WO2009104769A1 - タッチパネルセンサー - Google Patents
タッチパネルセンサー Download PDFInfo
- Publication number
- WO2009104769A1 WO2009104769A1 PCT/JP2009/053094 JP2009053094W WO2009104769A1 WO 2009104769 A1 WO2009104769 A1 WO 2009104769A1 JP 2009053094 W JP2009053094 W JP 2009053094W WO 2009104769 A1 WO2009104769 A1 WO 2009104769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- atomic
- alloy film
- group
- film
- Prior art date
Links
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 165
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 42
- 229910052804 chromium Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052732 germanium Inorganic materials 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 7
- 229910052779 Neodymium Inorganic materials 0.000 claims description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 claims description 3
- 150000002910 rare earth metals Chemical class 0.000 claims 1
- 239000012789 electroconductive film Substances 0.000 abstract 4
- 239000010408 film Substances 0.000 abstract 3
- 238000000034 method Methods 0.000 description 31
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 30
- 229910052782 aluminium Inorganic materials 0.000 description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 26
- 239000000758 substrate Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 22
- 238000010438 heat treatment Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 229910000858 La alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 238000005530 etching Methods 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 229910000583 Nd alloy Inorganic materials 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 238000007373 indentation Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910000748 Gd alloy Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 229910018518 Al—Ni—La Inorganic materials 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2203/00—Indexing scheme relating to G06F3/00 - G06F3/048
- G06F2203/041—Indexing scheme relating to G06F3/041 - G06F3/045
- G06F2203/04103—Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
Definitions
- the present invention relates to a touch panel sensor, and in particular, to a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto.
- the touch panel sensor used as an input switch integrated with the image display device, is located on the front of the image display device. Due to its ease of use, the touch panel sensor is widely used for bank ATMs, ticket vending machines, car navigation systems, PDAs, and copy machine operation screens. in use.
- Examples of the input point detection method include a resistance film method, a capacitance method, an optical method, an ultrasonic surface acoustic wave method, and a piezoelectric method. Of these, the resistive film method is most widely used because of its low cost and simple structure.
- a resistive film type touch panel sensor is roughly divided into an upper electrode, a lower electrode, and a tail part.
- a transparent conductive film provided on a substrate (for example, a film substrate) constituting the upper electrode, and a lower electrode are provided.
- substrate (for example, glass substrate) to comprise comprises the structure which opposed the spacer.
- the lead wiring for connecting the transparent conductive film and the control circuit is generally obtained by printing conductive paste such as silver paste or conductive ink by inkjet or other printing methods. It is formed.
- conductive paste such as silver paste or conductive ink by inkjet or other printing methods.
- wiring made of pure silver or a silver alloy has poor adhesion to glass, resin, etc., and causes aggregation due to aggregation on the substrate at the connection portion with an external device, leading to defects due to increased electrical resistance or disconnection. There is a problem such as.
- Patent Document 1 discloses a method of forming a part of the wiring with plating or metal foil.
- the silver paste is used for the connection portion between the wiring formed of plating or metal foil and the external device, it is difficult to further increase the strength of the connection portion between the wiring and the external device.
- the touch panel sensor is a sensor that senses indentation by a human finger or the like, and temporarily generates minute deformation due to stress applied during touch. Due to repeated use of the touch panel, this minute deformation repeatedly occurs, and stress is repeatedly applied to the lead wiring. Therefore, durability (resistance to stress) is also required for the wiring.
- the routing wiring formed using a conductive paste made of pure silver or a silver alloy cannot be said to have sufficient durability, and the routing wiring is easily damaged during use of the touch panel. If the routing wiring is damaged, the electrical resistance of the wiring increases and a voltage drop occurs, and the accuracy of position detection of the touch panel sensor is likely to decrease. Further, when the pen touch method is adopted, it is necessary to reduce the pitch of the wiring. However, when the paste is used, it is difficult to reduce the pitch because it is formed by a coating method.
- Patent Document 2 discloses a conductive paste having excellent durability, composed of silver powder, an organic resin, and a solvent.
- the routing wiring obtained using the conductive paste made of silver powder, organic resin and solvent has an electrical resistivity of about 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm (about 30 times the bulk electrical resistivity of aluminum). Therefore, it is difficult to say that the wiring has a sufficiently low electric resistance.
- the present invention has been made in view of such circumstances, and the object thereof is to prevent disconnection or increase in electrical resistance over time, exhibit low electrical resistance, and conduct electricity with a transparent conductive film. It is an object of the present invention to provide a highly reliable touch panel sensor having a lead-out wiring that can be secured and can be directly connected to the transparent conductive film.
- a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto, The touch panel sensor, wherein the aluminum alloy film contains a total of 0.2 to 10 atomic% of at least one element selected from the group X consisting of Ni and Co, and the hardness of the aluminum alloy film is 2 to 15 GPa.
- the aluminum alloy film may be referred to as a “first aluminum alloy film”.
- the aluminum alloy film further includes at least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg in a total amount of 0.0.
- the touch panel sensor according to (1) wherein the total amount of at least one element selected from the X group and at least one element selected from the Z group is 10 atomic% or less.
- the aluminum alloy film further includes at least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg in a total amount of 0.0.
- the touch panel sensor according to (1) wherein the total amount of at least one element selected from the X group and at least one element selected from the Z group is 10 atomic% or less.
- the aluminum alloy film includes a rare earth element as at least one element selected from the Z group, and the amount of the rare earth element is 0.05 atomic% or more, and at least one selected from the X group
- the rare earth element is one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy, according to any one of (2) to (4) Touch panel sensor.
- a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto The aluminum alloy film includes 0.02 atomic% or more in total of at least one element selected from the X group consisting of Ni and Co, and 0.2 atomic% or more of Ge, and includes at least 1 selected from the X group A touch panel sensor in which the total amount of seed elements and Ge is 10 atomic% or less, and the hardness of the aluminum alloy film is 2 to 15 GPa.
- the aluminum alloy film may be referred to as a “second aluminum alloy film”.
- the aluminum alloy film further includes 0.05% of at least one element selected from the Z ′ group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Si, and Mg.
- the touch panel according to (7) wherein the total amount of at least one element selected from the X group, Ge and at least one element selected from the Z ′ group is 10 atomic% or less. sensor.
- the aluminum alloy film includes a rare earth element as at least one element selected from the Z ′ group, and the amount of the rare earth element is 0.05 atomic% or more, and at least one selected from the X group.
- the touch panel sensor according to (8) wherein the total amount of the element, Ge, and rare earth element is 10 atomic% or less.
- the hardness of the aluminum alloy film can be determined by a film hardness test using a nanoindenter. In this test, continuous stiffness measurement is carried out using an XP chip using “Nano” Indenter “XP” (analysis software: Test “Works” 4) manufactured by MTS.
- the hardness of the aluminum alloy film can be obtained by obtaining the average value of the results of measuring 15 points under the conditions where the indentation depth is 300 nm, the excitation vibration frequency is 45 Hz, and the amplitude is 2 nm.
- the routing wiring of the touch panel sensor is made of a prescribed aluminum alloy film, the electrical resistance of the wiring can be reduced, and the transparent conductive film and the wiring can be directly connected.
- an external device controller
- fine processing can be performed by forming a prescribed aluminum alloy film by sputtering and adopting a photolithography and etching process.
- the tolerance with respect to the developing solution and resist stripping solution used in the manufacturing process of the touch panel sensor can be increased.
- the touch panel sensor can be manufactured by a simple process without increasing the number of processes. .
- FIG. 1 is a diagram showing an example of a film hardness test result using a nanoindenter.
- FIG. 2 is an optical micrograph showing an example of an evaluation result of resistance to the stripping solution.
- FIG. 3 shows cross-sectional TEM photographs of (a) Al-2 atomic% Ni-0.35 atomic% La alloy film and (b) Al-0.1 atomic% Ge-0.1 atomic% Gd alloy film.
- the touch panel sensor may suffer from problems such as temporary stress concentration at the sensor end during normal use and disconnection due to deformation of the wiring, resulting in increased electrical resistance. .
- problems such as temporary stress concentration at the sensor end during normal use and disconnection due to deformation of the wiring, resulting in increased electrical resistance.
- the aluminum alloy film constituting the lead-out wiring is too soft, the deformation of the wiring is repeated due to stress concentration, causing a problem that the wiring deteriorates and breaks or peels off.
- the aluminum alloy film is too hard, deformation hardly occurs with respect to the indentation load, so that deterioration such as microcracking or peeling may occur.
- the hardness of the aluminum alloy film (first aluminum alloy film, second aluminum alloy film) constituting the routing wiring is 2 GPa or more (preferably 2.5 GPa or more) and 15 GPa or less (preferably 10 GPa or less, more preferably 8 GPa or less).
- the wiring may be made of an aluminum alloy film (first aluminum alloy film) containing a certain amount of Ni and / or Co.
- first aluminum alloy film will be described.
- an aluminum alloy film (first aluminum alloy film) that exhibits appropriate hardness, low electrical resistivity, and electrical conductivity with the transparent conductive film
- it is selected from the X group consisting of Ni and Co. It is necessary to contain a total of 0.2 atomic% or more (preferably 0.3 atomic% or more) of at least one kind of element (hereinafter sometimes referred to as “X group element”).
- X group element At least one kind of element
- the total of at least one element selected from the group X consisting of Ni and Co is 10 atomic% or less (preferably 8 atomic% or less).
- a prescribed amount of X group element (the following Z group element is included as necessary) is used, and a sputtering method is employed as a film forming method. It is preferable to uniformly disperse the X group element and adjust the substrate temperature and Ar gas pressure during sputtering as the conditions for forming the aluminum alloy film. As the substrate temperature is higher, the film quality of the formed film is closer to the bulk, a dense film is easily formed, and the hardness of the film tends to increase. Further, as the Ar gas pressure is increased, the density of the film decreases and the hardness of the film tends to decrease. Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
- At least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg (hereinafter referred to as “Group Z element”).
- group Z element As the rare earth element used in the present invention, Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La of atomic number 57 to Lu of atomic number 71 in the periodic table). Means the same element group (hereinafter the same).
- the inclusion of the Z group element makes it easier to adjust the hardness of the film and increases the resistance to a strong alkaline developer or resist stripper used in the manufacturing process.
- TMAH tetramethylammonium hydroxide aqueous solution
- amine-based stripping solution a resist stripping / cleaning process using an amine-based stripping solution.
- the Z group elements are contained in a total amount of 0.15 atomic% or more (more preferably 0.2 atomic% or more).
- the content of the Z group element is preferably set so that the total amount of the X group element and the Z group element is 10 atomic% or less (more preferably 7 atomic% or less).
- the Z group element contains a rare earth element and the rare earth element content is 0.05 atomic% or more. More preferably, it is 0.1 atomic% or more.
- the rare earth element content is such that the total amount of the X group element and the rare earth element is 10 atomic% or less (more preferably 7 atomic% or less).
- the rare earth element is one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy.
- Z group elements for example, La, Nd, Cu, Ge, and Gd are more preferably used, and one or more of these are more preferably used in any combination.
- the above-described effect is remarkably manifested by containing a certain amount or more of Cu with respect to the amount of group X element contained in the aluminum alloy film. Specifically, the effect is remarkable when Cu (atomic%) / X group element (atomic%) is 0.3 or more.
- the Cu (atomic%) / X group element (atomic%) is more preferably 0.5 or more.
- the upper limit of Cu (atomic%) / X group element (atomic%) is not particularly limited, and Cu (atomic%) / X group element (from the lower limit of Cu amount and the upper limit of X group element amount) The upper limit of (atomic%) is 2.5.
- the first aluminum alloy film for example, Al-2 atomic% Ni-0.35 atomic% La alloy film, Al-1 atomic% Ni-0.5 atomic% Cu-0.35 atomic% La alloy film, Al-- A 0.6 atomic% Ni-0.5 atomic% Cu-0.3 atomic% La alloy film may be mentioned.
- an aluminum alloy film used for the lead wiring of the touch panel sensor a total of 0.02 atomic% or more of group X elements (at least one element selected from group X consisting of Ni and Co), and Ge
- group X elements at least one element selected from group X consisting of Ni and Co
- Ge An aluminum alloy film (second aluminum alloy film) containing 0.2 atomic% or more and having a total amount of the X group element and Ge of 10 atomic% or less is also defined.
- the group X element in the second aluminum alloy film exhibits appropriate hardness as a lead wiring, is less likely to cause disconnection or increase in electrical resistance over time, exhibits low electrical resistance, and is electrically conductive with the transparent conductive film. It is an element that is effective in realizing excellent products.
- the reason why the excellent electrical conductivity with the transparent conductive film can be ensured is that, by the combined addition with Ge, (1) the formation of highly insulating aluminum oxide is suppressed as in the case of the first aluminum alloy film. And / or (2) It is conceivable that a conductive path is formed at the interface between the transparent conductive film and the aluminum alloy film to ensure electrical conductivity with the transparent conductive film.
- the lower limit of the X group element amount of the second aluminum alloy film is made 0.02 atomic% in total.
- the X group element amount of the second aluminum alloy film is preferably 0.05 atomic% or more, more preferably 0.07 atomic% or more.
- the X group element amount is 10 atomic% or less (more preferably 7 atomic% or less) in total with Ge.
- Ge corresponds to a Z group element contained as necessary in the first aluminum alloy film, but in the second aluminum alloy film, a certain amount or more of Ge described later has a relatively small content of the X group element. Even if it is a case, the effect that the outstanding electrical conductivity with an ITO film
- the Ge amount in the second aluminum alloy film is 10 atomic% or less (more preferably 7 atomic% or less) in total with the X group element as described above.
- the second aluminum alloy film further includes at least one selected from the Z ′ group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Si, and Mg.
- Z ′ group element A seed element (hereinafter, also referred to as “Z ′ group element”) may be contained.
- the Z ′ group element By containing the Z ′ group element, it becomes easier to increase the hardness of the film as in the case of the Z group element described above, and the resistance to strongly alkaline developer and resist stripping solution used in the manufacturing process is increased. be able to. Specifically, for example, aluminum elution and corrosion can be suppressed in a resist development process using TMAH (tetramethylammonium hydroxide aqueous solution) and a resist stripping / cleaning process using an amine-based stripping solution. Can be suppressed.
- TMAH tetramethylammonium hydroxide aqueous solution
- the Z ′ group elements In order to fully exhibit the above effects, it is preferable to contain a total of 0.05 atomic% or more of the Z ′ group elements. More preferably, it is 0.1 atomic% or more.
- the content of the Z ′ group element is preferably set so that the total amount of the X group element, Ge, and the Z ′ group element is 10 atomic% or less (more preferably 7 atomic% or less).
- the Z ′ group element contains a rare earth element and the rare earth element content is 0.05 atomic% or more. More preferably, it is 0.1 atomic% or more.
- the content of the rare earth element is preferably set so that the total amount of the X group element, Ge, and the rare earth element is 10 atomic% or less (more preferably 7 atomic% or less).
- the rare earth element is preferably at least one element selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy.
- the second aluminum alloy film containing the X group element, Ge and rare earth elements for example, an Nd or La alloy film of Al-0.1 atomic% X group element-Ge-0.3 atomic% or more (for example, Al-0. 1 atomic% Ni-0.5 atomic% Ge-0.5 atomic% Nd alloy film), Al-0.2 atomic% Ni-0.5 atomic% Ge-0.2 atomic% La alloy film, Al- 0.2 atomic% Ni-0.5 atomic% Ge-0.2 atomic% La alloy film, Al-0.1 atomic% Ni-0.5 atomic% Ge-0.3 atomic% Nd alloy film, Al- Examples include 0.2 atomic% Co-0.5 atomic% Ge-0.2 atomic% La alloy film and Al-0.1 atomic% Co-0.5 atomic% Ge-0.3 atomic% Nd alloy film. It is done.
- the above effect is remarkably manifested by adding a certain amount or more of Cu with respect to the amount of group X element contained in the second aluminum alloy film. Specifically, the effect is remarkable when Cu (atomic%) / X group element (atomic%) is 0.3 or more.
- the Cu (atomic%) / X group element (atomic%) is more preferably 0.5 or more.
- the upper limit of Cu (atomic%) / X group element (atomic%) is not particularly limited, and Cu (atomic%) / X group element (from the lower limit of Cu amount and the upper limit of X group element amount) The upper limit of (atomic%) is 25.
- the film formation conditions of the aluminum alloy film are as follows: It is preferable to adjust the substrate temperature and the Ar gas pressure. As the substrate temperature is higher, the film quality of the formed film is closer to the bulk, a dense film is easily formed, and the hardness of the film tends to increase. Further, as the Ar gas pressure is increased, the density of the film decreases and the hardness of the film tends to decrease. Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
- the improvement in hardness can also be achieved by refining Al crystal grains.
- it is effective to add an alloy element according to the thermal history of the aluminum alloy film received in the manufacturing process, and the thermal history of the aluminum alloy film (for example, the insulating film (
- the thermal history of the aluminum alloy film for example, the insulating film
- a rare earth element or a refractory metal Ti, Cr, Mo, W
- Ge is added as an alloy element to refine the Al crystal grain. Can do.
- the component composition of the first aluminum alloy film and the second aluminum alloy film according to the present invention (hereinafter sometimes collectively referred to as “aluminum alloy film”) is as described above, and the balance is aluminum and inevitable impurities. is there.
- inevitable impurities for example, inevitable impurities (for example, oxygen (O) or the like) mixed in the manufacturing process of the aluminum alloy film may be included.
- an aluminum alloy film constituting the lead wiring of the touch panel sensor should have an electrical resistivity of 50 ⁇ ⁇ cm or less, preferably 25 ⁇ ⁇ cm or less (more preferably 20 ⁇ ⁇ cm or less). Can do.
- the present invention does not define the method for forming the aluminum alloy film, but it is preferably formed by a sputtering method from the viewpoint of thinning the wire and homogenizing the alloy components in the film. Moreover, although the said aluminum alloy film can also be formed with a vapor deposition method, the sputtering method is more preferable from a viewpoint of controlling easily the amount of additional elements.
- the touch panel sensor of the present invention is not particularly limited in the configuration other than the lead wiring composed of an aluminum alloy film directly connected to the transparent conductive film, and any configuration known in the field can be adopted.
- a resistive touch panel sensor can be manufactured as follows. That is, after forming a transparent conductive film on the substrate, resist coating, exposure, development, and etching are sequentially performed, then an aluminum alloy film is formed, and resist coating, exposure, development, and etching are performed to route the wiring. Then, an insulating film or the like covering the wiring can be formed to form the upper electrode. Also, after forming a transparent conductive film on the substrate, photolithography is performed in the same manner as the upper electrode, and then, as in the case of the upper electrode, a lead wiring made of an aluminum alloy film is formed, and then the wiring is covered.
- An insulating film to be formed is formed, and a micro dot, a spacer, or the like is formed to form a lower electrode.
- a touch panel sensor can be manufactured by laminating the above-mentioned upper electrode, lower electrode, and tail portion formed separately.
- the transparent conductive film is not particularly specified, but as a representative example, one made of indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
- the substrate transparent substrate
- glass, polycarbonate, or polyamide can be used as a commonly used substrate.
- the substrate of the lower electrode that is a fixed electrode is made of glass.
- a polycarbonate film or the like can be used for the substrate of the upper electrode that needs flexibility.
- the touch panel sensor of the present invention can be used as a touch panel sensor such as a capacitive method or an ultrasonic surface acoustic wave method in addition to the resistive film method.
- the aluminum alloy film according to the present invention is suitable as the lead wiring of the touch panel sensor, hardness test, evaluation of electrical conductivity with the transparent conductive film, measurement of electrical resistivity of the aluminum alloy film And the resistance to the developer or the stripper was evaluated.
- the present invention will be described in more detail. However, the present invention is not limited by the present embodiment, and may be implemented with appropriate modifications within a range that can meet the above and the following purposes. Of course, any of these is also included in the technical scope of the present invention.
- Example 1> Hardness test with nanoindenter
- an aluminum alloy film shown in Tables 1 to 6 below (with a film thickness of about 300 nm) is formed on the surface by DC magnetron sputtering. did.
- the atmosphere in the chamber is once set to an ultimate vacuum of 3 ⁇ 10 ⁇ 6 Torr, and then a disk type target having the same component composition as each aluminum alloy film and having a diameter of 4 inches is used. It carried out on the conditions shown in. In addition, the composition of the formed aluminum alloy film was confirmed by inductively coupled plasma (ICP) mass spectrometry.
- ICP inductively coupled plasma
- FIG. 1 An example of the above measurement results is shown in FIG. 1 (in addition, sample No. in FIG. 1 is given for convenience of measurement and is not related to No. in Tables 1 to 6).
- FIG. 1 shows the case of an Al-2 atomic% Ni-0.35 atomic% La alloy film, the same measurement was performed for the aluminum alloy films and pure aluminum films in Tables 1 to 6.
- Tables 1-6 The results are shown in Tables 1-6. The following can be considered from Tables 1-6.
- alloy elements group X element, group Z element in the first aluminum alloy film, group X element, Ge, rare earth element in the second aluminum alloy film
- the hardness of the aluminum alloy film tends to increase.
- the upper limit of the content of the X group element and the Z group element should be 10 atomic% in order to reduce the hardness to 10 GPa or less.
- Example 2> (Lower: Transparent conductive film and Upper: Evaluation of electrical conductivity of aluminum alloy film) Below, the connection resistance value of both the contact parts at the time of laminating
- a non-alkali glass plate (plate thickness 0.7 mm, diameter 4 inches) is used as a substrate, and an ITO film or IZO film (thickness of 50 nm or less), which is an oxide transparent conductive film, is formed on the surface by DC magnetron sputtering. The film was formed at room temperature and patterned by photolithography and etching. Next, an aluminum alloy film shown in Tables 1 to 6 (thickness of about 300 nm) was formed on the upper portion in the same manner as in Example 1 above.
- TMAH tetramethylammonium hydroxide aqueous solution
- connection resistance value at the interface between the transparent conductive film and the aluminum alloy film was measured by a four-terminal Kelvin method.
- a four-terminal manual prober and a semiconductor parameter analyzer “HP4156A” manufactured by Hewlett-Packard Company were used.
- connection resistance value of 150 ⁇ or less were determined to be good, and those exceeding 150 ⁇ were determined to be defective.
- the same measurement was performed on a sample in which a pure aluminum film was formed instead of the aluminum alloy film. However, the sample on which the pure aluminum film was formed could not be measured due to poor electrical contact.
- Example 3> (Lower: aluminum alloy film and upper: Evaluation of electrical conductivity of transparent conductive film) Below, the connection resistance value of the contact part at the time of laminating
- An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed. Next, these samples were subjected to heat treatment at 270 ° C. for 10 minutes while simulating the thermal history in the manufacturing process.
- the heat treatment atmosphere was a vacuum (degree of vacuum: 3 ⁇ 10 ⁇ 4 Pa or less) or a nitrogen atmosphere. Then, patterning by photolithography and etching was performed.
- an ITO film or an IZO film (film thickness: 50 nm or less) is formed on the upper portion in the same manner as in Example 2 above, and then photolithography and etching are performed to form a Kelvin pattern (transparent conductive film and aluminum).
- the contact area with the alloy film was 80 ⁇ m square), and the connection resistance value was measured by the four-terminal Kelvin method in the same manner as in Example 2 above.
- connection resistance value was measured by performing a heat treatment at 250 ° C. for 30 minutes in a vacuum or an inert gas atmosphere after forming the as-deposited Kelvin pattern formed as described above and the aluminum alloy film, Thereafter, heat treatment was performed at 270 ° C. for 10 minutes simulating the thermal history, and then the Kelvin pattern formed as described above was performed.
- connection resistance value of 150 ⁇ or less were determined to be good, and those exceeding 150 ⁇ were determined to be defective.
- the same measurement was performed on a sample in which a pure aluminum film was formed instead of the aluminum alloy film. However, the sample on which the pure aluminum film was formed could not be measured due to poor electrical contact.
- Tables 1-6 The above measurement results are shown in Tables 1-6. From Tables 1 to 6, in order to ensure electrical conductivity with the transparent conductive film, in the case of the first aluminum alloy film, the content of the X group element is 0.2 atomic% or more, and in the case of the second aluminum alloy film, It can be seen that the X group element content may be 0.02 atomic% or more and the Ge content may be 0.2 atomic% or more.
- the sample subjected to the heat treatment at 250 ° C. for 30 minutes after forming the aluminum alloy film tends to have a lower connection resistance with the transparent conductive film than the sample not subjected to the heat treatment. I can confirm that.
- the aluminum alloy film is heat-treated at a temperature of 250 ° C. or higher in a vacuum or an inert gas atmosphere before the resist development process by TMAH for routing wiring patterning, pinholes and through grain boundaries are caused by the structural change of the aluminum alloy. It is possible to reduce or eliminate voids.
- the substrate temperature is heated to a temperature of 100 ° C. or higher to form an aluminum alloy film, and the temperature of 100 ° C. or higher is applied in a vacuum or an inert gas atmosphere before the resist development process by TMAH for wiring patterning.
- the heat treatment is performed, the coverage of the aluminum alloy film (particularly the coverage at the oxide transparent conductive film pattern end) is improved, and corrosion due to the penetration of a chemical solution such as a developer can be prevented.
- Galvanic corrosion can be suppressed by performing heat treatment. Galvanic corrosion is said to occur when the electrode potential difference between different metals is large, such as an oxide transparent conductive film such as ITO and a pure aluminum film.
- the electrode potential with respect to an Ag / AgCl standard electrode in an aqueous tetramethylammonium hydroxide (TMAH) solution that is an alkaline developer of photoresist is about -0.17 V for amorphous-ITO and about -0.19 V for poly-ITO.
- TMAH tetramethylammonium hydroxide
- pure aluminum is very low at about -1.93V.
- pure aluminum is very easily oxidized as described above.
- the galvanic corrosion can be further suppressed by performing the heat treatment.
- the reason for this heat treatment is that the precipitation of Ni and / or Co in the aluminum alloy film is promoted to increase the electrode potential of the aluminum alloy film, and the electrode potential difference with the transparent conductive film is reduced, thereby suppressing galvanic corrosion. Conceivable.
- the heat treatment as described above may be performed on the aluminum alloy film in order to further improve the electrical conductivity and corrosion resistance with the transparent conductive film.
- Example 4> Measurement of electrical resistivity of aluminum alloy film
- An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed. Thereafter, without performing heat treatment after film formation, photolithography and etching by TMAH are performed to form a stripe-like pattern (pattern for measuring electrical resistivity) having a width of 100 ⁇ m and a length of 10 mm, and then the electric resistance of the pattern was measured at room temperature by a direct current four-probe method using a prober.
- Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, as the amount of alloy elements (X group element and Z group element) in the first aluminum alloy film and the amount of alloy elements (X group element, Ge and rare earth elements) in the second aluminum alloy film increase, From the viewpoint of reducing the electrical resistivity, the total amount of the X group element and the Z group element in the first aluminum alloy film, the X group element in the second aluminum alloy film, Ge and It can be seen that the total amount of rare earth elements may be 10 atomic% or less.
- Example 5> Evaluation of resistance to stripping solution
- An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed.
- the aluminum alloy film was subjected to a heat treatment at 320 ° C. for 30 minutes in a nitrogen flow while simulating a heat history in the manufacturing process, and then an amine-based stripping solution (manufactured by Tokyo Ohka Kogyo Co., Ltd .: “TOK106”). ) In an aqueous solution (adjusted to pH 10) for 5 minutes. Then, the case where the number of black spots found in the aluminum alloy film after immersion is very small compared to the number of black spots found in the Al-2 atomic% Ni-0.35 atomic% La alloy film after immersion is A. (Excellent), the case where it was small was evaluated as B (good), the case where it was equivalent was evaluated as C, and the case where it was large was evaluated as D (bad).
- Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, it can be seen that in order to increase the resistance to the stripping solution, it is preferable to contain the Z group element or the Z ′ group element in an amount of 0.05 atomic% or more, preferably 0.15 atomic% or more. In particular, by containing Cu, precipitates derived from group X elements are refined, and as a result, it is confirmed that even when exposed to an aqueous stripping solution, enormous corrosion is unlikely to occur and the stripping solution has better resistance. did.
- Example 6> Evaluation of resistance to developer
- An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed.
- Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, by adding the Z group element or the Z ′ group element, the thickness reduction amount (etching amount) of the aluminum alloy film when immersed in the developer is decreased. It can be confirmed that the addition of the group element contributes to the improvement of the resistance of the aluminum alloy to the developer. In addition, it is understood that 0.05 atomic% or more of the Z group element or the Z ′ group element is preferably contained in order to sufficiently exhibit such an effect.
- FIG. 3 shows (a) Al-2 atomic% Ni-0.35 atomic% La alloy film, (b) Al-0.1 atomic% Ge-0.1.
- a cross-sectional TEM photograph of an atomic% Gd alloy film is shown.
- 3 (a) and 3 (b) are compared, the (a) Al-2 atomic% Ni-0.35 atomic% La alloy film satisfying the component composition of the present invention has fine crystal grains. I understand that.
- the film hardness satisfies 2 to 15 GPa
- the electrical conductivity of the aluminum alloy film is satisfactory in the evaluation (connection resistance value is 150 ⁇ or less)
- the electrical resistivity satisfies 50 ⁇ ⁇ cm or less
- the resistance to the stripping solution is evaluated. Is A to C and the evaluation of the resistance to the developer is A or B, the overall judgment is defined as A, and the others are defined as B.
- the routing wiring of the touch panel sensor is made of a prescribed aluminum alloy film, the electrical resistance of the wiring can be reduced, and the transparent conductive film and the wiring can be directly connected.
- an external device controller
- fine processing can be performed by forming a prescribed aluminum alloy film by sputtering and adopting a photolithography and etching process.
- the tolerance with respect to the developing solution and resist stripping solution used in the manufacturing process of the touch panel sensor can be increased.
- the touch panel sensor can be manufactured by a simple process without increasing the number of processes. .
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Position Input By Displaying (AREA)
- Physical Vapour Deposition (AREA)
- Conductive Materials (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Contacts (AREA)
- Push-Button Switches (AREA)
Abstract
Description
(1)透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.2~10原子%含み、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
なお、上記アルミニウム合金膜を「第1アルミニウム合金膜」ということがある。
(2)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(1)に記載のタッチパネルセンサー。
(3)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.15原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(1)に記載のタッチパネルセンサー。
(4)前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素および希土類元素の合計量が10原子%以下である(2)または(3)に記載のタッチパネルセンサー。
(5)前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である(2)~(4)のいずれか1項に記載のタッチパネルセンサー。
(6)前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である(2)~(5)のいずれか1項に記載のタッチパネルセンサー。
(7)透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.02原子%以上、およびGeを0.2原子%以上含み、前記X群から選ばれる少なくとも1種の元素とGeの合計量が10原子%以下であり、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
なお、上記アルミニウム合金膜を「第2アルミニウム合金膜」ということがある。
(8)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、SiおよびMgよりなるZ'群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素、Geおよび前記Z'群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(7)に記載のタッチパネルセンサー。
(9)前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素、Geおよび希土類元素の合計量が10原子%以下である(8)に記載のタッチパネルセンサー。
(10)前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である(8)または(9)に記載のタッチパネルセンサー。
(11)前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である(8)~(10)のいずれか1項に記載のタッチパネルセンサー。
(12)前記アルミニウム合金膜の電気抵抗率が50μΩ・cm以下である(1)~(11)のいずれか1項に記載のタッチパネルセンサー。
(13)前記アルミニウム合金膜の電気抵抗率が25μΩ・cm以下である(1)~(12)のいずれか1項に記載のタッチパネルセンサー。
(14)前記透明導電膜が、実質的に酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる(1)~(13)のいずれか1項に記載のタッチパネルセンサー。
無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、DCマグネトロンスパッタリング法で、下記表1~6に示すアルミニウム合金膜(膜厚はいずれも約300nm)を形成した。成膜は、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10-6Torrにしてから、各アルミニウム合金膜と同一の成分組成の直径4インチの円盤型ターゲットを用い、下記に示す条件で行った。尚、形成されたアルミニウム合金膜の組成は、誘導結合プラズマ(Inductively Coupled Plasma:ICP)質量分析法で確認した。
(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:30sccm
・スパッタパワー:260W
・基板温度:室温
以下では、透明導電膜、アルミニウム合金膜の順に積層させた場合の両者の接触部分の接続抵抗値を測定し、該積層構造におけるアルミニウム合金膜の透明導電膜との電気伝導性を評価した。
以下では、アルミニウム合金膜、透明導電膜の順に積層させた場合の両者の接触部分の接続抵抗値を測定し、該積層構造におけるアルミニウム合金膜の透明導電膜との電気伝導性を評価した。
無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。その後、成膜後に熱処理を行なわずに、TMAHによるフォトリソグラフィーおよびエッチングを行って、幅100μm、長さ10mmのストライプ状パターン(電気抵抗率測定用パターン)に加工してから、該パターンの電気抵抗を、プローバーを使用した直流4探針法で室温にて測定した。そして、電気抵抗率が50μΩ・cmを超えるものを不良、50μΩ・cm以下のものを良好と評価した。尚、同様の測定を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。
無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。
無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。
本出願は、2008年2月22日出願の日本特許出願(特願2008-041662)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (14)
- 透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.2~10原子%含み、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。 - 前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項1に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.15原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項1に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素および希土類元素の合計量が10原子%以下である請求項2または3に記載のタッチパネルセンサー。
- 前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である請求項2~4のいずれか1項に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である請求項2~5のいずれか1項に記載のタッチパネルセンサー。
- 透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.02原子%以上、およびGeを0.2原子%以上含み、前記X群から選ばれる少なくとも1種の元素とGeの合計量が10原子%以下であり、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。 - 前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、SiおよびMgよりなるZ'群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素、Geおよび前記Z'群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項7に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素、Geおよび希土類元素の合計量が10原子%以下である請求項8に記載のタッチパネルセンサー。
- 前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である請求項8または9に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である請求項8~10のいずれか1項に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜の電気抵抗率が50μΩ・cm以下である請求項1~11のいずれか1項に記載のタッチパネルセンサー。
- 前記アルミニウム合金膜の電気抵抗率が25μΩ・cm以下である請求項1~12のいずれか1項に記載のタッチパネルセンサー。
- 前記透明導電膜が、実質的に酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる請求項1~13のいずれか1項に記載のタッチパネルセンサー。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980102139.4A CN101911232B (zh) | 2008-02-22 | 2009-02-20 | 触摸屏传感器 |
US12/918,727 US20100328247A1 (en) | 2008-02-22 | 2009-02-20 | Touch panel sensor |
KR1020107020701A KR101163329B1 (ko) | 2008-02-22 | 2009-02-20 | 터치 패널 센서 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-041662 | 2008-02-22 | ||
JP2008041662 | 2008-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104769A1 true WO2009104769A1 (ja) | 2009-08-27 |
Family
ID=40985645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/053094 WO2009104769A1 (ja) | 2008-02-22 | 2009-02-20 | タッチパネルセンサー |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100328247A1 (ja) |
JP (1) | JP5231282B2 (ja) |
KR (1) | KR101163329B1 (ja) |
CN (1) | CN101911232B (ja) |
TW (1) | TWI382428B (ja) |
WO (1) | WO2009104769A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486694A (zh) * | 2010-12-01 | 2012-06-06 | 株式会社神户制钢所 | 触摸面板传感器 |
JP2012118813A (ja) * | 2010-12-01 | 2012-06-21 | Kobe Steel Ltd | タッチパネルセンサー |
JP2012118814A (ja) * | 2010-12-01 | 2012-06-21 | Kobe Steel Ltd | タッチパネルセンサー |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4355743B2 (ja) | 2006-12-04 | 2009-11-04 | 株式会社神戸製鋼所 | Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット |
JP2010065317A (ja) * | 2008-08-14 | 2010-03-25 | Kobe Steel Ltd | 表示装置およびこれに用いるCu合金膜 |
JP4567091B1 (ja) | 2009-01-16 | 2010-10-20 | 株式会社神戸製鋼所 | 表示装置用Cu合金膜および表示装置 |
CN102473732B (zh) | 2009-07-27 | 2015-09-16 | 株式会社神户制钢所 | 布线结构以及具备布线结构的显示装置 |
JP5547574B2 (ja) * | 2009-10-23 | 2014-07-16 | 株式会社神戸製鋼所 | Al基合金スパッタリングターゲット |
WO2012074021A1 (ja) * | 2010-12-01 | 2012-06-07 | 株式会社神戸製鋼所 | タッチパネルセンサー |
JP2012180540A (ja) | 2011-02-28 | 2012-09-20 | Kobe Steel Ltd | 表示装置および半導体装置用Al合金膜 |
CN102254586B (zh) * | 2011-05-05 | 2012-06-06 | 苏州喜仁新材料科技有限公司 | 一种低温固化导电银浆,其制备方法及应用 |
JP5524905B2 (ja) | 2011-05-17 | 2014-06-18 | 株式会社神戸製鋼所 | パワー半導体素子用Al合金膜 |
JP2013084907A (ja) | 2011-09-28 | 2013-05-09 | Kobe Steel Ltd | 表示装置用配線構造 |
TWI537400B (zh) * | 2011-12-06 | 2016-06-11 | 神戶製鋼所股份有限公司 | 觸控面板感測器用銅合金配線膜及其之製造方法、以及觸控面板感測器、以及濺鍍靶 |
KR20140122338A (ko) * | 2013-04-09 | 2014-10-20 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | 터치패널, 그 제조방법 및 터치패널용 Ag-Pd-Nd 합금 |
JP5805708B2 (ja) * | 2013-06-05 | 2015-11-04 | 株式会社神戸製鋼所 | タッチパネルセンサー用配線膜、およびタッチパネルセンサー |
DE102013215060A1 (de) * | 2013-07-31 | 2015-02-05 | Irlbacher Blickpunkt Glas Gmbh | Kapazitive Sensorvorrichtung mit elektrisch leitfähig beschichteter Sensorplatte aus Dünnglas |
US20160345425A1 (en) * | 2014-02-07 | 2016-11-24 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Wiring film for flat panel display |
KR102263975B1 (ko) | 2014-12-16 | 2021-06-11 | 삼성디스플레이 주식회사 | 터치 패널 및 그 제조방법 |
CN107447138B (zh) * | 2017-08-10 | 2021-02-05 | 佛山市三水凤铝铝业有限公司 | 一种抗腐蚀铝合金型材及其挤压方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004214606A (ja) * | 2002-12-19 | 2004-07-29 | Kobe Steel Ltd | 表示デバイスおよびその製法、ならびにスパッタリングターゲット |
JP2007018226A (ja) * | 2005-07-07 | 2007-01-25 | Three M Innovative Properties Co | タッチパネルセンサー |
JP2007293777A (ja) * | 2006-04-27 | 2007-11-08 | Nitto Denko Corp | タッチパネル |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2733006B2 (ja) * | 1993-07-27 | 1998-03-30 | 株式会社神戸製鋼所 | 半導体用電極及びその製造方法並びに半導体用電極膜形成用スパッタリングターゲット |
JP3365954B2 (ja) * | 1997-04-14 | 2003-01-14 | 株式会社神戸製鋼所 | 半導体電極用Al−Ni−Y 合金薄膜および半導体電極用Al−Ni−Y 合金薄膜形成用スパッタリングターゲット |
JP4458563B2 (ja) * | 1998-03-31 | 2010-04-28 | 三菱電機株式会社 | 薄膜トランジスタの製造方法およびこれを用いた液晶表示装置の製造方法 |
JP4663829B2 (ja) * | 1998-03-31 | 2011-04-06 | 三菱電機株式会社 | 薄膜トランジスタおよび該薄膜トランジスタを用いた液晶表示装置 |
JP3831868B2 (ja) * | 2001-08-13 | 2006-10-11 | 大林精工株式会社 | アクティブマトリックス表示装置とその製造方法 |
JP4783525B2 (ja) * | 2001-08-31 | 2011-09-28 | 株式会社アルバック | 薄膜アルミニウム合金及び薄膜アルミニウム合金形成用スパッタリングターゲット |
JP2003089864A (ja) * | 2001-09-18 | 2003-03-28 | Mitsui Mining & Smelting Co Ltd | アルミニウム合金薄膜及びその薄膜を有する配線回路並びにその薄膜を形成するターゲット材 |
US7514037B2 (en) * | 2002-08-08 | 2009-04-07 | Kobe Steel, Ltd. | AG base alloy thin film and sputtering target for forming AG base alloy thin film |
JP2005303003A (ja) * | 2004-04-12 | 2005-10-27 | Kobe Steel Ltd | 表示デバイスおよびその製法 |
JP4541787B2 (ja) * | 2004-07-06 | 2010-09-08 | 株式会社神戸製鋼所 | 表示デバイス |
JP4330517B2 (ja) * | 2004-11-02 | 2009-09-16 | 株式会社神戸製鋼所 | Cu合金薄膜およびCu合金スパッタリングターゲット並びにフラットパネルディスプレイ |
JP4579709B2 (ja) * | 2005-02-15 | 2010-11-10 | 株式会社神戸製鋼所 | Al−Ni−希土類元素合金スパッタリングターゲット |
JP4117001B2 (ja) * | 2005-02-17 | 2008-07-09 | 株式会社神戸製鋼所 | 薄膜トランジスタ基板、表示デバイス、および表示デバイス用のスパッタリングターゲット |
JP3979605B2 (ja) * | 2005-04-26 | 2007-09-19 | 三井金属鉱業株式会社 | Al−Ni−B合金配線材料及びそれを用いた素子構造 |
JP4635715B2 (ja) * | 2005-05-20 | 2011-02-23 | 富士電機システムズ株式会社 | はんだ合金およびそれを用いた半導体装置 |
JP4542008B2 (ja) * | 2005-06-07 | 2010-09-08 | 株式会社神戸製鋼所 | 表示デバイス |
US7683370B2 (en) * | 2005-08-17 | 2010-03-23 | Kobe Steel, Ltd. | Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices |
US7411298B2 (en) * | 2005-08-17 | 2008-08-12 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Source/drain electrodes, thin-film transistor substrates, manufacture methods thereof, and display devices |
TW200745923A (en) * | 2005-10-20 | 2007-12-16 | Nitto Denko Corp | Transparent conductive laminate body and touch panel equipped with above |
US7781767B2 (en) * | 2006-05-31 | 2010-08-24 | Kobe Steel, Ltd. | Thin film transistor substrate and display device |
JP2008098611A (ja) * | 2006-09-15 | 2008-04-24 | Kobe Steel Ltd | 表示装置 |
JP4280277B2 (ja) * | 2006-09-28 | 2009-06-17 | 株式会社神戸製鋼所 | 表示デバイスの製法 |
JP4377906B2 (ja) * | 2006-11-20 | 2009-12-02 | 株式会社コベルコ科研 | Al−Ni−La系Al基合金スパッタリングターゲット、およびその製造方法 |
JP2008127623A (ja) * | 2006-11-20 | 2008-06-05 | Kobelco Kaken:Kk | Al基合金スパッタリングターゲットおよびその製造方法 |
JP4170367B2 (ja) * | 2006-11-30 | 2008-10-22 | 株式会社神戸製鋼所 | 表示デバイス用Al合金膜、表示デバイス、及びスパッタリングターゲット |
JP4355743B2 (ja) * | 2006-12-04 | 2009-11-04 | 株式会社神戸製鋼所 | Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット |
JP4705062B2 (ja) * | 2007-03-01 | 2011-06-22 | 株式会社神戸製鋼所 | 配線構造およびその作製方法 |
JP2009004518A (ja) * | 2007-06-20 | 2009-01-08 | Kobe Steel Ltd | 薄膜トランジスタ基板、および表示デバイス |
JP2009010052A (ja) * | 2007-06-26 | 2009-01-15 | Kobe Steel Ltd | 表示装置の製造方法 |
US20090001373A1 (en) * | 2007-06-26 | 2009-01-01 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) | Electrode of aluminum-alloy film with low contact resistance, method for production thereof, and display unit |
JP2009008770A (ja) * | 2007-06-26 | 2009-01-15 | Kobe Steel Ltd | 積層構造およびその製造方法 |
JP5143649B2 (ja) * | 2007-07-24 | 2013-02-13 | 株式会社コベルコ科研 | Al−Ni−La−Si系Al合金スパッタリングターゲットおよびその製造方法 |
JP5432550B2 (ja) * | 2008-03-31 | 2014-03-05 | 株式会社コベルコ科研 | Al基合金スパッタリングターゲットおよびその製造方法 |
-
2009
- 2009-02-20 JP JP2009038052A patent/JP5231282B2/ja active Active
- 2009-02-20 KR KR1020107020701A patent/KR101163329B1/ko active IP Right Grant
- 2009-02-20 US US12/918,727 patent/US20100328247A1/en not_active Abandoned
- 2009-02-20 WO PCT/JP2009/053094 patent/WO2009104769A1/ja active Application Filing
- 2009-02-20 CN CN200980102139.4A patent/CN101911232B/zh not_active Expired - Fee Related
- 2009-02-23 TW TW098105736A patent/TWI382428B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004214606A (ja) * | 2002-12-19 | 2004-07-29 | Kobe Steel Ltd | 表示デバイスおよびその製法、ならびにスパッタリングターゲット |
JP2007018226A (ja) * | 2005-07-07 | 2007-01-25 | Three M Innovative Properties Co | タッチパネルセンサー |
JP2007293777A (ja) * | 2006-04-27 | 2007-11-08 | Nitto Denko Corp | タッチパネル |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102486694A (zh) * | 2010-12-01 | 2012-06-06 | 株式会社神户制钢所 | 触摸面板传感器 |
JP2012118813A (ja) * | 2010-12-01 | 2012-06-21 | Kobe Steel Ltd | タッチパネルセンサー |
JP2012118815A (ja) * | 2010-12-01 | 2012-06-21 | Kobe Steel Ltd | タッチパネルセンサー |
JP2012118814A (ja) * | 2010-12-01 | 2012-06-21 | Kobe Steel Ltd | タッチパネルセンサー |
Also Published As
Publication number | Publication date |
---|---|
TWI382428B (zh) | 2013-01-11 |
JP5231282B2 (ja) | 2013-07-10 |
TW200947467A (en) | 2009-11-16 |
CN101911232B (zh) | 2014-03-12 |
JP2009245422A (ja) | 2009-10-22 |
KR101163329B1 (ko) | 2012-07-05 |
KR20100119794A (ko) | 2010-11-10 |
CN101911232A (zh) | 2010-12-08 |
US20100328247A1 (en) | 2010-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5231282B2 (ja) | タッチパネルセンサー | |
US20130140066A1 (en) | Cu alloy interconnection film for touch-panel sensor and method of manufacturing the interconnection film, touch-panel sensor, and sputtering target | |
TWI249070B (en) | Electronic device, method of manufacture of the same, and sputtering target | |
EP3435385B1 (en) | Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film | |
JP2012209148A (ja) | 導電性粒子、導電性ペースト、及び、回路基板 | |
KR101358529B1 (ko) | 전자부품용 적층 배선막 및 피복층 형성용 스퍼터링 타겟재 | |
TW569420B (en) | Conductive film for semiconductor device, semiconductor devices and the manufacturing method thereof | |
TW577091B (en) | Resistor | |
JP2008077574A (ja) | タッチパネル及びフレキシブルコネクタ | |
JP4588621B2 (ja) | フレキシブルプリント配線板用積層体及び該積層体の銅合金層の形成に用いるCu合金スパッタリングターゲット | |
JP5416682B2 (ja) | タッチパネルセンサーおよびその製造方法 | |
JP2006226797A (ja) | 薄膜電極基板及びその作製方法 | |
KR101479887B1 (ko) | 터치 패널 센서 | |
JP2013091217A (ja) | 透明導電フィルムおよびタッチパネル | |
JP5416683B2 (ja) | タッチパネルセンサーおよびその製造方法 | |
JP4583564B2 (ja) | 配線、電極及び接点 | |
JP7352234B2 (ja) | 金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置 | |
JP5032791B2 (ja) | 電子部品の製造方法 | |
JP5416681B2 (ja) | タッチパネルセンサーおよびその製造方法 | |
CN107407993A (zh) | 传导性结构及其制造方法 | |
JP4684983B2 (ja) | フレキシブルプリント配線板用積層体及び銅合金スパッタリングターゲット | |
JP2007088221A (ja) | セラミックス電子部品の製造方法およびセラミックス電子部品 | |
TW200526090A (en) | Printing process of resistive touch panel | |
JP2007201142A (ja) | Ag配線基板 | |
JP2011091352A (ja) | 薄膜トランジスタ基板およびその製造方法並びに表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980102139.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09711569 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12918727 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20107020701 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09711569 Country of ref document: EP Kind code of ref document: A1 |