WO2009104769A1 - タッチパネルセンサー - Google Patents

タッチパネルセンサー Download PDF

Info

Publication number
WO2009104769A1
WO2009104769A1 PCT/JP2009/053094 JP2009053094W WO2009104769A1 WO 2009104769 A1 WO2009104769 A1 WO 2009104769A1 JP 2009053094 W JP2009053094 W JP 2009053094W WO 2009104769 A1 WO2009104769 A1 WO 2009104769A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
atomic
alloy film
group
film
Prior art date
Application number
PCT/JP2009/053094
Other languages
English (en)
French (fr)
Inventor
綾 三木
裕史 後藤
博行 奥野
智弥 岸
旭 南部
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN200980102139.4A priority Critical patent/CN101911232B/zh
Priority to US12/918,727 priority patent/US20100328247A1/en
Priority to KR1020107020701A priority patent/KR101163329B1/ko
Publication of WO2009104769A1 publication Critical patent/WO2009104769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a touch panel sensor, and in particular, to a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto.
  • the touch panel sensor used as an input switch integrated with the image display device, is located on the front of the image display device. Due to its ease of use, the touch panel sensor is widely used for bank ATMs, ticket vending machines, car navigation systems, PDAs, and copy machine operation screens. in use.
  • Examples of the input point detection method include a resistance film method, a capacitance method, an optical method, an ultrasonic surface acoustic wave method, and a piezoelectric method. Of these, the resistive film method is most widely used because of its low cost and simple structure.
  • a resistive film type touch panel sensor is roughly divided into an upper electrode, a lower electrode, and a tail part.
  • a transparent conductive film provided on a substrate (for example, a film substrate) constituting the upper electrode, and a lower electrode are provided.
  • substrate (for example, glass substrate) to comprise comprises the structure which opposed the spacer.
  • the lead wiring for connecting the transparent conductive film and the control circuit is generally obtained by printing conductive paste such as silver paste or conductive ink by inkjet or other printing methods. It is formed.
  • conductive paste such as silver paste or conductive ink by inkjet or other printing methods.
  • wiring made of pure silver or a silver alloy has poor adhesion to glass, resin, etc., and causes aggregation due to aggregation on the substrate at the connection portion with an external device, leading to defects due to increased electrical resistance or disconnection. There is a problem such as.
  • Patent Document 1 discloses a method of forming a part of the wiring with plating or metal foil.
  • the silver paste is used for the connection portion between the wiring formed of plating or metal foil and the external device, it is difficult to further increase the strength of the connection portion between the wiring and the external device.
  • the touch panel sensor is a sensor that senses indentation by a human finger or the like, and temporarily generates minute deformation due to stress applied during touch. Due to repeated use of the touch panel, this minute deformation repeatedly occurs, and stress is repeatedly applied to the lead wiring. Therefore, durability (resistance to stress) is also required for the wiring.
  • the routing wiring formed using a conductive paste made of pure silver or a silver alloy cannot be said to have sufficient durability, and the routing wiring is easily damaged during use of the touch panel. If the routing wiring is damaged, the electrical resistance of the wiring increases and a voltage drop occurs, and the accuracy of position detection of the touch panel sensor is likely to decrease. Further, when the pen touch method is adopted, it is necessary to reduce the pitch of the wiring. However, when the paste is used, it is difficult to reduce the pitch because it is formed by a coating method.
  • Patent Document 2 discloses a conductive paste having excellent durability, composed of silver powder, an organic resin, and a solvent.
  • the routing wiring obtained using the conductive paste made of silver powder, organic resin and solvent has an electrical resistivity of about 1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm (about 30 times the bulk electrical resistivity of aluminum). Therefore, it is difficult to say that the wiring has a sufficiently low electric resistance.
  • the present invention has been made in view of such circumstances, and the object thereof is to prevent disconnection or increase in electrical resistance over time, exhibit low electrical resistance, and conduct electricity with a transparent conductive film. It is an object of the present invention to provide a highly reliable touch panel sensor having a lead-out wiring that can be secured and can be directly connected to the transparent conductive film.
  • a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto, The touch panel sensor, wherein the aluminum alloy film contains a total of 0.2 to 10 atomic% of at least one element selected from the group X consisting of Ni and Co, and the hardness of the aluminum alloy film is 2 to 15 GPa.
  • the aluminum alloy film may be referred to as a “first aluminum alloy film”.
  • the aluminum alloy film further includes at least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg in a total amount of 0.0.
  • the touch panel sensor according to (1) wherein the total amount of at least one element selected from the X group and at least one element selected from the Z group is 10 atomic% or less.
  • the aluminum alloy film further includes at least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg in a total amount of 0.0.
  • the touch panel sensor according to (1) wherein the total amount of at least one element selected from the X group and at least one element selected from the Z group is 10 atomic% or less.
  • the aluminum alloy film includes a rare earth element as at least one element selected from the Z group, and the amount of the rare earth element is 0.05 atomic% or more, and at least one selected from the X group
  • the rare earth element is one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy, according to any one of (2) to (4) Touch panel sensor.
  • a touch panel sensor having a transparent conductive film and a lead wiring made of an aluminum alloy film directly connected thereto The aluminum alloy film includes 0.02 atomic% or more in total of at least one element selected from the X group consisting of Ni and Co, and 0.2 atomic% or more of Ge, and includes at least 1 selected from the X group A touch panel sensor in which the total amount of seed elements and Ge is 10 atomic% or less, and the hardness of the aluminum alloy film is 2 to 15 GPa.
  • the aluminum alloy film may be referred to as a “second aluminum alloy film”.
  • the aluminum alloy film further includes 0.05% of at least one element selected from the Z ′ group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Si, and Mg.
  • the touch panel according to (7) wherein the total amount of at least one element selected from the X group, Ge and at least one element selected from the Z ′ group is 10 atomic% or less. sensor.
  • the aluminum alloy film includes a rare earth element as at least one element selected from the Z ′ group, and the amount of the rare earth element is 0.05 atomic% or more, and at least one selected from the X group.
  • the touch panel sensor according to (8) wherein the total amount of the element, Ge, and rare earth element is 10 atomic% or less.
  • the hardness of the aluminum alloy film can be determined by a film hardness test using a nanoindenter. In this test, continuous stiffness measurement is carried out using an XP chip using “Nano” Indenter “XP” (analysis software: Test “Works” 4) manufactured by MTS.
  • the hardness of the aluminum alloy film can be obtained by obtaining the average value of the results of measuring 15 points under the conditions where the indentation depth is 300 nm, the excitation vibration frequency is 45 Hz, and the amplitude is 2 nm.
  • the routing wiring of the touch panel sensor is made of a prescribed aluminum alloy film, the electrical resistance of the wiring can be reduced, and the transparent conductive film and the wiring can be directly connected.
  • an external device controller
  • fine processing can be performed by forming a prescribed aluminum alloy film by sputtering and adopting a photolithography and etching process.
  • the tolerance with respect to the developing solution and resist stripping solution used in the manufacturing process of the touch panel sensor can be increased.
  • the touch panel sensor can be manufactured by a simple process without increasing the number of processes. .
  • FIG. 1 is a diagram showing an example of a film hardness test result using a nanoindenter.
  • FIG. 2 is an optical micrograph showing an example of an evaluation result of resistance to the stripping solution.
  • FIG. 3 shows cross-sectional TEM photographs of (a) Al-2 atomic% Ni-0.35 atomic% La alloy film and (b) Al-0.1 atomic% Ge-0.1 atomic% Gd alloy film.
  • the touch panel sensor may suffer from problems such as temporary stress concentration at the sensor end during normal use and disconnection due to deformation of the wiring, resulting in increased electrical resistance. .
  • problems such as temporary stress concentration at the sensor end during normal use and disconnection due to deformation of the wiring, resulting in increased electrical resistance.
  • the aluminum alloy film constituting the lead-out wiring is too soft, the deformation of the wiring is repeated due to stress concentration, causing a problem that the wiring deteriorates and breaks or peels off.
  • the aluminum alloy film is too hard, deformation hardly occurs with respect to the indentation load, so that deterioration such as microcracking or peeling may occur.
  • the hardness of the aluminum alloy film (first aluminum alloy film, second aluminum alloy film) constituting the routing wiring is 2 GPa or more (preferably 2.5 GPa or more) and 15 GPa or less (preferably 10 GPa or less, more preferably 8 GPa or less).
  • the wiring may be made of an aluminum alloy film (first aluminum alloy film) containing a certain amount of Ni and / or Co.
  • first aluminum alloy film will be described.
  • an aluminum alloy film (first aluminum alloy film) that exhibits appropriate hardness, low electrical resistivity, and electrical conductivity with the transparent conductive film
  • it is selected from the X group consisting of Ni and Co. It is necessary to contain a total of 0.2 atomic% or more (preferably 0.3 atomic% or more) of at least one kind of element (hereinafter sometimes referred to as “X group element”).
  • X group element At least one kind of element
  • the total of at least one element selected from the group X consisting of Ni and Co is 10 atomic% or less (preferably 8 atomic% or less).
  • a prescribed amount of X group element (the following Z group element is included as necessary) is used, and a sputtering method is employed as a film forming method. It is preferable to uniformly disperse the X group element and adjust the substrate temperature and Ar gas pressure during sputtering as the conditions for forming the aluminum alloy film. As the substrate temperature is higher, the film quality of the formed film is closer to the bulk, a dense film is easily formed, and the hardness of the film tends to increase. Further, as the Ar gas pressure is increased, the density of the film decreases and the hardness of the film tends to decrease. Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
  • At least one element selected from the Z group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Ge, Si, and Mg (hereinafter referred to as “Group Z element”).
  • group Z element As the rare earth element used in the present invention, Sc (scandium) and Y (yttrium) are added to a lanthanoid element (a total of 15 elements from La of atomic number 57 to Lu of atomic number 71 in the periodic table). Means the same element group (hereinafter the same).
  • the inclusion of the Z group element makes it easier to adjust the hardness of the film and increases the resistance to a strong alkaline developer or resist stripper used in the manufacturing process.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • amine-based stripping solution a resist stripping / cleaning process using an amine-based stripping solution.
  • the Z group elements are contained in a total amount of 0.15 atomic% or more (more preferably 0.2 atomic% or more).
  • the content of the Z group element is preferably set so that the total amount of the X group element and the Z group element is 10 atomic% or less (more preferably 7 atomic% or less).
  • the Z group element contains a rare earth element and the rare earth element content is 0.05 atomic% or more. More preferably, it is 0.1 atomic% or more.
  • the rare earth element content is such that the total amount of the X group element and the rare earth element is 10 atomic% or less (more preferably 7 atomic% or less).
  • the rare earth element is one or more elements selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy.
  • Z group elements for example, La, Nd, Cu, Ge, and Gd are more preferably used, and one or more of these are more preferably used in any combination.
  • the above-described effect is remarkably manifested by containing a certain amount or more of Cu with respect to the amount of group X element contained in the aluminum alloy film. Specifically, the effect is remarkable when Cu (atomic%) / X group element (atomic%) is 0.3 or more.
  • the Cu (atomic%) / X group element (atomic%) is more preferably 0.5 or more.
  • the upper limit of Cu (atomic%) / X group element (atomic%) is not particularly limited, and Cu (atomic%) / X group element (from the lower limit of Cu amount and the upper limit of X group element amount) The upper limit of (atomic%) is 2.5.
  • the first aluminum alloy film for example, Al-2 atomic% Ni-0.35 atomic% La alloy film, Al-1 atomic% Ni-0.5 atomic% Cu-0.35 atomic% La alloy film, Al-- A 0.6 atomic% Ni-0.5 atomic% Cu-0.3 atomic% La alloy film may be mentioned.
  • an aluminum alloy film used for the lead wiring of the touch panel sensor a total of 0.02 atomic% or more of group X elements (at least one element selected from group X consisting of Ni and Co), and Ge
  • group X elements at least one element selected from group X consisting of Ni and Co
  • Ge An aluminum alloy film (second aluminum alloy film) containing 0.2 atomic% or more and having a total amount of the X group element and Ge of 10 atomic% or less is also defined.
  • the group X element in the second aluminum alloy film exhibits appropriate hardness as a lead wiring, is less likely to cause disconnection or increase in electrical resistance over time, exhibits low electrical resistance, and is electrically conductive with the transparent conductive film. It is an element that is effective in realizing excellent products.
  • the reason why the excellent electrical conductivity with the transparent conductive film can be ensured is that, by the combined addition with Ge, (1) the formation of highly insulating aluminum oxide is suppressed as in the case of the first aluminum alloy film. And / or (2) It is conceivable that a conductive path is formed at the interface between the transparent conductive film and the aluminum alloy film to ensure electrical conductivity with the transparent conductive film.
  • the lower limit of the X group element amount of the second aluminum alloy film is made 0.02 atomic% in total.
  • the X group element amount of the second aluminum alloy film is preferably 0.05 atomic% or more, more preferably 0.07 atomic% or more.
  • the X group element amount is 10 atomic% or less (more preferably 7 atomic% or less) in total with Ge.
  • Ge corresponds to a Z group element contained as necessary in the first aluminum alloy film, but in the second aluminum alloy film, a certain amount or more of Ge described later has a relatively small content of the X group element. Even if it is a case, the effect that the outstanding electrical conductivity with an ITO film
  • the Ge amount in the second aluminum alloy film is 10 atomic% or less (more preferably 7 atomic% or less) in total with the X group element as described above.
  • the second aluminum alloy film further includes at least one selected from the Z ′ group consisting of rare earth elements, Ta, Ti, Cr, Mo, W, Cu, Zn, Si, and Mg.
  • Z ′ group element A seed element (hereinafter, also referred to as “Z ′ group element”) may be contained.
  • the Z ′ group element By containing the Z ′ group element, it becomes easier to increase the hardness of the film as in the case of the Z group element described above, and the resistance to strongly alkaline developer and resist stripping solution used in the manufacturing process is increased. be able to. Specifically, for example, aluminum elution and corrosion can be suppressed in a resist development process using TMAH (tetramethylammonium hydroxide aqueous solution) and a resist stripping / cleaning process using an amine-based stripping solution. Can be suppressed.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • the Z ′ group elements In order to fully exhibit the above effects, it is preferable to contain a total of 0.05 atomic% or more of the Z ′ group elements. More preferably, it is 0.1 atomic% or more.
  • the content of the Z ′ group element is preferably set so that the total amount of the X group element, Ge, and the Z ′ group element is 10 atomic% or less (more preferably 7 atomic% or less).
  • the Z ′ group element contains a rare earth element and the rare earth element content is 0.05 atomic% or more. More preferably, it is 0.1 atomic% or more.
  • the content of the rare earth element is preferably set so that the total amount of the X group element, Ge, and the rare earth element is 10 atomic% or less (more preferably 7 atomic% or less).
  • the rare earth element is preferably at least one element selected from the group consisting of Nd, Gd, La, Y, Ce, Pr and Dy.
  • the second aluminum alloy film containing the X group element, Ge and rare earth elements for example, an Nd or La alloy film of Al-0.1 atomic% X group element-Ge-0.3 atomic% or more (for example, Al-0. 1 atomic% Ni-0.5 atomic% Ge-0.5 atomic% Nd alloy film), Al-0.2 atomic% Ni-0.5 atomic% Ge-0.2 atomic% La alloy film, Al- 0.2 atomic% Ni-0.5 atomic% Ge-0.2 atomic% La alloy film, Al-0.1 atomic% Ni-0.5 atomic% Ge-0.3 atomic% Nd alloy film, Al- Examples include 0.2 atomic% Co-0.5 atomic% Ge-0.2 atomic% La alloy film and Al-0.1 atomic% Co-0.5 atomic% Ge-0.3 atomic% Nd alloy film. It is done.
  • the above effect is remarkably manifested by adding a certain amount or more of Cu with respect to the amount of group X element contained in the second aluminum alloy film. Specifically, the effect is remarkable when Cu (atomic%) / X group element (atomic%) is 0.3 or more.
  • the Cu (atomic%) / X group element (atomic%) is more preferably 0.5 or more.
  • the upper limit of Cu (atomic%) / X group element (atomic%) is not particularly limited, and Cu (atomic%) / X group element (from the lower limit of Cu amount and the upper limit of X group element amount) The upper limit of (atomic%) is 25.
  • the film formation conditions of the aluminum alloy film are as follows: It is preferable to adjust the substrate temperature and the Ar gas pressure. As the substrate temperature is higher, the film quality of the formed film is closer to the bulk, a dense film is easily formed, and the hardness of the film tends to increase. Further, as the Ar gas pressure is increased, the density of the film decreases and the hardness of the film tends to decrease. Such adjustment of the film forming conditions is also preferable from the viewpoint of suppressing the sparseness of the film structure and easily causing corrosion.
  • the improvement in hardness can also be achieved by refining Al crystal grains.
  • it is effective to add an alloy element according to the thermal history of the aluminum alloy film received in the manufacturing process, and the thermal history of the aluminum alloy film (for example, the insulating film (
  • the thermal history of the aluminum alloy film for example, the insulating film
  • a rare earth element or a refractory metal Ti, Cr, Mo, W
  • Ge is added as an alloy element to refine the Al crystal grain. Can do.
  • the component composition of the first aluminum alloy film and the second aluminum alloy film according to the present invention (hereinafter sometimes collectively referred to as “aluminum alloy film”) is as described above, and the balance is aluminum and inevitable impurities. is there.
  • inevitable impurities for example, inevitable impurities (for example, oxygen (O) or the like) mixed in the manufacturing process of the aluminum alloy film may be included.
  • an aluminum alloy film constituting the lead wiring of the touch panel sensor should have an electrical resistivity of 50 ⁇ ⁇ cm or less, preferably 25 ⁇ ⁇ cm or less (more preferably 20 ⁇ ⁇ cm or less). Can do.
  • the present invention does not define the method for forming the aluminum alloy film, but it is preferably formed by a sputtering method from the viewpoint of thinning the wire and homogenizing the alloy components in the film. Moreover, although the said aluminum alloy film can also be formed with a vapor deposition method, the sputtering method is more preferable from a viewpoint of controlling easily the amount of additional elements.
  • the touch panel sensor of the present invention is not particularly limited in the configuration other than the lead wiring composed of an aluminum alloy film directly connected to the transparent conductive film, and any configuration known in the field can be adopted.
  • a resistive touch panel sensor can be manufactured as follows. That is, after forming a transparent conductive film on the substrate, resist coating, exposure, development, and etching are sequentially performed, then an aluminum alloy film is formed, and resist coating, exposure, development, and etching are performed to route the wiring. Then, an insulating film or the like covering the wiring can be formed to form the upper electrode. Also, after forming a transparent conductive film on the substrate, photolithography is performed in the same manner as the upper electrode, and then, as in the case of the upper electrode, a lead wiring made of an aluminum alloy film is formed, and then the wiring is covered.
  • An insulating film to be formed is formed, and a micro dot, a spacer, or the like is formed to form a lower electrode.
  • a touch panel sensor can be manufactured by laminating the above-mentioned upper electrode, lower electrode, and tail portion formed separately.
  • the transparent conductive film is not particularly specified, but as a representative example, one made of indium tin oxide (ITO) or indium zinc oxide (IZO) can be used.
  • the substrate transparent substrate
  • glass, polycarbonate, or polyamide can be used as a commonly used substrate.
  • the substrate of the lower electrode that is a fixed electrode is made of glass.
  • a polycarbonate film or the like can be used for the substrate of the upper electrode that needs flexibility.
  • the touch panel sensor of the present invention can be used as a touch panel sensor such as a capacitive method or an ultrasonic surface acoustic wave method in addition to the resistive film method.
  • the aluminum alloy film according to the present invention is suitable as the lead wiring of the touch panel sensor, hardness test, evaluation of electrical conductivity with the transparent conductive film, measurement of electrical resistivity of the aluminum alloy film And the resistance to the developer or the stripper was evaluated.
  • the present invention will be described in more detail. However, the present invention is not limited by the present embodiment, and may be implemented with appropriate modifications within a range that can meet the above and the following purposes. Of course, any of these is also included in the technical scope of the present invention.
  • Example 1> Hardness test with nanoindenter
  • an aluminum alloy film shown in Tables 1 to 6 below (with a film thickness of about 300 nm) is formed on the surface by DC magnetron sputtering. did.
  • the atmosphere in the chamber is once set to an ultimate vacuum of 3 ⁇ 10 ⁇ 6 Torr, and then a disk type target having the same component composition as each aluminum alloy film and having a diameter of 4 inches is used. It carried out on the conditions shown in. In addition, the composition of the formed aluminum alloy film was confirmed by inductively coupled plasma (ICP) mass spectrometry.
  • ICP inductively coupled plasma
  • FIG. 1 An example of the above measurement results is shown in FIG. 1 (in addition, sample No. in FIG. 1 is given for convenience of measurement and is not related to No. in Tables 1 to 6).
  • FIG. 1 shows the case of an Al-2 atomic% Ni-0.35 atomic% La alloy film, the same measurement was performed for the aluminum alloy films and pure aluminum films in Tables 1 to 6.
  • Tables 1-6 The results are shown in Tables 1-6. The following can be considered from Tables 1-6.
  • alloy elements group X element, group Z element in the first aluminum alloy film, group X element, Ge, rare earth element in the second aluminum alloy film
  • the hardness of the aluminum alloy film tends to increase.
  • the upper limit of the content of the X group element and the Z group element should be 10 atomic% in order to reduce the hardness to 10 GPa or less.
  • Example 2> (Lower: Transparent conductive film and Upper: Evaluation of electrical conductivity of aluminum alloy film) Below, the connection resistance value of both the contact parts at the time of laminating
  • a non-alkali glass plate (plate thickness 0.7 mm, diameter 4 inches) is used as a substrate, and an ITO film or IZO film (thickness of 50 nm or less), which is an oxide transparent conductive film, is formed on the surface by DC magnetron sputtering. The film was formed at room temperature and patterned by photolithography and etching. Next, an aluminum alloy film shown in Tables 1 to 6 (thickness of about 300 nm) was formed on the upper portion in the same manner as in Example 1 above.
  • TMAH tetramethylammonium hydroxide aqueous solution
  • connection resistance value at the interface between the transparent conductive film and the aluminum alloy film was measured by a four-terminal Kelvin method.
  • a four-terminal manual prober and a semiconductor parameter analyzer “HP4156A” manufactured by Hewlett-Packard Company were used.
  • connection resistance value of 150 ⁇ or less were determined to be good, and those exceeding 150 ⁇ were determined to be defective.
  • the same measurement was performed on a sample in which a pure aluminum film was formed instead of the aluminum alloy film. However, the sample on which the pure aluminum film was formed could not be measured due to poor electrical contact.
  • Example 3> (Lower: aluminum alloy film and upper: Evaluation of electrical conductivity of transparent conductive film) Below, the connection resistance value of the contact part at the time of laminating
  • An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed. Next, these samples were subjected to heat treatment at 270 ° C. for 10 minutes while simulating the thermal history in the manufacturing process.
  • the heat treatment atmosphere was a vacuum (degree of vacuum: 3 ⁇ 10 ⁇ 4 Pa or less) or a nitrogen atmosphere. Then, patterning by photolithography and etching was performed.
  • an ITO film or an IZO film (film thickness: 50 nm or less) is formed on the upper portion in the same manner as in Example 2 above, and then photolithography and etching are performed to form a Kelvin pattern (transparent conductive film and aluminum).
  • the contact area with the alloy film was 80 ⁇ m square), and the connection resistance value was measured by the four-terminal Kelvin method in the same manner as in Example 2 above.
  • connection resistance value was measured by performing a heat treatment at 250 ° C. for 30 minutes in a vacuum or an inert gas atmosphere after forming the as-deposited Kelvin pattern formed as described above and the aluminum alloy film, Thereafter, heat treatment was performed at 270 ° C. for 10 minutes simulating the thermal history, and then the Kelvin pattern formed as described above was performed.
  • connection resistance value of 150 ⁇ or less were determined to be good, and those exceeding 150 ⁇ were determined to be defective.
  • the same measurement was performed on a sample in which a pure aluminum film was formed instead of the aluminum alloy film. However, the sample on which the pure aluminum film was formed could not be measured due to poor electrical contact.
  • Tables 1-6 The above measurement results are shown in Tables 1-6. From Tables 1 to 6, in order to ensure electrical conductivity with the transparent conductive film, in the case of the first aluminum alloy film, the content of the X group element is 0.2 atomic% or more, and in the case of the second aluminum alloy film, It can be seen that the X group element content may be 0.02 atomic% or more and the Ge content may be 0.2 atomic% or more.
  • the sample subjected to the heat treatment at 250 ° C. for 30 minutes after forming the aluminum alloy film tends to have a lower connection resistance with the transparent conductive film than the sample not subjected to the heat treatment. I can confirm that.
  • the aluminum alloy film is heat-treated at a temperature of 250 ° C. or higher in a vacuum or an inert gas atmosphere before the resist development process by TMAH for routing wiring patterning, pinholes and through grain boundaries are caused by the structural change of the aluminum alloy. It is possible to reduce or eliminate voids.
  • the substrate temperature is heated to a temperature of 100 ° C. or higher to form an aluminum alloy film, and the temperature of 100 ° C. or higher is applied in a vacuum or an inert gas atmosphere before the resist development process by TMAH for wiring patterning.
  • the heat treatment is performed, the coverage of the aluminum alloy film (particularly the coverage at the oxide transparent conductive film pattern end) is improved, and corrosion due to the penetration of a chemical solution such as a developer can be prevented.
  • Galvanic corrosion can be suppressed by performing heat treatment. Galvanic corrosion is said to occur when the electrode potential difference between different metals is large, such as an oxide transparent conductive film such as ITO and a pure aluminum film.
  • the electrode potential with respect to an Ag / AgCl standard electrode in an aqueous tetramethylammonium hydroxide (TMAH) solution that is an alkaline developer of photoresist is about -0.17 V for amorphous-ITO and about -0.19 V for poly-ITO.
  • TMAH tetramethylammonium hydroxide
  • pure aluminum is very low at about -1.93V.
  • pure aluminum is very easily oxidized as described above.
  • the galvanic corrosion can be further suppressed by performing the heat treatment.
  • the reason for this heat treatment is that the precipitation of Ni and / or Co in the aluminum alloy film is promoted to increase the electrode potential of the aluminum alloy film, and the electrode potential difference with the transparent conductive film is reduced, thereby suppressing galvanic corrosion. Conceivable.
  • the heat treatment as described above may be performed on the aluminum alloy film in order to further improve the electrical conductivity and corrosion resistance with the transparent conductive film.
  • Example 4> Measurement of electrical resistivity of aluminum alloy film
  • An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed. Thereafter, without performing heat treatment after film formation, photolithography and etching by TMAH are performed to form a stripe-like pattern (pattern for measuring electrical resistivity) having a width of 100 ⁇ m and a length of 10 mm, and then the electric resistance of the pattern was measured at room temperature by a direct current four-probe method using a prober.
  • Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, as the amount of alloy elements (X group element and Z group element) in the first aluminum alloy film and the amount of alloy elements (X group element, Ge and rare earth elements) in the second aluminum alloy film increase, From the viewpoint of reducing the electrical resistivity, the total amount of the X group element and the Z group element in the first aluminum alloy film, the X group element in the second aluminum alloy film, Ge and It can be seen that the total amount of rare earth elements may be 10 atomic% or less.
  • Example 5> Evaluation of resistance to stripping solution
  • An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed.
  • the aluminum alloy film was subjected to a heat treatment at 320 ° C. for 30 minutes in a nitrogen flow while simulating a heat history in the manufacturing process, and then an amine-based stripping solution (manufactured by Tokyo Ohka Kogyo Co., Ltd .: “TOK106”). ) In an aqueous solution (adjusted to pH 10) for 5 minutes. Then, the case where the number of black spots found in the aluminum alloy film after immersion is very small compared to the number of black spots found in the Al-2 atomic% Ni-0.35 atomic% La alloy film after immersion is A. (Excellent), the case where it was small was evaluated as B (good), the case where it was equivalent was evaluated as C, and the case where it was large was evaluated as D (bad).
  • Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, it can be seen that in order to increase the resistance to the stripping solution, it is preferable to contain the Z group element or the Z ′ group element in an amount of 0.05 atomic% or more, preferably 0.15 atomic% or more. In particular, by containing Cu, precipitates derived from group X elements are refined, and as a result, it is confirmed that even when exposed to an aqueous stripping solution, enormous corrosion is unlikely to occur and the stripping solution has better resistance. did.
  • Example 6> Evaluation of resistance to developer
  • An alkali-free glass plate (plate thickness 0.7 mm, diameter 4 inches) was used as a substrate, and an aluminum alloy film (thickness of about 300 nm) shown in Tables 1 to 6 was formed on the surface in the same manner as in Example 1 above. Filmed.
  • Tables 1-6 The results are also shown in Tables 1-6. From Tables 1 to 6, by adding the Z group element or the Z ′ group element, the thickness reduction amount (etching amount) of the aluminum alloy film when immersed in the developer is decreased. It can be confirmed that the addition of the group element contributes to the improvement of the resistance of the aluminum alloy to the developer. In addition, it is understood that 0.05 atomic% or more of the Z group element or the Z ′ group element is preferably contained in order to sufficiently exhibit such an effect.
  • FIG. 3 shows (a) Al-2 atomic% Ni-0.35 atomic% La alloy film, (b) Al-0.1 atomic% Ge-0.1.
  • a cross-sectional TEM photograph of an atomic% Gd alloy film is shown.
  • 3 (a) and 3 (b) are compared, the (a) Al-2 atomic% Ni-0.35 atomic% La alloy film satisfying the component composition of the present invention has fine crystal grains. I understand that.
  • the film hardness satisfies 2 to 15 GPa
  • the electrical conductivity of the aluminum alloy film is satisfactory in the evaluation (connection resistance value is 150 ⁇ or less)
  • the electrical resistivity satisfies 50 ⁇ ⁇ cm or less
  • the resistance to the stripping solution is evaluated. Is A to C and the evaluation of the resistance to the developer is A or B, the overall judgment is defined as A, and the others are defined as B.
  • the routing wiring of the touch panel sensor is made of a prescribed aluminum alloy film, the electrical resistance of the wiring can be reduced, and the transparent conductive film and the wiring can be directly connected.
  • an external device controller
  • fine processing can be performed by forming a prescribed aluminum alloy film by sputtering and adopting a photolithography and etching process.
  • the tolerance with respect to the developing solution and resist stripping solution used in the manufacturing process of the touch panel sensor can be increased.
  • the touch panel sensor can be manufactured by a simple process without increasing the number of processes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Contacts (AREA)
  • Push-Button Switches (AREA)

Abstract

 経時的な電気抵抗の増加や断線が起こり難く、かつ、低電気抵抗率を示すと共に、透明導電膜との電気伝導性を確保できて該透明導電膜と直接接続させることのできる引き回し配線を有する、信頼性の高いタッチパネルセンサーを提供する。本発明は、透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、前記アルミニウム合金膜が、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.2~10原子%含み、かつ、前記アルミニウム合金膜の硬度が2~15GPaであるタッチパネルセンサーに関する。

Description

タッチパネルセンサー
 本発明は、タッチパネルセンサーに関するものであり、特に、透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーに関するものである。
 画像表示装置の前面に配置された、画像表示装置と一体型の入力スイッチとして用いられるタッチパネルセンサーは、その使い勝手のよさから、銀行のATMや券売機、カーナビ、PDA、コピー機の操作画面など幅広く使用されている。その入力ポイントの検出方式には、抵抗膜方式、静電容量方式、光学式、超音波表面弾性波方式、圧電式等が挙げられる。これらのうち、抵抗膜方式が、コストがかからず構造が単純である等の理由から最も広く用いられている。
 抵抗膜方式のタッチパネルセンサーは、大別して、上部電極、下部電極、およびテール部分から構成されており、上部電極を構成する基板(例えばフィルム基板)上に設けられた透明導電膜と、下部電極を構成する基板(例えばガラス基板)上に設けられた透明導電膜が、スペーサを隔てて相対した構成となっている。この様な構成のタッチパネルセンサーにおける上記フィルム面を、指やペン等でタッチすると、上記両透明導電膜が接触し、透明導電膜の両端の電極を介して電流が流れ、上記それぞれの透明導電膜の抵抗による分圧比を測定することで、タッチされた位置が検出される。
 上記タッチパネルセンサーを製造するプロセスにおいて、透明導電膜と制御回路を接続するための引き回し配線は、一般に、銀ペーストなどの導電性ペーストや導電性インクを、インクジェットやその他の印刷方法で印刷することにより形成される。しかし、純銀または銀合金からなる配線は、ガラスや樹脂等との密着性が悪く、また、外部装置との接続部分において基板上で凝集することにより、電気抵抗の増加や断線等による不良を招く、といった問題がある。
 銀ペーストによる引き回し配線の信頼性を向上させた技術として、特許文献1には、配線の一部をメッキまたは金属箔で形成する方法が開示されている。しかし、該方法では、メッキまたは金属箔で形成された配線と外部装置との接続部分に銀ペーストを使用することに変わりないため、配線と外部装置の接続部分の強度をより高めることが難しい。
 更に、タッチパネルセンサーは、人の指等による押し込みを感知するセンサーであり、タッチ時に加わる応力により一時的に微小変形を生じる。タッチパネルの度重なる使用により、この微小変形が繰り返し生じ、引き回し配線にも応力が繰り返し加わる。よって、上記配線には、耐久性(応力に対する耐性)も要求される。しかし、純銀または銀合金からなる導電性ペーストを用いて形成された引き回し配線は、上記耐久性が十分であるとは言い難く、タッチパネル使用中に、引き回し配線が損傷し易い。引き回し配線が損傷すると、該配線の電気抵抗が大きくなり電圧降下が生じて、タッチパネルセンサーの位置検出の精度が低下し易くなる。また、ペンタッチ方式を採用する場合には、上記配線の狭ピッチ化が必要であるが、ペーストを用いる場合には塗布法で形成するため、狭ピッチ化が難しい。
 特許文献2には、耐久性に優れる導電性ペーストとして、銀粉と有機樹脂と溶剤からなるものが開示されている。しかし、この銀粉と有機樹脂と溶剤からなる導電性ペーストを用いて得られる引き回し配線は、電気抵抗率が1×10-4Ω・cm程度(アルミニウムのバルクの電気抵抗率のおよそ30倍)であることから、電気抵抗の十分に低い配線とは言い難い。
 一方、電気抵抗率の十分に低い純アルミニウムを、引き回し配線の材料に適用することも考えられる。しかし、引き回し配線の材料に純アルミニウムを使用すると、タッチパネルセンサーにおける透明導電膜と純アルミニウム膜の間に、絶縁性の酸化アルミニウムが形成され、電気伝導性を確保することができない、といった問題が発生する。
特開2007-18226号公報 特開2006-59720号公報
 本発明はこの様な事情に鑑みてなされたものであって、その目的は、断線や経時的な電気抵抗の増加が起こり難く、かつ、低電気抵抗を示すと共に、透明導電膜との電気伝導性を確保できて該透明導電膜と直接接続させることのできる引き回し配線を有する、信頼性の高いタッチパネルセンサーを提供することにある。
 本発明の要旨を以下に示す。
(1)透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
 前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.2~10原子%含み、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
 なお、上記アルミニウム合金膜を「第1アルミニウム合金膜」ということがある。
(2)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(1)に記載のタッチパネルセンサー。
(3)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.15原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(1)に記載のタッチパネルセンサー。
(4)前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素および希土類元素の合計量が10原子%以下である(2)または(3)に記載のタッチパネルセンサー。
(5)前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である(2)~(4)のいずれか1項に記載のタッチパネルセンサー。
(6)前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である(2)~(5)のいずれか1項に記載のタッチパネルセンサー。
(7)透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
 前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.02原子%以上、およびGeを0.2原子%以上含み、前記X群から選ばれる少なくとも1種の元素とGeの合計量が10原子%以下であり、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
 なお、上記アルミニウム合金膜を「第2アルミニウム合金膜」ということがある。
(8)前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、SiおよびMgよりなるZ'群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素、Geおよび前記Z'群から選ばれる少なくとも1種の元素の合計量が10原子%以下である(7)に記載のタッチパネルセンサー。
(9)前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素、Geおよび希土類元素の合計量が10原子%以下である(8)に記載のタッチパネルセンサー。
(10)前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である(8)または(9)に記載のタッチパネルセンサー。
(11)前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である(8)~(10)のいずれか1項に記載のタッチパネルセンサー。
(12)前記アルミニウム合金膜の電気抵抗率が50μΩ・cm以下である(1)~(11)のいずれか1項に記載のタッチパネルセンサー。
(13)前記アルミニウム合金膜の電気抵抗率が25μΩ・cm以下である(1)~(12)のいずれか1項に記載のタッチパネルセンサー。
(14)前記透明導電膜が、実質的に酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる(1)~(13)のいずれか1項に記載のタッチパネルセンサー。
 尚、上記アルミニウム合金膜の硬度は、ナノインデンターによる膜の硬度試験による求めることができる。この試験では、MTS社製 Nano Indenter XP (解析用ソフト:Test Works 4)を用い、XPチップを用い、連続剛性測定を行う。押し込み深さを300nmとし、励起振動周波数:45Hz、振幅:2nmの条件で15点を測定した結果の平均値を求めることにより、アルミニウム合金膜の硬度が求めることができる。
 本発明によれば、タッチパネルセンサーの引き回し配線が規定のアルミニウム合金膜からなるため、上記配線の電気抵抗を小さくすることができると共に、透明導電膜と上記配線を直接接続させることができ、更に、外部装置(コントローラ)に接続する際に接続不良を起こし難く、経時的な電気抵抗の増加や断線も生じ難いため、信頼性の高いタッチパネルセンサーを提供することができる。また、規定のアルミニウム合金膜をスパッタリングで形成し、フォトリソグラフィー、エッチングを施す工程を採用することで、微細な加工を施すことができる。更に、タッチパネルセンサーの製造プロセスで用いられる現像液やレジスト剥離液に対する耐性も高めることができる。更には、透明導電層とアルミニウム合金膜との間に、電気伝導性を確保するための介在層を形成する必要がないため、プロセスを増やすことなく簡易なプロセスでタッチパネルセンサーを製造することができる。
図1は、ナノインデンターによる膜の硬度試験結果の一例を示した図である。 図2は、剥離液に対する耐性の評価結果の一例を示した光学顕微鏡写真である。 図3は、(a)Al-2原子%Ni-0.35原子%La合金膜、(b)Al-0.1原子%Ge-0.1原子%Gd合金膜の断面TEM写真を示す。
発明を実施するための形態
 上述した通り、タッチパネルセンサーにおいて、引き回し配線の材料に純アルミニウムを用いた場合、透明導電膜と純アルミニウム膜の接触界面に、絶縁性の酸化アルミニウムが形成され、上記界面の電気伝導性が損なわれるといった問題が生じる。そこで本発明では、この様な純アルミニウムの問題点を改善すべく、アルミニウム合金材料に着目し、その成分組成について検討することとした。
 ところで、タッチパネルセンサーは、上述した通り、通常の使用時に、センサー端部に一時的な応力集中が発生し、配線の変形により断線等が生じて電気抵抗が増加する等の不具合が生じる場合がある。特に、引き回し配線を構成するアルミニウム合金膜が軟らかすぎる場合には、応力集中により配線の変形が繰り返されて、配線が劣化し破断や剥離を起こすといった問題が発生する。一方、上記アルミニウム合金膜が硬すぎると、押し込み荷重に対して変形が起こり難くなるため、微小なクラックが入ったり剥がれなどの劣化が生じ得る。以上のことから、本発明では、引き回し配線を構成するアルミニウム合金膜(第1アルミニウム合金膜、第2アルミニウム合金膜)の硬度を、2GPa以上(好ましくは2.5GPa以上)かつ15GPa以下(好ましくは10GPa以下、より好ましくは8GPa以下)と規定した。
 本発明者らは、上記適切な硬度を示して断線や経時的な電気抵抗の増加が起こり難く、かつ、低電気抵抗を示すと共に、透明導電膜との電気伝導性を確保することのできる引き回し配線として、一定量のNiおよび/またはCoを含むアルミニウム合金膜(第1アルミニウム合金膜)からなるものとすればよいことがわかった。以下、第1アルミニウム合金膜について説明する。
 タッチパネルセンサーにおける引き回し配線を、上記アルミニウム合金膜からなるものとした場合に、透明導電膜との電気伝導性を確保できる理由は、十分解明されたわけではないが、絶縁性の高い酸化アルミニウムの形成が抑制される;および/または、透明導電膜とアルミニウム合金膜の界面に導電パスが形成されて、透明導電膜との電気伝導性を確保できる;ことが考えられる。また、上記Niおよび/またはCoを含有させることで、固溶強化により上記適切な硬度を示す膜を実現できると考えられる。
 この様に、適切な硬度を示し、低電気抵抗率かつ透明導電膜との電気伝導性を確保できるアルミニウム合金膜(第1アルミニウム合金膜)を得るには、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素(以下、「X群元素」ということがある。)を、合計で0.2原子%以上(好ましくは0.3原子%以上)含有させる必要がある。一方、上記X群元素の含有量が多過ぎると、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素は、合計で10原子%以下(好ましくは8原子%以下)とする。
 上記適切な硬度のアルミニウム合金膜を実現するには、上述の通り、規定量のX群元素(必要に応じて下記のZ群元素)を含有させ、成膜法としてスパッタリング法を採用して該X群元素を均一に分散させると共に、アルミニウム合金膜の成膜条件として、スパッタ時の基板温度やArガス圧を調整することが好ましい。基板温度が高いほど形成される膜の膜質はバルクに近づき、緻密な膜が形成され易く、膜の硬度が増加する傾向にある。また、Arガス圧を上げるほど膜の密度が低下し、膜の硬度が低下する傾向にある。この様な成膜条件の調整は、膜の構造が疎となって腐食が生じやすくなるのを抑制する観点からも好ましい。
 また、上記X群元素に加えて、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素(以下、「Z群元素」ということがある。)を含有させることもできる。尚、本発明に用いられる希土類元素としては、ランタノイド元素(周期表において、原子番号57のLaから原子番号71のLuまでの合計15元素)に、Sc(スカンジウム)とY(イットリウム)とを加えた元素群を意味する(以下、同じ)。
 上記Z群元素を含有させることによって、膜の硬度をより調整し易くなると共に、製造プロセスで用いられる強アルカリ性の現像液やレジスト剥離液に対する耐性を高めることができる。具体的には、例えば、TMAH(水酸化テトラメチルアンモニウム水溶液)によるレジスト現像工程やアミン系剥離液によるレジスト剥離・洗浄工程でのアルミニウムの溶出や腐食を抑制でき、その結果、配線の断線等を抑制することができる。
 上記効果を十分に発揮させるには、Z群元素を合計で0.05原子%以上含有させることが好ましい。Z群元素を合計で0.15原子%以上(更に好ましくは0.2原子%以上)含有させることがより好ましい。しかし、Z群元素が過剰に含まれると、上記X群元素の場合と同様に、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、Z群元素の含有量は、前記X群元素と該Z群元素の合計量が10原子%以下(より好ましくは7原子%以下)となるようにすることが好ましい。
 上記Z群元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であることが好ましい。より好ましくは0.1原子%以上である。しかし、希土類元素が過剰に含まれると、上記X群元素の場合と同様に、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、希土類元素の含有量は、前記X群元素および該希土類元素の合計量が10原子%以下(より好ましくは7原子%以下)となるようにすることが好ましい。
 上記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素であることがより好ましい。
 上記Z群元素の中でも、例えばLa、Nd、Cu、Ge、Gdの使用がより好ましく、これらのうち1種または2種以上を任意の組み合わせで用いることがより好ましい。
 上記Z群元素の中でも特にCuを含有させることによって、X群元素、即ちNiおよび/またはCoの析出物を微細分散させることができ、その結果、レジスト剥離液に対する耐性(剥離液耐性)を向上させることができる。
 上記効果を十分に発揮させるには、Cuを0.05原子%以上含有させるのがよい。より好ましくは0.1原子%以上である。
 また上記効果は、アルミニウム合金膜に含まれるX群元素量に対して一定以上のCuを含有させることで顕著に現れる。具体的には、Cu(原子%)/X群元素(原子%)が0.3以上で効果が顕著に現れる。前記Cu(原子%)/X群元素(原子%)はより好ましくは0.5以上である。尚、Cu(原子%)/X群元素(原子%)の上限については特に限定されず、上記Cu量の下限値および上記X群元素量の上限値からCu(原子%)/X群元素(原子%)の上限は2.5となる。
 上記第1アルミニウム合金膜として、例えばAl-2原子%Ni-0.35原子%La合金膜、Al-1原子%Ni-0.5原子%Cu-0.35原子%La合金膜、Al-0.6原子%Ni-0.5原子%Cu-0.3原子%La合金膜が挙げられる。
 本発明は、タッチパネルセンサーの引き回し配線に用いられるアルミニウム合金膜として、X群元素(NiおよびCoよりなるX群から選ばれる少なくとも1種の元素)を合計で0.02原子%以上、およびGeを0.2原子%以上含み、前記X群元素とGeの合計量が10原子%以下であるアルミニウム合金膜(第2アルミニウム合金膜)も規定する。
 第2アルミニウム合金膜におけるX群元素は、引き回し配線として、適切な硬度を示して断線や経時的な電気抵抗の増加が起こり難く、低電気抵抗を示し、かつ透明導電膜との電気伝導性に優れたものを実現させるのに有効な元素である。上記透明導電膜との優れた電気伝導性を確保できる理由として、上記Geとの複合添加により、(1)第1アルミニウム合金膜の場合と同様に、絶縁性の高い酸化アルミニウムの形成が抑制される、および/または、(2)透明導電膜とアルミニウム合金膜の界面に導電パスが形成されて、透明導電膜との電気伝導性を確保できる、ことが考えられる。
 上記の通り、GeとX群元素を複合添加することで、X群元素の含有量が比較的少ない場合であっても、ITO膜との優れた電気伝導性を確保することができる。この様な観点から、第2アルミニウム合金膜のX群元素量の下限を合計で0.02原子%とする。第2アルミニウム合金膜のX群元素量は、好ましくは0.05原子%以上、より好ましくは0.07原子%以上である。一方、上記X群元素量が多過ぎると、アルミニウム合金膜自体の電気抵抗が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、X群元素量は、Geとの合計量で10原子%以下(より好ましくは7原子%以下)とする。
 Geは、前記第1アルミニウム合金膜で必要に応じて含有させるZ群元素に相当するが、第2アルミニウム合金膜では、後述する一定量以上のGeが、X群元素の含有量が比較的少ない場合であっても、ITO膜との優れた電気伝導性を確保できる、といった効果を発揮する。更にGeは、アルカリ性水溶液、例えば強アルカリ性の現像液やアミン系レジスト剥離液の水溶液などに対する耐性を高めるのに有効な元素であり、また、アルミニウム合金膜の硬度向上にも多少寄与する元素である。
 上記Geの添加効果を発揮させるには、Geを0.2原子%以上含有させる。好ましくは0.3原子%以上、より好ましくは0.4原子%以上、更に好ましくは0.5原子%以上である。一方、Geが過剰に含まれると、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、第2アルミニウム合金膜におけるGe量は、上記の通り、X群元素との合計量で10原子%以下(より好ましくは7原子%以下)とする。
 また第2アルミニウム合金膜には、上記X群元素およびGeに加えて更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、SiおよびMgよりなるZ'群から選ばれる少なくとも1種の元素(以下、「Z'群元素」ということがある。)を含有させることもできる。
 上記Z'群元素を含有させることによって、上述したZ群元素の場合と同様に、膜の硬度をより高め易くなると共に、製造プロセスで用いられる強アルカリ性の現像液やレジスト剥離液に対する耐性を高めることができる。具体的には、例えば、TMAH(水酸化テトラメチルアンモニウム水溶液)によるレジスト現像工程やアミン系剥離液によるレジスト剥離・洗浄工程でのアルミニウムの溶出や腐食を抑制でき、その結果、配線の断線等を抑制することができる。
 上記効果を十分に発揮させるには、Z'群元素を合計で0.05原子%以上含有させることが好ましい。より好ましくは0.1原子%以上である。しかし、Z'群元素が過剰に含まれると、上記X群元素やGeの場合と同様に、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、Z'群元素の含有量は、前記X群元素、Geおよび該Z'群元素の合計量が10原子%以下(より好ましくは7原子%以下)となるようにすることが好ましい。
 上記Z'群元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であることが好ましい。より好ましくは0.1原子%以上である。しかし、希土類元素が過剰に含まれると、上記X群元素やGeの場合と同様に、アルミニウム合金膜自体の電気抵抗率が増加し易くなると共に、膜の硬度も必要以上に高くなり易い。よって、希土類元素の含有量は、前記X群元素、Geおよび該希土類元素の合計量が10原子%以下(より好ましくは7原子%以下)となるようにすることが好ましい。
 上記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素であることが好ましい。
 上記X群元素、Geおよび希土類元素を含む第2アルミニウム合金膜として、例えばAl-0.1原子%X群元素-Ge-0.3原子%以上のNdまたはLa合金膜(例えばAl-0.1原子%Ni-0.5原子%Ge-0.5原子%Nd合金膜)や、Al-0.2原子%Ni-0.5原子%Ge-0.2原子%La合金膜、Al-0.2原子%Ni-0.5原子%Ge-0.2原子%La合金膜、Al-0.1原子%Ni-0.5原子%Ge-0.3原子%Nd合金膜、Al-0.2原子%Co-0.5原子%Ge-0.2原子%La合金膜、Al-0.1原子%Co-0.5原子%Ge-0.3原子%Nd合金膜などが挙げられる。
 また、上記Z'群元素の中でも特にCuを含有させることによって、X群元素、即ちNiおよび/またはCoの析出物を微細分散させることができ、その結果、剥離液耐性を向上させることができる。
 上記効果を十分に発揮させるには、Cuを0.05原子%以上含有させることが好ましい。より好ましくは0.07原子%以上である。
 また上記効果は、第2アルミニウム合金膜に含まれるX群元素量に対して一定以上のCuを含有させることで顕著に現れる。具体的には、Cu(原子%)/X群元素(原子%)が0.3以上で効果が顕著に現れる。前記Cu(原子%)/X群元素(原子%)はより好ましくは0.5以上である。尚、Cu(原子%)/X群元素(原子%)の上限については特に限定されず、上記Cu量の下限値および上記X群元素量の上限値からCu(原子%)/X群元素(原子%)の上限は25となる。
 上記適切な硬度の第2アルミニウム合金膜を得るには、上記規定量のX群元素およびGe(必要に応じてZ'群元素)を含有させ、アルミニウム合金膜の成膜条件として、スパッタ時の基板温度やArガス圧を調整することが好ましい。基板温度が高いほど形成される膜の膜質はバルクに近づき、緻密な膜が形成され易く、膜の硬度が増加する傾向にある。また、Arガス圧を上げるほど膜の密度が低下し、膜の硬度が低下する傾向にある。この様な成膜条件の調整は、膜の構造が疎となって腐食が生じやすくなるのを抑制する観点からも好ましい。
 本発明に係る第1アルミニウム合金膜および第2アルミニウム合金膜において、硬度の向上は、Al結晶粒を微細化することによっても図ることができる。Al結晶粒の微細化には、製造プロセスで受けるアルミニウム合金膜の熱履歴に応じた合金元素の添加が有効であり、アルミニウム合金膜の熱履歴(例えば、アルミニウム合金膜成膜後の絶縁膜(SiN膜)形成時の熱処理温度)が高い(約250℃以上である)場合には、合金元素として、希土類元素や高融点金属(Ta、Ti、Cr、Mo、W)を添加することによってAl結晶粒の微細化を図ることができ、また、アルミニウム合金膜の熱履歴が低い(約200℃以下である)場合には、合金元素としてGeを添加することAl結晶粒の微細化を図ることができる。
 本発明に係る第1アルミニウム合金膜および第2アルミニウム合金膜(以下、これらを「アルミニウム合金膜」と総称することがある)の成分組成は上述の通りであり、残部はアルミニウムおよび不可避的不純物である。不可避的不純物として、例えば、上記アルミニウム合金膜の製造過程等で混入する不可避的不純物(例えば酸素(O)等)を含み得る。
 上記構成とすることで、タッチパネルセンサーの引き回し配線を構成するアルミニウム合金膜として、電気抵抗率が50μΩ・cm以下、好ましくは25μΩ・cm以下(より好ましくは20μΩ・cm以下)のものを実現することができる。
 本発明は、上記アルミニウム合金膜を形成するための方法まで規定するものではないが、細線化や膜内の合金成分の均一化を図る観点からは、スパッタリング法で形成することが好ましい。また、蒸着法で上記アルミニウム合金膜を形成することもできるが、添加元素量を容易にコントロールする観点からでスパッタリング法の方が好ましい。
 本発明のタッチパネルセンサーは、透明導電膜と直接接続するアルミニウム合金膜からなる引き回し配線以外の構成に特に限定はなく、該分野で公知のあらゆる構成を採用することができる。
 例えば、抵抗膜方式のタッチパネルセンサーは、次の様にして製造することができる。即ち、基板上に透明導電膜を形成してから、レジスト塗布、露光、現像、エッチングを順次行った後、アルミニウム合金膜を形成して、レジスト塗布、露光、現像、エッチングを実施して引き回し配線を形成し、次いで、該配線を被覆する絶縁膜等を形成して、上部電極とすることができる。また、基板上に透明導電膜を形成してから、上部電極と同様にフォトリソグラフィを行い、次いで、上部電極の場合と同様にアルミニウム合金膜からなる引き回し配線を形成してから、該配線を被覆する絶縁膜を形成し、マイクロ・ドット・スペーサ等を形成して下部電極とすることができる。そして、上記の上部電極、下部電極、および別途形成したテイル部分を張り合わせて、タッチパネルセンサーを製造することができる。
 上記透明導電膜は特に指定しないが、代表例として、酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなるものを使用することができる。また、上記基板(透明基板)は、一般的に使用されているものとして、例えばガラス、ポリカーボネート系、またはポリアミド系のものを使用することができ、例えば、固定電極である下部電極の基板にガラスを用い、可撓性の必要な上部電極の基板にポリカーボネート系等のフィルムを用いることができる。
 また、本発明のタッチパネルセンサーは、上記抵抗膜方式以外に、静電容量方式や超音波表面弾性波方式等のタッチパネルセンサーとしても用いることができる。
 以下では、本発明に係るアルミニウム合金膜が、タッチパネルセンサーの引き回し配線として好適であることを確認すべく、硬度試験、透明導電膜との電気伝導性の評価、アルミニウム合金膜の電気抵抗率の測定、および、現像液または剥離液に対する耐性の評価を行った。
 尚、本実施例では、本発明をより具体的に説明するが、本発明は本実施例によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 〈実施例1〉(ナノインデンターによる硬度試験)
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、DCマグネトロンスパッタリング法で、下記表1~6に示すアルミニウム合金膜(膜厚はいずれも約300nm)を形成した。成膜は、成膜前にチャンバー内の雰囲気を一旦、到達真空度:3×10-6Torrにしてから、各アルミニウム合金膜と同一の成分組成の直径4インチの円盤型ターゲットを用い、下記に示す条件で行った。尚、形成されたアルミニウム合金膜の組成は、誘導結合プラズマ(Inductively Coupled Plasma:ICP)質量分析法で確認した。
(スパッタリング条件)
・Arガス圧:2mTorr
・Arガス流量:30sccm
・スパッタパワー:260W
・基板温度:室温
 上記の様にして得られたアルミニウム合金膜を用いて、ナノインデンターによる膜の硬度試験を行った。この試験では、MTS社製 Nano Indenter XP (解析用ソフト:Test Works 4)を用い、XPチップを用い、連続剛性測定を行った。押し込み深さを300nmとし、励起振動周波数:45Hz、振幅:2nmの条件で15点を測定した結果の平均値を求めた。尚、同様の測定を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。
 上記測定結果の一例を図1に示す(尚、図1中のsample No.は測定便宜上つけられたものであって、表1~6のNo.とは無関係である。)。図1では、Al-2原子%Ni-0.35原子%La合金膜の場合を示しているが、表1~6のアルミニウム合金膜および純アルミニウム膜についても、同様の測定を行った。
 その結果を表1~6に示す。表1~6から次の様に考察できる。合金元素(第1アルミニウム合金膜中のX群元素、Z群元素、第2アルミニウム合金膜中のX群元素、Ge、希土類元素)の添加に伴い、アルミニウム合金膜の硬度は増加する傾向にあり、第1アルミニウム合金膜において、Z群元素を添加する場合に該硬度を10GPa以下とするには、X群元素およびZ群元素の含有量の上限を10原子%とするのがよいことがわかる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 〈実施例2〉(下部:透明導電膜と上部:アルミニウム合金膜の電気伝導性の評価)
 以下では、透明導電膜、アルミニウム合金膜の順に積層させた場合の両者の接触部分の接続抵抗値を測定し、該積層構造におけるアルミニウム合金膜の透明導電膜との電気伝導性を評価した。
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、酸化物透明導電膜であるITO膜またはIZO膜(膜厚はいずれも50nm以下)を、DCマグネトロンスパッタリング法により室温で形成し、フォトリソグラフィー、エッチングによるパターニングを行った。次に、その上部に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。その後、アルミニウム合金膜に対して、レジスト塗布、露光、水酸化テトラメチルアンモニウム水溶液(TMAH)による現像を実施して、ケルビンパターン(透明導電膜とアルミニウム合金膜との接触面積は80μm角)を形成した。
 このケルビンパターンを用いて、透明導電膜とアルミニウム合金膜の界面の接続抵抗値を四端子ケルビン法で測定した。上記測定には、四端子のマニュアルプローバーと半導体パラメータアナライザー「HP4156A」(ヒューレットパッカード社製)を用いた。
 そして、上記接続抵抗値が150Ω以下であるものを良好とし、150Ωを超えるものを不良と判断した。尚、同様の測定を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。しかし、純アルミニウム膜を形成した試料は、電気接触不良により測定できなかった。
 上記測定結果を表1~6に併記する。表1~6から、透明導電膜との電気伝導性を確保するには、X群元素の含有量を0.2原子%以上とすればよいことがわかる。
 〈実施例3〉(下部:アルミニウム合金膜と上部:透明導電膜の電気伝導性の評価)
 以下では、アルミニウム合金膜、透明導電膜の順に積層させた場合の両者の接触部分の接続抵抗値を測定し、該積層構造におけるアルミニウム合金膜の透明導電膜との電気伝導性を評価した。
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。次に、これらの試料に、製造プロセスにおける熱履歴を模擬して270℃で10分間の熱処理を施した。熱処理雰囲気は、真空(真空度:3×10-4Pa以下)または窒素雰囲気とした。その後、フォトリソグラフィー、エッチングによるパターニングを行った。次に、その上部に、上記実施例2と同様に、ITO膜またはIZO膜(膜厚:50nm以下)を成膜してから、フォトリソグラフィー、エッチングを行って、ケルビンパターン(透明導電膜とアルミニウム合金膜との接触面積は80μm角)を形成し、上記実施例2と同様に接続抵抗値を四端子ケルビン法で測定した。
 上記接続抵抗値の測定は、上記の様にして形成したas-depositedのケルビンパターン、および、アルミニウム合金膜の成膜後に、真空または不活性ガス雰囲気にて250℃で30分間の熱処理を施し、その後に上記熱履歴を模擬した270℃で10分間の熱処理を行ってから、上記の通り形成したケルビンパターンについて行った。
 そして、上記接続抵抗値が150Ω以下であるものを良好とし、150Ωを超えるものを不良と判断した。同様の測定を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。しかし、純アルミニウム膜を形成した試料は、電気接触不良により測定できなかった。
 上記測定結果を表1~6に併記する。表1~6から、透明導電膜との電気伝導性を確保するには、第1アルミニウム合金膜の場合、X群元素の含有量を0.2原子%以上、第2アルミニウム合金膜の場合、X群元素の含有量を0.02原子%以上かつGe量を0.2原子%以上とすればよいことがわかる。
 また表1~6から、アルミニウム合金膜を形成後に250℃で30分間の熱処理を施した試料では、該熱処理を行わない試料と比較して、透明導電膜との接続抵抗が小さくなる傾向にあることを確認できる。
 これは上記熱処理によって、アルミニウム合金中に含まれる合金元素がアルミニウム結晶粒外に析出され、透明導電膜とアルミニウム合金膜の界面付近で導電パスを形成するためと考えられる。
 熱処理を施すことにより、更に以下の様なメリットがある。即ち、引き回し配線パターニングのためのTMAHによるレジスト現像工程の前に、真空または不活性ガス雰囲気にてアルミニウム合金膜を250℃以上の温度で熱処理すると、アルミニウム合金の組織変化によりピンホールや貫通粒界などのボイドを低減・消滅させることができる。また、基板温度を100℃以上の温度に加熱してアルミニウム合金膜を形成すると共に、引き回し配線パターニングのためのTMAHによるレジスト現像工程の前に、真空または不活性ガス雰囲気にて100℃以上の温度で熱処理すると、アルミニウム合金膜のカバレッジ(特に酸化物透明導電膜パタン端でのカバレッジ)が改善されて、現像液等の薬液の染み込みによる腐食を防止することができる。
 更に、熱処理を行うことで、ガルバニック腐食を抑制することができる。ガルバニック腐食は、例えば、ITOなどの酸化物透明導電膜と純アルミニウム膜のように、異種金属間の電極電位差が大きい場合に生じるといわれている。例えば、フォトレジストのアルカリ現像液である水酸化テトラメチルアンモニウム(TMAH)水溶液中のAg/AgCl標準電極に対する電極電位は、アモルファス-ITOが約-0.17V、ポリ-ITOが約-0.19Vであるのに対し、純アルミニウムは約-1.93Vと非常に低い。更に、純アルミニウムは上述した通り、非常に酸化され易い。そのため、TMAH水溶液に浸漬中に、純アルミニウム膜と酸化物透明導電膜の界面で電池反応が発生し、腐食が発生する。TMAH水溶液が、アルミニウム合金膜に生じたピンホールや貫通粒界に沿って酸化物透明導電膜との界面まで侵入し、その界面でガルバニック腐食が発生すると、様々な不具合、例えば酸化物透明導電膜の黒化、それによる画素の黒化、配線細り・断線などのパタン形成不良、純アルミニウム膜と酸化物透明導電膜との接続抵抗の増大、それによる表示(点灯)不良などが生じる。
 本発明において、上記熱処理を施すことにより上記ガルバニック腐食をより抑制することができる。この熱処理により、アルミニウム合金膜中のNiおよび/またはCoの析出が促進されてアルミニウム合金膜の電極電位が高くなり、透明導電膜との電極電位差が縮まるためガルバニック腐食が抑制されることが理由として考えられる。
 以上のことから、透明導電膜との電気伝導性や耐食性をより高めるべく、上記の様な熱処理をアルミニウム合金膜に施してもよい。
 〈実施例4〉(アルミニウム合金膜の電気抵抗率の測定)
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。その後、成膜後に熱処理を行なわずに、TMAHによるフォトリソグラフィーおよびエッチングを行って、幅100μm、長さ10mmのストライプ状パターン(電気抵抗率測定用パターン)に加工してから、該パターンの電気抵抗を、プローバーを使用した直流4探針法で室温にて測定した。そして、電気抵抗率が50μΩ・cmを超えるものを不良、50μΩ・cm以下のものを良好と評価した。尚、同様の測定を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。
 その結果を表1~6に併記する。表1~6から、第1アルミニウム合金膜中の合金元素(X群元素およびZ群元素)量や、第2アルミニウム合金膜中の合金元素(X群元素、Geおよび希土類元素)が多いほど電気抵抗率は大きくなっており、電気抵抗率を低減させる観点からは、第1アルミニウム合金膜中のX群元素およびZ群元素の合計量や、第2アルミニウム合金膜中のX群元素、Geおよび希土類元素の合計量を10原子%以下とすればよいことがわかる。
 〈実施例5〉(剥離液に対する耐性の評価)
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。
 そして、上記アルミニウム合金膜に対し、製造プロセスにおける熱履歴を模擬して窒素フロー中にて320℃で30分間の熱処理を行ってから、アミン系剥離液(東京応化工業株式会社製:「TOK106」)の水溶液(pH10に調整)に5分間浸漬した。そして、浸漬後のアルミニウム合金膜に見られる黒点数が、上記浸漬後のAl-2原子%Ni-0.35原子%La合金膜に見られる黒点数と比較して、非常に少ない場合をA(優良)、少ない場合をB(良好)、同等である場合をC、多い場合をD(不良)と評価した。
 尚、同様の評価を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。
 その結果を表1~6に併記する。表1~6から、剥離液に対する耐性を高めるには、Z群元素やZ'群元素を0.05原子%以上、好ましくは0.15原子%以上含有させるのがよいことがわかる。特にはCuを含有させることにより、X群元素由来の析出物が微細化し、その結果、剥離液水溶液に暴露されても巨大な腐食が発生しにくく、より優れた剥離液耐性を示すことを確認した。
 また、上記浸漬後のアルミニウム合金膜表面の光学顕微鏡観察を行った。その観察例を図2に示す。この図2から、Al-Ni-La合金に更にIn(本発明で規定する合金元素でない元素)を添加したものは、膜一面に黒点が見られ、上記剥離液に対する耐性が得られていないことがわかる。これに対し、Al-Ni-La合金に更にMgを添加した本発明に係るアルミニウム合金膜の場合には、黒点数が少ないことがわかる。この様な効果は、Mg以外のZ群元素やZ'群元素についても確認された。このことから、推奨される量のZ群元素やZ'群元素を添加することにより、剥離液に対する耐性を確保できることがわかる。
 〈実施例6〉(現像液に対する耐性の評価)
 無アルカリ硝子板(板厚0.7mm、直径4インチ)を基板とし、その表面に、表1~6のアルミニウム合金膜(膜厚はいずれも約300nm)を、上記実施例1と同様に成膜した。
 そして、上記アルミニウム合金膜に対し、レジスト塗布、露光、現像液(TMAH)(2.38質量%)による現像を実施した後、レジストをアセトンで除去し、アルミニウム合金膜の膜厚を段差計で測定した。そして、TMAHによるアルミニウム合金のエッチングレート換算(1分間あたりの膜厚減少量)を求め、この1分間あたりの膜厚減少量が、Al-2.5原子%Ni合金膜の場合と比較して小さい場合をA(良好)、同等である場合をB、それよりも大きい場合をC(不良)とした。
 尚、同様の評価を、アルミニウム合金膜のかわりに、純アルミニウム膜を形成した試料についても行った。
 その結果を表1~6に併記する。表1~6から、Z群元素やZ'群元素を添加することにより、現像液に浸漬時のアルミニウム合金膜の上記膜厚減少量(エッチング量)が減少しており、Z群元素やZ'群元素の添加がアルミニウム合金の現像液に対する耐性向上に寄与していることを確認できる。またこの様な効果を十分発揮させるには、Z群元素やZ'群元素を0.05原子%以上含有させるのがよいことがわかる。
 また、アルミニウム合金膜の組織観察の一例として、図3として、(a)Al-2原子%Ni-0.35原子%La合金膜、(b)Al-0.1原子%Ge-0.1原子%Gd合金膜の断面TEM写真を示す。図3(a)(b)の各部分Aを対比すると、本発明の成分組成を満たす(a)Al-2原子%Ni-0.35原子%La合金膜は、結晶粒が微細となっていることがわかる。
 また、膜硬度が2~15GPaを満たし、アルミニウム合金膜の電気伝導性の評価において良好(接続抵抗値が150Ω以下)であり、電気抵抗率が50μΩ・cm以下を満たし、剥離液に対する耐性の評価がA~Cであり、かつ、現像液に対する耐性の評価がA又はBのものを、総合判定としてAと規定し、それ以外のものをBと規定した。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2008年2月22日出願の日本特許出願(特願2008-041662)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明によれば、タッチパネルセンサーの引き回し配線が規定のアルミニウム合金膜からなるため、上記配線の電気抵抗を小さくすることができると共に、透明導電膜と上記配線を直接接続させることができ、更に、外部装置(コントローラ)に接続する際に接続不良を起こし難く、経時的な電気抵抗の増加や断線も生じ難いため、信頼性の高いタッチパネルセンサーを提供することができる。また、規定のアルミニウム合金膜をスパッタリングで形成し、フォトリソグラフィー、エッチングを施す工程を採用することで、微細な加工を施すことができる。更に、タッチパネルセンサーの製造プロセスで用いられる現像液やレジスト剥離液に対する耐性も高めることができる。更には、透明導電層とアルミニウム合金膜との間に、電気伝導性を確保するための介在層を形成する必要がないため、プロセスを増やすことなく簡易なプロセスでタッチパネルセンサーを製造することができる。

Claims (14)

  1.  透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
     前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.2~10原子%含み、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
  2.  前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項1に記載のタッチパネルセンサー。
  3.  前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、Ge、SiおよびMgよりなるZ群から選ばれる少なくとも1種の元素を合計で0.15原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素および前記Z群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項1に記載のタッチパネルセンサー。
  4.  前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素および希土類元素の合計量が10原子%以下である請求項2または3に記載のタッチパネルセンサー。
  5.  前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である請求項2~4のいずれか1項に記載のタッチパネルセンサー。
  6.  前記アルミニウム合金膜は、Z群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である請求項2~5のいずれか1項に記載のタッチパネルセンサー。
  7.  透明導電膜およびこれと直接接続するアルミニウム合金膜からなる引き回し配線を有するタッチパネルセンサーであって、
     前記アルミニウム合金膜は、NiおよびCoよりなるX群から選ばれる少なくとも1種の元素を合計で0.02原子%以上、およびGeを0.2原子%以上含み、前記X群から選ばれる少なくとも1種の元素とGeの合計量が10原子%以下であり、かつ、前記アルミニウム合金膜の硬度は2~15GPaであるタッチパネルセンサー。
  8.  前記アルミニウム合金膜は、更に、希土類元素、Ta、Ti、Cr、Mo、W、Cu、Zn、SiおよびMgよりなるZ'群から選ばれる少なくとも1種の元素を合計で0.05原子%以上含み、かつ、前記X群から選ばれる少なくとも1種の元素、Geおよび前記Z'群から選ばれる少なくとも1種の元素の合計量が10原子%以下である請求項7に記載のタッチパネルセンサー。
  9.  前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素として希土類元素を含み、かつ希土類元素量が0.05原子%以上であると共に、前記X群から選ばれる少なくとも1種の元素、Geおよび希土類元素の合計量が10原子%以下である請求項8に記載のタッチパネルセンサー。
  10.  前記希土類元素は、Nd、Gd、La、Y、Ce、PrおよびDyよりなる群から選択される1種以上の元素である請求項8または9に記載のタッチパネルセンサー。
  11.  前記アルミニウム合金膜は、Z'群から選ばれる少なくとも1種の元素としてCuを含み、かつCu量が0.05原子%以上である請求項8~10のいずれか1項に記載のタッチパネルセンサー。
  12.  前記アルミニウム合金膜の電気抵抗率が50μΩ・cm以下である請求項1~11のいずれか1項に記載のタッチパネルセンサー。
  13.  前記アルミニウム合金膜の電気抵抗率が25μΩ・cm以下である請求項1~12のいずれか1項に記載のタッチパネルセンサー。
  14.  前記透明導電膜が、実質的に酸化インジウム錫(ITO)または酸化インジウム亜鉛(IZO)からなる請求項1~13のいずれか1項に記載のタッチパネルセンサー。
PCT/JP2009/053094 2008-02-22 2009-02-20 タッチパネルセンサー WO2009104769A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980102139.4A CN101911232B (zh) 2008-02-22 2009-02-20 触摸屏传感器
US12/918,727 US20100328247A1 (en) 2008-02-22 2009-02-20 Touch panel sensor
KR1020107020701A KR101163329B1 (ko) 2008-02-22 2009-02-20 터치 패널 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-041662 2008-02-22
JP2008041662 2008-02-22

Publications (1)

Publication Number Publication Date
WO2009104769A1 true WO2009104769A1 (ja) 2009-08-27

Family

ID=40985645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053094 WO2009104769A1 (ja) 2008-02-22 2009-02-20 タッチパネルセンサー

Country Status (6)

Country Link
US (1) US20100328247A1 (ja)
JP (1) JP5231282B2 (ja)
KR (1) KR101163329B1 (ja)
CN (1) CN101911232B (ja)
TW (1) TWI382428B (ja)
WO (1) WO2009104769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486694A (zh) * 2010-12-01 2012-06-06 株式会社神户制钢所 触摸面板传感器
JP2012118813A (ja) * 2010-12-01 2012-06-21 Kobe Steel Ltd タッチパネルセンサー
JP2012118814A (ja) * 2010-12-01 2012-06-21 Kobe Steel Ltd タッチパネルセンサー

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355743B2 (ja) 2006-12-04 2009-11-04 株式会社神戸製鋼所 Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット
JP2010065317A (ja) * 2008-08-14 2010-03-25 Kobe Steel Ltd 表示装置およびこれに用いるCu合金膜
JP4567091B1 (ja) 2009-01-16 2010-10-20 株式会社神戸製鋼所 表示装置用Cu合金膜および表示装置
CN102473732B (zh) 2009-07-27 2015-09-16 株式会社神户制钢所 布线结构以及具备布线结构的显示装置
JP5547574B2 (ja) * 2009-10-23 2014-07-16 株式会社神戸製鋼所 Al基合金スパッタリングターゲット
WO2012074021A1 (ja) * 2010-12-01 2012-06-07 株式会社神戸製鋼所 タッチパネルセンサー
JP2012180540A (ja) 2011-02-28 2012-09-20 Kobe Steel Ltd 表示装置および半導体装置用Al合金膜
CN102254586B (zh) * 2011-05-05 2012-06-06 苏州喜仁新材料科技有限公司 一种低温固化导电银浆,其制备方法及应用
JP5524905B2 (ja) 2011-05-17 2014-06-18 株式会社神戸製鋼所 パワー半導体素子用Al合金膜
JP2013084907A (ja) 2011-09-28 2013-05-09 Kobe Steel Ltd 表示装置用配線構造
TWI537400B (zh) * 2011-12-06 2016-06-11 神戶製鋼所股份有限公司 觸控面板感測器用銅合金配線膜及其之製造方法、以及觸控面板感測器、以及濺鍍靶
KR20140122338A (ko) * 2013-04-09 2014-10-20 쓰리엠 이노베이티브 프로퍼티즈 캄파니 터치패널, 그 제조방법 및 터치패널용 Ag-Pd-Nd 합금
JP5805708B2 (ja) * 2013-06-05 2015-11-04 株式会社神戸製鋼所 タッチパネルセンサー用配線膜、およびタッチパネルセンサー
DE102013215060A1 (de) * 2013-07-31 2015-02-05 Irlbacher Blickpunkt Glas Gmbh Kapazitive Sensorvorrichtung mit elektrisch leitfähig beschichteter Sensorplatte aus Dünnglas
US20160345425A1 (en) * 2014-02-07 2016-11-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wiring film for flat panel display
KR102263975B1 (ko) 2014-12-16 2021-06-11 삼성디스플레이 주식회사 터치 패널 및 그 제조방법
CN107447138B (zh) * 2017-08-10 2021-02-05 佛山市三水凤铝铝业有限公司 一种抗腐蚀铝合金型材及其挤压方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214606A (ja) * 2002-12-19 2004-07-29 Kobe Steel Ltd 表示デバイスおよびその製法、ならびにスパッタリングターゲット
JP2007018226A (ja) * 2005-07-07 2007-01-25 Three M Innovative Properties Co タッチパネルセンサー
JP2007293777A (ja) * 2006-04-27 2007-11-08 Nitto Denko Corp タッチパネル

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733006B2 (ja) * 1993-07-27 1998-03-30 株式会社神戸製鋼所 半導体用電極及びその製造方法並びに半導体用電極膜形成用スパッタリングターゲット
JP3365954B2 (ja) * 1997-04-14 2003-01-14 株式会社神戸製鋼所 半導体電極用Al−Ni−Y 合金薄膜および半導体電極用Al−Ni−Y 合金薄膜形成用スパッタリングターゲット
JP4458563B2 (ja) * 1998-03-31 2010-04-28 三菱電機株式会社 薄膜トランジスタの製造方法およびこれを用いた液晶表示装置の製造方法
JP4663829B2 (ja) * 1998-03-31 2011-04-06 三菱電機株式会社 薄膜トランジスタおよび該薄膜トランジスタを用いた液晶表示装置
JP3831868B2 (ja) * 2001-08-13 2006-10-11 大林精工株式会社 アクティブマトリックス表示装置とその製造方法
JP4783525B2 (ja) * 2001-08-31 2011-09-28 株式会社アルバック 薄膜アルミニウム合金及び薄膜アルミニウム合金形成用スパッタリングターゲット
JP2003089864A (ja) * 2001-09-18 2003-03-28 Mitsui Mining & Smelting Co Ltd アルミニウム合金薄膜及びその薄膜を有する配線回路並びにその薄膜を形成するターゲット材
US7514037B2 (en) * 2002-08-08 2009-04-07 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
JP2005303003A (ja) * 2004-04-12 2005-10-27 Kobe Steel Ltd 表示デバイスおよびその製法
JP4541787B2 (ja) * 2004-07-06 2010-09-08 株式会社神戸製鋼所 表示デバイス
JP4330517B2 (ja) * 2004-11-02 2009-09-16 株式会社神戸製鋼所 Cu合金薄膜およびCu合金スパッタリングターゲット並びにフラットパネルディスプレイ
JP4579709B2 (ja) * 2005-02-15 2010-11-10 株式会社神戸製鋼所 Al−Ni−希土類元素合金スパッタリングターゲット
JP4117001B2 (ja) * 2005-02-17 2008-07-09 株式会社神戸製鋼所 薄膜トランジスタ基板、表示デバイス、および表示デバイス用のスパッタリングターゲット
JP3979605B2 (ja) * 2005-04-26 2007-09-19 三井金属鉱業株式会社 Al−Ni−B合金配線材料及びそれを用いた素子構造
JP4635715B2 (ja) * 2005-05-20 2011-02-23 富士電機システムズ株式会社 はんだ合金およびそれを用いた半導体装置
JP4542008B2 (ja) * 2005-06-07 2010-09-08 株式会社神戸製鋼所 表示デバイス
US7683370B2 (en) * 2005-08-17 2010-03-23 Kobe Steel, Ltd. Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices
US7411298B2 (en) * 2005-08-17 2008-08-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Source/drain electrodes, thin-film transistor substrates, manufacture methods thereof, and display devices
TW200745923A (en) * 2005-10-20 2007-12-16 Nitto Denko Corp Transparent conductive laminate body and touch panel equipped with above
US7781767B2 (en) * 2006-05-31 2010-08-24 Kobe Steel, Ltd. Thin film transistor substrate and display device
JP2008098611A (ja) * 2006-09-15 2008-04-24 Kobe Steel Ltd 表示装置
JP4280277B2 (ja) * 2006-09-28 2009-06-17 株式会社神戸製鋼所 表示デバイスの製法
JP4377906B2 (ja) * 2006-11-20 2009-12-02 株式会社コベルコ科研 Al−Ni−La系Al基合金スパッタリングターゲット、およびその製造方法
JP2008127623A (ja) * 2006-11-20 2008-06-05 Kobelco Kaken:Kk Al基合金スパッタリングターゲットおよびその製造方法
JP4170367B2 (ja) * 2006-11-30 2008-10-22 株式会社神戸製鋼所 表示デバイス用Al合金膜、表示デバイス、及びスパッタリングターゲット
JP4355743B2 (ja) * 2006-12-04 2009-11-04 株式会社神戸製鋼所 Cu合金配線膜とそのCu合金配線膜を用いたフラットパネルディスプレイ用TFT素子、及びそのCu合金配線膜を作製するためのCu合金スパッタリングターゲット
JP4705062B2 (ja) * 2007-03-01 2011-06-22 株式会社神戸製鋼所 配線構造およびその作製方法
JP2009004518A (ja) * 2007-06-20 2009-01-08 Kobe Steel Ltd 薄膜トランジスタ基板、および表示デバイス
JP2009010052A (ja) * 2007-06-26 2009-01-15 Kobe Steel Ltd 表示装置の製造方法
US20090001373A1 (en) * 2007-06-26 2009-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.) Electrode of aluminum-alloy film with low contact resistance, method for production thereof, and display unit
JP2009008770A (ja) * 2007-06-26 2009-01-15 Kobe Steel Ltd 積層構造およびその製造方法
JP5143649B2 (ja) * 2007-07-24 2013-02-13 株式会社コベルコ科研 Al−Ni−La−Si系Al合金スパッタリングターゲットおよびその製造方法
JP5432550B2 (ja) * 2008-03-31 2014-03-05 株式会社コベルコ科研 Al基合金スパッタリングターゲットおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004214606A (ja) * 2002-12-19 2004-07-29 Kobe Steel Ltd 表示デバイスおよびその製法、ならびにスパッタリングターゲット
JP2007018226A (ja) * 2005-07-07 2007-01-25 Three M Innovative Properties Co タッチパネルセンサー
JP2007293777A (ja) * 2006-04-27 2007-11-08 Nitto Denko Corp タッチパネル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102486694A (zh) * 2010-12-01 2012-06-06 株式会社神户制钢所 触摸面板传感器
JP2012118813A (ja) * 2010-12-01 2012-06-21 Kobe Steel Ltd タッチパネルセンサー
JP2012118815A (ja) * 2010-12-01 2012-06-21 Kobe Steel Ltd タッチパネルセンサー
JP2012118814A (ja) * 2010-12-01 2012-06-21 Kobe Steel Ltd タッチパネルセンサー

Also Published As

Publication number Publication date
TWI382428B (zh) 2013-01-11
JP5231282B2 (ja) 2013-07-10
TW200947467A (en) 2009-11-16
CN101911232B (zh) 2014-03-12
JP2009245422A (ja) 2009-10-22
KR101163329B1 (ko) 2012-07-05
KR20100119794A (ko) 2010-11-10
CN101911232A (zh) 2010-12-08
US20100328247A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
JP5231282B2 (ja) タッチパネルセンサー
US20130140066A1 (en) Cu alloy interconnection film for touch-panel sensor and method of manufacturing the interconnection film, touch-panel sensor, and sputtering target
TWI249070B (en) Electronic device, method of manufacture of the same, and sputtering target
EP3435385B1 (en) Laminated transparent conductive film, laminated wiring film, and method for producing laminated wiring film
JP2012209148A (ja) 導電性粒子、導電性ペースト、及び、回路基板
KR101358529B1 (ko) 전자부품용 적층 배선막 및 피복층 형성용 스퍼터링 타겟재
TW569420B (en) Conductive film for semiconductor device, semiconductor devices and the manufacturing method thereof
TW577091B (en) Resistor
JP2008077574A (ja) タッチパネル及びフレキシブルコネクタ
JP4588621B2 (ja) フレキシブルプリント配線板用積層体及び該積層体の銅合金層の形成に用いるCu合金スパッタリングターゲット
JP5416682B2 (ja) タッチパネルセンサーおよびその製造方法
JP2006226797A (ja) 薄膜電極基板及びその作製方法
KR101479887B1 (ko) 터치 패널 센서
JP2013091217A (ja) 透明導電フィルムおよびタッチパネル
JP5416683B2 (ja) タッチパネルセンサーおよびその製造方法
JP4583564B2 (ja) 配線、電極及び接点
JP7352234B2 (ja) 金属基板上に形成された薄膜の電気抵抗率の測定方法、並びに当該測定方法を利用する電子部品の製造方法及び電子部品の製造装置
JP5032791B2 (ja) 電子部品の製造方法
JP5416681B2 (ja) タッチパネルセンサーおよびその製造方法
CN107407993A (zh) 传导性结构及其制造方法
JP4684983B2 (ja) フレキシブルプリント配線板用積層体及び銅合金スパッタリングターゲット
JP2007088221A (ja) セラミックス電子部品の製造方法およびセラミックス電子部品
TW200526090A (en) Printing process of resistive touch panel
JP2007201142A (ja) Ag配線基板
JP2011091352A (ja) 薄膜トランジスタ基板およびその製造方法並びに表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102139.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711569

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12918727

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107020701

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09711569

Country of ref document: EP

Kind code of ref document: A1