用電極(1)の酸素還元電流密度-電位曲線である。 図2は、実施例1の触媒(1)の粉末X線回折スペクトルである。 図3は、実施例2の燃料電池用電極(2)の酸素還元電流密度-電位曲線である。 図4は、実施例2の触媒(2)の粉末X線回折スペクトルである。 図5は、実施例3の燃料電池用電極(3)の酸素還元電流密度-電位曲線である。 図6は、実施例3の触媒(3)の粉末X線回折スペクトルである。 図7は、実施例4の燃料電池用電極(4)の酸素還元電流密度-電位曲線である。 図8は、実施例4の触媒(4)の粉末X線回折スペクトルである。 図9は、実施例5の燃料電池用電極(5)の酸素還元電流密度-電位曲線である。 図10は、実施例5の触媒(5)の粉末X線回折スペクトルである。 図11は、比較例1の燃料電池用電極(c1)の酸素還元電流密度-電位曲線である。 図12は、比較例1の触媒(c1)の粉末X線回折スペクトルである。 図13は、比較例2の燃料電池用電極(c2)の酸素還元電流密度-電位曲線である。 図14は、比較例2の触媒(c2)の粉末X線回折スペクトルである。 図15は、比較例3の燃料電池用電極(c3)の酸素還元電流密度-電位曲線である。 図16は、比較例4の燃料電池用電極(c4)の酸素還元電流密度-電位曲線である。
         [燃料電池用電極触媒の製造方法]
 本発明の燃料電池用電極触媒の製造方法は、
 遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物(A)を生じさせる工程(I)、
 少なくとも前記沈殿物(A)、有機化合物(B)および液体媒体(C)を混合して触媒前駆体を得る工程(II)、
 前記触媒前駆体中の固形分を500~1200℃の温度で熱処理して電極触媒を得る工程(IV)
を含み、
 前記遷移金属化合物(1)の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素(以下「遷移金属元素M1」または「M1」とも記す。)を含有する化合物であり、
 前記有機化合物(B)は、糖、アミノ糖、グルコサミノグリカン、ポリビニルアルコール、ポリアルキレングリコール、ポリエステル、含窒素高分子化合物、ニトリル基含有化合物、アミノ酸および有機酸から選ばれる少なくとも1種である
ことを特徴としている。なお本明細書において、特段の事情がない限り、原子およびイオンを、厳密に区別することなく「原子」と記載する。
 (工程(I))
 工程(I)では、遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物(A)を生じさせる。この沈殿物(A)は、遷移金属の水酸化物を含んでいる。
 接触操作は、好ましくは、アンモニア水に遷移金属化合物(1)の水溶液を添加することにより実施する。これにより、より分散性が高く、塗工性に優れた触媒を得ることができる。また、遷移金属化合物(1)の水溶液にアンモニアを吹き込んで、またはアンモニア水を添加して実施してもよい。
 また、アンモニア水へ遷移金属化合物(1)の水溶液を少量ずつ滴下する(すなわち、全量を一度に添加しない。)ことも好ましい。
 前記沈殿物(A)は回収され、後述する工程(II)に供される。前記沈殿物(A)の回収は、沈殿物(A)を含む水溶液を遠心分離することにより行ってもよく、濾過により行ってもよく、好ましくは遠心分離により行われる。
 遠心分離による前記沈殿物(A)の回収は、沈殿物(A)を含む水溶液の遠心分離、および上澄み液の除去の一連の操作によって行われる。上澄み液はすべて除去してもよく、一部のみ除去してもよい。後者であれば、沈殿物(A)は、上澄み液を伴って次の工程(II)に供される。遠心分離による回収は、前記沈殿物(A)のより小さな粒子まで後の工程に供することが可能となり、より高比表面積の触媒が得られ、触媒の単位質量あたりの活性が高くなる点で好ましい。
 遠心分離は、好ましくは複数回(例:2~7回)行われる。すなわち、回収された沈殿物(A)への水の添加、(任意に撹拌)、遠心分離、上澄み液の除去の操作を繰り返すことが好ましい。遠心分離を繰り返すことにより、沈殿物(A)が精製される。
 遠心分離は、たとえば回転数:500~20000rpm、時間:5分~120分間の条件で行われる。
 濾過による前記沈殿物(A)の回収は、濾紙または濾過膜を用いて行ってもよく、限外ろ過膜を用いながら、回収された沈殿物(A)への水の添加、(任意に撹拌)、濾過、濾液の除去の操作を繰り返すことにより、沈殿物(A)を精製しつつ行ってもよい。
 この沈殿物はゲル状物質であってもよい。
 <遷移金属化合物(1)>
 前記遷移金属化合物(1)の一部または全部は、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物である。前記遷移金属元素M1としては、具体的にはチタン、ジルコニウム、ハフニウム、ニオブ、バナジウムおよびタンタルが挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 遷移金属元素M1の中でも、コストおよび得られる触媒の性能の観点から、チタン、ジルコニウム、ニオブおよびタンタルが好ましく、チタンおよびジルコニウムがさらに好ましい。これらの金属は、特に地殻埋蔵量が多く、製品を安定供給可能となることから、産業上優位性が高い。
 前記遷移金属化合物(1)の具体例としては、金属硫酸塩、金属ハロゲン化物、金属アルコキシド、金属酢酸塩、金属リン酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物(金属ハロゲン化物の中途加水分解物)、金属過ハロゲン酸塩および金属次亜ハロゲン酸塩、金属錯体が挙げられ、金属硫酸塩、金属ハロゲン化物が好ましい。
 前記金属ハロゲン化物としては、前記遷移金属の塩化物、臭化物およびヨウ化物が挙げられ、使用する際の安全性が高いことから、前記遷移金属の塩化物が好ましい。
 前記金属アルコキシドとしては、前記遷移金属のメトキシド、プロポキシド、イソプロポキシド、エトキシド、ブトキシド、およびイソブトキシドが好ましく、前記遷移金属のイソプロポキシド、エトキシドおよびブトキシドがさらに好ましい。前記金属アルコキシドは、1種のアルコキシ基を有していてもよく、2種以上のアルコキシ基を有していてもよい。
 前記金属ハロゲン化物としては、前記遷移金属の塩化物、臭化物およびヨウ化物が挙げられ、前記金属酸ハロゲン化物としては、前記遷移金属の酸塩化物、酸臭化物、酸ヨウ化物が挙げられる。
 前記金属酸ハロゲン化物としては金属酸塩化物が挙げられ、金属過ハロゲン酸塩としては金属過塩素酸塩が挙げられ、金属次亜ハロゲン酸塩としては金属次亜塩素酸塩が挙げられる。
 前記遷移金属化合物(1)の具体例としては、
 硫酸チタン、四塩化チタン、三塩化チタン、四臭化チタン、三臭化チタン、四ヨウ化チタン、三ヨウ化チタン、チタンテトラメトキシド、チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトラペントキシド、四酢酸チタン等の酢酸チタン、二酸化チタン、チタン1原子に対し1以上2以下の酸素原子を有する酸化チタン、チタンテトラアセチルアセトナート、チタンオキシジアセチルアセトナート、トリス(アセチルアセトナト)第二チタン塩化物([Ti(acac)3]2[TiCl6])、オキシ塩化チタン、オキシ臭化チタン、オキシヨウ化チタン、硝酸チタン、オキシ硝酸チタン等のチタン化合物;
 硫酸ニオブ、五塩化ニオブ、五臭化ニオブ、五ヨウ化ニオブ、ニオブペンタメトキシド、ニオブペンタエトキシド、ニオブペンタイソプロポキシド、ニオブペンタブトキシド、ニオブペンタペントキシド、五酸化ニオブ、ニオブ1原子に対し2.5以下の酸素原子を有する酸化ニオブ、オキシ塩化ニオブ、オキシ臭化ニオブ、オキシヨウ化ニオブ、硝酸ニオブ、オキシ硝酸ニオブ等のニオブ化合物;
 硫酸ジルコニウム、四塩化ジルコニウム、四臭化ジルコニウム、四ヨウ化ジルコニウム、ジルコニウムテトラメトキシド、ジルコニウムテトラエトキシド、ジルコニウムテトラプロポキシド、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムテトライソブトキシド、ジルコニウムテトラペントキシド、四酢酸ジルコニウム、二酸化ジルコニウム、ジルコニウム1原子に対し1以上2以下の酸素原子を有する酸化ジルコニウム、ジルコニウムテトラアセチルアセトナート、オキシ塩化ジルコニウム、オキシ臭化ジルコニウム、オキシヨウ化ジルコニウム、硝酸ジルコニウム、オキシ硝酸ジルコニウム等のジルコニウム化合物;
 硫酸タンタル、五塩化タンタル、五臭化タンタル、五ヨウ化タンタル、タンタルペンタメトキシド、タンタルペンタエトキシド、タンタルペンタイソプロポキシド、タンタルペンタブトキシド、タンタルペンタペントキシド、五酢酸タンタル、五酸化タンタル、タンタル1原子に対し2.5以下の酸素原子を有する酸化タンタル、タンタルテトラエトキシアセチルアセトナト、オキシ塩化タンタル、オキシ臭化タンタル、オキシヨウ化タンタル、硝酸タンタル等のタンタル化合物;
 オキシ硫酸バナジウム、五塩化バナジウム、五臭化バナジウム、五ヨウ化バナジウム、バナジウムオキシドトリメトキシド、バナジウムオキシドトリエトキシド、バナジウムオキシドトリイソプロポキシド、バナジウムオキシドトリブトキシド、酸化バナジウム、バナジウム1原子に対し2.5以下の酸素原子を有する酸化バナジウム、バナジウム(III)アセチルアセトナート、バナジウム(V)アセチルアセトナート、オキシ塩化バナジウム、オキシ臭化バナジウム、オキシヨウ化バナジウム、硝酸バナジウム、オキシ硝酸バナジウム等のバナジウム化合物;
 硫酸ハフニウム、四塩化ハフニウム、臭化ハフニウム、ヨウ化ハフニウム、ハフニウムテトラメトキシド、ハフニウムテトラエトキシド、ハフニウムテトラプロポキシド、ハフニウムテトライソプロポキシド、ハフニウムテトラブトキシド、ハフニウムテトライソブトキシド、ハフニウムテトラペントキシド、酢酸ハフニウム、二酸化ハフニウム、ハフニウム1原子に対し1以上2以下の酸素原子を有する酸化ハフニウム、ハフニウムテトラアセチルアセトナート、オキシ塩化ハフニウム、オキシ臭化ハフニウム、オキシヨウ化ハフニウム、硝酸ハフニウム、オキシ硝酸ハフニウム等のハフニウム化合物
が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 これらの化合物の中でも、硫酸チタン、四塩化チタン、硫酸ニオブ、五塩化ニオブ、硫酸ジルコニウム、四塩化ジルコニウム、オキシ塩化ジルコニウム、硫酸タンタル、五塩化タンタルが好ましく、硫酸チタン、四塩化チタンがさらに好ましい。
 <遷移金属化合物(2)>
 遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水との接触は、遷移金属化合物(2)の存在下に行ってもよい。この遷移金属化合物(2)としては、前記遷移金属化合物(1)とは異なる、遷移金属元素として鉄、ニッケル、クロム、コバルトおよびマンガンから選ばれる少なくとも1種の遷移金属元素(以下「遷移金属元素M2」または「M2」とも記す。)M2を含む遷移金属化合物が用いられる。遷移金属化合物(2)を用いると、得られる触媒の性能が向上する。
 遷移金属元素M2としては、単位コストあたりの触媒性能が高いため、鉄およびクロムが好ましく、鉄がさらに好ましい。
 遷移金属化合物(2)の具体例としては、
 塩化鉄(II)、塩化鉄(III)、硫酸鉄(III)、硫化鉄(II)、硫化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、フェロシアン化鉄、硝酸鉄(II)、硝酸鉄(III)、シュウ酸鉄(II)、シュウ酸鉄(III)、リン酸鉄(II)、リン酸鉄(III)フェロセン、水酸化鉄(II)、水酸化鉄(III)、酸化鉄(II)、酸化鉄(III)、四酸化三鉄、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(III)等の鉄化合物;
 塩化ニッケル(II)、硫酸ニッケル(II)、硫化ニッケル(II)、硝酸ニッケル(II)、シュウ酸ニッケル(II)、リン酸ニッケル(II)、ニッケルセン、水酸化ニッケル(II)、酸化ニッケル(II)、酢酸ニッケル(II)、乳酸ニッケル(II)等のニッケル化合物;
 塩化クロム(II)、塩化クロム(III)、硫酸クロム(III)、硫化クロム(III)、硝酸クロム(III)、シュウ酸クロム(III)、リン酸クロム(III)、水酸化クロム(III)、酸化クロム(II)、酸化クロム(III)、酸化クロム(IV)、酸化クロム(VI)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)等のクロム化合物;
 塩化コバルト(II)、塩化コバルト(III)、硫酸コバルト(II)、硫化コバルト(II)、硝酸コバルト(II)、硝酸コバルト(III)、シュウ酸コバルト(II)、リン酸コバルト(II)、コバルトセン、水酸化コバルト(II)、酸化コバルト(II)、酸化コバルト(III)、四酸化三コバルト、酢酸コバルト(II)、乳酸コバルト(II)等のコバルト化合物;
 塩化マンガン(II)、硫酸マンガン(II)、硫化マンガン(II)、硝酸マンガン(II)、シュウ酸マンガン(II)、水酸化マンガン(II)、酸化マンガン(II)、酸化マンガン(III)、酢酸マンガン(II)、乳酸マンガン(II)、クエン酸マンガン等のマンガン化合物
が挙げられる。これらは、1種単独で用いてもよく2種以上を併用してもよい。
 これらの化合物の中でも、
 塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)、
 塩化ニッケル(II)、酢酸ニッケル(II)、乳酸ニッケル(II)、
 塩化クロム(II)、塩化クロム(III)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)、
 塩化コバルト(II)、塩化コバルト(III)、酢酸コバルト(II)、乳酸コバルト(II)、
 塩化マンガン(II)、酢酸マンガン(II)、乳酸マンガン(II)
がそれを原料として得られる触媒の活性が高くなることから好ましく、
 塩化鉄(II)、塩化鉄(III)、フェロシアン化カリウム、フェリシアン化カリウム、フェロシアン化アンモニウム、フェリシアン化アンモニウム、酢酸鉄(II)、乳酸鉄(II)、塩化クロム(II)、塩化クロム(III)、酢酸クロム(II)、酢酸クロム(III)、乳酸クロム(III)が、それを原料として得られる触媒の活性が極めて高くなることからさらに好ましい。
 (工程(II))
 工程(II)では、少なくとも前記沈殿物(A)、有機化合物(B)(詳細は後述する)および液体媒体(C)を混合して触媒前駆体液を調製する。
 混合操作は、前記有機化合物(B)と前記液体媒体(C)とを混合して前記有機化合物(B)の溶液(または分散液)を調製し、次いでこの溶液(または分散液)と前記沈殿物(A)とを混合することによって実施してもよい。液体媒体(C)の存在下で前記沈殿物(A)と前記有機化合物(B)とを混合すると、これらを偏在なく混合することができる。
 また、前記有機化合物(B)の溶液または分散液へ前記沈殿物(A)を少量ずつ添加しても(すなわち、全量を一度に添加しない。)よい。
 工程(II)では、オートクレーブ等の加圧可能な容器に前記沈殿物(A)、前記有機化合物(B)、前記液体媒体(C)を入れ、常圧以上の圧力をかけながら、混合を行ってもよい。
 <有機化合物(B)>
 前記有機化合物(B)としては、
 グルコース、フルクトース、スクロース、セルロース、ハイドロプロピルセルロースなどの糖;
 グルコサミン、アセチルグルコサミン、ガラクトサミン、アセチルノイラミン酸、フウクトサミン、ムラミルジペプチド、ケトサミンなどのアミノ糖;
ヒアルロン酸、コンドロイチン4-硫酸、コンドロイチン6―硫酸、ヘパリン、ケラタン硫酸、デルマタン硫酸などのグルコサミノグリカン;
 ポリビニルアルコール;
 ポリビニルピロリドン、ポリアニリン、ポリピロール、ポリピリジンなどの含窒素高分子化合物;
 ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール類;
 ポリエチレンテレフタレートなどのポリエステル;
 アクリロニトリル、ポリアクリロニトリルなどのニトリル基含有化合物;
 グリシン、アラニン、メチオニンなどのアミノ酸;
 アスコルビン酸、クエン酸、ステアリン酸などの有機酸
などが挙げられる。
 これらの中でも分子中に窒素原子を含む高分子化合物、(以下「含窒素高分子化合物」ともいう。)およびアミノ酸が好ましく、ポリビニルピロリドン、グルコサミン、グリシンがさらに好ましい。
 前記有機化合物(B)としては、分子中に窒素含有する有機化合物(窒素含有有機化合物)、分子中に窒素を含まない有機化合物のいずれも使用することができる。
 本発明の製造方法で用いられる遷移金属化合物(すなわち、工程(II)で用いられる前記遷移金属化合物(1)、および後述する工程(III)で任意に用いられる遷移金属化合物(2))の遷移金属元素の総原子数Aに対する、工程(II)で用いられる前記有機化合物(B)の炭素の総原子数Bの比(B/A)は、工程(IV)での熱処理時に二酸化炭素、一酸化炭素等の炭素化合物として脱離する成分を少なくすることが可能であり、すなわち触媒製造時に排気ガスを少量とすることができ、且つ得られる触媒の活性が高くなることから、好ましくは1以上200以下、より好ましくは1.5以上150以下、2以上130以下、さらに好ましくは3以上80以下、更により好ましくは4以上60以下、特に好ましくは5以上30以下である。
 前記有機化合物(B)が窒素含有有機化合物である場合には、本発明の製造方法で用いられる遷移金属化合物(すなわち、工程(II)で用いられる前記遷移金属化合物(1)、および後述する工程(III)で任意に用いられる遷移金属化合物(2))の遷移金属元素原子の総数Aに対する、工程(II)で用いられる前記窒素含有有機化合物の窒素原子の総数Cの比(C/A)は、良好な酸素還元活性の触媒を得るという観点から、好ましくは1以上28以下、より好ましくは1.5以上17以下、さらに好ましくは2以上12以下、よりさらに好ましくは2.5以上10以下、特に好ましくは3.5以上8.5以下である。
 <液体媒体(C)>
 前記液体媒体(C)としては、たとえば水、アルコール類、および酸類の水またはアルコール類の溶液が挙げられる。アルコール類としては、エタノール、メタノール、ブタノール、プロパノールおよびエトキシエタノールが好ましく、エタノールおよびメタノールさらに好ましい。酸類としては、酢酸、硝酸、塩酸、リン酸およびクエン酸が好ましく、これらの酸類が液体状の時は、これらをそのまま用いても良いし水溶液或いはアルコール類の溶液として用いることでも良い。得られる触媒の酸素還元活性が高まることから、酸類としては酢酸および硝酸がさらに好ましい。水、アルコール類、および酸類(水またはアルコール類の溶液も含む。)は、1種単独で用いてもよく2種以上を併用してもよい。
 <遷移金属化合物(2)>
 工程(II)においては、前記沈殿物(A)、前記有機化合物(B)および液体媒体(C)と共に、前記遷移金属化合物(2)をさらに混合してもよい。前記遷移金属化合物(M2)を用いると、得られる触媒の性能が向上する。
 遷移金属化合物(2)を混合する場合の混合操作は、前記有機化合物(B)と前記遷移金属化合物(2)前記液体媒体(C)とを混合して溶液(または分散液)を調製し、次いでこの溶液(または分散液)と前記沈殿物(A)とを混合することによって実施してもよい。
 (工程(III))
 工程(IV)の前に任意に実施される工程(III)では、工程(II)で得られた前記触媒前駆体液から液体媒体(C)を(沈殿物(A)が上澄み液を伴って工程(II)に供された場合には、この上澄み液も)除去する。
 液体媒体(C)の除去は大気下で行ってもよく、不活性ガス(例えば、窒素、アルゴン、ヘリウム)雰囲気下で行ってもよい。不活性ガスを用いることが、得られる触媒の活性が高くなるため好ましく、不活性ガスの中では、コストの観点から、窒素およびアルゴンが好ましく、窒素がより好ましい。
 液体媒体(C)除去の際の温度は、液体媒体(C)の蒸気圧が大きい場合には常温であってもよいが、触媒の量産性の観点からは、好ましくは30℃以上、より好ましくは40℃以上、さらに好ましくは50℃以上であり、工程(II)で得られる液中に含まれる触媒前駆体を分解させないという観点からは、好ましくは250℃以下、より好ましくは150℃以下、さらに好ましくは110℃以下である。
 液体媒体(C)の除去は、液体媒体(C)の蒸気圧が大きい場合には大気圧下で行ってもよいが、より短時間で液体媒体(C)を除去するため、減圧(たとえば、0.1Pa~0.1MPa)下で行うことが好ましい。減圧下での液体媒体(C)の除去には、たとえばエバポレーターを用いることができる。
 液体媒体(C)の除去は、工程(II)で得られた混合物を静置した状態で行ってもよいが、より均一な固形分残渣を得るためには、混合物を回転させながら液体媒体(C)を除去することが好ましい。
 前記混合物を収容している容器の重量が大きい場合は、撹拌棒、撹拌羽根、撹拌子などを用いて、溶液を回転させることが好ましい。
 また、前記混合物を収容している容器の真空度を調節しながら液体媒体(C)の除去を行う場合には、密閉できる容器で乾燥を行うこととなるため、容器ごと回転させながら液体媒体(C)の除去を行うこと、たとえばロータリーエバポレーターを使用して液体媒体(C)の除去を行うことが好ましい。
 液体媒体(C)の除去の方法、あるいは前記有機化合物(B)の性状などによっては、工程(III)で得られる固形分残渣の組成または凝集状態が不均一であることがある。このような場合に、固形分残渣を、混合し、解砕して、より均一、微細な粉末としたものを工程(IV)で用いると、粒径がより均一な触媒を得ることができる。
 固形分残渣を混合し、解砕するには、たとえば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機、ジェトミルを用いることができ、固形分残渣が少量であれば、好ましくは、乳鉢、自動混練乳鉢、またはバッチ式のボールミルが用いられ、固形分残渣が多量であり連続的な混合、解砕処理を行う場合には、好ましくはジェットミルが用いられる。
 (工程(IV))
 工程(IV)では、前記触媒前駆体液中の固形分を熱処理する。
 この熱処理においては、工程(II)で得られた固形分を含む前記触媒前駆体液をそのまま熱処理してもよく、工程(III)で得られた前記固形分残渣を熱処理してもよい。
 この熱処理の際の温度は、500~1200℃であり、好ましくは600~1100℃であり、より好ましくは700~1050℃である。
 熱処理の温度が上記範囲よりも高すぎると、得られた熱処理物の粒子相互間においての焼結、粒成長がおこり、結果として電極触媒の比表面積が小さくなってしまうため、この粒子を塗布法により触媒層に加工する際の加工性が劣ってしまう。一方、熱処理の温度が上記範囲よりも低過ぎると、高い活性を有する電極触媒を得ることができない。
 前記熱処理の方法としては、たとえば、静置法、攪拌法、落下法、粉末捕捉法が挙げられる。
 静置法とは、静置式の電気炉などに工程(III)で得られた固形分残渣を置き、これを加熱する方法である。加熱の際に、量り取った前記固形分残渣は、アルミナボード、石英ボードなどのセラミックス容器に入れてもよい。静置法は、大量の前記固形分残渣を加熱することができる点で好ましい。
 攪拌法とは、ロータリーキルンなどの電気炉中に前記固形分残渣を入れ、これを攪拌しながら加熱する方法である。攪拌法の場合は、大量の前記固形分残渣を加熱することができ、かつ、得られる電極触媒の粒子の凝集および成長を抑制することができる点で好ましい。さらに、撹拌法は、加熱炉に傾斜をつけることによって、連続的に電極触媒を製造することが可能である点で好ましい。
 落下法とは、誘導炉中に例えば微量の酸素ガスを含む不活性ガスを雰囲気ガスとして流しながら、炉を所定の加熱温度まで加熱し、該温度で熱的平衡を保った後、炉の加熱区域である坩堝中に前記固形分残渣を落下させ、これを加熱する方法である。落下法は、得られる電極触媒の粒子の凝集および成長を最小限度に抑制できる点で好ましい。
 粉末捕捉法とは、微量の酸素ガスを含む不活性ガス雰囲気中で、前記固形分残渣を飛沫にして浮遊させ、これを所定の加熱温度に保たれた垂直の管状炉中に捕捉して、加熱する方法である。
 前記静置法で熱処理を行う場合には、昇温速度は、特に限定されないが、好ましくは1℃/分~100℃/分程度であり、さらに好ましくは5℃/分~50℃/分である。また、加熱時間は、好ましくは0.1~10時間、より好ましくは0.5時間~5時間、さらに好ましくは0.5~3時間である。静置法において加熱を管状炉で行なう場合、電極触媒粒子の加熱時間は、0.1~10時間、好ましくは0.5時間~5時間である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成され、活性の高い触媒が得られる点で好ましい。
 前記攪拌法の場合、前記固形分残渣の加熱時間は、通常10分~5時間であり、好ましくは30分~2時間である。本法において、炉に傾斜をつけるなどして連続的に加熱を行う場合は、定常的な炉内のサンプル流量から計算された平均滞留時間を前記加熱時間とする。
 前記落下法の場合、前記固形分残渣の加熱時間は、通常0.5~10分であり、好ましくは0.5~3分である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成される傾向がある。
 前記粉末捕捉法の場合、前記固形分残渣の加熱時間は、0.2秒~1分、好ましくは0.2~10秒である。前記加熱時間が前記範囲内であると、均一な電極触媒粒子が形成される傾向にある。
 前記静置法で熱処理を行う場合には、熱源としてLNG(液化天然ガス)、LPG(液化石油ガス)、軽油、重油、電気などを用いた加熱炉を熱処理装置として用いてもよい。この場合、本発明においては前記固形分残渣を熱処理する際の雰囲気が重要であるので、燃料の炎が炉内に存在する、炉の内部から加熱する装置ではなく、炉の外部からの加熱する装置が好ましい。
 前記固形分残渣の量が1バッチあたり50kg以上となるような加熱炉を用いる場合には、コストの観点から、LNG,LPGを熱源とする加熱炉が好ましい。
 触媒活性の特に高い電極触媒を得たい場合には、厳密な温度制御が可能な、電気を抵抗線に通じこれを熱源とした電気炉を用いることが望ましい。
 炉の形状としては、管状炉、上蓋型炉、トンネル炉、箱型炉、試料台昇降式炉(エレベーター型)、台車炉などが挙げられ、この中でも雰囲気を特に厳密にコントロールすることが可能な、管状炉、上蓋型炉、箱型炉および試料台昇降式炉が好ましく、管状炉および箱型炉が好ましい。
 前記撹拌法を採用する場合も、上記の熱源を用いることができるが、撹拌法の中でもとくにロータリーキルンに傾斜をつけて、前記固形分残渣を連続的に熱処理する場合には、設備の規模が大きくなり、エネルギー使用量が大きくなりやすいので、LPG等燃料由来の熱源を利用することが好ましい。
 前記熱処理を行う際の雰囲気としては、得られる電極触媒の活性を高める観点から、窒素、アルゴン、ヘリウムが好ましく、窒素およびアルゴンがさらに好ましい。これらは、1種単独で用いてもよく、2種以上を混合して用いてもよい。
 前記有機化合物(B)が分子中に窒素を含まない有機化合物である場合には、得られる電極触媒の活性を高める観点から、窒素ガス雰囲気で800℃以上の温度で前記熱処理を行うことが好ましい。
 また、前記熱処理の雰囲気中に反応性ガスが存在すると、得られる電極触媒がより高い触媒性能を発現することがある。前記反応性ガスとしては、たとえば酸素ガス、水素ガス、メタン等の含炭素ガス、アンモニア等の含窒素ガスが挙げられる。
 前記熱処理の雰囲気中に水素ガスが含まれる場合には、水素ガスの濃度は、たとえば100体積%以下、好ましくは0.01~10体積%、より好ましくは1~5体積%である。
 前記熱処理の雰囲気中に酸素ガスが含まれる場合には、酸素ガスの濃度は、たとえば0.01~10体積%、好ましくは0.01~5体積%である。
 前記熱処理の後には、熱処理物を解砕してもよい。解砕を行うと、得られた電極触媒を用いて電極を製造する際の加工性、および得られる電極の特性を改善できることがある。この解砕には、たとえば、ロール転動ミル、ボールミル、小径ボールミル(ビーズミル)、媒体撹拌ミル、気流粉砕機、乳鉢、自動混練乳鉢、槽解機またはジェトミルを用いることができる。電極触媒が少量の場合には、乳鉢、自動混練乳鉢、バッチ式のボールミルが好ましく、熱処理物を連続的に多量に処理する場合には、ジェットミル、連続式のボールミルが好ましく、連続式のボールミルの中でもビーズミルがさらに好ましい。
           [燃料電池用電極触媒]
 本発明の燃料電池用電極触媒は、上述した本発明の燃料電池用電極触媒の製造方法により製造されることを特徴としている(以下、上述した本発明の燃料電池用電極触媒の製造方法により製造される燃料電池用電極触媒を単に「触媒」ともいう。)。
 前記触媒を構成する遷移金属元素(ただし、遷移金属元素M1と遷移金属元素M2とを区別しない。)、炭素、窒素および酸素の原子数の比を、遷移金属元素:炭素:窒素:酸素=1:x:y:zと表すと、好ましくは、0<x≦7、0<y≦2、0<z≦3である。
 電極触媒の活性が高いことから、xの範囲は、より好ましくは0.15≦x≦5.0、さらに好ましくは0.2≦x≦4.0であり、特に好ましくは1.0≦x≦3.0であり、yの範囲は、より好ましくは0.01≦y≦1.5、さらに好ましくは0.02≦y≦0.5であり、特に好ましくは0.03≦y≦0.4であり、zの範囲は、より好ましくは0.6≦z≦2.6であり、さらに好ましくは0.9≦z≦2.0であり、特に好ましくは0.95≦z≦1.5である。
 また前記触媒が、前記遷移金属元素として、周期表第4族および第5族の元素からなる群から選択される1種の遷移金属元素M1、および鉄、ニッケル、クロム、コバルトおよびマンガンより選択される少なくとも1種の遷移金属元素M2を含む場合には、前記触媒を構成する遷移金属元素M1、遷移金属元素M2、炭素、窒素および酸素の原子数の比を、遷移金属元素M1:遷移金属元素M2:炭素:窒素:酸素=(1-a):a:x:y:zと表すと、好ましくは、0<a≦0.5、0<x≦7、0<y≦2、0<z≦3である。前記触媒は、このようにM2を含むと、より性能が高くなる。
 電極触媒の活性が高いことから、x、yおよびzの好ましい範囲は上述のとおりであり、aの範囲は、より好ましくは0.01≦a≦0.5、さらに好ましくは0.015≦a≦0.4、特に好ましくは0.02≦a≦0.2である。
 前記a、x、yおよびzの値は、後述する実施例で採用した方法により測定した場合の値である。
 遷移金属元素M2(鉄、ニッケル、クロム、コバルトおよびマンガンより選択される少なくとも1種の金属元素)が存在することにより以下の(1)~(4)が推測される。
 (1)前記遷移金属元素M2または前記遷移金属化合物(M2)が、電極触媒を合成する際に、前記遷移金属元素M1原子と前記窒素含有有機化合物の中の窒素原子との結合を形成するための触媒として作用していると推測される。
 (2)遷移金属元素M1が溶出するような高電位、高酸化性雰囲気下で電極触媒を使用する場合であっても、遷移金属元素M2が不動態化することによって、遷移金属元素M1のさらなる溶出を防ぐと推測される。
 (3)工程(IV)の熱処理の際に、熱処理物の焼結、すなわち比表面積の低下を防ぐと推測される。
 (4)電極触媒中に遷移金属元素M1、遷移金属元素M2および存在することによって、双方の金属元素が隣接しあう部位において、電荷の偏りが生じ、金属元素として遷移金属元素M1のみを有する電極触媒ではなし得ない、基質の吸着もしくは反応、または生成物の脱離が発生すると推測される。
 本発明の触媒は、好ましくは、遷移金属元素、炭素、窒素および酸素の各原子を有し、前記遷移金属元素の酸化物、炭化物または窒化物単独あるいはこれらのうちの複数の結晶構造を有する。前記触媒対するX線回折分析による結晶構造解析の結果と、元素分析の結果とから判断すると、前記触媒は、前記遷移金属元素の酸化物構造を有したまま、酸化物構造の酸素原子のサイトを炭素原子または窒素原子で置換した構造、あるいは前記遷移金属元素の炭化物、窒化物または炭窒化物の構造を有したまま、炭素原子または窒素原子のサイトを酸素原子で置換した構造を有するか、あるいはこれらの構造を含む混合物ではないかと推測される。
 <BET比表面積>
 本発明の燃料電池用電極触媒の製造方法によれば、比表面積の大きな燃料電池用電極触媒が製造され、本発明の触媒のBET法で算出される比表面積は、好ましくは30~350m2/g、より好ましくは50~300m2/g、さらに好ましくは100~300m2/gである。比表面積が上記範囲内であると、触媒の構造がより好ましく維持され、さらに単位重量あたりの表面積が大きいことから触媒の活性が高く好ましい。
 本発明の製造方法によって製造された燃料電池用電極触媒の酸素還元電流密度は、以下のとおり求めることができる。すなわち、下記測定法(A)の結果から、特定の電位(たとえば0.7V)における、酸素雰囲気での還元電流と窒素雰囲気での還元電流との差を算出し、算出した値をさらに電極面積で除した値を、酸素還元電流密度(mA/cm2)とする。
 〔測定法(A):
 電子伝導性物質であるカーボンに分散させた触媒が1質量%となるように、該触媒及びカーボンを溶剤中に入れ、超音波で攪拌し懸濁液を得る。なお、カーボンとしては、カーボンブラック(比表面積:100~300m2/g)(例えばキャボット社製 XC-72)を用い、触媒とカーボンとが質量比で95:5になるように分散させる。また、溶剤としては、イソプロピルアルコール:水(質量比)=2:1を用いる。
 前記懸濁液を、超音波をかけながら10μLを採取し、すばやくグラッシーカーボン電極(直径:5.2mm)上に滴下し、120℃で5分間乾燥させる。乾燥することにより触媒を含む燃料電池用触媒層が、グラッシーカーボン電極上に形成される。この滴下及び乾燥操作を、カーボン電極表面に1.0mgの燃料電池触媒層が形成されるまで行う。
 次いで5%ナフィオン(NAFION(登録商標))溶液(デュポン社、DE521)をイソプロピルアルコールで10倍に希釈したものを、さらに前記燃料電池用触媒層上に10μL滴下する。これを、120℃で1時間乾燥する。
 このようにして、得られた電極を用いて、酸素雰囲気及び窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃の温度で、同濃度の硫酸水溶液中での可逆水素電極を参照電極とし、5mV/秒の電位走査速度で分極することにより電流-電位曲線を得る。〕
 本発明の製造方法によって製造された燃料電池用電極触媒の0.7V(vsRHE)における酸素還元電流密度は、固体高分子形燃料電池用空気極触媒として用いるためには、好ましく0.08mA/cm2以上10mA/cm2以下、より好ましくは0.1mA/cm2以上9mA/cm2以下、さらに好ましくは0.2mA/cm2以上8mA/cm2以下、特に好ましくは0.3mA/cm2以上7mA/cm2以下である。
               [用途]
 本発明の製造方法によって製造された燃料電池用電極触媒は、白金触媒の代替触媒として使用することができる。
 本発明の燃料電池用電極触媒層の製造方法によって製造される燃料電池用触媒層は、前記触媒を含む。
 燃料電池用触媒電極層には、アノード触媒層、カソード触媒層があるが、前記触媒はいずれにも用いることができる。前記触媒は、耐久性に優れ、酸素還元能が大きいので、カソード触媒層に用いることが好ましい。
 本発明の燃料電池用電極触媒層は、好ましくは、電子伝導性粉末をさらに含む。前記触媒を含む燃料電池用電極触媒層がさらに電子伝導性粉末を含む場合には、還元電流をより高めることができる。電子伝導性粉末は、前記触媒に、電気化学的反応を誘起させるための電気的接点を生じさせるため、還元電流を高めると考えられる。
 前記電子伝導性粒子は通常、触媒の担体として用いられる。
 前記触媒はある程度の導電性を有するが、触媒により多くの電子を与える、あるいは、反基質が触媒から多くの電子を受け取るために、触媒に、導電性を付与するための担体粒子を混合してもよい。これらの担体粒子は、工程(I)~工程(IV)を経て製造された触媒に混合されてもよく、工程(II)~工程(IV)のいずれかの段階で混合されてもよい。
 電子伝導性粒子の材質としては、炭素、導電性高分子、導電性セラミックス、金属または酸化タングステンもしくは酸化イリジウムなどの導電性無機酸化物が挙げられ、それらを1種単独または組み合わせて用いることができる。特に、炭素からなる電子伝導性粒子は比表面積が大きいため、また、安価に小粒径のものを入手しやすく、耐薬品性、耐高電位性に優れるため、炭素単独または炭素とその他の電子伝導性粒子との混合物が好ましい。すなわち燃料電池用触媒層は、好ましくは前記触媒と炭素粒子とを含む。
 炭素としては、カーボンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、フラーレン、多孔体カーボン、グラフェンなどが挙げられる。炭素からなる電子伝導性粒子の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また下記範囲内では、燃料電池用触媒層のガス拡散性がより向上し、触媒の利用率がより向上するため、好ましくは10~1000nmであり、より好ましくは10~100nmである。
 電子伝導性粒子が炭素からなる場合、前記触媒と電子伝導性粒子との重量比(触媒:電子伝導性粒子)は、好ましくは4:1~1000:1である。
 前記導電性高分子としては特に限定は無いが、例えばポリアセチレン、ポリ-p-フェニレン、ポリアニリン、ポリアルキルアニリン、ポリピロール、ポリチオフェン、ポリインドール、ポリ-1,5-ジアミノアントラキノン、ポリアミノジフェニル、ポリ(o-フェニレンジアミン)、ポリ(キノリニウム)塩、ポリピリジン、ポリキノキサリン、ポリフェニルキノキサリン等が挙げられる。これらの中でも、ポリピロール、ポリアニリン、ポリチオフェンが好ましく、ポリピロールがより好ましい。
 前記燃料電池用電極触媒層は、好ましくは高分子電解質をさらに含む。前記高分子電解質としては、燃料電池用触媒層において一般的に用いられているものであれば特に限定されない。具体的には、スルホン酸基を有するパーフルオロカーボン重合体(例えば、ナフィオン(NAFION(登録商標)))、スルホン酸基を有する炭化水素系高分子化合物、リン酸などの無機酸をドープさせた高分子化合物、一部がプロトン伝導性の官能基で置換された有機/無機ハイブリッドポリマー、高分子マトリックスにリン酸溶液や硫酸溶液を含浸させたプロトン伝導体などが挙げられる。これらの中でも、ナフィオン(NAFION(登録商標))が好ましい。前記燃料電池用触媒層を形成する際のナフィオン(NAFION(登録商標))の供給源としては、5%ナフィオン(NAFION(登録商標))溶液(DE521、デュポン社)などが挙げられる。
 前記燃料電池用電極触媒層は、アノード触媒層またはカソード触媒層のいずれにも用いることができる。本発明の燃料電池用電極触媒層は、高い酸素還元能を有し、酸性電解質中において高電位であっても腐蝕しがたい触媒を含むため、燃料電池のカソードに設けられる触媒層(カソード用触媒層)として有用である。特に固体高分子型燃料電池が備える膜電極接合体のカソードに設けられる触媒層に好適に用いられる。
 前記触媒を、担体である前記電子伝導性粒子上に分散させる方法としては、気流分散、液中分散等の方法が挙げられる。液中分散は、溶媒中に触媒および電子伝導性粒子を分散したものを、燃料電池用触媒層形成工程に使用できるため好ましい。液中分散としては、オリフィス収縮流による方法、回転せん断流による方法または超音波による方法等があげられる。液中分散の際、使用される溶媒は、触媒や電子伝導性粒子を浸食することがなく、分散できるものであれば特に制限はないが、揮発性の液体有機溶媒または水等が一般に使用される。
 また、前記触媒を、前記電子伝導性粒子上に分散させる際、さらに上記電解質と分散剤とを同時に分散させてもよい。
 燃料電池用触媒層の形成方法としては、特に制限はないが、たとえば、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、後述する電解質膜またはガス拡散層に塗布する方法が挙げられる。前記塗布する方法としては、ディッピング法、スクリーン印刷法、ロールコーティング法、スプレー法などが挙げられる。また、前記触媒と電子伝導性粒子と電解質とを含む懸濁液を、塗布法またはろ過法により基材に燃料電池用触媒層を形成した後、転写法で電解質膜に燃料電池用触媒層を形成する方法が挙げられる。
 本発明の電極の製造方法によって製造される電極は、前記燃料電池用触媒層と多孔質支持層とを有する。
 前記電極はカソードまたはアノードのいずれの電極にも用いることができる。本発明の電極は、耐久性に優れ、触媒能が大きいので、カソードに用いるとより産業上の優位性が高い。
 多孔質支持層とは、ガスを拡散する層(以下「ガス拡散層」とも記す。)である。ガス拡散層としては、電子伝導性を有し、ガスの拡散性が高く、耐食性の高いものであれば何であっても構わないが、一般的にはカーボンペーパー、カーボンクロスなどの炭素系多孔質材料や、軽量化のためにステンレス、耐食材を被服したアルミニウム箔が用いられる。
 本発明の膜電極接合体の製造方法によって製造される膜電極接合体は、カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体であって、前記カソードおよび前記アノードの少なくとも一方は、本発明の電極の製造方法によって製造される電極である。
 電解質膜としては、例えば、パーフルオロスルホン酸系を用いた電解質膜または炭化水素系電解質膜などが一般的に用いられるが、高分子微多孔膜に液体電解質を含浸させた膜または多孔質体に高分子電解質を充填させた膜などを用いてもよい。
 また本発明の製造方法によって製造される燃料電池は、前記膜電極接合体を備える。
 燃料電池の電極反応はいわゆる3相界面(電解質‐電極触媒‐反応ガス)で起こる。燃料電池は、使用される電解質などの違いにより数種類に分類され、溶融炭酸塩型(MCFC)、リン酸型(PAFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)等がある。中でも、本発明の膜電極接合体は、固体高分子型燃料電池に使用することが好ましい。
 本発明の製造方法によって製造された燃料電池用電極触媒を用いた燃料電池は性能が高く、また、白金を触媒として用いた場合と比較してきわめて安価であるという特徴を持つ。前記燃料電池は、発電機能、発光機能、発熱機能、音響発生機能、運動機能、表示機能および充電機能からなる群より選ばれる少なくとも一つの機能を有し燃料電池を備える物品の性能、特に携帯可能な物品の性能を向上させることができる。前記燃料電池は、好ましくは物品の表面または内部に備えられる。本発明の製造方法によって製造された燃料電池用電極触媒を用いた燃料電池は、単位質量あたりの活性が高く、かつ安価であり、従来燃料電池を搭載することが困難であった上記物品へも燃料電池を搭載することが可能となり、該物品はより小体積で大出力の電力を利用可能となることから、機能の充実につながり、好ましい。
 <燃料電池を備えた物品の具体例>
 前記燃料電池を備えることができる前記物品の具体例としては、ビル、家屋、テント等の建築物、蛍光灯、LED等、有機EL、街灯、屋内照明、信号機等の照明器具、機械、車両そのものを含む自動車用機器、家電製品、農業機器、電子機器、携帯電話等を含む携帯情報端末、美容機材、可搬式工具、風呂用品トイレ用品等の衛生機材、家具、玩具、装飾品、掲示板、クーラーボックス、屋外発電機などのアウトドア用品、教材、造花、オブジェ、心臓ペースメーカー用電源、ペルチェ素子を備えた加熱および冷却器用の電源が挙げられる。本発明の製造方法によって製造された燃料電池用電極触媒を用いた燃料電池は、単位質量あたりの発電性能が高く、かつ安価であり、従来燃料電池を搭載することが困難であった物品へも燃料電池を搭載することが可能となり、給電のための配線を省略することが可能となるため、有用である。
 以下に、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されない。
 実施例および比較例における各種測定は、下記の方法により行なった。
 [分析方法]
 1.粉末X線回折
 理学電機株式会社製 ロータフレックスを用いて、試料の粉末X線回折を行った。
 各試料の粉末X線回折における回折線ピークの本数は、信号(S)とノイズ(N)の比(S/N)が2以上で検出できるシグナルを1つのピークとしてみなして数えた。
 なお、ノイズ(N)は、ベースラインの幅とした。
 2.元素分析
 炭素:試料約0.1gを量り取り、炭素硫黄分析装置(堀場製作所製、EMIA-110)で測定を行った。
 窒素・酸素:試料約0.1gを量り取り、Niカプセルに試料を封入して-Cupに封入後、酸素窒素分析装置(LECO製、TC600)で測定を行った。
 遷移金属元素(チタン、ジルコニウム、鉄):試料約0.1gを白金皿に量り取り、酸を加えて加熱分解した。この加熱分解物を定容後、希釈し、ICP-MS(Agilent社製HP7500)で定量を行った。
 [実施例1]
 <硫酸チタン-PVP>
 1.触媒の製造;
 30%硫酸チタン(IV)水溶液(和光純薬工業(株)製)9.12gを蒸留水に加え、100mlのチタン溶液を調製した。28%アンモニア水100mlと蒸留水200mlとの混合液を準備し、この混合液に上記チタン溶液を滴下し、沈殿物(チタン化合物)を生じさせた。1時間放置後、反応液(沈殿物を含む)が100ml残るように上澄み液をスポイトで除去した。この沈殿物を含む反応液を、10000rpmで30分間遠心分離した後、容器内に沈殿物および上澄み液が合計で20ml残るように上澄み液をスポイトで除去した。次いで、容器内に純水を80ml添加し、容器の内容物を撹拌し、上記同様に遠心分離を行い、上記同様に上澄み液を除去する、という一連の操作を3回繰り返し、ゲル状物質含有液20mlを得た。このゲル状物質の中には水酸化チタンが含まれると考えられる。
 次に、液体媒体である蒸留水100mlに、ポリビニルピロリドン0.85gを溶解させ、さらに前記ゲル状物質含有液20mlを加え、10分間撹拌し、触媒前駆体液を得た。ロータリーエバポレーターを用い、窒素雰囲気の減圧下で、ホットスターラーの温度を約100℃に設定し、前記触媒前駆体液を加熱かつ攪拌しながら、水をゆっくり蒸発させた。完全に水を蒸発させて得られた固形分残渣を乳鉢で細かく均一に潰して、熱処理用粉末を得た。
 この熱処理用粉末を管状炉に入れ、窒素ガス雰囲気下で昇温速度10℃/minで1000℃まで加熱し、1000℃で3時間保持し、自然冷却することにより触媒(1)を得た。
 触媒(1)のBET比表面積および元素分析結果を表1に示す。
 2.燃料電池用電極の製造;
 次いで、この触媒(1)0.095gとカーボン(キャボット社製 XC-72)0.005gとを、イソプロピルアルコール:純水=2:1の質量比で混合した溶液10gに入れ、超音波で撹拌、懸濁して混合した。この混合物30μlをグラッシーカーボン電極(東海カーボン社製、直径:5.2mm)に塗布し、120℃で5分間乾燥し、カーボン電極表面に1.0mgの燃料電池触媒層が形成された。さらに、燃料電池用触媒層の上に5%ナフィオン(NAFION(登録商標))溶液(デュポン社、DE521)をイソプロピルアルコールで10倍に希釈したもの10μlを塗布し、120℃で1時間乾燥し、燃料電池用電極(1)を得た。
 3.酸素還元能の評価;
 作製した燃料電池用電極を、酸素雰囲気および窒素雰囲気で、0.5mol/Lの硫酸水溶液中、30℃、1.1Vから開始して卑電位側に5mV/秒の電位走査速度で分極し、それぞれ電流-電位曲線を測定した。電流値をそれぞれ電極面積で除し、酸素雰囲気で観察される電流密度から、窒素雰囲気で観察される電流密度を減じた値を、酸素還元電流密度とした。その際、同濃度の硫酸水溶液中での可逆水素電極を参照電極とした。
 表1に0.7Vにおける、酸素還元電流密度を示す。酸素還元電流密度が高いほど、燃料電池用電極における触媒の触媒能が高いことを示す。
 [実施例2]
 <硫酸チタン-グルコサミン>
 ポリビニルピロリドン0.85gをN-アセチル-D-グルコサミン(和光純薬工業(株)、純度:90%)2.80gに変更したこと以外は実施例1と同様の操作を行い、触媒(2)を得た。
 触媒(2)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(2)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(2)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例3]
 <四塩化チタン-グルコサミン>
 30%硫酸チタン水溶液9.12gを四塩化チタン水溶液(チタン含量:16.5質量%、(株)大阪チタニウムテクノロジーズ製)3.3gに変更したこと以外は実施例2と同様の操作を行い、触媒(3)を得た。
 触媒(3)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(3)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(3)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例4]
 <硫酸チタン-グリシン>
 ポリビニルピロリドン0.85gをグリシン(和光純薬工業(株)製、純度:99%)11.1gに変更したこと以外は実施例1と同様の操作を行い、熱処理用粉末を得た。
 この熱処理用粉末を管状炉に入れ、水素4体積%および窒素96体積%の混合ガス雰囲気下で昇温速度10℃/minで900℃まで加熱し、900℃で3時間保持し、自然冷却することにより触媒(4)を得た。
 触媒(4)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(4)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(4)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例5]
 <硫酸チタン-グリシン-鉄>
 グリシン11.1gをグリシン(和光純薬工業(株)、純度:99%)11.1gおよび酢酸鉄(II)(Aldrich社製、純度:95%)0.202gに変更したこと以外は実施例4と同様の操作を行い、触媒(5)を得た。
 触媒(5)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(5)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(5)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例6]
 <硫酸チタン-グリシン-鉄>
 熱処理温度を500℃に変更したこと以外は実施例5と同様の操作を行い、触媒(6)を得た。
 触媒(6)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(6)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(6)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例7]
 <硫酸チタン-グリシン-鉄>
 熱処理温度を1200℃に変更したこと以外は実施例5と同様の操作を行い、触媒(7)を得た。
 触媒(7)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(7)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(7)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例8]
 <硫酸チタン-グルコース>
 ポリビニルピロリドン0.85gをD(+)-グルコース(和光純薬工業(株)、純度:98%)1.40gに変更したこと以外は実施例1と同様の操作を行い、触媒(8)を得た。
 触媒(8)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(8)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(8)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例9]
 <硫酸チタン-ポリビニルアルコール>
 ポリビニルピロリドン0.85gをポリビニルアルコール(関東化学(株)、純度:78%、重合度n=2000)1.01gに変更したこと以外は実施例1と同様の操作を行い、触媒(9)を得た。
 触媒(9)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(9)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(9)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例10]
 <オキシ硝酸ジルコニウム-グリシン-鉄>
 30%硫酸チタン(IV)水溶液9.12gをオキシ硝酸ジルコニウム・二水和物(和光純薬工業(株)、純度:97%)1.51gに変更したこと以外は実施例5と同様の操作を行い、触媒(10)を得た。
 触媒(10)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(10)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(10)を得て、その酸素還元能を評価した。結果を表1に示す。
 [実施例11]
 <ニオブエトキシド-グリシン-鉄>
 30%硫酸チタン(IV)水溶液9.12gをニオブ(V)ペンタエトキシド(和光純薬工業(株)、純度:99.9%)1.72gに、溶媒を水からエタノールに変更したこと以外は実施例5と同様の操作を行い、触媒(11)を得た。
 触媒(11)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(11)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(11)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例1]
 酸化チタン(品名 スーパータイタニアF-6、昭和電工(株)、アナターゼ型、BET比表面積100m2/g)2gとカーボンブラック(Vulcan XC72 Cabot社)0.75gとを乳鉢中でよく混合し、管状炉に入れ、水素4体積%および窒素96体積%の混合ガス雰囲気下で昇温速度10℃/minで1700℃まで加熱し、1700℃で3時間保持し、自然冷却することにより粉末状の触媒(c1)を得た。
 触媒(c1)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c1)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c1)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例2]
 ゲル状物質含有液20mlをアモルファス酸化チタン(和光純薬工業(株)、アモルファス、気相合成(by the vapor phase method))1.18gに変更したこと以外は実施例4と同様の操作を行い、触媒(c2)を得た。
 触媒(c2)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c2)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c2)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例3]
 比較例1で得られた前記触媒(c1)0.30gを、酸素1体積%、水素4体積%、窒素95体積%の混合ガス中で、10時間加熱することにより、粉末状の触媒(c3)を得た。
 触媒(c3)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c3)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c3)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例4]
 容器内で水酸化ジルコニウム(東ソー、TZ-0、BET値:13m2/g)3gと、市販のポリビニルアルコール(クラレ(株)社製、ポバール117)1.5gとを水4gに溶解させた後、これらを容器ごと60℃に設定した熱風循環型乾燥機中に導入し、水分の除去を行った。得られた材料のうち1.2gをアルミナボートに入れ、窒素流通下にて200ml/分の流量で流通させながら、昇温速度150℃/時間で室温(約25℃)から800℃まで昇温し、同温度を3時間保持することで触媒(c4)を得た。
 触媒(c4)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c4)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c4)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例5]
 <硫酸チタン-グリシン-鉄>
 熱処理温度を400℃に変更したこと以外は実施例5と同様の操作を行い、触媒(c5)を得た。
 触媒(c5)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c5)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c5)を得て、その酸素還元能を評価した。結果を表1に示す。
 [比較例6]
 <硫酸チタン-グリシン-鉄>
 熱処理温度を1300℃に変更したこと以外は実施例6と同様の操作を行い、触媒(c6)を得た。
 触媒(c6)のBET比表面積および元素分析結果を表1に示す。
 また、触媒(1)を触媒(c6)に変更したこと以外は実施例1と同様の操作を行って、燃料電池用電極(c6)を得て、その酸素還元能を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1.  遷移金属化合物(1)の水溶液と、アンモニアおよび/またはアンモニア水とを接触させて、前記遷移金属の原子を含む沈殿物(A)を生じさせる工程(I)、
     少なくとも前記沈殿物(A)、有機化合物(B)および液体媒体(C)を混合して触媒前駆体を得る工程(II)、
     前記触媒前駆体を500~1200℃の温度で熱処理して電極触媒を得る工程(IV)
    を含み、
     前記遷移金属化合物(1)の一部または全部が、遷移金属元素として周期表第4族および第5族の元素から選ばれる少なくとも1種の遷移金属元素M1を含有する化合物であり、
     前記有機化合物(B)は、糖、アミノ糖、グルコサミノグリカン、ポリビニルアルコール、ポリアルキレングリコール、ポリエステル、含窒素高分子化合物、ニトリル基含有化合物、アミノ酸および有機酸から選ばれる少なくとも1種である
    ことを特徴とする燃料電池用電極触媒の製造方法。
  2.  前記工程(IV)の前に前記触媒前駆体から前記液体媒体(C)を除去する工程(III)を含むことを特徴とする請求項1に記載の燃料電池用電極触媒の製造方法。
  3.  前記遷移金属元素M1が、チタン、ジルコニウム、ニオブおよびタンタルから選ばれる少なくとも1種であることを特徴とする請求項1または2に記載の燃料電池用電極触媒の製造方法。
  4.  遷移金属化合物(1)が、金属ハロゲン化物、金属硫酸塩、金属アルコキシド、金属酢酸塩、金属リン酸塩、金属硝酸塩、金属有機酸塩、金属酸ハロゲン化物、金属過ハロゲン酸塩および金属次亜ハロゲン酸塩、金属錯体からなる群から選ばれる少なくとも1種であることを特徴とする請求項1~3のいずれかに記載の燃料電池用電極触媒の製造方法。
  5.  前記工程(II)において、遷移金属元素として鉄、ニッケル、クロム、コバルトおよびマンガンから選ばれる少なくとも1種の遷移金属元素M2を含む化合物をさらに混合することを特徴とする請求項1~4のいずれかに記載の燃料電池用電極触媒の製造方法。
  6.  請求項1~5のいずれかに記載の方法により燃料電池用電極触媒を製造する工程、および前記燃料電池用電極触媒を含有する触媒層形成材料を用いて燃料電池用電極触媒層を形成する工程を含むことを特徴とする燃料電池用電極触媒層の製造方法。
  7.  燃料電池用電極触媒層および多孔質支持層を有する燃料電池用電極の製造方法であって、請求項6に記載の方法により燃料電池用電極触媒層を製造する工程、および前記多孔質支持層の表面に前記燃料電池用電極触媒層を形成する工程を含むことを特徴とする燃料電池用電極の製造方法。
  8.  カソードとアノードと前記カソードおよび前記アノードの間に配置された電解質膜とを有する膜電極接合体の製造方法であって、請求項7に記載の方法により燃料電池用電極を製造する工程、ならびに前記カソードおよび前記アノードの少なくとも一方として燃料電池用電極を用いつつ、前記カソード、前記電解質膜および前記アノードを配置して膜電極接合体を製造する工程を含むことを特徴とする膜電極接合体の製造方法。
  9.  請求項8に記載の方法により膜電極接合体を製造する工程、および前記膜電極接合体を用いて燃料電池を製造する工程を含むことを特徴とする燃料電池の製造方法。
  10.  前記燃料電池が固体高分子型燃料電池であることを特徴とする請求項9に記載の燃料電池の製造方法。
PCT/JP2012/050008 2011-02-21 2012-01-04 燃料電池用電極触媒の製造方法 WO2012114778A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/000,569 US10026968B2 (en) 2011-02-21 2012-01-04 Method for producing fuel cell electrode catalyst
JP2012534455A JP5153967B2 (ja) 2011-02-21 2012-01-04 燃料電池用電極触媒の製造方法
EP12748862.5A EP2680351B1 (en) 2011-02-21 2012-01-04 Method for manufacturing electrode catalyst for fuel cell
CN201280009625.3A CN103380523B (zh) 2011-02-21 2012-01-04 燃料电池用电极催化剂的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035002 2011-02-21
JP2011035002 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012114778A1 true WO2012114778A1 (ja) 2012-08-30

Family

ID=46720568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050008 WO2012114778A1 (ja) 2011-02-21 2012-01-04 燃料電池用電極触媒の製造方法

Country Status (5)

Country Link
US (1) US10026968B2 (ja)
EP (1) EP2680351B1 (ja)
JP (1) JP5153967B2 (ja)
CN (1) CN103380523B (ja)
WO (1) WO2012114778A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035914A (zh) * 2013-01-08 2013-04-10 浙江大学 硫化镍薄片/石墨烯复合材料及其制备方法和应用
CN103295756A (zh) * 2013-05-31 2013-09-11 西北师范大学 一种磁性氮掺杂碳材料的制备方法
WO2016084762A1 (ja) * 2014-11-28 2016-06-02 昭和電工株式会社 触媒担体及びその製造方法
CN109004241A (zh) * 2018-08-09 2018-12-14 南京大学连云港高新技术研究院 一种铁-氮-石墨碳材料的制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150088006A (ko) * 2014-01-23 2015-07-31 삼성에스디아이 주식회사 연료전지용 전극 촉매, 그 제조방법, 이를 포함한 연료전지용 전극 및 연료전지
US10547902B2 (en) 2014-07-18 2020-01-28 Sony Corporation Information processing apparatus and method, display control apparatus and method, reproducing apparatus and method, and information processing system
KR101975970B1 (ko) 2016-12-23 2019-05-08 이화여자대학교 산학협력단 중공 복합체, 이의 제조 방법, 및 이를 포함하는 전기촉매
KR20210115529A (ko) * 2020-03-13 2021-09-27 현대자동차주식회사 용출된 전이금속이 제거된 연료전지용 촉매 잉크의 제조방법
US11670778B2 (en) 2020-09-28 2023-06-06 Hyzon Motors Inc. Electrodes with improved cell reversal tolerance through functionalized and stabilized metal oxides
CN113097502A (zh) * 2021-03-22 2021-07-09 青岛创启新能催化科技有限公司 一种以氮掺杂碳为载体的碳载铂催化剂的制备方法
CN114843476A (zh) * 2022-05-20 2022-08-02 重庆大学 一种v3s4@c/g复合电极材料的制备方法及其应用
CN115925001A (zh) * 2022-12-22 2023-04-07 浙江大学山东工业技术研究院 Ta2O5/NiO复合空心纳米球材料及其制备方法和应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079244A (ja) * 2002-08-12 2004-03-11 Toshiba Corp 燃料電池用触媒及び燃料電池
US20040096728A1 (en) 2002-07-31 2004-05-20 Ballard Power Systems Inc. Non-noble metal catalysts for the oxygen reduction reaction
JP2004303664A (ja) 2003-03-31 2004-10-28 Japan Science & Technology Agency 炭化物電極触媒
JP2005019332A (ja) 2003-06-27 2005-01-20 Junichi Ozaki 燃料電池用電極触媒、それを用いた燃料電池および電極
JP2005135900A (ja) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd 燃料電池用電極触媒およびその製造方法
WO2007072665A1 (ja) 2005-12-19 2007-06-28 National University Corporation Yokohama National University 直接形燃料電池用酸素還元電極
JP2008258150A (ja) 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 燃料電池用電極触媒
JP2009023887A (ja) 2007-07-20 2009-02-05 Dainatsukusu:Kk カーボン含有チタンオキシナイトライドと、それを用いた選択吸収膜および太陽光集熱器と、多孔体
WO2009031383A1 (ja) 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009107518A1 (ja) 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途
WO2009116369A1 (ja) 2008-03-21 2009-09-24 住友化学株式会社 電極触媒およびその製造方法
WO2011099493A1 (ja) 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005034779A (ja) * 2003-07-16 2005-02-10 Nissan Motor Co Ltd 電極触媒およびその製造方法
KR101082859B1 (ko) * 2003-10-29 2011-11-11 우미코레 아게 운트 코 카게 물 가수분해를 위한 귀금속 산화물 촉매
US8062552B2 (en) * 2005-05-19 2011-11-22 Brookhaven Science Associates, Llc Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates
US7605107B2 (en) * 2005-09-29 2009-10-20 Exxonmobil Research And Engineering Company Method of preparing a supported hydrotreating catalyst
JP2007123195A (ja) * 2005-10-31 2007-05-17 Nissan Motor Co Ltd 触媒の製造方法
JP4649379B2 (ja) * 2006-07-31 2011-03-09 株式会社東芝 燃料電池用電極、膜電極複合体および燃料電池、ならびにそれらの製造法
WO2008111570A1 (ja) 2007-03-09 2008-09-18 Sumitomo Chemical Company, Limited 膜-電極接合体およびこれを用いた燃料電池
KR20090127419A (ko) 2007-03-09 2009-12-11 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 연료 전지용 전극 촉매
JP2008258152A (ja) 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 膜−電極接合体およびこれを用いた燃料電池
JP2008289971A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp コアシェル構造体及びその製造方法並びに当該コアシェル構造体を含む排ガス浄化用触媒
JP2010227843A (ja) * 2009-03-27 2010-10-14 Sumitomo Chemical Co Ltd 電極触媒の製造方法および電極触媒
US7964526B2 (en) * 2009-04-29 2011-06-21 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
FR2959735B1 (fr) * 2010-05-06 2012-06-22 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse.
US20120148483A1 (en) * 2010-08-02 2012-06-14 Rongrong Chen Macrocycle modified ag nanoparticulate catalysts with variable oxygen reduction activity in alkaline media
DK2638588T3 (da) * 2010-11-12 2023-03-13 Celcibus Ab Brændselscelleelektrode med porøs carbon-kerne med makrocykliske metal-chelater derpå

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096728A1 (en) 2002-07-31 2004-05-20 Ballard Power Systems Inc. Non-noble metal catalysts for the oxygen reduction reaction
JP2004079244A (ja) * 2002-08-12 2004-03-11 Toshiba Corp 燃料電池用触媒及び燃料電池
JP2004303664A (ja) 2003-03-31 2004-10-28 Japan Science & Technology Agency 炭化物電極触媒
JP2005019332A (ja) 2003-06-27 2005-01-20 Junichi Ozaki 燃料電池用電極触媒、それを用いた燃料電池および電極
JP2005135900A (ja) * 2003-10-06 2005-05-26 Nissan Motor Co Ltd 燃料電池用電極触媒およびその製造方法
WO2007072665A1 (ja) 2005-12-19 2007-06-28 National University Corporation Yokohama National University 直接形燃料電池用酸素還元電極
JP2008258150A (ja) 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd 燃料電池用電極触媒
JP2009023887A (ja) 2007-07-20 2009-02-05 Dainatsukusu:Kk カーボン含有チタンオキシナイトライドと、それを用いた選択吸収膜および太陽光集熱器と、多孔体
WO2009031383A1 (ja) 2007-09-07 2009-03-12 Showa Denko K.K. 触媒およびその製造方法ならびにその用途
WO2009107518A1 (ja) 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途
WO2009116369A1 (ja) 2008-03-21 2009-09-24 住友化学株式会社 電極触媒およびその製造方法
JP2009255053A (ja) 2008-03-21 2009-11-05 Sumitomo Chemical Co Ltd 電極触媒の製造方法および電極触媒
WO2011099493A1 (ja) 2010-02-10 2011-08-18 昭和電工株式会社 燃料電池用電極触媒の製造方法、遷移金属炭窒酸化物の製造方法、燃料電池用電極触媒およびその用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROCHEMISTRY COMMUNICATIONS, vol. 12, no. 9, September 2010 (2010-09-01), pages 1177 - 1179
JOURNAL OF INORGANIC MATERIALS (CHINESE, vol. 20, no. 4, pages 785

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035914A (zh) * 2013-01-08 2013-04-10 浙江大学 硫化镍薄片/石墨烯复合材料及其制备方法和应用
CN103295756A (zh) * 2013-05-31 2013-09-11 西北师范大学 一种磁性氮掺杂碳材料的制备方法
WO2016084762A1 (ja) * 2014-11-28 2016-06-02 昭和電工株式会社 触媒担体及びその製造方法
JP6058227B2 (ja) * 2014-11-28 2017-01-11 昭和電工株式会社 触媒担体及びその製造方法
CN107073466A (zh) * 2014-11-28 2017-08-18 昭和电工株式会社 催化剂载体及其制造方法
US10005066B2 (en) 2014-11-28 2018-06-26 Showa Denko K.K. Catalyst carrier and method for producing the same
CN109004241A (zh) * 2018-08-09 2018-12-14 南京大学连云港高新技术研究院 一种铁-氮-石墨碳材料的制备方法
CN109004241B (zh) * 2018-08-09 2021-05-14 南京大学连云港高新技术研究院 一种铁-氮-石墨碳材料的制备方法

Also Published As

Publication number Publication date
CN103380523B (zh) 2016-12-07
US20130330659A1 (en) 2013-12-12
CN103380523A (zh) 2013-10-30
EP2680351A4 (en) 2016-06-22
JP5153967B2 (ja) 2013-02-27
US10026968B2 (en) 2018-07-17
EP2680351B1 (en) 2019-03-13
EP2680351A1 (en) 2014-01-01
JPWO2012114778A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5153967B2 (ja) 燃料電池用電極触媒の製造方法
JP6061998B2 (ja) 燃料電池用電極触媒、遷移金属炭窒酸化物およびその用途
Gong et al. Carbon nitride in energy conversion and storage: recent advances and future prospects
Zhao et al. Efficient bifunctional Fe/C/N electrocatalysts for oxygen reduction and evolution reaction
JP2012160457A (ja) 燃料電池用電極触媒の製造方法、燃料電池用電極触媒およびその用途
JP5819280B2 (ja) 燃料電池用電極触媒およびその用途
JP5255160B1 (ja) 燃料電池用電極触媒およびその製造方法
Garcia et al. Graphitic carbon nitride on reduced graphene oxide prepared via semi-closed pyrolysis as electrocatalyst for oxygen reduction reaction
Oh et al. Enhancing Bifunctional Catalytic Activity via a Nanostructured La (Sr) Fe (Co) O3− δ@ Pd Matrix as an Efficient Electrocatalyst for Li–O2 Batteries
JP5539892B2 (ja) 触媒およびその製造方法ならびにその用途
JP5757884B2 (ja) 燃料電池用電極触媒の製造方法ならびにその用途
Soren et al. Oxygen Reduction Reaction Activity of Microwave Mediated Solvothermal Synthesized Nanocomposite CeO2/gC 3N4
JP2012221929A (ja) 膜・電極接合体の製造方法および固体高分子型燃料電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012534455

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14000569

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012748862

Country of ref document: EP